Sample records for advanced numerical tools

  1. Numerical Propulsion System Simulation: A Common Tool for Aerospace Propulsion Being Developed

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Naiman, Cynthia G.

    2001-01-01

    The NASA Glenn Research Center is developing an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). This simulation is initially being used to support aeropropulsion in the analysis and design of aircraft engines. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the Aviation Safety Program and Advanced Space Transportation. NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes using the Common Object Request Broker Architecture (CORBA) in the NPSS Developer's Kit to facilitate collaborative engineering. The NPSS Developer's Kit will provide the tools to develop custom components and to use the CORBA capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities will extend NPSS from a zero-dimensional simulation tool to a multifidelity, multidiscipline system-level simulation tool for the full life cycle of an engine.

  2. An integrated modeling and design tool for advanced optical spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1992-01-01

    Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.

  3. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool...October 2014 2. REPORT TYPE Annual Report 3. DATES COVERED 20 Sep 2013 to 19 Sep 2014 4. TITLE AND SUBTITLE Advanced Prosthetic Gait Training...produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities providing care

  4. Recent Advances in Algal Genetic Tool Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Dahlin, Lukas; T. Guarnieri, Michael

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  5. Recent Advances in Algal Genetic Tool Development

    DOE PAGES

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  6. Analyzing asteroid reflectance spectra with numerical tools based on scattering simulations

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Väisänen, Timo; Markkanen, Johannes; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are developing a set of numerical tools that can be used in analyzing the reflectance spectra of granular materials such as the regolith surface of atmosphereless Solar system objects. Our goal is to be able to explain, with realistic numerical scattering models, the spectral features arising when materials are intimately mixed together. We include the space-weathering -type effects in our simulations, i.e., mixing host mineral locally with small inclusions of another material in small proportions. Our motivation for this study comes from the present lack of such tools. The current common practice is to apply a semi-physical approximate model such as some variation of Hapke models [e.g., 1] or the Shkuratov model [2]. These models are expressed in a closed form so that they are relatively fast to apply. They are based on simplifications on the radiative transfer theory. The problem is that the validity of the model is not always guaranteed, and the derived physical properties related to particle scattering properties can be unrealistic [3]. We base our numerical tool into a chain of scattering simulations. Scattering properties of small inclusions inside an absorbing host matrix can be derived using exact methods solving the Maxwell equations of the system. The next step, scattering by a single regolith grain, is solved using a geometrical optics method accounting for surface reflections, internal absorption, and possibly the internal diffuse scattering. The third step involves the radiative transfer simulations of these regolith grains in a macroscopic planar element. The chain can be continued next with shadowing simulation over the target surface elements, and finally by integrating the bidirectional reflectance distribution function over the object's shape. Most of the tools in the proposed chain already exist, and one practical task for us is to tie these together into an easy-to-use toolchain that can be publicly distributed. We plan to open the

  7. Numerical modelling of tool wear in turning with cemented carbide cutting tools

    NASA Astrophysics Data System (ADS)

    Franco, P.; Estrems, M.; Faura, F.

    2007-04-01

    A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools.

  8. Advances in Numerical Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1997-01-01

    Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.

  9. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled ;Advances in Numerical Simulation of Plasmas,; presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  10. Self-advancing step-tap tool

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R. (Inventor); Penner, Ronald K. (Inventor); Franklin, Larry D. (Inventor); Camarda, Charles J. (Inventor)

    2008-01-01

    Methods and tool for simultaneously forming a bore in a work piece and forming a series of threads in said bore. In an embodiment, the tool has a predetermined axial length, a proximal end, and a distal end, said tool comprising: a shank located at said proximal end; a pilot drill portion located at said distal end; and a mill portion intermediately disposed between said shank and said pilot drill portion. The mill portion is comprised of at least two drill-tap sections of predetermined axial lengths and at least one transition section of predetermined axial length, wherein each of said at least one transition section is sandwiched between a distinct set of two of said at least two drill-tap sections. The at least two drill-tap sections are formed of one or more drill-tap cutting teeth spirally increasing along said at least two drill-tap sections, wherein said tool is self-advanced in said work piece along said formed threads, and wherein said tool simultaneously forms said bore and said series of threads along a substantially similar longitudinal axis.

  11. Advanced Numerical and Theoretical Methods for Photonic Crystals and Metamaterials

    NASA Astrophysics Data System (ADS)

    Felbacq, Didier

    2016-11-01

    This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB® is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.

  12. Interferometric correction system for a numerically controlled machine

    DOEpatents

    Burleson, Robert R.

    1978-01-01

    An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.

  13. Advanced genetic tools for plant biotechnology.

    PubMed

    Liu, Wusheng; Yuan, Joshua S; Stewart, C Neal

    2013-11-01

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

  14. Recent advances in systems metabolic engineering tools and strategies.

    PubMed

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Basic and Advanced Numerical Performances Relate to Mathematical Expertise but Are Fully Mediated by Visuospatial Skills

    PubMed Central

    2016-01-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. PMID:26913930

  16. Advanced genetic tools for plant biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, WS; Yuan, JS; Stewart, CN

    2013-10-09

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis ofmore » large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.« less

  17. Numerical modeling tools for chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J.; Childs, Edward P.

    1992-01-01

    Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.

  18. Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills.

    PubMed

    Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi

    2016-09-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    NASA Astrophysics Data System (ADS)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  20. Utility of the advanced chronic kidney disease patient management tools: case studies.

    PubMed

    Patwardhan, Meenal B; Matchar, David B; Samsa, Gregory P; Haley, William E

    2008-01-01

    Appropriate management of advanced chronic kidney disease (CKD) delays or limits its progression. The Advanced CKD Patient Management Toolkit was developed using a process-improvement technique to assist patient management and address CKD-specific management issues. We pilot tested the toolkit in 2 community nephrology practices, assessed the utility of individual tools, and evaluated the impact on conformance to an advanced CKD guideline through patient chart abstraction. Tool use was distinct in the 2 sites and depended on the site champion's involvement, the extent of process reconfiguration demanded by a tool, and its perceived value. Baseline conformance varied across guideline recommendations (averaged 54%). Posttrial conformance increased in all clinical areas (averaged 59%). Valuable features of the toolkit in real-world settings were its ability to: facilitate tool selection, direct implementation efforts in response to a baseline performance audit, and allow selection of tool versions and customizing them. Our results suggest that systematically created, multifaceted, and customizable tools can promote guideline conformance.

  1. Conceptual Assessment Tool for Advanced Undergraduate Electrodynamics

    ERIC Educational Resources Information Center

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-01-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question…

  2. The Science of and Advanced Technology for Cost-Effective Manufacture of High Precision Engineering Products. Volume 4. Thermal Effects on the Accuracy of Numerically Controlled Machine Tools.

    DTIC Science & Technology

    1985-10-01

    83K0385 FINAL REPORT D Vol. 4 00 THERMAL EFFECTS ON THE ACCURACY OF LD NUME" 1ICALLY CONTROLLED MACHINE TOOLS PREPARED BY I Raghunath Venugopal and M...OF NUMERICALLY CONTROLLED MACHINE TOOLS 12 PERSONAL AJ’HOR(S) Venunorial, Raghunath and M. M. Barash 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF...TOOLS Prepared by Raghunath Venugopal and M. M. Barash Accesion For Unannounced 0 Justification ........................................... October 1085

  3. Numerical tool for tsunami risk assessment in the southern coast of Dominican Republic

    NASA Astrophysics Data System (ADS)

    Macias Sanchez, J.; Llorente Isidro, M.; Ortega, S.; Gonzalez Vida, J. M., Sr.; Castro, M. J.

    2016-12-01

    The southern coast of Dominican Republic is a very populated region, with several important cities including Santo Domingo, its capital. Important activities are rooted in the southern coast including tourism, industry, commercial ports, and, energy facilities, among others. According to historical reports, it has been impacted by big earthquakes accompanied by tsunamis as in Azua in 1751 and recently Pedernales in 2010, but their sources are not clearly identified. The aim of the present work is to develop a numerical tool to simulate the impact in the southern coast of the Dominican Republic of tsunamis generated in the Caribbean Sea. This tool, based on the Tsunami-HySEA model from EDANYA group (University of Malaga, Spain), could be used in the framework of a Tsunami Early Warning Systems due the very short computing times when only propagation is computed or it could be used to assess inundation impact, computing inundation with a initial 5 meter resolution. Numerical results corresponding to three theoretical sources are used to test the numerical tool.

  4. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    NASA Astrophysics Data System (ADS)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  5. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  6. Editing of EIA coded, numerically controlled, machine tool tapes

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.

    1975-01-01

    Editing of numerically controlled (N/C) machine tool tapes (8-level paper tape) using an interactive graphic display processor is described. A rapid technique required for correcting production errors in N/C tapes was developed using the interactive text editor on the IMLAC PDS-ID graphic display system and two special programs resident on disk. The correction technique and special programs for processing N/C tapes coded to EIA specifications are discussed.

  7. Regional Sediment Management (RSM) Modeling Tools: Integration of Advanced Sediment Transport Tools into HEC-RAS

    DTIC Science & Technology

    2014-06-01

    Integration of Advanced Sediment Transport Tools into HEC-RAS by Paul M. Boyd and Stanford A. Gibson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) summarizes the development and initial testing of new sediment transport and modeling tools developed by the U.S. Army Corps...sediment transport within the USACE HEC River Analysis System (HEC-RAS) software package and to determine its applicability to Regional Sediment

  8. Brush seal numerical simulation: Concepts and advances

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-01-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  9. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitesides, R. A.; Killingsworth, N. J.; McNenly, M. J.

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emergingmore » needs of the engine designers, engine modelers and fuel mechanism developers.« less

  10. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  11. NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL

    EPA Science Inventory

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a
    numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...

  12. Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process

    PubMed Central

    Fraser, Kirk A.; St-Georges, Lyne; Kiss, Laszlo I.

    2014-01-01

    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time. PMID:28788627

  13. Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process.

    PubMed

    Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I

    2014-04-30

    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.

  14. Evaluation of reliability modeling tools for advanced fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Baker, Robert; Scheper, Charlotte

    1986-01-01

    The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport.

  15. Experimental and Numerical Investigations of Applying Tip-bottomed Tool for Bending Advanced Ultra-high Strength Steel Sheet

    NASA Astrophysics Data System (ADS)

    Mitsomwang, Pusit; Borrisutthekul, Rattana; Klaiw-awoot, Ken; Pattalung, Aran

    2017-09-01

    This research was carried out aiming to investigate the application of a tip-bottomed tool for bending an advanced ultra-high strength steel sheet. The V-die bending experiment of a dual phase steel (DP980) sheet which had a thickness of 1.6 mm was executed using a conventional bending and a tip-bottomed punches. Experimental results revealed that the springback of the bent worksheet in the case of the tip-bottomed punch was less than that of the conventional punch case. To further discuss bending characteristics, a finite element (FE) model was developed and used to simulate the bending of the worksheet. From the FE analysis, it was found that the application of the tip-bottomed punch contributed the plastic deformation to occur at the bending region. Consequently, the springback of the worksheet reduced. In addition, the width of the punch tip was found to affect the deformation at the bending region and determined the springback of the bent worksheet. Moreover, the use of the tip-bottomed punch resulted in the apparent increase of the surface hardness of the bent worksheet, compared to the bending with the conventional punch.

  16. Numerical tool development of fluid-structure interactions for investigation of obstructive sleep apnea

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; White, Susan; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff

    2016-11-01

    Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the upper airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The ultimate goal of this research is the development of a versatile numerical tool for simulation of air-tissue interactions in the patient specific upper airway geometry. This tool is expected to capture several phenomena, including flow-induced vibration (snoring) and large deformations during airway collapse of the complex airway geometry in respiratory flow conditions. Here, we present our ongoing progress toward this goal. To avoid mesh regeneration, for flow model, a sharp-interface embedded boundary method is used on Cartesian grids for resolving the fluid-structure interface, while for the structural model, a cut-cell finite element method is used. Also, to properly resolve large displacements, non-linear elasticity model is used. The fluid and structure solvers are connected with the strongly coupled iterative algorithm. The parallel computation is achieved with the numerical library PETSc. Some two- and three- dimensional preliminary results are shown to demonstrate the ability of this tool.

  17. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  18. Selected aspects of microelectronics technology and applications: Numerically controlled machine tools. Technology trends series no. 2

    NASA Astrophysics Data System (ADS)

    Sigurdson, J.; Tagerud, J.

    1986-05-01

    A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.

  19. Periastron advance in spinning black hole binaries: Gravitational self-force from numerical relativity

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre; Buonanno, Alessandra; Mroué, Abdul H.; Pfeiffer, Harald P.; Hemberger, Daniel A.; Lovelace, Geoffrey; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Bela; Taylor, Nicholas W.; Teukolsky, Saul A.

    2013-12-01

    We study the general relativistic periastron advance in spinning black hole binaries on quasicircular orbits, with spins aligned or antialigned with the orbital angular momentum, using numerical-relativity simulations, the post-Newtonian approximation, and black hole perturbation theory. By imposing a symmetry by exchange of the bodies’ labels, we devise an improved version of the perturbative result and use it as the leading term of a new type of expansion in powers of the symmetric mass ratio. This allows us to measure, for the first time, the gravitational self-force effect on the periastron advance of a nonspinning particle orbiting a Kerr black hole of mass M and spin S=-0.5M2, down to separations of order 9M. Comparing the predictions of our improved perturbative expansion with the exact results from numerical simulations of equal-mass and equal-spin binaries, we find a remarkable agreement over a wide range of spins and orbital separations.

  20. A numerical tool for reproducing driver behaviour: experiments and predictive simulations.

    PubMed

    Casucci, M; Marchitto, M; Cacciabue, P C

    2010-03-01

    This paper presents the simulation tool called SDDRIVE (Simple Simulation of Driver performance), which is the numerical computerised implementation of the theoretical architecture describing Driver-Vehicle-Environment (DVE) interactions, contained in Cacciabue and Carsten [Cacciabue, P.C., Carsten, O. A simple model of driver behaviour to sustain design and safety assessment of automated systems in automotive environments, 2010]. Following a brief description of the basic algorithms that simulate the performance of drivers, the paper presents and discusses a set of experiments carried out in a Virtual Reality full scale simulator for validating the simulation. Then the predictive potentiality of the tool is shown by discussing two case studies of DVE interactions, performed in the presence of different driver attitudes in similar traffic conditions.

  1. A review and evaluation of numerical tools for fractional calculus and fractional order controls

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Liu, Lu; Dehghan, Sina; Chen, YangQuan; Xue, Dingyü

    2017-06-01

    In recent years, as fractional calculus becomes more and more broadly used in research across different academic disciplines, there are increasing demands for the numerical tools for the computation of fractional integration/differentiation, and the simulation of fractional order systems. Time to time, being asked about which tool is suitable for a specific application, the authors decide to carry out this survey to present recapitulative information of the available tools in the literature, in hope of benefiting researchers with different academic backgrounds. With this motivation, the present article collects the scattered tools into a dashboard view, briefly introduces their usage and algorithms, evaluates the accuracy, compares the performance, and provides informative comments for selection.

  2. The Advanced Course in Professional Selling

    ERIC Educational Resources Information Center

    Loe, Terry; Inks, Scott

    2014-01-01

    More universities are incorporating sales content into their curriculums, and although the introductory courses in professional sales have much common ground and guidance from numerous professional selling texts, instructors teaching the advanced selling course lack the guidance provided by common academic tools and materials. The resulting…

  3. Use of advanced analysis tools to support freeway corridor freight planning.

    DOT National Transportation Integrated Search

    2010-07-22

    Advanced corridor freight management and pricing strategies are increasingly being chosen to : address freight mobility challenges. As a result, evaluation tools are needed to assess the benefits : of these strategies as compared to other alternative...

  4. Advanced computational tools for 3-D seismic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhen, J.; Glover, C.W.; Protopopescu, V.A.

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advancemore » in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.« less

  5. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  6. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  7. Development of early numerical abilities of Spanish-speaking Mexican preschoolers: A new assessment tool.

    PubMed

    Beltrán-Navarro, Beatriz; Abreu-Mendoza, Roberto A; Matute, Esmeralda; Rosselli, Monica

    2018-01-01

    This article presents a tool for assessing the early numerical abilities of Spanish-speaking Mexican preschoolers. The Numerical Abilities Test, from the Evaluación Neuropsicológica Infantil-Preescolar (ENI-P), evaluates four core abilities of number development: magnitude comparison, counting, subitizing, and basic calculation. We evaluated 307 Spanish-speaking Mexican children aged 2 years 6 months to 4 years 11 months. Appropriate internal consistency and test-retest reliability were demonstrated. We also investigated the effect of age, children's school attendance, maternal education, and sex on children's numerical scores. The results showed that the four subtests captured development across ages. Critically, maternal education had an impact on children's performance in three out of the four subtests, but there was no effect associated with children's school attendance or sex. These results suggest that the Numerical Abilities Test is a reliable instrument for Spanish-speaking preschoolers. We discuss the implications of our outcomes for numerical development.

  8. Advanced Numerical-Algebraic Thinking: Constructing the Concept of Covariation as a Prelude to the Concept of Function

    ERIC Educational Resources Information Center

    Hitt, Fernando; Morasse, Christian

    2009-01-01

    Introduction: In this document we stress the importance of developing in children a structure for advanced numerical-algebraic thinking that can provide an element of control when solving mathematical situations. We analyze pupils' conceptions that induce errors in algebra due to a lack of control in connection with their numerical thinking. We…

  9. Technology and Jobs: Computer-Aided Design. Numerical-Control Machine-Tool Operators. Office Automation.

    ERIC Educational Resources Information Center

    Stanton, Michael; And Others

    1985-01-01

    Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…

  10. Numerical simulation of abutment pressure redistribution during face advance

    NASA Astrophysics Data System (ADS)

    Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.

    2017-12-01

    The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.

  11. Numerical characterization of landing gear aeroacoustics using advanced simulation and analysis techniques

    NASA Astrophysics Data System (ADS)

    Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G.

    2017-09-01

    With the objective of aircraft noise mitigation, we here address the numerical characterization of the aeroacoustics by a simplified nose landing gear (NLG), through the use of advanced simulation and signal processing techniques. To this end, the NLG noise physics is first simulated through an advanced hybrid approach, which relies on Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) calculations. Compared to more traditional hybrid methods (e.g. those relying on the use of an Acoustic Analogy), and although it is used here with some approximations made (e.g. design of the CFD-CAA interface), the present approach does not rely on restrictive assumptions (e.g. equivalent noise source, homogeneous propagation medium), which allows to incorporate more realism into the prediction. In a second step, the outputs coming from such CFD-CAA hybrid calculations are processed through both traditional and advanced post-processing techniques, thus offering to further investigate the NLG's noise source mechanisms. Among other things, this work highlights how advanced computational methodologies are now mature enough to not only simulate realistic problems of airframe noise emission, but also to investigate their underlying physics.

  12. Machine Tool Advanced Skills Technology Program (MAST). Overview and Methodology.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology Program (MAST) is a geographical partnership of six of the nation's best two-year colleges located in the six states that have about one-third of the density of metals-related industries in the United States. The purpose of the MAST grant is to develop and implement a national training model to overcome…

  13. Restricted numerical range: A versatile tool in the theory of quantum information

    NASA Astrophysics Data System (ADS)

    Gawron, Piotr; Puchała, Zbigniew; Miszczak, Jarosław Adam; Skowronek, Łukasz; Życzkowski, Karol

    2010-10-01

    Numerical range of a Hermitian operator X is defined as the set of all possible expectation values of this observable among a normalized quantum state. We analyze a modification of this definition in which the expectation value is taken among a certain subset of the set of all quantum states. One considers, for instance, the set of real states, the set of product states, separable states, or the set of maximally entangled states. We show exemplary applications of these algebraic tools in the theory of quantum information: analysis of k-positive maps and entanglement witnesses, as well as study of the minimal output entropy of a quantum channel. Product numerical range of a unitary operator is used to solve the problem of local distinguishability of a family of two unitary gates.

  14. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  15. Results of an Experimental Exploration of Advanced Automated Geospatial Tools: Agility in Complex Planning

    DTIC Science & Technology

    2009-06-01

    AUTOMATED GEOSPATIAL TOOLS : AGILITY IN COMPLEX PLANNING Primary Topic: Track 5 – Experimentation and Analysis Walter A. Powell [STUDENT] - GMU...TITLE AND SUBTITLE Results of an Experimental Exploration of Advanced Automated Geospatial Tools : Agility in Complex Planning 5a. CONTRACT NUMBER...Std Z39-18 Abstract Typically, the development of tools and systems for the military is requirement driven; systems are developed to meet

  16. Conceptual assessment tool for advanced undergraduate electrodynamics

    NASA Astrophysics Data System (ADS)

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-12-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument's development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.

  17. Comparison of BrainTool to other UML modeling and model transformation tools

    NASA Astrophysics Data System (ADS)

    Nikiforova, Oksana; Gusarovs, Konstantins

    2017-07-01

    In the last 30 years there were numerous model generated software systems offered targeting problems with the development productivity and the resulting software quality. CASE tools developed due today's date are being advertised as having "complete code-generation capabilities". Nowadays the Object Management Group (OMG) is calling similar arguments in regards to the Unified Modeling Language (UML) models at different levels of abstraction. It is being said that software development automation using CASE tools enables significant level of automation. Actual today's CASE tools are usually offering a combination of several features starting with a model editor and a model repository for a traditional ones and ending with code generator (that could be using a scripting or domain-specific (DSL) language), transformation tool to produce the new artifacts from the manually created and transformation definition editor to define new transformations for the most advanced ones. Present paper contains the results of CASE tool (mainly UML editors) comparison against the level of the automation they are offering.

  18. Clinical Holistic Health: Advanced Tools for Holistic Medicine

    PubMed Central

    Ventegodt, Søren; Clausen, Birgitte; Nielsen, May Lyck; Merrick, Joav

    2006-01-01

    According to holistic medical theory, the patient will heal when old painful moments, the traumatic events of life that are often called “gestalts”, are integrated in the present “now”. The advanced holistic physicians expanded toolbox has many different tools to induce this healing, some that are more dangerous and potentially traumatic than others. The more intense the therapeutic technique, the more emotional energy will be released and contained in the session, but the higher also is the risk for the therapist to lose control of the session and lose the patient to his or her own dark side. To avoid harming the patient must be the highest priority in holistic existential therapy, making sufficient education and training an issue of highest importance. The concept of “stepping up” the therapy by using more and more “dramatic” methods to get access to repressed emotions and events has led us to a “therapeutic staircase” with ten steps: (1) establishing the relationship; (2) establishing intimacy, trust, and confidentiality; (3) giving support and holding; (4) taking the patient into the process of physical, emotional, and mental healing; (5) social healing of being in the family; (6) spiritual healing — returning to the abstract wholeness of the soul; (7) healing the informational layer of the body; (8) healing the three fundamental dimensions of existence: love, power, and sexuality in a direct way using, among other techniques, “controlled violence” and “acupressure through the vagina”; (9) mind-expanding and consciousness-transformative techniques like psychotropic drugs; and (10) techniques transgressing the patient's borders and, therefore, often traumatizing (for instance, the use of force against the will of the patient).We believe that the systematic use of the staircase will greatly improve the power and efficiency of holistic medicine for the patient and we invite a broad cooperation in scientifically testing the efficiency

  19. Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches

    NASA Astrophysics Data System (ADS)

    Cazzani, Antonio; Malagù, Marcello; Turco, Emilio

    2016-03-01

    We illustrate a numerical tool for analyzing plane arches such as those frequently used in historical masonry heritage. It is based on a refined elastic mechanical model derived from the isogeometric approach. In particular, geometry and displacements are modeled by means of non-uniform rational B-splines. After a brief introduction, outlining the basic assumptions of this approach and the corresponding modeling choices, several numerical applications to arches, which are typical of masonry structures, show the performance of this novel technique. These are discussed in detail to emphasize the advantage and potential developments of isogeometric analysis in the field of structural analysis of historical masonry buildings with complex geometries.

  20. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  1. Advanced Tools for River Science: EAARL and MD_SWMS: Chapter 3

    USGS Publications Warehouse

    Kinzel, Paul J.

    2009-01-01

    Disruption of flow regimes and sediment supplies, induced by anthropogenic or climatic factors, can produce dramatic alterations in river form, vegetation patterns, and associated habitat conditions. To improve habitat in these fluvial systems, resource managers may choose from a variety of treatments including flow and/or sediment prescriptions, vegetation management, or engineered approaches. Monitoring protocols developed to assess the morphologic response of these treatments require techniques that can measure topographic changes above and below the water surface efficiently, accurately, and in a standardized, cost-effective manner. Similarly, modeling of flow, sediment transport, habitat, and channel evolution requires characterization of river morphology for model input and verification. Recent developments by the U.S. Geological Survey with regard to both remotely sensed methods (the Experimental Advanced Airborne Research LiDAR; EAARL) and computational modeling software (the Multi-Dimensional Surface-Water Modeling System; MD_SWMS) have produced advanced tools for spatially explicit monitoring and modeling in aquatic environments. In this paper, we present a pilot study conducted along the Platte River, Nebraska, that demonstrates the combined use of these river science tools.

  2. È VIVO: Virtual eruptions at Vesuvius; A multimedia tool to illustrate numerical modeling to a general public

    NASA Astrophysics Data System (ADS)

    Todesco, Micol; Neri, Augusto; Demaria, Cristina; Marmo, Costantino; Macedonio, Giovanni

    2006-07-01

    Dissemination of scientific results to the general public has become increasingly important in our society. When science deals with natural hazards, public outreach is even more important: on the one hand, it contributes to hazard perception and it is a necessary step toward preparedness and risk mitigation; on the other hand, it contributes to establish a positive link of mutual confidence between scientific community and the population living at risk. The existence of such a link plays a relevant role in hazard communication, which in turn is essential to mitigate the risk. In this work, we present a tool that we have developed to illustrate our scientific results on pyroclastic flow propagation at Vesuvius. This tool, a CD-ROM that we developed joining scientific data with appropriate knowledge in communication sciences is meant to be a first prototype that will be used to test the validity of this approach to public outreach. The multimedia guide contains figures, images of real volcanoes and computer animations obtained through numerical modeling of pyroclastic density currents. Explanatory text, kept as short and simple as possible, illustrates both the process and the methodology applied to study this very dangerous natural phenomenon. In this first version, the CD-ROM will be distributed among selected categories of end-users together with a short questionnaire that we have drawn to test its readability. Future releases will include feedback from the users, further advancement of scientific results as well as a higher degree of interactivity.

  3. Recent advances in numerical PDEs

    NASA Astrophysics Data System (ADS)

    Zuev, Julia Michelle

    In this thesis, we investigate four neighboring topics, all in the general area of numerical methods for solving Partial Differential Equations (PDEs). Topic 1. Radial Basis Functions (RBF) are widely used for multi-dimensional interpolation of scattered data. This methodology offers smooth and accurate interpolants, which can be further refined, if necessary, by clustering nodes in select areas. We show, however, that local refinements with RBF (in a constant shape parameter [varepsilon] regime) may lead to the oscillatory errors associated with the Runge phenomenon (RP). RP is best known in the case of high-order polynomial interpolation, where its effects can be accurately predicted via Lebesgue constant L (which is based solely on the node distribution). We study the RP and the applicability of Lebesgue constant (as well as other error measures) in RBF interpolation. Mainly, we allow for a spatially variable shape parameter, and demonstrate how it can be used to suppress RP-like edge effects and to improve the overall stability and accuracy. Topic 2. Although not as versatile as RBFs, cubic splines are useful for interpolating grid-based data. In 2-D, we consider a patch representation via Hermite basis functions s i,j ( u, v ) = [Special characters omitted.] h mn H m ( u ) H n ( v ), as opposed to the standard bicubic representation. Stitching requirements for the rectangular non-equispaced grid yield a 2-D tridiagonal linear system AX = B, where X represents the unknown first derivatives. We discover that the standard methods for solving this NxM system do not take advantage of the spline-specific format of the matrix B. We develop an alternative approach using this specialization of the RHS, which allows us to pre-compute coefficients only once, instead of N times. MATLAB implementation of our fast 2-D cubic spline algorithm is provided. We confirm analytically and numerically that for large N ( N > 200), our method is at least 3 times faster than the

  4. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools.

    PubMed

    Deshmukh, Rupesh K; Sonah, Humira; Bélanger, Richard R

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is

  5. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools

    PubMed Central

    Deshmukh, Rupesh K.; Sonah, Humira; Bélanger, Richard R.

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is

  6. Provider Tools for Advance Care Planning and Goals of Care Discussions: A Systematic Review.

    PubMed

    Myers, Jeff; Cosby, Roxanne; Gzik, Danusia; Harle, Ingrid; Harrold, Deb; Incardona, Nadia; Walton, Tara

    2018-01-01

    Advance care planning and goals of care discussions involve the exploration of what is most important to a person, including their values and beliefs in preparation for health-care decision-making. Advance care planning conversations focus on planning for future health care, ensuring that an incapable person's wishes are known and can guide the person's substitute decision maker for future decision-making. Goals of care discussions focus on preparing for current decision-making by ensuring the person's goals guide this process. To provide evidence regarding tools and/or practices available for use by health-care providers to effectively facilitate advance care planning conversations and/or goals of care discussions. A systematic review was conducted focusing on guidelines, randomized trials, comparative studies, and noncomparative studies. Databases searched included MEDLINE, EMBASE, and the proceedings of the International Advance Care Planning Conference and the American Society of Clinical Oncology Palliative Care Symposium. Although several studies report positive findings, there is a lack of consistent patient outcome evidence to support any one clinical tool for use in advance care planning or goals of care discussions. Effective advance care planning conversations at both the population and the individual level require provider education and communication skill development, standardized and accessible documentation, quality improvement initiatives, and system-wide coordination to impact the population level. There is a need for research focused on goals of care discussions, to clarify the purpose and expected outcomes of these discussions, and to clearly differentiate goals of care from advance care planning.

  7. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  8. Earthquake information products and tools from the Advanced National Seismic System (ANSS)

    USGS Publications Warehouse

    Wald, Lisa

    2006-01-01

    This Fact Sheet provides a brief description of postearthquake tools and products provided by the Advanced National Seismic System (ANSS) through the U.S. Geological Survey Earthquake Hazards Program. The focus is on products specifically aimed at providing situational awareness in the period immediately following significant earthquake events.

  9. Motivational interviewing: a valuable tool for the psychiatric advanced practice nurse.

    PubMed

    Karzenowski, Abby; Puskar, Kathy

    2011-01-01

    Motivational Interviewing (MI) is well known and respected by many health care professionals. Developed by Miller and Rollnick (2002) , it is a way to promote behavior change from within and resolve ambivalence. MI is individualized and is most commonly used in the psychiatric setting; it is a valuable tool for the Psychiatric Advanced Nurse Practice Nurse. There are many resources that talk about what MI is and the principles used to apply it. However, there is little information about how to incorporate MI into a clinical case. This article provides a summary of articles related to MI and discusses two case studies using MI and why advanced practice nurses should use MI with their patients.

  10. Modeling Tool Advances Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.

  11. Research on ARM Numerical Control System

    NASA Astrophysics Data System (ADS)

    Wei, Xu; JiHong, Chen

    Computerized Numerical Control (CNC) machine tools is the foundation of modern manufacturing systems, whose advanced digital technology is the key to solve the problem of sustainable development of machine tool manufacturing industry. The paper is to design CNC system embedded on ARM and indicates the hardware design and the software systems supported. On the hardware side: the driving chip of the motor control unit, as the core of components, is MCX314AL of DSP motion control which is developed by NOVA Electronics Co., Ltd. of Japan. It make convenient to control machine because of its excellent performance, simple interface, easy programming. On the Software side, the uC/OS-2 is selected as the embedded operating system of the open source, which makes a detailed breakdown of the modules of the CNC system. Those priorities are designed according to their actual requirements. The ways of communication between the module and the interrupt response are so different that it guarantees real-time property and reliability of the numerical control system. Therefore, it not only meets the requirements of the current social precision machining, but has good man-machine interface and network support to facilitate a variety of craftsmen use.

  12. 3D data processing with advanced computer graphics tools

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Ekstrand, Laura; Grieve, Taylor; Eisenmann, David J.; Chumbley, L. Scott

    2012-09-01

    Often, the 3-D raw data coming from an optical profilometer contains spiky noises and irregular grid, which make it difficult to analyze and difficult to store because of the enormously large size. This paper is to address these two issues for an optical profilometer by substantially reducing the spiky noise of the 3-D raw data from an optical profilometer, and by rapidly re-sampling the raw data into regular grids at any pixel size and any orientation with advanced computer graphics tools. Experimental results will be presented to demonstrate the effectiveness of the proposed approach.

  13. Anvil Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Bauman, William, III; Keen, Jeremy

    2007-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. In order for the Anvil Tool to remain available to the meteorologists, the AMU was tasked to transition the tool to the Advanced Weather interactive Processing System (AWIPS). This report describes the work done by the AMU to develop the Anvil Tool for AWIPS to create a graphical overlay depicting the threat from thunderstorm anvil clouds. The AWIPS Anvil Tool is based on the previously deployed AMU MIDDS Anvil Tool. SMG and 45 WS forecasters have used the MIDDS Anvil Tool during launch and landing operations. SMG's primary weather analysis and display system is now AWIPS and the 45 WS has plans to replace MIDDS with AWIPS. The Anvil Tool creates a graphic that users can overlay on satellite or radar imagery to depict the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on an average of the upper-level observed or forecasted winds. The graphic includes 10 and 20 nm standoff circles centered at the location of interest, in addition to one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 degree sector width based on a previous AMU study which determined thunderstorm anvils move in a direction plus or minus 15 degrees of the upper-level (300- to 150-mb) wind direction. This report briefly describes the history of the MIDDS Anvil Tool and then explains how the initial development of the AWIPS Anvil Tool was carried out. After testing was

  14. Numerical Model Metrics Tools in Support of Navy Operations

    NASA Astrophysics Data System (ADS)

    Dykes, J. D.; Fanguy, P.

    2017-12-01

    Increasing demands of accurate ocean forecasts that are relevant to the Navy mission decision makers demand tools that quickly provide relevant numerical model metrics to the forecasters. Increasing modelling capabilities with ever-higher resolution domains including coupled and ensemble systems as well as the increasing volume of observations and other data sources to which to compare the model output requires more tools for the forecaster to enable doing more with less. These data can be appropriately handled in a geographic information system (GIS) fused together to provide useful information and analyses, and ultimately a better understanding how the pertinent model performs based on ground truth.. Oceanographic measurements like surface elevation, profiles of temperature and salinity, and wave height can all be incorporated into a set of layers correlated to geographic information such as bathymetry and topography. In addition, an automated system that runs concurrently with the models on high performance machines matches routinely available observations to modelled values to form a database of matchups with which statistics can be calculated and displayed, to facilitate validation of forecast state and derived variables. ArcMAP, developed by Environmental Systems Research Institute, is a GIS application used by the Naval Research Laboratory (NRL) and naval operational meteorological and oceanographic centers to analyse the environment in support of a range of Navy missions. For example, acoustic propagation in the ocean is described with a three-dimensional analysis of sound speed that depends on profiles of temperature, pressure and salinity predicted by the Navy Coastal Ocean Model. The data and model output must include geo-referencing information suitable for accurately placing the data within the ArcMAP framework. NRL has developed tools that facilitate merging these geophysical data and their analyses, including intercomparisons between model

  15. Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian

    Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.

  16. Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool

    NASA Technical Reports Server (NTRS)

    Stauber, Laurel J.; Naiman, Cynthia G.

    2002-01-01

    The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing

  17. Advanced numerical models and material characterisation techniques for composite materials subject to impact and shock wave loading

    NASA Astrophysics Data System (ADS)

    Clegg, R. A.; White, D. M.; Hayhurst, C.; Ridel, W.; Harwick, W.; Hiermaier, S.

    2003-09-01

    The development and validation of an advanced material model for orthotropic materials, such as fibre reinforced composites, is described. The model is specifically designed to facilitate the numerical simulation of impact and shock wave propagation through orthotropic materials and the prediction of subsequent material damage. Initial development of the model concentrated on correctly representing shock wave propagation in composite materials under high and hypervelocity impact conditions [1]. This work has now been extended to further concentrate on the development of improved numerical models and material characterisation techniques for the prediction of damage, including residual strength, in fibre reinforced composite materials. The work is focussed on Kevlar-epoxy however materials such as CFRP are also being considered. The paper describes our most recent activities in relation to the implementation of advanced material modelling options in this area. These enable refined non-liner directional characteristics of composite materials to be modelled, in addition to the correct thermodynamic response under shock wave loading. The numerical work is backed by an extensive experimental programme covering a wide range of static and dynamic tests to facilitate derivation of model input data and to validate the predicted material response. Finally, the capability of the developing composite material model is discussed in relation to a hypervelocity impact problem.

  18. Numerical evaluation of longitudinal motions of Wigley hulls advancing in waves by using Bessho form translating-pulsating source Green'S function

    NASA Astrophysics Data System (ADS)

    Xiao, Wenbin; Dong, Wencai

    2016-06-01

    In the framework of 3D potential flow theory, Bessho form translating-pulsating source Green's function in frequency domain is chosen as the integral kernel in this study and hybrid source-and-dipole distribution model of the boundary element method is applied to directly solve the velocity potential for advancing ship in regular waves. Numerical characteristics of the Green function show that the contribution of local-flow components to velocity potential is concentrated at the nearby source point area and the wave component dominates the magnitude of velocity potential in the far field. Two kinds of mathematical models, with or without local-flow components taken into account, are adopted to numerically calculate the longitudinal motions of Wigley hulls, which demonstrates the applicability of translating-pulsating source Green's function method for various ship forms. In addition, the mesh analysis of discrete surface is carried out from the perspective of ship-form characteristics. The study shows that the longitudinal motion results by the simplified model are somewhat greater than the experimental data in the resonant zone, and the model can be used as an effective tool to predict ship seakeeping properties. However, translating-pulsating source Green function method is only appropriate for the qualitative analysis of motion response in waves if the ship geometrical shape fails to satisfy the slender-body assumption.

  19. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  20. Quality Improvement Project: Replacing the Numeric Rating Scale with a Clinically Aligned Pain Assessment (CAPA) Tool.

    PubMed

    Topham, Debra; Drew, Debra

    2017-12-01

    CAPA is a multifaceted pain assessment tool that was adopted at a large tertiary Midwest hospital to replace the numeric scale for adult patients who could self-report their pain experience. This article describes the process of implementation and the effect on patient satisfaction scores. Use of the tool is supported by the premise that pain assessment entails more than just pain intensity and that assessment is an exchange of meaning between patients and clinicians dependent on internal and external factors. Implementation of the tool was a transformative process resulting in modest increases in patient satisfaction scores with pain management. Patient reports that "staff did everything to manage pain" had the biggest gains and were sustained for more than 2 years. The CAPA tool meets regulatory requirements for pain assessment. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  1. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    DOE PAGES

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less

  2. Advancement of Tools Supporting Improvement of Work Safety in Selected Industrial Company

    NASA Astrophysics Data System (ADS)

    Gembalska-Kwiecień, Anna

    2018-03-01

    In the presented article, the advancement of tools to improve the safety of work in the researched industrial company was taken into consideration. Attention was paid to the skillful analysis of the working environment, which includes the available technologies, work organization and human capital. These factors determine the development of the best prevention activities to minimize the number of accidents.

