Science.gov

Sample records for advanced ordered intermetallic

  1. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1992-12-31

    This paper briefly summarizes recent advances in intermetallic research and development. Ordered intermetallics based on aluminides and silicides possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle fracture and poor fracture resistance limit their use as engineering materials in many cases. In recent years, considerable efforts have been devoted to the study of the brittle fracture behavior of intermetallic alloys; as a result, both intrinsic and extrinsic factors governing brittle fracture have been identified. Recent advances in first-principles calculations and atomistic simulations further help us in understanding atomic bonding, dislocation configuration, and alloying effects in intermetallics. The basic understanding has led to the development of nickel, iron, and titanium aluminide alloys with improved mechanical and metallurgical properties for structural use. Industrial interest in ductile intermetallic alloys is high, and several examples of industrial involvement are mentioned.

  2. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1994-12-31

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at high temperatures in hostile environments. Attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at high temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past 10 years, considerable effort was devoted to R&D of ordered intermetallic alloys, and progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel effort on alloy design has led to the development of a number of ductile and strong intermetallic alloys based on Ni{sub 3}Al, NiAl, Fe{sub 3}Al, FeAl, Ti{sub 3}Al, and TiAl systems for structural applications.

  3. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  4. Dislocation sources in ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Appel, F.; Wagner, R.; Mecking, H.

    1996-09-01

    An overview on the current understanding of dislocation sources and multiplication mechanisms is made for ordered intermetallic alloys of the L1{sub 2}, B2, and D0{sub 19} structures. In L1{sub 2} alloys, a large disparity of edge/screw segments in their relative mobility reduces the efficiency of a Frank-Read Type multiplication mechanism. In Fe-40%Al of the B2 structure, a variety of dislocation sources are available for <111> slip, including ones resulting from condensation of thermal vacancies. In NiAl with the relatively high APB energy, <100> dislocations may result from the dislocation decomposition reactions, the prismatic punching out from inclusion particles, and/or steps and coated layers of the surface. Internal interfaces often provide sites for dislocation multiplication, e.g., grain boundaries, sub-boundaries in Ni{sub 3}Ga, NiAl and Ti{sub 3}Al, and antiphase domain boundaries in Ti{sub 3}Al. As for the crack tip as a dislocation source, extended SISFs trailed by super-Shockley partials emanating form the cracks in Ni{sub 3}Al and Co{sub 3}Ti are discussed in view of a possible toughening mechanism.

  5. Environmental Effects in Advanced Intermetallics

    SciTech Connect

    Liu, C.T.

    1998-11-24

    This paper provides a comprehensive review of environmental embrittlement in iron and nickel aluminizes. The embrittlement involves the interaction of these intermetallics with moisture in air and generation of atomic hydrogen, resulting in hydrogen-induced embrittlement at ambient temperatures. Environmental embrittlement promotes brittle grain-boundary fracture in Ni{sub 3}Al alloys but brittle cleavage fracture in Fe{sub 3}Al-FeAl alloys. The embrittlement strongly depends on strain rate, with tensile-ductility increase with increasing strain rate. It has been demonstrated that environmental embrittlement can be alleviated by alloying additions, surface modifications, and control of grain size and shape. Boron tends to segregate strongly to grain boundaries and is most effective in suppressing environmental embrittlement in Ni{sub 3}Al alloys. The mechanistic understanding of alloy effects and environmental embrittlement has led to the development of nickel and iron aluminide alloys with improved properties for structural use at elevated temperatures in hostile environments.

  6. Bulk and defect properties of ordered intermetallics

    SciTech Connect

    Fu, C.L.; Yoo, M.H.

    1993-12-31

    First-principles calculations based on the local-density-functional theory have been used to investigate the factors governing strength of ordered intermetallic alloys. Unlike Ni{sub 3}Al, calculated elastic constants and shear fault energies indicate anomalous yield strength behavior is not likely to occur in Ni{sub 3}Si. This suggests the inadequacy of cross-slip-pinning model to explain the strength anomaly in the L1{sub 2} structure. For strongly ordered NiAl, the defect structure is dominated by two types of defects -- monovacancies on the Ni sites and substitutional antisite defects on the Al sites. By contrast, for Ni{sub 3}Al, absence of structural vacancies and deviations from stoichiometry are accommodated by substitutional antisite defects on both sublattices. Intrinsic strengthening mechanisms in TiAl are discussed in terms of calculated elastic constants and shear fault energies. Because of reduced fault energies at the {gamma}/{alpha}{sub 2} interface, slip and twinning contribute significantly to high shear deformation of the lamellar structure.

  7. High-temperature ordered intermetallic alloys VII

    SciTech Connect

    Koch, C.C.; Liu, C.T.; Stoloff, N.S.; Wanner, A.

    1997-12-31

    This volume is divided into the following sections: (1) processing; (2) titanium aluminides; (3) creep and fatigue of titanium aluminides; (4) iron aluminides; (5) nickel aluminides; (6) refractory metal-based and other intermetallics; and (7) composites. Separate abstracts were prepared for most papers in this volume.

  8. Multishell Intermetallic Onions by Symmetrical Configuration of Ordered Domains

    NASA Astrophysics Data System (ADS)

    Yu, R.; Chen, W.; Cheng, Z. Y.; Li, Y. D.; Zhu, J.

    2010-11-01

    Ordered domains are utilized to construct new nanostructures, i.e., multishell intermetallic onions, which are formed by symmetrical configuration of ordered domains. Through density-functional theory calculations, we have shown that the energy penalties for introducing antiphase boundaries into the nanoparticles are small in some alloy systems compared to typical surface energies, making it feasible to prepare intermetallic onions by tuning surface energies. The unique surface atomic arrangements would provide opportunities for developing novel materials like efficient catalysts.

  9. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications.

    PubMed

    Casado-Rivera, Emerilis; Volpe, David J; Alden, Laif; Lind, Cora; Downie, Craig; Vázquez-Alvarez, Terannie; Angelo, Antonio C D; DiSalvo, Francis J; Abruña, Héctor D

    2004-03-31

    The electrocatalytic activities of a wide range of ordered intermetallic phases toward a variety of potential fuels have been studied, and results have been compared to those of a pure polycrystalline platinum (Pt(pc)) electrode. A significant number of the ordered intermetallic phases exhibited enhanced electrocatalytic activity when compared to that of Pt, in terms of both oxidation onset potential and current density. The PtBi, PtIn, and PtPb ordered intermetallic phases appeared to be the most promising electrocatalysts tested thus far for fuel cell applications. PtPb, in particular, showed an onset potential that was 100 mV less positive and a peak current density approximately 40 times higher than those observed for Pt in the case of methanol oxidation. The ability to control the geometric and electronic structures of the electrocatalytic material by using ordered intermetallic phases has been shown to be a promising direction of inquiry in the search for superior electrocatalysts for fuel cell applications. PMID:15038758

  10. Plastic deformation of ordered intermetallic alloys: Fundamental aspects

    SciTech Connect

    Yoo, M.H.

    1994-10-01

    Fundamental aspects of plastic deformation in ordered intermetallic alloys are reviewed by directly comparing the temperature-dependent yield stresses of Ni{sub 3}Al and Ni{sub 3}Si (the L1{sub 2} structure), NiAl and FeAl (the B2 structure), and TiAl and Ti{sub 3}Al (non-cubic L1{sub 0} and D0{sub 19} structures, respectively). While the yield strength anomaly observed in Ni{sub 3}Al is consistent with the prevailing dislocation models, that found in stoichiometric Ni{sub 3}Si is not. The strong plastic anisotropy observed in NiAl stems from the high antiphase boundary energy, and that found in two-phase {gamma}-TiAl/{alpha}{sub 2}-Ti{sub 3}Al is due to the exceptionally high compressive yield strength along the c-axis of Ti{sub 3}Al.

  11. Advanced reinforcement systems for intermetallic applications

    SciTech Connect

    Merrick, H.F.; Labib, M.L.

    1993-03-01

    A 2-D axisymmetric model was employed to determine the magnitude of the radial, axial, and hoop stresses caused by the thermal expansion difference between fiber and matrix and which result from the fabrication temperature cycle. Finite element analysis was conducted for single fiber model systems based on SCS-6/Ti3Al+Nb and Al2O3/NiAl. The stress distribution due to the imposition of a graded intermediate layer for each system was determined and included variables of layer thickness and gradation in interlayer chemistry in order to vary the expansion gradient between fiber and matrix. Thermal cycling tests were conducted on sputter coated SCS-6 fibers selectively coated with Ti3Al+Nb, with and without an intermediate layer. Cracking of the Ti3Al+Nb layers was prevented by an interlayer based on Ti-TiN-Ti. The interlayer thickness appeared critical to its efficiency. Similarly, for the case of Al2O3/NiAl, an intermediate layer consisting of a Ni bond coat on the sapphire fiber followed by a graded Al2O3-NiAl layer did not crack when given a thermal excursion to 1100 C and then cooled to room temperature. Acoustic emission tests on single fiber specimens were unsuccessful in detecting load drops associated with the successive fracture of the fiber. For the SCS-6/Ti3Al system this was the result of several factors which included the matrix/fiber ratio and poor bonding of the matrix and fiber. In the case of the Al2O3/NiAl system brittle failure of the NiAl matrix precluded fiber breakdown during tensile loading.

