Advanced Numerical Model for Irradiated Concrete
Giorla, Alain B.
2015-03-01
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some
Advanced in turbulence physics and modeling by direct numerical simulations
NASA Technical Reports Server (NTRS)
Reynolds, W. C.
1987-01-01
The advent of direct numerical simulations of turbulence has opened avenues for research on turbulence physics and turbulence modeling. Direct numerical simulation provides values for anything that the scientist or modeler would like to know about the flow. An overview of some recent advances in the physical understanding of turbulence and in turbulence modeling obtained through such simulations is presented.
Advanced Numerical Modeling of Turbulent Atmospheric Flows
NASA Astrophysics Data System (ADS)
Kühnlein, Christian; Dörnbrack, Andreas; Gerz, Thomas
The present chapter introduces the method of computational simulation to predict and study turbulent atmospheric flows. This includes a description of the fundamental approach to computational simulation and the practical implementation using the technique of large-eddy simulation. In addition, selected contributions from IPA scientists to computational model development and various examples for applications are given. These examples include homogeneous turbulence, convective boundary layers, heated forest canopy, buoyant thermals, and large-scale flows with baroclinic wave instability.
Numerical modeling of spray combustion with an advanced VOF method
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul
1995-01-01
This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.
François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges. In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.
François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less
Advances in Analytical and Numerical Dispersion Modeling of Pollutants Releasing from an Area-source
NASA Astrophysics Data System (ADS)
Nimmatoori, Praneeth
The air quality near agricultural activities such as tilling, plowing, harvesting, and manure application is of main concern because they release fine particulate matter into the atmosphere. These releases are modeled as area-sources in the air quality modeling research. None of the currently available dispersion models relate and incorporate physical characteristics and meteorological conditions for modeling the dispersion and deposition of particulates emitting from such area-sources. This knowledge gap was addressed by developing the advanced analytical and numerical methods for modeling the dispersion of particulate matter. The development, application, and evaluation of new dispersion modeling methods are discussed in detail in this dissertation. In the analytical modeling, a ground-level area source analytical dispersion model known as particulate matter deposition -- PMD was developed for predicting the concentrations of different particle sizes. Both the particle dynamics (particle physical characteristics) and meteorological conditions which have significant effect on the dispersion of particulates were related and incorporated in the PMD model using the formulations of particle gravitational settling and dry deposition velocities. The modeled particle size concentrations of the PMD model were evaluated statistically after applying it to particulates released from a biosolid applied agricultural field. The evaluation of the PMD model using the statistical criteria concluded effective and successful inclusion of dry deposition theory for modeling particulate matter concentrations. A comprehensive review of analytical area-source dispersion models, which do not account for dry deposition and treat pollutants as gases, was conducted and determined three models -- the Shear, the Parker, and the Smith. A statistical evaluation of these dispersion models was conducted after applying them to two different field data sets and the statistical results concluded that
Advanced material modelling in numerical simulation of primary acetabular press-fit cup stability.
Souffrant, R; Zietz, C; Fritsche, A; Kluess, D; Mittelmeier, W; Bader, R
2012-01-01
Primary stability of artificial acetabular cups, used for total hip arthroplasty, is required for the subsequent osteointegration and good long-term clinical results of the implant. Although closed-cell polymer foams represent an adequate bone substitute in experimental studies investigating primary stability, correct numerical modelling of this material depends on the parameter selection. Material parameters necessary for crushable foam plasticity behaviour were originated from numerical simulations matched with experimental tests of the polymethacrylimide raw material. Experimental primary stability tests of acetabular press-fit cups consisting of static shell assembly with consecutively pull-out and lever-out testing were subsequently simulated using finite element analysis. Identified and optimised parameters allowed the accurate numerical reproduction of the raw material tests. Correlation between experimental tests and the numerical simulation of primary implant stability depended on the value of interference fit. However, the validated material model provides the opportunity for subsequent parametric numerical studies. PMID:22817471
Springback Simulation: Impact of Some Advanced Constitutive Models and Numerical Parameters
NASA Astrophysics Data System (ADS)
Haddag, Badis; Balan, Tudor; Abed-Meraim, Farid
2005-08-01
The impact of material models on the numerical simulation of springback is investigated. The study is focused on the strain-path sensitivity of two hardening models. While both models predict the Bauschinger effect, their response in the transient zone after a strain-path change is fairly different. Their respective predictions are compared in terms of sequential test response and of strip-drawing springback. For this purpose, an accurate and general time integration algorithm has been developed and implemented in the Abaqus code. The impact of several numerical parameters is also studied in order to assess the overall accuracy of the finite element prediction. For some test geometries, both material and numerical parameters are shown to clearly influence the springback behavior at a large extent. Moreover, a general trend cannot always be extracted, thus justifying the need for the finite element simulation of the stamping process.
An advanced numerical model for phase change problems in complicated geometries
NASA Astrophysics Data System (ADS)
Khashan, Saud Abdel-Aziz
1998-11-01
An advanced fixed-grid enthalpy formulation based finite volume numerical method is developed to solve the phase change problems in complicated geometries. The numerical method is based on a general non-orthogonal grid structure and a colocated arrangement of variables. Second order discretizations and interpolations are used. The convergence rate is considerably accelerated by switching-off the velocity in the solidified region in an implicit way. This switching-off technique has a strong compatibility with SIMPLE-like methods. For all test cases conducted in this study, the rate of convergence using the new treatment exceeds that of the other enthalpy formulation-based methods and with less numerical stability constraints, when used in convection-diffusion phase change problems. For better run in vector computers, The Incomplete LU decomposition (ILU) matrix solver is partially vectorized. The Mflops (million floating point operation per second) number is raised from 60 to over 300. Water freezing in orthogonal and non-orthogonal geometry are studied under the effect of density inversion. All thermo-physical properties of the water are dealt with as temperature-dependent (no Boussinsq approximation). The results show a profound effect of density inversion on the flow/energy field and on the local as well as on the universal freezing rate.
Bahrami, Saeed; Doulati Ardejani, Faramarz; Aslani, Soheyla; Baafi, Ernest
2014-12-01
The groundwater inflow into a mine during its life and after ceasing operations is one of the most important concerns of the mining industry. This paper presents a hydrogeological assessment of the Irankuh Zn-Pb mine at 20 km south of Esfahan and 1 km northeast of Abnil in west-Central Iran. During mine excavation, the upper impervious bed of a confined aquifer was broken and water at high-pressure flowed into an open pit mine associated with the Kolahdarvazeh deposit. The inflow rates were 6.7 and 1.4 m(3)/s at the maximum and minimum quantities, respectively. Permeability, storage coefficient, thickness and initial head of the fully saturated confined aquifer were 3.5 × 10(-4) m/s, 0.2, 30 m and 60 m, respectively. The hydraulic heads as a function of time were monitored at four observation wells in the vicinity of the pit over 19 weeks and at an observation well near a test well over 21 h. In addition, by measuring the rate of pumping out from the pit sump, at a constant head (usually equal to height of the pit floor), the real inflow rates to the pit were monitored. The main innovations of this work were to make comparison between numerical modelling using a finite element software called SEEP/W and actual data related to inflow and extend the applicability of the numerical model. This model was further used to estimate the hydraulic heads at the observation wells around the pit over 19 weeks during mining operations. Data from a pump-out test and observation wells were used for model calibration and verification. In order to evaluate the model efficiency, the modelling results of inflow quantity and hydraulic heads were compared to those from analytical solutions, as well as the field data. The mean percent error in relation to field data for the inflow quantity was 0.108. It varied between 1.16 and 1.46 for hydraulic head predictions, which are much lower values than the mean percent errors resulted from the analytical solutions (from 1.8 to 5
Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz
2014-01-01
Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412
Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz
2014-08-13
Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412
NASA Astrophysics Data System (ADS)
Schuster, Jonathan
Infrared (IR) detectors are well established as a vital sensor technology for military, defense and commercial applications. Due to the expense and effort required to fabricate pixel arrays, it is imperative to develop numerical simulation models to perform predictive device simulations which assess device characteristics and design considerations. Towards this end, we have developed a robust three-dimensional (3D) numerical simulation model for IR detector pixel arrays. We used the finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite element method to solve the drift-diffusion equations to compute the electrical characteristics including the I(V) characteristics, quantum efficiency, crosstalk and modulation transfer function. We use our 3D numerical model to study a new class of detector based on the nBn-architecture. This detector is a unipolar unity-gain barrier device consisting of a narrow-gap absorber layer, a wide-gap barrier layer, and a narrow-gap collector layer. We use our model to study the underlying physics of these devices and to explain the anomalously long lateral collection lengths for photocarriers measured experimentally. Next, we investigate the crosstalk in HgCdTe photovoltaic pixel arrays employing a photon-trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. The PT region drastically reduces the crosstalk; making the use of the PT structures not only useful to obtain broadband operation, but also desirable for reducing crosstalk, especially in small pitch detector arrays. Then, the power and flexibility of the nBn architecture is coupled with a PT structure to engineer spectrally filtering detectors. Last, we developed a technique to reduce the cost of large-format, high performance HgCdTe detectors by nondestructively screen-testing detector arrays prior
NASA Astrophysics Data System (ADS)
Alliss, R.
2014-09-01
Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification
Numerical Viscous Flow Analysis of an Advanced Semispan Diamond-Wing Model at High-Life Conditions
NASA Technical Reports Server (NTRS)
Ghaffari, F.; Biedron, R. T.; Luckring, J. M.
2002-01-01
Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant width standoff. The analyses include: (1) the numerical simulation of the NTF empty, tunnel flow characteristics; (2) semispan high-lift model with the standoff in the tunnel environment; (3) semispan high-lift model with the standoff and viscous sidewall in free air; and (4) semispan high-lift model without the standoff in free air. The computations were performed at conditions that correspond to a nominal approach and landing configuration. The wing surface pressure distributions computed for the model in both the tunnel and in free air agreed well with the corresponding experimental data and they both indicated small increments due to the wall interference effects. However, the wall interference effects were found to be more pronounced in the total measured and the computed lift, drag and pitching moment due to standard induced up-flow effects. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted well. The numerical predictions are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage fore-body pressure distributions and the resulting impact on the overall configuration longitudinal aerodynamic characteristics.
Toward Scientific Numerical Modeling
NASA Technical Reports Server (NTRS)
Kleb, Bil
2007-01-01
Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.
Brush seal numerical simulation: Concepts and advances
NASA Technical Reports Server (NTRS)
Braun, M. J.; Kudriavtsev, V. V.
1994-01-01
The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.
Brush seal numerical simulation: Concepts and advances
NASA Astrophysics Data System (ADS)
Braun, M. J.; Kudriavtsev, V. V.
1994-07-01
The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.
NASA Astrophysics Data System (ADS)
Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem
2011-08-01
Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.
NASA Astrophysics Data System (ADS)
Kim, Hyunok; Kimchi, Menachem
2011-08-01
This paper presents a numerical modeling approach for predicting springback by considering the variations of elastic modulus on springback in stamping AHSS. Various stamping tests and finite-element method (FEM) simulation codes were used in this study. The cyclic loading-unloading tensile tests were conducted to determine the variations of elastic modulus for dual-phase (DP) 780 sheet steel. The biaxial bulge test was used to obtain plastic flow stress data. The non-linear reduction of elastic modulus for increasing the plastic strain was formulated by using the Yoshida model that was implemented in FEM simulations for springback. To understand the effects of material properties on springback, experiments were conducted with a simple geometry such as U-shape bending and the more complex geometry such as the curved flanging and S-rail stamping. Different measurement methods were used to confirm the final part geometry. Two different commercial FEM codes, LS-DYNA and DEFORM, were used to compare the experiments. The variable elastic modulus improved springback predictions in U-shape bending and curved flanging tests compared to FEM with the constant elastic modulus. However, in S-rail stamping tests, both FEM models with the isotropic hardening model showed limitations in predicting the sidewall curl of the S-rail part after springback. To consider the kinematic hardening and Bauschinger effects that result from material bending-unbending in S-rail stamping, the Yoshida model was used for FEM simulation of S-rail stamping and springback. The FEM predictions showed good improvement in correlating with experiments.
Advances in Numerical Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.
1997-01-01
Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.
NASA Astrophysics Data System (ADS)
Zhang, D.; Nastac, L.
2015-06-01
The metal-matrix-nano-composites (MMNCs) in this study consist of a 6061 alloy matrix reinforced with 1.0 wt.% SiC 50 nm diameter nanoparticles that are dispersed uniformly within the matrix in large volume using an ultrasonic cavitation dispersion technique (UCDS) available in the Solidification Laboratory at UA. The required ultrasonic parameters to achieve the required cavitation for adequate degassing and refining of the aluminium alloy as well as the fluid flow characteristics for uniform dispersion of the nanoparticles into the 6061 matrix are being investigated in this study by using an in-house developed CFD ultrasonic cavitation model. The multiphase CFD model accounts for turbulent fluid flow, heat transfer and solidification as well as the complex interaction between the solidifying alloy and nanoparticles by using the Ansys's Fluent Dense Discrete Phase Model (DDPM) and a particle engulfment and pushing (PEP) model. The PEP model accounts for the Brownian motion. SEM analysis was performed on the as-cast MMNC coupons processed via UCDS and confirmed the distribution of the nanoparticles predicted by the current CFD model. A parametric study was performed using the validated CFD model. The study includes the effects of magnitude of the fluid flow and ultrasonic probe location (gravity direction).
Waste glass melter numerical and physical modeling
Eyler, L.L.; Peters, R.D.; Lessor, D.L.; Lowery, P.S.; Elliott, M.L.
1991-10-01
Results of physical and numerical simulation modeling of high-level liquid waste vitrification melters are presented. Physical modeling uses simulant fluids in laboratory testing. Visualization results provide insight into convective melt flow patterns from which information is derived to support performance estimation of operating melters and data to support numerical simulation. Numerical simulation results of several melter configurations are presented. These are in support of programs to evaluate melter operation characteristics and performance. Included are investigations into power skewing and alternating current electric field phase angle in a dual electrode pair reference design and bi-modal convective stability in an advanced design. 9 refs., 9 figs., 1 tab.
Numerical modeling of Hall thruster
Chable, S.; Rogier, F.
2005-05-16
A stationary plasma thruster is numerically studied using different levels. An one dimensional modeling is first analyzed and compared with experimental results. A simplified model of oscillations thruster is proposed and used to control the amplitude of oscillations. A two dimensional numerical method is discussed and applied to the computation of the flow in the exhaust.
Advances in numerical and applied mathematics
NASA Technical Reports Server (NTRS)
South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)
1986-01-01
This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.
Numerical modeling for underground nuclear test monitoring
NASA Astrophysics Data System (ADS)
Taylor, Steven R.; Kamm, James R.
The symposium for Numerical Modeling for Underground Nuclear Test Monitoring was held March 23-25 in Durango, Colo. Funded by the DOE Office of Arms Control and Nonproliferation (OACN) and hosted by the Source Region Program at Los Alamos National Laboratory (LANL), the meetings's purpose was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test-ban monitoring. In particular, we wished to focus on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems.The concept for the meeting arose through discussions with Marv Denny, who was on assignment at Department of Energy Headquarters from Lawrence Livermore National Laboratory (LLNL). In these conversations, the following question was discussed: how are numerical modeling techniques being used to understand the effects of explosion- source phenomenology on test-ban treaty monitoring? Numerical studies are becoming increasingly important in the evaluation of capabilities for proliferation monitoring; this trend has accelerated with the curtailment of the nuclear testing program. During these discussions, the issue of the uniqueness and limitations of numerical models arose. It was decided to address these questions by convening a group of experts to present and discuss the problems associated with modeling of close-in data from explosions.
Numerical models of galactic dynamos
NASA Astrophysics Data System (ADS)
Elstner, Detlef
The state of the art for dynamo models in spiral galaxies is reviewed. The comparison of numerical models with special properties of observed magnetic fields yields constraints for the turbulent diffusivity and the α-effect. The derivation of the turbulence parameters from the vertical structure of the interstellar medium gives quite reasonable values for modelling the regular magnetic fields in galaxies with an α2Ω-dynamo. Considering the differences of the turbulence between spiral arms and interarm regions, the observed interarm magnetic fields are recovered in the numerical models due to the special properties of the α2Ω-dynamo.
Numerical Modelling of Gelating Aerosols
Babovsky, Hans
2008-09-01
The numerical simulation of the gel phase transition of an aerosol system is an interesting and demanding task. Here, we follow an approach first discussed in [6, 8] which turns out as a useful numerical tool. We investigate several improvements and generalizations. In the center of interest are coagulation diffusion systems, where the aerosol dynamics is supplemented with diffusive spreading in physical space. This leads to a variety of scenarios (depending on the coagulation kernel and the diffusion model) for the spatial evolution of the gelation area.
Advanced numerics for multi-dimensional fluid flow calculations
NASA Technical Reports Server (NTRS)
Vanka, S. P.
1984-01-01
In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge
Pfeffer, W.T.; Dyurgerov, M.; Kaplan, M.; Dwyer, J.; Sassolas, C.; Jennings, A.; Raup, B.; Manley, W.
1997-01-01
A time-dependent finite element model was used to reconstruct the advance of ice from a late Glacial dome on northern Quebec/Labrador across Hudson Strait to Meta Incognita Peninsula (Baffin Island) and subsequently to the 9.9-9.6 ka 14C Gold Cove position on Hall Peninsula. Terrestrial geological and geophysical information from Quebec and Labrador was used to constrain initial and boundary conditions, and the model results are compared with terrestrial geological information from Baffin Island and considered in the context of the marine event DC-0 and the Younger Dryas cooling. We conclude that advance across Hudson Strait from Ungava Bay to Baffin Island is possible using realistic glacier physics under a variety of reasonable boundary conditions. Production of ice flux from a dome centered on northeastern Quebec and Labrador sufficient to deliver geologically inferred ice thickness at Gold Cove (Hall Peninsula) appears to require extensive penetration of sliding south from Ungava Bay. The discharge of ice into the ocean associated with advance and retreat across Hudson Strait does not peak at a time coincident with the start of the Younger Dryas and is less than minimum values proposed to influence North Atlantic thermohaline circulation; nevertheless, a significant fraction of freshwater input to the North Atlantic may have been provided abruptly and at a critical time by this event.
Numerical Forming Simulations and Optimisation in Advanced Materials
NASA Astrophysics Data System (ADS)
Huétink, J.; van den Boogaard, A. H.; Geijselears, H. J. M.; Meinders, T.
2007-05-01
With the introduction of new materials as high strength steels, metastable steels and fibre reinforced composites, the need for advanced physically valid constitutive models arises. In finite deformation problems constitutive relations are commonly formulated in terms the Cauchy stress as a function of the elastic Finger tensor and an objective rate of the Cauchy stress as a function of the rate of deformation tensor. For isotropic materials models this is rather straightforward, but for anisotropic material models, including elastic anisotropy as well as plastic anisotropy, this may lead to confusing formulations. It will be shown that it is more convenient to define the constitutive relations in terms of invariant tensors referred to the deformed metric. Experimental results are presented that show new combinations of strain rate and strain path sensitivity. An adaptive through- thickness integration scheme for plate elements is developed, which improves the accuracy of spring back prediction at minimal costs. A procedure is described to automatically compensate the CAD tool shape numerically to obtain the desired product shape. Forming processes need to be optimized for cost saving and product improvement. Until recently, a trial-and-error process in the factory primarily did this optimization. An optimisation strategy is proposed that assists an engineer to model an optimization problem that suits his needs, including an efficient algorithm for solving the problem.
NASA Astrophysics Data System (ADS)
López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio
2015-06-01
The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.
NASA Technical Reports Server (NTRS)
Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek
2015-01-01
Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.
ADVANCED CHEMISTRY BASINS MODEL
William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang
2004-05-01
The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.
NASA Astrophysics Data System (ADS)
Syvitski, James P. M.; Hutton, Eric W. H.