  3. Numerical study on wave loads and motions of two ships advancing in waves by using three-dimensional translating-pulsating source

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Dong, Wen-Cai

    2013-08-01

    A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to measure the wave loads and the freemotions for a pair of side-byside arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numerical resonances and peak shift can be found in the 3DP predictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free surface and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two vessels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.

  4. Measuring political commitment and opportunities to advance food and nutrition security: piloting a rapid assessment tool.

    PubMed

    Fox, Ashley M; Balarajan, Yarlini; Cheng, Chloe; Reich, Michael R

    2015-06-01

    Lack of political commitment has been identified as a primary reason for the low priority that food and nutrition interventions receive from national governments relative to the high disease burden caused by malnutrition. Researchers have identified a number of factors that contribute to food and nutrition's 'low-priority cycle' on national policy agendas, but few tools exist to rapidly measure political commitment and identify opportunities to advance food and nutrition on the policy agenda. This article presents a theory-based rapid assessment approach to gauging countries' level of political commitment to food and nutrition security and identifying opportunities to advance food and nutrition on the policy agenda. The rapid assessment tool was piloted among food and nutrition policymakers and planners in 10 low- and middle-income countries in April to June 2013. Food and nutrition commitment and policy opportunity scores were calculated for each country and strategies to advance food and nutrition on policy agendas were designed for each country. The article finds that, in a majority of countries, political leaders had verbally and symbolically committed to addressing food and nutrition, but adequate financial resources were not allocated to implement specific programmes. In addition, whereas the low cohesion of the policy community has been viewed a major underlying cause of the low-priority status of food and nutrition, the analysis finds that policy community cohesion and having a well thought-out policy alternative were present in most countries. This tool may be useful to policymakers and planners providing information that can be used to benchmark and/or evaluate advocacy efforts to advance reforms in the food and nutrition sector; furthermore, the results can help identify specific strategies that can be employed to move the food and nutrition agenda forward. This tool complements others that have been recently developed to measure national commitment to

  5. SmartWay Truck Tool-Advanced Class: Getting the Most out of Your SmartWay Participation

    EPA Pesticide Factsheets

    This EPA presentation provides information on the Advanced SmartWay Truck Tool; it's background, development, participation, data collection, usage, fleet categories, emission metrics, ranking system, performance data, reports, and schedule for 2017.

  6. Advances in numerical and applied mathematics

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)

    1986-01-01

    This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.

  7. Proposal for constructing an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Sims, Michael H.; Podolak, Esther; Mckay, Christopher P.; Thompson, David E.

    1990-01-01

    Scientific model building can be a time intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing and using models. The proposed tool will include an interactive intelligent graphical interface and a high level, domain specific, modeling language. As a testbed for this research, we propose development of a software prototype in the domain of planetary atmospheric modeling.

  8. Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...

  9. Identifying opportunities to advance practice at a large academic medical center using the ASHP Ambulatory Care Self-Assessment Tool.

    PubMed

    Martirosov, Amber Lanae; Michael, Angela; McCarty, Melissa; Bacon, Opal; DiLodovico, John R; Jantz, Arin; Kostoff, Diana; MacDonald, Nancy C; Mikulandric, Nancy; Neme, Klodiana; Sulejmani, Nimisha; Summers, Bryant B

    2018-05-29

    The use of the ASHP Ambulatory Care Self-Assessment Tool to advance pharmacy practice at 8 ambulatory care clinics of a large academic medical center is described. The ASHP Ambulatory Care Self-Assessment Tool was developed to help ambulatory care pharmacists assess how their current practices align with the ASHP Practice Advancement Initiative. The Henry Ford Hospital Ambulatory Care Advisory Group (ACAG) opted to use the "Practitioner Track" sections of the tool to assess pharmacy practices within each of 8 ambulatory care clinics individually. The responses to self-assessment items were then compiled and discussed by ACAG members. The group identified best practices and ways to implement action items to advance ambulatory care practice throughout the institution. Three recommended action items were common to most clinics: (1) identify and evaluate solutions to deliver financially viable services, (2) develop technology to improve patient care, and (3) optimize the role of pharmacy technicians and support personnel. The ACAG leadership met with pharmacy administrators to discuss how action items that were both feasible and deemed likely to have a medium-to-high impact aligned with departmental goals and used this information to develop an ambulatory care strategic plan. This process informed and enabled initiatives to advance ambulatory care pharmacy practice within the system. The ASHP Ambulatory Care Self-Assessment Tool was useful in identifying opportunities for practice advancement in a large academic medical center. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  10. Development of the Music Therapy Assessment Tool for Advanced Huntington's Disease: A Pilot Validation Study.

    PubMed

    O'Kelly, Julian; Bodak, Rebeka

    2016-01-01

    Case studies of people with Huntington's disease (HD) report that music therapy provides a range of benefits that may improve quality of life; however, no robust music therapy assessment tools exist for this population. Develop and conduct preliminary psychometric testing of a music therapy assessment tool for patients with advanced HD. First, we established content and face validity of the Music Therapy Assessment Tool for Advanced HD (MATA-HD) through focus groups and field testing. Second, we examined psychometric properties of the resulting MATA-HD in terms of its construct validity, internal consistency, and inter-rater and intra-rater reliability over 10 group music therapy sessions with 19 patients. The resulting MATA-HD included a total of 15 items across six subscales (Arousal/Attention, Physical Presentation, Communication, Musical, Cognition, and Psychological/Behavioral). We found good construct validity (r ≥ 0.7) for Mood, Communication Level, Communication Effectiveness, Choice, Social Behavior, Arousal, and Attention items. Cronbach's α of 0.825 indicated good internal consistency across 11 items with a common focus of engagement in therapy. The inter-rater reliability (IRR) Intra-Class Coefficient (ICC) scores averaged 0.65, and a mean intra-rater ICC reliability of 0.68 was obtained. Further training and retesting provided a mean of IRR ICC of 0.7. Preliminary data indicate that the MATA-HD is a promising tool for measuring patient responses to music therapy interventions across psychological, physical, social, and communication domains of functioning in patients with advanced HD. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Using Numerical Models in the Development of Software Tools for Risk Management of Accidents with Oil and Inert Spills

    NASA Astrophysics Data System (ADS)

    Fernandes, R.; Leitão, P. C.; Braunschweig, F.; Lourenço, F.; Galvão, P.; Neves, R.

    2012-04-01

    substances, helping in the management of the crisis, in the distribution of response resources, or prioritizing specific areas. They can also be used for detection of pollution sources. However, the resources involved, and the scientific and technological levels needed in the manipulation of numerical models, had both limited the interoperability between operational models, monitoring tools and decision-support software tools. The increasing predictive capacity of metocean conditions and fate and behaviour of pollutants spilt at sea or costal zones, and the presence of monitoring tools like vessel traffic control systems, can both provide a safer support for decision-making in emergency or planning issues associated to pollution risk management, especially if used in an integrated way. Following this approach, and taking advantage of an integrated framework developed in ARCOPOL (www.arcopol.eu) and EASYCO (www.project-easy.info) projects, three innovative model-supported software tools were developed and applied in the Atlantic Area, and / or the Portuguese Coast. Two of these tools are used for spill model simulations - a web-based interface (EASYCO web bidirectional tool) and an advanced desktop application (MOHID Desktop Spill Simulator) - both of them allowing end user to have control over the model simulations. Parameters such as date and time of the event, location and oil spill volume are provided the users; these interactive tools also integrate best available metocean forecasts (waves, meteorological, hydrodynamics) from different institutions in the Atlantic Area. Metocean data are continuously gathered from remote THREDDS data servers (using OPENDAP) or ftp sites, and then automatically interpolated and pre-processed to be available for the simulators. These simulation tools developed can also import initial data and export results from/to remote servers, using OGC WFS services. Simulations are provided to end user in a matter of seconds, and thus, can be very

  12. Recent advances in two-phase flow numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahaffy, J.H.; Macian, R.

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  13. Two decades of numerical modelling to understand long term fluvial archives: Advances and future perspectives

    NASA Astrophysics Data System (ADS)

    Veldkamp, A.; Baartman, J. E. M.; Coulthard, T. J.; Maddy, D.; Schoorl, J. M.; Storms, J. E. A.; Temme, A. J. A. M.; van Balen, R.; van De Wiel, M. J.; van Gorp, W.; Viveen, W.; Westaway, R.; Whittaker, A. C.

    2017-06-01

    The development and application of numerical models to investigate fluvial sedimentary archives has increased during the last decades resulting in a sustained growth in the number of scientific publications with keywords, 'fluvial models', 'fluvial process models' and 'fluvial numerical models'. In this context we compile and review the current contributions of numerical modelling to the understanding of fluvial archives. In particular, recent advances, current limitations, previous unexpected results and future perspectives are all discussed. Numerical modelling efforts have demonstrated that fluvial systems can display non-linear behaviour with often unexpected dynamics causing significant delay, amplification, attenuation or blurring of externally controlled signals in their simulated record. Numerical simulations have also demonstrated that fluvial records can be generated by intrinsic dynamics without any change in external controls. Many other model applications demonstrate that fluvial archives, specifically of large fluvial systems, can be convincingly simulated as a function of the interplay of (palaeo) landscape properties and extrinsic climate, base level and crustal controls. All discussed models can, after some calibration, produce believable matches with real world systems suggesting that equifinality - where a given end state can be reached through many different pathways starting from different initial conditions and physical assumptions - plays an important role in fluvial records and their modelling. The overall future challenge lies in the development of new methodologies for a more independent validation of system dynamics and research strategies that allow the separation of intrinsic and extrinsic record signals using combined fieldwork and modelling.

  14. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  15. Numerical Analysis Objects

    NASA Astrophysics Data System (ADS)

    Henderson, Michael

    1997-08-01

    The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.

  16. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  17. Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.

  18. Numerical Model of Flame Spread Over Solids in Microgravity: A Supplementary Tool for Designing a Space Experiment

    NASA Technical Reports Server (NTRS)

    Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.

  19. AN EIGHT WEEK SEMINAR IN AN INTRODUCTION TO NUMERICAL CONTROL ON TWO- AND THREE-AXIS MACHINE TOOLS FOR VOCATIONAL AND TECHNICAL MACHINE TOOL INSTRUCTORS. FINAL REPORT.

    ERIC Educational Resources Information Center

    BOLDT, MILTON; POKORNY, HARRY

    THIRTY-THREE MACHINE SHOP INSTRUCTORS FROM 17 STATES PARTICIPATED IN AN 8-WEEK SEMINAR TO DEVELOP THE SKILLS AND KNOWLEDGE ESSENTIAL FOR TEACHING THE OPERATION OF NUMERICALLY CONTROLLED MACHINE TOOLS. THE SEMINAR WAS GIVEN FROM JUNE 20 TO AUGUST 12, 1966, WITH COLLEGE CREDIT AVAILABLE THROUGH STOUT STATE UNIVERSITY. THE PARTICIPANTS COMPLETED AN…

  20. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools.

    PubMed

    Siddiqui, Michael S; Thodey, Kate; Trenchard, Isis; Smolke, Christina D

    2012-03-01

    Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Tool for Sizing Analysis of the Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.

    2005-01-01

    Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.

  2. Numerical Correlation of Levator Advancement in Preoperative Planning.

    PubMed

    Makeeva, Valeria; Collawn, Sherry S; Pierce, Evelina N; Mousa, Mina S; Yang, Jennifer H; Davison, Peter N; Jospitre, Elodie C

    2017-06-01

    Several procedures have been proposed for the treatment of eyelid ptosis, and both levator advancement and levator plication are widely used to shorten the levator palpebrae superioris. The purpose of this study was to quantify perioperative lid measurements in patients undergoing bilateral levator aponeurosis advancements to aid in preoperative planning. Between July 2014 and June 2016, the authors performed a retrospective analysis of all bilateral upper eyelid levator advancement procedures for ptosis performed by the senior surgeon. There are a total of 21 patients (6 men and 15 women) with a mean age of 63 years (range, 48-79 years). The average time at follow-up was 5.3 months, with a range of 1 to 26 months. In this retrospective study, we collected data on presurgical measurements including marginal reflex distance 1 (MRD1), surgical technique used (symmetrical/asymmetrical levator advancement) with millimeters of advancement used, and postsurgical measurements. We found that on average, an advancement of 4 mm led to an improvement in MRD1 of 2.26 mm (n = 14), and advancement of 5 mm led to an improvement in MRD1 of 2.74 mm (n = 15). Patients also reported improvements in their quality of life. Our results may be used to guide clinicians in preoperative planning.

  3. Advanced Infusion Techniques with 3-D Printed Tooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuttall, David; Elliott, Amy; Post, Brian K.

    The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanningmore » and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products

  4. The academic tweet: Twitter as a tool to advance academic surgery.

    PubMed

    Logghe, Heather J; Selby, Luke V; Boeck, Marissa A; Stamp, Nikki L; Chuen, Jason; Jones, Christian

    2018-06-01

    Social media, Twitter in particular, has emerged as an essential tool for surgeons. In the realm of academic surgery, it enables surgeons to advance the core values of academic surgery, as outlined by the Association for Academic Surgery: inclusion, leadership, innovation, scholarship, and mentorship. This article details the ways in which surgeons are using Twitter to embody these values and how the Twitter account for the Association of Academic Surgeons accomplishes its goal of inspiring and developing young academic surgeons. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Numerical study of electromagnetic waves generated by a prototype dielectric logging tool

    USGS Publications Warehouse

    Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.

    2004-01-01

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.

  6. Advanced Numerical Model for Irradiated Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giorla, Alain B.

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be appliedmore » to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If

  7. Genome editing in plants: Advancing crop transformation and overview of tools.

    PubMed

    Shah, Tariq; Andleeb, Tayyaba; Lateef, Sadia; Noor, Mehmood Ali

    2018-05-07

    Genome manipulation technology is one of emerging field which brings real revolution in genetic engineering and biotechnology. Targeted editing of genomes pave path to address a wide range of goals not only to improve quality and productivity of crops but also permit to investigate the fundamental roots of biological systems. These goals includes creation of plants with valued compositional properties and with characters that confer resistance to numerous biotic and abiotic stresses. Numerous novel genome editing systems have been introduced during the past few years; these comprise zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing technique is consistent for improving average yield to achieve the growing demands of the world's existing food famine and to launch a feasible and environmentally safe agriculture scheme, to more specific, productive, cost-effective and eco-friendly. These exciting novel methods, concisely reviewed herein, have verified themselves as efficient and reliable tools for the genetic improvement of plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Sandia Advanced MEMS Design Tools v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarberry, Victor R.; Allen, James J.; Lantz, Jeffrey W.

    This is a major revision to the Sandia Advanced MEMS Design Tools. It replaces all previous versions. New features in this version: Revised to support AutoCAD 2014 and 2015 This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standard Parts Library) d) Facilitate the process of having MEMS fabricated at Sandia National Laboratories e) Facilitate the process of having post-fabrication services performed. While there exists somemore » files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  9. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  10. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    PubMed

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Advanced applications of numerical modelling techniques for clay extruder design

    NASA Astrophysics Data System (ADS)

    Kandasamy, Saravanakumar

    Ceramic materials play a vital role in our day to day life. Recent advances in research, manufacture and processing techniques and production methodologies have broadened the scope of ceramic products such as bricks, pipes and tiles, especially in the construction industry. These are mainly manufactured using an extrusion process in auger extruders. During their long history of application in the ceramic industry, most of the design developments of extruder systems have resulted from expensive laboratory-based experimental work and field-based trial and error runs. In spite of these design developments, the auger extruders continue to be energy intensive devices with high operating costs. Limited understanding of the physical process involved in the process and the cost and time requirements of lab-based experiments were found to be the major obstacles in the further development of auger extruders.An attempt has been made herein to use Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) based numerical modelling techniques to reduce the costs and time associated with research into design improvement by experimental trials. These two techniques, although used widely in other engineering applications, have rarely been applied for auger extruder development. This had been due to a number of reasons including technical limitations of CFD tools previously available. Modern CFD and FEA software packages have much enhanced capabilities and allow the modelling of the flow of complex fluids such as clay.This research work presents a methodology in using Herschel-Bulkley's fluid flow based CFD model to simulate and assess the flow of clay-water mixture through the extruder and the die of a vacuum de-airing type clay extrusion unit used in ceramic extrusion. The extruder design and the operating parameters were varied to study their influence on the power consumption and the extrusion pressure. The model results were then validated using results from

  12. Advanced Welding Tool

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Accutron Tool & Instrument Co.'s welder was originally developed as a tool specifically for joining parts made of plastic or composite materials in any atmosphere to include the airless environment of space. Developers decided on induction or magnetic heating to avoid causing deformation and it also can be used with almost any type of thermoplastic material. Induction coil transfers magnetic flux through the plastic to a metal screen that is sandwiched between the sheets of plastic to be joined. When welder is energized, alternating current produces inductive heating on the screen causing the adjacent plastic surfaces to melt and flow into the mesh, creating a bond on the total surface area. Dave Brown, owner of Great Falls Canoe and Kayak Repair, Vienna, VA, uses a special repair technique based on operation of the Induction Toroid Welder to fix canoes. Whitewater canoeing poses the problem of frequent gashes that are difficult to repair. The main reason is that many canoes are made of plastics. The commercial Induction model is a self-contained, portable welding gun with a switch on the handle to regulate the temperature of the plastic melting screen. Welder has a broad range of applications in the automobile, appliance, aerospace and construction industries.

  13. The Numerical Propulsion System Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2000-01-01

    Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  14. Numerical Analyses for Low Reynolds Flow in a Ventricular Assist Device.

    PubMed

    Lopes, Guilherme; Bock, Eduardo; Gómez, Luben

    2017-06-01

    Scientific and technological advances in blood pump developments have been driven by their importance in cardiac patient treatments and in the expansion of life quality in assisted people. To improve and optimize the design and development, numerical tools were incorporated into the analyses of these mechanisms and have become indispensable in their advances. This study analyzes the flow behavior with low impeller Reynolds number, for which there is no consensus on the full development of turbulence in ventricular assist devices (VAD). For supporting analyses, computational numerical simulations were carried out in different scenarios with the same rotation speed. Two modeling approaches were applied: laminar flow and turbulent flow with the standard, RNG and realizable κ - ε; the standard and SST κ - ω models; and Spalart-Allmaras models. The results agree with the literature for VAD and the range for transient flows in stirred tanks with an impeller Reynolds number around 2800 for the tested scenarios. The turbulent models were compared, and it is suggested, based on the expected physical behavior, the use of κ-ε RNG, standard and SST κ-ω, and Spalart-Allmaras models to numerical analyses for low impeller Reynolds numbers according to the tested flow scenarios. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Development of Experimental and Computational Aeroacoustic Tools for Advanced Liner Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Nark, Douglas N.; Parrott, Tony L.; Gerhold, Carl H.; Brown, Martha C.

    2006-01-01

    Acoustic liners in aircraft engine nacelles suppress radiated noise. Therefore, as air travel increases, increasingly sophisticated tools are needed to maximize noise suppression. During the last 30 years, NASA has invested significant effort in development of experimental and computational acoustic liner evaluation tools. The Curved Duct Test Rig is a 152-mm by 381- mm curved duct that supports liner evaluation at Mach numbers up to 0.3 and source SPLs up to 140 dB, in the presence of user-selected modes. The Grazing Flow Impedance Tube is a 51- mm by 63-mm duct currently being fabricated to operate at Mach numbers up to 0.6 with source SPLs up to at least 140 dB, and will replace the existing 51-mm by 51-mm duct. Together, these test rigs allow evaluation of advanced acoustic liners over a range of conditions representative of those observed in aircraft engine nacelles. Data acquired with these test ducts are processed using three aeroacoustic propagation codes. Two are based on finite element solutions to convected Helmholtz and linearized Euler equations. The third is based on a parabolic approximation to the convected Helmholtz equation. The current status of these computational tools and their associated usage with the Langley test rigs is provided.

  16. Cell chips as new tools for cell biology--results, perspectives and opportunities.

    PubMed

    Primiceri, Elisabetta; Chiriacò, Maria Serena; Rinaldi, Ross; Maruccio, Giuseppe

    2013-10-07

    Cell culture technologies were initially developed as research tools for studying cell functions, but nowadays they are essential for the biotechnology industry, with rapidly expanding applications requiring more and more advancements with respect to traditional tools. Miniaturization and integration of sensors and microfluidic components with cell culture techniques open the way to the development of cellomics as a new field of research targeting innovative analytic platforms for high-throughput studies. This approach enables advanced cell studies under controllable conditions by providing inexpensive, easy-to-operate devices. Thanks to their numerous advantages cell-chips have become a hotspot in biosensors and bioelectronics fields and have been applied to very different fields. In this review exemplary applications will be discussed, for cell counting and detection, cytotoxicity assays, migration assays and stem cell studies.

  17. GenSAA: A tool for advancing satellite monitoring with graphical expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Luczak, Edward C.

    1993-01-01

    During numerous contacts with a satellite each day, spacecraft analysts must closely monitor real time data for combinations of telemetry parameter values, trends, and other indications that may signify a problem or failure. As satellites become more complex and the number of data items increases, this task is becoming increasingly difficult for humans to perform at acceptable performance levels. At the NASA Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these initial efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analyst Assistant (GenSAA) is being developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. Although initially domain-specific in nature, this powerful tool will support the development of highly graphical expert systems for data monitoring purposes throughout the space and commercial industry.

  18. Sandia Advanced MEMS Design Tools, Version 2.2.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarberry, Victor; Allen, James; Lantz, Jeffery

    2010-01-19

    The Sandia National Laboratories Advanced MEMS Design Tools, Version 2.2.5, is a collection of menus, prototype drawings, and executables that provide significant productivity enhancements when using AutoCAD to design MEMS components. This release is designed for AutoCAD 2000i, 2002, or 2004 and is supported under Windows NT 4.0, Windows 2000, or XP. SUMMiT V (Sandia Ultra planar Multi level MEMS Technology) is a 5 level surface micromachine fabrication technology, which customers internal and external to Sandia can access to fabricate prototype MEMS devices. This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication processmore » b) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standard Parts Library) New features in this version: AutoCAD 2004 support has been added. SafeExplode ? a new feature that explodes blocks without affecting polylines (avoids exploding polylines into objects that are ignored by the DRC and Visualization tools). Layer control menu ? a pull-down menu for selecting layers to isolate, freeze, or thaw. Updated tools: A check has been added to catch invalid block names. DRC features: Added username/password validation, added a method to update the user?s password. SNL_DRC_WIDTH ? a value to control the width of the DRC error lines. SNL_BIAS_VALUE ? a value use to offset selected geometry SNL_PROCESS_NAME ? a value to specify the process name Documentation changes: The documentation has been updated to include the new features. While there exist some files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  19. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography

    NASA Astrophysics Data System (ADS)

    Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed

    2018-04-01

    With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.

  20. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology.

    PubMed

    Rashid, Mamoon; Stingl, Ulrich

    2015-12-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.

    2015-05-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactormore » innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less

  2. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2003-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them. Supplementary material is available for this article at 10.12942/lrr-2003-4.

  3. Tempest: Tools for Addressing the Needs of Next-Generation Climate Models

    NASA Astrophysics Data System (ADS)

    Ullrich, P. A.; Guerra, J. E.; Pinheiro, M. C.; Fong, J.

    2015-12-01

    Tempest is a comprehensive simulation-to-science infrastructure that tackles the needs of next-generation, high-resolution, data intensive climate modeling activities. This project incorporates three key components: TempestDynamics, a global modeling framework for experimental numerical methods and high-performance computing; TempestRemap, a toolset for arbitrary-order conservative and consistent remapping between unstructured grids; and TempestExtremes, a suite of detection and characterization tools for identifying weather extremes in large climate datasets. In this presentation, the latest advances with the implementation of this framework will be discussed, and a number of projects now utilizing these tools will be featured.

  4. Tool setting device

    DOEpatents

    Brown, Raymond J.

    1977-01-01

    The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.

  5. Redox Switchable Coordination Catalysis: An Advanced Tool for Catalyst Control and Tailored Polyolefin Synthesis

    DTIC Science & Technology

    2017-06-18

    olefins at a much slower rate than its non -reduced analogue which can be harnessed to control polyolefin comonomer incorporation percentages and thus its...opportunities for mechanistic understanding, catalyst control , and polyolefin synthesis that are impossible using heterogeneous 1. REPORT DATE (DD-MM...Advanced Tool for Catalyst Control and Tailored Polyolefin Synthesis The views, opinions and/or findings contained in this report are those of the

  6. Numerical Weather Prediction Models on Linux Boxes as tools in meteorological education in Hungary

    NASA Astrophysics Data System (ADS)

    Gyongyosi, A. Z.; Andre, K.; Salavec, P.; Horanyi, A.; Szepszo, G.; Mille, M.; Tasnadi, P.; Weidiger, T.

    2012-04-01

    . Numerical modeling became a common tool in the daily practice of weather experts forecasters due to the i) increasing user demands for weather data by the costumers, ii) the growth in computer resources, iii) numerical weather prediction systems available for integration on affordable, off the shelf computers and iv) available input data (from ECMWF or NCEP) for model integrations. Beside learning the theoretical basis, since the last year. Students in their MSc or BSc Thesis Research or in Student's Research ProjectsStudent's Research Projects h have the opportunity to run numerical models and to analyze the outputs for different purposes including wind energy estimation, simulation of the dynamics of a polar low, and subtropical cyclones, analysis of the isentropic potential vorticity field, examination of coupled atmospheric dispersion models, etc. A special course in the application of numerical modeling has been held (is being announced for the upcoming semester) (is being announced for the upcoming semester) for our students in order to improve their skills on this field. Several numerical model (NRIPR ETA and WRF) systems have been adapted in the University and integrated WRF have been tested and used for the geographical region of the Carpathian Basin (NRIPR, ETA and WRF). Recently ALADIN/CHAPEAU the academic version of the ARPEGE ALADIN cy33t1 meso-scale numerical weather prediction model system (which is the operational forecasting tool of our National Weather Service) has been installed at our Institute. ALADIN is the operational forecasting model of the Hungarian Meteorological Service and developed in the framework of the international ALADIN co-operation. Our main objectives are i) the analysis of different typical weather situations, ii) fine tuning of parameterization schemes and the iii) comparison of the ALADIN/CHAPEAU and WRF model outputs based on case studies. The necessary hardware and software innovations has have been done. In the presentation the

  7. Advances in In Vitro and In Silico Tools for Toxicokinetic Dose Modeling and Predictive Toxicology (WC10)

    EPA Science Inventory

    Recent advances in vitro assays, in silico tools, and systems biology approaches provide opportunities for refined mechanistic understanding for chemical safety assessment that will ultimately lead to reduced reliance on animal-based methods. With the U.S. commercial chemical lan...

  8. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  9. In Silico PCR Tools for a Fast Primer, Probe, and Advanced Searching.

    PubMed

    Kalendar, Ruslan; Muterko, Alexandr; Shamekova, Malika; Zhambakin, Kabyl

    2017-01-01

    The polymerase chain reaction (PCR) is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. The principle of this technique has been further used and applied in plenty of other simple or complex nucleic acid amplification technologies (NAAT). In parallel to laboratory "wet bench" experiments for nucleic acid amplification technologies, in silico or virtual (bioinformatics) approaches have been developed, among which in silico PCR analysis. In silico NAAT analysis is a useful and efficient complementary method to ensure the specificity of primers or probes for an extensive range of PCR applications from homology gene discovery, molecular diagnosis, DNA fingerprinting, and repeat searching. Predicting sensitivity and specificity of primers and probes requires a search to determine whether they match a database with an optimal number of mismatches, similarity, and stability. In the development of in silico bioinformatics tools for nucleic acid amplification technologies, the prospects for the development of new NAAT or similar approaches should be taken into account, including forward-looking and comprehensive analysis that is not limited to only one PCR technique variant. The software FastPCR and the online Java web tool are integrated tools for in silico PCR of linear and circular DNA, multiple primer or probe searches in large or small databases and for advanced search. These tools are suitable for processing of batch files that are essential for automation when working with large amounts of data. The FastPCR software is available for download at http://primerdigital.com/fastpcr.html and the online Java version at http://primerdigital.com/tools/pcr.html .

  10. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  11. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE PAGES

    Hu, Rui

    2016-11-19

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  12. Economic Consequence Analysis of Disasters: The ECAT Software Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Adam; Prager, Fynn; Chen, Zhenhua

    This study develops a methodology for rapidly obtaining approximate estimates of the economic consequences from numerous natural, man-made and technological threats. This software tool is intended for use by various decision makers and analysts to obtain estimates rapidly. It is programmed in Excel and Visual Basic for Applications (VBA) to facilitate its use. This tool is called E-CAT (Economic Consequence Analysis Tool) and accounts for the cumulative direct and indirect impacts (including resilience and behavioral factors that significantly affect base estimates) on the U.S. economy. E-CAT is intended to be a major step toward advancing the current state of economicmore » consequence analysis (ECA) and also contributing to and developing interest in further research into complex but rapid turnaround approaches. The essence of the methodology involves running numerous simulations in a computable general equilibrium (CGE) model for each threat, yielding synthetic data for the estimation of a single regression equation based on the identification of key explanatory variables (threat characteristics and background conditions). This transforms the results of a complex model, which is beyond the reach of most users, into a "reduced form" model that is readily comprehensible. Functionality has been built into E-CAT so that its users can switch various consequence categories on and off in order to create customized profiles of economic consequences of numerous risk events. E-CAT incorporates uncertainty on both the input and output side in the course of the analysis.« less

  13. Development of Advanced Tools for Cryogenic Integration

    NASA Astrophysics Data System (ADS)

    Bugby, D. C.; Marland, B. C.; Stouffer, C. J.; Kroliczek, E. J.

    2004-06-01

    This paper describes four advanced devices (or tools) that were developed to help solve problems in cryogenic integration. The four devices are: (1) an across-gimbal nitrogen cryogenic loop heat pipe (CLHP); (2) a miniaturized neon CLHP; (3) a differential thermal expansion (DTE) cryogenic thermal switch (CTSW); and (4) a dual-volume nitrogen cryogenic thermal storage unit (CTSU). The across-gimbal CLHP provides a low torque, high conductance solution for gimbaled cryogenic systems wishing to position their cryocoolers off-gimbal. The miniaturized CLHP combines thermal transport, flexibility, and thermal switching (at 35 K) into one device that can be directly mounted to both the cooler cold head and the cooled component. The DTE-CTSW, designed and successfully tested in a previous program using a stainless steel tube and beryllium (Be) end-pieces, was redesigned with a polymer rod and high-purity aluminum (Al) end-pieces to improve performance and manufacturability while still providing a miniaturized design. Lastly, the CTSU was designed with a 6063 Al heat exchanger and integrally welded, segmented, high purity Al thermal straps for direct attachment to both a cooler cold head and a Be component whose peak heat load exceeds its average load by 2.5 times. For each device, the paper will describe its development objective, operating principles, heritage, requirements, design, test data and lessons learned.

  14. The role of numerical simulation for the development of an advanced HIFU system

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Narumi, Ryuta; Azuma, Takashi; Takagi, Shu; Matumoto, Yoichiro

    2014-10-01

    High-intensity focused ultrasound (HIFU) has been used clinically and is under clinical trials to treat various diseases. An advanced HIFU system employs ultrasound techniques for guidance during HIFU treatment instead of magnetic resonance imaging in current HIFU systems. A HIFU beam imaging for monitoring the HIFU beam and a localized motion imaging for treatment validation of tissue are introduced briefly as the real-time ultrasound monitoring techniques. Numerical simulations have a great impact on the development of real-time ultrasound monitoring as well as the improvement of the safety and efficacy of treatment in advanced HIFU systems. A HIFU simulator was developed to reproduce ultrasound propagation through the body in consideration of the elasticity of tissue, and was validated by comparison with in vitro experiments in which the ultrasound emitted from the phased-array transducer propagates through the acrylic plate acting as a bone phantom. As the result, the defocus and distortion of the ultrasound propagating through the acrylic plate in the simulation quantitatively agree with that in the experimental results. Therefore, the HIFU simulator accurately reproduces the ultrasound propagation through the medium whose shape and physical properties are well known. In addition, it is experimentally confirmed that simulation-assisted focus control of the phased-array transducer enables efficient assignment of the focus to the target. Simulation-assisted focus control can contribute to design of transducers and treatment planning.

  15. Advanced numerical methods for three dimensional two-phase flow calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less

  16. SU-E-T-398: Feasibility of Automated Tools for Robustness Evaluation of Advanced Photon and Proton Techniques in Oropharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liang, X; Kalbasi, A

    2014-06-01

    Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician

  17. Randomized, Controlled Trial of an Advance Care Planning Video Decision Support Tool for Patients With Advanced Heart Failure.

    PubMed

    El-Jawahri, Areej; Paasche-Orlow, Michael K; Matlock, Dan; Stevenson, Lynne Warner; Lewis, Eldrin F; Stewart, Garrick; Semigran, Marc; Chang, Yuchiao; Parks, Kimberly; Walker-Corkery, Elizabeth S; Temel, Jennifer S; Bohossian, Hacho; Ooi, Henry; Mann, Eileen; Volandes, Angelo E

    2016-07-05

    Conversations about goals of care and cardiopulmonary resuscitation (CPR)/intubation for patients with advanced heart failure can be difficult. This study examined the impact of a video decision support tool and patient checklist on advance care planning for patients with heart failure. This was a multisite, randomized, controlled trial of a video-assisted intervention and advance care planning checklist versus a verbal description in 246 patients ≥64 years of age with heart failure and an estimated likelihood of death of >50% within 2 years. Intervention participants received a verbal description for goals of care (life-prolonging care, limited care, and comfort care) and CPR/intubation plus a 6-minute video depicting the 3 levels of care, CPR/intubation, and an advance care planning checklist. Control subjects received only the verbal description. The primary analysis compared the proportion of patients preferring comfort care between study arms immediately after the intervention. Secondary outcomes were CPR/intubation preferences and knowledge (6-item test; range, 0-6) after intervention. In the intervention group, 27 (22%) chose life-prolonging care, 31 (25%) chose limited care, 63 (51%) selected comfort care, and 2 (2%) were uncertain. In the control group, 50 (41%) chose life-prolonging care, 27 (22%) selected limited care, 37 (30%) chose comfort care, and 8 (7%) were uncertain (P<0.001). Intervention participants (compared with control subjects) were more likely to forgo CPR (68% versus 35%; P<0.001) and intubation (77% versus 48%; P<0.001) and had higher mean knowledge scores (4.1 versus 3.0; P<0.001). Patients with heart failure who viewed a video were more informed, more likely to select a focus on comfort, and less likely to desire CPR/intubation compared with patients receiving verbal information only. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01589120. © 2016 American Heart Association, Inc.

  18. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications.

    PubMed

    Hyeon, Jeong Eun; Jeon, Sang Duck; Han, Sung Ok

    2013-11-01

    The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Common Analysis Tool Being Developed for Aeropropulsion: The National Cycle Program Within the Numerical Propulsion System Simulation Environment

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Naiman, Cynthia G.

    1999-01-01

    The NASA Lewis Research Center is developing an environment for analyzing and designing aircraft engines-the Numerical Propulsion System Simulation (NPSS). NPSS will integrate multiple disciplines, such as aerodynamics, structure, and heat transfer, and will make use of numerical "zooming" on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS uses the latest computing and communication technologies to capture complex physical processes in a timely, cost-effective manner. The vision of NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Through the NASA/Industry Cooperative Effort agreement, NASA Lewis and industry partners are developing a new engine simulation called the National Cycle Program (NCP). NCP, which is the first step toward NPSS and is its initial framework, supports the aerothermodynamic system simulation process for the full life cycle of an engine. U.S. aircraft and airframe companies recognize NCP as the future industry standard common analysis tool for aeropropulsion system modeling. The estimated potential payoff for NCP is a $50 million/yr savings to industry through improved engineering productivity.

  20. Interpolator for numerically controlled machine tools

    DOEpatents

    Bowers, Gary L.; Davenport, Clyde M.; Stephens, Albert E.

    1976-01-01

    A digital differential analyzer circuit is provided that depending on the embodiment chosen can carry out linear, parabolic, circular or cubic interpolation. In the embodiment for parabolic interpolations, the circuit provides pulse trains for the X and Y slide motors of a two-axis machine to effect tool motion along a parabolic path. The pulse trains are generated by the circuit in such a way that parabolic tool motion is obtained from information contained in only one block of binary input data. A part contour may be approximated by one or more parabolic arcs. Acceleration and initial velocity values from a data block are set in fixed bit size registers for each axis separately but simultaneously and the values are integrated to obtain the movement along the respective axis as a function of time. Integration is performed by continual addition at a specified rate of an integrand value stored in one register to the remainder temporarily stored in another identical size register. Overflows from the addition process are indicative of the integral. The overflow output pulses from the second integration may be applied to motors which position the respective machine slides according to a parabolic motion in time to produce a parabolic machine tool motion in space. An additional register for each axis is provided in the circuit to allow "floating" of the radix points of the integrand registers and the velocity increment to improve position accuracy and to reduce errors encountered when the acceleration integrand magnitudes are small when compared to the velocity integrands. A divider circuit is provided in the output of the circuit to smooth the output pulse spacing and prevent motor stall, because the overflow pulses produced in the binary addition process are spaced unevenly in time. The divider has the effect of passing only every nth motor drive pulse, with n being specifiable. The circuit inputs (integrands, rates, etc.) are scaled to give exactly n times the

  1. The Beck Depression Inventory (BDI-II) and a single screening question as screening tools for depressive disorder in Dutch advanced cancer patients.

    PubMed

    Warmenhoven, Franca; van Rijswijk, Eric; Engels, Yvonne; Kan, Cornelis; Prins, Judith; van Weel, Chris; Vissers, Kris

    2012-02-01

    Depression is highly prevalent in advanced cancer patients, but the diagnosis of depressive disorder in patients with advanced cancer is difficult. Screening instruments could facilitate diagnosing depressive disorder in patients with advanced cancer. The aim of this study was to determine the validity of the Beck Depression Inventory (BDI-II) and a single screening question as screening tools for depressive disorder in advanced cancer patients. Patients with advanced metastatic disease, visiting the outpatient palliative care department, were asked to fill out a self-questionnaire containing the Beck Depression Inventory (BDI-II) and a single screening question "Are you feeling depressed?" The mood section of the PRIME-MD was used as a gold standard. Sixty-one patients with advanced metastatic disease were eligible to be included in the study. Complete data were obtained from 46 patients. The area under the curve of the receiver operating characteristics analysis of the BDI-II was 0.82. The optimal cut-off point of the BDI-II was 16 with a sensitivity of 90% and a specificity of 69%. The single screening question showed a sensitivity of 50% and a specificity of 94%. The BDI-II seems an adequate screening tool for a depressive disorder in advanced cancer patients. The sensitivity of a single screening question is poor.

  2. Advance directives as a tool to respect patients' values and preferences: discussion on the case of Alzheimer's disease.

    PubMed

    Porteri, Corinna

    2018-02-20

    The proposal of the new criteria for the diagnosis of Alzheimer's disease (AD) based on biomarker data is making possible a diagnosis of AD at the mild cognitive impairment (MCI) or predementia/prodromal- stage. Given the present lack of effective treatments for AD, the opportunity for the individuals to personally take relevant decisions and plan for their future before and if cognitive deterioration occurs is one the main advantages of an early diagnosis. Advance directives are largely seen as an effective tool for planning medical care in the event the subject becomes incompetent. Nevertheless, their value has been questioned with regard to people with dementia by scholars who refer to the arguments of personal identity and of patient's changing interests before and after the onset of dementia. In this paper, I discuss the value of advance directives in Alzheimer's disease and other kind of dementia. Despite critics, I argue that advance directives are especially advisable in dementia and provide reasons in favor of their promotion at an early stage of the disease as a valuable tool to respect patients' values and preferences on medical treatment, including participation in research and end of life decisions. I mainly support advance directives that include both decisions regarding health care and the appointment of an attorney in fact. I conclude that patients with AD at a prodromal or early stage should be offered the opportunity to execute an advance directive, and that not to honor a demented individual's directive would be an unacceptable form of discrimination towards those patients.