  12. Advanced reinforcement systems for intermetallic applications

    NASA Technical Reports Server (NTRS)

    Merrick, Howard F.; Labib, Mohammed L.

    1993-01-01

    A 2-D axisymmetric model was employed to determine the magnitude of the radial, axial, and hoop stresses caused by the thermal expansion difference between fiber and matrix and which result from the fabrication temperature cycle. Finite element analysis was conducted for single fiber model systems based on SCS-6/Ti3Al+Nb and Al2O3/NiAl. The stress distribution due to the imposition of a graded intermediate layer for each system was determined and included variables of layer thickness and gradation in interlayer chemistry in order to vary the expansion gradient between fiber and matrix. Thermal cycling tests were conducted on sputter coated SCS-6 fibers selectively coated with Ti3Al+Nb, with and without an intermediate layer. Cracking of the Ti3Al+Nb layers was prevented by an interlayer based on Ti-TiN-Ti. The interlayer thickness appeared critical to its efficiency. Similarly, for the case of Al2O3/NiAl, an intermediate layer consisting of a Ni bond coat on the sapphire fiber followed by a graded Al2O3-NiAl layer did not crack when given a thermal excursion to 1100 C and then cooled to room temperature. Acoustic emission tests on single fiber specimens were unsuccessful in detecting load drops associated with the successive fracture of the fiber. For the SCS-6/Ti3Al system this was the result of several factors which included the matrix/fiber ratio and poor bonding of the matrix and fiber. In the case of the Al2O3/NiAl system brittle failure of the NiAl matrix precluded fiber breakdown during tensile loading.

  13. Modeling of Substitutional Site Preference in Ordered Intermetallic Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    1998-01-01

    We investigate the site substitution scheme of specific alloying elements in ordered compounds and the dependence of site occupancy on compound stoichiometry, alloy concentration. This basic knowledge, and the interactions with other alloying additions are necessary in order to predict and understand the effect of various alloying schemes on the physical properties of a material, its response to various temperature treatments, and the resulting mechanical properties. Many theoretical methods can provide useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. With this in mind, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed to overcome these limitations, with the intent of providing an useful tool for the theoretical prediction of fundamental properties and structure of complex systems. After a brief description of the BFS method, its use for the determination of site substitution schemes for individual as well as collective alloying additions to intermetallic systems is described, including results for the concentration dependence of the lattice parameter. Focusing on B2 NiAl, FeAl and CoAl alloys, the energetics of Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W alloying additions are surveyed. The effect of single additions as well as the result of two simultaneous additions, discussing the interaction between additions and their influence on site preference schemes is considered. Finally, the BFS analysis is extended to ternary L1(sub 2) (Heusler phase) alloys. A comparison between experimental and theoretical results for the limited number of cases for which experimental data is available is also included.

  14. The role of ALCHEMI in understanding the properties of ordered intermetallic alloys

    SciTech Connect

    Anderson, I.M.

    1998-11-01

    After one and one-half decades of development, ALCHEMI is approaching the status of an established analytical technique. Many of the problems that have plagued ALCHEMI, especially for the analysis of ordered intermetallic alloys, are now well understood, and accurate site-distributions can be extracted from a variety of intermetallic alloys. This paper begins with an overview of the factors that can lead to large systematic errors or gross misinterpretations of ALCHEMI data, with illustrations from a variety of ordered intermetallic alloys. The paper concludes with a discussion of ALCHEMI in the broader context of understanding the properties of ordered intermetallic alloys. The results of systematic studies are used to illustrate the role of ALCHEMI in determining the competing effects of thermodynamic and kinetic factors during alloy processing and the correlation of alloy properties with the atomic site distributions on which the properties ultimately depend.

  15. In situ examination of moving crack tips in ordered intermetallics.

    SciTech Connect

    Heuer, J.; Lam, N. Q.; Okamoto, P. R.; Stubbins, J. F.

    1999-01-25

    Recent studies have shown that high stress concentrations at moving crack tips in the intermetallic compound NiTi can induce a crystalline-to-amorphous (C-A) transformation of the crack tip region. This stress-induced C-A transformation has a temperature dependence and crystallization behavior similar to those of ion irradiation-induced C-A transformation of NiTi. The present study examines if these similarities between stress- and irradiation-induced amorphization hold true for two other intermetallic compounds, CuTi and Ni{sub 3}Ti. In situ straining was performed in an intermediate-voltage transmission electron microscope. The presence or absence of an amorphous phase was determined by dark field imaging and selected area diffraction of crack tip regions. Crack tips in both CuTi and Ni{sub 3}Ti were found to remain crystalline upon fracture. The observed absence of stress-induced amorphization in Ni{sub 3}Ti is consistent with its known absence during irradiation, but the absence in CuTi differs from its known irradiation-induced amorphization behavior. Reasons for the similarity and difference are discussed.

  16. The relationship between ordered intermetallic nanoparticle synthesis and the bulk phase diagram

    NASA Astrophysics Data System (ADS)

    DeSario, Douglas York

    In this thesis, a surfactant-free synthesis of binary and ternary metal nanoparticles via co-reduction of metal chloride precursors is used to investigate the relationship between the bulk phase diagram and the formation of ordered intermetallic structures. The majority of the synthesized phases are binary materials of the formula Pt-M (M = Sn, Sb, In, Bi), because of their propensity to form single-phase regions with very narrow phase widths, known as "line phases". These line phases are thermodynamically stable according to the bulk phase diagram; however, the relationship between bulk stability and stability in the nanoparticle regime - and the implications for nanoparticle growth and ordering behavior - have not been fully explored. The 1:1 Pt-Sn phase (PtSn) forms ordered intermetallic nanoparticles with small domain sizes (4.3 nm) at room temperature, without any thermal annealing required. Pt3Sn similarly orders at low temperature (200 oC), in contrast to the three Pt-rich line phases, all of which require higher annealing temperatures to form the intermetallic phase. Other Pt-M phases show varying degrees of ordering, but none are observed to have the same low-temperature ordering as the Pt-rich Pt-Sn phases. This behavior is extremely rare, with only one other phase to our knowledge (Pt-Bi) forming the intermetallic without annealing, and only under specific conditions. It is possible to make qualitative statements concerning which phases should easily order and form phase-pure products; however, in order to more quantitatively predict these patterns, a multivariate analysis utilizing many physical properties (e.g., melting point, whether a phase melts congruently or incongruently, crystal structure, etc) was conducted. Using principal components analysis, partial least squares regression, and logistic regression techniques, a model was constructed to determine which properties would be most predictive of phases that were able to be synthesized as pure

  17. The energetics of ordered intermetallic alloys (of the transition metals)

    SciTech Connect

    Watson, R.E.; Weinert, M.; Davenport, J.W.; Fernando, G.W.; Bennett, L.H.

    1992-10-01

    The atomically ordered phases in ordered transition metal alloys are discussed. This chapter is divided into: physical parameters controlling phase stability (Hume-Rothery, structural maps, Miedema Hamiltonian), wave functions & band theory, comment on entropy terms, cohesive energies (electron promotion energies, Hund`s rule on orbital effects), structural energies/stabilities of elemental solids, total energies and atomic positions, charge transfer (Au alloys, charge tailing), heats of formation of ordered compounds.

  18. The energetics of ordered intermetallic alloys (of the transition metals)

    SciTech Connect

    Watson, R.E.; Weinert, M.; Davenport, J.W. ); Fernando, G.W. . Dept. of Physics); Bennett, L.H. . Metallurgy Div.)

    1992-01-01

    The atomically ordered phases in ordered transition metal alloys are discussed. This chapter is divided into: physical parameters controlling phase stability (Hume-Rothery, structural maps, Miedema Hamiltonian), wave functions band theory, comment on entropy terms, cohesive energies (electron promotion energies, Hund's rule on orbital effects), structural energies/stabilities of elemental solids, total energies and atomic positions, charge transfer (Au alloys, charge tailing), heats of formation of ordered compounds.

  19. Gold–promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    SciTech Connect

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.