2001-07-01
Numerical simulators of the dynamics of strata formation of continental margins fuse information from the atmosphere, ocean and regional geology. Such models can provide information for areas and times for which actual measurements are not available, or for when purely statistical estimates are not adequate by themselves. SEDFLUX is such a basin-fill model, written in ANSI-standard C, able to simulate the delivery of sediment and their accumulation over time scales of tens of thousands of years. SEDFLUX includes the effects of sea-level fluctuations, river floods, ocean storms, and other relevant environmental factors (climate trends, random catastrophic events), at a time step (daily to yearly) that is sensitive to short-term variations of the seafloor. SEDFLUX combines individual process-response models into one fully interactive model, delivering a multi-sized sediment load onto and across a continental margin, including sediment redistribution by (1) river mouth dynamics, (2) buoyant surface plumes, (3) hyperpycnal flows, (4) ocean storms, (5) slope instabilities, (6) turbidity currents, and (7) debris flows. The model allows for the deposit to compact, to undergo tectonic processes (faults, uplift) and isostatic subsidence from the sediment load. The modeled architecture has a typical vertical resolution of 1-25 cm, and a typical horizontal resolution of between 1 and 100 m.
Comprehensive numerical modelling of tokamaks
Cohen, R.H.; Cohen, B.I.; Dubois, P.F.
1991-01-03
We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell.
Numerical models of complex diapirs
NASA Astrophysics Data System (ADS)
Podladchikov, Yu.; Talbot, C.; Poliakov, A. N. B.
1993-12-01
Numerically modelled diapirs that rise into overburdens with viscous rheology produce a large variety of shapes. This work uses the finite-element method to study the development of diapirs that rise towards a surface on which a diapir-induced topography creeps flat or disperses ("erodes") at different rates. Slow erosion leads to diapirs with "mushroom" shapes, moderate erosion rate to "wine glass" diapirs and fast erosion to "beer glass"- and "column"-shaped diapirs. The introduction of a low-viscosity layer at the top of the overburden causes diapirs to develop into structures resembling a "Napoleon hat". These spread lateral sheets.
Numerical methods used in fusion science numerical modeling
NASA Astrophysics Data System (ADS)
Yagi, M.
2015-04-01
The dynamics of burning plasma is very complicated physics, which is dominated by multi-scale and multi-physics phenomena. To understand such phenomena, numerical simulations are indispensable. Fundamentals of numerical methods used in fusion science numerical modeling are briefly discussed in this paper. In addition, the parallelization technique such as open multi processing (OpenMP) and message passing interface (MPI) parallel programing are introduced and the loop-level parallelization is shown as an example.
Numerical Modeling of Ocean Circulation
NASA Astrophysics Data System (ADS)
Miller, Robert N.
2007-01-01
The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details
Multiscale numerical modeling of levee breach processes
NASA Astrophysics Data System (ADS)
Kees, C. E.; Farthing, M. W.; Akkerman, I.; Bazilevs, Y.
2010-12-01
One of the dominant failure modes of levees during flood and storm surge events is erosion-based breach formation due to high velocity flow over the back (land-side) slope. Modeling the breaching process numerically is challenging due to both physical and geometric complexity that develops and evolves during the overtopping event. The surface water flows are aerated and sediment-laden mixtures in the supercritical and turbulent regimes. The air/water free surface may undergo perturbations on the same order as the depth or even topological change (breaking). Likewise the soil/fluid interface is characterized by evolving headcuts, which are essentially moving discontinuities in the soil surface elevation. The most widely used models of levee breaching are nevertheless based on depth-integrated models of flow, sediment transport, and bed morphology. In this work our objective is to explore models with less restrictive modeling assumptions, which have become computationally tractable due to advances in both numerical methods and high-performance computing hardware. In particular, we present formulations of fully three-dimensional flow, transport, and morphological evolution for overtopping and breaching processes and apply recently developed finite element and level set methods to solve the governing equations for relevant test problems.
Numerical Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy
2003-01-01
Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.
Some recent advances in the numerical solution of differential equations
NASA Astrophysics Data System (ADS)
D'Ambrosio, Raffaele
2016-06-01
The purpose of the talk is the presentation of some recent advances in the numerical solution of differential equations, with special emphasis to reaction-diffusion problems, Hamiltonian problems and ordinary differential equations with discontinuous right-hand side. As a special case, in this short paper we focus on the solution of reaction-diffusion problems by means of special purpose numerical methods particularly adapted to the problem: indeed, following a problem oriented approach, we propose a modified method of lines based on the employ of finite differences shaped on the qualitative behavior of the solutions. Constructive issues and a brief analysis are presented, together with some numerical experiments showing the effectiveness of the approach and a comparison with existing solvers.
Advanced Turbulence Modeling Concepts
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing
2005-01-01
The ZCET program developed at NASA Glenn Research Center is to study hydrogen/air injection concepts for aircraft gas turbine engines that meet conventional gas turbine performance levels and provide low levels of harmful NOx emissions. A CFD study for ZCET program has been successfully carried out. It uses the most recently enhanced National combustion code (NCC) to perform CFD simulations for two configurations of hydrogen fuel injectors (GRC- and Sandia-injector). The results can be used to assist experimental studies to provide quick mixing, low emission and high performance fuel injector designs. The work started with the configuration of the single-hole injector. The computational models were taken from the experimental designs. For example, the GRC single-hole injector consists of one air tube (0.78 inches long and 0.265 inches in diameter) and two hydrogen tubes (0.3 inches long and 0.0226 inches in diameter opposed at 180 degree). The hydrogen tubes are located 0.3 inches upstream from the exit of the air element (the inlet location for the combustor). To do the simulation, the single-hole injector is connected to a combustor model (8.16 inches long and 0.5 inches in diameter). The inlet conditions for air and hydrogen elements are defined according to actual experimental designs. Two crossing jets of hydrogen/air are simulated in detail in the injector. The cold flow, reacting flow, flame temperature, combustor pressure and possible flashback phenomena are studied. Two grid resolutions of the numerical model have been adopted. The first computational grid contains 0.52 million elements, the second one contains over 1.3 million elements. The CFD results have shown only about 5% difference between the two grid resolutions. Therefore, the CFD result obtained from the model of 1.3-million grid resolution can be considered as a grid independent numerical solution. Turbulence models built in NCC are consolidated and well tested. They can handle both coarse and
Recent advances in two-phase flow numerics
Mahaffy, J.H.; Macian, R.
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
ERIC Educational Resources Information Center
Jarvelin, Kalervo
1986-01-01
Describes a method for advance estimation of user charges for queries in relational data model-based numeric databases when charges are based on data retrieved. Use of this approach is demonstrated by sample queries to an imaginary marketing database. The principles and methods of this approach and its relevance are discussed. (MBR)
Numerical Simulations and Optimisation in Forming of Advanced Materials
NASA Astrophysics Data System (ADS)
Huétink, J.
2007-04-01
With the introduction of new materials as high strength steels, metastable steels and fiber reinforce composites, the need for advanced physically valid constitutive models arises. A biaxial test equipment is developed and applied for the determination of material data as well as for validation of material models. An adaptive through- thickness integration scheme for plate elements is developed, which improves the accuracy of spring back prediction at minimal costs. An optimization strategy is proposed that assists an engineer to model an optimization problem.
Advanced Production Planning Models
JONES,DEAN A.; LAWTON,CRAIG R.; KJELDGAARD,EDWIN A.; WRIGHT,STEPHEN TROY; TURNQUIST,MARK A.; NOZICK,LINDA K.; LIST,GEORGE F.
2000-12-01
>This report describes the innovative modeling approach developed as a result of a 3-year Laboratory Directed Research and Development project. The overall goal of this project was to provide an effective suite of solvers for advanced production planning at facilities in the nuclear weapons complex (NWC). We focused our development activities on problems related to operations at the DOE's Pantex Plant. These types of scheduling problems appear in many contexts other than Pantex--both within the NWC (e.g., Neutron Generators) and in other commercial manufacturing settings. We successfully developed an innovative and effective solution strategy for these types of problems. We have tested this approach on actual data from Pantex, and from Org. 14000 (Neutron Generator production). This report focuses on the mathematical representation of the modeling approach and presents three representative studies using Pantex data. Results associated with the Neutron Generator facility will be published in a subsequent SAND report. The approach to task-based scheduling described here represents a significant addition to the literature for large-scale, realistic scheduling problems in a variety of production settings.
Advanced Chemistry Basins Model
William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang
2002-11-10
The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.
NUMERICAL MODELS FOR PREDICTING WATERSHED ACIDIFICATION
Three numerical models of watershed acidification, including the MAGIC II, ETD, and ILWAS models, are reviewed, and a comparative study is made of the specific process formulations that are incorporated in the models to represent hydrological, geochemical, and biogeochemical proc...
The Role of Numerical Simulation in Advancing Plasma Propulsion
NASA Astrophysics Data System (ADS)
Turchi, P. J.; Mikellides, P. G.; Mikellides, I. G.
1999-11-01
Plasma thrusters often involve a complex set of interactions among several distinct physical processes. While each process can yield to separate mathematical representation, their combination generally requires numerical simulation. We have extended and used the MACH2 code successfully to simulate both self-field and applied-field magnetoplasmadynamic thrusters and, more recently, ablation-fed pulsed plasma microthrusters. MACH2 provides a framework in which to compute 2-1/2 dimensional, unsteady, MHD flows in two-temperature LTE. It couples to several options for electrical circuitry and allows access to both analytic formulas and tabular values for material properties and transport coefficients, including phenomenological models for anomalous transport. Even with all these capabilities, however, successful modeling demands comparison with experiment and with analytic solutions in idealized limits, and careful combination of MACH2 results with separate physical reasoning. Although well understood elsewhere in plasma physics, the strengths and limitations of numerical simulation for plasma propulsion needs further discussion.
Numerical wind speed simulation model
Ramsdell, J.V.; Athey, G.F.; Ballinger, M.Y.
1981-09-01
A relatively simple stochastic model for simulating wind speed time series that can be used as an alternative to time series from representative locations is described in this report. The model incorporates systematic seasonal variation of the mean wind, its standard deviation, and the correlation speeds. It also incorporates systematic diurnal variation of the mean speed and standard deviation. To demonstrate the model capabilities, simulations were made using model parameters derived from data collected at the Hanford Meteorology Station, and results of analysis of simulated and actual data were compared.
Numerical Modeling in Geodynamics: Success, Failure and Perspective
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.
2005-12-01
tuning model variables are greater than two, test carefully the effect of each of the variables on the modeled phenomenon. Remember: With four exponents I can fit an elephant (E. Fermi, physicist). (vii) Make your numerical model as accurate as possible, but never put the aim to reach a great accuracy: Undue precision of computations is the first symptom of mathematical illiteracy (N. Krylov, mathematician). How complex should be a numerical model? A model which images any detail of the reality is as useful as a map of scale 1:1 (J. Robinson, economist). This message is quite important for geoscientists, who study numerical models of complex geodynamical processes. I believe that geoscientists will never create a model of the real Earth dynamics, but we should try to model the dynamics such a way to simulate basic geophysical processes and phenomena. Does a particular model have a predictive power? Each numerical model has a predictive power, otherwise the model is useless. The predictability of the model varies with its complexity. Remember that a solution to the numerical model is an approximate solution to the equations, which have been chosen in believe that they describe dynamic processes of the Earth. Hence a numerical model predicts dynamics of the Earth as well as the mathematical equations describe this dynamics. What methodological advances are still needed for testable geodynamic modeling? Inverse (time-reverse) numerical modeling and data assimilation are new methodologies in geodynamics. The inverse modeling can allow to test geodynamic models forward in time using restored (from present-day observations) initial conditions instead of unknown conditions.
Numerical modelling of river morphodynamics: Latest developments and remaining challenges
NASA Astrophysics Data System (ADS)
Siviglia, Annunziato; Crosato, Alessandra
2016-07-01
Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.
Survey of numerical electrostimulation models.
Reilly, J Patrick
2016-06-21
This paper evaluates results of a survey of electrostimulation models of myelinated nerve. Participants were asked to determine thresholds of excitation for 18 cases involving different characteristics of the neuron, the stimulation waveform, and the electrode arrangement. Responses were received from 7 investigators using 10 models. Excitation thresholds differed significantly among these models. For example, with a 2 ms monophasic stimulus pulse and an electrode/fiber distance of 1 cm, thresholds from the least to greatest value differed by a factor of 8.3; with a 5 μs pulse, thresholds differed by the factor 3.8. Significant differences in reported simulations point to the need for experimental validation. Additional efforts are needed to develop computational models for unmyelinated C-fibers, A-delta fibers, CNS neurons, and CNS Synapses. PMID:27223870
Survey of numerical electrostimulation models
NASA Astrophysics Data System (ADS)
Reilly, J. Patrick
2016-06-01
This paper evaluates results of a survey of electrostimulation models of myelinated nerve. Participants were asked to determine thresholds of excitation for 18 cases involving different characteristics of the neuron, the stimulation waveform, and the electrode arrangement. Responses were received from 7 investigators using 10 models. Excitation thresholds differed significantly among these models. For example, with a 2 ms monophasic stimulus pulse and an electrode/fiber distance of 1 cm, thresholds from the least to greatest value differed by a factor of 8.3; with a 5 μs pulse, thresholds differed by the factor 3.8. Significant differences in reported simulations point to the need for experimental validation. Additional efforts are needed to develop computational models for unmyelinated C-fibers, A-delta fibers, CNS neurons, and CNS Synapses.
Nonspinning numerical relativity waveform surrogates: Building the model
NASA Astrophysics Data System (ADS)
Galley, Chad
2015-04-01
Simulating binary black hole coalescences involves solving Einstein's equations with large-scale computing resources that can take months to complete for a single numerical solution. This engenders a computationally intractable problem for multiple-query applications related to parameter space exploration, data analysis for gravitational wave detectors like LIGO, and semi-analytical waveform fits. I discuss how reduced order modeling techniques are used to build accurate surrogates that can be evaluated quickly in place of numerically solving Einstein's equations for generating gravitational waveforms of nonspinning binary black hole coalescences. To within error, the surrogate can model all modes available from a numerical simulation including, for example, troublesome modes such as the (3,2) mode and memory modes. A companion talk will cover quantifying the best surrogate model's errors. The results of this work represent a significant advance by making it possible to use numerical relativity waveforms for multiple-query applications.
An Advanced Manipulator For Poisson Series With Numerical Coefficients
NASA Astrophysics Data System (ADS)
Biscani, Francesco; Casotto, S.
2006-06-01
The availability of an efficient and featureful manipulator for Poisson deries with numerical coefficients is a standard need for celestial mechanicians and has arisen during our work on the analytical development of the Tide-Generating-Potential (TGP). In the harmonic expansion of the TGP the Poisson series appearing in the theories of motion of the celestial bodies are subjected to a wide set of mathematical operations, ranging from simple additions and multiplications to more sophisticated operations on Legendre polynomials and spherical harmonics with Poisson series as arguments. To perform these operations we have developed an algebraic manipulator, called Piranha, structured as an object-oriented multi-platform C++ library. Piranha handles series with real and complex coefficients, and operates with an arbitrary degree of precision. It supports advanced features such as trigonometric operations and the generation of special functions from Poisson series. Piranha is provided with a proof-of-concept, multi-platform GUI, which serves as a testbed and benchmark for the library. We describe Piranha's architecture and characteristics, what it accomplishes currently and how it will be extended in the future (e.g., to handle series with symbolic coefficients in a consistent fashion with its current design).
Ferrofluids: Modeling, numerical analysis, and scientific computation
NASA Astrophysics Data System (ADS)
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Advanced Chemistry Basins Model
Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun
2003-02-13
The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.
Mathematical modeling of electrocardiograms: a numerical study.
Boulakia, Muriel; Cazeau, Serge; Fernández, Miguel A; Gerbeau, Jean-Frédéric; Zemzemi, Nejib
2010-03-01
This paper deals with the numerical simulation of electrocardiograms (ECG). Our aim is to devise a mathematical model, based on partial differential equations, which is able to provide realistic 12-lead ECGs. The main ingredients of this model are classical: the bidomain equations coupled to a phenomenological ionic model in the heart, and a generalized Laplace equation in the torso. The obtention of realistic ECGs relies on other important features--including heart-torso transmission conditions, anisotropy, cell heterogeneity and His bundle modeling--that are discussed in detail. The numerical implementation is based on state-of-the-art numerical methods: domain decomposition techniques and second order semi-implicit time marching schemes, offering a good compromise between accuracy, stability and efficiency. The numerical ECGs obtained with this approach show correct amplitudes, shapes and polarities, in all the 12 standard leads. The relevance of every modeling choice is carefully discussed and the numerical ECG sensitivity to the model parameters investigated. PMID:20033779
Numerical flow modeling of power plant windboxes
LaRose, J.A.; Hopkins, M.W.
1995-12-31
Numerical flow modeling has become an increasingly important design and analysis tool for improving the air distribution to power plant burners. Uniform air distribution allows the burners to perform as designed to achieve the lowest possible emissions and best fuel burn-out. Modifications can be made internal to the existing windbox to improve the burner-to-burner and burner peripheral air distributions. These modifications can include turning vanes, flow splitters, perforated plate, and burner shrouding. Numerical modeling allows the analysis of design trade-offs between adding flow resistance, fan power, and windbox modification construction cost. Numerical modeling has advantages over physical modeling in that actual geometric scales and air temperatures are used. Advantages over a field data based study include the ability to quickly and cheaply analyze a variety of design options without actually modifying the windbox, and the availability of significantly more data with which to interpret the results. Costs to perform a numerical study are generally one-half to one-third of the cost to perform a physical flow model and can be one-forth of the cost to perform a field study. The continued development of affordable, high speed, large memory workstations and reliable, commercially available computation fluid dynamics (CFD) software allows practical analyses of power plant windboxes. This paper discusses (1) the impact of air distribution on burner performance, (2) the methodology used to perform numerical flow modeling of power plant windboxes, and (3) the results from several windbox analyses including available post-modification observations.
Numerical noise in ocean and estuarine models
Walters, R.; Carey, G.F.
1984-01-01
Approximate methods for solving the shallow water equations may lead to solutions exhibiting large fictitious, numerically-induced oscillations. The analysis of the discrete dispersion relation and modal solutions of small wavelengths provides a powerful technique for assessing the sensitivity of alternative numerical schemes to irregular data which may lead to such oscillatory numerical noise. For those schemes where phase speed vanishes at a finite wavenumber or there are multiple roots for wavenumber, oscillation modes can exist which are uncoupled from the dynamics of the problem. The discrete modal analysis approach is used here to identify two classes of spurious oscillation modes associated respectively with the two different asymptotic limits corresponding to estuarine and large scale ocean models. The analysis provides further insight into recent numerical results for models which include large spatial scales and Coriolis acceleration. ?? 1984.
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Numerical Based Linear Model for Dipole Magnets
Li,Y.; Krinsky, S.; Rehak, M.
2009-05-04
In this paper, we discuss an algorithm for constructing a numerical linear optics model for dipole magnets from a 3D field map. The difference between the numerical model and K. Brown's analytic approach is investigated and clarified. It was found that the optics distortion due to the dipoles' fringe focusing must be properly taken into account to accurately determine the chromaticities. In NSLS-II, there are normal dipoles with 35-mm gap and dipoles for infrared sources with 90-mm gap. This linear model of the dipole magnets is applied to the NSLS-II lattice design to match optics parameters between the DBA cells having dipoles with different gaps.
Numerical FEM modeling in dental implantology
NASA Astrophysics Data System (ADS)
Roateşi, Iulia; Roateşi, Simona
2016-06-01
This paper is devoted to a numerical approach of the stress and displacement calculation of a system made up of dental implant, ceramic crown and surrounding bone. This is the simulation of a clinical situation involving both biological - the bone tissue, and non-biological - the implant and the crown, materials. On the other hand this problem deals with quite fine technical structure details - the threads, tapers, etc with a great impact in masticatory force transmission. Modeling the contact between the implant and the bone tissue is important to a proper bone-implant interface model and implant design. The authors proposed a three-dimensional numerical model to assess the biomechanical behaviour of this complex structure in order to evaluate its stability by determining the risk zones. A comparison between this numerical analysis and clinical cases is performed and a good agreement is obtained.
A review on recent advances in the numerical simulation for coalbed-methane-recovery process
Wei, X.R.; Wang, G.X.; Massarotto, P.; Golding, S.D.; Rudolph, V.