  3. Open Source Tools for Numerical Simulation of Urban Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Nottrott, A.; Tan, S. M.; He, Y.

    2016-12-01

    There is a global movement toward urbanization. Approximately 7% of the global population lives in just 28 megacities, occupying less than 0.1% of the total land area used by human activity worldwide. These cities contribute a significant fraction of the global budget of anthropogenic primary pollutants and greenhouse gasses. The 27 largest cities consume 9.9%, 9.3%, 6.7% and 3.0% of global gasoline, electricity, energy and water use, respectively. This impact motivates novel approaches to quantify and mitigate the growing contribution of megacity emissions to global climate change. Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model methane (CH4) emissions from various components of the natural gas distribution system, to investigate the impact of urban meteorology on mobile CH4 measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in

  4. A Web-Based Treatment Decision Support Tool for Patients With Advanced Knee Arthritis: Evaluation of User Interface and Content Design

    PubMed Central

    Zheng, Hua; Rosal, Milagros C; Li, Wenjun; Borg, Amy; Yang, Wenyun; Ayers, David C

    2018-01-01

    Background Data-driven surgical decisions will ensure proper use and timing of surgical care. We developed a Web-based patient-centered treatment decision and assessment tool to guide treatment decisions among patients with advanced knee osteoarthritis who are considering total knee replacement surgery. Objective The aim of this study was to examine user experience and acceptance of the Web-based treatment decision support tool among older adults. Methods User-centered formative and summative evaluations were conducted for the tool. A sample of 28 patients who were considering total knee replacement participated in the study. Participants’ responses to the user interface design, the clarity of information, as well as usefulness, satisfaction, and acceptance of the tool were collected through qualitative (ie, individual patient interviews) and quantitative (ie, standardized Computer System Usability Questionnaire) methods. Results Participants were older adults with a mean age of 63 (SD 11) years. Three-quarters of them had no technical questions using the tool. User interface design recommendations included larger fonts, bigger buttons, less colors, simpler navigation without extra “next page” click, less mouse movement, and clearer illustrations with simple graphs. Color-coded bar charts and outcome-specific graphs with positive action were easiest for them to understand the outcomes data. Questionnaire data revealed high satisfaction with the tool usefulness and interface quality, and also showed ease of use of the tool, regardless of age or educational status. Conclusions We evaluated the usability of a patient-centered decision support tool designed for advanced knee arthritis patients to facilitate their knee osteoarthritis treatment decision making. The lessons learned can inform other decision support tools to improve interface and content design for older patients’ use. PMID:29712620

  5. Ultrafast Bessel beams: advanced tools for laser materials processing

    NASA Astrophysics Data System (ADS)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  6. Advances in deep-UV processing using cluster tools

    NASA Astrophysics Data System (ADS)

    Escher, Gary C.; Tepolt, Gary; Mohondro, Robert D.

    1993-09-01

    Deep-UV laser lithography has shown the capability of supporting the manufacture of multiple generations of integrated circuits (ICs) due to its wide process latitude and depth of focus (DOF) for 0.2 micrometers to 0.5 micrometers feature sizes. This capability has been attained through improvements in deep-UV wide field lens technology, excimer lasers, steppers and chemically amplified, positive deep-UV resists. Chemically amplified deep-UV resists are required for 248 nm lithography due to the poor absorption and sensitivity of conventional novolac resists. The acid catalyzation processes of the new resists requires control of the thermal history and environmental conditions of the lithographic process. Work is currently underway at several resist vendors to reduce the need for these controls, but practical manufacturing solutions exist today. One of these solutions is the integration of steppers and resist tracks into a `cluster tool' or `Lithocell' to insure a consistent thermal profile for the resist process and reduce the time the resist is exposed to atmospheric contamination. The work here reports processing and system integration results with a Machine Technology, Inc (MTI) post-exposure bake (PEB) track interfaced with an advanced GCA XLS 7800 deep-UV stepper [31 mm diameter, variable NA (0.35 - 0.53) and variable sigma (0.3 - 0.74)].

  7. Numerical Viscous Flow Analysis of an Advanced Semispan Diamond-Wing Model at High-Life Conditions

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Biedron, R. T.; Luckring, J. M.

    2002-01-01

    Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant width standoff. The analyses include: (1) the numerical simulation of the NTF empty, tunnel flow characteristics; (2) semispan high-lift model with the standoff in the tunnel environment; (3) semispan high-lift model with the standoff and viscous sidewall in free air; and (4) semispan high-lift model without the standoff in free air. The computations were performed at conditions that correspond to a nominal approach and landing configuration. The wing surface pressure distributions computed for the model in both the tunnel and in free air agreed well with the corresponding experimental data and they both indicated small increments due to the wall interference effects. However, the wall interference effects were found to be more pronounced in the total measured and the computed lift, drag and pitching moment due to standard induced up-flow effects. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted well. The numerical predictions are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage fore-body pressure distributions and the resulting impact on the overall configuration longitudinal aerodynamic characteristics.

  8. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  9. Innovative Tools Advance Revolutionary Weld Technique

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  10. Building Models in the Classroom: Taking Advantage of Sophisticated Geomorphic Numerical Tools Using a Simple Graphical User Interface

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Gerbi, C. C.; Capps, D. K.; Tucker, G. E.; Rogers, Z. A.

    2014-12-01

    Sophisticated numerical tools exist for modeling geomorphic processes and linking them to tectonic and climatic systems, but they are often seen as inaccessible for users with an exploratory level of interest. We have improved the accessibility of landscape evolution models by producing a simple graphics user interface (GUI) that takes advantage of the Channel-Hillslope Integrated Landscape Development (CHILD) model. Model access is flexible: the user can edit values for basic geomorphic, tectonic, and climate parameters, or obtain greater control by defining the spatiotemporal distributions of those parameters. Users can make educated predictions by choosing their own parametric values for the governing equations and interpreting the results immediately through model graphics. This method of modeling allows users to iteratively build their understanding through experimentation. Use of this GUI is intended for inquiry and discovery-based learning activities. We discuss a number of examples of how the GUI can be used at the upper high school, introductory university, and advanced university level. Effective teaching modules initially focus on an inquiry-based example guided by the instructor. As students become familiar with the GUI and the CHILD model, the class can shift to more student-centered exploration and experimentation. To make model interpretations more robust, digital elevation models can be imported and direct comparisons can be made between CHILD model results and natural topography. The GUI is available online through the University of Maine's Earth and Climate Sciences website, through the Community Surface Dynamics Modeling System (CSDMS) model repository, or by contacting the corresponding author.

  11. A Web-Based Treatment Decision Support Tool for Patients With Advanced Knee Arthritis: Evaluation of User Interface and Content Design.

    PubMed

    Zheng, Hua; Rosal, Milagros C; Li, Wenjun; Borg, Amy; Yang, Wenyun; Ayers, David C; Franklin, Patricia D

    2018-04-30

    Data-driven surgical decisions will ensure proper use and timing of surgical care. We developed a Web-based patient-centered treatment decision and assessment tool to guide treatment decisions among patients with advanced knee osteoarthritis who are considering total knee replacement surgery. The aim of this study was to examine user experience and acceptance of the Web-based treatment decision support tool among older adults. User-centered formative and summative evaluations were conducted for the tool. A sample of 28 patients who were considering total knee replacement participated in the study. Participants' responses to the user interface design, the clarity of information, as well as usefulness, satisfaction, and acceptance of the tool were collected through qualitative (ie, individual patient interviews) and quantitative (ie, standardized Computer System Usability Questionnaire) methods. Participants were older adults with a mean age of 63 (SD 11) years. Three-quarters of them had no technical questions using the tool. User interface design recommendations included larger fonts, bigger buttons, less colors, simpler navigation without extra "next page" click, less mouse movement, and clearer illustrations with simple graphs. Color-coded bar charts and outcome-specific graphs with positive action were easiest for them to understand the outcomes data. Questionnaire data revealed high satisfaction with the tool usefulness and interface quality, and also showed ease of use of the tool, regardless of age or educational status. We evaluated the usability of a patient-centered decision support tool designed for advanced knee arthritis patients to facilitate their knee osteoarthritis treatment decision making. The lessons learned can inform other decision support tools to improve interface and content design for older patients' use. ©Hua Zheng, Milagros C Rosal, Wenjun Li, Amy Borg, Wenyun Yang, David C Ayers, Patricia D Franklin. Originally published in JMIR Human

  12. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  13. How Project Management Tools Aid in Association to Advance Collegiate Schools of Business (AACSB) International Maintenance of Accreditation

    ERIC Educational Resources Information Center

    Cann, Cynthia W.; Brumagim, Alan L.

    2008-01-01

    The authors present the case of one business college's use of project management techniques as tools for accomplishing Association to Advance Collegiate Schools of Business (AACSB) International maintenance of accreditation. Using these techniques provides an efficient and effective method of organizing maintenance efforts. In addition, using…

  14. A Multi-layer, Data-driven Advanced Reasoning Tool for Intelligent Data Mining and Analysis for Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Du, Pengwei; Greitzer, Frank L.

    2012-12-31

    This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning “triage” of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over today’s grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individualmore » data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.« less

  15. Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool.

    PubMed

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-07

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  16. Advanced CNC and CAM Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook [and] Student Laboratory Manual.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and student laboratory manual for a 1-year vocational training program to prepare students for entry-level positions as advanced computer numerical control (CNC) and computer-assisted manufacturing (CAM) technicians.. The program was developed through a modification of the DACUM…

  17. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    PubMed

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  18. SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005.

    PubMed

    Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F

    2009-01-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.

  19. Numerical Investigation of a Cascaded Longitudinal Space-Charge Amplifier at the Fermilab's Advanced Superconducting Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-06-01

    In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have beenmore » conducted with a grid-less three-dimensional space-charge algorithm.« less

  20. Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2009-01-01

    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  1. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 1: Executive Summary, of a 15-Volume Set of Skills Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…

  2. Advanced Launch Technology Life Cycle Analysis Using the Architectural Comparison Tool (ACT)

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.

    2015-01-01

    Life cycle technology impact comparisons for nanolauncher technology concepts were performed using an Affordability Comparison Tool (ACT) prototype. Examined are cost drivers and whether technology investments can dramatically affect the life cycle characteristics. Primary among the selected applications was the prospect of improving nanolauncher systems. As a result, findings and conclusions are documented for ways of creating more productive and affordable nanolauncher systems; e.g., an Express Lane-Flex Lane concept is forwarded, and the beneficial effect of incorporating advanced integrated avionics is explored. Also, a Functional Systems Breakdown Structure (F-SBS) was developed to derive consistent definitions of the flight and ground systems for both system performance and life cycle analysis. Further, a comprehensive catalog of ground segment functions was created.

  3. McIDAS-V: A Data Analysis and Visualization Tool for Global Satellite Data

    NASA Astrophysics Data System (ADS)

    Achtor, T. H.; Rink, T. D.

    2011-12-01

    The Man-computer Interactive Data Access System (McIDAS-V) is a java-based, open-source, freely available system for scientists, researchers and algorithm developers working with atmospheric data. The McIDAS-V software tools provide powerful new data manipulation and visualization capabilities, including 4-dimensional displays, an abstract data model with integrated metadata, user defined computation, and a powerful scripting capability. As such, McIDAS-V is a valuable tool for scientists and researchers within the GEO and GOESS domains. The advancing polar and geostationary orbit environmental satellite missions conducted by several countries will carry advanced instrumentation and systems that will collect and distribute land, ocean, and atmosphere data. These systems provide atmospheric and sea surface temperatures, humidity sounding, cloud and aerosol properties, and numerous other environmental products. This presentation will display and demonstrate some of the capabilities of McIDAS-V to analyze and display high temporal and spectral resolution data using examples from international environmental satellites.

  4. A Manually Operated, Advance Off-Stylet Insertion Tool for Minimally Invasive Cochlear Implantation Surgery

    PubMed Central

    Kratchman, Louis B.; Schurzig, Daniel; McRackan, Theodore R.; Balachandran, Ramya; Noble, Jack H.; Webster, Robert J.; Labadie, Robert F.

    2014-01-01

    The current technique for cochlear implantation (CI) surgery requires a mastoidectomy to gain access to the cochlea for electrode array insertion. It has been shown that microstereotactic frames can enable an image-guided, minimally invasive approach to CI surgery called percutaneous cochlear implantation (PCI) that uses a single drill hole for electrode array insertion, avoiding a more invasive mastoidectomy. Current clinical methods for electrode array insertion are not compatible with PCI surgery because they require a mastoidectomy to access the cochlea; thus, we have developed a manually operated electrode array insertion tool that can be deployed through a PCI drill hole. The tool can be adjusted using a preoperative CT scan for accurate execution of the advance off-stylet (AOS) insertion technique and requires less skill to operate than is currently required to implant electrode arrays. We performed three cadaver insertion experiments using the AOS technique and determined that all insertions were successful using CT and microdissection. PMID:22851233

  5. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    1999-01-01

    Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  6. Cognitive correlates of performance in advanced mathematics.

    PubMed

    Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin

    2012-03-01

    Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.

  7. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, themore » necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.« less

  8. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 9: Tool and Die, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  9. Advanced Risk Reduction Tool (ARRT) Special Case Study Report: Science and Engineering Technical Assessments (SETA) Program

    NASA Technical Reports Server (NTRS)

    Kirsch, Paul J.; Hayes, Jane; Zelinski, Lillian

    2000-01-01

    This special case study report presents the Science and Engineering Technical Assessments (SETA) team's findings for exploring the correlation between the underlying models of Advanced Risk Reduction Tool (ARRT) relative to how it identifies, estimates, and integrates Independent Verification & Validation (IV&V) activities. The special case study was conducted under the provisions of SETA Contract Task Order (CTO) 15 and the approved technical approach documented in the CTO-15 Modification #1 Task Project Plan.

  10. A new clinical tool for assessing numerical abilities in neurological diseases: numerical activities of daily living

    PubMed Central

    Semenza, Carlo; Meneghello, Francesca; Arcara, Giorgio; Burgio, Francesca; Gnoato, Francesca; Facchini, Silvia; Benavides-Varela, Silvia; Clementi, Maurizio; Butterworth, Brian

    2014-01-01

    The aim of this study was to build an instrument, the numerical activities of daily living (NADL), designed to identify the specific impairments in numerical functions that may cause problems in everyday life. These impairments go beyond what can be inferred from the available scales evaluating activities of daily living in general, and are not adequately captured by measures of the general deterioration of cognitive functions as assessed by standard clinical instruments like the MMSE and MoCA. We assessed a control group (n = 148) and a patient group affected by a wide variety of neurological conditions (n = 175), with NADL along with IADL, MMSE, and MoCA. The NADL battery was found to have satisfactory construct validity and reliability, across a wide age range. This enabled us to calculate appropriate criteria for impairment that took into account age and education. It was found that neurological patients tended to overestimate their abilities as compared to the judgment made by their caregivers, assessed with objective tests of numerical abilities. PMID:25126077

  11. NOTE: Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool

    NASA Astrophysics Data System (ADS)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  12. NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Craig, D. A.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The objective of this Technical Interchange Meeting was to increase the quantity and quality of technical, cost, and programmatic data used to model the impact of investing in different technologies. The focus of this meeting was the Technology Tool Box (TTB), a database of performance, operations, and programmatic parameters provided by technologists and used by systems engineers. The TTB is the data repository used by a system of models known as the Advanced Technology Lifecycle Analysis System (ATLAS). This report describes the result of the November meeting, and also provides background information on ATLAS and the TTB.

  13. Functional toxicology: tools to advance the future of toxicity testing

    PubMed Central

    Gaytán, Brandon D.; Vulpe, Chris D.

    2014-01-01

    The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352

  14. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  15. Performance and Weight Estimates for an Advanced Open Rotor Engine

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    NASA s Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft. The open rotor concept (also historically referred to an unducted fan or advanced turboprop) may allow for the achievement of this objective by reducing engine fuel consumption. To evaluate the potential impact of open rotor engines, cycle modeling and engine weight estimation capabilities have been developed. The initial development of the cycle modeling capabilities in the Numerical Propulsion System Simulation (NPSS) tool was presented in a previous paper. Following that initial development, further advancements have been made to the cycle modeling and weight estimation capabilities for open rotor engines and are presented in this paper. The developed modeling capabilities are used to predict the performance of an advanced open rotor concept using modern counter-rotating propeller designs. Finally, performance and weight estimates for this engine are presented and compared to results from a previous NASA study of advanced geared and direct-drive turbofans.

  16. Robust Neighboring Optimal Guidance for the Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Hull, David G.

    1993-01-01

    In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.

  17. STRING 3: An Advanced Groundwater Flow Visualization Tool

    NASA Astrophysics Data System (ADS)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    The visualization of 3D groundwater flow is a challenging task. Previous versions of our software STRING [1] solely focused on intuitive visualization of complex flow scenarios for non-professional audiences. STRING, developed by Fraunhofer ITWM (Kaiserslautern, Germany) and delta h Ingenieurgesellschaft mbH (Witten, Germany), provides the necessary means for visualization of both 2D and 3D data on planar and curved surfaces. In this contribution we discuss how to extend this approach to a full 3D tool and its challenges in continuation of Michel et al. [2]. This elevates STRING from a post-production to an exploration tool for experts. In STRING moving pathlets provide an intuition of velocity and direction of both steady-state and transient flows. The visualization concept is based on the Lagrangian view of the flow. To capture every detail of the flow an advanced method for intelligent, time-dependent seeding is used building on the Finite Pointset Method (FPM) developed by Fraunhofer ITWM. Lifting our visualization approach from 2D into 3D provides many new challenges. With the implementation of a seeding strategy for 3D one of the major problems has already been solved (see Schröder et al. [3]). As pathlets only provide an overview of the velocity field other means are required for the visualization of additional flow properties. We suggest the use of Direct Volume Rendering and isosurfaces for scalar features. In this regard we were able to develop an efficient approach for combining the rendering through raytracing of the volume and regular OpenGL geometries. This is achieved through the use of Depth Peeling or A-Buffers for the rendering of transparent geometries. Animation of pathlets requires a strict boundary of the simulation domain. Hence, STRING needs to extract the boundary, even from unstructured data, if it is not provided. In 3D we additionally need a good visualization of the boundary itself. For this the silhouette based on the angle of

  18. A microkernel design for component-based parallel numerical software systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balay, S.

    1999-01-13

    What is the minimal software infrastructure and what type of conventions are needed to simplify development of sophisticated parallel numerical application codes using a variety of software components that are not necessarily available as source code? We propose an opaque object-based model where the objects are dynamically loadable from the file system or network. The microkernel required to manage such a system needs to include, at most: (1) a few basic services, namely--a mechanism for loading objects at run time via dynamic link libraries, and consistent schemes for error handling and memory management; and (2) selected methods that all objectsmore » share, to deal with object life (destruction, reference counting, relationships), and object observation (viewing, profiling, tracing). We are experimenting with these ideas in the context of extensible numerical software within the ALICE (Advanced Large-scale Integrated Computational Environment) project, where we are building the microkernel to manage the interoperability among various tools for large-scale scientific simulations. This paper presents some preliminary observations and conclusions from our work with microkernel design.« less

  19. ADVANCED TOOLS FOR ASSESSING SELECTED ...

    EPA Pesticide Factsheets

    The purpose of this poster is to present the application and assessment of advanced technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs (azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, and methylenedioxymethamphetamine). The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technica

  20. ADVANCED TOOLS FOR ASSESSING SELECTED ...

    EPA Pesticide Factsheets

    The purpose of this poster is to present the application and assessment of advanced state-of-the-art technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs [azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, methylenedioxymethamphetamine (MDMA)]. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansi

  1. The quiet revolution of numerical weather prediction.

    PubMed

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-03

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

  2. New efficient optimizing techniques for Kalman filters and numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis

    2016-06-01

    The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.

  3. Apes produce tools for future use.

    PubMed

    Bräuer, Juliane; Call, Josep

    2015-03-01

    There is now growing evidence that some animal species are able to plan for the future. For example great apes save and exchange tools for future use. Here we raise the question whether chimpanzees, orangutans, and bonobos would produce tools for future use. Subjects only had access to a baited apparatus for a limited duration and therefore should use the time preceding this access to create the appropriate tools in order to get the rewards. The apes were tested in three conditions depending on the need for pre-prepared tools. Either eight tools, one tool or no tools were needed to retrieve the reward. The apes prepared tools in advance for future use and they produced them mainly in conditions when they were really needed. The fact that apes were able to solve this new task indicates that their planning skills are flexible. However, for the condition in which eight tools were needed, apes produced less than two tools per trial in advance. However, they used their chance to produce additional tools in the tool use phase-thus often obtaining most of the reward from the apparatus. Increased pressure to prepare more tools in advance did not have an effect on their performance. © 2014 Wiley Periodicals, Inc.

  4. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less

  5. A software tool for modeling and simulation of numerical P systems.

    PubMed

    Buiu, Catalin; Arsene, Octavian; Cipu, Corina; Patrascu, Monica

    2011-03-01

    A P system represents a distributed and parallel bio-inspired computing model in which basic data structures are multi-sets or strings. Numerical P systems have been recently introduced and they use numerical variables and local programs (or evolution rules), usually in a deterministic way. They may find interesting applications in areas such as computational biology, process control or robotics. The first simulator of numerical P systems (SNUPS) has been designed, implemented and made available to the scientific community by the authors of this paper. SNUPS allows a wide range of applications, from modeling and simulation of ordinary differential equations, to the use of membrane systems as computational blocks of cognitive architectures, and as controllers for autonomous mobile robots. This paper describes the functioning of a numerical P system and presents an overview of SNUPS capabilities together with an illustrative example. SNUPS is freely available to researchers as a standalone application and may be downloaded from a dedicated website, http://snups.ics.pub.ro/, which includes an user manual and sample membrane structures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. DynamiX, numerical tool for design of next-generation x-ray telescopes.

    PubMed

    Chauvin, Maxime; Roques, Jean-Pierre

    2010-07-20

    We present a new code aimed at the simulation of grazing-incidence x-ray telescopes subject to deformations and demonstrate its ability with two test cases: the Simbol-X and the International X-ray Observatory (IXO) missions. The code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, accounting for the x-ray interactions and for the telescope motion and deformation. The simulation produces images and spectra for any telescope configuration using Wolter I mirrors and semiconductor detectors. This numerical tool allows us to study the telescope performance in terms of angular resolution, effective area, and detector efficiency, accounting for the telescope behavior. We have implemented an image reconstruction method based on the measurement of the detector drifts by an optical sensor metrology. Using an accurate metrology, this method allows us to recover the loss of angular resolution induced by the telescope instability. In the framework of the Simbol-X mission, this code was used to study the impacts of the parameters on the telescope performance. In this paper we present detailed performance analysis of Simbol-X, taking into account the satellite motions and the image reconstruction. To illustrate the versatility of the code, we present an additional performance analysis with a particular configuration of IXO.

  7. Communication Tools for End-of-Life Decision-Making in Ambulatory Care Settings: A Systematic Review and Meta-Analysis.

    PubMed

    Oczkowski, Simon J; Chung, Han-Oh; Hanvey, Louise; Mbuagbaw, Lawrence; You, John J

    2016-01-01

    Patients with serious illness, and their families, state that better communication and decision-making with healthcare providers is a high priority to improve the quality of end-of-life care. Numerous communication tools to assist patients, family members, and clinicians in end-of-life decision-making have been published, but their effectiveness remains unclear. To determine, amongst adults in ambulatory care settings, the effect of structured communication tools for end-of-life decision-making on completion of advance care planning. We searched for relevant randomized controlled trials (RCTs) or non-randomized intervention studies in MEDLINE, EMBASE, CINAHL, ERIC, and the Cochrane Database of Randomized Controlled Trials from database inception until July 2014. Two reviewers independently screened articles for eligibility, extracted data, and assessed risk of bias. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to evaluate the quality of evidence for each of the primary and secondary outcomes. Sixty-seven studies, including 46 RCTs, were found. The majority evaluated communication tools in older patients (age >50) with no specific medical condition, but many specifically evaluated populations with cancer, lung, heart, neurologic, or renal disease. Most studies compared the use of communication tools against usual care, but several compared the tools to less-intensive advance care planning tools. The use of structured communication tools increased: the frequency of advance care planning discussions/discussions about advance directives (RR 2.31, 95% CI 1.25-4.26, p = 0.007, low quality evidence) and the completion of advance directives (ADs) (RR 1.92, 95% CI 1.43-2.59, p<0.001, low quality evidence); concordance between AD preferences and subsequent medical orders for use or non-use of life supporting treatment (RR 1.19, 95% CI 1.01-1.39, p = 0.028, very low quality evidence, 1 observational study); and concordance between the

  8. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  9. Enhanced methodology of focus control and monitoring on scanner tool

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Jen; Kim, Young Ki; Hao, Xueli; Gomez, Juan-Manuel; Tian, Ye; Kamalizadeh, Ferhad; Hanson, Justin K.

    2017-03-01

    As the demand of the technology node shrinks from 14nm to 7nm, the reliability of tool monitoring techniques in advanced semiconductor fabs to achieve high yield and quality becomes more critical. Tool health monitoring methods involve periodic sampling of moderately processed test wafers to detect for particles, defects, and tool stability in order to ensure proper tool health. For lithography TWINSCAN scanner tools, the requirements for overlay stability and focus control are very strict. Current scanner tool health monitoring methods include running BaseLiner to ensure proper tool stability on a periodic basis. The focus measurement on YIELDSTAR by real-time or library-based reconstruction of critical dimensions (CD) and side wall angle (SWA) has been demonstrated as an accurate metrology input to the control loop. The high accuracy and repeatability of the YIELDSTAR focus measurement provides a common reference of scanner setup and user process. In order to further improve the metrology and matching performance, Diffraction Based Focus (DBF) metrology enabling accurate, fast, and non-destructive focus acquisition, has been successfully utilized for focus monitoring/control of TWINSCAN NXT immersion scanners. The optimal DBF target was determined to have minimized dose crosstalk, dynamic precision, set-get residual, and lens aberration sensitivity. By exploiting this new measurement target design, 80% improvement in tool-to-tool matching, >16% improvement in run-to-run mean focus stability, and >32% improvement in focus uniformity have been demonstrated compared to the previous BaseLiner methodology. Matching <2.4 nm across multiple NXT immersion scanners has been achieved with the new methodology of set baseline reference. This baseline technique, with either conventional BaseLiner low numerical aperture (NA=1.20) mode or advanced illumination high NA mode (NA=1.35), has also been evaluated to have consistent performance. This enhanced methodology of focus

  10. Research Registries: A Tool to Advance Understanding of Rare Neuro-Ophthalmic Diseases

    PubMed Central

    Blankshain, Kimberly D; Moss, Heather E

    2016-01-01

    Background Medical research registries (MRR) are organized systems used to collect, store and analyze patient information. They are important tools for medical research with particular application to the study of rare diseases, including those seen in neuro-ophthalmic practice. Evidence Acquisition Evidence for this review was gathered from the writers’ experiences creating a comprehensive neuro-ophthalmology registry and review of the literature. Results MRR are typically observational and prospective databases of de-identified patient information. The structure is flexible and can accommodate a focus on specific diseases or treatments, surveillance of patient populations, physician quality improvement, or recruitment for future studies. They are particularly useful for the study of rare diseases. They can be integrated into the hierarchy of medical research at many levels provided their construction is well organized and they have several key characteristics including an easily manipulated database, comprehensive information on carefully selected patients and comply with human subjects regulations. MRR pertinent to neuro-ophthalmology include the UIC neuro-ophthalmology registry, Susac Syndrome Registry, Intracranial Hypertension Registry as well as larger scale patient outcome registries being developed by professional societies. Conclusion Medical research registries have a variety of forms and applications. With careful planning and clear goals, they are flexible and powerful research tools that can support multiple different study designs, and through this have the potential to advance understanding and care of neuro-ophthalmic diseases. PMID:27389624

  11. Comparing the Advanced REACH Tool's (ART) Estimates With Switzerland's Occupational Exposure Data.

    PubMed

    Savic, Nenad; Gasic, Bojan; Schinkel, Jody; Vernez, David

    2017-10-01

    The Advanced REACH Tool (ART) is the most sophisticated tool used for evaluating exposure levels under the European Union's Registration, Evaluation, Authorisation and restriction of CHemicals (REACH) regulations. ART provides estimates at different percentiles of exposure and within different confidence intervals (CIs). However, its performance has only been tested on a limited number of exposure data. The present study compares ART's estimates with exposure measurements collected over many years in Switzerland. Measurements from 584 cases of exposure to vapours, mists, powders, and abrasive dusts (wood/stone and metal) were extracted from a Swiss database. The corresponding exposures at the 50th and 90th percentiles were calculated in ART. To characterize the model's performance, the 90% CI of the estimates was considered. ART's performance at the 50th percentile was only found to be insufficiently conservative with regard to exposure to wood/stone dusts, whereas the 90th percentile showed sufficient conservatism for all the types of exposure processed. However, a trend was observed with the residuals, where ART overestimated lower exposures and underestimated higher ones. The median was more precise, however, and the majority (≥60%) of real-world measurements were within a factor of 10 from ART's estimates. We provide recommendations based on the results and suggest further, more comprehensive, investigations. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. Research Registries: A Tool to Advance Understanding of Rare Neuro-Ophthalmic Diseases.

    PubMed

    Blankshain, Kimberly D; Moss, Heather E

    2016-09-01

    Medical research registries (MRR) are organized systems used to collect, store, and analyze patient information. They are important tools for medical research with particular application to the study of rare diseases, including those seen in neuro-ophthalmic practice. Evidence for this review was gathered from the writers' experiences creating a comprehensive neuro-ophthalmology registry and review of the literature. MRR are typically observational and prospective databases of de-identified patient information. The structure is flexible and can accommodate a focus on specific diseases or treatments, surveillance of patient populations, physician quality improvement, or recruitment for future studies. They are particularly useful for the study of rare diseases. They can be integrated into the hierarchy of medical research at many levels provided their construction is well organized and they have several key characteristics including an easily manipulated database, comprehensive information on carefully selected patients, and comply with human subjects regulations. MRR pertinent to neuro-ophthalmology include the University of Illinois at Chicago neuro-ophthalmology registry, Susac Syndrome Registry, Intracranial Hypertension Registry, and larger-scale patient outcome registries being developed by professional societies. MRR have a variety of forms and applications. With careful planning and clear goals, they are flexible and powerful research tools that can support multiple different study designs, and this can provide the potential to advance understanding and care of neuro-ophthalmic diseases.

  13. Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollias, Pavlos

    2016-09-06

    This the final report for the DE-SC0007096 - Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales - PI: Pavlos Kollias. The final report outline the main findings of the research conducted using the aforementioned award in the area of cloud research from the cloud scale (10-100 m) to the mesoscale (20-50 km).

  14. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2000-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented. Supplementary material is available for this article at 10.12942/lrr-2000-2.

  15. Numerical Activities of Daily Living - Financial (NADL-F): A tool for the assessment of financial capacities.

    PubMed

    Arcara, Giorgio; Burgio, Francesca; Benavides-Varela, Silvia; Toffano, Roberta; Gindri, Patrizia; Tonini, Elisabetta; Meneghello, Francesca; Semenza, Carlo

    2017-09-07

    Financial capacity is the ability to manage one's own finances according to self-interests. Failure in financial decisions and lack of independence when dealing with money can affect people's quality of life and are associated with neuropsychological deficits or clinical conditions such as mild cognitive impairment or Alzheimer's disease. Despite the importance of evaluating financial capacity in the assessment of patients with neuropsychological and psychiatric disorders, only a few tools have been developed. In the present article, the authors introduce the Numerical Activities of Daily Living - Financial (NADL-F) test, a new test to assess financial capacity in clinical populations. The NADL-F is relatively short, yet it encompasses the most common activities involving financial capacities. The NADL-F proved to have satisfactory psychometric properties and overall good validity for measuring financial abilities. Associations with performance on basic neuropsychological tests were investigated, in particular focusing on mathematical abilities as cognitive correlates of financial capacity. Results indicate that the NADL-F could be a useful tool to guide treatments for the enhancement of financial capacities. By sharing all materials and procedures, the authors hope to promote the development of further versions of the NADL-F in different languages, taking into account the necessary adjustments related to different socio-cultural contexts.

  16. Numerical studies of the polymer melt flow in the extruder screw channel and the forming tool

    NASA Astrophysics Data System (ADS)

    Ershov, S. V.; Trufanova, N. M.

    2017-06-01

    To date, polymer compositions based on polyethylene or PVC is widely used as insulating materials. These materials processing conjugate with a number of problems during selection of the rational extrusion regimes. To minimize the time and cost when determining the technological regime uses mathematical modeling techniques. The paper discusses heat and mass transfer processes in the extruder screw channel, output adapter and the cable head. During the study were determined coefficients for three rheological models based on obtained viscosity vs. shear rate experimental data. Also a comparative analysis of this viscosimetric laws application possibility for studying polymer melt flow during its processing on the extrusion equipment was held. As a result of numerical study the temperature, viscosity and shear rate fields in the extruder screw channel and forming tool were obtained.

  17. A Comparison of Satellite Conjunction Analysis Screening Tools

    DTIC Science & Technology

    2011-09-01

    visualization tool. Version 13.1.4 for Linux was tested. The SOAP conjunction analysis function does not have the capacity to perform the large...was examined by SOAP to confirm the conjunction. STK Advanced CAT STK Advanced CAT (Conjunction Analysis Tools) is an add-on module for the STK ...run with each tool. When attempting to perform the seven day all vs all analysis with STK Advanced CAT, the program consistently crashed during report

  18. The MATH--Open Source Application for Easier Learning of Numerical Mathematics

    ERIC Educational Resources Information Center

    Glaser-Opitz, Henrich; Budajová, Kristina

    2016-01-01

    The article introduces a software application (MATH) supporting an education of Applied Mathematics, with focus on Numerical Mathematics. The MATH is an easy to use tool supporting various numerical methods calculations with graphical user interface and integrated plotting tool for graphical representation written in Qt with extensive use of Qwt…

  19. A decision support tool for synchronizing technology advances with strategic mission objectives

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Willoughby, John K.

    1992-01-01

    Successful accomplishment of the objectives of many long-range future missions in areas such as space systems, land-use planning, and natural resource management requires significant technology developments. This paper describes the development of a decision-support data-derived tool called MisTec for helping strategic planners to determine technology development alternatives and to synchronize the technology development schedules with the performance schedules of future long-term missions. Special attention is given to the operations, concept, design, and functional capabilities of the MisTec. The MisTec was initially designed for manned Mars mission, but can be adapted to support other high-technology long-range strategic planning situations, making it possible for a mission analyst, planner, or manager to describe a mission scenario, determine the technology alternatives for making the mission achievable, and to plan the R&D activity necessary to achieve the required technology advances.

  20. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A randomized, controlled trial of in situ pediatric advanced life support recertification ("pediatric advanced life support reconstructed") compared with standard pediatric advanced life support recertification for ICU frontline providers*.

    PubMed

    Kurosawa, Hiroshi; Ikeyama, Takanari; Achuff, Patricia; Perkel, Madeline; Watson, Christine; Monachino, Annemarie; Remy, Daphne; Deutsch, Ellen; Buchanan, Newton; Anderson, Jodee; Berg, Robert A; Nadkarni, Vinay M; Nishisaki, Akira

    2014-03-01

    Recent evidence shows poor retention of Pediatric Advanced Life Support provider skills. Frequent refresher training and in situ simulation are promising interventions. We developed a "Pediatric Advanced Life Support-reconstructed" recertification course by deconstructing the training into six 30-minute in situ simulation scenario sessions delivered over 6 months. We hypothesized that in situ Pediatric Advanced Life Support-reconstructed implementation is feasible and as effective as standard Pediatric Advanced Life Support recertification. A prospective randomized, single-blinded trial. Single-center, large, tertiary PICU in a university-affiliated children's hospital. Nurses and respiratory therapists in PICU. Simulation-based modular Pediatric Advanced Life Support recertification training. Simulation-based pre- and postassessment sessions were conducted to evaluate participants' performance. Video-recorded sessions were rated by trained raters blinded to allocation. The primary outcome was skill performance measured by a validated Clinical Performance Tool, and secondary outcome was behavioral performance measured by a Behavioral Assessment Tool. A mixed-effect model was used to account for baseline differences. Forty participants were prospectively randomized to Pediatric Advanced Life Support reconstructed versus standard Pediatric Advanced Life Support with no significant difference in demographics. Clinical Performance Tool score was similar at baseline in both groups and improved after Pediatric Advanced Life Support reconstructed (pre, 16.3 ± 4.1 vs post, 22.4 ± 3.9; p < 0.001), but not after standard Pediatric Advanced Life Support (pre, 14.3 ± 4.7 vs post, 14.9 ± 4.4; p =0.59). Improvement of Clinical Performance Tool was significantly higher in Pediatric Advanced Life Support reconstructed compared with standard Pediatric Advanced Life Support (p = 0.006). Behavioral Assessment Tool improved in both groups: Pediatric Advanced Life Support

  2. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  3. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE PAGES

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    2018-04-25

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  4. An advanced three-phase physical, experimental and numerical method for tsunami induced boulder transport

    NASA Astrophysics Data System (ADS)

    Oetjen, Jan; Engel, Max; Prasad Pudasaini, Shiva; Schüttrumpf, Holger; Brückner, Helmut

    2017-04-01

    Coasts around the world are affected by high-energy wave events like storm surges or tsunamis depending on their regional climatological and geological settings. By focusing on tsunami impacts, we combine the abilities and experiences of different scientific fields aiming at improved insights of near- and onshore tsunami hydrodynamics. We investigate the transport of coarse clasts - so called boulders - due to tsunami impacts by a multi-methodology approach of numerical modelling, laboratory experiments, and sedimentary field records. Coupled numerical hydrodynamic and boulder transport models (BTM) are widely applied for analysing the impact characteristics of the transport by tsunami, such as wave height and flow velocity. Numerical models able to simulate past tsunami events and the corresponding boulder transport patterns with high accuracy and acceptable computational effort can be utilized as powerful forecasting models predicting the impact of a coast approaching tsunami. We have conducted small-scale physical experiments in the tilting flume with real shaped boulder models. Utilizing the structure from motion technique (Westoby et al., 2012) we reconstructed real boulders from a field study on the Island of Bonaire (Lesser Antilles, Caribbean Sea, Engel & May, 2012). The obtained three-dimensional boulder meshes are utilized for creating downscaled replica of the real boulder for physical experiments. The results of the irregular shaped boulder are compared to experiments with regular shaped boulder models to achieve a better insight about the shape related influence on transport patterns. The numerical model is based on the general two-phase mass flow model by Pudasaini (2012) enhanced for boulder transport simulations. The boulder is implemented using the immersed boundary technique (Peskin, 2002) and the direct forcing approach. In this method Cartesian grids (fluid and particle phase) and Lagrangian meshes (boulder) are combined. By applying the

  5. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  6. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  7. Communication Tools for End-of-Life Decision-Making in Ambulatory Care Settings: A Systematic Review and Meta-Analysis

    PubMed Central

    Chung, Han-Oh; Hanvey, Louise; Mbuagbaw, Lawrence; You, John J.