  20. High-temperature ordered intermetallic alloys II; Proceedings of the Second Symposium, Boston, MA, Dec. 2-4, 1986

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S. (Editor); Koch, C. C. (Editor); Liu, C. T. (Editor); Izumi, O. (Editor)

    1987-01-01

    The papers presented in this volume provide on overview of recent theoretical and experimental research in the field of high-temperature ordered intermetallic alloys. The papers are gouped under the following headings: ordering behavior and theory, microstructures, mechanical behavior, alloy design and microstructural control, and metallurgical properties. Specific topics discussed include antiphase domains, disordered films and the ductility of ordered alloys based on Ni3Al; kinetics and mechanics of formation of Al-Ni intermetallics; deformability improvements of L1(2)-type intermetallic compounds; B2 aluminides for high-temperature applications; and rapidly solidified binary TiAl alloys.

  1. Gold–promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    DOE PAGESBeta

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributedmore » to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.« less

  2. Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst.

    PubMed

    Cui, Zhiming; Li, Longjun; Manthiram, Arumugam; Goodenough, John B

    2015-06-17

    We report an ordered Pd3Fe intermetallic catalyst that exhibits significantly enhanced activity and durability for the oxygen reduction reaction under alkaline conditions. Ordered Pd3Fe enables a hybrid Li-air battery to exhibit the best reported full-cell cycling performance (220 cycles, 880 h). PMID:26020366

  3. Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface.

    PubMed

    Casado-Rivera, Emerilis; Gál, Zoltán; Angelo, A C D; Lind, Cora; DiSalvo, Francis J; Abruña, Héctor D

    2003-02-17

    The electrocatalytic oxidation of formic acid at a PtBi ordered intermetallic electrode surface has been investigated using cyclic voltammetry, rotating disk electrode (RDE) voltammetry and differential electrochemical mass spectrometry (DEMS). The results are compared to those at a polycrystalline platinum electrode surface. The PtBi electrode exhibits superior properties when compared to polycrystalline platinum in terms of oxidation onset potential, current density, and a much diminished poisoning effect by CO. Using the RDE technique, a value of 1.4 x 10(-4) cm s-1 was obtained for the heterogeneous charge transfer rate constant. The PtBi surface did not appear to be poisoned when exposed to a CO saturated solution for periods exceeding 0.5 h. The results for PtBi are discussed within the framework of the dual-path mechanism for the electrocatalytic oxidation of formic acid, which involves formation of a reactive intermediate and a poisoning pathway. PMID:12619419

  4. Kinetic Stabilization of Ordered Intermetallic Phases as Fuel Cell Anode Materials

    SciTech Connect

    Liu, Yi; Lowe, Michael A.; DiSalvo, Francis J.; Abruña, Héctor D.

    2010-08-16

    The influence of fuel molecules on the stability of the ordered intermetallic PtBi and PtPb phases has been extensively studied by synchrotron-based in situ X-ray grazing incidence diffraction under active electrochemical control. Cycling the potential to increasingly positive values resulted in little change to the surface composition and crystalline structure when specific fuel molecules (such as formic acid for PtBi and formic acid or methanol for PtPb) were oxidized at the intermetallic electrode surface. This was demonstrated by the absence of diffraction peaks due to Pt domains that would be generated by the leaching out of the less noble metal. This phenomenon has been rationalized as a competition process between the oxidation of fuel molecules at the electrode surface and corrosion and damage of the surface due to the electrochemical treatment. For example, PtBi electrodes, which exhibit excellent catalytic activity toward the oxidation of formic acid, could be kinetically stabilized to such a corrosion/degradation process in the presence of formic acid even at relatively positive potentials. An analogous effect was observed for PtPb in the presence of methanol as fuel. In the absence of fuel molecules (formic acid for PtBi and formic acid and/or methanol for PtPb), various surface layers were generated by different electrochemical pretreatments in the presence of only a supporting electrolyte. Crystalline oxidized bismuth species (such as Bi2O3) with an ~50 nm domain size were formed on the PtBi electrode surface by holding the potential at +1.00 V or beyond for at least 30 min. On the other hand, platinum nanopaticles with an ~5 nm crystalline domain size were formed when cycling the potential to higher values. In the case of PtPb, the only detected corrosion product was PbSO 4, whose diffraction peaks were utilized to qualitatively analyze the lead leaching-out and dissolution processes. No crystalline lead oxide species

  5. Size-Dependent Disorder-Order Transformation in the Synthesis of Monodisperse Intermetallic PdCu Nanocatalysts.

    PubMed

    Wang, Chenyu; Chen, Dennis P; Sang, Xiahan; Unocic, Raymond R; Skrabalak, Sara E

    2016-06-28

    The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopy techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure-activity studies. Moreover, the study of their growth mechanism provides insights into the size dependence of disorder-order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems. PMID:27214313

  6. X-ray Fluorescence Investigation of Ordered Intermetallic Phases as Electrocatalysts towards the Oxidation of Small Organic Molecules

    SciTech Connect

    Liu, Yi; Lowe, Michael A.; Finkelstein, Ken D.; Dale, Darren S.; DiSalvo, Francis J.; Abruña, Héctor D.

    2010-10-13

    The composition of ordered intermetallic nanoparticles (PtBi and PtPb) has been quantitatively studied by in situ X-ray fluorescence (XRF) during active electrochemical control in solutions of supporting electrolyte and small organic molecules (SOMs). Because the Pt Lβ1,2 lines and the Bi Lα1,2 lines are only separated by 200 eV, an energy-dispersive detector and a multiple-channel analyzer (MCA) were used to record the major fluorescent emission lines from these two elements. The molar ratios of platinum to the less-noble elements (Bi, Pb) in the nanoparticles dramatically changed as a function of the applied upper limit potentials (Eulp) in cyclic voltammetric (CV) characterization. Similar to previous investigations for bulk intermetallic surfaces, the less-noble elements leached out from the surfaces of the intermetallic nanoparticles. For PtBi nanoparticles, the ratios of fluorescence intensities of Pt/Bi in the samples were 0.42, 0.96, and 1.36 for Eulp=+0.40, +0.80, and 1.20 V, respectively, while cycling the potential from -0.20 V to the Eulp value for 10 cycles. The leaching-out process of the less-noble elements occurred at more negative Eulp values than expected. After cycling to relatively positive Eulp values, nonuniform PtM (M=Bi of Pb) nanoparticles formed with a Pt-rich shell and intermetallic PtM core. When the supporting solutions contained active fuel molecules in addition to the intermetallic nanoparticles (formic acid for PtBi, formic acid and methanol for PtPb), kinetic stabilization effects were observed for Eulp=+0.80 V, in a way similar to the response of the bulk materials. It was of great importance to quantitatively explore the change in composition and structure of the intermetallic nanoparticles under active electrochemical control. More importantly, this approach represents a simple, universal, and multifunctional method for the study of multi

  7. Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction.

    PubMed

    Arumugam, Balamurugan; Tamaki, Takanori; Yamaguchi, Takeo

    2015-08-01

    Design of Pt alloy catalysts with enhanced activity and durability is a key challenge for polymer electrolyte membrane fuel cells. In the present work, we compare the durability of the ordered intermetallic face-centered tetragonal (fct) PtFeCu catalyst for the oxygen reduction reaction (ORR) relative to its counterpart bimetallic catalysts, i.e., the ordered intermetallic fct-PtFe catalyst and the commercial catalyst from Tanaka Kikinzoku Kogyo, TKK-PtC. Although both fct catalysts initially exhibited an ordered structure and mass activity approximately 2.5 times higher than that of TKK-Pt/C, the presence of Cu at the ordered intermetallic fct-PtFeCu catalyst led to a significant enhancement in durability compared to that of the ordered intermetallic fct-PtFe catalyst. The ordered intermetallic fct-PtFeCu catalyst retained more than 70% of its mass activity and electrochemically active surface area (ECSA) over 10 000 durability cycles carried out at 60 °C. In contrast, the ordered intermetallic fct-PtFe catalyst maintained only about 40% of its activity. The temperature of the durability experiment is also shown to be important: the catalyst was more severely degraded at 60 °C than at room temperature. To obtain insight into the observed enhancement in durability of fct-PtFeCu catalyst, a postmortem analysis of the ordered intermetallic fct-PtFeCu catalyst was carried out using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) line scan. The STEM-EDX line scans of the ordered intermetallic fct-PtFeCu catalyst over 10 000 durability cycles showed a smaller degree of Fe and Cu dissolution from the catalyst. Conversely, large dissolution of Fe was identified in the ordered intermetallic fct-PtFe catalyst, indicating a lesser retention of Fe that causes the destruction of ordered structure and gives rise to poor durability. The enhancement in the durability of the ordered intermetallic fct-PtFeCu catalyst is ascribed to