2007-12-15
The recent advances in numerical simulation for primary coalbed methane (CBM) recovery and enhanced coalbed-methane recovery (ECBMR) processes are reviewed, primarily focusing on the progress that has occurred since the late 1980s. Two major issues regarding the numerical modeling will be discussed in this review: first, multicomponent gas transport in in-situ bulk coal and, second, changes of coal properties during methane (CH{sub 4}) production. For the former issues, a detailed review of more recent advances in modeling gas and water transport within a coal matrix is presented. Further, various factors influencing gas diffusion through the coal matrix will be highlighted as well, such as pore structure, concentration and pressure, and water effects. An ongoing bottleneck for evaluating total mass transport rate is developing a reasonable representation of multiscale pore space that considers coal type and rank. Moreover, few efforts have been concerned with modeling water-flow behavior in the coal matrix and its effects on CH{sub 4} production and on the exchange of carbon dioxide (CO{sub 2}) and CH{sub 4}. As for the second issue, theoretical coupled fluid-flow and geomechanical models have been proposed to describe the evolution of pore structure during CH{sub 4} production, instead of traditional empirical equations. However, there is currently no effective coupled model for engineering applications. Finally, perspectives on developing suitable simulation models for CBM production and for predicting CO{sub 2}-sequestration ECBMR are suggested.
Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation
NASA Astrophysics Data System (ADS)
Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred
2005-08-01
In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.
Numerical Modelling of Ground Penetrating Radar Antennas
NASA Astrophysics Data System (ADS)
Giannakis, Iraklis; Giannopoulos, Antonios; Pajewski, Lara
2014-05-01
Numerical methods are needed in order to solve Maxwell's equations in complicated and realistic problems. Over the years a number of numerical methods have been developed to do so. Amongst them the most popular are the finite element, finite difference implicit techniques, frequency domain solution of Helmontz equation, the method of moments, transmission line matrix method. However, the finite-difference time-domain method (FDTD) is considered to be one of the most attractive choice basically because of its simplicity, speed and accuracy. FDTD first introduced in 1966 by Kane Yee. Since then, FDTD has been established and developed to be a very rigorous and well defined numerical method for solving Maxwell's equations. The order characteristics, accuracy and limitations are rigorously and mathematically defined. This makes FDTD reliable and easy to use. Numerical modelling of Ground Penetrating Radar (GPR) is a very useful tool which can be used in order to give us insight into the scattering mechanisms and can also be used as an alternative approach to aid data interpretation. Numerical modelling has been used in a wide range of GPR applications including archeology, geophysics, forensic, landmine detection etc. In engineering, some applications of numerical modelling include the estimation of the effectiveness of GPR to detect voids in bridges, to detect metal bars in concrete, to estimate shielding effectiveness etc. The main challenges in numerical modelling of GPR for engineering applications are A) the implementation of the dielectric properties of the media (soils, concrete etc.) in a realistic way, B) the implementation of the geometry of the media (soils inhomogeneities, rough surface, vegetation, concrete features like fractures and rock fragments etc.) and C) the detailed modelling of the antenna units. The main focus of this work (which is part of the COST Action TU1208) is the accurate and realistic implementation of GPR antenna units into the FDTD
Lee, S; Dimenna, R; Tamburello, D
2011-02-14
height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?
Numerical Modeling of Ocean Acoustic Wavefields
NASA Astrophysics Data System (ADS)
Tappert, Frederick
1997-08-01
The U.S. Navy requires real-time ``acoustic performance prediction'' models in order to optimize sonar tactics in naval combat situations. The need for numerical models that solve the acoustic wave equation in realistic ocean environments is being met by a collaborative effort between university researchers, industrial contractors, and navy laboratory workers. This paper discusses one particularly successful numerical model, called the PE/SSF model, that was originally developed by the author. Here PE stands for Parabolic Equation, a good approximation to the elliptic Helmholtz equation; and SSF stands for the Split-Step Fourier algorithm, a highly efficient marching algorithm for solving parabolic type equations. These techniques are analyzed, and examples are displayed of ocean acoustic wavefields generated by the PE/SSF model.
Lee, S; Richard Dimenna, R; David Tamburello, D
2008-11-13
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and
Advanced numerical methods and software approaches for semiconductor device simulation
CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.
2000-03-23
In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.
Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation
Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.
2000-01-01
In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less
Assessing Accuracy of Waveform Models against Numerical Relativity Waveforms
NASA Astrophysics Data System (ADS)
Pürrer, Michael; LVC Collaboration
2016-03-01
We compare currently available phenomenological and effective-one-body inspiral-merger-ringdown models for gravitational waves (GW) emitted from coalescing black hole binaries against a set of numerical relativity waveforms from the SXS collaboration. Simplifications are used in the construction of some waveform models, such as restriction to spins aligned with the orbital angular momentum, no inclusion of higher harmonics in the GW radiation, no modeling of eccentricity and the use of effective parameters to describe spin precession. In contrast, NR waveforms provide us with a high fidelity representation of the ``true'' waveform modulo small numerical errors. To focus on systematics we inject NR waveforms into zero noise for early advanced LIGO detector sensitivity at a moderately optimistic signal-to-noise ratio. We discuss where in the parameter space the above modeling assumptions lead to noticeable biases in recovered parameters.
Numerical modeling tools for chemical vapor deposition
NASA Technical Reports Server (NTRS)
Jasinski, Thomas J.; Childs, Edward P.
1992-01-01
Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.
Numerical modeling of nonintrusive inspection systems
Hall, J.; Morgan, J.; Sale, K.
1992-12-01
A wide variety of nonintrusive inspection systems have been proposed in the past several years for the detection of hidden contraband in airline luggage and shipping containers. The majority of these proposed techniques depend on the interaction of radiation with matter to produce a signature specific to the contraband of interest, whether drugs or explosives. In the authors` role as diagnostic specialists in the Underground Test Program over the past forty years, L-Division of the Lawrence Livermore National Laboratory has developed a technique expertise in the combined numerical and experimental modeling of these types of system. Based on their experience, they are convinced that detailed numerical modeling provides a much more accurate estimate of the actual performance of complex experiments than simple analytical modeling. Furthermore, the construction of detailed numerical prototypes allows experimenters to explore the entire region of parameter space available to them before committing their ideas to hardware. This sort of systematic analysis has often led to improved experimental designs and reductions in fielding costs. L-Division has developed an extensive suite of computer codes to model proposed experiments and possible background interactions. These codes allow one to simulate complex radiation sources, model 3-dimensional system geometries with {open_quotes}real world{close_quotes} complexity, specify detailed elemental distributions, and predict the response of almost any type of detector. In this work several examples are presented illustrating the use of these codes in modeling experimental systems at LLNL and their potential usefulness in evaluating nonintrusive inspection systems is discussed.
Numerical comparison of strong Langmuir turbulence models
NASA Technical Reports Server (NTRS)
Shen, Mei-Mei; Nicholson, D. R.
1987-01-01
Two models of Langmuir turbulence, the nonlinear Schroedinger equation and the Zakharov equations, are solved numerically for an initial value problem in which the electric field evolves from an almost flat initial condition via the modulational instability and finally saturates into a set of solitons. The two models agree well with each other only when the initial dimensionless electric field has an amplitude less than unity. An analytic soliton gas model consisting of equal-amplitude, randomly spaced, zero-speed solitons is remarkably good at reproducing the time-averaged Fourier spectra in both cases.
Numerical Modelling Of Pumpkin Balloon Instability
NASA Astrophysics Data System (ADS)
Wakefield, D.
Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.
Numerical modeling of flow through orifice meters
NASA Astrophysics Data System (ADS)
Sheikholesiami, M. Z.; Patel, B. R.
1988-03-01
Numerical modeling is performed for turbulent flow through orifice meters using Creare's computer program FLUENT. FLUENT solves the time averaged Navier-Stokes equations in 2-D and 3-D Cartesian or cylindrical coordinates. Turbulence is simulated using a two equation k-epsilon or algebraic stress turbulence model. It is shown that an 80 x 60 grid distribution is sufficient to resolve the flow field around the orifice. The variations in discharge coefficient are studied as a result of variation in beta ratio, Reynolds number, upstream and downstream boundary conditions, pipe surface roughness, and upstream swirl. The effects of beta ratio and Reynolds number on the discharge coefficient are shown to be similar to the experimental data. It is also shown that the surface roughness can increase the discharge coefficient by about 0.7 percent for the range of roughness heights encountered in practice. The numerical modeling approach would be most effective if it is combined with a systematic experimental program that can supply the necessary boundary conditions. It is recommended that numerical modeling be used for the study of other flow meters.
A Numerical Model for Atomtronic Circuit Analysis
Chow, Weng W.; Straatsma, Cameron J. E.; Anderson, Dana Z.
2015-07-16
A model for studying atomtronic devices and circuits based on finite-temperature Bose-condensed gases is presented. The approach involves numerically solving equations of motion for atomic populations and coherences, derived using the Bose-Hubbard Hamiltonian and the Heisenberg picture. The resulting cluster expansion is truncated at a level giving balance between physics rigor and numerical demand mitigation. This approach allows parametric studies involving time scales that cover both the rapid population dynamics relevant to nonequilibrium state evolution, as well as the much longer time durations typical for reaching steady-state device operation. This model is demonstrated by studying the evolution of a Bose-condensed gas in the presence of atom injection and extraction in a double-well potential. In this configuration phase locking between condensates in each well of the potential is readily observed, and its influence on the evolution of the system is studied.
Numerical model for atomtronic circuit analysis
NASA Astrophysics Data System (ADS)
Chow, Weng W.; Straatsma, Cameron J. E.; Anderson, Dana Z.
2015-07-01
A model for studying atomtronic devices and circuits based on finite-temperature Bose-condensed gases is presented. The approach involves numerically solving equations of motion for atomic populations and coherences, derived using the Bose-Hubbard Hamiltonian and the Heisenberg picture. The resulting cluster expansion is truncated at a level giving balance between physics rigor and numerical demand mitigation. This approach allows parametric studies involving time scales that cover both the rapid population dynamics relevant to nonequilibrium state evolution, as well as the much longer time durations typical for reaching steady-state device operation. The model is demonstrated by studying the evolution of a Bose-condensed gas in the presence of atom injection and extraction in a double-well potential. In this configuration phase locking between condensates in each well of the potential is readily observed, and its influence on the evolution of the system is studied.
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems. PMID:26986435
Lattice Boltzmann model for numerical relativity
NASA Astrophysics Data System (ADS)
Ilseven, E.; Mendoza, M.
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Infrared radiation parameterizations in numerical climate models
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Kratz, David P.; Ridgway, William
1991-01-01
This study presents various approaches to parameterizing the broadband transmission functions for utilization in numerical climate models. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmittances are either interpolated from precomputed tables or fit by analytical functions. Two-parameter scaling is applied to parameterizing the carbon dioxide and ozone transmission functions in both the lower and middle atmosphere. Parameterizations are given for the nitrous oxide and methane diffuse transmission functions.
Numerical modeling of the acoustic guitar
NASA Astrophysics Data System (ADS)
Chaigne, Antoine; Derveaux, Grégoire; Joly, Patrick; Bécache, Eliane
2003-10-01
An interactive DVD has been created, based on a numerical model of the acoustic guitar. In a first chapter, the retained physical model is described and illustrated, from the pluck to the 3D radiation field. The second chapter is devoted to the presentation of the numerical tools used for solving the equations of the model. Numerical simulations of plate vibrations and radiated sound pressure are shown in the third chapter. A number of simulated sounds are presented and analyzed in the fourth chapter. In addition, the DVD includes a discussion between a guitar maker, an acoustician, a guitar player and a mathematician. This discussion is entitled ``towards a common language.'' Its aim is to show the interest of simulations with respect to complementary professional approaches of the instrument. This DVD received the Henri Poincaré Prize from the 8th Research Film Festival of Nancy (June 2003), sponsored by the CNRS, in the category ``Documents for the scientific community and illustrations of the research for teaching purpose.''
Avoiding numerical pitfalls in social force models
NASA Astrophysics Data System (ADS)
Köster, Gerta; Treml, Franz; Gödel, Marion
2013-06-01
The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.
Avoiding numerical pitfalls in social force models.
Köster, Gerta; Treml, Franz; Gödel, Marion
2013-06-01
The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution. PMID:23848804
Numerical modeling of explosions for nuclear monitoring
NASA Astrophysics Data System (ADS)
Stevens, J. L.
2014-12-01
Monitoring the Earth for underground nuclear explosions requires a detailed understanding of the explosion source. In this context, "source" refers to the source of seismic waves, and it is generated by the complex nonlinear near-source motion that accompanies the nuclear explosion. In particular, nuclear monitoring requires understanding the transition from the hydrodynamic to elastic regimes, and propagation of waveforms from the source to stations at distances of hundreds to thousands of kilometers. In the transition region, shear strength is critically important, as are changes in shear strength as the shock wave propagates. Numerical modeling using 1D spherically symmetric, 2D axisymmetric and full 3D calculations provides important insights into the seismic source and the waveforms it generates. Important considerations for numerical modeling include emplacement conditions (tamped or in a cavity), source type (chemical or nuclear), material models for strength and strength reduction, and geologic conditions including topography and tectonic stresses in the source region. In addition to calculating the near source ground motion, we propagate the near source solution to regional and teleseismic distances where the observations of seismic signals from nuclear explosions are made. The objectives of nuclear monitoring are detection of seismic events (earthquakes, quarry blasts and other sources in addition to nuclear explosions), accurate location of these events, discrimination of nuclear explosions from other types of sources, and estimation of nuclear explosion yield. Numerical modeling is particularly important for discrimination and yield estimation. Numerical modeling is used to understand unexpected anomalies that occur, such as the large surface waves generated by the three North Korean nuclear tests, which may have been caused by a difference in tectonic stress state between North Korea and other test sites. Another important issue that can be addressed
Advancements in engineering turbulence modeling
NASA Technical Reports Server (NTRS)
Shih, T.-H.
1991-01-01
Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.
Numerical simulations and modeling of turbulent combustion
NASA Astrophysics Data System (ADS)
Cuenot, B.
Turbulent combustion is the basic physical phenomenon responsible for efficient energy release by any internal combustion engine. However it is accompanied by other undesirable phenomena such as noise, pollutant species emission or damaging instabilities that may even lead to the system desctruction. It is then crucial to control this phenomenon, to understand all its mecanisms and to master it in industrial systems. For long time turbulent combustion has been explored only through theory and experiment. But the rapid increase of computers power during the last years has allowed an important development of numerical simulation, that has become today an essential tool for research and technical design. Direct numerical simulation has then allowed to rapidly progress in the knowledge of turbulent flame structures, leading to new modelisations for steady averaged simulations. Recently large eddy simulation has made a new step forward by refining the description of complex and unsteady flames. The main problem that arises when performing numerical simulation of turbulent combustion is linked to the description of the flame front. Being very thin, it can not however be reduced to a simple interface as it is the location of intense chemical transformation and of strong variations of thermodynamical quantities. Capturing the internal structure of a zone with a thickness of the order of 0.1 mm in a computation with a mesh step 10 times larger being impossible, it is necessary to model the turbulent flame. Models depend on the chemical structure of the flame, on the ambiant turbulence, on the combustion regime (flamelets, distributed combustion, etc.) and on the reactants injection mode (premixed or not). One finds then a large class of models, from the most simple algebraic model with a one-step chemical kinetics, to the most complex model involving probablity density functions, cross-correlations and multiple-step or fully complex chemical kinetics.
Numerical modelling of swirling diffusive flames
NASA Astrophysics Data System (ADS)
Parra-Santos, Teresa; Perez, Ruben; Szasz, Robert Z.; Gutkowski, Artur N.; Castro, Francisco
2016-03-01
Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.
Numerical modeling of flowing soft materials
NASA Astrophysics Data System (ADS)
Toschi, Federico; Benzi, Roberto; Bernaschi, Massimo; Perlekar, Prasad; Sbragaglia, Mauro; Succi, Sauro
2012-11-01
The structural properties of soft-flowing and non-ergodic materials, such as emulsions, foams and gels shares similarities with the three basic states of matter (solid, liquid and gas). The macroscopic properties are characterized by non-standard features such as non-Newtonian rheology, long-time relaxation, caging effects, enhanced viscosity, structural arrest, hysteresis, dynamic disorder, aging and related phenomena. Large scale non-homogeneities can develop, even under simple shear conditions, by means of the formation of macroscopic bands of widely different viscosities (``shear banding'' phenomena). We employ a numerical model based on the Lattice Boltzmann method to perform numerical simulations of soft-matter under flowing conditions. Results of 3d simulations are presented and compared to previous 2d investigations.
Modern perspectives on numerical modeling of cardiac pacemaker cell.
Maltsev, Victor A; Yaniv, Yael; Maltsev, Anna V; Stern, Michael D; Lakatta, Edward G
2014-01-01
Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent "coupled-clock" theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434
Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell
Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.
2015-01-01
Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434
Handling geophysical flows: Numerical modelling using Graphical Processing Units
NASA Astrophysics Data System (ADS)
Garcia-Navarro, Pilar; Lacasta, Asier; Juez, Carmelo; Morales-Hernandez, Mario
2016-04-01
Computational tools may help engineers in the assessment of sediment transport during the decision-making processes. The main requirements are that the numerical results have to be accurate and simulation models must be fast. The present work is based on the 2D shallow water equations in combination with the 2D Exner equation [1]. The resulting numerical model accuracy was already discussed in previous work. Regarding the speed of the computation, the Exner equation slows down the already costly 2D shallow water model as the number of variables to solve is increased and the numerical stability is more restrictive. On the other hand, the movement of poorly sorted material over steep areas constitutes a hazardous environmental problem. Computational tools help in the predictions of such landslides [2]. In order to overcome this problem, this work proposes the use of Graphical Processing Units (GPUs) for decreasing significantly the simulation time [3, 4]. The numerical scheme implemented in GPU is based on a finite volume scheme. The mathematical model and the numerical implementation are compared against experimental and field data. In addition, the computational times obtained with the Graphical Hardware technology are compared against Single-Core (sequential) and Multi-Core (parallel) CPU implementations. References [Juez et al.(2014)] Juez, C., Murillo, J., & Garca-Navarro, P. (2014) A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Advances in Water Resources. 71 93-109. [Juez et al.(2013)] Juez, C., Murillo, J., & Garca-Navarro, P. (2013) . 2D simulation of granular flow over irregular steep slopes using global and local coordinates. Journal of Computational Physics. 225 166-204. [Lacasta et al.(2014)] Lacasta, A., Morales-Hernndez, M., Murillo, J., & Garca-Navarro, P. (2014) An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes Advances in Engineering Software. 78 1-15. [Lacasta
Advanced Modeling of Micromirror Devices
NASA Technical Reports Server (NTRS)
Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.
1995-01-01
The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.
Advanced Mirror & Modelling Technology Development
NASA Technical Reports Server (NTRS)
Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl
2014-01-01
The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.
Posttraumatic Orbital Emphysema: A Numerical Model
Skorek, Andrzej; Kłosowski, Paweł; Plichta, Łukasz; Zmuda Trzebiatowski, Marcin; Lemski, Paweł
2014-01-01
Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture) of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features—thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall). The observation was made from 1 · 10−3 to 1 · 10−2 second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found. PMID:25309749
Posttraumatic orbital emphysema: a numerical model.
Skorek, Andrzej; Kłosowski, Paweł; Plichta, Lukasz; Raczyńska, Dorota; Zmuda Trzebiatowski, Marcin; Lemski, Paweł
2014-01-01
Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture) of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features-thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall). The observation was made from 1 · 10(-3) to 1 · 10(-2) second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found. PMID:25309749
Numerical modeling of vertical cavity semiconductor lasers
Chow, W.W.; Hadley, G.R.
1996-08-01
A vertical cavity surface emitting laser (VCSEL) is a diode laser whose optical cavity is formed by growing or depositing DBR mirror stacks that sandwich an active gain region. The resulting short cavity supports lasing into a single longitudinal mode normal to the wafer, making these devices ideal for a multitude of applications, ranging from high-speed communication to high-power sources (from 2D arrays). This report describes the development of a numerical VCSEL model, whose goal is to both further their understanding of these complex devices and provide a tool for accurate design and data analysis.