    2016-01-01

    Background Patients with serious illness, and their families, state that better communication and decision-making with healthcare providers is a high priority to improve the quality of end-of-life care. Numerous communication tools to assist patients, family members, and clinicians in end-of-life decision-making have been published, but their effectiveness remains unclear. Objectives To determine, amongst adults in ambulatory care settings, the effect of structured communication tools for end-of-life decision-making on completion of advance care planning. Methods We searched for relevant randomized controlled trials (RCTs) or non-randomized intervention studies in MEDLINE, EMBASE, CINAHL, ERIC, and the Cochrane Database of Randomized Controlled Trials from database inception until July 2014. Two reviewers independently screened articles for eligibility, extracted data, and assessed risk of bias. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to evaluate the quality of evidence for each of the primary and secondary outcomes. Results Sixty-seven studies, including 46 RCTs, were found. The majority evaluated communication tools in older patients (age >50) with no specific medical condition, but many specifically evaluated populations with cancer, lung, heart, neurologic, or renal disease. Most studies compared the use of communication tools against usual care, but several compared the tools to less-intensive advance care planning tools. The use of structured communication tools increased: the frequency of advance care planning discussions/discussions about advance directives (RR 2.31, 95% CI 1.25–4.26, p = 0.007, low quality evidence) and the completion of advance directives (ADs) (RR 1.92, 95% CI 1.43–2.59, p<0.001, low quality evidence); concordance between AD preferences and subsequent medical orders for use or non-use of life supporting treatment (RR 1.19, 95% CI 1.01–1.39, p = 0.028, very low quality evidence, 1

  8. Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation

    NASA Astrophysics Data System (ADS)

    Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred

    2005-08-01

    In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.

  9. Performance analysis and optimization of an advanced pharmaceutical wastewater treatment plant through a visual basic software tool (PWWT.VB).

    PubMed

    Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha

    2016-05-01

    A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.

  10. Influences of system uncertainties on the numerical transfer path analysis of engine systems

    NASA Astrophysics Data System (ADS)

    Acri, A.; Nijman, E.; Acri, A.; Offner, G.

    2017-10-01

    Practical mechanical systems operate with some degree of uncertainty. In numerical models uncertainties can result from poorly known or variable parameters, from geometrical approximation, from discretization or numerical errors, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. Recently, random matrix theory was introduced to take parameter uncertainties into account in numerical modeling problems. In particular in this paper, Wishart random matrix theory is applied on a multi-body dynamic system to generate random variations of the properties of system components. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of model parameter variability on the results obtained from the multi-body simulation of engine dynamics is investigated. The aim is to define a methodology to properly assess and rank system sources when dealing with uncertainties. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. Examples of the effects of different levels of uncertainties are illustrated by means of examples using a representative numerical powertrain model. A numerical transfer path analysis, based on system dynamic substructuring, is used to derive and assess the internal engine vibration sources. The results obtained from this analysis are used to derive correlations between parameter uncertainties and statistical distribution of results. The derived statistical information can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertainties in model parameters are considered.

  11. Astonishing advances in mouse genetic tools for biomedical research.

    PubMed

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  12. Numerical study on the splitting of a vapor bubble in the ultrasonic assisted EDM process with the curved tool and workpiece.

    PubMed

    Shervani-Tabar, M T; Seyed-Sadjadi, M H; Shabgard, M R

    2013-01-01

    Electrical discharge machining (EDM) is a powerful and modern method of machining. In the EDM process, a vapor bubble is generated between the tool and the workpiece in the dielectric liquid due to an electrical discharge. In this process dynamic behavior of the vapor bubble affects machining process. Vibration of the tool surface affects bubble behavior and consequently affects material removal rate (MRR). In this paper, dynamic behavior of the vapor bubble in an ultrasonic assisted EDM process after the appearance of the necking phenomenon is investigated. It is noteworthy that necking phenomenon occurs when the bubble takes the shape of an hour-glass. After the appearance of the necking phenomenon, the vapor bubble splits into two parts and two liquid jets are developed on the boundaries of the upper and lower parts of the vapor bubble. The liquid jet developed on the upper part of the bubble impinges to the tool and the liquid jet developed on the lower part of the bubble impinges to the workpiece. These liquid jets cause evacuation of debris from the gap between the tool and the workpiece and also cause erosion of the workpiece and the tool. Curved tool and workpiece affect the shape and the velocity of the liquid jets during splitting of the vapor bubble. In this paper dynamics of the vapor bubble after its splitting near the curved tool and workpiece is investigated in three cases. In the first case surfaces of the tool and the workpiece are flat, in the second case surfaces of the tool and the workpiece are convex and in the third case surfaces of the tool and workpiece are concave. Numerical results show that in the third case, the velocity of liquid jets which are developed on the boundaries of the upper and lower parts of the vapor bubble after its splitting have the highest magnitude and their shape are broader than the other cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Technology Tools to Support Reading in the Digital Age

    ERIC Educational Resources Information Center

    Biancarosa, Gina; Griffiths, Gina G.

    2012-01-01

    Advances in digital technologies are dramatically altering the texts and tools available to teachers and students. These technological advances have created excitement among many for their potential to be used as instructional tools for literacy education. Yet with the promise of these advances come issues that can exacerbate the literacy…

  14. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  15. Recent advances in the development and application of nanoelectrodes.

    PubMed

    Fan, Yunshan; Han, Chu; Zhang, Bo

    2016-10-07

    Nanoelectrodes have key advantages compared to electrodes of conventional size and are the tool of choice for numerous applications in both fundamental electrochemistry research and bioelectrochemical analysis. This Minireview summarizes recent advances in the development, characterization, and use of nanoelectrodes in nanoscale electroanalytical chemistry. Methods of nanoelectrode preparation include laser-pulled glass-sealed metal nanoelectrodes, mass-produced nanoelectrodes, carbon nanotube based and carbon-filled nanopipettes, and tunneling nanoelectrodes. Several new topics of their recent application are covered, which include the use of nanoelectrodes for electrochemical imaging at ultrahigh spatial resolution, imaging with nanoelectrodes and nanopipettes, electrochemical analysis of single cells, single enzymes, and single nanoparticles, and the use of nanoelectrodes to understand single nanobubbles.

  16. Advancing Efficient All-Electron Electronic Structure Methods Based on Numeric Atom-Centered Orbitals for Energy Related Materials

    NASA Astrophysics Data System (ADS)

    Blum, Volker

    This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.

  17. Aligning Food Systems Policies to Advance Public Health

    PubMed Central

    Muller, Mark; Tagtow, Angie; Roberts, Susan L.; MacDougall, Erin

    2009-01-01

    The involvement of public health professionals in food and agricultural policy provides tremendous opportunities for advancing the public's health. It is particularly challenging, however, for professionals to understand and consider the numerous policy drivers that impact the food system, which range from agricultural commodity policies to local food safety ordinances. Confronted with this complexity in the food system, policy advocates often focus on narrow objectives with disregard for the larger system. This commentary contends that, in order to be most effective, public health professionals need to consider the full range of interdependent policies that affect the system. Food policy councils have proven to be an effective tool, particularly at the local and state level, for developing comprehensive food systems policies that can improve public health. PMID:23144671

  18. A numerical tool for the calculation of non-equilibrium ionisation states in the solar corona and other astrophysical plasma environments

    NASA Astrophysics Data System (ADS)

    Bradshaw, S. J.

    2009-07-01

    Context: The effects of non-equilibrium processes on the ionisation state of strongly emitting elements in the solar corona can be extremely difficult to assess and yet they are critically important. For example, there is much interest in dynamic heating events localised in the solar corona because they are believed to be responsible for its high temperature and yet recent work has shown that the hottest (≥107 K) emission predicted to be associated with these events can be observationally elusive due to the difficulty of creating the highly ionised states from which the expected emission arises. This leads to the possibility of observing instruments missing such heating events entirely. Aims: The equations describing the evolution of the ionisaton state are a very stiff system of coupled, partial differential equations whose solution can be numerically challenging and time-consuming. Without access to specialised codes and significant computational resources it is extremely difficult to avoid the assumption of an equilibrium ionisation state even when it clearly cannot be justified. The aim of the current work is to develop a computational tool to allow straightforward calculation of the time-dependent ionisation state for a wide variety of physical circumstances. Methods: A numerical model comprising the system of time-dependent ionisation equations for a particular element and tabulated values of plasma temperature as a function of time is developed. The tabulated values can be the solutions of an analytical model, the output from a numerical code or a set of observational measurements. An efficient numerical method to solve the ionisation equations is implemented. Results: A suite of tests is designed and run to demonstrate that the code provides reliable and accurate solutions for a number of scenarios including equilibration of the ion population and rapid heating followed by thermal conductive cooling. It is found that the solver can evolve the ionisation

  19. SGRAPH (SeismoGRAPHer): Seismic waveform analysis and integrated tools in seismology

    NASA Astrophysics Data System (ADS)

    Abdelwahed, Mohamed F.

    2012-03-01

    Although numerous seismological programs are currently available, most of them suffer from the inability to manipulate different data formats and the lack of embedded seismological tools. SeismoGRAPHer, or simply SGRAPH, is a new system for maintaining and analyzing seismic waveform data in a stand-alone, Windows-based application that manipulates a wide range of data formats. SGRAPH was intended to be a tool sufficient for performing basic waveform analysis and solving advanced seismological problems. The graphical user interface (GUI) utilities and the Windows functionalities, such as dialog boxes, menus, and toolbars, simplify the user interaction with the data. SGRAPH supports common data formats, such as SAC, SEED, GSE, ASCII, and Nanometrics Y-format, and provides the ability to solve many seismological problems with built-in inversion tools. Loaded traces are maintained, processed, plotted, and saved as SAC, ASCII, or PS (post script) file formats. SGRAPH includes Generalized Ray Theory (GRT), genetic algorithm (GA), least-square fitting, auto-picking, fast Fourier transforms (FFT), and many additional tools. This program provides rapid estimation of earthquake source parameters, location, attenuation, and focal mechanisms. Advanced waveform modeling techniques are provided for crustal structure and focal mechanism estimation. SGRAPH has been employed in the Egyptian National Seismic Network (ENSN) as a tool assisting with routine work and data analysis. More than 30 users have been using previous versions of SGRAPH in their research for more than 3 years. The main features of this application are ease of use, speed, small disk space requirements, and the absence of third-party developed components. Because of its architectural structure, SGRAPH can be interfaced with newly developed methods or applications in seismology. A complete setup file, including the SGRAPH package with the online user guide, is available.

  20. PREDICT: a diagnostic accuracy study of a tool for predicting mortality within one year: who should have an advance healthcare directive?

    PubMed

    Richardson, Philip; Greenslade, Jaimi; Shanmugathasan, Sulochana; Doucet, Katherine; Widdicombe, Neil; Chu, Kevin; Brown, Anthony

    2015-01-01

    CARING is a screening tool developed to identify patients who have a high likelihood of death in 1 year. This study sought to validate a modified CARING tool (termed PREDICT) using a population of patients presenting to the Emergency Department. In total, 1000 patients aged over 55 years who were admitted to hospital via the Emergency Department between January and June 2009 were eligible for inclusion in this study. Data on the six prognostic indicators comprising PREDICT were obtained retrospectively from patient records. One-year mortality data were obtained from the State Death Registry. Weights were applied to each PREDICT criterion, and its final score ranged from 0 to 44. Receiver operator characteristic analyses and diagnostic accuracy statistics were used to assess the accuracy of PREDICT in identifying 1-year mortality. The sample comprised 976 patients with a median (interquartile range) age of 71 years (62-81 years) and a 1-year mortality of 23.4%. In total, 50% had ≥1 PREDICT criteria with a 1-year mortality of 40.4%. Receiver operator characteristic analysis gave an area under the curve of 0.86 (95% confidence interval: 0.83-0.89). Using a cut-off of 13 points, PREDICT had a 95.3% (95% confidence interval: 93.6-96.6) specificity and 53.9% (95% confidence interval: 47.5-60.3) sensitivity for predicting 1-year mortality. PREDICT was simpler than the CARING criteria and identified 158 patients per 1000 admitted who could benefit from advance care planning. PREDICT was successfully applied to the Australian healthcare system with findings similar to the original CARING study conducted in the United States. This tool could improve end-of-life care by identifying who should have advance care planning or an advance healthcare directive. © The Author(s) 2014.

  1. Numerical model updating technique for structures using firefly algorithm

    NASA Astrophysics Data System (ADS)

    Sai Kubair, K.; Mohan, S. C.

    2018-03-01

    Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.

  2. A survey of parallel programming tools

    NASA Technical Reports Server (NTRS)

    Cheng, Doreen Y.

    1991-01-01

    This survey examines 39 parallel programming tools. Focus is placed on those tool capabilites needed for parallel scientific programming rather than for general computer science. The tools are classified with current and future needs of Numerical Aerodynamic Simulator (NAS) in mind: existing and anticipated NAS supercomputers and workstations; operating systems; programming languages; and applications. They are divided into four categories: suggested acquisitions, tools already brought in; tools worth tracking; and tools eliminated from further consideration at this time.

  3. Advanced corrections for InSAR using GPS and numerical weather models

    NASA Astrophysics Data System (ADS)

    Foster, J. H.; Cossu, F.; Amelung, F.; Businger, S.; Cherubini, T.

    2016-12-01

    The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting Interferometric Synthetic Aperture Radar's (InSAR) potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We present preliminary results from an investigation into the application of GPS and numerical weather models for generating tropospheric correction fields. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric model covering the Big Island of Hawaii and an even higher, 300 m resolution grid over Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate information on atmospheric heterogeneity from the GPS data into the models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive

  4. A review of laboratory and numerical modelling in volcanology

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine L.; Engwell, Samantha L.; Martin, Simon A.

    2018-04-01

    Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars), volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real world data.

  5. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2012-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  6. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  7. Advanced Neutronics Tools for BWR Design Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamarina, A.; Hfaiedh, N.; Letellier, R.

    2006-07-01

    This paper summarizes the developments implemented in the new APOLLO2.8 neutronics tool to meet the required target accuracy in LWR applications, particularly void effects and pin-by-pin power map in BWRs. The Method Of Characteristics was developed to allow efficient LWR assembly calculations in 2D-exact heterogeneous geometry; resonant reaction calculation was improved by the optimized SHEM-281 group mesh, which avoids resonance self-shielding approximation below 23 eV, and the new space-dependent method for resonant mixture that accounts for resonance overlapping. Furthermore, a new library CEA2005, processed from JEFF3.1 evaluations involving feedback from Critical Experiments and LWR P.I.E, is used. The specific '2005-2007more » BWR Plan' settled to demonstrate the validation/qualification of this neutronics tool is described. Some results from the validation process are presented: the comparison of APOLLO2.8 results to reference Monte Carlo TRIPOLI4 results on specific BWR benchmarks emphasizes the ability of the deterministic tool to calculate BWR assembly multiplication factor within 200 pcm accuracy for void fraction varying from 0 to 100%. The qualification process against the BASALA mock-up experiment stresses APOLLO2.8/CEA2005 performances: pin-by-pin power is always predicted within 2% accuracy, reactivity worth of B4C or Hf cruciform control blade, as well as Gd pins, is predicted within 1.2% accuracy. (authors)« less

  8. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation.

    PubMed

    Lee, Chany; Jung, Young-Jin; Lee, Sang Jun; Im, Chang-Hwan

    2017-02-01

    Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS. COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed. As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency. We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency. In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS. Copyright © 2016. Published by Elsevier B.V.

  9. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.

    PubMed

    Font, José A

    2008-01-01

    This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do) overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable, an effort has

  10. Microcomputer-Based Access to Machine-Readable Numeric Databases.

    ERIC Educational Resources Information Center

    Wenzel, Patrick

    1988-01-01

    Describes the use of microcomputers and relational database management systems to improve access to numeric databases by the Data and Program Library Service at the University of Wisconsin. The internal records management system, in-house reference tools, and plans to extend these tools to the entire campus are discussed. (3 references) (CLB)

  11. The COPERNIC3 project: how AREVA is successfully developing an advanced global fuel rod performance code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnier, Ch.; Mailhe, P.; Sontheimer, F.

    2007-07-01

    Fuel performance is a key factor for minimizing operating costs in nuclear plants. One of the important aspects of fuel performance is fuel rod design, based upon reliable tools able to verify the safety of current fuel solutions, prevent potential issues in new core managements and guide the invention of tomorrow's fuels. AREVA is developing its future global fuel rod code COPERNIC3, which is able to calculate the thermal-mechanical behavior of advanced fuel rods in nuclear plants. Some of the best practices to achieve this goal are described, by reviewing the three pillars of a fuel rod code: the database,more » the modelling and the computer and numerical aspects. At first, the COPERNIC3 database content is described, accompanied by the tools developed to effectively exploit the data. Then is given an overview of the main modelling aspects, by emphasizing the thermal, fission gas release and mechanical sub-models. In the last part, numerical solutions are detailed in order to increase the computational performance of the code, with a presentation of software configuration management solutions. (authors)« less

  12. Clinical Virtual Reality tools to advance the prevention, assessment, and treatment of PTSD.

    PubMed

    Rizzo, Albert 'Skip'; Shilling, Russell

    2017-01-01

    Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) military personnel has created a significant behavioural healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. The current article presents the use of Virtual Reality (VR) as a clinical tool to address the assessment, prevention, and treatment of PTSD, based on the VR projects that were evolved at the University of Southern California Institute for Creative Technologies since 2004. A brief discussion of the definition and rationale for the clinical use of VR is followed by a description of a VR application designed for the delivery of prolonged exposure (PE) for treating Service Members (SMs) and Veterans with combat- and sexual assault-related PTSD. The expansion of the virtual treatment simulations of Iraq and Afghanistan for PTSD assessment and prevention is then presented. This is followed by a forward-looking discussion that details early efforts to develop virtual human agent systems that serve the role of virtual patients for training the next generation of clinical providers, as healthcare guides that can be used to support anonymous access to trauma-relevant behavioural healthcare information, and as clinical interviewers capable of automated behaviour analysis of users to infer psychological state. The paper will conclude with a discussion of VR as a tool for breaking down barriers to care in addition to its direct application in assessment and intervention.

  13. Clinical Virtual Reality tools to advance the prevention, assessment, and treatment of PTSD

    PubMed Central

    Rizzo, Albert ‘Skip’; Shilling, Russell

    2017-01-01

    ABSTRACT Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) military personnel has created a significant behavioural healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. The current article presents the use of Virtual Reality (VR) as a clinical tool to address the assessment, prevention, and treatment of PTSD, based on the VR projects that were evolved at the University of Southern California Institute for Creative Technologies since 2004. A brief discussion of the definition and rationale for the clinical use of VR is followed by a description of a VR application designed for the delivery of prolonged exposure (PE) for treating Service Members (SMs) and Veterans with combat- and sexual assault-related PTSD. The expansion of the virtual treatment simulations of Iraq and Afghanistan for PTSD assessment and prevention is then presented. This is followed by a forward-looking discussion that details early efforts to develop virtual human agent systems that serve the role of virtual patients for training the next generation of clinical providers, as healthcare guides that can be used to support anonymous access to trauma-relevant behavioural healthcare information, and as clinical interviewers capable of automated behaviour analysis of users to infer psychological state. The paper will conclude with a discussion of VR as a tool for breaking down barriers to care in addition to its direct application in assessment and intervention. PMID:29372007

  14. Preserving Simplecticity in the Numerical Integration of Linear Beam Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Christopher K.

    2017-07-01

    Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms ofmore » a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.« less

  15. Tsunami-induced boulder transport - combining physical experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Oetjen, Jan; Engel, Max; May, Simon Matthias; Schüttrumpf, Holger; Brueckner, Helmut; Prasad Pudasaini, Shiva

    2016-04-01

    Coasts are crucial areas for living, economy, recreation, transportation, and various sectors of industry. Many of them are exposed to high-energy wave events. With regard to the ongoing population growth in low-elevation coastal areas, the urgent need for developing suitable management measures, especially for hazards like tsunamis, becomes obvious. These measures require supporting tools which allow an exact estimation of impact parameters like inundation height, inundation area, and wave energy. Focussing on tsunamis, geological archives can provide essential information on frequency and magnitude on a longer time scale in order to support coastal hazard management. While fine-grained deposits may quickly be altered after deposition, multi-ton coarse clasts (boulders) may represent an information source on past tsunami events with a much higher preservation potential. Applying numerical hydrodynamic coupled boulder transport models (BTM) is a commonly used approach to analyse characteristics (e.g. wave height, flow velocity) of the corresponding tsunami. Correct computations of tsunamis and the induced boulder transport can provide essential event-specific information, including wave heights, runup and direction. Although several valuable numerical models for tsunami-induced boulder transport exist (e. g. Goto et al., 2007; Imamura et al., 2008), some important basic aspects of both tsunami hydrodynamics and corresponding boulder transport have not yet been entirely understood. Therefore, our project aims at these questions in four crucial aspects of boulder transport by a tsunami: (i) influence of sediment load, (ii) influence of complex boulder shapes other than idealized rectangular shapes, (iii) momentum transfers between multiple boulders, and (iv) influence of non-uniform bathymetries and topographies both on tsunami and boulder. The investigation of these aspects in physical experiments and the correct implementation of an advanced model is an urgent need

  16. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  17. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  18. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  19. Verifying the error bound of numerical computation implemented in computer systems

    DOEpatents

    Sawada, Jun

    2013-03-12

    A verification tool receives a finite precision definition for an approximation of an infinite precision numerical function implemented in a processor in the form of a polynomial of bounded functions. The verification tool receives a domain for verifying outputs of segments associated with the infinite precision numerical function. The verification tool splits the domain into at least two segments, wherein each segment is non-overlapping with any other segment and converts, for each segment, a polynomial of bounded functions for the segment to a simplified formula comprising a polynomial, an inequality, and a constant for a selected segment. The verification tool calculates upper bounds of the polynomial for the at least two segments, beginning with the selected segment and reports the segments that violate a bounding condition.

  20. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    NASA Astrophysics Data System (ADS)

    Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2004-06-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.

  1. Advances in In Vitro and In Silico Tools for Toxicokinetic Dose ...

    EPA Pesticide Factsheets

    Recent advances in vitro assays, in silico tools, and systems biology approaches provide opportunities for refined mechanistic understanding for chemical safety assessment that will ultimately lead to reduced reliance on animal-based methods. With the U.S. commercial chemical landscape encompassing thousands of chemicals with limited data, safety assessment strategies that reliably predict in vivo systemic exposures and subsequent in vivo effects efficiently are a priority. Quantitative in vitro-in vivo extrapolation (QIVIVE) is a methodology that facilitates the explicit and quantitative application of in vitro experimental data and in silico modeling to predict in vivo system behaviors and can be applied to predict chemical toxicokinetics, toxicodynamics and also population variability. Tiered strategies that incorporate sufficient information to reliably inform the relevant decision context will facilitate acceptance of these alternative data streams for safety assessments. This abstract does not necessarily reflect U.S. EPA policy. This talk will provide an update to an international audience on the state of science being conducted within the EPA’s Office of Research and Development to develop and refine approaches that estimate internal chemical concentrations following a given exposure, known as toxicokinetics. Toxicokinetic approaches hold great potential in their ability to link in vitro activities or toxicities identified during high-throughput screen

  2. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using

  3. Development of Numerical Tools for the Investigation of Plasma Detachment from Magnetic Nozzles

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2007-01-01

    A multidimensional numerical simulation framework aimed at investigating the process of plasma detachment from a magnetic nozzle is introduced. An existing numerical code based on a magnetohydrodynamic formulation of the plasma flow equations that accounts for various dispersive and dissipative processes in plasmas was significantly enhanced to allow for the modeling of axisymmetric domains containing three.dimensiunai momentum and magnetic flux vectors. A separate magnetostatic solver was used to simulate the applied magnetic field topologies found in various nozzle experiments. Numerical results from a magnetic diffusion test problem in which all three components of the magnetic field were present exhibit excellent quantitative agreement with the analytical solution, and the lack of numerical instabilities due to fluctuations in the value of del(raised dot)B indicate that the conservative MHD framework with dissipative effects is well-suited for multi-dimensional analysis of magnetic nozzles. Further studies will focus on modeling literature experiments both for the purpose of code validation and to extract physical insight regarding the mechanisms driving detachment.

  4. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 15: Administrative Information, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…

  5. The role of optimization in the next generation of computer-based design tools

    NASA Technical Reports Server (NTRS)

    Rogan, J. Edward

    1989-01-01

    There is a close relationship between design optimization and the emerging new generation of computer-based tools for engineering design. With some notable exceptions, the development of these new tools has not taken full advantage of recent advances in numerical design optimization theory and practice. Recent work in the field of design process architecture has included an assessment of the impact of next-generation computer-based design tools on the design process. These results are summarized, and insights into the role of optimization in a design process based on these next-generation tools are presented. An example problem has been worked out to illustrate the application of this technique. The example problem - layout of an aircraft main landing gear - is one that is simple enough to be solved by many other techniques. Although the mathematical relationships describing the objective function and constraints for the landing gear layout problem can be written explicitly and are quite straightforward, an approximation technique has been used in the solution of this problem that can just as easily be applied to integrate supportability or producibility assessments using theory of measurement techniques into the design decision-making process.

  6. Advanced aviation environmental modeling tools to inform policymakers

    DOT National Transportation Integrated Search

    2012-08-19

    Aviation environmental models which conform to international guidance have advanced : over the past several decades. Enhancements to algorithms and databases have increasingly : shown these models to compare well with gold standard measured data. The...

  7. ICE: An Automated Tool for Teaching Advanced C Programming

    ERIC Educational Resources Information Center

    Gonzalez, Ruben

    2017-01-01

    There are many difficulties with learning and teaching programming that can be alleviated with the use of software tools. Most of these tools have focused on the teaching of introductory programming concepts where commonly code fragments or small user programs are run in a sandbox or virtual machine, often in the cloud. These do not permit user…

  8. Numerical modelling of river morphodynamics: Latest developments and remaining challenges

    NASA Astrophysics Data System (ADS)

    Siviglia, Annunziato; Crosato, Alessandra

    2016-07-01

    Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.

  9. Verification and Validation Strategy for LWRS Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl M. Stoots; Richard R. Schultz; Hans D. Gougar

    2012-09-01

    One intension of the Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to create advanced computational tools for safety assessment that enable more accurate representation of a nuclear power plant safety margin. These tools are to be used to study the unique issues posed by lifetime extension and relicensing of the existing operating fleet of nuclear power plants well beyond their first license extension period. The extent to which new computational models / codes such as RELAP-7 can be used for reactor licensing / relicensing activities depends mainly upon the thoroughness with which they have been verifiedmore » and validated (V&V). This document outlines the LWRS program strategy by which RELAP-7 code V&V planning is to be accomplished. From the perspective of developing and applying thermal-hydraulic and reactivity-specific models to reactor systems, the US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.203 gives key guidance to numeric model developers and those tasked with the validation of numeric models. By creating Regulatory Guide 1.203 the NRC defined a framework for development, assessment, and approval of transient and accident analysis methods. As a result, this methodology is very relevant and is recommended as the path forward for RELAP-7 V&V. However, the unique issues posed by lifetime extension will require considerations in addition to those addressed in Regulatory Guide 1.203. Some of these include prioritization of which plants / designs should be studied first, coupling modern supporting experiments to the stringent needs of new high fidelity models / codes, and scaling of aging effects.« less

  10. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 13: Laser Machining, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  11. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 6: Welding, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  12. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 12: Instrumentation, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  13. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 5: Mold Making, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational speciality areas within the U.S. machine tool and metals-related…

  14. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 3: Machining, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  15. Advanced Tools for Smartphone-Based Experiments: Phyphox

    ERIC Educational Resources Information Center

    Staacks, S.; Hütz, S.; Stampfer, C.; Heinke, H.

    2018-01-01

    The sensors in modern smartphones are a promising and cost-effective tool for experimentation in physics education, but many experiments face practical problems. Often the phone is inaccessible during the experiment and the data usually needs to be analyzed subsequently on a computer. We address both problems by introducing a new app, called…

  16. Numerical simulation of coupled electrochemical and transport processes in battery systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, B.Y.; Gu, W.B.; Wang, C.Y.

    1997-12-31

    Advanced numerical modeling to simulate dynamic battery performance characteristics for several types of advanced batteries is being conducted using computational fluid dynamics (CFD) techniques. The CFD techniques provide efficient algorithms to solve a large set of highly nonlinear partial differential equations that represent the complex battery behavior governed by coupled electrochemical reactions and transport processes. The authors have recently successfully applied such techniques to model advanced lead-acid, Ni-Cd and Ni-MH cells. In this paper, the authors briefly discuss how the governing equations were numerically implemented, show some preliminary modeling results, and compare them with other modeling or experimental data reportedmore » in the literature. The authors describe the advantages and implications of using the CFD techniques and their capabilities in future battery applications.« less

  17. An advanced probabilistic structural analysis method for implicit performance functions

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.

    1989-01-01

    In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.

  18. Numerical Modeling in Geodynamics: Success, Failure and Perspective

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.

    2005-12-01

    A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of

  19. Adaptive Encoding for Numerical Data Compression.

    ERIC Educational Resources Information Center

    Yokoo, Hidetoshi

    1994-01-01

    Discusses the adaptive compression of computer files of numerical data whose statistical properties are not given in advance. A new lossless coding method for this purpose, which utilizes Adelson-Velskii and Landis (AVL) trees, is proposed. The method is effective to any word length. Its application to the lossless compression of gray-scale images…

  20. Proceedings of the Workshop on software tools for distributed intelligent control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herget, C.J.

    1990-09-01

    The Workshop on Software Tools for Distributed Intelligent Control Systems was organized by Lawrence Livermore National Laboratory for the United States Army Headquarters Training and Doctrine Command and the Defense Advanced Research Projects Agency. The goals of the workshop were to the identify the current state of the art in tools which support control systems engineering design and implementation, identify research issues associated with writing software tools which would provide a design environment to assist engineers in multidisciplinary control design and implementation, formulate a potential investment strategy to resolve the research issues and develop public domain code which can formmore » the core of more powerful engineering design tools, and recommend test cases to focus the software development process and test associated performance metrics. Recognizing that the development of software tools for distributed intelligent control systems will require a multidisciplinary effort, experts in systems engineering, control systems engineering, and compute science were invited to participate in the workshop. In particular, experts who could address the following topics were selected: operating systems, engineering data representation and manipulation, emerging standards for manufacturing data, mathematical foundations, coupling of symbolic and numerical computation, user interface, system identification, system representation at different levels of abstraction, system specification, system design, verification and validation, automatic code generation, and integration of modular, reusable code.« less

  1. Advancing the field of 3D biomaterial printing.

    PubMed

    Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N

    2016-01-11

    3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications.

  2. Animal models: an important tool in mycology.

    PubMed

    Capilla, Javier; Clemons, Karl V; Stevens, David A

    2007-12-01

    Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.

  3. Cluster tool solution for fabrication and qualification of advanced photomasks

    NASA Astrophysics Data System (ADS)

    Schaetz, Thomas; Hartmann, Hans; Peter, Kai; Lalanne, Frederic P.; Maurin, Olivier; Baracchi, Emanuele; Miramond, Corinne; Brueck, Hans-Juergen; Scheuring, Gerd; Engel, Thomas; Eran, Yair; Sommer, Karl

    2000-07-01

    The reduction of wavelength in optical lithography, phase shift technology and optical proximity correction (OPC), requires a rapid increase in cost effective qualification of photomasks. The knowledge about CD variation, loss of pattern fidelity especially for OPC pattern and mask defects concerning the impact on wafer level is becoming a key issue for mask quality assessment. As part of the European Community supported ESPRIT projection 'Q-CAP', a new cluster concept has been developed, which allows the combination of hardware tools as well as software tools via network communication. It is designed to be open for any tool manufacturer and mask hose. The bi-directional network access allows the exchange of all relevant mask data including grayscale images, measurement results, lithography parameters, defect coordinates, layout data, process data etc. and its storage to a SQL database. The system uses SEMI format descriptions as well as standard network hardware and software components for the client server communication. Each tool is used mainly to perform its specific application without using expensive time to perform optional analysis, but the availability of the database allows each component to share the full data ste gathered by all components. Therefore, the cluster can be considered as one single virtual tool. The paper shows the advantage of the cluster approach, the benefits of the tools linked together already, and a vision of a mask house in the near future.

  4. Numerical Stimulation of Multicomponent Chromatography Using Spreadsheets.

    ERIC Educational Resources Information Center

    Frey, Douglas D.

    1990-01-01

    Illustrated is the use of spreadsheet programs for implementing finite difference numerical simulations of chromatography as an instructional tool in a separations course. Discussed are differential equations, discretization and integration, spreadsheet development, computer requirements, and typical simulation results. (CW)

  5. Methods, Software and Tools for Three Numerical Applications. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. R. Jessup

    2000-03-01

    This is a report of the results of the authors work supported by DOE contract DE-FG03-97ER25325. They proposed to study three numerical problems. They are: (1) the extension of the PMESC parallel programming library; (2) the development of algorithms and software for certain generalized eigenvalue and singular value (SVD) problems, and (3) the application of techniques of linear algebra to an information retrieval technique known as latent semantic indexing (LSI).

  6. Basic and Advanced Numerical Performances Relate to Mathematical Expertise but Are Fully Mediated by Visuospatial Skills

    ERIC Educational Resources Information Center

    Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi

    2016-01-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic…

  7. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosionmore » phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of

  8. An Observation Analysis Tool for time-series analysis and sensor management in the FREEWAT GIS environment for water resources management

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo

    2017-04-01

    In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.

  9. Numerical Uncertainty Quantification for Radiation Analysis Tools

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke; Blattnig, Steve; Clowdsley, Martha

    2007-01-01

    Recently a new emphasis has been placed on engineering applications of space radiation analyses and thus a systematic effort of Verification, Validation and Uncertainty Quantification (VV&UQ) of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. There are two sources of uncertainty in geometric discretization addressed in this paper that need to be quantified in order to understand the total uncertainty in estimating space radiation exposures. One source of uncertainty is in ray tracing, as the number of rays increase the associated uncertainty decreases, but the computational expense increases. Thus, a cost benefit analysis optimizing computational time versus uncertainty is needed and is addressed in this paper. The second source of uncertainty results from the interpolation over the dose vs. depth curves that is needed to determine the radiation exposure. The question, then, is what is the number of thicknesses that is needed to get an accurate result. So convergence testing is performed to quantify the uncertainty associated with interpolating over different shield thickness spatial grids.

  10. Oscillation Baselining and Analysis Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  11. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 8: Sheet Metal & Composites, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  12. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 4: Manufacturing Engineering Technology, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  13. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 14: Automated Equipment Technician (CIM), of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  14. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 10: Computer-Aided Drafting & Design, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  15. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 7: Industrial Maintenance Technology, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  16. A survey of tools and resources for the next generation analyst

    NASA Astrophysics Data System (ADS)

    Hall, David L.; Graham, Jake; Catherman, Emily

    2015-05-01

    We have previously argued that a combination of trends in information technology (IT) and changing habits of people using IT provide opportunities for the emergence of a new generation of analysts that can perform effective intelligence, surveillance and reconnaissance (ISR) on a "do it yourself" (DIY) or "armchair" approach (see D.L. Hall and J. Llinas (2014)). Key technology advances include: i) new sensing capabilities including the use of micro-scale sensors and ad hoc deployment platforms such as commercial drones, ii) advanced computing capabilities in mobile devices that allow advanced signal and image processing and modeling, iii) intelligent interconnections due to advances in "web N" capabilities, and iv) global interconnectivity and increasing bandwidth. In addition, the changing habits of the digital natives reflect new ways of collecting and reporting information, sharing information, and collaborating in dynamic teams. This paper provides a survey and assessment of tools and resources to support this emerging analysis approach. The tools range from large-scale commercial tools such as IBM i2 Analyst Notebook, Palantir, and GeoSuite to emerging open source tools such as GeoViz and DECIDE from university research centers. The tools include geospatial visualization tools, social network analysis tools and decision aids. A summary of tools is provided along with links to web sites for tool access.

  17. Systems-Level Synthetic Biology for Advanced Biofuel Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less

  18. Numerical simulation on chain-die forming of an AHSS top-hat section

    NASA Astrophysics Data System (ADS)

    Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui

    2018-05-01

    The applications of Advanced High-Strength Steels (AHSS) in the automotive industry are rapidly increasing due to a demand for a lightweight material that significantly reduces fuel consumption without compromising passenger safety. Automotive industries and material suppliers are expected by consumers to deliver reliable and affordable products, thus stimulating these manufacturers to research solutions to meet these customer requirements. The primary advantage of AHSS is its extremely high strength to weight ratio, an ideal material for the automotive industry. However, its low ductility is a major disadvantage, in particular, when using traditional cold forming processes such as roll forming and deep drawing process to form profiles. Consequently, AHSS parts frequently fail to form. Thereby, in order to improve quality and reliability on manufacturing AHSS products, a recently-developed incremental cold sheet metal forming technology called Chain-die Forming (CDF) is recognised as a potential solution to the forming process of AHSS. The typical CDF process is a combination of bending and roll forming processes which is equivalent to a roll with a large deforming radius, and incrementally forms the desired shape with split die and segments. This study focuses on manufacturing an AHSS top-hat section with minimum passes without geometrical or surface defects by using finite element modelling and simulations. The developed numerical simulation is employed to investigate the influences on the main control parameter of the CDF process while forming AHSS products and further develop new die-punch sets of compensation design via a numerical optimal process. In addition, the study focuses on the tool design to compensate spring-back and reduce friction between tooling and sheet-metal. This reduces the number of passes, thereby improving productivity and reducing energy consumption and material waste. This numerical study reveals that CDF forms AHSS products of complex

  19. Analysis instruments for the performance of Advanced Practice Nursing.

    PubMed

    Sevilla-Guerra, Sonia; Zabalegui, Adelaida

    2017-11-29

    Advanced Practice Nursing has been a reality in the international context for several decades and recently new nursing profiles have been developed in Spain as well that follow this model. The consolidation of these advanced practice roles has also led to of the creation of tools that attempt to define and evaluate their functions. This study aims to identify and explore the existing instruments that enable the domains of Advanced Practice Nursing to be defined. A review of existing international questionnaires and instruments was undertaken, including an analysis of the design process, the domains/dimensions defined, the main results and an exploration of clinimetric properties. Seven studies were analysed but not all proved to be valid, stable or reliable tools. One included tool was able to differentiate between the functions of the general nurse and the advanced practice nurse by the level of activities undertaken within the five domains described. These tools are necessary to evaluate the scope of advanced practice in new nursing roles that correspond to other international models of competencies and practice domains. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  20. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  1. Video decision support tool for advance care planning in dementia: randomised controlled trial

    PubMed Central

    Paasche-Orlow, Michael K; Barry, Michael J; Gillick, Muriel R; Minaker, Kenneth L; Chang, Yuchiao; Cook, E Francis; Abbo, Elmer D; El-Jawahri, Areej; Mitchell, Susan L

    2009-01-01

    Objective To evaluate the effect of a video decision support tool on the preferences for future medical care in older people if they develop advanced dementia, and the stability of those preferences after six weeks. Design Randomised controlled trial conducted between 1 September 2007 and 30 May 2008. Setting Four primary care clinics (two geriatric and two adult medicine) affiliated with three academic medical centres in Boston. Participants Convenience sample of 200 older people (≥65 years) living in the community with previously scheduled appointments at one of the clinics. Mean age was 75 and 58% were women. Intervention Verbal narrative alone (n=106) or with a video decision support tool (n=94). Main outcome measures Preferred goal of care: life prolonging care (cardiopulmonary resuscitation, mechanical ventilation), limited care (admission to hospital, antibiotics, but not cardiopulmonary resuscitation), or comfort care (treatment only to relieve symptoms). Preferences after six weeks. The principal category for analysis was the difference in proportions of participants in each group who preferred comfort care. Results Among participants receiving the verbal narrative alone, 68 (64%) chose comfort care, 20 (19%) chose limited care, 15 (14%) chose life prolonging care, and three (3%) were uncertain. In the video group, 81 (86%) chose comfort care, eight (9%) chose limited care, four (4%) chose life prolonging care, and one (1%) was uncertain (χ2=13.0, df=3, P=0.003). Among all participants the factors associated with a greater likelihood of opting for comfort care were being a college graduate or higher, good or better health status, greater health literacy, white race, and randomisation to the video arm. In multivariable analysis, participants in the video group were more likely to prefer comfort care than those in the verbal group (adjusted odds ratio 3.9, 95% confidence interval 1.8 to 8.6). Participants were re-interviewed after six weeks. Among the 94

  2. Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y; Glascoe, L

    The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirementsmore » of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.« less

  3. New algorithms for motion error detection of numerical control machine tool by laser tracking measurement on the basis of GPS principle.