  8. Oxidation behavior of plasma sintered beryllium-titanium intermetallic compounds as an advanced neutron multiplier

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2013-07-01

    Beryllium intermetallic compounds (beryllides) such as Be12Ti are very promising candidates for advanced neutron multiplier materials in a demonstration fusion power reactor (DEMO). However, beryllides are too brittle to be fabricated either into pebble-type or rod-type shapes via conventional methods (i.e. arc melting and hot isostatic pressing). We have proposed a plasma sintering technique as a new method for beryllide fabrication, and our studies on the properties of plasma sintered beryllides are ongoing. In the present work, the oxidation properties of plasma sintered beryllides were investigated at 1273 K for 24 h in a dry air atmosphere to evaluate the high temperature properties of this material. Thermal gravimetry measurements indicate that specimens with larger fractions of Be12Ti phase corresponding to samples that have been sintered for longer time periods, exhibit superior oxidation properties. Our evaluation of the oxidation behavior of each phase in our beryllide samples is as follows: Be12Ti and Be17Ti2 both have good oxidation resistance, owing to the formation of dense and protective scales, while the Be and Be2Ti phases are mainly responsible for thermal-gravimetry (TG) weight gains, which is indicative of severe oxidation. We attribute the degradation in oxidation resistance specifically to Be2Ti that transforms into TiO2, and also find this phase to be the cause of deterioration in the mechanical properties of samples, owing to cracks near Be2Ti phase conglomerates.

  9. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts.

    PubMed

    Wang, Deli; Xin, Huolin L; Hovden, Robert; Wang, Hongsen; Yu, Yingchao; Muller, David A; DiSalvo, Francis J; Abruña, Héctor D

    2013-01-01

    To enhance and optimize nanocatalyst performance and durability for the oxygen reduction reaction in fuel-cell applications, we look beyond Pt-metal disordered alloys and describe a new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell. These nanocatalysts exhibited over 200% increase in mass activity and over 300% increase in specific activity when compared with the disordered Pt(3)Co alloy nanoparticles as well as Pt/C. So far, this mass activity for the oxygen reduction reaction is the highest among the Pt-Co systems reported in the literature under similar testing conditions. Stability tests showed a minimal loss of activity after 5,000 potential cycles and the ordered core-shell structure was maintained virtually intact, as established by atomic-scale elemental mapping. The high activity and stability are attributed to the Pt-rich shell and the stable intermetallic Pt(3)Co core arrangement. These ordered nanoparticles provide a new direction for catalyst performance optimization for next-generation fuel cells. PMID:23104154

  10. X-ray diffraction study of the phase purity, order, and texture of ductile B2 intermetallics

    SciTech Connect

    Mulay, Rupalee; Wollmershauser, J.A. A.; Heisel, M A; Bei, Hongbin; Russell, A M; Agnew, S R

    2010-01-01

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction (-5-20vol.%) of second phases (M{sub 2}R intermetallics and R{sub 2}O{sub 3} oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  11. Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis.

    PubMed

    Jana, Subhra

    2015-11-21

    Based on the bottom-up chemistry techniques, the size, shape, and composition controlled synthesis of nanoparticles can now be achieved uniformly, which is of great importance to the nanoscience community as well as in modern catalysis research. The low-temperature solution-phase synthesis approach represents one of the most attractive strategies and has been utilized to synthesize nanoscale metals, alloys and intermetallics, including a number of new metastable phases. This perspective will highlight the solution-based nanoparticle synthesis techniques, a low-temperature platform, for the synthesis of size and shape-tunable nanoscale transition metals, alloys, and intermetallics from the literature, keeping a focus on the utility of these nanomaterials in understanding the catalysis. For each solution-based nanoparticle synthesis technique, a comprehensive overview has been given for the reported nanoscale metals, alloys, and intermetallics, followed by critical comments. Finally, their enhanced catalytic activity and durability as novel catalysts have been discussed towards several hydrogenation/dehydrogenation reactions and also for different inorganic to organic reactions. Hence, the captivating advantages of this controllable low-temperature solution chemistry approach have several important implications and together with them this approach provides a promising route to the development of next-generation nanostructured metals, alloys, and intermetallics since they possess fascinating properties as well as outstanding catalytic activity. PMID:26477400

  12. Ordering of atoms in 3d sublattice of the intermetallic quasibinary system Dy(Fe/sub 1-x/Mn/sub x/)/sub 2/

    SciTech Connect

    Ilyushin, A.S.; Kastro, D.A.; Makhmud, I.A.

    1986-12-01

    Methods of x-ray analysis and nuclear ..gamma..-resonance (Moessbauer effect) have been used to study the distribution of iron and manganese atoms in the intermetallic quaisbinary system Dy(Fe/sub 1-x/Mn/sub x/)/sub 2/, which is isostructural to the Laves phase C15. Ordering of atoms of transition metals has been found in 3d sublattice of intermetallic compounds Dy(Fe/sub 1-x/Mn/sub x/)/sub 2/ with the formation of triple superstructure having the stoichiometric composition Dy(Fe/sub 0 x 25/Mn/sub 0 x 75/)/sub 2/

  13. Atomistic simulation of radiation-induced amorphization of the B2 ordered intermetallic compound NiTi

    SciTech Connect

    Sabochick, M.J. . Dept. of Engineering Physics); Lam, N.Q. )

    1990-12-01

    Amorphization of the B2 intermetallic compound NiTi under electron irradiation has been investigated using molecular dynamics. The effect of irradiation was simulated using two processes: (1) Ni and Ti atoms were exchanged, resulting in chemical disorder, and (2) Frenkel pairs were introduced, leading to the formation of stable point defects and also chemical disorder upon mutual recombination of interstitials and vacancies. After {approximately}0.4 exchanges per atom, the first process resulted in an energy increase of approximately 0.11 eV/atom and a volume increase of 1.91%. On the other hand, after introducing {approximately}0.5 Frenkel pairs per atom, the second process led to smaller increases of 0.092 eV/atom in energy and 1.43% in volume. The calculated radial distribution functions (RDFs) were essentially identical to each other and to the calculated RDF of a quenched liquid. The structure factor, however, showed that long-range order was still present after atom exchanges, while the introduction of Frenkel pairs resulted in the loss of long-range order. It was concluded that point defects are necessary for amorphization to occur in NiTi, although chemical disorder alone is capable of storing enough energy to make the transition possible. 18 refs., 3 figs.

  14. Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts.

    PubMed

    Wang, Deli; Yu, Yingchao; Xin, Huolin L; Hovden, Robert; Ercius, Peter; Mundy, Julia A; Chen, Hao; Richard, Jonah H; Muller, David A; DiSalvo, Francis J; Abruña, Héctor D

    2012-10-10

    A promising electrocatalyst prototype of low Pt mole fraction, intermetallic nanoparticles of Cu(3)Pt, has been prepared using a simple impregnation-reduction method, followed by a post heat-treatment. Two dealloying methods (electrochemical and chemical) were implemented to control the atomic-level morphology and improve performance for the oxygen reduction reaction (ORR). The morphology and elemental composition of the dealloyed nanoparticles were characterized at angstrom resolution using an aberration-corrected scanning transmission electron microscope equipped with an electron energy loss spectrometer. We found that the electrochemical dealloying method led to the formation of a thin Pt skin of ca. 1 nm in thickness with an ordered Cu(3)Pt core structure, while chemical leaching gave rise to a "spongy" structure with no ordered structure being preserved. A three-dimensional tomographic reconstruction indicated that numerous voids were formed in the chemically dealloyed nanoparticles. Both dealloying methods yielded enhanced specific and mass activities toward the ORR and higher stability relative to Pt/C. The spongy nanoparticles exhibited better mass activity with a slightly lower specific activity than the electrochemically dealloyed nanoparticles after 50 potential cycles. In both cases, the mass activity was still enhanced after 5000 potential cycles. PMID:22954373

  15. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  16. Innovative processing to produce advanced intermetallic materials. Phase 1 final report

    SciTech Connect

    Loutfy, R.O.

    1989-09-01

    The program demonstrates the technical feasibility of synthesizing submicron titanium aluminide in a thermal rf plasma. Micron and submicron spherical titanium aluminide particles are produced in argon, hydrogen, and argon/hydrogen plasmas from the reaction of TiCl4(g), and Al(g). The ratio of Ti and Al is varied to produce the compounds Ti3Al, TiAl, and TiAl3. Microalloying with boron and macroalloying with niobium is demonstrated. Ti3Al whiskers can be produced, as well as other intermetallics of niobium aluminide, nickel aluminide, and molybdenum disilicide in the plasma synthesis process. Since submicron particles are produced, they have a high surface area and are sensitive to oxidation if not treated with a fugitive protective coating or utilized in a nonoxidizing atmosphere. Ti3Al particles are consolidated and utilized as a matrix for TiC and AlN composites. The submicron AlTi3 has significantly higher strength at room temperature than reported for commercial Ti3Al-11Nb alloy and useable strength is maintained up to 1000 C. The elongation is about the same as for commercial material because of possible oxide contamination in powder handling. However, dimpling and nacking is evident in the fracture surface, which suggests true room temperature ductility. Titanium aluminides have the potential to replace superalloys and become the dominant material for aerospace engines, air frames and skins for hypersonic vehicles.