Numerical Modelling of Embankment on Soft Clay
NASA Astrophysics Data System (ADS)
Nujid, M. M.; Taha, M. R.
2016-07-01
This paper aims to predict deformation of embankment on soft clay of Muar. The prediction performance focusing on displacement at critical fill height of 5.5 m. The study was based on reported result in 1992. With the aid of computer intelligence, the advanced constitutive soil models could be adopted to analyze the soft clay behavior. The COMSOL Multiphysics (v4.4) has been used to simulate the problem with coupled physics available in the software. The vertical displacements are in good agreement close to published result.
Numerical modeling for dilute and dense sprays
NASA Technical Reports Server (NTRS)
Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.
1992-01-01
We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.
2016-01-01
Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. PMID:26913930
Numerical models of sunspot formation and fine structure.
Rempel, Matthias
2012-07-13
Sunspots are central to our understanding of solar (and stellar) magnetism in many respects. On the large scale, they link the magnetic field observable in the photosphere to the dynamo processes operating in the solar interior. Properly interpreting the constraints that sunspots impose on the dynamo process requires a detailed understanding of the processes involved in their formation, dynamical evolution and decay. On the small scale, they give an insight into how convective energy transport interacts with the magnetic field over a wide range of field strengths and inclination angles, leading to sunspot fine structure observed in the form of umbral dots and penumbral filaments. Over the past decade, substantial progress has been made on both observational and theoretical sides. Advanced ground- and space-based observations have resolved, for the first time, the details of umbral dots and penumbral filaments and discovered similarities in their substructures. Numerical models have advanced to the degree that simulations of entire sunspots with sufficient resolution to resolve sunspot fine structure are feasible. A combination of improved helioseismic inversion techniques with seismic forward modelling provides new views on the subsurface structure of sunspots. In this review, we summarize recent progress, with particular focus on numerical modelling. PMID:22665895
Modeling Tool Advances Rotorcraft Design
NASA Technical Reports Server (NTRS)
2007-01-01
Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.
Convecting reference frames and invariant numerical models
NASA Astrophysics Data System (ADS)
Bihlo, Alexander; Nave, Jean-Christophe
2014-09-01
In the recent paper by Bernardini et al. [1] the discrepancy in the performance of finite difference and spectral models for simulations of flows with a preferential direction of propagation was studied. In a simplified investigation carried out using the viscous Burgers equation the authors attributed the poorer numerical results of finite difference models to a violation of Galilean invariance in the discretization and propose to carry out the computations in a reference frame moving with the bulk velocity of the flow. Here we further discuss this problem and relate it to known results on invariant discretization schemes. Non-invariant and invariant finite difference discretizations of Burgers equation are proposed and compared with the discretization using the remedy proposed by Bernardini et al.
Numerical modelling of morphodynamics—Vilaine Estuary
NASA Astrophysics Data System (ADS)
Vested, Hans Jacob; Tessier, Caroline; Christensen, Bo Brahtz; Goubert, Evelyne
2013-04-01
The main objective of this paper is to develop a method to simulate long-term morphodynamics of estuaries dominated by fine sediments, which are subject to both tidal flow and meteorologically induced variations in freshwater run-off and wave conditions. The method is tested on the Vilaine Estuary located in South Brittany, France. The estuary is subject to a meso-macrotidal regime. The semi-diurnal tidal range varies from around 2.5 to 5 m at neap and spring, respectively. The freshwater input is controlled by a dam located approximately 8 km from the mouth of the estuary. Sediments are characterised as mostly fines, but more sandy areas are also found. The morphology of the estuary is highly influenced by the dam. It is very dynamic and changes in a complicated manner with the run-off from the dam, the tide and the wave forcing at the mouth of the estuary. Extensive hydrodynamic and sediment field data have been collected in the past and provide a solid scientific basis for studying the estuary. Based on a conceptual understanding of the morphodynamics, a numerical morphological model with coupled hydrodynamic, surface wave and sediment transport models is formulated. The numerical models are calibrated to reproduce sediment concentrations, tidal flat altimetry and overall sediment fluxes. Scaling factors are applied to a reference year to form quasi-realistic hydrodynamic forcing and river run-off, which allow for the simulations to be extended to other years. The simulation results are compared with observed bathymetric changes in the estuary during the period 1998-2005. The models and scaling factors are applied to predict the morphological development over a time scale of up to 10 years. The influence of the initial conditions and the sequence of external hydrodynamic forcing, with respect to the morphodynamic response of the estuary, are discussed.
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Adaptive numerical algorithms in space weather modeling
NASA Astrophysics Data System (ADS)
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
DANA: distributed numerical and adaptive modelling framework.
Rougier, Nicolas P; Fix, Jérémy
2012-01-01
DANA is a python framework ( http://dana.loria.fr ) whose computational paradigm is grounded on the notion of a unit that is essentially a set of time dependent values varying under the influence of other units via adaptive weighted connections. The evolution of a unit's value are defined by a set of differential equations expressed in standard mathematical notation which greatly ease their definition. The units are organized into groups that form a model. Each unit can be connected to any other unit (including itself) using a weighted connection. The DANA framework offers a set of core objects needed to design and run such models. The modeler only has to define the equations of a unit as well as the equations governing the training of the connections. The simulation is completely transparent to the modeler and is handled by DANA. This allows DANA to be used for a wide range of numerical and distributed models as long as they fit the proposed framework (e.g. cellular automata, reaction-diffusion system, decentralized neural networks, recurrent neural networks, kernel-based image processing, etc.). PMID:22994650
Numerical optimization design of advanced transonic wing configurations
NASA Technical Reports Server (NTRS)
Cosentino, G. B.; Holst, T. L.
1984-01-01
A computationally efficient and versatile technique for use in the design of advanced transonic wing configurations has been developed. A reliable and fast transonic wing flow-field analysis program, TWING, has been coupled with a modified quasi-Newton method, unconstrained optimization algorithm, QNMDIF, to create a new design tool. Fully three-dimensional wing designs utilizing both specified wing pressure distributions and drag-to-lift ration minimization as design objectives are demonstrated. Because of the high computational efficiency of each of the components of the design code, in particular the vectorization of TWING and the high speed of the Cray X-MP vector computer, the computer time required for a typical wing design is reduced by approximately an order of magnitude over previous methods. In the results presented here, this computed wave drag has been used as the quantity to be optimized (minimized) with great success, yielding wing designs with nearly shock-free (zero wave drag) pressure distributions and very reasonable wing section shapes.
Submarine sand volcanos: experiments and numerical modelling
NASA Astrophysics Data System (ADS)
Philippe, P.; Ngoma, J.; Delenne, J.
2012-12-01
Fluid overpressure at the bottom of a soil layer may generate fracturation in preferential paths for a cohesive material. But the case of sandy soils is rather different: a significant internal flow is allowed within the material and can potentially induce hydro-mechanical instabilities whose most common example is fluidization. Many works have been devoted to fluidization but very few have the issue of initiation and development of a fluidized zone inside a granular bed, prior entire fluidization of the medium. In this contribution, we report experimental results and numerical simulations on a model system of immersed sand volcanos generated by a localized upward spring of liquid, injected at constant flow-rate at the bottom of a granular layer. Such a localized state of fluidization is relevant for some industrial processes (spouted bed, maintenance of navigable waterways,…) and for several geological issues (kimberlite volcano conduits, fluid venting, oil recovery in sandy soil, More precisely, what is presented here is a comparison between experiments, carried out by direct visualization throughout the medium, and numerical simulations, based on DEM modelling of the grains coupled to resolution of NS equations in the liquid phase (LBM). There is a very good agreement between the experimental phenomenology and the simulation results. When the flow-rate is increased, three regimes are successively observed: static bed, fluidized cavity that does not extend to the top of the layer, and finally fluidization over the entire height of layer that creates a fluidized chimney. A very strong hysteretic effect is present here with an extended range of stability for fluidized cavities when flow-rate is decreased back. This can be interpreted in terms force chains and arches. The influences of grain diameter, layer height and injection width are studied and interpreted using a model previously developed by Zoueshtiagh [1]. Finally, growing rate of the fluidized zone and
Numerical Modeling of Ocular Dysfunction in Space
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Mulugeta, Lealem; Vera, J.; Myers, J. G.; Raykin, J.; Feola, A. J.; Gleason, R.; Samuels, B.; Ethier, C. R.
2014-01-01
Upon introduction to microgravity, the near-loss of hydrostatic pressure causes a marked cephalic (headward) shift of fluid in an astronaut's body. The fluid shift, along with other factors of spaceflight, induces a cascade of interdependent physiological responses which occur at varying time scales. Long-duration missions carry an increased risk for the development of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. In the cases of VIIP found to date, the initial onset of symptoms occurred after several weeks to several months of spaceflight, by which time the gross bodily fluid distribution is well established. We are developing a suite of numerical models to simulate the effects of fluid shift on the cardiovascular, central nervous and ocular systems. These models calculate the modified mean volumes, flow rates and pressures that are characteristic of the altered quasi-homeostatic state in microgravity, including intracranial and intraocular pressures. The results of the lumped models provide initial and boundary data to a 3D finite element biomechanics simulation of the globe, optic nerve head and retrobulbar subarachnoid space. The integrated set of models will be used to investigate the evolution of the biomechanical stress state in the ocular tissues due to long-term exposure to microgravity.
Numerical modeling of transport barrier formation
Tokar, Mikhail Z.
2010-04-01
In diverse media the characteristics of mass and heat transfer may undergo spontaneous and abrupt changes in time and space. This can lead to the formation of regions with strongly reduced transport, so called transport barriers (TB). The presence of interfaces between regions with qualitatively and quantitatively different transport characteristics impose severe requirements to methods and numerical schemes used by solving of transport equations. In particular the assumptions made in standard methods about the solution behavior by representing its derivatives fail in points where the transport changes abruptly. The situation is complicated further by the fact that neither the formation time nor the positions of interfaces are known a priori. A numerical approach, operating reliably under such conditions, is proposed. It is based on the introduction of a new dependent variable related to the variation after one time step of the original one integrated over the volume. In the vicinity of any grid knot the resulting differential equation is approximated by a second order ordinary differential equation with constant coefficients. Exact analytical solutions of these equations are conjugated between knots by demanding the continuity of the total solution and its first derivative. As an example the heat transfer in media with heat conductivity decreasing abruptly when the temperature e-folding length exceeds a critical value is considered. The formation of TB both at a heating power above the critical level and caused with radiation energy losses non-linearly dependent on the temperature is modeled.
Numerical approach for the voloxidation process of an advanced spent fuel conditioning process (ACP)
Park, Byung Heung; Jeong, Sang Mun; Seo, Chung-Seok
2007-07-01
A voloxidation process is adopted as the first step of an advanced spent fuel conditioning process in order to prepare the SF oxide to be reduced in the following electrolytic reduction process. A semi-batch type voloxidizer was devised to transform a SF pellet into powder. In this work, a simple reactor model was developed for the purpose of correlating a gas phase flow rate with an operation time as a numerical approach. With an assumption that a solid phase and a gas phase are homogeneous in a reactor, a reaction rate for an oxidation was introduced into a mass balance equation. The developed equation can describe a change of an outlet's oxygen concentration including such a case that a gas flow is not sufficient enough to continue a reaction at its maximum reaction rate. (authors)
Transient Numerical Modeling of Catalytic Channels
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the
Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models
Sun, Y; Glascoe, L
2005-06-09
The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirements of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.
Micromechanical modeling of advanced materials
Silling, S.A.; Taylor, P.A.; Wise, J.L.; Furnish, M.D.
1994-04-01
Funded as a laboratory-directed research and development (LDRD) project, the work reported here focuses on the development of a computational methodology to determine the dynamic response of heterogeneous solids on the basis of their composition and microstructural morphology. Using the solid dynamics wavecode CTH, material response is simulated on a scale sufficiently fine to explicitly represent the material`s microstructure. Conducting {open_quotes}numerical experiments{close_quotes} on this scale, the authors explore the influence that the microstructure exerts on the material`s overall response. These results are used in the development of constitutive models that take into account the effects of microstructure without explicit representation of its features. Applying this methodology to a glass-reinforced plastic (GRP) composite, the authors examined the influence of various aspects of the composite`s microstructure on its response in a loading regime typical of impact and penetration. As a prerequisite to the microscale modeling effort, they conducted extensive materials testing on the constituents, S-2 glass and epoxy resin (UF-3283), obtaining the first Hugoniot and spall data for these materials. The results of this work are used in the development of constitutive models for GRP materials in transient-dynamics computer wavecodes.
Numerical linearized MHD model of flapping oscillations
NASA Astrophysics Data System (ADS)
Korovinskiy, D. B.; Ivanov, I. B.; Semenov, V. S.; Erkaev, N. V.; Kiehas, S. A.
2016-06-01
Kink-like magnetotail flapping oscillations in a Harris-like current sheet with earthward growing normal magnetic field component Bz are studied by means of time-dependent 2D linearized MHD numerical simulations. The dispersion relation and two-dimensional eigenfunctions are obtained. The results are compared with analytical estimates of the double-gradient model, which are found to be reliable for configurations with small Bz up to values ˜ 0.05 of the lobe magnetic field. Coupled with previous results, present simulations confirm that the earthward/tailward growth direction of the Bz component acts as a switch between stable/unstable regimes of the flapping mode, while the mode dispersion curve is the same in both cases. It is confirmed that flapping oscillations may be triggered by a simple Gaussian initial perturbation of the Vz velocity.
Two numerical models for landslide dynamic analysis
NASA Astrophysics Data System (ADS)
Hungr, Oldrich; McDougall, Scott
2009-05-01
Two microcomputer-based numerical models (Dynamic ANalysis (DAN) and three-dimensional model DAN (DAN3D)) have been developed and extensively used for analysis of landslide runout, specifically for the purposes of practical landslide hazard and risk assessment. The theoretical basis of both models is a system of depth-averaged governing equations derived from the principles of continuum mechanics. Original features developed specifically during this work include: an open rheological kernel; explicit use of tangential strain to determine the tangential stress state within the flowing sheet, which is both more realistic and beneficial to the stability of the model; orientation of principal tangential stresses parallel with the direction of motion; inclusion of the centripetal forces corresponding to the true curvature of the path in the motion direction and; the use of very simple and highly efficient free surface interpolation methods. Both models yield similar results when applied to the same sets of input data. Both algorithms are designed to work within the semi-empirical framework of the "equivalent fluid" approach. This approach requires selection of material rheology and calibration of input parameters through back-analysis of real events. Although approximate, it facilitates simple and efficient operation while accounting for the most important characteristics of extremely rapid landslides. The two models have been verified against several controlled laboratory experiments with known physical basis. A large number of back-analyses of real landslides of various types have also been carried out. One example is presented. Calibration patterns are emerging, which give a promise of predictive capability.
Numerical modelling of ion transport in flames
NASA Astrophysics Data System (ADS)
Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Mani Sarathy, S.
2015-11-01
This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.
Numerical Modeling of Suspension HVOF Spray
NASA Astrophysics Data System (ADS)
Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A.
2016-02-01
A three-dimensional two-way coupled Eulerian-Lagrangian scheme is used to simulate suspension high-velocity oxy-fuel spraying process. The mass, momentum, energy, and species equations are solved together with the realizable k-ɛ turbulence model to simulate the gas phase. Suspension is assumed to be a mixture of solid particles [mullite powder (3Al2O3·2SiO2)], ethanol, and ethylene glycol. The process involves premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. One-step global reaction is used for each mentioned reaction together with eddy dissipation model to compute the reaction rate. To simulate the droplet breakup, Taylor Analogy Breakup model is applied. After the completion of droplet breakup, and solvent evaporation/combustion, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. Numerical simulations are validated against the experimental results in the literature for the same operating conditions. Seven or possibly eight shock diamonds are captured outside the nozzle. In addition, a good agreement between the predicted particle temperature, velocity, and diameter, and the experiment is obtained. It is shown that as the standoff distance increases, the particle temperature and velocity reduce. Furthermore, a correlation is proposed to determine the spray cross-sectional diameter and estimate the particle trajectories as a function of standoff distance.
Foehn wind detection using numerical modelling
NASA Astrophysics Data System (ADS)
Irimescu, A.; Caian, M.
2010-09-01
In Romania, foehn is a short-lived atmospheric phenomenon, of a low to average intensity, not always highlighted by weather station observations. When such situations occur additional data are resorted to, rendering a continuous, aggregate image, in comparison to the punctual information yielded by weather stations. This paper aims to describe how foehn is detected in northern Oltenia (the Inner Carpathian-Balkan Curvature), using numerical modelling. Results generated by the RegCM3 Regional Climatic Model thus represent an undisputed tool, their most important advantage being the 10-km spatial resolution. The presence of foehn in northern Oltenia and its climatic peculiarities have been disclosed through the analysis in time and space of the meteorological elements specific to the phenomenon (air temperature, wind speed and direction etc) over a 40-year interval (1961-2000). The paper presents a new methodology that can be used to estimate the probability of production and the foehn characteristics (intensity, duration etc.). Interpretation of the RegCM3 model results has led to the statistical analysis of foehn occurrences within the studied area during the cold season (December, January and February). The resulted climatology, with fine resolution, can be used in foehn forecast of predictability.
Numerical modeling of bubble dynamics in magmas
NASA Astrophysics Data System (ADS)
Huber, Christian; Su, Yanqing; Parmigiani, Andrea
2014-05-01
Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.
Benchmarking numerical freeze/thaw models
NASA Astrophysics Data System (ADS)
Rühaak, Wolfram; Anbergen, Hauke; Molson, John; Grenier, Christophe; Sass, Ingo
2015-04-01
The modeling of freezing and thawing of water in porous media is of increasing interest, and for which very different application areas exist. For instance, the modeling of permafrost regression with respect to climate change issues is one area, while others include geotechnical applications in tunneling and for borehole heat exchangers which operate at temperatures below the freezing point. The modeling of these processes requires the solution of a coupled non-linear system of partial differential equations for flow and heat transport in space and time. Different code implementations have been developed in the past. Analytical solutions exist only for simple cases. Consequently, an interest has arisen in benchmarking different codes with analytical solutions, experiments and purely numerical results, similar to the long-standing DECOVALEX and the more recent "Geothermal Code Comparison" activities. The name for this freezing/ thawing benchmark consortium is INTERFROST. In addition to the well-known so-called Lunardini solution for a 1D case (case T1), two different 2D problems will be presented, one which represents melting of a frozen inclusion (case TH2) and another which represents the growth or thaw of permafrost around a talik (case TH3). These talik regions are important for controlling groundwater movement within a mainly frozen ground. First results of the different benchmark results will be shown and discussed.
Numerical modeling of polar mesocyclones generation mechanisms
NASA Astrophysics Data System (ADS)
Sergeev, Dennis; Stepanenko, Victor
2013-04-01
parameters, lateral boundary conditions are varied in the typically observed range. The approach is fully nonlinear: we use a three-dimensional non-hydrostatic mesoscale model NH3D_MPI [1] coupled with one-dimensional water body model LAKE. A key method used in the present study is the analysis of eddy kinetic and available potential energy budgets. References 1. Mikushin, D.N., and Stepanenko, V.M., The implementation of regional atmospheric model numerical algorithms for CBEA-based clusters. Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics, 2010, vol. 6067, p. 525-534. 2. Rasmussen, E., and Turner, J. (eds), Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University Press, 2003, 612 pp. 3. Yanase, W., and Niino, H., Dependence of Polar Low Development on Baroclinicity and Physical Processes: An Idealized High-Resolution Experiment, J. Atmos. Sci., 2006, vol. 64, p. 3044-3067.
Numerical geometry of map and model assessment.