    PubMed

    Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie

    2018-01-01

    As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.

  4. New algorithms for motion error detection of numerical control machine tool by laser tracking measurement on the basis of GPS principle

    NASA Astrophysics Data System (ADS)

    Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie

    2018-01-01

    As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.

  5. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    NASA Astrophysics Data System (ADS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  6. Proposing "the burns suite" as a novel simulation tool for advancing the delivery of burns education.

    PubMed

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2014-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. We explored this concept in a burns scenario in a novel, low-cost, high-fidelity, portable, immersive simulation environment (referred to as distributed simulation). This contextualized simulation/distributed simulation combination was named "The Burns Suite" (TBS). A pediatric burn resuscitation scenario was selected after high trainee demand. It was designed on Advanced Trauma and Life Support and Emergency Management of Severe Burns principles and refined using expert opinion through cognitive task analysis. TBS contained "realism" props, briefed nurses, and a simulated patient. Novices and experts were recruited. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's α was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twelve participants completed TBS scenario. Mean face and content validity ratings were high (4.6 and 4.5, respectively; range, 4-5). The internal consistency of questions was high. Qualitative data analysis revealed that participants felt 1) the experience was "real" and they were "able to behave as if in a real resuscitation environment," and 2) TBS "addressed what Advanced Trauma and Life Support and Emergency Management of Severe Burns didn't" (including the efficacy of incorporating nontechnical skills). TBS provides a novel, effective simulation tool to significantly advance the delivery of burns education. Recreating clinical challenge is crucial to optimize simulation training. This low-cost approach also has major implications for surgical education, particularly during increasing financial austerity. Alternative scenarios and/or procedures can be recreated within TBS, providing a diverse educational immersive simulation experience.

  7. Development, Implementation and Application of Micromechanical Analysis Tools for Advanced High Temperature Composites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document contains the final report to the NASA Glenn Research Center (GRC) for the research project entitled Development, Implementation, and Application of Micromechanical Analysis Tools for Advanced High-Temperature Composites. The research supporting this initiative has been conducted by Dr. Brett A. Bednarcyk, a Senior Scientist at OM in Brookpark, Ohio from the period of August 1998 to March 2005. Most of the work summarized herein involved development, implementation, and application of enhancements and new capabilities for NASA GRC's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package. When the project began, this software was at a low TRL (3-4) and at release version 2.0. Due to this project, the TRL of MAC/GMC has been raised to 7 and two new versions (3.0 and 4.0) have been released. The most important accomplishments with respect to MAC/GMC are: (1) A multi-scale framework has been built around the software, enabling coupled design and analysis from the global structure scale down to the micro fiber-matrix scale; (2) The software has been expanded to analyze smart materials; (3) State-of-the-art micromechanics theories have been implemented and validated within the code; (4) The damage, failure, and lifing capabilities of the code have been expanded from a very limited state to a vast degree of functionality and utility; and (5) The user flexibility of the code has been significantly enhanced. MAC/GMC is now the premier code for design and analysis of advanced composite and smart materials. It is a candidate for the 2005 NASA Software of the Year Award. The work completed over the course of the project is summarized below on a year by year basis. All publications resulting from the project are listed at the end of this report.

  8. Technical Report on Occupations in Numerically Controlled Metal-Cutting Machining.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. U.S. Employment Service.

    At the present time, only 5 percent of the short-run metal-cutting machining in the United States is done by numerically controlled machined tools, but within the next decade it is expected to increase by 50 percent. Numerically controlled machines use taped data which is changed into instructions and directs the machine to do certain steps…

  9. A strip chart recorder pattern recognition tool kit for Shuttle operations

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.

    1993-01-01

    During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.

  10. On numerical modeling of one-dimensional geothermal histories

    USGS Publications Warehouse

    Haugerud, R.A.

    1989-01-01

    Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.

  11. CFD Analysis in Advance of the NASA Juncture Flow Experiment

    NASA Technical Reports Server (NTRS)

    Lee, H. C.; Pulliam, T. H.; Neuhart, D. H.; Kegerise, M. A.

    2017-01-01

    NASA through its Transformational Tools and Technologies Project (TTT) under the Advanced Air Vehicle Program, is supporting a substantial effort to investigate the formation and origin of separation bubbles found on wing-body juncture zones. The flow behavior in these regions is highly complex, difficult to measure experimentally, and challenging to model numerically. Multiple wing configurations were designed and evaluated using Computational Fluid Dynamics (CFD), and a series of wind tunnel risk reduction tests were performed to further down-select the candidates for the final experiment. This paper documents the CFD analysis done in conjunction with the 6 percent scale risk reduction experiment performed in NASA Langley's 14- by 22-Foot Subsonic Tunnel. The combined CFD and wind tunnel results ultimately helped the Juncture Flow committee select the wing configurations for the final experiment.

  12. Monitoring of seismic time-series with advanced parallel computational tools and complex networks

    NASA Astrophysics Data System (ADS)

    Kechaidou, M.; Sirakoulis, G. Ch.; Scordilis, E. M.

    2012-04-01

    Earthquakes have been in the focus of human and research interest for several centuries due to their catastrophic effect to the everyday life as they occur almost all over the world demonstrating a hard to be modelled unpredictable behaviour. On the other hand, their monitoring with more or less technological updated instruments has been almost continuous and thanks to this fact several mathematical models have been presented and proposed so far to describe possible connections and patterns found in the resulting seismological time-series. Especially, in Greece, one of the most seismically active territories on earth, detailed instrumental seismological data are available from the beginning of the past century providing the researchers with valuable and differential knowledge about the seismicity levels all over the country. Considering available powerful parallel computational tools, such as Cellular Automata, these data can be further successfully analysed and, most important, modelled to provide possible connections between different parameters of the under study seismic time-series. More specifically, Cellular Automata have been proven very effective to compose and model nonlinear complex systems resulting in the advancement of several corresponding models as possible analogues of earthquake fault dynamics. In this work preliminary results of modelling of the seismic time-series with the help of Cellular Automata so as to compose and develop the corresponding complex networks are presented. The proposed methodology will be able to reveal under condition hidden relations as found in the examined time-series and to distinguish the intrinsic time-series characteristics in an effort to transform the examined time-series to complex networks and graphically represent their evolvement in the time-space. Consequently, based on the presented results, the proposed model will eventually serve as a possible efficient flexible computational tool to provide a generic

  13. Tracking and Reporting Outcomes Of Procedural Sedation (TROOPS): Standardized Quality Improvement and Research Tools from the International Committee for the Advancement of Procedural Sedation.

    PubMed

    Roback, M G; Green, S M; Andolfatto, G; Leroy, P L; Mason, K P

    2018-01-01

    Many hospitals, and medical and dental clinics and offices, routinely monitor their procedural-sedation practices-tracking adverse events, outcomes, and efficacy in order to optimize the sedation delivery and practice. Currently, there exist substantial differences between settings in the content, collection, definition, and interpretation of such sedation outcomes, with resulting widespread reporting variation. With the objective of reducing such disparities, the International Committee for the Advancement of Procedural Sedation has herein developed a multidisciplinary, consensus-based, standardized tool intended to be applicable for all types of sedation providers in all locations worldwide. This tool is amenable for inclusion in either a paper or an electronic medical record. An additional, parallel research tool is presented to promote consistency and standardized data collection for procedural-sedation investigations. Copyright © 2017. Published by Elsevier Ltd.

  14. Influence of the Numerical Scheme on the Solution Quality of the SWE for Tsunami Numerical Codes: The Tohoku-Oki, 2011Example.

    NASA Astrophysics Data System (ADS)

    Reis, C.; Clain, S.; Figueiredo, J.; Baptista, M. A.; Miranda, J. M. A.

    2015-12-01

    Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly

  15. Critical brain regions for tool-related and imitative actions: a componential analysis

    PubMed Central

    Shapiro, Allison D.; Coslett, H. Branch

    2014-01-01

    Numerous functional neuroimaging studies suggest that widespread bilateral parietal, temporal, and frontal regions are involved in tool-related and pantomimed gesture performance, but the role of these regions in specific aspects of gestural tasks remains unclear. In the largest prospective study of apraxia-related lesions to date, we performed voxel-based lesion–symptom mapping with data from 71 left hemisphere stroke participants to assess the critical neural substrates of three types of actions: gestures produced in response to viewed tools, imitation of tool-specific gestures demonstrated by the examiner, and imitation of meaningless gestures. Thus, two of the three gesture types were tool-related, and two of the three were imitative, enabling pairwise comparisons designed to highlight commonalities and differences. Gestures were scored separately for postural (hand/arm positioning) and kinematic (amplitude/timing) accuracy. Lesioned voxels in the left posterior temporal gyrus were significantly associated with lower scores on the posture component for both of the tool-related gesture tasks. Poor performance on the kinematic component of all three gesture tasks was significantly associated with lesions in left inferior parietal and frontal regions. These data enable us to propose a componential neuroanatomic model of action that delineates the specific components required for different gestural action tasks. Thus, visual posture information and kinematic capacities are differentially critical to the three types of actions studied here: the kinematic aspect is particularly critical for imitation of meaningless movement, capacity for tool-action posture representations are particularly necessary for pantomimed gestures to the sight of tools, and both capacities inform imitation of tool-related movements. These distinctions enable us to advance traditional accounts of apraxia. PMID:24776969

  16. Data and Tools | Transportation Research | NREL

    Science.gov Websites

    Projection Tool Lite Tool for projecting consumer demand for electric vehicle charging infrastructure at the technologies or for selecting a technology to invest in. Transportation-Related Consumer Preference Data Consumer preference data related to alternative fuel and advanced vehicle technologies to support the

  17. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 2: Career Development, General Education and Remediation, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  18. Numerical Zooming Between a NPSS Engine System Simulation and a One-Dimensional High Compressor Analysis Code

    NASA Technical Reports Server (NTRS)

    Follen, Gregory; auBuchon, M.

    2000-01-01

    Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer along with the concept of numerical zooming between zero-dimensional to one-, two-, and three-dimensional component engine codes. In addition, the NPSS is refining the computing and communication technologies necessary to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Of the different technology areas that contribute to the development of the NPSS Environment, the subject of this paper is a discussion on numerical zooming between a NPSS engine simulation and higher fidelity representations of the engine components (fan, compressor, burner, turbines, etc.). What follows is a description of successfully zooming one-dimensional (row-by-row) high-pressure compressor analysis results back to a zero-dimensional NPSS engine simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the capability of the engine system simulation and increase the level of virtual test conducted prior to committing the design to hardware.

  19. atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Kholupenko, E. E.; Ivanchik, A. V.; Balashev, S. A.; Varshalovich, D. A.

    2011-10-01

    atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine" physical effects of cosmological recombination simultaneously with using fudge factors.

  20. Recent advances in molecular biology of parasitic viruses.

    PubMed

    Banik, Gouri Rani; Stark, Damien; Rashid, Harunor; Ellis, John T

    2014-01-01

    The numerous protozoa that can inhabit the human gastro-intestinal tract are known, yet little is understood of the viruses which infect these protozoa. The discovery, morphologic details, purification methods of virus-like particles, genome and proteome of the parasitic viruses, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and the Eimeria sp. are described in this review. The protozoan viruses share many common features: most of them are RNA or double-stranded RNA viruses, ranging between 5 and 8 kilobases, and are spherical or icosahedral in shape with an average diameter of 30-40 nm. These viruses may influence the function and pathogenicity of the protozoa which they infect, and may be important to investigate from a clinical perspective. The viruses may be used as specific genetic transfection vectors for the parasites and may represent a research tool. This review provides an overview on recent advances in the field of protozoan viruses.

  1. Advanced Corrections for InSAR Using GPS and Numerical Weather Models

    NASA Astrophysics Data System (ADS)

    Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.

    2017-12-01

    We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale

  2. Advanced tools for smartphone-based experiments: phyphox

    NASA Astrophysics Data System (ADS)

    Staacks, S.; Hütz, S.; Heinke, H.; Stampfer, C.

    2018-07-01

    The sensors in modern smartphones are a promising and cost-effective tool for experimentation in physics education, but many experiments face practical problems. Often the phone is inaccessible during the experiment and the data usually needs to be analyzed subsequently on a computer. We address both problems by introducing a new app, called ‘phyphox’, which is specifically designed for utilizing experiments in physics teaching. The app is free and designed to offer the same set of features on Android and iOS.

  3. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  4. A group decision-making tool for the application of membrane technologies in different water reuse scenarios.

    PubMed

    Sadr, S M K; Saroj, D P; Kouchaki, S; Ilemobade, A A; Ouki, S K

    2015-06-01

    A global challenge of increasing concern is diminishing fresh water resources. A growing practice in many communities to supplement diminishing fresh water availability has been the reuse of water. Novel methods of treating polluted waters, such as membrane assisted technologies, have recently been developed and successfully implemented in many places. Given the diversity of membrane assisted technologies available, the current challenge is how to select a reliable alternative among numerous technologies for appropriate water reuse. In this research, a fuzzy logic based multi-criteria, group decision making tool has been developed. This tool has been employed in the selection of appropriate membrane treatment technologies for several non-potable and potable reuse scenarios. Robust criteria, covering technical, environmental, economic and socio-cultural aspects, were selected, while 10 different membrane assisted technologies were assessed in the tool. The results show this approach capable of facilitating systematic and rigorous analysis in the comparison and selection of membrane assisted technologies for advanced wastewater treatment and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cement bond evaluation method in horizontal wells using segmented bond tool

    NASA Astrophysics Data System (ADS)

    Song, Ruolong; He, Li

    2018-06-01

    Most of the existing cement evaluation technologies suffer from tool eccentralization due to gravity in highly deviated wells and horizontal wells. This paper proposes a correction method to lessen the effects of tool eccentralization on evaluation results of cement bond using segmented bond tool, which has an omnidirectional sonic transmitter and eight segmented receivers evenly arranged around the tool 2 ft from the transmitter. Using 3-D finite difference parallel numerical simulation method, we investigate the logging responses of centred and eccentred segmented bond tool in a variety of bond conditions. From the numerical results, we find that the tool eccentricity and channel azimuth can be estimated from measured sector amplitude. The average of the sector amplitude when the tool is eccentred can be corrected to the one when the tool is centred. Then the corrected amplitude will be used to calculate the channel size. The proposed method is applied to both synthetic and field data. For synthetic data, it turns out that this method can estimate the tool eccentricity with small error and the bond map is improved after correction. For field data, the tool eccentricity has a good agreement with the measured well deviation angle. Though this method still suffers from the low accuracy of calculating channel azimuth, the credibility of corrected bond map is improved especially in horizontal wells. It gives us a choice to evaluate the bond condition for horizontal wells using existing logging tool. The numerical results in this paper can provide aids for understanding measurements of segmented tool in both vertical and horizontal wells.

  6. Remote Numerical Simulations of the Interaction of High Velocity Clouds with Random Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Santillan, Alfredo; Hernandez--Cervantes, Liliana; Gonzalez--Ponce, Alejandro; Kim, Jongsoo

    The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.

  7. Numerical model for healthy and injured ankle ligaments.

    PubMed

    Forestiero, Antonella; Carniel, Emanuele Luigi; Fontanella, Chiara Giulia; Natali, Arturo Nicola

    2017-06-01

    The aim of this work is to provide a computational tool for the investigation of ankle mechanics under different loading conditions. The attention is focused on the biomechanical role of ankle ligaments that are fundamental for joints stability. A finite element model of the human foot is developed starting from Computed Tomography and Magnetic Resonance Imaging, using particular attention to the definition of ankle ligaments. A refined fiber-reinforced visco-hyperelastic constitutive model is assumed to characterize the mechanical response of ligaments. Numerical analyses that interpret anterior drawer and the talar tilt tests reported in literature are performed. The numerical results are in agreement with the range of values obtained by experimental tests confirming the accuracy of the procedure adopted. The increase of the ankle range of motion after some ligaments rupture is also evaluated, leading to the capability of the numerical models to interpret the damage conditions. The developed computational model provides a tool for the investigation of foot and ankle functionality in terms of stress-strain of the tissues and in terms of ankle motion, considering different types of damage to ankle ligaments.

  8. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  9. Observing system simulations using synthetic radiances and atmospheric retrievals derived for the AMSU and HIRS in a mesoscale model. [Advanced Microwave Sounding Unit

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Huang, Hung-Lung; Kim, Dongsoo

    1990-01-01

    The paper addresses the concept of synthetic satellite imagery as a visualization and diagnostic tool for understanding satellite sensors of the future and to detail preliminary results on the quality of soundings from the current sensors. Preliminary results are presented on the quality of soundings from the combination of the High-Resolution Infrared Radiometer Sounder and the Advanced Microwave Sounding Unit. Results are also presented on the first Observing System Simulation Experiment using this data in a mesoscale numerical prediction model.

  10. Requirements for clinical information modelling tools.

    PubMed

    Moreno-Conde, Alberto; Jódar-Sánchez, Francisco; Kalra, Dipak

    2015-07-01

    This study proposes consensus requirements for clinical information modelling tools that can support modelling tasks in medium/large scale institutions. Rather than identify which functionalities are currently available in existing tools, the study has focused on functionalities that should be covered in order to provide guidance about how to evolve the existing tools. After identifying a set of 56 requirements for clinical information modelling tools based on a literature review and interviews with experts, a classical Delphi study methodology was applied to conduct a two round survey in order to classify them as essential or recommended. Essential requirements are those that must be met by any tool that claims to be suitable for clinical information modelling, and if we one day have a certified tools list, any tool that does not meet essential criteria would be excluded. Recommended requirements are those more advanced requirements that may be met by tools offering a superior product or only needed in certain modelling situations. According to the answers provided by 57 experts from 14 different countries, we found a high level of agreement to enable the study to identify 20 essential and 21 recommended requirements for these tools. It is expected that this list of identified requirements will guide developers on the inclusion of new basic and advanced functionalities that have strong support by end users. This list could also guide regulators in order to identify requirements that could be demanded of tools adopted within their institutions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Numerical Modelling of Staged Combustion Aft-Injected Hybrid Rocket Motors

    NASA Astrophysics Data System (ADS)

    Nijsse, Jeff

    The staged combustion aft-injected hybrid (SCAIH) rocket motor is a promising design for the future of hybrid rocket propulsion. Advances in computational fluid dynamics and scientific computing have made computational modelling an effective tool in hybrid rocket motor design and development. The focus of this thesis is the numerical modelling of the SCAIH rocket motor in a turbulent combustion, high-speed, reactive flow framework accounting for solid soot transport and radiative heat transfer. The SCAIH motor is modelled with a shear coaxial injector with liquid oxygen injected in the center at sub-critical conditions: 150 K and 150 m/s (Mach ≈ 0.9), and a gas-generator gas-solid mixture of one-third carbon soot by mass injected in the annual opening at 1175 K and 460 m/s (Mach ≈ 0.6). Flow conditions in the near injector region and the flame anchoring mechanism are of particular interest. Overall, the flow is shown to exhibit instabilities and the flame is shown to anchor directly on the injector faceplate with temperatures in excess of 2700 K.

  12. Fluid sampling tool

    DOEpatents

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  13. [Advance directives, a tool to humanize care].

    PubMed

    Olmari-Ebbing, M; Zumbach, C N; Forest, M I; Rapin, C H

    2000-07-01

    The relationship between the patient and a medical care giver is complex specially as it implies to the human, juridical and practical points of view. It depends on legal and deontological considerations, but also on professional habits. Today, we are confronted to a fundamental modification of this relationship. Professional guidelines exist, but are rarely applied and rarely taught in universities. However, patients are eager to move from a paternalistic relationship to a true partnership, more harmonious and more respectful of individual values ("value based medicine"). Advance directives give us an opportunity to improve our practices and to provide care consistent with the needs and wishes of each patient.

  14. Double diameter boring tool

    DOEpatents

    Ashbaugh, F.A.; Murry, K.R.

    1986-02-10

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  15. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  16. Double diameter boring tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashbaugh, F.A.; Murry, K.R.

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to themore » axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.« less

  17. Validation of the Individualized Numeric Rating Scale (INRS): a pain assessment tool for nonverbal children with intellectual disability.

    PubMed

    Solodiuk, Jean C; Scott-Sutherland, Jennifer; Meyers, Margie; Myette, Beth; Shusterman, Christine; Karian, Victoria E; Harris, Sion Kim; Curley, Martha A Q

    2010-08-01

    Clinical observations suggest that nonverbal children with severe intellectual disability exhibit pain in a wide variety yet uniquely individual ways. Here, we investigate the feasibility and describe the initial psychometrics properties of the Individualized Numeric Rating Scale (INRS), a personalized pain assessment tool for nonverbal children with intellectual disability based on the parent's knowledge of the child. Parents of 50 nonverbal children with severe intellectual disability scheduled for surgery were able to complete the task of describing then rank ordering their child's usual and pain indicators. The parent, bedside nurse and research assistant (RA) triad then simultaneously yet independently scored the patient's post-operative pain using the INRS for a maximum of two sets of pre/post paired observations. A total of 170 triad assessments were completed before (n=85) and after (n=85) an intervention to manage the child's pain. INRS inter-rater agreement between the parents and research nurse was high (ICC 0.82-0.87) across all ratings. Parent and bedside nurse agreement (ICC 0.65-0.74) and bedside nurse and research nurse agreement (ICC 0.74-0.80) also suggest good reliability. A moderate to strong correlation (0.63-0.73) between INRS ratings and NCCPC-PV total scores provides evidence of convergent validity. These results provide preliminary data that the INRS is a valid and reliable tool for assessing pain in nonverbal children with severe intellectual disability in an acute care setting. Copyright (c) 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Ares First Stage "Systemology" - Combining Advanced Systems Engineering and Planning Tools to Assure Mission Success

    NASA Technical Reports Server (NTRS)

    Seiler, James; Brasfield, Fred; Cannon, Scott

    2008-01-01

    Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.

  19. Advances in Laryngoscopy.

    PubMed

    Aziz, Michael

    2015-01-01

    Recent technological advances have made airway management safer. Because difficult intubation remains challenging to predict, having tools readily available that can be used to manage a difficult airway in any setting is critical. Fortunately, video technology has resulted in improvements for intubation performance while using laryngoscopy by various means. These technologies have been applied to rigid optical stylets, flexible intubation scopes, and, most notably, rigid laryngoscopes. These tools have proven effective for the anticipated difficult airway as well as the unanticipated difficult airway.

  20. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  1. Upstream-advancing waves generated by three-dimensional moving disturbances

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Joon; Grimshaw, Roger H. J.

    1990-02-01

    The wave field resulting from a surface pressure or a bottom topography in a horizontally unbounded domain is studied. Upstream-advancing waves successively generated by various forcing disturbances moving with near-resonant speeds are found by numerically solving a forced Kadomtsev-Petviashvili (fKP) equation, which shows in its simplest form the interplay of a basic linear wave operator, longitudinal and transverse dispersion, nonlinearity, and forcing. Curved solitary waves are found as a slowly varying similarity solution of the Kadomtsev-Petviashvili (KP) equation, and are favorably compared with the upstream-advancing waves numerically obtained.

  2. Desktop Publishing: A Powerful Tool for Advanced Composition Courses.

    ERIC Educational Resources Information Center

    Sullivan, Patricia

    1988-01-01

    Examines the advantages of using desktop publishing in advanced writing classes. Explains how desktop publishing can spur creativity, call attention to the interaction between words and pictures, encourage the social dimensions of computing and composing, and provide students with practical skills. (MM)

  3. Advanced process control framework initiative

    NASA Astrophysics Data System (ADS)

    Hill, Tom; Nettles, Steve

    1997-01-01

    The semiconductor industry, one the world's most fiercely competitive industries, is driven by increasingly complex process technologies and global competition to improve cycle time, quality, and process flexibility. Due to the complexity of these problems, current process control techniques are generally nonautomated, time-consuming, reactive, nonadaptive, and focused on individual fabrication tools and processes. As the semiconductor industry moves into higher density processes, radical new approaches are required. To address the need for advanced factory-level process control in this environment, Honeywell, Advanced Micro Devices (AMD), and SEMATECH formed the Advanced Process Control Framework Initiative (APCFI) joint research project. The project defines and demonstrates an Advanced Process Control (APC) approach based on SEMATECH's Computer Integrated Manufacturing (CIM) Framework. Its scope includes the coordination of Manufacturing Execution Systems, process control tools, and wafer fabrication equipment to provide necessary process control capabilities. Moreover, it takes advantage of the CIM Framework to integrate and coordinate applications from other suppliers that provide services necessary for the overall system to function. This presentation discusses the key concept of model-based process control that differentiates the APC Framework. This major improvement over current methods enables new systematic process control by linking the knowledge of key process settings to desired product characteristics that reside in models created with commercial model development tools The unique framework-based approach facilitates integration of commercial tools and reuse of their data by tying them together in an object-based structure. The presentation also explores the perspective of each organization's involvement in the APCFI project. Each has complementary goals and expertise to contribute; Honeywell represents the supplier viewpoint, AMD represents the user

  4. Prostate cancer diagnostics: Clinical challenges and the ongoing need for disruptive and effective diagnostic tools.

    PubMed

    Sharma, Shikha; Zapatero-Rodríguez, Julia; O'Kennedy, Richard

    The increased incidence and the significant health burden associated with carcinoma of the prostate have led to substantial changes in its diagnosis over the past century. Despite technological advancements, the management of prostate cancer has become progressively more complex and controversial for both early and late-stage disease. The limitations and potential harms associated with the use of prostate-specific antigen (PSA) as a diagnostic marker have stimulated significant investigation of numerous novel biomarkers that demonstrate varying capacities to detect prostate cancer and can decrease unnecessary biopsies. However, only a few of these markers have been approved for specific clinical settings while the others have not been adequately validated for use. This review systematically and critically assesses ongoing issues and emerging challenges in the current state of prostate cancer diagnostic tools and the need for disruptive next generation tools based on analysis of combinations of these biomarkers to enhance predictive accuracy which will benefit clinical diagnostics and patient welfare. Copyright © 2016. Published by Elsevier Inc.

  5. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    NASA Technical Reports Server (NTRS)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  6. Numerical simulation of the geodynamo reaches Earth's core dynamical regime

    NASA Astrophysics Data System (ADS)

    Aubert, J.; Gastine, T.; Fournier, A.

    2016-12-01

    Numerical simulations of the geodynamo have been successful at reproducing a number of static (field morphology) and kinematic (secular variation patterns, core surface flows and westward drift) features of Earth's magnetic field, making them a tool of choice for the analysis and retrieval of geophysical information on Earth's core. However, classical numerical models have been run in a parameter regime far from that of the real system, prompting the question of whether we do get "the right answers for the wrong reasons", i.e. whether the agreement between models and nature simply occurs by chance and without physical relevance in the dynamics. In this presentation, we show that classical models succeed in describing the geodynamo because their large-scale spatial structure is essentially invariant as one progresses along a well-chosen path in parameter space to Earth's core conditions. This path is constrained by the need to enforce the relevant force balance (MAC or Magneto-Archimedes-Coriolis) and preserve the ratio of the convective overturn and magnetic diffusion times. Numerical simulations performed along this path are shown to be spatially invariant at scales larger than that where the magnetic energy is ohmically dissipated. This property enables the definition of large-eddy simulations that show good agreement with direct numerical simulations in the range where both are feasible, and that can be computed at unprecedented values of the control parameters, such as an Ekman number E=10-8. Combining direct and large-eddy simulations, large-scale invariance is observed over half the logarithmic distance in parameter space between classical models and Earth. The conditions reached at this mid-point of the path are furthermore shown to be representative of the rapidly-rotating, asymptotic dynamical regime in which Earth's core resides, with a MAC force balance undisturbed by viscosity or inertia, the enforcement of a Taylor state and strong-field dynamo action

  7. My Team of Care Study: A Pilot Randomized Controlled Trial of a Web-Based Communication Tool for Collaborative Care in Patients With Advanced Cancer.

    PubMed

    Voruganti, Teja; Grunfeld, Eva; Jamieson, Trevor; Kurahashi, Allison M; Lokuge, Bhadra; Krzyzanowska, Monika K; Mamdani, Muhammad; Moineddin, Rahim; Husain, Amna

    2017-07-18

    The management of patients with complex care needs requires the expertise of health care providers from multiple settings and specialties. As such, there is a need for cross-setting, cross-disciplinary solutions that address deficits in communication and continuity of care. We have developed a Web-based tool for clinical collaboration, called Loop, which assembles the patient and care team in a virtual space for the purpose of facilitating communication around care management. The objectives of this pilot study were to evaluate the feasibility of integrating a tool like Loop into current care practices and to capture preliminary measures of the effect of Loop on continuity of care, quality of care, symptom distress, and health care utilization. We conducted an open-label pilot cluster randomized controlled trial allocating patients with advanced cancer (defined as stage III or IV disease) with ≥3 months prognosis, their participating health care team and caregivers to receive either the Loop intervention or usual care. Outcome data were collected from patients on a monthly basis for 3 months. Trial feasibility was measured with rate of uptake, as well as recruitment and system usage. The Picker Continuity of Care subscale, Palliative care Outcomes Scale, Edmonton Symptom Assessment Scale, and Ambulatory and Home Care Record were patient self-reported measures of continuity of care, quality of care, symptom distress, and health services utilization, respectively. We conducted a content analysis of messages posted on Loop to understand how the system was used. Nineteen physicians (oncologists or palliative care physicians) were randomized to the intervention or control arms. One hundred twenty-seven of their patients with advanced cancer were approached and 48 patients enrolled. Of 24 patients in the intervention arm, 20 (83.3%) registered onto Loop. In the intervention and control arms, 12 and 11 patients completed three months of follow-up, respectively. A mean

  8. A joint numerical and experimental study of the jet of an aircraft engine installation with advanced techniques

    NASA Astrophysics Data System (ADS)

    Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.

    2012-01-01

    This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.

  9. Numerical simulation of unsteady viscous flows

    NASA Technical Reports Server (NTRS)

    Hankey, Wilbur L.

    1987-01-01

    Most unsteady viscous flows may be grouped into two categories, i.e., forced and self-sustained oscillations. Examples of forced oscillations occur in turbomachinery and in internal combustion engines while self-sustained oscillations prevail in vortex shedding, inlet buzz, and wing flutter. Numerical simulation of these phenomena was achieved due to the advancement of vector processor computers. Recent progress in the simulation of unsteady viscous flows is addressed.

  10. Advanced MR Imaging of the Human Nucleus Accumbens--Additional Guiding Tool for Deep Brain Stimulation.

    PubMed

    Lucas-Neto, Lia; Reimão, Sofia; Oliveira, Edson; Rainha-Campos, Alexandre; Sousa, João; Nunes, Rita G; Gonçalves-Ferreira, António; Campos, Jorge G

    2015-07-01

    The human nucleus accumbens (Acc) has become a target for deep brain stimulation (DBS) in some neuropsychiatric disorders. Nonetheless, even with the most recent advances in neuroimaging it remains difficult to accurately delineate the Acc and closely related subcortical structures, by conventional MRI sequences. It is our purpose to perform a MRI study of the human Acc and to determine whether there are reliable anatomical landmarks that enable the precise location and identification of the nucleus and its core/shell division. For the Acc identification and delineation, based on anatomical landmarks, T1WI, T1IR and STIR 3T-MR images were acquired in 10 healthy volunteers. Additionally, 32-direction DTI was obtained for Acc segmentation. Seed masks for the Acc were generated with FreeSurfer and probabilistic tractography was performed using FSL. The probability of connectivity between the seed voxels and distinct brain areas was determined and subjected to k-means clustering analysis, defining 2 different regions. With conventional T1WI, the Acc borders are better defined through its surrounding anatomical structures. The DTI color-coded vector maps and IR sequences add further detail in the Acc identification and delineation. Additionally, using probabilistic tractography it is possible to segment the Acc into a core and shell division and establish its structural connectivity with different brain areas. Advanced MRI techniques allow in vivo delineation and segmentation of the human Acc and represent an additional guiding tool in the precise and safe target definition for DBS. © 2015 International Neuromodulation Society.

  11. Numerical tension adjustment of x-ray membrane to represent goat skin kompang

    NASA Astrophysics Data System (ADS)

    Siswanto, Waluyo Adi; Abdullah, Muhammad Syiddiq Bin

    2017-04-01

    This paper presents a numerical membrane model of traditional musical instrument kompang that will be used to find the parameter of membrane tension of x-ray membrane representing the classical goat-skin membrane of kompang. In this study, the experiment towards the kompang is first conducted in an acoustical anechoic enclosure and in parallel a mathematical model of the kompang membrane is developed to simulate the vibration of the kompang membrane in polar coordinate by implementing Fourier-Bessel wave function. The wave equation in polar direction in mode 0,1 is applied to provide the corresponding natural frequencies of the circular membrane. The value of initial and boundary conditions in the function is determined from experiment to allow the correct development of numerical equation. The numerical mathematical model is coded in SMath for the accurate numerical analysis as well as the plotting tool. Two kompang membrane cases with different membrane materials, i.e. goat skin and x-ray film membranes with fixed radius of 0.1 m are used in the experiment. An alternative of kompang's membrane made of x-ray film with the appropriate tension setting can be used to represent the sound of traditional goat-skin kompang. The tension setting of the membrane to resemble the goat-skin is 24N. An effective numerical tool has been develop to help kompang maker to set the tension of x-ray membrane. In the future application, any tradional kompang with different size can be replaced by another membrane material if the tension is set to the correct tension value. The developed numerical tool is useful and handy to calculate the tension of the alternative membrane material.

  12. Numerical Tension Adjustment of X-Ray Membrane to Represent Goat Skin Kompang

    NASA Astrophysics Data System (ADS)

    Syiddiq, M.; Siswanto, W. A.

    2017-01-01

    This paper presents a numerical membrane model of traditional musical instrument kompang that will be used to find the parameter of membrane tension of x-ray membrane representing the classical goat-skin membrane of kompang. In this study, the experiment towards the kompang is first conducted in an acoustical anechoic enclosure and in parallel a mathematical model of the kompang membrane is developed to simulate the vibration of the kompang membrane in polar coordinate by implementing Fourier-Bessel wave function. The wave equation in polar direction in mode 0,1 is applied to provide the corresponding natural frequencies of the circular membrane. The value of initial and boundary conditions in the function is determined from experiment to allow the correct development of numerical equation. The numerical mathematical model is coded in SMath for the accurate numerical analysis as well as the plotting tool. Two kompang membrane cases with different membrane materials, i.e. goat skin and x-ray film membranes with fixed radius of 0.1 m are used in the experiment. An alternative of kompang’s membrane made of x-ray film with the appropriate tension setting can be used to represent the sound of traditional goat-skin kompang. The tension setting of the membrane to resemble the goat-skin is 24N. An effective numerical tool has been used to help kompang maker to set the tension of x-ray membrane. In the future application, any traditional kompang with different size can be replaced by another membrane material if the tension is set to the correct tension value. The numerical tool used is useful and handy to calculate the tension of the alternative membrane material.

  13. Data management system advanced development

    NASA Technical Reports Server (NTRS)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  14. Assessment of numerical techniques for unsteady flow calculations

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung

    1989-01-01

    The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.

  15. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics

    PubMed Central

    Qiao, Guixiu; Weiss, Brian A.

    2016-01-01

    Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172

  16. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics.

    PubMed

    Qiao, Guixiu; Weiss, Brian A

    2016-01-01

    Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.

  17. Numerical methods for stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Kloeden, Peter; Platen, Eckhard

    1991-06-01

    The numerical analysis of stochastic differential equations differs significantly from that of ordinary differential equations due to the peculiarities of stochastic calculus. This book provides an introduction to stochastic calculus and stochastic differential equations, both theory and applications. The main emphasise is placed on the numerical methods needed to solve such equations. It assumes an undergraduate background in mathematical methods typical of engineers and physicists, through many chapters begin with a descriptive summary which may be accessible to others who only require numerical recipes. To help the reader develop an intuitive understanding of the underlying mathematicals and hand-on numerical skills exercises and over 100 PC Exercises (PC-personal computer) are included. The stochastic Taylor expansion provides the key tool for the systematic derivation and investigation of discrete time numerical methods for stochastic differential equations. The book presents many new results on higher order methods for strong sample path approximations and for weak functional approximations, including implicit, predictor-corrector, extrapolation and variance-reduction methods. Besides serving as a basic text on such methods. the book offers the reader ready access to a large number of potential research problems in a field that is just beginning to expand rapidly and is widely applicable.

  18. Airplane numerical simulation for the rapid prototyping process

    NASA Astrophysics Data System (ADS)

    Roysdon, Paul F.

    Airplane Numerical Simulation for the Rapid Prototyping Process is a comprehensive research investigation into the most up-to-date methods for airplane development and design. Uses of modern engineering software tools, like MatLab and Excel, are presented with examples of batch and optimization algorithms which combine the computing power of MatLab with robust aerodynamic tools like XFOIL and AVL. The resulting data is demonstrated in the development and use of a full non-linear six-degrees-of-freedom simulator. The applications for this numerical tool-box vary from un-manned aerial vehicles to first-order analysis of manned aircraft. A Blended-Wing-Body airplane is used for the analysis to demonstrate the flexibility of the code from classic wing-and-tail configurations to less common configurations like the blended-wing-body. This configuration has been shown to have superior aerodynamic performance -- in contrast to their classic wing-and-tube fuselage counterparts -- and have reduced sensitivity to aerodynamic flutter as well as potential for increased engine noise abatement. Of course without a classic tail elevator to damp the nose up pitching moment, and the vertical tail rudder to damp the yaw and possible rolling aerodynamics, the challenges in lateral roll and yaw stability, as well as pitching moment are not insignificant. This thesis work applies the tools necessary to perform the airplane development and optimization on a rapid basis, demonstrating the strength of this tool through examples and comparison of the results to similar airplane performance characteristics published in literature.