  17. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  18. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  19. Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection.

    PubMed

    Kim, Si-In; Eom, Gayoung; Kang, Mijeong; Kang, Taejoon; Lee, Hyoban; Hwang, Ahreum; Yang, Haesik; Kim, Bongsoo

    2015-06-19

    Bimetallic nanostructures can provide distinct and improved physicochemical properties by the coupling effect of the two metal components, making them promising materials for a variety of applications. Herein, we report composition-selective fabrication of ordered intermetallic Au-Cu nanowires (NWs) by two-step chemical vapor transport method and their application to nano-electrocatalytic glucose detection. Ordered intermetallic Au3Cu and AuCu3 NWs are topotaxially fabricated by supplying Cu-containing chemicals to pre-synthesized single-crystalline Au NW arrays. The composition of fabricated Au-Cu NWs can be selected by changing the concentration of Cu-containing species. Interestingly, Au3Cu NW electrodes show unique electrocatalytic activity for glucose oxidation, allowing us to detect glucose without interference from ascorbic acid. Such interference-free detection of glucose is attributed to the synergistic effect, induced by incorporation of Cu in Au. We anticipate that Au3Cu NWs could show possibility as efficient nano-size electrochemical glucose sensors and the present fabrication method can be employed to fabricate valuable ordered intermetallic nanostructures. PMID:26016531

  20. Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection

    NASA Astrophysics Data System (ADS)

    Kim, Si-In; Eom, Gayoung; Kang, Mijeong; Kang, Taejoon; Lee, Hyoban; Hwang, Ahreum; Yang, Haesik; Kim, Bongsoo

    2015-06-01

    Bimetallic nanostructures can provide distinct and improved physicochemical properties by the coupling effect of the two metal components, making them promising materials for a variety of applications. Herein, we report composition-selective fabrication of ordered intermetallic Au-Cu nanowires (NWs) by two-step chemical vapor transport method and their application to nano-electrocatalytic glucose detection. Ordered intermetallic Au3Cu and AuCu3 NWs are topotaxially fabricated by supplying Cu-containing chemicals to pre-synthesized single-crystalline Au NW arrays. The composition of fabricated Au-Cu NWs can be selected by changing the concentration of Cu-containing species. Interestingly, Au3Cu NW electrodes show unique electrocatalytic activity for glucose oxidation, allowing us to detect glucose without interference from ascorbic acid. Such interference-free detection of glucose is attributed to the synergistic effect, induced by incorporation of Cu in Au. We anticipate that Au3Cu NWs could show possibility as efficient nano-size electrochemical glucose sensors and the present fabrication method can be employed to fabricate valuable ordered intermetallic nanostructures.

  1. Chemical effect on diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ting

    With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion

  2. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation

    PubMed Central

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis. PMID:27194417

  3. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation

    NASA Astrophysics Data System (ADS)

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-05-01

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis.

  4. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation.

    PubMed

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis. PMID:27194417

  5. Intermetallic Layers in Soldered Joints

    Energy Science and Technology Software Center (ESTSC)

    1998-12-10

    ILAG solves the one-dimensional partial differential equations describing the multiphase, multicomponent, solid-state diffusion-controlled growth of intermetallic layers in soldered joints. This software provides an analysis capability for materials researchers to examine intermetallic growth mechanisms in a wide variety of defense and commercial applications involving both traditional and advanced materials. ILAG calculates the interface positions of the layers, as well as the spatial distribution of constituent mass fractions, and outputs the results at user-prescribed simulation times.

  6. Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study.

    PubMed

    Wang, Hongsen; Alden, Laif; Disalvo, F J; Abruña, Héctor D

    2008-07-01

    The electrocatalytic activities and mechanisms of PtPb and PtBi ordered intermetallic phases towards formic acid, formaldehyde and methanol oxidation have been studied by DEMS and FTIRS, and the results compared to those for a pure polycrystalline platinum electrode. While PtPb exhibits an enhanced electrocatalytic activity for the oxidation of all three organic molecules when compared to a Pt electrode, PtBi exhibits an enhanced catalytic activity towards formic acid and formaldehyde oxidation, but not methanol. FTIRS data indicate that adsorbed CO does not form on PtPb or PtBi intermetallic compounds during the oxidation of formic acid, formaldehyde and methanol, and therefore their oxidation on both PtPb and PtBi intermetallic compounds proceeds via a non-CO(ads) pathway. Quantitative DEMS measurements indicate that only CO(2) was detected as a final product during formic acid oxidation on Pt, PtPb and PtBi electrodes. At a smooth polycrystalline platinum electrode, the oxidation of formaldehyde and methanol produces mainly intermediates (formaldehyde and formic acid), while CO(2) is a minor product. In contrast, CO(2) is the major product for formaldehyde and methanol oxidation at a PtPb electrode. The high current efficiency of CO(2) formation for methanol and formaldehyde oxidation at a PtPb electrode can be ascribed to the complete dehydrogenation of formaldehyde and formic acid due to electronic effects. The low onset potential, high current density and high CO(2) yield make PtPb one of the most promising electrocatalysts for fuel cell applications using small organic molecules as fuels. PMID:18563235

  7. First-order magnetization process as a tool of magnetic-anisotropy determination: Application to the uranium-based intermetallic U3C u4G e4

    NASA Astrophysics Data System (ADS)

    Gorbunov, D. I.; Henriques, M. S.; Andreev, A. V.; Skourski, Y.; Richter, M.; Havela, L.; Wosnitza, J.

    2016-02-01

    Uranium-based intermetallic compounds often display very strong magnetic anisotropies, the energy of which is usually not directly accessible by common experimental methods. Here, we report on static- and pulsed-field studies of U3C u4G e4 . This material orders ferromagnetically at TC=73 K with the easy magnetization direction along the a axis and a strong b c -plane anisotropy. The magnetization measured for fields along the hard b direction displays a first-order magnetization process that can be described well by use of a phenomenological theory yielding anisotropy constants up to the sixth order. This phenomenological description, working excellently for U3C u4G e4 , may also be applied for other uranium-based compounds.

  8. Advance Directives and Do Not Resuscitate Orders

    MedlinePlus

    ... a form. Call a lawyer. Use a computer software package for legal documents. Advance directives and living ... you write by yourself or with a computer software package should follow your state laws. You may ...

  9. Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.

    2014-06-01

    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-<-| S 373K|-<-550- μV-K-1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  10. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  11. Reaction synthesis of intermetallics

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1994-12-31

    Exothermicity associated with the synthesis of aluminides was utilized to obtain nickel, iron, and cobalt aluminides. Combustion synthesis, extrusion, and hot pressing were utilized to obtain intermetallics and their composites. Extrusion conditions, reduction ratios, and hot-pressing conditions of the intermetallics and their composites are discussed.

  12. Physician orders to supplement advance directives: rescuing patient autonomy.

    PubMed

    Miller, Ronald B

    2009-01-01

    To adapt Churchill's comment on democracy, "No one pretends that [POLSTs are] perfect..." but physicians' orders about life-sustaining treatments are a very important supplement to advance directives, especially for patients who are extremely or terminally ill, and most particularly for patients who require emergency treatment by first responders or by physicians who do not know them as persons. The standardized orders of limited options, however, are no substitute for a detailed treatment directive of a patient with a known illness, with predictable trajectories and complications. And, in this latter circumstance, a thoroughly informed proxy may also assist physicians in selecting appropriate treatment for patients who have lost decisional capacity and/or the ability to express it. I believe all patients should have an advance directive, preferably a combined proxy-treatment directive, and preferably one that has been thoroughly discussed with the attending physician and with the proxy, successor proxies, and preferably relatives and friends. Nurses, social workers, and chaplains may be very helpful to the patient in thinking through his or her preferences, especially if the severity of illness and the limited efficacy of interventions are such that the patient would wish to omit life-sustaining treatment or to discontinue it after a time-limited trial. Finally, because POLST is new or yet to be initiated in many areas of the country, it behooves all physicians to become knowledgeable of POLST and to initiate discussion of it with colleagues, patients, patients' proxies, and with relatives of patients. Even more recent is the combined advance directive/physician's orders to permit natural dying, actionable immediately for patients suffering severely and irremediably, but actionable at a future time if the patient progresses to advanced stages of dementia or other devastating brain disorders. In order to encourage physicians to initiate advance care planning with

  13. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  14. 76 FR 12144 - Advanced Optics Electronics, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... COMMISSION Advanced Optics Electronics, Inc.; Order of Suspension of Trading March 2, 2011. It appears to the... securities of Advanced Optics Electronics, Inc. because it has not filed any periodic reports since the... of investors require a suspension of trading in Advanced Optics Electronics, Inc. Therefore, it...