Wriggers, Willy; He, Jing
2015-11-01
We are describing best practices and assessment strategies for the atomic interpretation of cryo-electron microscopy (cryo-EM) maps. Multiscale numerical geometry strategies in the Situs package and in secondary structure detection software are currently evolving due to the recent increases in cryo-EM resolution. Criteria that aim to predict the accuracy of fitted atomic models at low (worse than 8Å) and medium (4-8 Å) resolutions remain challenging. However, a high level of confidence in atomic models can be achieved by combining such criteria. The observed errors are due to map-model discrepancies and due to the effect of imperfect global docking strategies. Extending the earlier motion capture approach developed for flexible fitting, we use simulated fiducials (pseudoatoms) at varying levels of coarse-graining to track the local drift of structural features. We compare three tracking approaches: naïve vector quantization, a smoothly deformable model, and a tessellation of the structure into rigid Voronoi cells, which are fitted using a multi-fragment refinement approach. The lowest error is an upper bound for the (small) discrepancy between the crystal structure and the EM map due to different conditions in their structure determination. When internal features such as secondary structures are visible in medium-resolution EM maps, it is possible to extend the idea of point-based fiducials to more complex geometric representations such as helical axes, strands, and skeletons. We propose quantitative strategies to assess map-model pairs when such secondary structure patterns are prominent. PMID:26416532
Numerical Models of Ophiolite Genesis and Obduction
NASA Astrophysics Data System (ADS)
Guilmette, C.; Beaumont, C.; Jamieson, R.
2013-12-01
Ophiolites are relics of oceanic lithosphere tectonically emplaced in continental settings. They are diagnostic features of continental suture zones, where they mark past plate boundaries. Even after having been studied for more than 40 years, the mechanisms involved in the genesis and subsequent obduction of ophiolites over continental margins are still debated. We present the results of 2D thermal-mechanical numerical models that successfully reproduce characteristics of natural examples like the Semail, Bay of Islands, Yarlung-Zangbo, and Coast Range ophiolites. The numerical models are upper mantle scale and use pressure-, temperature- and strain-dependent viscous-plastic rheologies. Both divergent and convergent velocity boundary conditions are used and tectonic boundary forces are monitored. The models start with the rifting of a stable continent, followed by development of an ocean ridge and accretion of oceanic lithosphere at a total rate of 3 cm/y. Once a specified ocean size/age is achieved, the velocity boundary conditions are reversed leading to convergence and the spontaneous inception of a suduction zone at the mid-ocean ridge. We present results for models including different ages of oceans (40 to 90 Ma) and different convergence velocities (5 to 15 cm/y). The interaction between the lower plate passive margin and the oceanic upper plate results in 5 different tectonic styles. These differ mainly by the presence or absence of oceanic spreading in the upper plate (back-arc basin), leading to supra-subduction zone ophiolites vs. MORB-type, and by the behaviour of the oceanic slab, e.g., slab rollback vs. breakoff. The evolution of effective slab pull is interpreted to be the major control on the resulting tectonic style. Low effective slab pull models (young oceans and fast convergence rates) fail to obduct an ophiolite. Strong effective slab pull models (old oceans and lower convergence rates) result in subduction zone retreat and spontaneous oceanic
Numerical design of advanced multi-element airfoils
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Cummings, Russell M.
1994-01-01
The current study extends the application of computational fluid dynamics to three-dimensional high-lift systems. Structured, overset grids are used in conjunction with an incompressible Navier-Stokes flow solver to investigate flow over a two-element high-lift configuration. The computations were run in a fully turbulent mode using the one-equation Baldwin-Barth turbulence model. The geometry consisted of an unswept wing which spanned a wind tunnel test section. Flows over full and half-span Fowler flap configurations were computed. Grid resolution issues were investigated in two dimensional studies of the flapped airfoil. Results of the full-span flap wing agreed well with experimental data and verified the method. Flow over the wing with the half-span was computed to investigate the details of the flow at the free edge of the flap. The results illustrated changes in flow streamlines, separation locations, and surface pressures due to the vortex shed from the flap edge.
Numerical models of wind-driven circulation in lakes
Cheng, R.T.; Powell, T.M.; Dillon, T.M.
1976-01-01
The state-of-the-art of numerical modelling of large-scale wind-driven circulation in lakes is presented. The governing equations which describe this motion are discussed along with the appropriate numerical techniques necessary to solve them in lakes. The numerical models are categorized into three large primary groups: the layered models, the Ekman-type models, and the other three-dimensional models. Discussions and comparison of models are given and future research directions are suggested. ?? 1976.
Numerical modeling of subaqueous sand dune morphodynamics
NASA Astrophysics Data System (ADS)
Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry
2016-03-01
The morphodynamic evolution of subaqueous sand dunes is investigated, using a 2-D Reynolds-averaged Navier-Stokes numerical model. A laboratory experiment where dunes are generated under stationary unidirectional flow conditions is used as a reference case. The model reproduces the evolution of the erodible bed until a state of equilibrium is reached. In particular, the simulation exhibits the different stages of the bed evolution, e.g., the incipient ripple generation, the nonlinear bed form growing phase, and the dune field equilibrium phase. The results show good agreement in terms of dune geometrical dimensions and time to equilibrium. After the emergence of the first ripple field, the bed growth is driven by cascading merging sequences between bed forms of different heights. A sequence extracted from the simulation shows how the downstream bed form is first eroded before merging with the upstream bed form. Superimposed bed forms emerge on the dune stoss sides during the simulation. An analysis of the results shows that they emerge downstream of a slight deflection on the dune profile. The deflection arises due to a modification of the sediment flux gradient consecutive to a reduction in the turbulence relaxation length while the upstream bed form height decreases. As they migrate, superimposed bed forms grow on the dune stoss side and eventually provoke the degeneration of the dune crest. Cascading merging sequences and superimposed bed forms dynamics both influence the dune field evolution and size and therefore play a fundamental role in the dune field self-organization process.
Numerical modeling of fluidic flow meters
NASA Astrophysics Data System (ADS)
Choudhury, D.; Patel, B. R.
1992-05-01
The transient fluid flow in fluidic flow meters has been modeled using Creare.x's flow modeling computer program FLUENT/BFC that solves the Navier-Stokes equations in general curvilinear coordinates. The numerical predictions of fluid flow in a fluidic flow meter have been compared with the available experimental results for a particular design, termed the PC-4 design. Overall flow structures such as main jet bending, and primary and secondary vortices predicted by FLUENT/BFC are in excellent agreement with flow visualization results. The oscillation frequencies of the PC-4 design have been predicted for a range of flow rates encompassing laminar and turbulent flow and the results are in good agreement with experiments. The details of the flow field predictions reveal that an important factor that determines the onset of oscillations in the fluidic flow meter is the feedback jet momentum relative to the main jet momentum. The insights provided by the analysis of the PC-4 fluidic flow meter design have led to an improved design. The improved design has sustained oscillations at lower flow rates compared with the PC-4 design and has a larger rangeability.
Advances in modeling and simulation of vacuum electronic devices
Antonsen, T.M. Jr.; Mondelli, A.A.; Levush, B.; Verboncoeur, J.P.; Birdsall, C.K.
1999-05-01
Recent advances in the modeling and simulation of vacuum electronic devices are reviewed. Design of these devices makes use of a variety of physical models and numerical code types. Progress in the development of these models and codes is outlined and illustrated with specific examples. The state of the art in device simulation is evolving to the point such that devices can be designed on the computer, thereby eliminating many trial and error fabrication and test steps. The role of numerical simulation in the design process can be expected to grow further in the future.
Understanding Etna flank instability through numerical models
NASA Astrophysics Data System (ADS)
Apuani, Tiziana; Corazzato, Claudia; Merri, Andrea; Tibaldi, Alessandro
2013-02-01
As many active volcanoes, Mount Etna shows clear evidence of flank instability, and different mechanisms were suggested to explain this flank dynamics, based on the recorded deformation pattern and character. Shallow and deep deformations, mainly associated with both eruptive and seismic events, are concentrated along recognised fracture and fault systems, mobilising the eastern and south-eastern flank of the volcano. Several interacting causes were postulated to control the phenomenon, including gravity force, magma ascent along the feeding system, and a very complex local and/or regional tectonic activity. Nevertheless, the complexity of such dynamics is still an open subject of research and being the volcano flanks heavily urbanised, the comprehension of the gravitative dynamics is a major issue for public safety and civil protection. The present research explores the effects of the main geological features (in particular the role of the subetnean clays, interposed between the Apennine-Maghrebian flysch and the volcanic products) and the role of weakness zones, identified by fracture and fault systems, on the slope instability process. The effects of magma intrusions are also investigated. The problem is addressed by integrating field data, laboratory tests and numerical modelling. A bi- and tri-dimensional stress-strain analysis was performed by a finite difference numerical code (FLAC and FLAC3D), mainly aimed at evaluating the relationship among geological features, volcano-tectonic structures and magmatic activity in controlling the deformation processes. The analyses are well supported by dedicated structural-mechanical field surveys, which allowed to estimate the rock mass strength and deformability parameters. To take into account the uncertainties which inevitably occur in a so complicated model, many efforts were done in performing a sensitivity analysis along a WNW-ESE section crossing the volcano summit and the Valle del Bove depression. This was
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Du, Qiang
2014-11-12
generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.
Numerical model of circumpolar Antarctic ice shelves
Johnson, R.C.
1985-01-01
Extensive floating ice shelves in the Antarctic have been proposed to explain the discrepancies between Pleistocene high sea levels shown by dated coral reefs and coeval low sea levels inferred from glacial ice volumes calculated from oxygen isotope ratios in deep sea cores. A numerical model using the floating shelf creep analysis of Weertman (1957) has provided a plausible basis for the acceptance of such shelves. Shelf outer limits were set at 55/sup 0/S in East Antarctica and 58/sup 0/S in West Antarctica, based in part on diatom-deficient deep sea sediments deposited prior to the Holocene. Precipitation varied from 10 gm cm/sup -2/yr/sup -1/ at 75/sup 0/S to 80 gm cm/sup -2/yr/sup -1/ at 55/sup 0/S. Mean air temperatures varied from -35/sup 0/C at the 75/sup 0/S coast to -17/sup 0/C at the outer limits. Isotope ratios were those of present Antarctic precipitation at corresponding model shelf temperatures. In the calculation, a steady state is assumed. Integration begins at the coast with summation over successive years as creep and continental ice discharge move the integration element to the outer limits. The oceanic oxygen isotope ratio change required by the discrepancies in the record is 0.40 to 0.50 ppmil. Using the flow law constant of 4.2 and a creep activation energy of 134 kjoules mol/sup -1/, the resulting change is 0.44 ppmil. Difference results reflect the uncertainties associated with the critical creep constants used in the modeling. Nevertheless, the results suggest that a quantity of Antarctic shelf ice comparable to ice volumes in major Northern glacial areas existed at times during the Pleistocene.
NASA Astrophysics Data System (ADS)
Katsaounis, T. D.
2005-02-01
The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using
Numerical Modelling of Mesoscale Atmospheric Dispersion.
NASA Astrophysics Data System (ADS)
Moran, Michael D.
Mesoscale atmospheric dispersion is more complicated than smaller-scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays a more important role on the mesoscale, and horizontal dispersion can be enhanced and even dominated by vertical wind shear through either the simultaneous or delayed interaction of horizontal differential advection and vertical mixing over one or two diurnal periods. The CSU mesoscale atmospheric dispersion modelling system has been used in this study to simulate the transport and diffusion of a perfluorocarbon gas for episodic releases made during two North American mesoscale dispersion field experiments, the 1980 Great Plains tracer experiment and the 1983 Cross-Appalachian Tracer Experiment (CAPTEX). Ground -level and elevated tracer concentrations were measured out to distances of 600 km from the source in the first experiment and 1100 km in the second. The physiography of the two experimental domains was quite different, permitting isolation and examination of the roles of terrain forcing and differential advection in mesoscale atmospheric dispersion. Suites of numerical experiments of increasing complexity were carried out for both case studies. The experiments differed in the realism of their representation of both the synoptic-scale flow and the underlying terrain. The Great Plains nocturnal low-level jet played an important role in the first case while temporal changes in the synoptic -scale flow were very significant in the second case. The contributions of differential advection and mesoscale deformation to mesoscale dispersion dominated those of small-scale turbulent diffusion for both cases, and Pasquill's (1962) delayed-shear-enhancement mechanism for lateral dispersion was found to be particularly important. This study was also the first quantitative evaluation of the CSU mesoscale dispersion modelling system with
Numerical Model for Fish-Like Locomotion in Potential Flow
NASA Astrophysics Data System (ADS)
Melli-Huber, Juan; Rowley, Clarence; Rufat, Dzhelil; Kanso, Eva; Marsden, Jerrold
2004-11-01
An accurate yet tractable model of fish-like locomotion is essential for the design and control of underwater vehicles with advanced swimming capabilities and improved efficiency. Our emphasis is on developing a model that predicts forces and moments accurately, yet is simple enough to apply mathematical tools for analyzing robotic locomotion. We focus on modeling thunniform-type swimming in which a high-aspect ratio tail moves relative to a fairly rigid body. The fish is modeled as a discrete number of rigid bodies, which may represent the body, peduncle and tail. We have developed a numerical model to simulate the motion of rigid bodies in an inviscid, incompressible two-dimensional potential flow with no pre-existing vorticity. Although the flow is inviscid and there is no vorticity or mechanism for generating vorticity, the motion of the bodies will be coupled due to their added inertia terms. Unlike previous models, this work is not restricted to small amplitude motions, does not assume that the bodies are hydrodynamically decoupled and allows for arbitrary body geometry. We present gaits to achieve steering and forward motion and compare the result to a hydrodynamically decoupled model.
Advances in Watershed Models and Modeling
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Zhang, F.
2015-12-01
The development of watershed models and their applications to real-world problems has evolved significantly since 1960's. Watershed models can be classified based on what media are included, what processes are dealt with, and what approaches are taken. In term of media, a watershed may include segregated overland regime, river-canal-open channel networks, ponds-reservoirs-small lakes, and subsurface media. It may also include integrated media of all these or a partial set of these as well as man-made control structures. In term of processes, a watershed model may deal with coupled or decoupled hydrological and biogeochemical cycles. These processes include fluid flow, thermal transport, salinity transport, sediment transport, reactive transport, and biota and microbe kinetics. In terms of approaches, either parametric or physics-based approach can be taken. This talk discusses the evolution of watershed models in the past sixty years. The advances of watershed models center around their increasing design capability to foster these segregated or integrated media and coupled or decoupled processes. Widely used models developed by academia, research institutes, government agencies, and private industries will be reviewed in terms of the media and processes included as well as approaches taken. Many types of potential benchmark problems in general can be proposed and will be discussed. This presentation will focus on three benchmark problems of biogeochemical cycles. These three problems, dealing with water quality transport, will be formulated in terms of reactive transport. Simulation results will be illustrated using WASH123D, a watershed model developed and continuously updated by the author and his PhD graduates. Keywords: Hydrological Cycles, Biogeochemical Cycles, Biota Kinetics, Parametric Approach, Physics-based Approach, Reactive Transport.
Experimental, Numerical and Observational Models in Geodynamics
NASA Astrophysics Data System (ADS)
Lithgow-Bertelloni, Carolina
2015-04-01
Geodynamics, the study of the forces that drives all Earth's processes is a rich field that deeply connects all aspects of geological and geophysical studies, from surface observations of the sedimentary record to knowledge of deep Earth structure from mineral physics and seismology. In the context of the solid Earth geodynamics primarily focuses on lithosphere and mantle dynamics, while core dynamics is the purview of geomagnetism. I will focus this talk on the former, its historical context and future developments. We have known the equations of motion and mechanics for ~200 years, but only relatively recently can they be solved with enough accuracy and resolution to do geology. We have made great strides since Arthur Holmes conceptual models of mantle flow, thanks to computational and experimental advances. We can know model plate boundaries globally with resolutions in the order of a few kms and image temperature and velocity simultaneously in the laboratory in 3D and non-intrusively. We have also learned a great deal about the physics of the Earth, from composition to rheology. New theories on plate boundary rheology are paving the way for self-consistent generation of plates from mantle flow. New computational methods allow for adaptive meshing, fabric development and history, so we can study deformation and compare directly to geological observations in mountain ranges and continental rifts. We can use ever more sophisticated images of mantle structure from seismic and other geophysical data to probe the relationship between melting, flow and dynamical processes. We can reconstruct landscapes and relief, plate motions and sedimentation and ask how much the mantle has contributed to drainage reversal, sedimentation and climate change. The future of the field is ever brighter.
Advances in numerical solutions to integral equations in liquid state theory
NASA Astrophysics Data System (ADS)
Howard, Jesse J.
Solvent effects play a vital role in the accurate description of the free energy profile for solution phase chemical and structural processes. The inclusion of solvent effects in any meaningful theoretical model however, has proven to be a formidable task. Generally, methods involving Poisson-Boltzmann (PB) theory and molecular dynamic (MD) simulations are used, but they either fail to accurately describe the solvent effects or require an exhaustive computation effort to overcome sampling problems. An alternative to these methods are the integral equations (IEs) of liquid state theory which have become more widely applicable due to recent advancements in the theory of interaction site fluids and the numerical methods to solve the equations. In this work a new numerical method is developed based on a Newton-type scheme coupled with Picard/MDIIS routines. To extend the range of these numerical methods to large-scale data systems, the size of the Jacobian is reduced using basis functions, and the Newton steps are calculated using a GMRes solver. The method is then applied to calculate solutions to the 3D reference interaction site model (RISM) IEs of statistical mechanics, which are derived from first principles, for a solute model of a pair of parallel graphene plates at various separations in pure water. The 3D IEs are then extended to electrostatic models using an exact treatment of the long-range Coulomb interactions for negatively charged walls and DNA duplexes in aqueous electrolyte solutions to calculate the density profiles and solution thermodynamics. It is found that the 3D-IEs provide a qualitative description of the density distributions of the solvent species when compared to MD results, but at a much reduced computational effort in comparison to MD simulations. The thermodynamics of the solvated systems are also qualitatively reproduced by the IE results. The findings of this work show the IEs to be a valuable tool for the study and prediction of
An operational phenological model for numerical pollen prediction
NASA Astrophysics Data System (ADS)
Scheifinger, Helfried
2010-05-01
The general prevalence of seasonal allergic rhinitis is estimated to be about 15% in Europe, and still increasing. Pre-emptive measures require both the reliable assessment of production and release of various pollen species and the forecasting of their atmospheric dispersion. For this purpose numerical pollen prediction schemes are being developed by a number of European weather services in order to supplement and improve the qualitative pollen prediction systems by state of the art instruments. Pollen emission is spatially and temporally highly variable throughout the vegetation period and not directly observed, which precludes a straightforward application of dispersion models to simulate pollen transport. Even the beginning and end of flowering, which indicates the time period of potential pollen emission, is not (yet) available in real time. One way to create a proxy for the beginning, the course and the end of the pollen emission is its simulation as function of real time temperature observations. In this work the European phenological data set of the COST725 initiative forms the basis of modelling the beginning of flowering of 15 species, some of which emit allergic pollen. In order to keep the problem as simple as possible for the sake of spatial interpolation, a 3 parameter temperature sum model was implemented in a real time operational procedure, which calculates the spatial distribution of the entry dates for the current day and 24, 48 and 72 hours in advance. As stand alone phenological model and combined with back trajectories it is thought to support the qualitative pollen prediction scheme at the Austrian national weather service. Apart from that it is planned to incorporate it in a numerical pollen dispersion model. More details, open questions and first results of the operation phenological model will be discussed and presented.
Precise numerical modeling of next generation multimode fiber based links
NASA Astrophysics Data System (ADS)
Maksymiuk, L.; Stepniak, G.
2015-12-01
In order to numerically model modern multimode fiber based links we are required to take into account modal and chromatic dispersion, profile dispersion and spectral dependent coupling. In this paper we propose a complete numerical model which not only is precise but also versatile. Additionally to the detailed mathematical description of the model we provide also a bunch of numerical calculations performed with the use of the model.
Numerical models for high beta magnetohydrodynamic flow
Brackbill, J.U.
1987-01-01
The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs.
AFDM: An Advanced Fluid-Dynamics Model
Bohl, W.R.; Parker, F.R. ); Wilhelm, D. . Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. ); Goutagny, L. . Inst. de Protection et de Surete Nucleaire); Ninokata,
1990-09-01
AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs.