  19. MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB.

    PubMed

    Egert, U; Knott, Th; Schwarz, C; Nawrot, M; Brandt, A; Rotter, S; Diesmann, M

    2002-05-30

    Recent advances in electrophysiological techniques have created new tools for the acquisition and storage of neuronal activity recorded simultaneously with numerous electrodes. These techniques support the analysis of the function as well as the structure of individual electrogenic cells in the context of surrounding neuronal or cardiac network. Commercially available tools for the analysis of such data, however, cannot be easily adapted to newly emerging requirements for data analysis and visualization, and cross compatibility between them is limited. In this report we introduce a free open source toolbox called microelectrode array tools (MEA-Tools) for the analysis of multi-electrode data based on the common data analysis environment MATLAB (version 5.3-6.1, The Mathworks, Natick, MA). The toolbox itself is platform independent. The file interface currently supports files recorded with MCRack (Multi Channel Systems, Reutlingen, Germany) under Microsoft Windows 95, 98, NT, and 2000, but can be adapted to other data acquisition systems. Functions are controlled via command line input and graphical user interfaces, and support common requirements for the analysis of local field potentials, extracellular spike activity, and continuous recordings, in addition to supplementary data acquired by additional instruments, e.g. intracellular amplifiers. Data may be processed as continuous recordings or time windows triggered to some event.

  20. Numerical simulation of multi-rifled tube drawing - finding proper feedstock dimensions and tool geometry

    NASA Astrophysics Data System (ADS)

    Bella, P.; Buček, P.; Ridzoň, M.; Mojžiš, M.; Parilák, L.'

    2017-02-01

    Production of multi-rifled seamless steel tubes is quite a new technology in Železiarne Podbrezová. Therefore, a lot of technological questions emerges (process technology, input feedstock dimensions, material flow during drawing, etc.) Pilot experiments to fine tune the process cost a lot of time and energy. For this, numerical simulation would be an alternative solution for achieving optimal parameters in production technology. This would reduce the number of experiments needed, lowering the overall costs of development. However, to claim the numerical results to be relevant it is necessary to verify them against the actual plant trials. Searching for optimal input feedstock dimension for drawing of multi-rifled tube with dimensions Ø28.6 mm × 6.3 mm is what makes the main topic of this paper. As a secondary task, effective position of the plug - die couple has been solved via numerical simulation. Comparing the calculated results with actual numbers from plant trials a good agreement was observed.

  1. DualSPHysics: A numerical tool to simulate real breakwaters

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Crespo, Alejandro; Altomare, Corrado; Domínguez, José; Marzeddu, Andrea; Shang, Shao-ping; Gómez-Gesteira, Moncho

    2018-02-01

    The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.

  2. Critical brain regions for tool-related and imitative actions: a componential analysis.

    PubMed

    Buxbaum, Laurel J; Shapiro, Allison D; Coslett, H Branch

    2014-07-01

    Numerous functional neuroimaging studies suggest that widespread bilateral parietal, temporal, and frontal regions are involved in tool-related and pantomimed gesture performance, but the role of these regions in specific aspects of gestural tasks remains unclear. In the largest prospective study of apraxia-related lesions to date, we performed voxel-based lesion-symptom mapping with data from 71 left hemisphere stroke participants to assess the critical neural substrates of three types of actions: gestures produced in response to viewed tools, imitation of tool-specific gestures demonstrated by the examiner, and imitation of meaningless gestures. Thus, two of the three gesture types were tool-related, and two of the three were imitative, enabling pairwise comparisons designed to highlight commonalities and differences. Gestures were scored separately for postural (hand/arm positioning) and kinematic (amplitude/timing) accuracy. Lesioned voxels in the left posterior temporal gyrus were significantly associated with lower scores on the posture component for both of the tool-related gesture tasks. Poor performance on the kinematic component of all three gesture tasks was significantly associated with lesions in left inferior parietal and frontal regions. These data enable us to propose a componential neuroanatomic model of action that delineates the specific components required for different gestural action tasks. Thus, visual posture information and kinematic capacities are differentially critical to the three types of actions studied here: the kinematic aspect is particularly critical for imitation of meaningless movement, capacity for tool-action posture representations are particularly necessary for pantomimed gestures to the sight of tools, and both capacities inform imitation of tool-related movements. These distinctions enable us to advance traditional accounts of apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors

  3. An Efficient and Imperfect Model for Gravel-Bed Braided River Morphodynamics: Numerical Simulations as Exploratory Tools

    NASA Astrophysics Data System (ADS)

    Kasprak, A.; Brasington, J.; Hafen, K.; Wheaton, J. M.

    2015-12-01

    Numerical models that predict channel evolution through time are an essential tool for investigating processes that occur over timescales which render field observation intractable. However, available morphodynamic models generally take one of two approaches to the complex problem of computing morphodynamics, resulting in oversimplification of the relevant physics (e.g. cellular models) or faithful, yet computationally intensive, representations of the hydraulic and sediment transport processes at play. The practical implication of these approaches is that river scientists must often choose between unrealistic results, in the case of the former, or computational demands that render modeling realistic spatiotemporal scales of channel evolution impossible. Here we present a new modeling framework that operates at the timescale of individual competent flows (e.g. floods), and uses a highly-simplified sediment transport routine that moves volumes of material according to morphologically-derived characteristic transport distances, or path lengths. Using this framework, we have constructed an open-source morphodynamic model, termed MoRPHED, which is here applied, and its validity investigated, at timescales ranging from a single event to a decade on two braided rivers in the UK and New Zealand. We do not purport that MoRPHED is the best, nor even an adequate, tool for modeling braided river dynamics at this range of timescales. Rather, our goal in this research is to explore the utility, feasibility, and sensitivity of an event-scale, path-length-based modeling framework for predicting braided river dynamics. To that end, we further explore (a) which processes are naturally emergent and which must be explicitly parameterized in the model, (b) the sensitivity of the model to the choice of particle travel distance, and (c) whether an event-scale model timestep is adequate for producing braided channel dynamics. The results of this research may inform techniques for future

  4. 25 Years of Self-organized Criticality: Numerical Detection Methods

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. James; Aschwanden, Markus J.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Pruessner, Gunnar; Morales, Laura; Ireland, Jack; Abramenko, Valentyna

    2016-01-01

    The detection and characterization of self-organized criticality (SOC), in both real and simulated data, has undergone many significant revisions over the past 25 years. The explosive advances in the many numerical methods available for detecting, discriminating, and ultimately testing, SOC have played a critical role in developing our understanding of how systems experience and exhibit SOC. In this article, methods of detecting SOC are reviewed; from correlations to complexity to critical quantities. A description of the basic autocorrelation method leads into a detailed analysis of application-oriented methods developed in the last 25 years. In the second half of this manuscript space-based, time-based and spatial-temporal methods are reviewed and the prevalence of power laws in nature is described, with an emphasis on event detection and characterization. The search for numerical methods to clearly and unambiguously detect SOC in data often leads us outside the comfort zone of our own disciplines—the answers to these questions are often obtained by studying the advances made in other fields of study. In addition, numerical detection methods often provide the optimum link between simulations and experiments in scientific research. We seek to explore this boundary where the rubber meets the road, to review this expanding field of research of numerical detection of SOC systems over the past 25 years, and to iterate forwards so as to provide some foresight and guidance into developing breakthroughs in this subject over the next quarter of a century.

  5. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.

    PubMed

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao

    2015-09-08

    Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems.

  6. High satisfaction and low decisional conflict with advance care planning among chronically ill patients with advanced chronic obstructive pulmonary disease or heart failure using an online decision aid: A pilot study.

    PubMed

    Van Scoy, Lauren J; Green, Michael J; Dimmock, Anne Ef; Bascom, Rebecca; Boehmer, John P; Hensel, Jessica K; Hozella, Joshua B; Lehman, Erik B; Schubart, Jane R; Farace, Elana; Stewart, Renee R; Levi, Benjamin H

    2016-09-01

    Many patients with chronic illnesses report a desire for increased involvement in medical decision-making. This pilot study aimed to explore how patients with exacerbation-prone disease trajectories such as advanced heart failure or chronic obstructive pulmonary disease experience advance care planning using an online decision aid and to compare whether patients with different types of exacerbation-prone illnesses had varied experiences using the tool. Pre-intervention questionnaires measured advance care planning knowledge. Post-intervention questionnaires measured: (1) advance care planning knowledge; (2) satisfaction with tool; (3) decisional conflict; and (4) accuracy of the resultant advance directive. Comparisons were made between patients with heart failure and chronic obstructive pulmonary disease. Over 90% of the patients with heart failure (n = 24) or chronic obstructive pulmonary disease (n = 25) reported being "satisfied" or "highly satisfied" with the tool across all satisfaction domains; over 90% of participants rated the resultant advance directive as "very accurate." Participants reported low decisional conflict. Advance care planning knowledge scores rose by 18% (p < 0.001) post-intervention. There were no significant differences between participants with heart failure and chronic obstructive pulmonary disease. Patients with advanced heart failure and chronic obstructive pulmonary disease were highly satisfied after using an online advance care planning decision aid and had increased knowledge of advance care planning. This tool can be a useful resource for time-constrained clinicians whose patients wish to engage in advance care planning. © The Author(s) 2016.

  7. Modeling and MBL: Software Tools for Science.

    ERIC Educational Resources Information Center

    Tinker, Robert F.

    Recent technological advances and new software packages put unprecedented power for experimenting and theory-building in the hands of students at all levels. Microcomputer-based laboratory (MBL) and model-solving tools illustrate the educational potential of the technology. These tools include modeling software and three MBL packages (which are…

  8. Overview of the Machine-Tool Task Force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, G.P.

    1981-06-08

    The Machine Tool Task Force, (MTTF) surveyed the state of the art of machine tool technology for material removal for two and one-half years. This overview gives a brief summary of the approach, specific subjects covered, principal conclusions and some of the key recommendations aimed at improving the technology and advancing the productivity of machine tools. The Task Force consisted of 123 experts from the US and other countries. Their findings are documented in a five-volume report, Technology of Machine Tools.

  9. Engineering bacterial translation initiation - Do we have all the tools we need?

    PubMed

    Vigar, Justin R J; Wieden, Hans-Joachim

    2017-11-01

    Reliable tools that allow precise and predictable control over gene expression are critical for the success of nearly all bioengineering applications. Translation initiation is the most regulated phase during protein biosynthesis, and is therefore a promising target for exerting control over gene expression. At the translational level, the copy number of a protein can be fine-tuned by altering the interaction between the translation initiation region of an mRNA and the ribosome. These interactions can be controlled by modulating the mRNA structure using numerous approaches, including small molecule ligands, RNAs, or RNA-binding proteins. A variety of naturally occurring regulatory elements have been repurposed, facilitating advances in synthetic gene regulation strategies. The pursuit of a comprehensive understanding of mechanisms governing translation initiation provides the framework for future engineering efforts. Here we outline state-of-the-art strategies used to predictably control translation initiation in bacteria. We also discuss current limitations in the field and future goals. Due to its function as the rate-determining step, initiation is the ideal point to exert effective translation regulation. Several engineering tools are currently available to rationally design the initiation characteristics of synthetic mRNAs. However, improvements are required to increase the predictability, effectiveness, and portability of these tools. Predictable and reliable control over translation initiation will allow greater predictability when designing, constructing, and testing genetic circuits. The ability to build more complex circuits predictably will advance synthetic biology and contribute to our fundamental understanding of the underlying principles of these processes. "This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier

  10. Numerical simulation of asphalt mixtures fracture using continuum models

    NASA Astrophysics Data System (ADS)

    Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz

    2018-01-01

    The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.

  11. Numerical ordering of zero in honey bees.

    PubMed

    Howard, Scarlett R; Avarguès-Weber, Aurore; Garcia, Jair E; Greentree, Andrew D; Dyer, Adrian G

    2018-06-08

    Some vertebrates demonstrate complex numerosity concepts-including addition, sequential ordering of numbers, or even the concept of zero-but whether an insect can develop an understanding for such concepts remains unknown. We trained individual honey bees to the numerical concepts of "greater than" or "less than" using stimuli containing one to six elemental features. Bees could subsequently extrapolate the concept of less than to order zero numerosity at the lower end of the numerical continuum. Bees demonstrated an understanding that parallels animals such as the African grey parrot, nonhuman primates, and even preschool children. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. The numerical simulation tool for the MAORY multiconjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Arcidiacono, C.; Schreiber, L.; Bregoli, G.; Diolaiti, E.; Foppiani, I.; Agapito, G.; Puglisi, A.; Xompero, M.; Oberti, S.; Cosentino, G.; Lombini, M.; Butler, R. C.; Ciliegi, P.; Cortecchia, F.; Patti, M.; Esposito, S.; Feautrier, P.

    2016-07-01

    The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is an hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implement the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and use libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.

  13. The Status and Promise of Advanced M&V: An Overview of “M&V 2.0” Methods, Tools, and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franconi, Ellen; Gee, Matt; Goldberg, Miriam

    Advanced measurement and verification (M&V) of energy efficiency savings, often referred to as M&V 2.0 or advanced M&V, is currently an object of much industry attention. Thus far, however, there has been a lack of clarity about what techniques M&V 2.0 includes, how those techniques differ from traditional approaches, what the key considerations are for their use, and what value propositions M&V 2.0 presents to different stakeholders. The objective of this paper is to provide background information and frame key discussion points related to advanced M&V. The paper identifies the benefits, methods, and requirements of advanced M&V and outlines keymore » technical issues for applying these methods. It presents an overview of the distinguishing elements of M&V 2.0 tools and of how the industry is addressing needs for tool testing, consistency, and standardization, and it identifies opportunities for collaboration. In this paper, we consider two key features of M&V 2.0: (1) automated analytics that can provide ongoing, near-real-time savings estimates, and (2) increased data granularity in terms of frequency, volume, or end-use detail. Greater data granularity for large numbers of customers, such as that derived from comprehensive implementation of advanced metering infrastructure (AMI) systems, leads to very large data volumes. This drives interest in automated processing systems. It is worth noting, however, that automated processing can provide value even when applied to less granular data, such as monthly consumption data series. Likewise, more granular data, such as interval or end-use data, delivers value with or without automated processing, provided the processing is manageable. But it is the combination of greater data detail with automated processing that offers the greatest opportunity for value. Using M&V methods that capture load shapes together with automated processing1 can determine savings in near-real time to provide stakeholders with more timely

  14. Fluid sampling tool

    DOEpatents

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  15. Designing drugs on the internet? Free web tools and services supporting medicinal chemistry.

    PubMed

    Ertl, Peter; Jelfs, Stephen

    2007-01-01

    The drug discovery process is supported by a multitude of freely available tools on the Internet. This paper summarizes some of the databases and tools that are of particular interest to medicinal chemistry. These include numerous data collections that provide access to valuable chemical data resources, allowing complex queries of compound structures, associated physicochemical properties and biological activities to be performed and, in many cases, providing links to commercial chemical suppliers. Further applications are available for searching protein-ligand complexes and identifying important binding interactions that occur. This is particularly useful for understanding the molecular recognition of ligands in the lead optimization process. The Internet also provides access to databases detailing metabolic pathways and transformations which can provide insight into disease mechanism, identify new targets entities or the potential off-target effects of a drug candidate. Furthermore, sophisticated online cheminformatics tools are available for processing chemical structures, predicting properties, and generating 2D or 3D structure representations--often required prior to more advanced analyses. The Internet provides a wealth of valuable resources that, if fully exploited, can greatly benefit the drug discovery community. In this paper, we provide an overview of some of the more important of these and, in particular, the freely accessible resources that are currently available.

  16. Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases.

    PubMed

    Kolli, Nivya; Lu, Ming; Maiti, Panchanan; Rossignol, Julien; Dunbar, Gary L

    2018-01-01

    Increased accumulation of transcribed protein from the damaged DNA and reduced DNA repair capability contributes to numerous neurological diseases for which effective treatments are lacking. Gene editing techniques provide new hope for replacing defective genes and DNA associated with neurological diseases. With advancements in using such editing tools as zinc finger nucleases (ZFNs), meganucleases, and transcription activator-like effector nucleases (TALENs), etc., scientists are able to design DNA-binding proteins, which can make precise double-strand breaks (DSBs) at the target DNA. Recent developments with the CRISPR-Cas9 gene-editing technology has proven to be more precise and efficient when compared to most other gene-editing techniques. Two methods, non-homologous end joining (NHEJ) and homology-direct repair (HDR), are used in CRISPR-Cas9 system to efficiently excise the defective genes and incorporate exogenous DNA at the target site. In this review article, we provide an overview of the CRISPR-Cas9 methodology, including its molecular mechanism, with a focus on how in this gene-editing tool can be used to counteract certain genetic defects associated with neurological diseases. Detailed understanding of this new tool could help researchers design specific gene editing strategies to repair genetic disorders in selective neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Advances in Machine Learning and Data Mining for Astronomy

    NASA Astrophysics Data System (ADS)

    Way, Michael J.; Scargle, Jeffrey D.; Ali, Kamal M.; Srivastava, Ashok N.

    2012-03-01

    Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.

  18. Power Plant Model Validation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The PPMV is used to validate generator model using disturbance recordings. The PPMV tool contains a collection of power plant models and model validation studies, as well as disturbance recordings from a number of historic grid events. The user can import data from a new disturbance into the database, which converts PMU and SCADA data into GE PSLF format, and then run the tool to validate (or invalidate) the model for a specific power plant against its actual performance. The PNNL PPMV tool enables the automation of the process of power plant model validation using disturbance recordings. The tool usesmore » PMU and SCADA measurements as input information. The tool automatically adjusts all required EPCL scripts and interacts with GE PSLF in the batch mode. The main tool features includes: The tool interacts with GE PSLF; The tool uses GE PSLF Play-In Function for generator model validation; Database of projects (model validation studies); Database of the historic events; Database of the power plant; The tool has advanced visualization capabilities; and The tool automatically generates reports« less

  19. The atmospheric boundary layer — advances in knowledge and application

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Hess, G. D.; Physick, W. L.; Bougeault, P.

    1996-02-01

    We summarise major activities and advances in boundary-layer knowledge in the 25 years since 1970, with emphasis on the application of this knowledge to surface and boundary-layer parametrisation schemes in numerical models of the atmosphere. Progress in three areas is discussed: (i) the mesoscale modelling of selected phenomena; (ii) numerical weather prediction; and (iii) climate simulations. Future trends are identified, including the incorporation into models of advanced cloud schemes and interactive canopy schemes, and the nesting of high resolution boundary-layer schemes in global climate models.

  20. Randomized Controlled Trial of a Video Decision Support Tool for Cardiopulmonary Resuscitation Decision Making in Advanced Cancer

    PubMed Central

    Volandes, Angelo E.; Paasche-Orlow, Michael K.; Mitchell, Susan L.; El-Jawahri, Areej; Davis, Aretha Delight; Barry, Michael J.; Hartshorn, Kevan L.; Jackson, Vicki Ann; Gillick, Muriel R.; Walker-Corkery, Elizabeth S.; Chang, Yuchiao; López, Lenny; Kemeny, Margaret; Bulone, Linda; Mann, Eileen; Misra, Sumi; Peachey, Matt; Abbo, Elmer D.; Eichler, April F.; Epstein, Andrew S.; Noy, Ariela; Levin, Tomer T.; Temel, Jennifer S.

    2013-01-01

    Purpose Decision making regarding cardiopulmonary resuscitation (CPR) is challenging. This study examined the effect of a video decision support tool on CPR preferences among patients with advanced cancer. Patients and Methods We performed a randomized controlled trial of 150 patients with advanced cancer from four oncology centers. Participants in the control arm (n = 80) listened to a verbal narrative describing CPR and the likelihood of successful resuscitation. Participants in the intervention arm (n = 70) listened to the identical narrative and viewed a 3-minute video depicting a patient on a ventilator and CPR being performed on a simulated patient. The primary outcome was participants' preference for or against CPR measured immediately after exposure to either modality. Secondary outcomes were participants' knowledge of CPR (score range of 0 to 4, with higher score indicating more knowledge) and comfort with video. Results The mean age of participants was 62 years (standard deviation, 11 years); 49% were women, 44% were African American or Latino, and 47% had lung or colon cancer. After the verbal narrative, in the control arm, 38 participants (48%) wanted CPR, 41 (51%) wanted no CPR, and one (1%) was uncertain. In contrast, in the intervention arm, 14 participants (20%) wanted CPR, 55 (79%) wanted no CPR, and 1 (1%) was uncertain (unadjusted odds ratio, 3.5; 95% CI, 1.7 to 7.2; P < .001). Mean knowledge scores were higher in the intervention arm than in the control arm (3.3 ± 1.0 v 2.6 ± 1.3, respectively; P < .001), and 65 participants (93%) in the intervention arm were comfortable watching the video. Conclusion Participants with advanced cancer who viewed a video of CPR were less likely to opt for CPR than those who listened to a verbal narrative. PMID:23233708

  1. Randomized controlled trial of a video decision support tool for cardiopulmonary resuscitation decision making in advanced cancer.

    PubMed

    Volandes, Angelo E; Paasche-Orlow, Michael K; Mitchell, Susan L; El-Jawahri, Areej; Davis, Aretha Delight; Barry, Michael J; Hartshorn, Kevan L; Jackson, Vicki Ann; Gillick, Muriel R; Walker-Corkery, Elizabeth S; Chang, Yuchiao; López, Lenny; Kemeny, Margaret; Bulone, Linda; Mann, Eileen; Misra, Sumi; Peachey, Matt; Abbo, Elmer D; Eichler, April F; Epstein, Andrew S; Noy, Ariela; Levin, Tomer T; Temel, Jennifer S

    2013-01-20

    Decision making regarding cardiopulmonary resuscitation (CPR) is challenging. This study examined the effect of a video decision support tool on CPR preferences among patients with advanced cancer. We performed a randomized controlled trial of 150 patients with advanced cancer from four oncology centers. Participants in the control arm (n = 80) listened to a verbal narrative describing CPR and the likelihood of successful resuscitation. Participants in the intervention arm (n = 70) listened to the identical narrative and viewed a 3-minute video depicting a patient on a ventilator and CPR being performed on a simulated patient. The primary outcome was participants' preference for or against CPR measured immediately after exposure to either modality. Secondary outcomes were participants' knowledge of CPR (score range of 0 to 4, with higher score indicating more knowledge) and comfort with video. The mean age of participants was 62 years (standard deviation, 11 years); 49% were women, 44% were African American or Latino, and 47% had lung or colon cancer. After the verbal narrative, in the control arm, 38 participants (48%) wanted CPR, 41 (51%) wanted no CPR, and one (1%) was uncertain. In contrast, in the intervention arm, 14 participants (20%) wanted CPR, 55 (79%) wanted no CPR, and 1 (1%) was uncertain (unadjusted odds ratio, 3.5; 95% CI, 1.7 to 7.2; P < .001). Mean knowledge scores were higher in the intervention arm than in the control arm (3.3 ± 1.0 v 2.6 ± 1.3, respectively; P < .001), and 65 participants (93%) in the intervention arm were comfortable watching the video. Participants with advanced cancer who viewed a video of CPR were less likely to opt for CPR than those who listened to a verbal narrative.

  2. Advances and unresolved challenges in the structural characterization of isomeric lipids.

    PubMed

    Hancock, Sarah E; Poad, Berwyck L J; Batarseh, Amani; Abbott, Sarah K; Mitchell, Todd W

    2017-05-01

    As the field of lipidomics grows and its application becomes wide and varied it is important that we don't forget its foundation, i.e. the identification and measurement of molecular lipids. Advances in liquid chromatography and the emergence of ion mobility as a useful tool in lipid analysis are allowing greater separation of lipid isomers than ever before. At the same time, novel ion activation techniques, such as ozone-induced dissociation, are pushing lipid structural characterization by mass spectrometry to new levels. Nevertheless, the quantitative capacity of these techniques is yet to be proven and further refinements are required to unravel the high level of lipid complexity found in biological samples. At present there is no one technique capable of providing full structural characterization of lipids from a biological sample. There are however, numerous techniques now available (as discussed in this review) that could be deployed in a targeted approach. Moving forward, the combination of advanced separation and ion activation techniques is likely to provide mass spectrometry-based lipidomics with its best opportunity to achieve complete molecular-level lipid characterization and measurement from complex mixtures. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  3. A review of numerical simulation of hydrothermal systems.

    USGS Publications Warehouse

    Mercer, J.W.; Faust, C.R.

    1979-01-01

    Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors

  4. Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Demos, Nicholas; Khan, Haroon

    2018-01-01

    Thermal noise is expected to be one of the noise sources limiting the astrophysical reach of Advanced LIGO (once commissioning is complete) and third-generation detectors. Adopting crystalline materials for thin, reflecting mirror coatings, rather than the amorphous coatings used in current-generation detectors, could potentially reduce thermal noise. Understanding and reducing thermal noise requires accurate theoretical models, but modeling thermal noise analytically is especially challenging with crystalline materials. Thermal noise models typically rely on the fluctuation-dissipation theorem, which relates the power spectral density of the thermal noise to an auxiliary elastic problem. In this paper, we present results from a new, open-source tool that numerically solves the auxiliary elastic problem to compute the Brownian thermal noise for both amorphous and crystalline coatings. We employ the open-source deal.ii and PETSc frameworks to solve the auxiliary elastic problem using a finite-element method, adaptive mesh refinement, and parallel processing that enables us to use high resolutions capable of resolving the thin reflective coating. We verify numerical convergence, and by running on up to hundreds of compute cores, we resolve the coating elastic energy in the auxiliary problem to approximately 0.1%. We compare with approximate analytic solutions for amorphous materials, and we verify that our solutions scale as expected with changing beam size, mirror dimensions, and coating thickness. Finally, we model the crystalline coating thermal noise in an experiment reported by Cole et al (2013 Nat. Photon. 7 644–50), comparing our results to a simpler numerical calculation that treats the coating as an ‘effectively amorphous’ material. We find that treating the coating as a cubic crystal instead of as an effectively amorphous material increases the thermal noise by about 3%. Our results are a step toward better understanding and reducing thermal noise to

  5. Next Generation CTAS Tools

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2000-01-01

    The FAA's Free Flight Phase 1 Office is in the process of deploying the current generation of CTAS tools, which are the Traffic Management Advisor (TMA) and the passive Final Approach Spacing Tool (pFAST), at selected centers and airports. Research at NASA is now focussed on extending the CTAS software and computer human interfaces to provide more advanced capabilities. The Multi-center TMA (McTMA) is designed to operate at airports where arrival flows originate from two or more centers whose boundaries are in close proximity to the TRACON boundary. McTMA will also include techniques for routing arrival flows away from congested airspace and around airspace reserved for arrivals into other hub airports. NASA is working with FAA and MITRE to build a prototype McTMA for the Philadelphia airport. The active Final Approach Spacing Tool (aFAST) provides speed and heading advisories to help controllers achieve accurate spacing between aircraft on final approach. These advisories will be integrated with those in the existing pFAST to provide a set of comprehensive advisories for controlling arrival traffic from the TRACON boundary to touchdown at complex, high-capacity airports. A research prototype of aFAST, designed for the Dallas-Fort Worth is in an advanced stage of development. The Expedite Departure Path (EDP) and Direct-To tools are designed to help controllers guide departing aircraft out of the TRACON airspace and to climb to cruise altitude along the most efficient routes.

  6. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    PubMed

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Developing Teaching Material Software Assisted for Numerical Methods

    NASA Astrophysics Data System (ADS)

    Handayani, A. D.; Herman, T.; Fatimah, S.

    2017-09-01

    The NCTM vision shows the importance of two things in school mathematics, which is knowing the mathematics of the 21st century and the need to continue to improve mathematics education to answer the challenges of a changing world. One of the competencies associated with the great challenges of the 21st century is the use of help and tools (including IT), such as: knowing the existence of various tools for mathematical activity. One of the significant challenges in mathematical learning is how to teach students about abstract concepts. In this case, technology in the form of mathematics learning software can be used more widely to embed the abstract concept in mathematics. In mathematics learning, the use of mathematical software can make high level math activity become easier accepted by student. Technology can strengthen student learning by delivering numerical, graphic, and symbolic content without spending the time to calculate complex computing problems manually. The purpose of this research is to design and develop teaching materials software assisted for numerical method. The process of developing the teaching material starts from the defining step, the process of designing the learning material developed based on information obtained from the step of early analysis, learners, materials, tasks that support then done the design step or design, then the last step is the development step. The development of teaching materials software assisted for numerical methods is valid in content. While validator assessment for teaching material in numerical methods is good and can be used with little revision.

  8. Advanced computational simulations of water waves interacting with wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  9. Numerical Analysis of AHSS Fracture in a Stretch-bending Test

    NASA Astrophysics Data System (ADS)

    Luo, Meng; Chen, Xiaoming; Shi, Ming F.; Shih, Hua-Chu

    2010-06-01

    Advanced High Strength Steels (AHSS) are increasingly used in the automotive industry due to their superior strength and substantial weight reduction advantage. However, their limited ductility gives rise to numerous manufacturing issues. One of them is the so-called `shear fracture' often observed on tight radii during stamping processes. Since traditional approaches, such as the Forming Limit Diagram (FLD), are unable to predict this type of fracture, efforts have been made to develop failure criteria that can predict shear fractures. In this paper, a recently developed Modified Mohr-Coulomb (MMC) ductile fracture criterion[1] is adopted to analyze the failure behavior of a Dual Phase (DP) steel sheet during stretch bending operations. The plasticity and ductile fracture of the present sheet are fully characterized by the Hill'48 orthotropic model and the MMC fracture model respectively. Finite Element models with three different element types (3D, shell and plane strain) were built for a Stretch Forming Simulator (SFS) test and numerical simulations with four different R/t ratios (die radius normalized by sheet thickness) were performed. It has been shown that the 3D and shell element models can accurately predict the failure location/mode, the upper die load-displacement responses as well as the wall stress and wrap angle at the onset of fracture for all R/t ratios. Furthermore, a series of parametric studies were conducted on the 3D element model, and the effects of tension level (clamping distance) and tooling friction on the failure modes/locations were investigated.

  10. Advances in Diagnosis, Surveillance, and Monitoring of Zika Virus: An Update

    PubMed Central

    Singh, Raj K.; Dhama, Kuldeep; Karthik, Kumaragurubaran; Tiwari, Ruchi; Khandia, Rekha; Munjal, Ashok; Iqbal, Hafiz M. N.; Malik, Yashpal S.; Bueno-Marí, Rubén

    2018-01-01

    Zika virus (ZIKV) is associated with numerous human health-related disorders, including fetal microcephaly, neurological signs, and autoimmune disorders such as Guillain-Barré syndrome (GBS). Perceiving the ZIKA associated losses, in 2016, the World Health Organization (WHO) declared it as a global public health emergency. In consequence, an upsurge in the research on ZIKV was seen around the globe, with significant attainments over developing several effective diagnostics, drugs, therapies, and vaccines countering this life-threatening virus at an early step. State-of-art tools developed led the researchers to explore virus at the molecular level, and in-depth epidemiological investigations to understand the reason for increased pathogenicity and different clinical manifestations. These days, ZIKV infection is diagnosed based on clinical manifestations, along with serological and molecular detection tools. As, isolation of ZIKV is a tedious task; molecular assays such as reverse transcription-polymerase chain reaction (RT-PCR), real-time qRT-PCR, loop-mediated isothermal amplification (LAMP), lateral flow assays (LFAs), biosensors, nucleic acid sequence-based amplification (NASBA) tests, strand invasion-based amplification tests and immune assays like enzyme-linked immunosorbent assay (ELISA) are in-use to ascertain the ZIKV infection or Zika fever. Herein, this review highlights the recent advances in the diagnosis, surveillance, and monitoring of ZIKV. These new insights gained from the recent advances can aid in the rapid and definitive detection of this virus and/or Zika fever. The summarized information will aid the strategies to design and adopt effective prevention and control strategies to counter this viral pathogen of great public health concern. PMID:29403448

  11. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mike; Cipiti, Ben; Demuth, Scott Francis

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  12. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  13. Advancing Data Assimilation in Operational Hydrologic Forecasting: Progresses, Challenges, and Emerging Opportunities

    NASA Technical Reports Server (NTRS)

    Liu, Yuqiong; Weerts, A.; Clark, M.; Hendricks Franssen, H.-J; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A. I. J. M.; hide

    2012-01-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, the Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1) theoretical or mathematical aspects in DA algorithms, (2) the estimation of different types of uncertainty, (3) new observations and their objective use in hydrologic DA, (4) the use of DA for real-time control of water resources systems, and (5) the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modeling and DA tools or frameworks, and through fostering collaborative efforts among hydrologic modellers, DA

  14. CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.

    ERIC Educational Resources Information Center

    Skowronski, Steven D.; Tatum, Kenneth

    This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…

  15. Head and neck cancer: proteomic advances and biomarker achievements.

    PubMed

    Rezende, Taia Maria Berto; de Souza Freire, Mirna; Franco, Octávio Luiz

    2010-11-01

    Tumors of the head and neck comprise an important neoplasia group, the incidence of which is increasing in many parts of the world. Recent advances in diagnostic and therapeutic techniques for these lesions have yielded novel molecular targets, uncovered signal pathway dominance, and advanced early cancer detection. Proteomics is a powerful tool for investigating the distribution of proteins and small molecules within biological systems through the analysis of different types of samples. The proteomic profiles of different types of cancer have been studied, and this has provided remarkable advances in cancer understanding. This review covers recent advances for head and neck cancer; it encompasses the risk factors, pathogenesis, proteomic tools that can help in understanding cancer, and new proteomic findings in this type of cancer. Copyright © 2010 American Cancer Society.

  16. Experimental and numerical investigations on the temperature distribution in PVD AlTiN coated and uncoated Al2O3/TiCN mixed ceramic cutting tools in hard turning of AISI 52100 steel

    NASA Astrophysics Data System (ADS)

    Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman

    2018-03-01

    Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.

  17. Rational development of solid dispersions via hot-melt extrusion using screening, material characterization, and numeric simulation tools.

    PubMed

    Zecevic, Damir E; Wagner, Karl G

    2013-07-01

    Effective and predictive small-scale selection tools are inevitable during the development of a solubility enhanced drug product. For hot-melt extrusion, this selection process can start with a microscale performance evaluation on a hot-stage microscope (HSM). A batch size of 400 mg can provide sufficient materials to assess the drug product attributes such as solid-state properties, solubility enhancement, and physical stability as well as process related attributes such as processing temperature in a twin-screw extruder (TSE). Prototype formulations will then be fed into a 5 mm TSE (~1-2 g) to confirm performance from the HSM under additional shear stress. Small stress stability testing might be performed with these samples or a larger batch (20-40 g) made by 9 or 12 mm TSE. Simultaneously, numeric process simulations are performed using process data as well as rheological and thermal properties of the formulations. Further scale up work to 16 and 18 mm TSE confirmed and refined the simulation model. Thus, at the end of the laboratory-scale development, not only the clinical trial supply could be manufactured, but also one can form a sound risk assessment to support further scale up even without decades of process experience. Copyright © 2013 Wiley Periodicals, Inc.

  18. Overview of Virtual Observatory Tools

    NASA Astrophysics Data System (ADS)

    Allen, M. G.

    2009-07-01

    I provide a brief introduction and tour of selected Virtual Observatory tools to highlight some of the core functions provided by the VO, and the way that astronomers may use the tools and services for doing science. VO tools provide advanced functions for searching and using images, catalogues and spectra that have been made available in the VO. The tools may work together by providing efficient and innovative browsing and analysis of data, and I also describe how many VO services may be accessed by a scripting or command line environment. Early science usage of the VO provides important feedback on the development of the system, and I show how VO portals try to address early user comments about the navigation and use of the VO.

  19. Ensembles of NLP Tools for Data Element Extraction from Clinical Notes.

    PubMed

    Kuo, Tsung-Ting; Rao, Pallavi; Maehara, Cleo; Doan, Son; Chaparro, Juan D; Day, Michele E; Farcas, Claudiu; Ohno-Machado, Lucila; Hsu, Chun-Nan

    2016-01-01

    Natural Language Processing (NLP) is essential for concept extraction from narrative text in electronic health records (EHR). To extract numerous and diverse concepts, such as data elements (i.e., important concepts related to a certain medical condition), a plausible solution is to combine various NLP tools into an ensemble to improve extraction performance. However, it is unclear to what extent ensembles of popular NLP tools improve the extraction of numerous and diverse concepts. Therefore, we built an NLP ensemble pipeline to synergize the strength of popular NLP tools using seven ensemble methods, and to quantify the improvement in performance achieved by ensembles in the extraction of data elements for three very different cohorts. Evaluation results show that the pipeline can improve the performance of NLP tools, but there is high variability depending on the cohort.

  20. A Comprehensive Look at Polypharmacy and Medication Screening Tools for the Older Cancer Patient

    PubMed Central

    DeGregory, Kathlene A.; Morris, Amy L.; Ramsdale, Erika E.

    2016-01-01

    Inappropriate medication use and polypharmacy are extremely common among older adults. Numerous studies have discussed the importance of a comprehensive medication assessment in the general geriatric population. However, only a handful of studies have evaluated inappropriate medication use in the geriatric oncology patient. Almost a dozen medication screening tools exist for the older adult. Each available tool has the potential to improve aspects of the care of older cancer patients, but no single tool has been developed for this population. We extensively reviewed the literature (MEDLINE, PubMed) to evaluate and summarize the most relevant medication screening tools for older patients with cancer. Findings of this review support the use of several screening tools concurrently for the elderly patient with cancer. A deprescribing tool should be developed and included in a comprehensive geriatric oncology assessment. Finally, prospective studies are needed to evaluate such a tool to determine its feasibility and impact in older patients with cancer. Implications for Practice: The prevalence of polypharmacy increases with advancing age. Older adults are more susceptible to adverse effects of medications. “Prescribing cascades” are common, whereas “deprescribing” remains uncommon; thus, older patients tend to accumulate medications over time. Older patients with cancer are at high risk for adverse drug events, in part because of the complexity and intensity of cancer treatment. Additionally, a cancer diagnosis often alters assessments of life expectancy, clinical status, and competing risk. Screening for polypharmacy and potentially inappropriate medications could reduce the risk for adverse drug events, enhance quality of life, and reduce health care spending for older cancer patients. PMID:27151653

  1. Advanced repair solution of clear defects on HTPSM by using nanomachining tool

    NASA Astrophysics Data System (ADS)

    Lee, Hyemi; Kim, Munsik; Jung, Hoyong; Kim, Sangpyo; Yim, Donggyu

    2015-10-01

    As the mask specifications become tighter for low k1 lithography, more aggressive repair accuracy is required below sub 20nm tech. node. To meet tight defect specifications, many maskshops select effective repair tools according to defect types. Normally, pattern defects are repaired by the e-beam repair tool and soft defects such as particles are repaired by the nanomachining tool. It is difficult for an e-beam repair tool to remove particle defects because it uses chemical reaction between gas and electron, and a nanomachining tool, which uses physical reaction between a nano-tip and defects, cannot be applied for repairing clear defects. Generally, film deposition process is widely used for repairing clear defects. However, the deposited film has weak cleaning durability, so it is easily removed by accumulated cleaning process. Although the deposited film is strongly attached on MoSiN(or Qz) film, the adhesive strength between deposited Cr film and MoSiN(or Qz) film becomes weaker and weaker by the accumulated energy when masks are exposed in a scanner tool due to the different coefficient of thermal expansion of each materials. Therefore, whenever a re-pellicle process is needed to a mask, all deposited repair points have to be confirmed whether those deposition film are damaged or not. And if a deposition point is damaged, repair process is needed again. This process causes longer and more complex process. In this paper, the basic theory and the principle are introduced to recover clear defects by using nanomachining tool, and the evaluated results are reviewed at dense line (L/S) patterns and contact hole (C/H) patterns. Also, the results using a nanomachining were compared with those using an e-beam repair tool, including the cleaning durability evaluated by the accumulated cleaning process. Besides, we discuss the phase shift issue and the solution about the image placement error caused by phase error.