  15. Intermetallics for structural applications

    SciTech Connect

    Sikka, V.K.; Deevi, S.C.

    1995-09-01

    Intermetallics are introduced as possible structural materials. The attributes and useful temperature limits of eight of the most likely candidates have been described. In addition, detailed descriptions are given for chemical compositions, corrosion properties, mechanical properties, melting and processing, and applications of Ni{sub 3}Al and Fe{sub 3}Al-based alloys. Mechanical properties of Ni{sub 3}Al-based alloys are compared with commercially used HU alloys in the cast condition and Haynes 214 in the wrought condition. The mechanical properties of Fe{sub 3}Al-based alloys are compared with an oxide-dispersion-strengthened (ODS) Inco alloy MA-956. Comparisons have shown that Ni{sub 3}Al-based alloys offer the best combination of oxidation and carburization resistance and are significantly stronger than the commercially used HU alloy for many of the furnace-fixture applications. However, the Fe{sub 3}Al-based alloys, which offer the best sulfidation resistance of the commercially available alloys, are significantly weaker in creep than the ODS MA-956 alloy. Even with the current strength level, Fe{sub 3}Al-based alloys are superior as porous, sintered metal filters for hot-gas cleanup in coal gasification systems. Oxide-dispersion strengthening of the Fe{sub 3}Al-based alloys is currently under way to improve their creep strength.

  16. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  17. 75 FR 339 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration, Department of Commerce....

  18. 76 FR 89 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE International Trade Administration Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance Notification of Sunset Review AGENCY: Import Administration, International Trade Administration, Department of Commerce....

  19. Explosive reaction pressing of intermetallic compounds from stoichiometric powder mixtures

    SciTech Connect

    Kochsiek, D.; Pruemmer, R.; Brunold, A.

    1995-09-01

    Intermetallic NiAl, TiAl, and TiAl{sub 3} were synthesized by shock compression experiments from stoichiometric powder mixtures of nickel and aluminium as well as of titanium and aluminium. Good consolidation and complete intermetallic reaction were achieved by the direct method of explosive compaction. For each powder mixture, a certain individual threshold pressure has to be exceeded in order to initiate intermetallic reaction. The reacting compounds melted completely with subsequent rapid solidification during the passage of the shock wave. The new material shows high hardness. Pores are formed by gaseous reaction products in the NiAl and TiAl{sub 3} compacts. The TiAl structure is fully-dense and dendritic.

  20. Fundamentals of mechanical behavior in structural intermetallics: A synthesis of atomistic and continuum modeling

    SciTech Connect

    Yoo, M.H.; Fu, C.L.

    1993-08-01

    After a brief account of the recent advances in computational research on mechanical behavior of structural intermetallics, currently unresolved problems and critical issues are addressed and the knowledge base for potential answers to these problems is discussed. As large-scale problems (e.g., dislocation core structures, grain boundaries, and crack tips) are treated by atomistic simulations, future development of relevant interatomic potentials should be made consistent with the results of first-principles calculations. The bulk and defect properties calculated for intermetallic compounds, both known and as yet untested, can furnish insights to alloy designers in search of new high-temperature structural intermetallics.

  1. Third Intermetallic Matrix Composites Symposium, volume 350

    SciTech Connect

    Graves, J.A.; Bowman, R.R.; Lewandowski, J.J.

    1994-04-01

    Partial contents include: issues in potential IMC application for aerospace structures; powder metallurgy processing of intermetallic matrix composites; microstructure and properties of intermetallic matrix composites produced by reaction synthesis; combustion synthesis of niobium aluminide matrix composites; ambient temperature synthesis of bulk intermetallics; wear behavior of SHS intermetallic matrix composites; fracture characteristics of metal-intermetallic laminates produced by SHS reactions; and vapor phase synthesis of Ti aluminides and the interfacial bonding effect on the mechanical property of micro-composites reinforced by pyrolized SiC fibers.

  2. Erosion behavior of Fe-Al intermetallic alloys

    SciTech Connect

    Kim, Y.S.; Song, J.H.; Chang, Y.W.

    1997-04-01

    The Fe-rich Fe-Al intermetallics have generated some interest, especially during the last decade, due to their excellent resistance for oxidation and sulfidation, high specific strength, and low material cost. The aluminide is therefore considered as one of the promising candidates for high-temperature structural materials in a corrosive atmosphere. Research effort has been focused mainly on process, development, and enhancement of room-temperature ductility together with the characterization of physical properties such as mechanical properties, oxidation, corrosion, and abrasive wear behavior. However, there have been only a few works reported to date in regard to the erosion characteristics of the alloy, one of the most important material property of this ordered intermetallic alloy for the use in a fossil-fuel plant. In this study, the solid-particle erosion behavior of the Fe-Al intermetallic alloys containing the various aluminum contents ranging from 25 to 30 at.% has been investigated to clarify the effect of aluminum content and different ordered structures, viz. DO{sub 3} and B2, on the erosion behavior. An attempt has been made to correlate the erosion behavior of these intermetallics to their mechanical properties by carrying out tensile tests together with SEM observation of the eroded surfaces.

  3. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, Randy B.

    1992-01-01

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).

  4. Intermetallic-Based High-Temperature Materials

    SciTech Connect

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  5. 78 FR 50135 - CNC Development, Ltd., Exousia Advanced Materials, Inc., and South American Minerals, Inc.; Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION CNC Development, Ltd., Exousia Advanced Materials, Inc., and South American Minerals, Inc.; Order... current and accurate information concerning the securities of South American Minerals, Inc. because it...

  6. Modeling of crack tip dislocation emission in B2 intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Bartholomeusz, Michael F.; Wert, John A.

    1992-04-01

    A model has been previously proposed to describe the energy associated with emission of dissociated superlattice dislocations from crack tips in ordered intermetallic alloys. In the present paper, the model is applied to several B2 intermetallic alloys. The results of the analysis reveal a correlation between the range of slip system orientations for which emission of a dislocation from a crack tip is energetically favorable and the macroscopic fracture mode of the alloy.

  7. Intermetallics as Novel Supports for Pt Monolayer O2 Reduction Electrocatalysts: Potential for Significantly Improving Properties

    SciTech Connect

    Ghosh, T.; Vukmirovic, M.; DiSalvo, F.J.; Adzic, R.R.

    2010-01-27

    We report on a new class of core-shell electrocatalysts for the oxygen-reduction reaction. These electrocatalysts comprise a Pt monolayer shell and ordered intermetallic compounds cores and have enhanced activity and stability compared with conventional ones. These advantages are derived from combining the unique properties of Pt monolayer catalysts (high activity, low metal content) and of the intermetallic compounds (high stability and, possibly, low price). This method holds excellent potential for creating efficient fuel cell electrocatalysts.

  8. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  9. Suppressors made from intermetallic materials

    DOEpatents

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  10. Superplastic ceramics and intermetallics and their potential applications

    SciTech Connect

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al{sub 2}O{sub 3} Hydroxyapatite, {beta}-spodumene glass ceramics, Al{sub 2}0{sub 3}-YTZP two-phase composites, SiC-Si{sub 3}N{sub 4} and Fe-Fe{sub 3}C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni{sub 3}Al and Ni{sub 3}Si) and titanium-base intermetallics (TiAl and T1{sub 3}Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application.

  11. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  12. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, Kevin; Tiegs, Terry N.; Becher, Paul F.

    1999-01-01

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.

  13. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  14. Driving magnetostructural transitions in layered intermetallic compounds.