Large-signal numerical and analytical HBT models
Teeter, D.A.; East, J.R.; Mains, R.K.; Haddad, G.I. )
1993-05-01
Several large-signal HBT models are investigated in this paper to determine their usefulness at millimeter-wave frequencies. The most detailed model involves numerically solving moments of the Boltzmann Transport Equation. A description of the numerical model is given along with several simulated results. The numerical model is then used to evaluate two analytical HBT models, the conventional Gummel-Poon model and a modified Ebers-Moll model. It is found that the commonly used Gummel-Poon model exhibits poor agreement with numerical and experimental data at millimeter-wave frequencies due to neglect of transit-time delays. Improved agreement between measured and modeled data result by including transit-time effects in an Ebers-Moll model. This simple model has direct application to millimeter-wave power amplifier and oscillator design. Several measured results are presented to help verify the simple model.
Numerical and measured data from the 3D salt canopy physical modeling project
Bradley, C.; House, L.; Fehler, M.; Pearson, J.; TenCate, J.; Wiley, R.
1997-11-01
The evolution of salt structures in the Gulf of Mexico have been shown to provide a mechanism for the trapping of significant hydrocarbon reserves. Most of these structures have complex geometries relative to the surrounding sedimentary layers. This aspect in addition to high velocities within the salt tend to scatter and defocus seismic energy and make imaging of subsalt lithology extremely difficult. An ongoing program the SEG/EAEG modeling project (Aminzadeh et al. 1994a: Aminzadeh et al. 1994b: Aminzadeh et al. 1995), and a follow-up project funded as part of the Advanced Computational Technology Initiative (ACTI) (House et al. 1996) have sought to investigate problems with imaging beneath complex salt structures using numerical modeling and more recently, construction of a physical model patterned after the numerical subsalt model (Wiley and McKnight. 1996). To date, no direct comparison of the numerical and physical aspects of these models has been attempted. We present the results of forward modeling a numerical realization of the 3D salt canopy physical model with the French Petroleum Institute (IFP) acoustic finite difference algorithm used in the numerical subsalt tests. We compare the results from the physical salt canopy model, the acoustic modeling of the physical/numerical model and the original numerical SEG/EAEG Salt Model. We will be testing the sensitivity of migration to the presence of converted shear waves and acquisition geometry.
Validation of Numerical Shallow Water Models for Tidal Lagoons
Eliason, D.; Bourgeois, A.
1999-11-01
An analytical solution is presented for the case of a stratified, tidally forced lagoon. This solution, especially its energetics, is useful for the validation of numerical shallow water models under stratified, tidally forced conditions. The utility of the analytical solution for validation is demonstrated for a simple finite difference numerical model. A comparison is presented of the energetics of the numerical and analytical solutions in terms of the convergence of model results to the analytical solution with increasing spatial and temporal resolution.
Technology Transfer Automated Retrieval System (TEKTRAN)
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
NASA Astrophysics Data System (ADS)
Yoshida, Hiroyuki; Takase, Kazuyuki
Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.
Conceptual and Numerical Models for UZ Flow and Transport
H. Liu
2000-03-03
The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models.
Modeling of advanced fossil fuel power plants
NASA Astrophysics Data System (ADS)
Zabihian, Farshid
The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique
NUMERICAL MODELING OF FINE SEDIMENT PHYSICAL PROCESSES.
Schoellhamer, David H.
1985-01-01
Fine sediment in channels, rivers, estuaries, and coastal waters undergo several physical processes including flocculation, floc disruption, deposition, bed consolidation, and resuspension. This paper presents a conceptual model and reviews mathematical models of these physical processes. Several general fine sediment models that simulate some of these processes are reviewed. These general models do not directly simulate flocculation and floc disruption, but the conceptual model and existing functions are shown to adequately model these two processes for one set of laboratory data.
Not Available
1990-12-01
The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.
Advanced Numerical Imaging Procedure Accounting for Non-Ideal Effects in GPR Scenarios
NASA Astrophysics Data System (ADS)
Comite, Davide; Galli, Alessandro; Catapano, Ilaria; Soldovieri, Francesco
2015-04-01
advanced implementation have also been tested by introducing 'errors' on the knowledge of the background medium permittivity, by simulating the presence of one or more layers, and by choosing different models of the surface roughness. The impact of these issues on the performance of both the conventional procedure and the advanced one will be extensively highlighted and discussed at the conference. [1] G. Valerio et al., "GPR detectability of rocks in a Martian-like shallow subsoil: A numerical approach," Plan. Sp. Sci., vol. 62, pp. 31-40, 2012. [2] A. Galli et al., "3D imaging of buried dielectric targets with a tomographic microwave approach applied to GPR synthetic data," Int. J. Antennas Propag., art. ID 610389, 10 pp., 2013 [3] F. Soldovieri et al., "A linear inverse scattering algorithm for realistic GPR applications," Near Surface Geophysics, 5 (1), pp. 29-42, 2007.
Advances in Modelling of Valley Glaciers
NASA Astrophysics Data System (ADS)
Adhikari, Surendra
For glaciological conditions typical of valley glaciers, the central idea of this research lies in understanding the effects of high-order mechanics and parameterizing these for simpler dynamical and statistical methods in glaciology. As an effective tool for this, I formulate a new brand of dynamical models that describes distinct physical processes of deformational flow. Through numerical simulations of idealized glacier domains, I calculate empirical correction factors to capture the effects of longitudinal stress gradients and lateral drag for simplified dynamical models in the plane-strain regime. To get some insights into real glacier dynamics, I simulate Haig Glacier in the Canadian Rocky Mountains. As geometric effects overshadow dynamical effects in glacier retreat scenarios, it appears that high-order physics are not very important for Haig Glacier, particularly for evaluating its fate. Indeed, high-order and reduced models all predict that Haig Glacier ceases to exist by about AD2080 under ongoing climate warming. This finding regarding the minimal role of high-order physics may not be broadly valid, as it is not true in advance scenarios at Haig Glacier and it may not be representative of other glaciological settings. Through a 'bulk' parameterization of high-order physics, geometric and climatic settings, sliding conditions, and transient effects, I also provide new insights into the volume-area relation, a widely used statistical method for estimating glacier volume. I find a steady-state power-law exponent of 1:46, which declines systematically to 1:38 after 100 years of sustained retreat, in good accord with the observations. I recommend more accurate scaling relations through characterization of individual glacier morphology and degree of climatic disequilibrium. This motivates a revision of global glacier volume estimates, of some urgency in sea level rise assessments.
DEVELOPMENT OF THE ADVANCED UTILITY SIMULATION MODEL
The paper discusses the development of the Advanced Utility Simulation Model (AUSM), developed for the National Acid Precipitation Assessment Program (NAPAP), to forecast air emissions of pollutants from electric utilities. USM integrates generating unit engineering detail with d...
Borazjani, Iman; Westerdale, John; McMahon, Eileen M.; Rajaraman, Prathish K.; Heys, Jeffrey J.
2013-01-01
The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics. PMID:23690874
Numerical bifurcation analysis of immunological models with time delays
NASA Astrophysics Data System (ADS)
Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady
2005-12-01
In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.
Numerically Controlled Machining Of Wind-Tunnel Models
NASA Technical Reports Server (NTRS)
Kovtun, John B.
1990-01-01
New procedure for dynamic models and parts for wind-tunnel tests or radio-controlled flight tests constructed. Involves use of single-phase numerical control (NC) technique to produce highly-accurate, symmetrical models in less time.
Numerical modeling of waveguide heated microwave plasmas
Venkateswaran, S.; Schwer, D.A.; Merkle, C.L.
1993-12-01
Waveguide-heated microwave plasmas for space propulsion applications are analyzed by a two-dimensional numerical solution of the combined Navier-Stokes and Maxwell equations. Two waveguide configurations -- one purely transmitting and the other with a reflecting end wall -- are considered. Plasma stability and absorption characteristics are studied and contrasted with the characteristic of resonant cavity heated plasmas. In addition, preliminary estimates of the overall efficiency and the thrust and specific impulse of the propulsion system are also made. The computational results are used to explain experimental trends and to better understand the working of these devices.
Chemical Kinetic Modeling of Advanced Transportation Fuels
PItz, W J; Westbrook, C K; Herbinet, O
2009-01-20
Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.
Software Simplifies the Sharing of Numerical Models
NASA Technical Reports Server (NTRS)
2014-01-01
To ease the sharing of climate models with university students, Goddard Space Flight Center awarded SBIR funding to Reston, Virginia-based Parabon Computation Inc., a company that specializes in cloud computing. The firm developed a software program capable of running climate models over the Internet, and also created an online environment for people to collaborate on developing such models.
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
Ding, Ning Zhang, Yang Xiao, Delong Wu, Jiming Huang, Jun Yin, Li Sun, Shunkai Xue, Chuang Dai, Zihuan Ning, Cheng Shu, Xiaojian Wang, Jianguo Li, Hua
2014-12-15
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
NASA Astrophysics Data System (ADS)
Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua
2014-12-01
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire
Numerical Verification of the White and Long SNR Model
NASA Astrophysics Data System (ADS)
Winter, Henry D.; Smith, Randall K.; Foster, Adam
2014-06-01
In 1991 White and Long derived a similarity solution that described the evolution of supernova remnants expanding into an interstellar medium uniformly populated by dense clouds. While this solution marked a great advance in modeling the IR, optical, and X-ray emissions of supernova remnants, it was constrained by a set of limiting assumptions; namely, a homogeneous and uniform inter-cloud medium, clouds that are uniformly distributed and much denser than the surround inter-cloud medium, and no significant acceleration or heating of the clouds by the shock. While many of these assumptions are reasonable, they limit the range of simulations to a subset of all possible supernova remnant scenarios. In this work we have devised a numerical simulation of a supernova remnant expanding into an interstellar medium using the FLASH MHD code. We first test a simulation with conditions similar to that of the White and Long model to test the validity of the simulation. We then vary parameters of the clouds, such as the distribution and density ratios with respect to the inter-cloud medium, to determine which parameters play an important role in SNR observational signatures.
Modeling of Spacecraft Advanced Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Benfield, Michael P. J.; Belcher, Jeremy A.
2004-01-01
This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.
Material model library for explicit numerical codes
Hofmann, R.; Dial, B.W.
1982-08-01
A material model logic structure has been developed which is useful for most explicit finite-difference and explicit finite-element Lagrange computer codes. This structure has been implemented and tested in the STEALTH codes to provide an example for researchers who wish to implement it in generically similar codes. In parallel with these models, material parameter libraries have been created for the implemented models for materials which are often needed in DoD applications.
Numerical MHD codes for modeling astrophysical flows
NASA Astrophysics Data System (ADS)
Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.
2016-05-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
Two-Dimensional Numerical Modeling of Anthropogenic Beach Berm Erosion
NASA Astrophysics Data System (ADS)
Shakeri Majd, M.; Schubert, J.; Gallien, T.; Sanders, B. F.
2014-12-01
Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) temporarily enhance the ability of beaches to withstand overtopping and thus guard against coastal flooding. However, the combination of a rising tide, storm surge, and/or waves may erode anthropogenic berms in a matter of hours or less and cause flooding [1]. Accurate forecasts of coastal flooding therefore demand the ability to predict where and when berms fail and the volume of water that overtops into defended coastal lowlands. Here, a two-dimensional numerical model of swash zone waves and erosion is examined as a tool for predicting the erosion of anthropogenic beach berms. The 2D model is known as a Debris Flow Model (DFM) because it tightly couples flow and sediment transport within an approximate Riemann solver and is able to resolve shocks in fluid/sediment interface [2]. The DFM also includes a two dimensional avalanching scheme to account for gravity-driven slumping of steep slopes. The performance of the DFM is examined with field-scale anthropogenic berm erosion data collected at Newport Beach, California. Results show that the DFM can be applied in the swash zone to resolve wave-by-wave flow and sediment transport. Results also show that it is possible to calibrate the model for a particular event, and then predict erosion for another event, but predictions are sensitive to model parameters, such as erosion and avalanching. References: [1] Jochen E. Schubert, Timu W. Gallien, Morteza Shakeri Majd, and Brett F. Sanders. Terrestrial laser scanning of anthropogenic beach berm erosion and overtopping. Journal of Coastal Research In-Press, 2014. [2] Morteza Shakeri Majd and Brett F. Sanders. The LHLLC scheme for Two-Layer and Two-Phase transcritical flows over a mobile bed with avalanching, wetting and drying. Advances in Water Resources, 64, 16-31, 2014.
Cumulus clouds - Numerical models, observations and entrainment
NASA Technical Reports Server (NTRS)
Simpson, J.
1983-01-01
The first computer simulation of the organization phase of a buoyant atmospheric thermal is described. Although crude, it showed the spontaneous development of a rounded tight-gradient 'cap' and internal vortical circulation. The complexities involved in these 'field of motion' models in part motivated the development of entity models, based upon laboratory thermals. These one-dimensional models and their uses with observations are briefly described as well as their limitations. Finally, an application of Schlesinger's three-dimensional model to a GATE cumulus situation clarifies many apparently conflicting observations and postulates, thereby raising further challenging questions to be addressed jointly by the more sophisticated measuring and modeling tools available in the 1980's.
Numerical modeling of laser thermal propulsion flows
NASA Technical Reports Server (NTRS)
Mccay, T. D.; Thoenes, J.
1984-01-01
An review of the problems associated with modeling laser thermal propulsion flows, a synopsis of the status of such models, and the attributes of a successful model are presented. The continuous gaseous hydrogen laser-supported combustion wave (LSCW) thruster, for which a high-energy laser system (preferably space-based) should exist by the time the propulsion technology is developed, is considered in particular. The model proposed by Raizer (1970) is based on the assumptions of one-dimensional flow at constant pressure with heat conduction as the principal heat transfer mechanism. Consideration is given to subsequent models which account for radiative transfer into the ambient gas; provide a two-dimensional generalization of Raizer's analysis for the subsonic propagation of laser sparks in air; include the effect of forward plasma radiation in a one-dimensional model; and attempt a time-dependent (elliptic) solution of the full Navier-Stokes equations for the flow in a simple axisymmetric thruster. Attention is also given to thruster and nozzle flow models and thermodynamic and transport properties.
Paleoclimate validation of a numerical climate model
Schelling, F.J.; Church, H.W.; Zak, B.D.; Thompson, S.L.
1994-04-01
An analysis planned to validate regional climate model results for a past climate state at Yucca Mountain, Nevada, against paleoclimate evidence for the period is described. This analysis, which will use the GENESIS model of global climate nested with the RegCM2 regional climate model, is part of a larger study for DOE`s Yucca Mountain Site Characterization Project that is evaluating the impacts of long term future climate change on performance of the potential high level nuclear waste repository at Yucca Mountain. The planned analysis and anticipated results are presented.
Numerical modeling of fresh concrete flow through porous medium
NASA Astrophysics Data System (ADS)
Kolařík, F.; Patzák, B.; Zeman, J.
2016-06-01
The paper focuses on a numerical modeling of a non-Newtonian fluid flow in a porous domain. It presents combination of a homogenization approach to obtain permeability from the underlying micro-structure with coupling of a Stokes and Darcy flow through the interface on the macro level. As a numerical method we employed the Finite Element method. The results obtained from the homogenization approach are validated against fully resolved solution computed by direct numerical simulation.
Numerical modelling of fracture in human arteries.
Ferrara, A; Pandolfi, A
2008-10-01
We present 3D finite element models of atherosclerotic arteries, used to investigate the influence of the geometry and tissue properties on the plaque rupture caused by overexpansion. We adopted a geometry reconstructed from a contiguous set of in vitro magnetic resonance images of a damaged artery. The artery wall is divided in three layers (adventitia, media and intima) and is discretized into tetrahedral finite elements. The artery material is described with a hyperelastic two-fiber anisotropic model proposed by Holzapfel et al. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61(1):1-48, while the plaque is assumed to be transversely isotropic. Cracks induced by mechanical actions are represented through cohesive surfaces, and are allowed to develop along solid elements boundaries only. Fractures are explicitly introduced in the discretized model at the locations where the tensile strength of the material is reached. PMID:19230149
Numerical Calculation of Model Rocket Trajectories.
ERIC Educational Resources Information Center
Keeports, David
1990-01-01
Discussed is the use of model rocketry to teach the principles of Newtonian mechanics. Included are forces involved; calculations for vertical launches; two-dimensional trajectories; and variations in mass, drag, and launch angle. (CW)
On numerical modeling of one-dimensional geothermal histories
Haugerud, R.A.
1989-01-01
Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.
Modelling asteroid brightness variations. I - Numerical methods
NASA Technical Reports Server (NTRS)
Karttunen, H.
1989-01-01
A method for generating lightcurves of asteroid models is presented. The effects of the shape of the asteroid and the scattering law of a surface element are distinctly separable, being described by chosen functions that can easily be changed. The shape is specified by means of two functions that yield the length of the radius vector and the normal vector of the surface at a given point. The general shape must be convex, but spherical concavities producing macroscopic shadowing can also be modeled.
Mathematical and Numerical Modeling of Turbulent Flows.
Vedovoto, João M; Serfaty, Ricardo; Da Silveira Neto, Aristeu
2015-01-01
The present work is devoted to the development and implementation of a computational framework to perform numerical simulations of low Mach number turbulent flows over complex geometries. The algorithm under consideration is based on a classical predictor-corrector time integration scheme that employs a projection method for the momentum equations. The domain decomposition strategy is adopted for distributed computing, displaying very satisfactory levels of speed-up and efficiency. The Immersed Boundary Methodology is used to characterize the presence of a complex geometry. Such method demands two separate grids: An Eulerian, where the transport equations are solved with a Finite Volume, second order discretization and a Lagrangian domain, represented by a non-structured shell grid representing the immersed geometry. The in-house code developed was fully verified by the Method of Manufactured Solutions, in both Eulerian and Lagrangian domains. The capabilities of the resulting computational framework are illustrated on four distinct cases: a turbulent jet, the Poiseuille flow, as a matter of validation of the implemented Immersed Boundary methodology, the flow over a sphere covering a wide range of Reynolds numbers, and finally, with the intention of demonstrating the applicability of Large Eddy Simulations - LES - in an industrial problem, the turbulent flow inside an industrial fan. PMID:26131642
Saturn's North Polar Hexagon Numerical Modeling Results
NASA Astrophysics Data System (ADS)
Morales-Juberias, R.; Sayanagi, K. M.; Dowling, T. E.
2008-12-01
In 1980, Voyager images revealed the presence of a circumpolar wave at 78 degrees planetographic latitude in the northern hemisphere of Saturn. It was notable for having a dominant planetary wavenumber-six zonal mode, and for being stationary with respect to Saturn's Kilometric Radiation rotation rate measured by Voyager. The center of this hexagonal feature was coincident with the center of a sharp eastward jet with a peak speed of 100 ms-1 and it had a meridional width of about 4 degrees. This hexagonal feature was confirmed in 1991 through ground-based observations, and it was observed again in 2006 with the Cassini VIMS instrument. The latest observations highlight the longevity of the hexagon and suggest that it extends at least several bars deep into the atmosphere. We use the Explicit Planetary Isentropic Code (EPIC) to perform high-resolution numerical simulations of this unique feature. We show that a wavenumber six instability mode arises naturally from initially barotropic jets when seeded with weak random turbulence. We also discuss the properties of the wave activity on the background vertical stability, zonal wind, planetary rotation rate and adjacent vortices. Computational resources were provided by the New Mexico Computing Applications Center and New Mexico Institute of Mining and Technology and the Comparative Planetology Laboratory at the University of Louisville.
Numerical model of crater lake eruptions
NASA Astrophysics Data System (ADS)
Morrissey, M.; Gisler, G.; Weaver, R.; Gittings, M.
2010-12-01
We present results from a numerical investigation of subaqueous eruptions involving superheated steam released through a lake mimicking the volcanic setting at Mt. Ruapehu. The simulations were conducted using an adaptive mesh, multi-material, hydrodynamics code with thermal conduction SAGE, (Simple Adaptive Grid Eulerian). Parameters investigated include eruption pressure, lake level and mass of superheated vapor. The simulations produced a spectrum of eruption styles from vapor cavities to radial jets that resulted in hazards that ranged from small-scale waves to high amplitude surges that reached and cascaded over the edge of the crater rim. There was an overall tendency for lake surface activity to increase (including wave amplitude) with increasing mass of superheated vapor and eruption pressure. Surface waves were induced by the formation and collapse of a gas cavity. The collapse of the cavity is considered to play a major role in the characteristic features observed during a subaqueous eruption. The additional mass of superheated vapor produced a larger cavity that displaced a larger area of the lake surface resulting in fast moving surges upon the collapse of the cavity. High lake levels (>90 m) appear to suppress the development of explosive jetting activity when eruption pressures are <10 MPa. At very large eruption pressures (>10 MPa), vertical jets and radial ejections of steam and water can occur in water depths >90 m. Less explosive eruption styles can produce hazardous events such as lahars by the outward movement of surface waves over the crater rim.