  2. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  3. The efficiency of geophysical adjoint codes generated by automatic differentiation tools

    NASA Astrophysics Data System (ADS)

    Vlasenko, A. V.; Köhl, A.; Stammer, D.

    2016-02-01

    The accuracy of numerical models that describe complex physical or chemical processes depends on the choice of model parameters. Estimating an optimal set of parameters by optimization algorithms requires knowledge of the sensitivity of the process of interest to model parameters. Typically the sensitivity computation involves differentiation of the model, which can be performed by applying algorithmic differentiation (AD) tools to the underlying numerical code. However, existing AD tools differ substantially in design, legibility and computational efficiency. In this study we show that, for geophysical data assimilation problems of varying complexity, the performance of adjoint codes generated by the existing AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms in Fortran (TAF) can be vastly different. Based on simple test problems, we evaluate the efficiency of each AD tool with respect to computational speed, accuracy of the adjoint, the efficiency of memory usage, and the capability of each AD tool to handle modern FORTRAN 90-95 elements such as structures and pointers, which are new elements that either combine groups of variables or provide aliases to memory addresses, respectively. We show that, while operator overloading tools are the only ones suitable for modern codes written in object-oriented programming languages, their computational efficiency lags behind source transformation by orders of magnitude, rendering the application of these modern tools to practical assimilation problems prohibitive. In contrast, the application of source transformation tools appears to be the most efficient choice, allowing handling even large geophysical data assimilation problems. However, they can only be applied to numerical models written in earlier generations of programming languages. Our study indicates that applying existing AD tools to realistic geophysical problems faces limitations that urgently need to be solved to allow the

  4. Numerical simulations in the development of propellant management devices

    NASA Astrophysics Data System (ADS)

    Gaulke, Diana; Winkelmann, Yvonne; Dreyer, Michael

    Propellant management devices (PMDs) are used for positioning the propellant at the propel-lant port. It is important to provide propellant without gas bubbles. Gas bubbles can inflict cavitation and may lead to system failures in the worst case. Therefore, the reliable operation of such devices must be guaranteed. Testing these complex systems is a very intricate process. Furthermore, in most cases only tests with downscaled geometries are possible. Numerical sim-ulations are used here as an aid to optimize the tests and to predict certain results. Based on these simulations, parameters can be determined in advance and parts of the equipment can be adjusted in order to minimize the number of experiments. In return, the simulations are validated regarding the test results. Furthermore, if the accuracy of the numerical prediction is verified, then numerical simulations can be used for validating the scaling of the experiments. This presentation demonstrates some selected numerical simulations for the development of PMDs at ZARM.

  5. An implementation evaluation of a qualitative culture assessment tool.

    PubMed

    Tappin, D C; Bentley, T A; Ashby, L E

    2015-03-01

    Safety culture has been identified as a critical element of healthy and safe workplaces and as such warrants the attention of ergonomists involved in occupational health and safety (OHS). This study sought to evaluate a tool for assessing organisational safety culture as it impacts a common OHS problem: musculoskeletal disorders (MSD). The level of advancement across nine cultural aspects was assessed in two implementation site organisations. These organisations, in residential healthcare and timber processing, enabled evaluation of the tool in contrasting settings, with reported MSD rates also high in both sectors. Interviews were conducted with 39 managers and workers across the two organisations. Interview responses and company documentation were compared by two researchers to the descriptor items for each MSD culture aspect. An assignment of the level of advancement, using a five stage framework, was made for each aspect. The tool was readily adapted to each implementation site context and provided sufficient evidence to assess their levels of advancement. Assessments for most MSD culture aspects were in the mid to upper levels of advancement, although the levels differed within each organisation, indicating that different aspects of MSD culture, as with safety culture, develop at a different pace within organisations. Areas for MSD culture improvement were identified for each organisation. Reflections are made on the use and merits of the tool by ergonomists for addressing MSD risk. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Application of molecular genetic tools for forest pathology

    Treesearch

    Mee-Sook Kim; John Hanna; Amy Ross-Davis; Ned Klopfenstein

    2012-01-01

    In recent years, advances in molecular genetics have provided powerful tools to address critical issues in forest pathology to help promote resilient forests. Although molecular genetic tools are initially applied to understand individual components of forest pathosystems, forest pathosystems involve dynamic interactions among biotic and abiotic components of the...

  7. Synthetic biology advances for pharmaceutical production

    PubMed Central

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872

  8. Numerical framework for the modeling of electrokinetic flows

    NASA Astrophysics Data System (ADS)

    Deshpande, Manish; Ghaddar, Chahid; Gilbert, John R.; St. John, Pamela M.; Woudenberg, Timothy M.; Connell, Charles R.; Molho, Joshua; Herr, Amy; Mungal, Godfrey; Kenny, Thomas W.

    1998-09-01

    This paper presents a numerical framework for design-based analyses of electrokinetic flow in interconnects. Electrokinetic effects, which can be broadly divided into electrophoresis and electroosmosis, are of importance in providing a transport mechanism in microfluidic devices for both pumping and separation. Models for the electrokinetic effects can be derived and coupled to the fluid dynamic equations through appropriate source terms. In the design of practical microdevices, however, accurate coupling of the electrokinetic effects requires the knowledge of several material and physical parameters, such as the diffusivity and the mobility of the solute in the solvent. Additionally wall-based effects such as chemical binding sites might exist that affect the flow patterns. In this paper, we address some of these issues by describing a synergistic numerical/experimental process to extract the parameters required. Experiments were conducted to provide the numerical simulations with a mechanism to extract these parameters based on quantitative comparisons with each other. These parameters were then applied in predicting further experiments to validate the process. As part of this research, we have created NetFlow, a tool for micro-fluid analyses. The tool can be validated and applied in existing technologies by first creating test structures to extract representations of the physical phenomena in the device, and then applying them in the design analyses to predict correct behavior.

  9. Numerical Characterization of Piezoceramics Using Resonance Curves

    PubMed Central

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-01

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875

  10. Numerical Characterization of Piezoceramics Using Resonance Curves.

    PubMed

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-27

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.

  11. The Alliance of Advanced Process Control and Accountability – A Future Safeguards-By-Design Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Bresee, James C.; Paviet, Patricia D.

    For any chemical separation process producing a valuable product, a material balance is an important process control measurement. That is particularly true for the separation of actinides from irradiated nuclear fuel, not only for their intrinsic value but also because an incomplete material balance may indicate diversion for unauthorized use. The DOE Office of Nuclear Energy is currently carrying out at the Pacific Northwest National Laboratory an experimental measurement of how well and with what precision current technologies can implement near real-time actinide material balances. This measurement effort is called the CoDCon project. It involves the separation of a productmore » with a 70/30 uranium/plutonium mass ratio. Initial tests will use dissolved fuel simulants prepared with pure uranium and plutonium nitrates at the same input ratios as irradiated fuel. Subsequent testing with actual irradiated fuel would be done to verify the results obtained with simulants. The experiments will use advanced on-line instrumentation supported by dynamic process models. Since accountability uncertainties could mask diversions, the aim of the project is not only to measure present-day capabilities but also, through sensitivity analyses, to identify those measurements with the greatest potential for overall material-balance improvements. The latter results will help identify priorities for future fuel cycle R&D programs. Advanced separations process control and material accountability technologies thus have a common goal: to provide the best tools available for safeguards-by-design [defined by the International Atomic Energy Agency (IAEA) as the integration of the design of a new nuclear facility through planning, construction, operation and decommissioning]. Since the potential domestic use of CoDCon results may be later than their possible foreign applications, arrangements may be feasible for possible bilateral or multinational cooperation in the CoDCon project.« less

  12. Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.

    2008-01-01

    NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.

  13. Construction of an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.

    1993-01-01

    Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a testbed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.

  14. Construction of an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.

    1992-01-01

    Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a test bed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.

  15. Professional mathematicians differ from controls in their spatial-numerical associations.

    PubMed

    Cipora, Krzysztof; Hohol, Mateusz; Nuerk, Hans-Christoph; Willmes, Klaus; Brożek, Bartosz; Kucharzyk, Bartłomiej; Nęcka, Edward

    2016-07-01

    While mathematically impaired individuals have been shown to have deficits in all kinds of basic numerical representations, among them spatial-numerical associations, little is known about individuals with exceptionally high math expertise. They might have a more abstract magnitude representation or more flexible spatial associations, so that no automatic left/small and right/large spatial-numerical association is elicited. To pursue this question, we examined the Spatial Numerical Association of Response Codes (SNARC) effect in professional mathematicians which was compared to two control groups: Professionals who use advanced math in their work but are not mathematicians (mostly engineers), and matched controls. Contrarily to both control groups, Mathematicians did not reveal a SNARC effect. The group differences could not be accounted for by differences in mean response speed, response variance or intelligence or a general tendency not to show spatial-numerical associations. We propose that professional mathematicians possess more abstract and/or spatially very flexible numerical representations and therefore do not exhibit or do have a largely reduced default left-to-right spatial-numerical orientation as indexed by the SNARC effect, but we also discuss other possible accounts. We argue that this comparison with professional mathematicians also tells us about the nature of spatial-numerical associations in persons with much less mathematical expertise or knowledge.

  16. Integrating advanced visualization technology into the planetary Geoscience workflow

    NASA Astrophysics Data System (ADS)

    Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb

    2011-09-01

    Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.

  17. Working with the superabrasives industry to optimize tooling for grinding brittle materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.S.; Piscotty, M.A.; Blaedel, K.L.

    1996-05-01

    The optics manufacturing industry is undertaking a significant modernization, as computer-numeric-controlled (CNC) equipment is joining or replacing open-loop equipment and hand lapping/polishing on the shop floor. Several prototype CNC lens grinding platforms employing ring tools are undergoing development and demonstration at the Center for Optics Manufacturing in Rochester, NY, and several machine tool companies have CNC product lines aimed at the optics industry. Benefits to using CNC ring tool grinding equipment include: essentially unlimited flexibility in selecting radii of curvature without special radiused tooling, the potential for CIM linkages to CAD workstations, and the cultural shift from craftsmen with undocumentedmore » procedures to CNC machine operators employing computerized routines for process control. In recent years, these developments, have inspired a number of US optics companies to invest in CNC equipment and participate in process development activities involving bound diamond tooling. This modernization process,extends beyond large optics companies that have historically embraced advanced equipment, to also include smaller optical shops where a shift to CNC equipment requires a significant company commitment. This paper addresses our efforts to optimize fine grinding wheels to support the new generation of CNC equipment. We begin with a discussion of how fine grinding fits into the optical production process, and then describe an initiative for improving the linkage between optics industry and the grinding wheel industry. For the purposes of this paper, we define fine wheels to have diamond sizes below 20 micrometers, which includes wheels used for what is sometimes called medium grinding (e.g. 10-20 micrometers diamond) and for fine grinding (e.g. 2-4 micrometers diamond).« less

  18. Knowledge-Acquisition Tool For Expert System

    NASA Technical Reports Server (NTRS)

    Disbrow, James D.; Duke, Eugene L.; Regenie, Victoria A.

    1988-01-01

    Digital flight-control systems monitored by computer program that evaluates and recommends. Flight-systems engineers for advanced, high-performance aircraft use knowlege-acquisition tool for expert-system flight-status monitor suppling interpretative data. Interpretative function especially important in time-critical, high-stress situations because it facilitates problem identification and corrective strategy. Conditions evaluated and recommendations made by ground-based engineers having essential knowledge for analysis and monitoring of performances of advanced aircraft systems.

  19. FOLDER: A numerical tool to simulate the development of structures in layered media

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin; Schmid, Daniel W.

    2015-04-01

    FOLDER is a numerical toolbox for modelling deformation in layered media during layer parallel shortening or extension in two dimensions. FOLDER builds on MILAMIN [1], a finite element method based mechanical solver, with a range of utilities included from the MUTILS package [2]. Numerical mesh is generated using the Triangle software [3]. The toolbox includes features that allow for: 1) designing complex structures such as multi-layer stacks, 2) accurately simulating large-strain deformation of linear and non-linear viscous materials, 3) post-processing of various physical fields such as velocity (total and perturbing), rate of deformation, finite strain, stress, deviatoric stress, pressure, apparent viscosity. FOLDER is designed to ensure maximum flexibility to configure model geometry, define material parameters, specify range of numerical parameters in simulations and choose the plotting options. FOLDER is an open source MATLAB application and comes with a user friendly graphical interface. The toolbox additionally comprises an educational application that illustrates various analytical solutions of growth rates calculated for the cases of folding and necking of a single layer with interfaces perturbed with a single sinusoidal waveform. We further derive two novel analytical expressions for the growth rate in the cases of folding and necking of a linear viscous layer embedded in a linear viscous medium of a finite thickness. We use FOLDER to test the accuracy of single-layer folding simulations using various 1) spatial and temporal resolutions, 2) time integration schemes, and 3) iterative algorithms for non-linear materials. The accuracy of the numerical results is quantified by: 1) comparing them to analytical solution, if available, or 2) running convergence tests. As a result, we provide a map of the most optimal choice of grid size, time step, and number of iterations to keep the results of the numerical simulations below a given error for a given time

  20. Visualization in simulation tools: requirements and a tool specification to support the teaching of dynamic biological processes.

    PubMed

    Jørgensen, Katarina M; Haddow, Pauline C

    2011-08-01

    Simulation tools are playing an increasingly important role behind advances in the field of systems biology. However, the current generation of biological science students has either little or no experience with such tools. As such, this educational glitch is limiting both the potential use of such tools as well as the potential for tighter cooperation between the designers and users. Although some simulation tool producers encourage their use in teaching, little attempt has hitherto been made to analyze and discuss their suitability as an educational tool for noncomputing science students. In general, today's simulation tools assume that the user has a stronger mathematical and computing background than that which is found in most biological science curricula, thus making the introduction of such tools a considerable pedagogical challenge. This paper provides an evaluation of the pedagogical attributes of existing simulation tools for cell signal transduction based on Cognitive Load theory. Further, design recommendations for an improved educational simulation tool are provided. The study is based on simulation tools for cell signal transduction. However, the discussions are relevant to a broader biological simulation tool set.

  1. Ensembles of NLP Tools for Data Element Extraction from Clinical Notes

    PubMed Central

    Kuo, Tsung-Ting; Rao, Pallavi; Maehara, Cleo; Doan, Son; Chaparro, Juan D.; Day, Michele E.; Farcas, Claudiu; Ohno-Machado, Lucila; Hsu, Chun-Nan

    2016-01-01

    Natural Language Processing (NLP) is essential for concept extraction from narrative text in electronic health records (EHR). To extract numerous and diverse concepts, such as data elements (i.e., important concepts related to a certain medical condition), a plausible solution is to combine various NLP tools into an ensemble to improve extraction performance. However, it is unclear to what extent ensembles of popular NLP tools improve the extraction of numerous and diverse concepts. Therefore, we built an NLP ensemble pipeline to synergize the strength of popular NLP tools using seven ensemble methods, and to quantify the improvement in performance achieved by ensembles in the extraction of data elements for three very different cohorts. Evaluation results show that the pipeline can improve the performance of NLP tools, but there is high variability depending on the cohort. PMID:28269947

  2. An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research.

    PubMed

    Caldwell, Daniel J; Mastrocco, Frank; Margiotta-Casaluci, Luigi; Brooks, Bryan W

    2014-11-01

    Numerous active pharmaceutical ingredients (APIs), approved prior to enactment of detailed environmental risk assessment (ERA) guidance in the EU in 2006, have been detected in surface waters as a result of advancements in analytical technologies. Without adequate knowledge of the potential hazards these APIs may pose, assessing their environmental risk is challenging. As it would be impractical to commence hazard characterization and ERA en masse, several approaches to prioritizing substances for further attention have been published. Here, through the combination of three presentations given at a recent conference, "Pharmaceuticals in the Environment, Is there a problem?" (Nîmes, France, June 2013) we review several of these approaches, identify salient components, and present available techniques and tools that could facilitate a pragmatic, scientifically sound approach to prioritizing APIs for advanced study or ERA and, where warranted, fill critical data gaps through targeted, intelligent testing. We further present a modest proposal to facilitate future prioritization efforts and advanced research studies that incorporates mammalian pharmacology data (e.g., adverse outcomes pathways and the fish plasma model) and modeled exposure data based on pharmaceutical use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Numerical Flight Mechanics Analysis Of The SHEFEX I Ascent And Re-Entry Phases

    NASA Astrophysics Data System (ADS)

    Bartolome Calvo, Javier; Eggers, Thino

    2011-08-01

    The SHarp Edge Flight EXperiment (SHEFEX) I provides a huge amount of scientific data to validate numerical tools in hypersonic flows. These data allow the direct comparison of flight measurements with the current numerical tools available at DLR. Therefore, this paper is devoted to apply a recently developed direct coupling between aerodynamics and flight dynamics to the SHEFEX I flight. In a first step, mission analyses are carried out using the trajectory optimization program REENT 6D coupled to missile DATCOM. In a second step, the direct coupling between the trajectory program and the DLR TAU code, in which the unsteady Euler equations including rigid body motion are solved, is applied to analyze some interesting parts of ascent and re-entry phases of the flight experiment. The agreement of the numerical predictions with the obtained flight data is satisfactory assuming a variable fin deflection angle.

  4. Numerical simulation of dark envelope soliton in plasma

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Ping; Han, Juan-fang; Zhang, Jie; Gao, Dong-Ning; Li, Zhong-Zheng; Duan, Wen-Shan; Zhang, Heng

    2018-03-01

    One-dimensional (1-D) particle-in-cell simulation is used to study the propagation of dark envelop solitons described by the nonlinear Schrödinger equation (NLSE) in electron-ion plasmas. The rational solution of the NLSE is presented, which is proposed as an effective tool for studying the dark envelope soliton in plasma. It is demonstrated by our numerical simulation that there is dark envelope soliton in electron-ion plasmas. The numerical results are in good agreements with the analytical ones from the NLSE which is obtained from the reductive perturbation method. The limitation of the amplitude of dark envelop solitons in plasma is noticed.

  5. Time's arrow: A numerical experiment

    NASA Astrophysics Data System (ADS)

    Fowles, G. Richard

    1994-04-01

    The dependence of time's arrow on initial conditions is illustrated by a numerical example in which plane waves produced by an initial pressure pulse are followed as they are multiply reflected at internal interfaces of a layered medium. Wave interactions at interfaces are shown to be analogous to the retarded and advanced waves of point sources. The model is linear and the calculation is exact and demonstrably time reversible; nevertheless the results show most of the features expected of a macroscopically irreversible system, including the approach to the Maxwell-Boltzmann distribution, ergodicity, and concomitant entropy increase.

  6. The Employment Retention and Advancement Project: How Effective Are Different Approaches Aiming to Increase Employment Retention and Advancement? Final Impacts for Twelve Models. Executive Summary

    ERIC Educational Resources Information Center

    Hendra, Richard; Dillman, Keri-Nicole; Hamilton, Gayle; Lundquist, Erika; Martinson, Karin; Wavelet, Melissa

    2010-01-01

    This report summarizes the final impact results for the national Employment Retention and Advancement (ERA) project. This project tested, using a random assignment design, the effectiveness of numerous programs intended to promote steady work and career advancement. All the programs targeted current and former welfare recipients and other low-wage…

  7. Rapid Modeling and Analysis Tools: Evolution, Status, Needs and Directions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Stone, Thomas J.; Ransom, Jonathan B. (Technical Monitor)

    2002-01-01

    Advanced aerospace systems are becoming increasingly more complex, and customers are demanding lower cost, higher performance, and high reliability. Increased demands are placed on the design engineers to collaborate and integrate design needs and objectives early in the design process to minimize risks that may occur later in the design development stage. High performance systems require better understanding of system sensitivities much earlier in the design process to meet these goals. The knowledge, skills, intuition, and experience of an individual design engineer will need to be extended significantly for the next generation of aerospace system designs. Then a collaborative effort involving the designer, rapid and reliable analysis tools and virtual experts will result in advanced aerospace systems that are safe, reliable, and efficient. This paper discusses the evolution, status, needs and directions for rapid modeling and analysis tools for structural analysis. First, the evolution of computerized design and analysis tools is briefly described. Next, the status of representative design and analysis tools is described along with a brief statement on their functionality. Then technology advancements to achieve rapid modeling and analysis are identified. Finally, potential future directions including possible prototype configurations are proposed.

  8. Advances in Cross-Cutting Ideas for Computational Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Esmond; Evans, Katherine J.; Caldwell, Peter

    This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1)more » process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  9. Advances in Cross-Cutting Ideas for Computational Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, E.; Evans, K.; Caldwell, P.

    This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1)more » process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  10. Simulation tools for guided wave based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien

    2018-04-01

    Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and

  11. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  12. Modeling rapidly spinning, merging black holes with numerical relativity for the era of first gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Simulating eXtreme Collaboration; LIGO Scientific Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) began searching for gravitational waves in September 2015, with three times the sensitivity of the initial LIGO experiment. Merging black holes are among the most promising sources of gravitational waves for Advanced LIGO, but near the time of merger, the emitted waves can only be computed using numerical relativity. In this talk, I will present new numerical-relativity simulations of merging black holes, made using the Spectral Einstein Code [black-holes.org/SpEC.html], including cases with black-hole spins that are nearly as fast as possible. I will discuss how such simulations will be able to rapidly follow up gravitational-wave observations, improving our understanding of the waves' sources.

  13. Virtual Beach: Decision Support Tools for Beach Pathogen Prediction

    EPA Science Inventory

    The Virtual Beach Managers Tool (VB) is decision-making software developed to help local beach managers make decisions as to when beaches should be closed due to predicted high levels of water borne pathogens. The tool is being developed under the umbrella of EPA's Advanced Monit...

  14. Seismic behavior of an Italian Renaissance Sanctuary: Damage assessment by numerical modelling

    NASA Astrophysics Data System (ADS)

    Clementi, Francesco; Nespeca, Andrea; Lenci, Stefano

    2016-12-01

    The paper deals with modelling and analysis of architectural heritage through the discussion of an illustrative case study: the Medieval Sanctuary of Sant'Agostino (Offida, Italy). Using the finite element technique, a 3D numerical model of the sanctuary is built, and then used to identify the main sources of the damages. The work shows that advanced numerical analyses could offer significant information for the understanding of the causes of existing damage and, more generally, on the seismic vulnerability.

  15. Advanced instrumentation for aeronautical propulsion research

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.

    1986-01-01

    The development and use of advanced instrumentation and measurement systems are key to extending the understanding of the physical phenomena that limit the advancement of aeropropulsion systems. The data collected by using these systems are necessary to verify numerical models and to increase the technologists' intuition into the physical phenomena. The systems must be versatile enough to allow their use with older technology measurement systems, with computer-based data reduction systems, and with existing test facilities. Researchers in all aeropropulsion fields contribute to the development of these systems.

  16. Numerical simulation of tunneling through arbitrary potential barriers applied on MIM and MIIM rectenna diodes

    NASA Astrophysics Data System (ADS)

    Abdolkader, Tarek M.; Shaker, Ahmed; Alahmadi, A. N. M.

    2018-07-01

    With the continuous miniaturization of electronic devices, quantum-mechanical effects such as tunneling become more effective in many device applications. In this paper, a numerical simulation tool is developed under a MATLAB environment to calculate the tunneling probability and current through an arbitrary potential barrier comparing three different numerical techniques: the finite difference method, transfer matrix method, and transmission line method. For benchmarking, the tool is applied to many case studies such as the rectangular single barrier, rectangular double barrier, and continuous bell-shaped potential barrier, each compared to analytical solutions and giving the dependence of the error on the number of mesh points. In addition, a thorough study of the J ‑ V characteristics of MIM and MIIM diodes, used as rectifiers for rectenna solar cells, is presented and simulations are compared to experimental results showing satisfactory agreement. On the undergraduate level, the tool provides a deeper insight for students to compare numerical techniques used to solve various tunneling problems and helps students to choose a suitable technique for a certain application.

  17. IslandFAST: A Semi-numerical Tool for Simulating the Late Epoch of Reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yidong; Chen, Xuelei; Yue, Bin

    2017-08-01

    We present the algorithm and main results of our semi-numerical simulation, islandFAST, which was developed from 21cmFAST and designed for the late stage of reionization. The islandFAST simulation predicts the evolution and size distribution of the large-scale underdense neutral regions (neutral islands), and we find that the late Epoch of Reionization proceeds very fast, showing a characteristic scale of the neutral islands at each redshift. Using islandFAST, we compare the impact of two types of absorption systems, i.e., the large-scale underdense neutral islands versus small-scale overdense absorbers, in regulating the reionization process. The neutral islands dominate the morphology of themore » ionization field, while the small-scale absorbers dominate the mean-free path of ionizing photons, and also delay and prolong the reionization process. With our semi-numerical simulation, the evolution of the ionizing background can be derived self-consistently given a model for the small absorbers. The hydrogen ionization rate of the ionizing background is reduced by an order of magnitude in the presence of dense absorbers.« less

  18. Numerical and Experimental Investigations of the Flow in a Stationary Pelton Bucket

    NASA Astrophysics Data System (ADS)

    Nakanishi, Yuji; Fujii, Tsuneaki; Kawaguchi, Sho

    A numerical code based on one of mesh-free particle methods, a Moving-Particle Semi-implicit (MPS) Method has been used for the simulation of free surface flows in a bucket of Pelton turbines so far. In this study, the flow in a stationary bucket is investigated by MPS simulation and experiment to validate the numerical code. The free surface flow dependent on the angular position of the bucket and the corresponding pressure distribution on the bucket computed by the numerical code are compared with that obtained experimentally. The comparison shows that numerical code based on MPS method is useful as a tool to gain an insight into the free surface flows in Pelton turbines.

  19. Numerical solution of the full potential equation using a chimera grid approach

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  20. Numerical modelling in biosciences using delay differential equations

    NASA Astrophysics Data System (ADS)

    Bocharov, Gennadii A.; Rihan, Fathalla A.

    2000-12-01

    Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.

  1. Numerical models as interactive art

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Baart, F.; van de Pas, B.; Joling, A.

    2017-12-01

    We capture our understanding of the environment in advanced computer models. We use these numerical models to simulate the growth of deltas, meandering rivers, dune erosion, river floodings, effects of interventions. If presented with care, models can help understand the complexity of our environment and show the beautiful patterns of nature. While the topics are relevant and appealing to the general public the use of numerical models has been limited to technical users. Not many people have appreciations for the pluriform of options, esoteric user interfaces, manual editing of configuration files and extensive jargon. The models are static, you can start them, but then you have to wait, usually hours or more, for the results to become available, not something that you could imagine resulting in an immersive, interactive experience for the general public. How can we go beyond just using results? How can we adapt existing numerical models so they can be used in an interactive environment? How can we touch them and feel them? Here we show how we adapted existing models (Delft3D, Lisflood, XBeach) and reused them in as the basis for interactive exhibitions in museums with an educative goal. We present our structured approach which consists of combining a story, inspiration, a canvas, colors, shapes and interactive elements. We show how the progression from simple presentation forms to interactive art installations.

  2. The Standard for Clinicians’ Interview in Psychiatry (SCIP): A Clinician-administered Tool with Categorical, Dimensional, and Numeric Output—Conceptual Development, Design, and Description of the SCIP

    PubMed Central

    Nasrallah, Henry; Muvvala, Srinivas; El-Missiry, Ahmed; Mansour, Hader; Hill, Cheryl; Elswick, Daniel; Price, Elizabeth C.

    2016-01-01

    Existing standardized diagnostic interviews (SDIs) were designed for researchers and produce mainly categorical diagnoses. There is an urgent need for a clinician-administered tool that produces dimensional measures, in addition to categorical diagnoses. The Standard for Clinicians’ Interview in Psychiatry (SCIP) is a method of assessment of psychopathology for adults. It is designed to be administered by clinicians and includes the SCIP manual and the SCIP interview. Clinicians use the SCIP questions and rate the responses according to the SCIP manual rules. Clinicians use the patient’s responses to questions, observe the patient’s behaviors and make the final rating of the various signs and symptoms assessed. The SCIP method of psychiatric assessment has three components: 1) the SCIP interview (dimensional) component, 2) the etiological component, and 3) the disorder classification component. The SCIP produces three main categories of clinical data: 1) a diagnostic classification of psychiatric disorders, 2) dimensional scores, and 3) numeric data. The SCIP provides diagnoses consistent with criteria from editions of the Diagnostic and Statistical Manual (DSM) and International Classification of Disease (ICD). The SCIP produces 18 dimensional measures for key psychiatric signs or symptoms: anxiety, posttraumatic stress, obsessions, compulsions, depression, mania, suicidality, suicidal behavior, delusions, hallucinations, agitation, disorganized behavior, negativity, catatonia, alcohol addiction, drug addiction, attention, and hyperactivity. The SCIP produces numeric severity data for use in either clinical care or research. The SCIP was shown to be a valid and reliable assessment tool, and the validity and reliability results were published in 2014 and 2015. The SCIP is compatible with personalized psychiatry research and is in line with the Research Domain Criteria framework. PMID:27800284

  3. The Standard for Clinicians' Interview in Psychiatry (SCIP): A Clinician-administered Tool with Categorical, Dimensional, and Numeric Output-Conceptual Development, Design, and Description of the SCIP.

    PubMed

    Aboraya, Ahmed; Nasrallah, Henry; Muvvala, Srinivas; El-Missiry, Ahmed; Mansour, Hader; Hill, Cheryl; Elswick, Daniel; Price, Elizabeth C

    2016-01-01

    Existing standardized diagnostic interviews (SDIs) were designed for researchers and produce mainly categorical diagnoses. There is an urgent need for a clinician-administered tool that produces dimensional measures, in addition to categorical diagnoses. The Standard for Clinicians' Interview in Psychiatry (SCIP) is a method of assessment of psychopathology for adults. It is designed to be administered by clinicians and includes the SCIP manual and the SCIP interview. Clinicians use the SCIP questions and rate the responses according to the SCIP manual rules. Clinicians use the patient's responses to questions, observe the patient's behaviors and make the final rating of the various signs and symptoms assessed. The SCIP method of psychiatric assessment has three components: 1) the SCIP interview (dimensional) component, 2) the etiological component, and 3) the disorder classification component. The SCIP produces three main categories of clinical data: 1) a diagnostic classification of psychiatric disorders, 2) dimensional scores, and 3) numeric data. The SCIP provides diagnoses consistent with criteria from editions of the Diagnostic and Statistical Manual (DSM) and International Classification of Disease (ICD). The SCIP produces 18 dimensional measures for key psychiatric signs or symptoms: anxiety, posttraumatic stress, obsessions, compulsions, depression, mania, suicidality, suicidal behavior, delusions, hallucinations, agitation, disorganized behavior, negativity, catatonia, alcohol addiction, drug addiction, attention, and hyperactivity. The SCIP produces numeric severity data for use in either clinical care or research. The SCIP was shown to be a valid and reliable assessment tool, and the validity and reliability results were published in 2014 and 2015. The SCIP is compatible with personalized psychiatry research and is in line with the Research Domain Criteria framework.

  4. Advanced Techniques for Seismic Protection of Historical Buildings: Experimental and Numerical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzolani, Federico M.

    2008-07-08

    The seismic protection of historical and monumental buildings, namely dating back from the ancient age up to the 20th Century, is being looked at with greater and greater interest, above all in the Euro-Mediterranean area, its cultural heritage being strongly susceptible to undergo severe damage or even collapse due to earthquake. The cultural importance of historical and monumental constructions limits, in many cases, the possibility to upgrade them from the seismic point of view, due to the fear of using intervention techniques which could have detrimental effects on their cultural value. Consequently, a great interest is growing in the developmentmore » of sustainable methodologies for the use of Reversible Mixed Technologies (RMTs) in the seismic protection of the existing constructions. RMTs, in fact, are conceived for exploiting the peculiarities of innovative materials and special devices, and they allow ease of removal when necessary. This paper deals with the experimental and numerical studies, framed within the EC PROHITECH research project, on the application of RMTs to the historical and monumental constructions mainly belonging to the cultural heritage of the Euro-Mediterranean area. The experimental tests and the numerical analyses are carried out at five different levels, namely full scale models, large scale models, sub-systems, devices, materials and elements.« less

  5. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  6. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  7. Development of Advanced Life Prediction Tools for Elastic-Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Gregg, Wayne; McGill, Preston; Swanson, Greg; Wells, Doug; Throckmorton, D. A. (Technical Monitor)

    2001-01-01

    The objective of this viewgraph presentation is to develop a systematic approach to improving the fracture control process, including analytical tools, standards, guidelines, and awareness. Analytical tools specifically for elastic-plastic fracture analysis is a regime that is currently empirical for the Space Shuttle External Tank (ET) and is handled by simulated service testing of pre-cracked panels.

  8. Numerical Relativity Simulations for Black Hole Merger Astrophysics

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2010-01-01

    Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.

  9. Computer-Numerical-Control and the EMCO Compact 5 Lathe.

    ERIC Educational Resources Information Center

    Mullen, Frank M.

    This laboratory manual is intended for use in teaching computer-numerical-control (CNC) programming using the Emco Maier Compact 5 Lathe. Developed for use at the postsecondary level, this material contains a short introduction to CNC machine tools. This section covers CNC programs, CNC machine axes, and CNC coordinate systems. The following…

  10. Advancing MODFLOW Applying the Derived Vector Space Method

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.

    2015-12-01

    The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  11. Particle Clogging in Filter Media of Embankment Dams: A Numerical and Experimental Study

    NASA Astrophysics Data System (ADS)

    Antoun, T.; Kanarska, Y.; Ezzedine, S. M.; Lomov, I.; Glascoe, L. G.; Smith, J.; Hall, R. L.; Woodson, S. C.

    2013-12-01

    The safety of dam structures requires the characterization of the granular filter ability to capture fine-soil particles and prevent erosion failure in the event of an interfacial dislocation. Granular filters are one of the most important protective design elements of large embankment dams. In case of cracking and erosion, if the filter is capable of retaining the eroded fine particles, then the crack will seal and the dam safety will be ensured. Here we develop and apply a numerical tool to thoroughly investigate the migration of fines in granular filters at the grain scale. The numerical code solves the incompressible Navier-Stokes equations and uses a Lagrange multiplier technique which enforces the correct in-domain computational boundary conditions inside and on the boundary of the particles. The numerical code is validated to experiments conducted at the US Army Corps of Engineering and Research Development Center (ERDC). These laboratory experiments on soil transport and trapping in granular media are performed in constant-head flow chamber filled with the filter media. Numerical solutions are compared to experimentally measured flow rates, pressure changes and base particle distributions in the filter layer and show good qualitative and quantitative agreement. To further the understanding of the soil transport in granular filters, we investigated the sensitivity of the particle clogging mechanism to various parameters such as particle size ratio, the magnitude of hydraulic gradient, particle concentration, and grain-to-grain contact properties. We found that for intermediate particle size ratios, the high flow rates and low friction lead to deeper intrusion (or erosion) depths. We also found that the damage tends to be shallower and less severe with decreasing flow rate, increasing friction and concentration of suspended particles. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under

  12. Operational numerical weather prediction on the CYBER 205 at the National Meteorological Center

    NASA Technical Reports Server (NTRS)

    Deaven, D.

    1984-01-01

    The Development Division of the National Meteorological Center (NMC), having the responsibility of maintaining and developing the numerical weather forecasting systems of the center, is discussed. Because of the mission of NMC data products must be produced reliably and on time twice daily free of surprises for forecasters. Personnel of Development Division are in a rather unique situation. They must develop new advanced techniques for numerical analysis and prediction utilizing current state-of-the-art techniques, and implement them in an operational fashion without damaging the operations of the center. With the computational speeds and resources now available from the CYBER 205, Development Division Personnel will be able to introduce advanced analysis and prediction techniques into the operational job suite without disrupting the daily schedule. The capabilities of the CYBER 205 are discussed.

  13. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    ERIC Educational Resources Information Center

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  14. Numerical simulation of disperse particle flows on a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Sierakowski, Adam J.

    In both nature and technology, we commonly encounter solid particles being carried within fluid flows, from dust storms to sediment erosion and from food processing to energy generation. The motion of uncountably many particles in highly dynamic flow environments characterizes the tremendous complexity of such phenomena. While methods exist for the full-scale numerical simulation of such systems, current computational capabilities require the simplification of the numerical task with significant approximation using closure models widely recognized as insufficient. There is therefore a fundamental need for the investigation of the underlying physical processes governing these disperse particle flows. In the present work, we develop a new tool based on the Physalis method for the first-principles numerical simulation of thousands of particles (a small fraction of an entire disperse particle flow system) in order to assist in the search for new reduced-order closure models. We discuss numerous enhancements to the efficiency and stability of the Physalis method, which introduces the influence of spherical particles to a fixed-grid incompressible Navier-Stokes flow solver using a local analytic solution to the flow equations. Our first-principles investigation demands the modeling of unresolved length and time scales associated with particle collisions. We introduce a collision model alongside Physalis, incorporating lubrication effects and proposing a new nonlinearly damped Hertzian contact model. By reproducing experimental studies from the literature, we document extensive validation of the methods. We discuss the implementation of our methods for massively parallel computation using a graphics processing unit (GPU). We combine Eulerian grid-based algorithms with Lagrangian particle-based algorithms to achieve computational throughput up to 90 times faster than the legacy implementation of Physalis for a single central processing unit. By avoiding all data

  15. Tool-use in the brown bear (Ursus arctos).

    PubMed

    Deecke, Volker B

    2012-07-01

    This is the first report of tool-using behaviour in a wild brown bear (Ursus arctos). Whereas the use of tools is comparatively common among primates and has also been documented in several species of birds, fishes and invertebrates, tool-using behaviours have so far been observed in only four species of non-primate mammal. The observation was made and photographed while studying the behaviour of a subadult brown bear in south-eastern Alaska. The animal repeatedly picked up barnacle-encrusted rocks in shallow water, manipulated and re-oriented them in its forepaws, and used them to rub its neck and muzzle. The behaviour probably served to relieve irritated skin or to remove food-remains from the fur. Bears habitually rub against stationary objects and overturn rocks and boulders during foraging and such rubbing behaviour could have been transferred to a freely movable object to classify as tool-use. The bear exhibited considerable motor skills when manipulating the rocks, which clearly shows that these animals possess the advanced motor learning necessary for tool-use. Advanced spatial cognition and motor skills for object manipulation during feeding and tool-use provide a possible explanation for why bears have the largest brains relative to body size of all carnivores. Systematic research into the cognitive abilities of bears, both in captivity and in the wild, is clearly warranted to fully understand their motor-learning skills and physical intelligence related to tool-use and other object manipulation tasks.

  16. Effects of an Approach Spacing Flight Deck Tool on Pilot Eyescan

    DOT National Transportation Integrated Search

    2004-02-01

    An airborne tool has been developed based on the concept of an aircraft maintaining a time-based spacing interval from the preceding aircraft. The : Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic : Dependent Surveillance-Broadcas...

  17. Numerical methods for engine-airframe integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less

  18. Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sweby, Peter K.

    1997-01-01

    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.

  19. Proceedings of the IMOG (Interagency Manufacturing Operations Group) Numerical Systems Group. 62nd Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, G.J.