    PubMed

    Wang, J L; Caron, L; Campbell, S J; Kennedy, S J; Hofmann, M; Cheng, Z X; Din, M F Md; Studer, A J; Brück, E; Dou, S X

    2013-05-24

    We report the dramatic effect of applied pressure and magnetic field on the layered intermetallic compound Pr(0.5)Y(0.5)Mn(2)Ge(2). In the absence of pressure or magnetic field this compound displays interplanar ferromagnetism at room temperature and undergoes an isostructural first order magnetic transition (FOMT) to an antiferromagnetic state below 158 K, followed by another FOMT at 50 K due to the reemergence of ferromagnetism as praseodymium orders (T(C)(Pr)). The application of a magnetic field drives these two transitions towards each other, whereas the application of pressure drives them apart. Pressure also produces a giant magnetocaloric effect such that a threefold increase of the entropy change associated with the lower FOMT (at T(C)(Pr)) is seen under a pressure of 7.5 kbar. First principles calculations, using density functional theory, show that this remarkable magnetic behavior derives from the strong magnetoelastic coupling of the manganese layers in this compound. PMID:23745927

  15. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  16. Mass Customization Production Planning System by Advance Demand Information Based on Unfulfilled-order-rate

    NASA Astrophysics Data System (ADS)

    Ueno, Nobuyuki; Kawasaki, Masaya; Okuhara, Koji

    In this paper, we try to model for ‘Naiji System’ which is a unique corporation between a maker and suppliers in Japan. We propose Mass Customization Production Planning & Management System (MCPS) based on unfulfilled-order-rate by using Advance Demand Information, which is called ‘Naiji’. This model is formulated as a nonlinear stochastic programming problem which minimizes the sum of production cost and inventory holding cost subject to the set of probabilistic constraint and some linear production constraints. We propose the new upper bound SOn (ρmin) to estimate the unfulfilled-order-rate more strictly. The procedure to find a good solution is developed by solving the linear programming problem repeatedly on the basic solution strategy that is ‘relaxation’. A computational load to obtain a solution by the proposed indicator is shown to be very small. Finally, an availability of the procedure is shown.

  17. Advances in high-order interaction region nonlinear optics correction at RHIC

    SciTech Connect

    Zimmer, C.; Binello, S.; Minty, M.; Pilat, F.

    2011-03-28

    A method to indirectly measure and deterministically correct the higher order magnetic errors of the final focusing magnets in the Relativistic Heavy Ion Collider has been in place for several years at BNL. This method yields control over the effects of multi-pole errors through application of closed orbit bumps followed by analysis and correction of the resulting betatron tune shifts using multi-pole correctors. The process has recently been automated in order to provide more efficient and effective corrections. The tune resolution along with the reliability of measurements has also been improved significantly due to advances/upgrades in the betatron tune measurement system employed at RHIC (BBQ). Here we describe the foundation of the IR bump method, followed by recent improvements along with experimental data.

  18. Magnetic field controlled FZ single crystal growth of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Behr, G.; Gerbeth, G.; Priede, J.; Uhlemann, H.-J.; Fischer, F.; Schultz, L.

    2005-02-01

    Intermetallic rare-earth-transition-metal compounds with their coexistence of magnetic ordering and superconductivity are still of great scientific interest. The crystal growth of bulk single crystals is very often unsuccessful due to an unfavorable solid-liquid interface geometry enclosing concave fringes. The aim of the work is the contactless control of heat and material transport during floating-zone single crystal growth of intermetallic compounds. This control is provided by a tailored design of the electromagnetic field and the resulting electromagnetically driven convection. Numerical simulations for the determination of the electromagnetic field configuration induced by the RF heater coil and the solution of the coupled heat and hydrodynamic equations were done for the model substance Ni with and without additional magnetic field. As a result, an innovative magnetic two-phase stirrer system has been developed which enables the controlled influence on the melt ranging from intensive inwards/outwards flows to flows almost at rest. The selection of parameters necessary for the desired fluid flow is determined from numerical simulation. The basis for the calculations are the process-related fluid flow conditions which are determined by the mode of heating, heat radiation at the free surface and material parameters. This treatment of the problem leads to the customised magnetic field for the special intermetallic compound. The application of the new magnetic system leads to a distinct improvement of the solid-liquid interface validated on experiments with the model substance Nickel.

  19. Mass Customization Production Planning System by Advance Demand Information Based on Unfulfilled-order-rate II

    NASA Astrophysics Data System (ADS)

    Ueno, Nobuyuki; Kadomoto, Kiyotaka; Okuhara, Koji

    In the previous paper, we proposed Mass Customization Production Planning & Management System (MCPS) based on unfulfilled-order-rate by using Advance Demand Information which is called ‘Naiji System’ as an unique corporation between a maker and suppliers in Japan, and 3 indicators to estimate the unfulfilled-order-rate. Applying these indicators to the model, we investigated the behavior of unfulfilled-order-rate at the final period in the planning horizon. In this paper, we propose a new model for purchasing, and investigate the unfulfilled-order-rate at each period and the impact to the total inventory. We find that the total inventories become 5.9%-20.0% decreases by using SOn rather than by using SOn(0). And we enhance a base-stock policy to a new one with multi-period. We prove that the MCPS model for purchasing by using SOn(0) is equivalent to the base-stock policy with multi-period under the specified condition. Under this condition, the proposed model by using SOn decreases inventories more than the base-stock policy with multi-period.

  20. Higher order aberration comparison between two aspherical intraocular lenses: MC6125AS and Akreos advanced optics

    PubMed Central

    Rajabi, Mohammad Taher; Korouji, Sara; Farjadnia, Mahgol; Naderan, Mohammad; Rajabi, Mohammad Bagher; Khosravi, Bahram; Tabatabaie, Seyed Mehdi

    2015-01-01

    AIM To compare higher order aberrations in two aspherical intraocular lenses (IOLs): Akreos advanced optics (AO) and Dr. Schmidt Microcrystalline 6125 aspheric anterior surface (MC6125AS) with each other. METHODS Forty eyes of 39 patients underwent phacoemulsification and Akreos AO and MC6125AS were implanted in their eyes in a random manner. Three months post-operatively, higher order aberrations including spherical aberration, coma aberration, and total aberrations were measured and compared. RESULTS The total aberration was 0.24±0.17 in eyes with Dr. Schmidt and 0.20±0.01 in eyes with Akreos AO (P=0.361). The mean of coma aberration was 0.17±0.21 and 0.09±0.86 in Dr. Schmidt and Akreos lenses, respectively (P=0.825). Total spherical aberration was almost the same in both groups (Mean: 0.05, P=0.933). Best corrected visual acuity in Akreos AO (0.10±0.68) and Dr. Schmidt (0.09±0.67) did not differ significantly (P=0.700). CONCLUSION There is no statistically significant difference in the higher order aberrations between these two aspherical lenses. PMID:26086009

  1. Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites

    PubMed Central

    Yoon, Howon; Yamashita, Motoi; Ata, Seisuke; Futaba, Don N.; Yamada, Takeo; Hata, Kenji

    2014-01-01

    We propose an approach to disperse long single-wall carbon nanotubes (SWCNTs) in a manner that is most suitable for the fabrication of high-performance composites. We compare three general classes of dispersion mechanisms, which encompass 11 different dispersion methods, and we have dispersed long SWCNTs, short multi-wall carbon nanotubes, and short SWCNTs in order to understand the most appropriate dispersion methods for the different types of CNTs. From this study, we have found that the turbulent flow methods, as represented by the Nanomizer and high-pressure jet mill methods, produced unique and superior dispersibility of long SWCNTs, which was advantageous for the fabrication of highly conductive composites. The results were interpreted to imply that the biaxial shearing force caused an exfoliation effect to disperse the long SWCNTs homogeneously while suppressing damage. A conceptual model was developed to explain this dispersion mechanism, which is important for future work on advanced CNT composites. PMID:24469607

  2. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    SciTech Connect

    Kanatzidis, Mercouri G.

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  3. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, R.B.

    1992-01-14

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation). 23 figs.

  4. Development and validation of an advanced low-order panel method

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.; Iguchi, Steven K.; Dudley, Michael

    1988-01-01

    A low-order potential-flow panel code, PMARC, for modeling complex three-dimensional geometries, is currently being developed at NASA Ames Research Center. The PMARC code was derived from a code named VSAERO that was developed for Ames Research Center by Analytical Methods, Inc. In addition to modeling potential flow over three-dimensional geometries, the present version of PMARC includes several advanced features such as an internal flow model, a simple jet wake model, and a time-stepping wake model. Data management within the code was optimized by the use of adjustable size arrays for rapidly changing the size capability of the code, reorganization of the output file and adopting a new plot file format. Preliminary versions of a geometry preprocessor and a geometry/aerodynamic data postprocessor are also available for use with PMARC. Several test cases are discussed to highlight the capabilities of the internal flow model, the jet wake model, and the time-stepping wake model.

  5. Intermetallic and titanium matrix composite materials for hypersonic applications

    SciTech Connect

    Berton, B.; Surdon, G.; Colin, C. |

    1995-09-01

    As part of the French Program of Research and Technology for Advanced Hypersonic Propulsion (PREPHA) which was launched in 1992 between Aerospatiale, Dassault Aviation, ONERA, SNECMA and SEP, an important work is specially devoted to the development of titanium and intermetallic composite materials for large airframe structures. At Dassault Aviation, starting from a long experience in Superplastic Forming - Diffusion Bonding (SPF-DB) of titanium parts, the effort is brought on the manufacturing and characterization of composites made from Timet beta 21S or IMI 834 foils and Textron SCS6 fiber fabrics. At `Aersopatiale Espace & Defence`, associated since a long time about intermetallic composite materials with university research laboratories, the principal effort is brought on plasma technology to develop the gamma titanium aluminide TiAl matrix composite reinforced by protected silicon carbide fibers (BP SM 1240 or TEXTRON SCS6). The objective, is to achieve, after 3 years of time, to elaborate a medium size integrally stiffened panel (300 x 600 sq mm).