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
NASA Technical Reports Server (NTRS)
Nystrom, P. A.; Farassat, F.
1980-01-01
A numerical technique and computer program were developed for the prediction of the noise of propellers with advanced geometry. The blade upper and lower surfaces are described by a curvilinear coordinate system, which was also used to divide the blade surfaces into panels. Two different acoustic formulations in the time domain were used to improve the speed and efficiency of the noise calculations: an acoustic formualtion with the Doppler factor singularity for panels moving at subsonic speeds and the collapsing sphere formulation for panels moving at transonic or supersonic speeds. This second formulation involves a sphere which is centered at the observer position and whose radius decreases at the speed of sound. The acoustic equation consisted of integrals over the curve of intersection for both the sphere and the panels on the blade. Algorithms used in some parts of the computer program are discussed. Comparisons with measured acoustic data for two model high speed propellers with advanced geometry are also presented.
Model Standards Advance the Profession
ERIC Educational Resources Information Center
Journal of Staff Development, 2011
2011-01-01
Leadership by teachers is essential to serving the needs of students, schools, and the teaching profession. To that end, the Teacher Leadership Exploratory Consortium has developed Teacher Leader Model Standards to codify, promote, and support teacher leadership as a vehicle to transform schools for the needs of the 21st century. The Teacher…
Numerical Poisson-Boltzmann Model for Continuum Membrane Systems.
Botello-Smith, Wesley M; Liu, Xingping; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2013-01-01
Membrane protein systems are important computational research topics due to their roles in rational drug design. In this study, we developed a continuum membrane model utilizing a level set formulation under the numerical Poisson-Boltzmann framework within the AMBER molecular mechanics suite for applications such as protein-ligand binding affinity and docking pose predictions. Two numerical solvers were adapted for periodic systems to alleviate possible edge effects. Validation on systems ranging from organic molecules to membrane proteins up to 200 residues, demonstrated good numerical properties. This lays foundations for sophisticated models with variable dielectric treatments and second-order accurate modeling of solvation interactions. PMID:23439886
Numerical model for the Programmable Multirole Furnace (PMZF)
NASA Technical Reports Server (NTRS)
Kassemi, M.; Panzarella, C. H.; Destro-Sidik, K. E.; Krolikowski, C. R.; Licht, B. W.
1993-01-01
The present account of the Programmable Multizone Furnace numerical model uses various examples to illustrate the ways in which the model serves as an optimization, test, prediction, and visualization tool; a numerical PID-control algorithm obtains the desired sample temperature distributions and allows the model to solve an inverse heat transfer problem where the desired sample temperature profile is the input and the required heater power distribution is the output of numerical simulations. Parametric studies show how the total power consumption of the furnace is affected by such design variables as the conductivity.
Numerical Modeling of Ophthalmic Response to Space
NASA Technical Reports Server (NTRS)
Nelson, E. S.; Myers, J. G.; Mulugeta, L.; Vera, J.; Raykin, J.; Feola, A.; Gleason, R.; Samuels, B.; Ethier, C. R.
2015-01-01
To investigate ophthalmic changes in spaceflight, we would like to predict the impact of blood dysregulation and elevated intracranial pressure (ICP) on Intraocular Pressure (IOP). Unlike other physiological systems, there are very few lumped parameter models of the eye. The eye model described here is novel in its inclusion of the human choroid and retrobulbar subarachnoid space (rSAS), which are key elements in investigating the impact of increased ICP and ocular blood volume. Some ingenuity was required in modeling the blood and rSAS compartments due to the lack of quantitative data on essential hydrodynamic quantities, such as net choroidal volume and blood flowrate, inlet and exit pressures, and material properties, such as compliances between compartments.
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Gunzburger, Max
2015-02-17
We have treated the modeling, analysis, numerical analysis, and algorithmic development for nonlocal models of diffusion and mechanics. Variational formulations were developed and finite element methods were developed based on those formulations for both steady state and time dependent problems. Obstacle problems and optimization problems for the nonlocal models were also treated and connections made with fractional derivative models.
NASA Astrophysics Data System (ADS)
Bailey, Brian N.
2016-07-01
When Lagrangian stochastic models for turbulent dispersion are applied to complex atmospheric flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behaviour in the numerical solution. Here we discuss numerical strategies for solving the non-linear Langevin-based particle velocity evolution equation that eliminate such unphysical behaviour in both Reynolds-averaged and large-eddy simulation applications. Extremely large or `rogue' particle velocities are caused when the numerical integration scheme becomes unstable. Such instabilities can be eliminated by using a sufficiently small integration timestep, or in cases where the required timestep is unrealistically small, an unconditionally stable implicit integration scheme can be used. When the generalized anisotropic turbulence model is used, it is critical that the input velocity covariance tensor be realizable, otherwise unphysical behaviour can become problematic regardless of the integration scheme or size of the timestep. A method is presented to ensure realizability, and thus eliminate such behaviour. It was also found that the numerical accuracy of the integration scheme determined the degree to which the second law of thermodynamics or `well-mixed condition' was satisfied. Perhaps more importantly, it also determined the degree to which modelled Eulerian particle velocity statistics matched the specified Eulerian distributions (which is the ultimate goal of the numerical solution). It is recommended that future models be verified by not only checking the well-mixed condition, but perhaps more importantly by checking that computed Eulerian statistics match the Eulerian statistics specified as inputs.
Advanced Space Shuttle simulation model
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1982-01-01
A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.
Numerical Modeling of Left-Handed Metamaterials
Burke, G J; Champagne, N J; Sharpe, R M
2001-11-06
The EIGER method of moments program with periodic Green's function was used to model a periodic array of strips and split-ring resonators. Left-handed propagation due to negative index of refraction is demonstrated in a frequency band. The effective material parameters versus frequency are extracted from the EIGER solution.
Modeling Advance Life Support Systems
NASA Technical Reports Server (NTRS)
Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan
1996-01-01
Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.
Accurate mask model for advanced nodes
NASA Astrophysics Data System (ADS)
Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle
2014-07-01
Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.
Numerical modelling of Glacial Lake Outburst Floods using physically based dam-breach models
NASA Astrophysics Data System (ADS)
Westoby, M. J.; Brasington, J.; Glasser, N. F.; Hambrey, M. J.; Reynolds, J. M.; Hassan, M. A. A. M.
2014-06-01
The rapid development and instability of moraine-dammed proglacial lakes is increasing the potential for the occurrence of catastrophic Glacial Lake Outburst Floods (GLOFs) in high-mountain regions. Advanced, physically-based numerical dam-breach models represent an improvement over existing methods for the derivation of breach outflow hydrographs. However, significant uncertainty surrounds the initial parameterisation of such models, and remains largely unexplored. We use a unique combination of numerical dam-breach and two-dimensional hydrodynamic modelling, employed with a Generalised Likelihood Uncertainty Estimation (GLUE) framework to quantify the degree of equifinality in dam-breach model output for the reconstruction of the failure of Dig Tsho, Nepal. Monte Carlo analysis was used to sample the model parameter space, and morphological descriptors of the moraine breach were used to evaluate model performance. Equifinal breach morphologies were produced by parameter ensembles associated with differing breach initiation mechanisms, including overtopping waves and mechanical failure of the dam face. The material roughness coefficient was discovered to exert a dominant influence over model performance. Percentile breach hydrographs derived from cumulative distribution function hydrograph data under- or overestimated total hydrograph volume and were deemed to be inappropriate for input to hydrodynamic modelling. Our results support the use of a Total Variation Diminishing solver for outburst flood modelling, which was found to be largely free of numerical instability and flow oscillation. Routing of scenario-specific optimal breach hydrographs revealed prominent differences in the timing and extent of inundation. A GLUE-based method for constructing likelihood-weighted maps of GLOF inundation extent, flow depth, and hazard is presented, and represents an effective tool for communicating uncertainty and equifinality in GLOF hazard assessment. However, future
Numerical modelling of instantaneous plate tectonics
NASA Technical Reports Server (NTRS)
Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.
1974-01-01
Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.
Analytical and numerical modeling for flexible pipes
NASA Astrophysics Data System (ADS)
Wang, Wei; Chen, Geng
2011-12-01
The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.
Numerical modelling of granular flows: a reality check
NASA Astrophysics Data System (ADS)
Windows-Yule, C. R. K.; Tunuguntla, D. R.; Parker, D. J.
2015-12-01
Discrete particle simulations provide a powerful tool for the advancement of our understanding of granular media, and the development and refinement of the multitudinous techniques used to handle and process these ubiquitous materials. However, in order to ensure that this tool can be successfully utilised in a meaningful and reliable manner, it is of paramount importance that we fully understand the degree to which numerical models can be trusted to accurately and quantitatively recreate and predict the behaviours of the real-world systems they are designed to emulate. Due to the complexity and diverse variety of physical states and dynamical behaviours exhibited by granular media, a simulation algorithm capable of closely reproducing the behaviours of a given system may be entirely unsuitable for other systems with different physical properties, or even similar systems exposed to differing control parameters. In this paper, we focus on two widely used forms of granular flow, for which discrete particle simulations are shown to provide a full, quantitative replication of the behaviours of real industrial and experimental systems. We identify also situations for which quantitative agreement may fail are identified, but important general, qualitative trends are still recreated, as well as cases for which computational models are entirely unsuitable. By assembling this information into a single document, we hope not only to provide researchers with a useful point of reference when designing and executing future studies, but also to equip those involved in the design of simulation algorithms with a clear picture of the current strengths and shortcomings of contemporary models, and hence an improved knowledge of the most valuable areas on which to focus their work.
Numerical modelling of granular flows: a reality check
NASA Astrophysics Data System (ADS)
Windows-Yule, C. R. K.; Tunuguntla, D. R.; Parker, D. J.
2016-07-01
Discrete particle simulations provide a powerful tool for the advancement of our understanding of granular media, and the development and refinement of the multitudinous techniques used to handle and process these ubiquitous materials. However, in order to ensure that this tool can be successfully utilised in a meaningful and reliable manner, it is of paramount importance that we fully understand the degree to which numerical models can be trusted to accurately and quantitatively recreate and predict the behaviours of the real-world systems they are designed to emulate. Due to the complexity and diverse variety of physical states and dynamical behaviours exhibited by granular media, a simulation algorithm capable of closely reproducing the behaviours of a given system may be entirely unsuitable for other systems with different physical properties, or even similar systems exposed to differing control parameters. In this paper, we focus on two widely used forms of granular flow, for which discrete particle simulations are shown to provide a full, quantitative replication of the behaviours of real industrial and experimental systems. We identify also situations for which quantitative agreement may fail are identified, but important general, qualitative trends are still recreated, as well as cases for which computational models are entirely unsuitable. By assembling this information into a single document, we hope not only to provide researchers with a useful point of reference when designing and executing future studies, but also to equip those involved in the design of simulation algorithms with a clear picture of the current strengths and shortcomings of contemporary models, and hence an improved knowledge of the most valuable areas on which to focus their work.
Numerical Modelling of the Mining Induced Horizontal Displacement
NASA Astrophysics Data System (ADS)
Tajduś, Krzysztof
2015-12-01
The paper presents results of numerical calculations and modeling of mining-induced surface deformation based on Finite Element Method (FEM). Applying the numerical method discussed to calculations allows us to assume a larger number of factors, such as rock mass structure, fracture network, rock properties, etc., which essentially affect the results obtained. On the basis of an elastic transversely isotropic model, an analysis of horizontal displacement distribution and surface subsidence was carried out for two sample regions of mines. The results of numerical calculations were later compared with the measured values. Such an analysis proved that the applied numerical model properly described distribution and values of subsidence and slope of subsidence trough, though there were serious differences in the values of calculated horizontal displacement, especially in areas of far influence range. In order to improve the matching, the influence of boundary conditions of the model on the value of calculated horizontal displacement was analyzed. The results are presented in graphs.
Numerical modelling of the TFTR ICRH antennas
Kress, M.; Ho, Y.L.; Grossmann, W.; Drobot, A. ); Batchelor, D.B.; Ryan, P.M.; Carter, M. )
1991-01-01
A general purpose 3D electromagnetic field solver code, ARGUS, is being used to analyze the TFTR Antennas. To date, the vacuum radiation patterns produced by the bay M and L antennas have been obtained and reported. Recent work has concentrated on antenna performance comparison and understanding the role of geometry on performance (e.g., the impact of end-effects on current 2D models). Additional diagnostics such as evaluation of phase velocity and strap inductance are being implemented to enhance our understanding and to better compare with measurements. 6 refs., 2 figs.
Terrane accretion: Insights from numerical modelling
NASA Astrophysics Data System (ADS)
Vogt, Katharina; Gerya, Taras
2016-04-01
The oceanic crust is not homogenous, but contains significantly thicker crust than norm, i.e. extinct arcs, spreading ridges, detached continental fragments, volcanic piles or oceanic swells. These (crustal) fragments may collide with continental crust and form accretionary complexes, contributing to its growth. We analyse this process using a thermo-mechanical computer model (i2vis) of an ocean-continent subduction zone. In this model the oceanic plate can bend spontaneously under the control of visco-plastic rheologies. It moreover incorporates effects such as mineralogical phase changes, fluid release and consumption, partial melting and melt extraction. Based on our 2-D experiments we suggest that the lithospheric buoyancy of the downgoing slab and the rheological strength of crustal material may result in a variety of accretionary processes. In addition to terrane subduction, we are able to identify three distinct modes of terrane accretion: frontal accretion, basal accretion and underplating plateaus. We show that crustal fragments may dock onto continental crust and cease subduction, be scrapped off the downgoing plate, or subduct to greater depth prior to slab break off and subsequent exhumation. Direct consequences of these processes include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes, partial melting and crustal growth.
Numerical modeling of Deep Impact experiment
NASA Astrophysics Data System (ADS)
Sultanov, V. G.; Kim, V. V.; Lomonosov, I. V.; Shutov, A. V.; Fortov, V. E.
2007-06-01
The Deep Impact active space experiment has been done [1,2] to study a hypervelocity collision of a metal impactor with the comet 9P/Temple 1. The modeling of impact on solid or porous ice made it possible to conclude: the form and size of crater depends strongly on the density of comet material; the copper impactor does not melt and remains in the solid state; the temperature of ejecta varies from 5000 K for solid ice to 15000 K for porous ice. The impact on moist water- saturated sand demonstrated different results. In this case, the copper impactor practically does not penetrate the comet surface, melts, destroys and the ricochet process takes place. In the case of moist porous sand the produced crater is stretched in the direction of impact. The analysis of modeling results indicates to the presence of volatile easy-vaporized chemical compounds in the cometary surface. The hypothesis that the cometary surface consists of only ice does not agree with experimental and computational data on the forming and spreading of impact ejecta. [1] http://deepimpact.jpl.nasa.gov/home/index.html [2] M. F. A'Hearn et al, Deep Impact: Excavating Comet Tempel 1 // Science, 2005, v.310, pp. 258-264
Numerical analysis and modeling of atmospheric phenomena
NASA Technical Reports Server (NTRS)
Stone, Peter H.
1994-01-01
For the past 22 years Grant NGR 22-009-727 has been supporting research in the Center for Meteorology and Physical Oceanography (and its predecessors) in a wide variety of diagnostic and modeling studies of atmospheric and ocean phenomena. Professor Jule Charney was the initial Principal Investigator. Professor Peter Stone joined him as co-Principal Investigator in 1975 and became the sole Principal Investigator in 1981. During its lifetime the Grant has supported in whole or in part 11 Master's theses, 14 Ph.D. theses, and 45 papers published in refereed scientific journals. All of these theses and papers (with bibliographic references) are listed below. All but one of the theses were used to fulfill the requirements for MIT (Massachusetts Institute of Technology) degrees and are available from the MIT libraries. The one exception is F. Chen's Ph.D. thesis which was for a Harvard degree and is available from the Harvard libraries. In addition to the work described in the citations listed below, the Grant has supported Research Assistant Amy Solomon during the past two years to carry out a study of how baroclinic adjustment is affected by vertical resolution, vertical temperature structure, and dissipation. Ms. Solomon plans to use this project for her Ph.D. thesis. Support for this project will continue under NASA Grant NAG 5-2490, 'The Factors Controlling Poleward Heat Transport in Climate Models.'
Advanced numerical methods for three dimensional two-phase flow calculations
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.
Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak
Hu, Youjun; Li, Guoqiang; Yang, Wenjun; Zhou, Deng; Ren, Qilong; Gorelenkov, N. N.; Cai, Huishan
2014-05-15
Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane.
Simulation studies of the impact of advanced observing systems on numerical weather prediction
NASA Technical Reports Server (NTRS)
Atlas, R.; Kalnay, E.; Susskind, J.; Reuter, D.; Baker, W. E.; Halem, M.
1984-01-01
To study the potential impact of advanced passive sounders and lidar temperature, pressure, humidity, and wind observing systems on large-scale numerical weather prediction, a series of realistic simulation studies between the European Center for medium-range weather forecasts, the National Meteorological Center, and the Goddard Laboratory for Atmospheric Sciences is conducted. The project attempts to avoid the unrealistic character of earlier simulation studies. The previous simulation studies and real-data impact tests are reviewed and the design of the current simulation system is described. Consideration is given to the simulation of observations of space-based sounding systems.
Seismoelectric numerical modeling on a grid
Haines, S.S.; Pride, S.R.
2006-01-01
Our finite-difference algorithm provides a new method for simulating how seismic waves in arbitrarily heterogeneous porous media generate electric fields through an electrokinetic mechanism called seismoelectric coupling. As the first step in our simulations, we calculate relative pore-fluid/grain-matrix displacement by using existing poroelastic theory. We then calculate the electric current resulting from the grain/fluid displacement by using seismoelectric coupling theory. This electrofiltration current acts as a source term in Poisson's equation, which then allows us to calculate the electric potential distribution. We can safely neglect induction effects in our simulations because the model area is within the electrostatic near field for the depth of investigation (tens to hundreds of meters) and the frequency ranges (10 Hz to 1 kHz) of interest for shallow seismoelectric surveys.We can independently calculate the electric-potential distribution for each time step in the poroelastic simulation without loss of accuracy because electro-osmotic feedback (fluid flow that is perturbed by generated electric fields) is at least 105 times smaller than flow that is driven by fluid-pressure gradients and matrix acceleration, and is therefore negligible. Our simulations demonstrate that, distinct from seismic reflections, the seismoelectric interface response from a thin layer (at least as thin as one-twentieth of the seismic wavelength) is considerably stronger than the response from a single interface. We find that the interface response amplitude decreases as the lateral extent of a layer decreases below the width of the first Fresnel zone. We conclude, on the basis of our modeling results and of field results published elsewhere, that downhole and/or crosswell survey geometries and time-lapse applications are particularly well suited to the seismoelectric method. ?? 2006 Society of Exploration Geophysicists.
Theoretical and numerical modelling of shocks in dusty plasmas
Eliasson, B.; Shukla, P.K.
2005-10-31
The formation of dust acoustic (DA) and dust ion-acoustic (DIA) shocks are are studied theoretically and numerically by means of simple-wave solutions and a comparison between fluid and kinetic model for DIA waves. A fluid model admits sharp discontinuities at the shock front while the kinetic model involves Landau-damping of the the shock front.
USER GUIDE FOR THE ENHANCED HYDRODYNAMICAL-NUMERICAL MODEL
This guide provides the documentation required for used of the Enhanced Hydrodynamical-Numerical Model on operational problems. The enhanced model is a multilayer Hansen type model extended to handle near-shore processes by including: Non-linear term extension to facilitate small...
Numerical model for learning concepts of streamflow simulation
DeLong, L.L.
1993-01-01
Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.
Numerical modeling of elastodynamic radiation and scattering
Savic, M.; Ziolkowski, A.M.