    1993-10-01

    This document contains the proceedings of the 62nd Interagency Manufacturing Operations Group (IMOG) Numerical Systems Group. Included are the minutes of the 61st meeting and the agenda for the 62nd meeting. Presentations at the meeting are provided in the appendices to this document. Presentations were: 1992 NSG Annual Report to IMOG Steering Committee; Charter for the IMOG Numerical Systems Group; Y-12 Coordinate Measuring Machine Training Project; IBH NC Controller; Automatically Programmed Metrology Update; Certification of Anvil-5000 for Production Use at the Y-12 Plant; Accord Project; Sandia National Laboratories {open_quotes}Accord{close_quotes}; Demo/Anvil Tool Path Generation 5-Axis; Demo/Video Machine/Robot Animation Dynamics; Demo/Certification ofmore » Anvil Tool Path Generation; Tour of the M-60 Inspection Machine; Distributed Numerical Control Certification; Spline Usage Method; Y-12 NC Engineering Status; and Y-12 Manufacturing CAD Systems.« less

  20. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database and CUAHSI-Supported Data Tools

    NASA Astrophysics Data System (ADS)

    Brazil, L.

    2017-12-01

    The Shale Network's extensive database of water quality observations enables educational experiences about the potential impacts of resource extraction with real data. Through open source tools that are developed and maintained by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), researchers, educators, and citizens can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through collection efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. Thus far, CUAHSI-supported data tools have been used to engage high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in developing educational material, and the resources available to learn more.

  1. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective

    PubMed Central

    2013-01-01

    Parasitic nematodes (roundworms) of small ruminants and other livestock have major economic impacts worldwide. Despite the impact of the diseases caused by these nematodes and the discovery of new therapeutic agents (anthelmintics), there has been relatively limited progress in the development of practical molecular tools to study the epidemiology of these nematodes. Specific diagnosis underpins parasite control, and the detection and monitoring of anthelmintic resistance in livestock parasites, presently a major concern around the world. The purpose of the present article is to provide a concise account of the biology and knowledge of the epidemiology of the gastrointestinal nematodes (order Strongylida), from an Australian perspective, and to emphasize the importance of utilizing advanced molecular tools for the specific diagnosis of nematode infections for refined investigations of parasite epidemiology and drug resistance detection in combination with conventional methods. It also gives a perspective on the possibility of harnessing genetic, genomic and bioinformatic technologies to better understand parasites and control parasitic diseases. PMID:23711194

  2. Control/structure interaction conceptual design tool

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1990-01-01

    The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.

  3. Error analysis of numerical gravitational waveforms from coalescing binary black holes

    NASA Astrophysics Data System (ADS)

    Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.

  4. Using 3-D Numerical Weather Data in Piloted Simulations

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2016-01-01

    This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.

  5. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  6. Comparison of Performance Predictions for New Low-Thrust Trajectory Tools

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Kos, Larry; Hopkins, Randall; Crane, Tracie

    2006-01-01

    Several low thrust trajectory optimization tools have been developed over the last 3% years by the Low Thrust Trajectory Tools development team. This toolset includes both low-medium fidelity and high fidelity tools which allow the analyst to quickly research a wide mission trade space and perform advanced mission design. These tools were tested using a set of reference trajectories that exercised each tool s unique capabilities. This paper compares the performance predictions of the various tools against several of the reference trajectories. The intent is to verify agreement between the high fidelity tools and to quantify the performance prediction differences between tools of different fidelity levels.

  7. Numerical models for fluid-grains interactions: opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Esteghamatian, Amir; Rahmani, Mona; Wachs, Anthony

    2017-06-01

    In the framework of a multi-scale approach, we develop numerical models for suspension flows. At the micro scale level, we perform particle-resolved numerical simulations using a Distributed Lagrange Multiplier/Fictitious Domain approach. At the meso scale level, we use a two-way Euler/Lagrange approach with a Gaussian filtering kernel to model fluid-solid momentum transfer. At both the micro and meso scale levels, particles are individually tracked in a Lagrangian way and all inter-particle collisions are computed by a Discrete Element/Soft-sphere method. The previous numerical models have been extended to handle particles of arbitrary shape (non-spherical, angular and even non-convex) as well as to treat heat and mass transfer. All simulation tools are fully-MPI parallel with standard domain decomposition and run on supercomputers with a satisfactory scalability on up to a few thousands of cores. The main asset of multi scale analysis is the ability to extend our comprehension of the dynamics of suspension flows based on the knowledge acquired from the high-fidelity micro scale simulations and to use that knowledge to improve the meso scale model. We illustrate how we can benefit from this strategy for a fluidized bed, where we introduce a stochastic drag force model derived from micro-scale simulations to recover the proper level of particle fluctuations. Conversely, we discuss the limitations of such modelling tools such as their limited ability to capture lubrication forces and boundary layers in highly inertial flows. We suggest ways to overcome these limitations in order to enhance further the capabilities of the numerical models.

  8. A review of decision support, risk communication and patient information tools for thrombolytic treatment in acute stroke: lessons for tool developers

    PubMed Central

    2013-01-01

    Background Tools to support clinical or patient decision-making in the treatment/management of a health condition are used in a range of clinical settings for numerous preference-sensitive healthcare decisions. Their impact in clinical practice is largely dependent on their quality across a range of domains. We critically analysed currently available tools to support decision making or patient understanding in the treatment of acute ischaemic stroke with intravenous thrombolysis, as an exemplar to provide clinicians/researchers with practical guidance on development, evaluation and implementation of such tools for other preference-sensitive treatment options/decisions in different clinical contexts. Methods Tools were identified from bibliographic databases, Internet searches and a survey of UK and North American stroke networks. Two reviewers critically analysed tools to establish: information on benefits/risks of thrombolysis included in tools, and the methods used to convey probabilistic information (verbal descriptors, numerical and graphical); adherence to guidance on presenting outcome probabilities (IPDASi probabilities items) and information content (Picker Institute Checklist); readability (Fog Index); and the extent that tools had comprehensive development processes. Results Nine tools of 26 identified included information on a full range of benefits/risks of thrombolysis. Verbal descriptors, frequencies and percentages were used to convey probabilistic information in 20, 19 and 18 tools respectively, whilst nine used graphical methods. Shortcomings in presentation of outcome probabilities (e.g. omitting outcomes without treatment) were identified. Patient information tools had an aggregate median Fog index score of 10. None of the tools had comprehensive development processes. Conclusions Tools to support decision making or patient understanding in the treatment of acute stroke with thrombolysis have been sub-optimally developed. Development of tools

  9. Wildland Fire Research: Tools and Technology Development

    EPA Pesticide Factsheets

    Scientific tools are needed to better quantify and predict the impact of smoke from wildlfires on public health. EPA research is supporting the development of new air quality monitors, advancing modeling and improving emissions inventories.

  10. Data and Tools | Integrated Energy Solutions | NREL

    Science.gov Websites

    for a research campus eQUEST. Detailed analysis of today's state-of-the-art building design source software tools to support whole building energy modeling and advanced daylight analysis BESTEST-EX

  11. Ball Bearing Analysis with the ORBIS Tool

    NASA Technical Reports Server (NTRS)

    Halpin, Jacob D.

    2016-01-01

    Ball bearing design is critical to the success of aerospace mechanisms. Key bearing performance parameters, such as load capability, stiffness, torque, and life all depend on accurate determination of the internal load distribution. Hence, a good analytical bearing tool that provides both comprehensive capabilities and reliable results becomes a significant asset to the engineer. This paper introduces the ORBIS bearing tool. A discussion of key modeling assumptions and a technical overview is provided. Numerous validation studies and case studies using the ORBIS tool are presented. All results suggest the ORBIS code closely correlates to predictions on bearing internal load distributions, stiffness, deflection and stresses.

  12. Challenges of NDE Simulation Tool Challenges of NDE Simulation Tool

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.; Frank, Ashley L.

    2015-01-01

    Realistic nondestructive evaluation (NDE) simulation tools enable inspection optimization and predictions of inspectability for new aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of advanced aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation cannot rapidly simulate damage detection techniques for large scale, complex geometry composite components/vehicles with realistic damage types. This paper discusses some of the challenges of model development and validation for composites, such as the level of realism and scale of simulation needed for NASA' applications. Ongoing model development work is described along with examples of model validation studies. The paper will also discuss examples of the use of simulation tools at NASA to develop new damage characterization methods, and associated challenges of validating those methods.

  13. Dereplication, Aggregation and Scoring Tool (DAS Tool) v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SIEBER, CHRISTIAN

    Communities of uncultivated microbes are critical to ecosystem function and microorganism health, and a key objective of metagenomic studies is to analyze organism-specific metabolic pathways and reconstruct community interaction networks. This requires accurate assignment of genes to genomes, yet existing binning methods often fail to predict a reasonable number of genomes and report many bins of low quality and completeness. Furthermore, the performance of existing algorithms varies between samples and biotypes. Here, we present a dereplication, aggregation and scoring strategy, DAS Tool, that combines the strengths of a flexible set of established binning algorithms. DAS Tools applied to a constructedmore » community generated more accurate bins than any automated method. Further, when applied to samples of different complexity, including soil, natural oil seeps, and the human gut, DAS Tool recovered substantially more near-complete genomes than any single binning method alone. Included were three genomes from a novel lineage . The ability to reconstruct many near-complete genomes from metagenomics data will greatly advance genome-centric analyses of ecosystems.« less

  14. Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.

    This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.

  15. Technology Transfer Challenges for High-Assurance Software Engineering Tools

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.

    2003-01-01

    In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.

  16. Analysis and design of friction stir welding tool

    NASA Astrophysics Data System (ADS)

    Jagadeesha, C. B.

    2016-12-01

    Since its inception no one has done analysis and design of FSW tool. Initial dimensions of FSW tool are decided by educated guess. Optimum stresses on tool pin have been determined at optimized parameters for bead on plate welding on AZ31B-O Mg alloy plate. Fatigue analysis showed that the chosen FSW tool for the welding experiment has not ∞ life and it has determined that the life of FSW tool is 2.66×105 cycles or revolutions. So one can conclude that any arbitrarily decided FSW tool generally has finite life and cannot be used for ∞ life. In general, one can determine the suitability of tool and its material to be used in FSW of the given workpiece materials in advance by this analysis in terms of fatigue life of the tool.

  17. AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

    2003-02-27

    WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHAmore » then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective

  18. Numerical modeling of reverse recovery characteristic in silicon pin diodes

    NASA Astrophysics Data System (ADS)

    Yamashita, Yusuke; Tadano, Hiroshi

    2018-07-01

    A new numerical reverse recovery model of silicon pin diode is proposed by the approximation of the reverse recovery waveform as a simple shape. This is the first model to calculate the reverse recovery characteristics using numerical equations without adjusted by fitting equations and fitting parameters. In order to verify the validity and the accuracy of the numerical model, the calculation result from the model is verified through the device simulation result. In 1980, he joined Toyota Central R&D Labs, Inc., where he was involved in the research and development of power devices such as SIT, IGBT, diodes and power MOSFETs. Since 2013 he has been a professor at the Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan. His current research interest is high-efficiency power conversion circuits for electric vehicles using advanced power devices.

  19. Effect of Pin Tool Shape on Metal Flow During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Coronado, E.; Aloor, S.; Nowak, B.; Murr, L. M.; Nunes, Arthur C., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    It has been shown that metal moves behind the rotating Friction Stir Pin Tool in two separate currents or streams. One current, mostly on the advancing side, enters a zone of material that rotates with the pin tool for one or more revolutions and eventually is abandoned behind the pin tool in crescent-shaped pieces. The other current, largely on the retreating side of the pin tool is moved by a wiping process to the back of the pin tool and fills in between the pieces of the rotational zone that have been shed by the rotational zone. This process was studied by using a faying surface copper trace to clarify the metal flow. Welds were made with pin tools having various thread pitches. Decreasing the thread pitch causes the large scale top-to-bottorn flow to break up into multiple vortices along the pin and an unthreaded pin tool provides insufficient vertical motion for there to be a stable rotational zone and flow of material via the rotational zone is not possible leading to porosity on the advancing side of the weld.

  20. Challenges of NDE simulation tool validation, optimization, and utilization for composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Seebo, Jeffrey P.; Juarez, Peter

    2016-02-01

    Rapid, realistic nondestructive evaluation (NDE) simulation tools can aid in inspection optimization and prediction of inspectability for advanced aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, ultrasound modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation is still far from the goal of rapidly simulating damage detection techniques for large scale, complex geometry composite components/vehicles containing realistic damage types. Ongoing work at NASA Langley Research Center is focused on advanced ultrasonic simulation tool development. This paper discusses challenges of simulation tool validation, optimization, and utilization for composites. Ongoing simulation tool development work is described along with examples of simulation validation and optimization challenges that are more broadly applicable to all NDE simulation tools. The paper will also discuss examples of simulation tool utilization at NASA to develop new damage characterization methods for composites, and associated challenges in experimentally validating those methods.

  1. The UEA sRNA Workbench (version 4.4): a comprehensive suite of tools for analyzing miRNAs and sRNAs.

    PubMed

    Stocks, Matthew B; Mohorianu, Irina; Beckers, Matthew; Paicu, Claudia; Moxon, Simon; Thody, Joshua; Dalmay, Tamas; Moulton, Vincent

    2018-05-02

    RNA interference, a highly conserved regulatory mechanism, is mediated via small RNAs. Recent technical advances enabled the analysis of larger, complex datasets and the investigation of microRNAs and the less known small interfering RNAs. However, the size and intricacy of current data requires a comprehensive set of tools, able to discriminate the patterns from the low-level, noise-like, variation; numerous and varied suggestions from the community represent an invaluable source of ideas for future tools, the ability of the community to contribute to this software is essential. We present a new version of the UEA sRNA Workbench, reconfigured to allow an easy insertion of new tools/workflows. In its released form, it comprises of a suite of tools in a user-friendly environment, with enhanced capabilities for a comprehensive processing of sRNA-seq data e.g. tools for an accurate prediction of sRNA loci (CoLIde) and miRNA loci (miRCat2), as well as workflows to guide the users through common steps such as quality checking of the input data, normalization of abundances or detection of differential expression represent the first step in sRNA-seq analyses. The UEA sRNA Workbench is available at: http://srna-workbench.cmp.uea.ac.uk The source code is available at: https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench. v.moulton@uea.ac.uk.

  2. Numerical simulations of induction and MWD logging tools and data inversion method with X-window interface on a UNIX workstation

    NASA Astrophysics Data System (ADS)

    Tian, Xiang-Dong

    The purpose of this research is to simulate induction and measuring-while-drilling (MWD) logs. In simulation of logs, there are two tasks. The first task, the forward modeling procedure, is to compute the logs from known formation. The second task, the inversion procedure, is to determine the unknown properties of the formation from the measured field logs. In general, the inversion procedure requires the solution of a forward model. In this study, a stable numerical method to simulate induction and MWD logs is presented. The proposed algorithm is based on a horizontal eigenmode expansion method. Vertical propagation of modes is modeled by a three-layer module. The multilayer cases are treated as a cascade of these modules. The mode tracing algorithm possesses stable characteristics that are superior to other methods. This method is applied to simulate the logs in the formations with both vertical and horizontal layers, and also used to study the groove effects of the MWD tool. The results are very good. Two-dimensional inversion of induction logs is an nonlinear problem. Nonlinear functions of the apparent conductivity are expanded into a Taylor series. After truncating the high order terms in this Taylor series, the nonlinear functions are linearized. An iterative procedure is then devised to solve the inversion problem. In each iteration, the Jacobian matrix is calculated, and a small variation computed using the least-squares method is used to modify the background medium. Finally, the inverted medium is obtained. The horizontal eigenstate method is used to solve the forward problem. It is found that a good inverted formation can be obtained by using measurements. In order to help the user simulate the induction logs conveniently, a Wellog Simulator, based on the X-window system, is developed. The application software (FORTRAN codes) embedded in the Simulator is designed to simulate the responses of the induction tools in the layered formation with dipping beds

  3. Tools Automate Spacecraft Testing, Operation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "NASA began the Small Explorer (SMEX) program to develop spacecraft to advance astrophysics and space physics. As one of the entities supporting software development at Goddard Space Flight Center, the Hammers Company Inc. (tHC Inc.), of Greenbelt, Maryland, developed the Integrated Test and Operations System to support SMEX. Later, the company received additional Small Business Innovation Research (SBIR) funding from Goddard for a tool to facilitate the development of flight software called VirtualSat. NASA uses the tools to support 15 satellites, and the aerospace industry is using them to develop science instruments, spacecraft computer systems, and navigation and control software."

  4. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  5. American College of Surgeons National Surgical Quality Improvement Program as a quality-measurement tool for advanced cancer patients.

    PubMed

    Vidri, Roberto J; Blakely, Andrew M; Kulkarni, Shreyus S; Vaghjiani, Raj G; Heffernan, Daithi S; Harrington, David T; Cioffi, William G; Miner, Thomas J

    2015-10-01

    Multiple studies have shown the significantly increased post-operative morbidity and mortality of patients undergoing palliative operations. It has been proposed by some authors that the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database can be used reliably to develop risk-calculators or as an aid for clinical decision-making in advanced cancer patients. ACS-NSQIP is a population-based database that by design only captures outcomes data for the first 30-day following an operation. We considered the suitability of these data as a tool for decision-making in the advanced cancer patient. Six-year retrospective review of a single institution's ACS-NSQIP database for cases identified as "Disseminated Cancer". Procedures performed with palliative intent were identified and analyzed. Of 7,763 patients within the ACS-NSQIP database, 138 (1.8%) were identified as having "Disseminated Cancer". Of the remaining 7,625 entries only 4,486 contained complete survival data for analysis. Thirty-day mortality within the "Disseminated Cancer" group was higher when compared to all other surgical patients (7.9% vs. 0.9%, P<0.001). Explicit chart review of these 138 patients revealed that 32 (23.2%) had undergone operations with palliative intent. Overall survival for palliative and non-palliative operations was significantly different (104 vs. 709 days, P<0.001). When comparing palliative to non-palliative procedures using ACS-NSQIP data, we were unable to detect a difference in 30-day mortality (9.4% vs. 7.5%, P=0.72). Calculations utilizing ACS-NSQIP data fail to demonstrate the increased mortality associated with palliative operations. Patients diagnosed with advanced cancer are not adequately represented within the database due to the limited number of cases collected. Also, more suitable outcomes measures for palliative operations such as pain relief, functional status, and quality of life, are not captured. Therefore, the sole use of

  6. 78 FR 68459 - Medical Device Development Tools; Draft Guidance for Industry, Tool Developers, and Food and Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Radiological Health (CDRH) for qualification of medical device development tools (MDDT) for use in device.... Background The draft guidance describes the framework and process for the voluntary CDRH qualification of... science; and (4) more quickly and more clearly communicate with CDRH stakeholders about important advances...

  7. Numerical Propulsion System Simulation Architecture

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  8. Assessing Adaptive Instructional Design Tools and Methods in ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training - Interactive Tools) is a European project within the Information Society Technologies program that is providing design methods and tools to guide a training designer according to the latest cognitive science and standardization principles. ADAPT[IT] addresses users in two significantly…

  9. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    NASA Astrophysics Data System (ADS)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  10. Advances in Chimera Grid Tools for Multi-Body Dynamics Simulations and Script Creation

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2004-01-01

    This viewgraph presentation contains information about (1) Framework for multi-body dynamics - Geometry Manipulation Protocol (GMP), (2) Simulation procedure using Chimera Grid Tools (CGT) and OVERFLOW-2 (3) Further recent developments in Chimera Grid Tools OVERGRID, Grid modules, Script library and (4) Future work.

  11. Approximating a retarded-advanced differential equation that models human phonation

    NASA Astrophysics Data System (ADS)

    Teodoro, M. Filomena

    2017-11-01

    In [1, 2, 3] we have got the numerical solution of a linear mixed type functional differential equation (MTFDE) introduced initially in [4], considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering B-splines basis set. The present work introduces a numerical scheme using least squares method (LSM) and Gaussian basis functions to solve numerically a nonlinear mixed type equation with symmetric delay and advance which models human phonation. The preliminary results are promising. We obtain an accuracy comparable with the previous results.

  12. Advanced CNC Programming (EZ-CAM). 439-366.

    ERIC Educational Resources Information Center

    Casey, Joe

    This document contains two units for an advanced course in computer numerical control (CNC) for computer-aided manufacturing. It is intended to familiarize students with the principles and techniques necessary to create proper CNC programs using computer software. Each unit consists of an introduction, instructional objectives, learning materials,…

  13. New methodology to baseline and match AME polysilicon etcher using advanced diagnostic tools

    NASA Astrophysics Data System (ADS)

    Poppe, James; Shipman, John; Reinhardt, Barbara E.; Roussel, Myriam; Hedgecock, Raymond; Fonda, Arturo

    1999-09-01

    As process controls tighten in the semiconductor industry, the need to understand the variables that determine system performance become more important. For plasma etch systems, process success depends on the control of key parameters such as: vacuum integrity, pressure, gas flows, and RF power. It is imperative to baseline, monitor, and control these variables. This paper presents an overview of the methods and tools used by Motorola BMC fabrication facility to characterize an Applied Materials polysilicon etcher. Tool performance data obtained from our traditional measurement techniques are limited in their scope and do not provide a complete picture of the ultimate tool performance. Presently the BMC traditional characterization tools provide a snapshot of the static operation of the equipment under test (EUT); however, complete evaluation of the dynamic performance cannot be monitored without the aid of specialized diagnostic equipment. To provide us with a complete system baseline evaluation of the polysilicon etcher, three diagnostic tools were utilized: Lucas Labs Vacuum Diagnostic System, Residual Gas Analyzer, and the ENI Voltage/Impedance Probe. The diagnostic methodology used to baseline and match key parameters of qualified production equipment has had an immense impact on other equipment characterization in the facility. It has resulted in reduced cycle time for new equipment introduction as well.

  14. TTLEM: Open access tool for building numerically accurate landscape evolution models in MATLAB

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Schwanghart, Wolfgang; Govers, Gerard

    2017-04-01

    Despite a growing interest in LEMs, accuracy assessment of the numerical methods they are based on has received little attention. Here, we present TTLEM which is an open access landscape evolution package designed to develop and test your own scenarios and hypothesises. TTLEM uses a higher order flux-limiting finite-volume method to simulate river incision and tectonic displacement. We show that this scheme significantly influences the evolution of simulated landscapes and the spatial and temporal variability of erosion rates. Moreover, it allows the simulation of lateral tectonic displacement on a fixed grid. Through the use of a simple GUI the software produces visible output of evolving landscapes through model run time. In this contribution, we illustrate numerical landscape evolution through a set of movies spanning different spatial and temporal scales. We focus on the erosional domain and use both spatially constant and variable input values for uplift, lateral tectonic shortening, erodibility and precipitation. Moreover, we illustrate the relevance of a stochastic approach for realistic hillslope response modelling. TTLEM is a fully open source software package, written in MATLAB and based on the TopoToolbox platform (topotoolbox.wordpress.com). Installation instructions can be found on this website and the therefore designed GitHub repository.

  15. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil

    NASA Technical Reports Server (NTRS)

    Liever, Peter; Tosh, Abhijit; Curtis, Jennifer

    2012-01-01

    This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions. In the earlier project phase of this innovation, the capabilities of the UFS for mixed continuum and rarefied flow situations were validated and demonstrated for lunar lander rocket

  16. An Interactive Educational Tool for Compressible Aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive educational tool was developed to aid in the teaching of undergraduate compressible aerodynamics. The tool solves for the supersonic flow past a wedge using the equations found in NACA 1135. The student varies the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the variation of flow results to the student. One such format leads the student to the generation of some of the graphs found in NACA-1135. The tool includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use. This paper will detail the numerical methods used in the tool and describe how it can be used and modified.

  17. Advances in edge-diffraction modeling for virtual-acoustic simulations

    NASA Astrophysics Data System (ADS)

    Calamia, Paul Thomas

    In recent years there has been growing interest in modeling sound propagation in complex, three-dimensional (3D) virtual environments. With diverse applications for the military, the gaming industry, psychoacoustics researchers, architectural acousticians, and others, advances in computing power and 3D audio-rendering techniques have driven research and development aimed at closing the gap between the auralization and visualization of virtual spaces. To this end, this thesis focuses on improving the physical and perceptual realism of sound-field simulations in virtual environments through advances in edge-diffraction modeling. To model sound propagation in virtual environments, acoustical simulation tools commonly rely on geometrical-acoustics (GA) techniques that assume asymptotically high frequencies, large flat surfaces, and infinitely thin ray-like propagation paths. Such techniques can be augmented with diffraction modeling to compensate for the effect of surface size on the strength and directivity of a reflection, to allow for propagation around obstacles and into shadow zones, and to maintain soundfield continuity across reflection and shadow boundaries. Using a time-domain, line-integral formulation of the Biot-Tolstoy-Medwin (BTM) diffraction expression, this thesis explores various aspects of diffraction calculations for virtual-acoustic simulations. Specifically, we first analyze the periodic singularity of the BTM integrand and describe the relationship between the singularities and higher-order reflections within wedges with open angle less than 180°. Coupled with analytical approximations for the BTM expression, this analysis allows for accurate numerical computations and a continuous sound field in the vicinity of an arbitrary wedge geometry insonified by a point source. Second, we describe an edge-subdivision strategy that allows for fast diffraction calculations with low error relative to a numerically more accurate solution. Third, to address

  18. Creation of an ensemble of simulated cardiac cases and a human observer study: tools for the development of numerical observers for SPECT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Pretorius, P. Hendrik; Gifford, Howard C.; Licho, Robert; Joffe, Samuel; McGuiness, Matthew; Mehurg, Shannon; Zacharias, Michael; Brankov, Jovan G.

    2012-02-01

    Our previous Single Photon Emission Computed Tomography (SPECT) myocardial perfusion imaging (MPI) research explored the utility of numerical observers. We recently created two hundred and eighty simulated SPECT cardiac cases using Dynamic MCAT (DMCAT) and SIMIND Monte Carlo tools. All simulated cases were then processed with two reconstruction methods: iterative ordered subset expectation maximization (OSEM) and filtered back-projection (FBP). Observer study sets were assembled for both OSEM and FBP methods. Five physicians performed an observer study on one hundred and seventy-nine images from the simulated cases. The observer task was to indicate detection of any myocardial perfusion defect using the American Society of Nuclear Cardiology (ASNC) 17-segment cardiac model and the ASNC five-scale rating guidelines. Human observer Receiver Operating Characteristic (ROC) studies established the guidelines for the subsequent evaluation of numerical model observer (NO) performance. Several NOs were formulated and their performance was compared with the human observer performance. One type of NO was based on evaluation of a cardiac polar map that had been pre-processed using a gradient-magnitude watershed segmentation algorithm. The second type of NO was also based on analysis of a cardiac polar map but with use of a priori calculated average image derived from an ensemble of normal cases.

  19. Advancing Alternative Analysis: Integration of Decision Science.

    PubMed

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  20. Advanced optical manufacturing and testing; Proceedings of the Meeting, San Diego, CA, July 9-11, 1990

    NASA Astrophysics Data System (ADS)

    Sanger, Gregory M.; Reid, Paul B.; Baker, Lionel R.

    1990-11-01

    Consideration is given to advanced optical fabrication, profilometry and thin films, and metrology. Particular attention is given to automation for optics manufacturing, 3D contouring on a numerically controlled grinder, laser-scanning lens configurations, a noncontact precision measurement system, novel noncontact profiler design for measuring synchrotron radiation mirrors, laser-diode technologies for in-process metrology, measurements of X-ray reflectivities of Au-coatings at several energies, platinum coating of an X-ray mirror for SR lithography, a Hilbert transform algorithm for fringe-pattern analysis, structural error sources during fabrication of the AXAF optical elements, an in-process mirror figure qualification procedure for large deformable mirrors, interferometric evaluation of lenslet arrays for 2D phase-locked laser diode sources, and manufacturing and metrology tooling for the solar-A soft X-ray telescope.

  1. Predicting Operator Execution Times Using CogTool

    NASA Technical Reports Server (NTRS)

    Santiago-Espada, Yamira; Latorella, Kara A.

    2013-01-01

    Researchers and developers of NextGen systems can use predictive human performance modeling tools as an initial approach to obtain skilled user performance times analytically, before system testing with users. This paper describes the CogTool models for a two pilot crew executing two different types of a datalink clearance acceptance tasks, and on two different simulation platforms. The CogTool time estimates for accepting and executing Required Time of Arrival and Interval Management clearances were compared to empirical data observed in video tapes and registered in simulation files. Results indicate no statistically significant difference between empirical data and the CogTool predictions. A population comparison test found no significant differences between the CogTool estimates and the empirical execution times for any of the four test conditions. We discuss modeling caveats and considerations for applying CogTool to crew performance modeling in advanced cockpit environments.

  2. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  3. Critical Appraisal Tools and Reporting Guidelines for Evidence-Based Practice.

    PubMed

    Buccheri, Robin K; Sharifi, Claire

    2017-12-01

    Nurses engaged in evidence-based practice (EBP) have two important sets of tools: Critical appraisal tools and reporting guidelines. Critical appraisal tools facilitate the appraisal process and guide a consumer of evidence through an objective, analytical, evaluation process. Reporting guidelines, checklists of items that should be included in a publication or report, ensure that the project or guidelines are reported on with clarity, completeness, and transparency. The primary purpose of this paper is to help nurses understand the difference between critical appraisal tools and reporting guidelines. A secondary purpose is to help nurses locate the appropriate tool for the appraisal or reporting of evidence. A systematic search was conducted to find commonly used critical appraisal tools and reporting guidelines for EBP in nursing. This article serves as a resource to help nurse navigate the often-overwhelming terrain of critical appraisal tools and reporting guidelines, and will help both novice and experienced consumers of evidence more easily select the appropriate tool(s) to use for critical appraisal and reporting of evidence. Having the skills to select the appropriate tool or guideline is an essential part of meeting EBP competencies for both practicing registered nurses and advanced practice nurses (Melnyk & Gallagher-Ford, 2015; Melnyk, Gallagher-Ford, & Fineout-Overholt, 2017). Nine commonly used critical appraisal tools and eight reporting guidelines were found and are described in this manuscript. Specific steps for selecting an appropriate tool as well as examples of each tool's use in a publication are provided. Practicing registered nurses and advance practice nurses must be able to critically appraise and disseminate evidence in order to meet EBP competencies. This article is a resource for understanding the difference between critical appraisal tools and reporting guidelines, and identifying and accessing appropriate tools or guidelines. © 2017

  4. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  5. Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation

    PubMed Central

    Rakhmatov, Ruslan; Ogay, Tatyana; Jeon, Seokhee

    2018-01-01

    This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training data collected from real tool-surface contact. Since the input space of the model is represented in the local coordinate system of a tool, the model is independent of recording and rendering devices and can be easily deployed to an existing simulator. The model also supports complex interactions, such as self and multi-contact collisions. In order to assess the proposed data-driven model, we built a custom data acquisition setup and developed a proof-of-concept rendering simulator. The simulator was evaluated through numerical and psychophysical experiments with four different real tools. The numerical evaluation demonstrated the perceptual soundness of the proposed model, meanwhile the user study revealed the force feedback of the proposed simulator to be realistic. PMID:29342964

  6. An RNA polymerase II-driven Ebola virus minigenome system as an advanced tool for antiviral drug screening.

    PubMed

    Nelson, Emily V; Pacheco, Jennifer R; Hume, Adam J; Cressey, Tessa N; Deflubé, Laure R; Ruedas, John B; Connor, John H; Ebihara, Hideki; Mühlberger, Elke

    2017-10-01

    Ebola virus (EBOV) causes a severe disease in humans with the potential for significant international public health consequences. Currently, treatments are limited to experimental vaccines and therapeutics. Therefore, research into prophylaxis and antiviral strategies to combat EBOV infections is of utmost importance. The requirement for high containment laboratories to study EBOV infection is a limiting factor for conducting EBOV research. To overcome this issue, minigenome systems have been used as valuable tools to study EBOV replication and transcription mechanisms and to screen for antiviral compounds at biosafety level 2. The most commonly used EBOV minigenome system relies on the ectopic expression of the T7 RNA polymerase (T7), which can be limiting for certain cell types. We have established an improved EBOV minigenome system that utilizes endogenous RNA polymerase II (pol II) as a driver for the synthesis of minigenome RNA. We show here that this system is as efficient as the T7-based minigenome system, but works in a wider range of cell types, including biologically relevant cell types such as bat cells. Importantly, we were also able to adapt this system to a reliable and cost-effective 96-well format antiviral screening assay with a Z-factor of 0.74, indicative of a robust assay. Using this format, we identified JG40, an inhibitor of Hsp70, as an inhibitor of EBOV replication, highlighting the potential for this system as a tool for antiviral drug screening. In summary, this updated EBOV minigenome system provides a convenient and effective means of advancing the field of EBOV research. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Numerical Control/Computer Aided Manufacturing (NC/CAM), A Descom Study

    DTIC Science & Technology

    1979-07-01

    CAM machines operate directly from computers, but most get instructions in the form of punched tape. The applications of NC/CAM are virtually...Although most NC/CAM equipment is metal working, its applications include electronics manufacturing, glass making, food processing, materiel handling...drafting, woodworking, plastics and inspection, just to name a few. Numerical control, like most technologies, is an advancing and evolutionary process

  8. Development and Evaluation of Computer-Based Laboratory Practical Learning Tool

    ERIC Educational Resources Information Center

    Gandole, Y. B.

    2006-01-01

    Effective evaluation of educational software is a key issue for successful introduction of advanced tools in the curriculum. This paper details to developing and evaluating a tool for computer assisted learning of science laboratory courses. The process was based on the generic instructional system design model. Various categories of educational…

  9. Interactive numerals

    PubMed Central

    2017-01-01

    Although Arabic numerals (like ‘2016’ and ‘3.14’) are ubiquitous, we show that in interactive computer applications they are often misleading and surprisingly unreliable. We introduce interactive numerals as a new concept and show, like Roman numerals and Arabic numerals, interactive numerals introduce another way of using and thinking about numbers. Properly understanding interactive numerals is essential for all computer applications that involve numerical data entered by users, including finance, medicine, aviation and science. PMID:28484609

  10. Prostate cancer: predicting high-risk prostate cancer-a novel stratification tool.

    PubMed

    Buck, Jessica; Chughtai, Bilal

    2014-05-01

    Currently, numerous systems exist for the identification of high-risk prostate cancer, but few of these systems can guide treatment strategies. A new stratification tool that uses common diagnostic factors can help to predict outcomes after radical prostatectomy. The tool aids physicians in the identification of appropriate candidates for aggressive, local treatment.

  11. Linguistic Alternatives to Quantitative Research Strategies. Part One: How Linguistic Mechanisms Advance Research Outcomes

    ERIC Educational Resources Information Center

    Yeager, Joseph; Sommer, Linda

    2007-01-01

    Combining psycholinguistic technologies and systems analysis created advances in motivational profiling and numerous new behavioral engineering applications. These advances leapfrog many mainstream statistical research methods, producing superior research results via cause-effect language mechanisms. Entire industries explore motives ranging from…

  12. Advanced Numerical Methods for Computing Statistical Quantities of Interest from Solutions of SPDES

    DTIC Science & Technology

    2012-01-19

    and related optimization problems; developing numerical methods for option pricing problems in the presence of random arbitrage return. 1. Novel...equations (BSDEs) are connected to nonlinear partial differen- tial equations and non-linear semigroups, to the theory of hedging and pricing of contingent...the presence of random arbitrage return [3] We consider option pricing problems when we relax the condition of no arbitrage in the Black- Scholes

  13. Numerical Ergonomics Analysis in Operation Environment of CNC Machine

    NASA Astrophysics Data System (ADS)

    Wong, S. F.; Yang, Z. X.

    2010-05-01

    The performance of operator will be affected by different operation environments [1]. Moreover, poor operation environment may cause health problems of the operator [2]. Physical and psychological considerations are two main factors that will affect the performance of operator under different conditions of operation environment. In this paper, applying scientific and systematic methods find out the pivot elements in the field of physical and psychological factors. There are five main factors including light, temperature, noise, air flow and space that are analyzed. A numerical ergonomics model has been built up regarding the analysis results which can support to advance the design of operation environment. Moreover, the output of numerical ergonomic model can provide the safe, comfortable, more productive conditions for the operator.

  14. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporatesmore » deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.« less

  15. Friction Stir Spot Welding of Advanced High Strength Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spotmore » welding in advanced high strength steels.« less

  16. Applications and advances in electronic-nose technologies

    Treesearch

    A. D. Wilson; M. Baietto

    2009-01-01

    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software...

  17. Advanced LIGO low-latency searches

    NASA Astrophysics Data System (ADS)

    Kanner, Jonah; LIGO Scientific Collaboration, Virgo Collaboration

    2016-06-01

    Advanced LIGO recently made the first detection of gravitational waves from merging binary black holes. The signal was first identified by a low-latency analysis, which identifies gravitational-wave transients within a few minutes of data collection. More generally, Advanced LIGO transients are sought with a suite of automated tools, which collectively identify events, evaluate statistical significance, estimate source position, and attempt to characterize source properties. This low-latency effort is enabling a broad multi-messenger approach to the science of compact object mergers and other transients. This talk will give an overview of the low-latency methodology and recent results.

  18. Advance Care Planning Does Not Adversely Affect Hope or Anxiety Among Patients With Advanced Cancer.

    PubMed

    Green, Michael J; Schubart, Jane R; Whitehead, Megan M; Farace, Elana; Lehman, Erik; Levi, Benjamin H

    2015-06-01

    Many physicians avoid advance care planning (ACP) discussions because they worry such conversations will lead to psychological distress. To investigate whether engaging in ACP using online planning tools adversely affects hope, hopelessness, or anxiety among patients with advanced cancer. Patients with advanced cancer and an estimated survival of two years or less (Intervention group) and a Control group were recruited at a tertiary care academic medical center (2007-2012) to engage in ACP using an online decision aid ("Making Your Wishes Known"). Pre/post and between-group comparisons were made, including hope (Herth Hope Index), hopelessness (Beck Hopelessness Scale), and anxiety (State Trait Anxiety Inventory). Secondary outcomes included ACP knowledge, self-determination, and satisfaction. A total of 200 individuals completed the study. After engaging in ACP, there was no decline in hope or increase in hopelessness in either the Control or Intervention group. Anxiety was likewise unchanged in the Control group but decreased slightly in the Intervention group. Knowledge of ACP (% correct answers) increased in both the groups, but more so in the Intervention group (13% increase vs. 4%; P<0.01). Self-determination increased slightly in both groups, and satisfaction with the ACP process was greater (P<0.01) in the Intervention than Control group. Engaging in ACP with online planning tools increases knowledge without diminishing hope, increasing hopelessness, or inducing anxiety in patients with advanced cancer. Physicians need not avoid ACP out of concern for adversely affecting patients' psychological well-being. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  19. Prototype Tool and Focus Group Evaluation for an Advanced Trajectory-Based Operations Concept

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.

    2017-01-01

    Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. NASA has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality of an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group activity.

  20. Comparison of Numerical Modeling Methods for Soil Vibration Cutting

    NASA Astrophysics Data System (ADS)

    Jiang, Jiandong; Zhang, Enguang

    2018-01-01

    In this paper, we studied the appropriate numerical simulation method for vibration soil cutting. Three numerical simulation methods, commonly used for uniform speed soil cutting, Lagrange, ALE and DEM, are analyzed. Three models of vibration soil cutting simulation model are established by using ls-dyna.The applicability of the three methods to this problem is analyzed in combination with the model mechanism and simulation results. Both the Lagrange method and the DEM method can show the force oscillation of the tool and the large deformation of the soil in the vibration cutting. Lagrange method shows better effect of soil debris breaking. Because of the poor stability of ALE method, it is not suitable to use soil vibration cutting problem.