1994-12-31
This paper presents a study on two problems: the two-dimensional distributed surface load problem, and the scattering of elastodynamic waves from fractures. The analysis is done with the aid of the finite-difference technique. If the dimensions of a surface mechanical source (vibrator or piezoelectric transducer) are not small compared to the wavelength, one should not use the point source or plane wave representation when modeling radiation from such sources. Here the authors demonstrate the solution of the uniformly distributed surface load problem using the finite-difference (FD) technique. The scattering of transient elasto-dynamic waves from a fracture whose extent is large compared with the wavelength and whose width is small compared with the wavelength and whose width is small compared with the wavelength is one of the classical problems in seismology and non-destructive testing (NDT). Many researchers have provided analytical solutions based on different approximations for the unknown field (displacement or particle velocity) scattered from an idealized half-plane or the a strip of finite extent. Again, the authors demonstrate the full wavefield solution using the finite-difference technique. The technique presented here is aimed for the interpretation of seismic data from hydraulic fracturing experiments.
Squeal noise in simple numerical brake models
NASA Astrophysics Data System (ADS)
Oberst, S.; Lai, J. C. S.
2015-09-01
Since the early 1920s, automotive disc brake squeal has caused warranty issues and customer dissatisfaction. Despite a good deal of progress achieved, predicting brake squeal propensity is as difficult as ever as not all mechanisms and interactions are known owing to their highly fugitive complex nature. In recent years, research has been focused on the prediction of unstable vibration modes by the complex eigenvalue analysis (CEA) for the mode-coupling type of instability. There has been very limited consideration given to the calculation of the acoustic radiation properties due to friction contact between a pad and a rotor. Recent analyses using a forced response analysis with harmonic contact pressure excitation indicates negative dissipated energy at some pad eigenfrequencies predicted to be stable by the CEA. A transient nonlinear time domain analysis with no external excitation indicates that squeal could develop at these eigenfrequencies. Here, the acoustic radiation characteristics of those pad modes are determined by analysing the acoustic power levels and radiation efficiencies of simplified brake models in the form of a pad rubbing on a plate or on a disc using the acoustic boundary element method based on velocities extracted from the forced response analysis. Results show that unstable pad modes trigger unstable disc vibrations resulting in instantaneous mode squeal similar to those observed experimentally. Changes in the radiation efficiency with pressure variations are smaller than those with friction coefficient variations and are caused by the phase difference of the velocities out-of-plane vibration between the pad and the disc.
Quantitative analysis of numerical solvers for oscillatory biomolecular system models
Quo, Chang F; Wang, May D
2008-01-01
Background This article provides guidelines for selecting optimal numerical solvers for biomolecular system models. Because various parameters of the same system could have drastically different ranges from 10-15 to 1010, the ODEs can be stiff and ill-conditioned, resulting in non-unique, non-existing, or non-reproducible modeling solutions. Previous studies have not examined in depth how to best select numerical solvers for biomolecular system models, which makes it difficult to experimentally validate the modeling results. To address this problem, we have chosen one of the well-known stiff initial value problems with limit cycle behavior as a test-bed system model. Solving this model, we have illustrated that different answers may result from different numerical solvers. We use MATLAB numerical solvers because they are optimized and widely used by the modeling community. We have also conducted a systematic study of numerical solver performances by using qualitative and quantitative measures such as convergence, accuracy, and computational cost (i.e. in terms of function evaluation, partial derivative, LU decomposition, and "take-off" points). The results show that the modeling solutions can be drastically different using different numerical solvers. Thus, it is important to intelligently select numerical solvers when solving biomolecular system models. Results The classic Belousov-Zhabotinskii (BZ) reaction is described by the Oregonator model and is used as a case study. We report two guidelines in selecting optimal numerical solver(s) for stiff, complex oscillatory systems: (i) for problems with unknown parameters, ode45 is the optimal choice regardless of the relative error tolerance; (ii) for known stiff problems, both ode113 and ode15s are good choices under strict relative tolerance conditions. Conclusions For any given biomolecular model, by building a library of numerical solvers with quantitative performance assessment metric, we show that it is possible
Recent advances in modeling stellar interiors (u)
Guzik, Joyce Ann
2010-01-01
Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.
Numerical modelling of the solidification of ductile iron
NASA Astrophysics Data System (ADS)
Liu, J.; Elliott, R.
1998-01-01
Numerical calculations are presented describing the solidification of a ductile iron based on the Stefanescu macroscopic heat transfer-microscopic solidification kinetic model but using a different kinetic model than that used by Stefanescu. The results show that the kinetic model used influences the recalescence behaviour predicted by the modelling. Cooling curves calculated with the present model show reasonable agreement with experimentally measured cooling curves for four different cooling rates.
Numerical simulations of a reduced model for blood coagulation
NASA Astrophysics Data System (ADS)
Pavlova, Jevgenija; Fasano, Antonio; Sequeira, Adélia
2016-04-01
In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1-14, 2012), Pavlova et al. (Theor Biol 380:367-379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.
Advances in scientific balloon thermal modeling
NASA Astrophysics Data System (ADS)
Bohaboj, T.; Cathey, H.
The National Aeronautics and Space Administration's Balloon Program Office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the ``Thermal Desktop'' addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical ``proxy models'' for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This paper presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.
Advances in Scientific Balloon Thermal Modeling
NASA Technical Reports Server (NTRS)
Bohaboj, T.; Cathey, H. M., Jr.
2004-01-01
The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.
Quantitative comparisons of numerical models of brittle wedge dynamics
NASA Astrophysics Data System (ADS)
Buiter, Susanne
2010-05-01
Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin
Numerical modelling in biosciences using delay differential equations
NASA Astrophysics Data System (ADS)
Bocharov, Gennadii A.; Rihan, Fathalla A.
2000-12-01
Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.
Nonlinear oscillator metamaterial model: numerical and experimental verification.
Poutrina, E; Huang, D; Urzhumov, Y; Smith, D R
2011-04-25
We verify numerically and experimentally the accuracy of an analytical model used to derive the effective nonlinear susceptibilities of a varactor-loaded split ring resonator (VLSRR) magnetic medium. For the numerical validation, a nonlinear oscillator model for the effective magnetization of the metamaterial is applied in conjunction with Maxwell equations and the two sets of equations solved numerically in the time-domain. The computed second harmonic generation (SHG) from a slab of a nonlinear material is then compared with the analytical model. The computed SHG is in excellent agreement with that predicted by the analytical model, both in terms of magnitude and spectral characteristics. Moreover, experimental measurements of the power transmitted through a fabricated VLSRR metamaterial at several power levels are also in agreement with the model, illustrating that the effective medium techniques associated with metamaterials can accurately be transitioned to nonlinear systems. PMID:21643082
NASA Astrophysics Data System (ADS)
Pilz, Tobias; Francke, Till; Bronstert, Axel
2016-04-01
Until today a large number of competing computer models has been developed to understand hydrological processes and to simulate and predict streamflow dynamics of rivers. This is primarily the result of a lack of a unified theory in catchment hydrology due to insufficient process understanding and uncertainties related to model development and application. Therefore, the goal of this study is to analyze the uncertainty structure of a process-based hydrological catchment model employing a multiple hypotheses approach. The study focuses on three major problems that have received only little attention in previous investigations. First, to estimate the impact of model structural uncertainty by employing several alternative representations for each simulated process. Second, explore the influence of landscape discretization and parameterization from multiple datasets and user decisions. Third, employ several numerical solvers for the integration of the governing ordinary differential equations to study the effect on simulation results. The generated ensemble of model hypotheses is then analyzed and the three sources of uncertainty compared against each other. To ensure consistency and comparability all model structures and numerical solvers are implemented within a single simulation environment. First results suggest that the selection of a sophisticated numerical solver for the differential equations positively affects simulation outcomes. However, already some simple and easy to implement explicit methods perform surprisingly well and need less computational efforts than more advanced but time consuming implicit techniques. There is general evidence that ambiguous and subjective user decisions form a major source of uncertainty and can greatly influence model development and application at all stages.
Center for Advanced Modeling and Simulation Intern
Gertman, Vanessa
2010-01-01
Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
Center for Advanced Modeling and Simulation Intern
Gertman, Vanessa
2013-05-28
Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
Sheet Hydroforming Process Numerical Model Improvement Through Experimental Results Analysis
NASA Astrophysics Data System (ADS)
Gabriele, Papadia; Antonio, Del Prete; Alfredo, Anglani
2010-06-01
The increasing application of numerical simulation in metal forming field has helped engineers to solve problems one after another to manufacture a qualified formed product reducing the required time [1]. Accurate simulation results are fundamental for the tooling and the product designs. The wide application of numerical simulation is encouraging the development of highly accurate simulation procedures to meet industrial requirements. Many factors can influence the final simulation results and many studies have been carried out about materials [2], yield criteria [3] and plastic deformation [4,5], process parameters [6] and their optimization. In order to develop a reliable hydromechanical deep drawing (HDD) numerical model the authors have been worked out specific activities based on the evaluation of the effective stiffness of the blankholder structure [7]. In this paper after an appropriate tuning phase of the blankholder force distribution, the experimental activity has been taken into account to improve the accuracy of the numerical model. In the first phase, the effective capability of the blankholder structure to transfer the applied load given by hydraulic actuators to the blank has been explored. This phase ended with the definition of an appropriate subdivision of the blankholder active surface in order to take into account the effective pressure map obtained for the given loads configuration. In the second phase the numerical results obtained with the developed subdivision have been compared with the experimental data of the studied model. The numerical model has been then improved, finding the best solution for the blankholder force distribution.
Nonspinning numerical relativity waveform surrogates: assessing the model
NASA Astrophysics Data System (ADS)
Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel
2015-04-01
Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.
Combustion modeling in advanced gas turbine systems
Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K.
1995-12-31
Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.
Advanced dynamic modelling for friction draft gears
NASA Astrophysics Data System (ADS)
Wu, Qing; Spiryagin, Maksym; Cole, Colin
2015-04-01
A white-box friction draft gear model has been developed with all components of the draft gear and their geometries considered. The conventional two-stage (loading and unloading) working process of the friction draft gear was detailed as a four-stage process. A preliminary work called the 'base model' was improved with regard to force-displacement characteristics, friction modelling and transitional characteristics. A set of impact test data were analysed; five types of draft gear behaviour were identified and modelled: hysteresis, stiffening, change of stage, locked unloading and softening. Simulated comparisons of three draft gear models were presented: a look-up table model, the base model and the advanced model.
Comparison of two numerical techniques for aerodynamic model identification
NASA Technical Reports Server (NTRS)
Verhaegen, M. H.
1987-01-01
An algorithm, called the Minimal Residual QR algorithm, is presented to solve subset regression problems. It is shown that this scheme can be used as a numerically reliable implementation of the stepwise regression technique, which is widely used to identify an aerodynamic model from flight test data. This capability as well as the numerical superiority of this scheme over the stepwise regression technique is demonstrated in an experimental simulation study.
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Field, Scott E.; Galley, Chad R.; Szilágyi, Béla; Scheel, Mark A.; Tiglio, Manuel; Hemberger, Daniel A.
2015-09-01
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic -2Yℓm waveform modes resolved by the NR code up to ℓ=8 . We compare our surrogate model to effective one body waveforms from 50 M⊙ to 300 M⊙ for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
NASA Astrophysics Data System (ADS)
Holladay, J. D.; Wang, Y.
2015-05-01
Microscale (<5 W) reformers for hydrogen production have been investigated for over a decade. These devices are intended to provide hydrogen for small fuel cells. Due to the reformer's small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems and help guide the further improvements. This paper reviews the development of the numerical codes and details the reaction equations used. The majority of the devices utilized methanol as the fuel due to methanol's low reforming temperature and high conversion, although, there are several methane fueled systems. The increased computational power and more complex codes have led to improved accuracy of numerical simulations. Initial models focused on the reformer, while more recently, the simulations began including other unit operations such as vaporizers, inlet manifolds, and combustors. These codes are critical for developing the next generation systems. The systems reviewed included plate reactors, microchannel reactors, and annulus reactors for both wash-coated and packed bed systems.
Numerical Models of Broad Bandwidth Nanosecond Optical Parametric Oscillators
Bowers, M.S.; Gehr, R.J.; Smith, A.V.
1998-10-14
We describe results from three new methods of numerically modeling broad-bandwidth, nanosecond OPO's in the plane-wave approximate ion. They account for differences in group velocities among the three mixing waves, and also include a qutt~ttun noise model.
A survey of numerical models for wind prediction
NASA Technical Reports Server (NTRS)
Schonfeld, D.
1980-01-01
A literature review is presented of the work done in the numerical modeling of wind flows. Pertinent computational techniques are described, as well as the necessary assumptions used to simplify the governing equations. A steady state model is outlined, based on the data obtained at the Deep Space Communications complex at Goldstone, California.
Experimental, numerical and analytical models of mantle starting plumes
NASA Astrophysics Data System (ADS)
Coulliette, D. L.; Loper, D. E.
1995-12-01
The results of a combined experimental, numerical and analytical investigation of starting thermal plumes are described, to obtain a better perspective on plumes within the Earth's mantle. Thermal plumes were generated experimentally in a tank of corn syrup by means of an electrical heater. Viscosity ratios of 400, 30 000, and 10 8 were generated by varying the temperature of the tank. Plumes for the smaller ratios had the traditional 'balloon-on-astring' shape, but that at the highest ratio had a novel morphology. The plume heads in the first two cases were observed to rise at roughly a constant speed, in contrast to most previous studies which found the plume heads to accelerate. Loss of buoyancy from the plume head owing to heat loss is believed to be responsible for this difference. Starting plumes were simulated numerically using an axisymmetric, finite-element code to solve the Boussinesq equations at finite Prandtl numbers. The constant rise speed observed experimentally was confirmed by the numerical simulation for the viscosity ratios of 400 and 30 000, but numerical instability prevented simulation of the case with a viscosity ratio of 10 8. There was very good agreement between the experimental and numerical rise speeds. An analytical model was developed which reduces to previous models in limiting cases. This parameterization gives better agreement with the experimental and numerical results than does any previous model.
Maturity Model for Advancing Smart Grid Interoperability
Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin
2013-10-28
Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.
Development of a numerical simulation model of the cardiovascular system.
Geertsema, A A; Rakhorst, G; Mihaylov, D; Blanksma, P K; Verkerke, G J
1997-12-01
A numerical simulation model of the cardiovascular system has been developed. It consists of a model of the left atrium, the left ventricle, the coronary vascular system, the aorta, the arterial system, and the venous system. The input of the complete model is the elastance (pressure/volume ratio) developed by the left ventricle. The shape of this elastance is constant in different circumstances. Left ventricular (LV) myocardial oxygen consumption and the amount of oxygen offered to the left ventricle can be calculated with the model. The model has been validated using data from a patient suffering from coronary artery disease. The measured clinical hemodynamical waveforms could be fitted to those generated by the model. With the numerical simulation model, it is possible to predict the functioning of the left ventricle under different circumstances. This makes it possible to study in vitro various pathological clinical situations. PMID:9423983
Rapid installation of numerical models in multiple parent codes
Brannon, R.M.; Wong, M.K.
1996-10-01
A set of``model interface guidelines``, called MIG, is offered as a means to more rapidly install numerical models (such as stress-strain laws) into any parent code (hydrocode, finite element code, etc.) without having to modify the model subroutines. The model developer (who creates the model package in compliance with the guidelines) specifies the model`s input and storage requirements in a standardized way. For portability, database management (such as saving user inputs and field variables) is handled by the parent code. To date, NUG has proved viable in beta installations of several diverse models in vectorized and parallel codes written in different computer languages. A NUG-compliant model can be installed in different codes without modifying the model`s subroutines. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort potentially reducing the cost of installing and sharing models.
Ensemble-type numerical uncertainty information from single model integrations
Rauser, Florian Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of the influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.
Carbon export algorithm advancements in models
NASA Astrophysics Data System (ADS)
Çağlar Yumruktepe, Veli; Salihoğlu, Barış
2015-04-01
The rate at which anthropogenic CO2 is absorbed by the oceans remains a critical question under investigation by climate researchers. Construction of a complete carbon budget, requires better understanding of air-sea exchanges and the processes controlling the vertical and horizontal transport of carbon in the ocean, particularly the biological carbon pump. Improved parameterization of carbon sequestration within ecosystem models is vital to better understand and predict changes in the global carbon cycle. Due to the complexity of processes controlling particle aggregation, sinking and decomposition, existing ecosystem models necessarily parameterize carbon sequestration using simple algorithms. Development of improved algorithms describing carbon export and sequestration, suitable for inclusion in numerical models is an ongoing work. Existing unique algorithms used in the state-of-the art ecosystem models and new experimental results obtained from mesocosm experiments and open ocean observations have been inserted into a common 1D pelagic ecosystem model for testing purposes. The model was implemented to the timeseries stations in the North Atlantic (BATS, PAP and ESTOC) and were evaluated with datasets of carbon export. Targetted topics of algorithms were PFT functional types, grazing and vertical movement of zooplankton, and remineralization, aggregation and ballasting dynamics of organic matter. Ultimately it is intended to feed improved algorithms to the 3D modelling community, for inclusion in coupled numerical models.
Optimising GPR modelling: A practical, multi-threaded approach to 3D FDTD numerical modelling
NASA Astrophysics Data System (ADS)
Millington, T. M.; Cassidy, N. J.
2010-09-01
The demand for advanced interpretational tools has lead to the development of highly sophisticated, computationally demanding, 3D GPR processing and modelling techniques. Many of these methods solve very large problems with stepwise methods that utilise numerically similar functions within iterative computational loops. Problems of this nature are readily parallelised by splitting the computational domain into smaller, independent chunks for direct use on cluster-style, multi-processor supercomputers. Unfortunately, the implications of running such facilities, as well as time investment needed to develop the parallel codes, means that for most researchers, the use of these advanced methods is too impractical. In this paper, we propose an alternative method of parallelisation which exploits the capabilities of the modern multi-core processors (upon which today's desktop PCs are built) by multi-threading the calculation of a problem's individual sub-solutions. To illustrate the approach, we have applied it to an advanced, 3D, finite-difference time-domain (FDTD) GPR modelling tool in which the calculation of the individual vector field components is multi-threaded. To be of practical use, the FDTD scheme must be able to deliver accurate results with short execution times and we, therefore, show that the performance benefits of our approach can deliver runtimes less than half those of the more conventional, serial programming techniques. We evaluate implementations of the technique using different programming languages (e.g., Matlab, Java, C++), which will facilitate the construction of a flexible modelling tool for use in future GPR research. The implementations are compared on a variety of typical hardware platforms, having between one and eight processing cores available, and also a modern Graphical Processing Unit (GPU)-based computer. Our results show that a multi-threaded xyz modelling approach is easy to implement and delivers excellent results when implemented
Advances in Computationally Modeling Human Oral Bioavailability
Wang, Junmei; Hou, Tingjun
2015-01-01
Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307
Advances in computationally modeling human oral bioavailability.
Wang, Junmei; Hou, Tingjun
2015-06-23
Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307
A general numerical model for wave rotor analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel W.
1992-01-01
Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.
Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section
NASA Technical Reports Server (NTRS)
Taflove, Allen; Umashankar, Korada R.
1989-01-01
Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.
Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium
Taylor, S.R.; Kamm, J.R.
1993-11-01
The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.
Numerical models of laser fusion of intestinal tissues.
Pearce, John A
2009-01-01
Numerical models of continuous wave Tm:YAG thermal fusion in rat intestinal tissues were compared to experiment. Optical and thermal FDM models that included tissue damage based on Arrhenius kinetics were used to predict birefringence loss in collagen as the standard of comparison. The models also predicted collagen shrinkage, jellification and water loss. The inclusion of variable optical and thermal properties is essential to achieve favorable agreement between predicted and measured damage boundaries. PMID:19964349
Numerical models for the evaluation of geothermal systems
Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.
1986-08-01
We have carried out detailed simulations of various fields in the USA (Bada, New Mexico; Heber, California); Mexico (Cerro Prieto); Iceland (Krafla); and Kenya (Olkaria). These simulation studies have illustrated the usefulness of numerical models for the overall evaluation of geothermal systems. The methodology for modeling the behavior of geothermal systems, different approaches to geothermal reservoir modeling and how they can be applied in comprehensive evaluation work are discussed.