  6. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias

    DOE PAGESBeta

    Liu, Zhiqi; Biegalski, Michael D.; Hsu, Shang-Lin; Shang, Shunli; Marker, Cassie; Liu, Jian; Li, Li; Fan, Lisha S.; Meyer, Tricia L.; Wong, Anthony T.; et al

    2015-11-05

    High-quality epitaxial growth of intermetallic MnPt films on oxides is achieved, with potential for multiferroic heterostructure applications. Antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Thus, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.

  7. Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias.

    PubMed

    Liu, Zhiqi; Biegalski, Michael D; Hsu, Shang-Lin; Shang, Shunli; Marker, Cassie; Liu, Jian; Li, Li; Fan, Lisha; Meyer, Tricia L; Wong, Anthony T; Nichols, John A; Chen, Deyang; You, Long; Chen, Zuhuang; Wang, Kai; Wang, Kevin; Ward, Thomas Z; Gai, Zheng; Lee, Ho Nyung; Sefat, Athena S; Lauter, Valeria; Liu, Zi-Kui; Christen, Hans M

    2016-01-01

    High-quality epitaxial growth of inter-metallic MnPt films on oxides is achieved, with potential for multiferroic heterostructure applications. Antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Moreover, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer. PMID:26539758

  8. Surfaces of Intermetallics: Quasicrystals and Beyond

    SciTech Connect

    Yuen, Chad

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  9. Quaternary borocarbides: New class of intermetallic superconductors

    NASA Technical Reports Server (NTRS)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-01-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  10. Quaternary borocarbides: New class of intermetallic superconductors

    NASA Astrophysics Data System (ADS)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-04-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  11. High-Performance Pd3Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction.

    PubMed

    Cui, Zhiming; Chen, Hao; Zhao, Mengtian; DiSalvo, Francis J

    2016-04-13

    Extensive efforts to develop highly active and strongly durable electrocatalyst for oxygen reduction are motivated by a need for metal-air batteries and fuel cells. Here, we report a very promising catalyst prototype of structurally ordered Pd-based alloys, Pd3Pb intermetallic compound. Such structurally ordered Pd3Pb/C exhibits a significant increase in mass activity. More importantly, compared to the conventional Pt/C catalysts, ordered Pd3Pb/C is highly durable and exhibits a much longer cycle life and higher cell efficiency in Zn-air batteries. Interestingly, ordered Pd3Pb/C possesses very high methanol tolerance during electrochemical oxygen reduction, which make it an excellent methanol-tolerant cathode catalyst for alkaline polymer electrolyte membrane fuel cells. This study provides a promising route to optimize the synthesis of ordered Pd-based intermetallic catalysts for fuel cells and metal-air batteries. PMID:26848634

  12. Constraining Second Language Word Order Optionality: Scrambling in Advanced English?German and Japanese?German Interlanguage

    ERIC Educational Resources Information Center

    Hopp, Holger

    2005-01-01

    This study documents knowledge of UG-mediated aspects of optionality in word order in the second language (L2) German of advanced English and Japanese speakers (n = 39). A bimodal grammaticality judgement task, which controlled for context and intonation, was administered to probe judgements on a set of scrambling, topicalization and remnant…

  13. Surfaces of complex intermetallic compounds: insights from density functional calculations.

    PubMed

    Hafner, Jürgen; Krajčí, Marian

    2014-11-18

    CONSPECTUS: Complex intermetallic compounds are a class of ordered alloys consisting of quasicrystals and other ordered compounds with large unit cells; many of them are approximant phases to quasicrystals. Quasicrystals are the limiting case where the unit cell becomes infinitely large; approximants are series of periodic structures converging to the quasicrystal. While the unique properties of quasicrystals have inspired many investigations of their surfaces, relatively little attention has been devoted to the surface properties of the approximants. In general, complex intermetallic compounds display rather irregular, often strongly corrugated surfaces, making the determination of their atomic structure a very complex and challenging task. During recent years, scanning tunneling microscopy (STM) has been used to study the surfaces of several complex intermetallic compounds. If atomic resolution can be achieved, STM permits visualization of the local atomistic surface structure. However, the interpretation of the STM images is often ambiguous and sometimes even impossible without a realistic model of the structure of the surface and the distribution of the electronic density above the surface. Here we demonstrate that ab initio density functional theory (DFT) can be used to determine the energetics and the geometric and electronic structures of the stable surfaces of complex intermetallic compounds. Calculations for surfaces with different chemical compositions can be performed in the grand canonical ensemble. Simulated cleavage experiments permit us to determine the formation of the cleavage planes requiring the lowest energy. The investigation of the adsorption of molecular species permits a comparison with temperature-programmed thermal desorption experiments. Calculated surface electronic densities of state can be compared with the results of photoelectron spectroscopy. Simulations of detailed STM images can be directly confronted with the experimental results

  14. 77 FR 66437 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... countervailing duty orders is scheduled for initiation in December 2012. Suspended Investigations Fresh...

  15. 76 FR 5561 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... duty orders is scheduled for initiation in March 2011. Suspended Investigations Ammonium Nitrate...

  16. Role of interfaces in deformation and fracture of ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Fu, C.L.

    1996-12-31

    While sub- and grain-boundaries are the primary dislocation sources in Ll{sub 2} alloys, yield and flow stresses are strongly influenced by the multiplication and exhaustion of mobile dislocations from the secondary sources. The concept of enhanced microplasticity at grain boundaries due to chemical disordering is well supported by theoretical modeling, but no conclusive direct evidence exist for Ni{sub 3}Al bicrystals. The strong plastic anisotropy reported in TiAl PST (polysynthetically twinned) crystals is attributed in part to localized slip along lamellar interfaces, thus lowering the yield stress for soft orientations. Calculations of work of adhesion suggest that, intrinsically, interfacial cracking is more likely to initiate on {gamma}/{gamma}-type interfaces than on the {alpha}{sub 2}/{gamma} boundary. 70 refs, 5 tabs, 5 figs.

  17. Plasma spray forming metals, intermetallics, and composites

    NASA Astrophysics Data System (ADS)

    Sampath, Sanjay; Herman, Herbert

    1993-07-01

    Plasma spray processing is a droplet deposition method that combines the steps of melting, rapid solidification, and consolidation into a single step. The versatility of the technology enables the processing of freestanding bulk, near-net shapes of a wide range of alloys, intermetallics, ceramics, and composites, while still retaining the benefits of rapid solidification processing. In particular, it is possible to produce dense forms through vacuum plasma spraying.

  18. Oxygen stabilized zirconium vanadium intermetallic compound

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

  19. Arc Casting Intermetallic Alloy (Materials Preparation Center)

    SciTech Connect

    2010-01-01

    Arc casting of intermetallic (La-Ni-Sn) AB5 alloy used for metal hydride hydrogen storage. Upon solidification the Sn is partially rejected and increases in concentration in the remaining liquid. Upon completing solidification there is a great deal of internal stress in the ingot. As the ingot cools further the stress is relieved. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  20. 7 CFR 1744.68 - Order and method of advances of telephone loan funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... approved telephone loans from RUS, RTB, or FFB, except that for all loans approved on or after November 1..., RUS cost-of-money, RTB, or FFB) may be made; and (2) Only in exchanges that qualify for the type of... of RUS and RTB funds may request advances by wire service only for amounts greater than $500,000...

  1. 7 CFR 1744.68 - Order and method of advances of telephone loan funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... approved telephone loans from RUS, RTB, or FFB, except that for all loans approved on or after November 1..., RUS cost-of-money, RTB, or FFB) may be made; and (2) Only in exchanges that qualify for the type of... of RUS and RTB funds may request advances by wire service only for amounts greater than $500,000...

  2. Brushing up on the history of intermetallics in dentistry

    NASA Astrophysics Data System (ADS)

    Waterstrat, Richard M.

    1990-03-01

    Employing a silver-tin-mercury intermetallic to repair cavities may seem a little unusual, but intermetallics are quite common in dentistry, ranging from gold crowns to braces. Although the human mouth can be unfriendly territory for a brittle intermetallic alloy, dental amalgam has been around since 659 A.D., and its technology has been developed to the point where a filling can be expected to last 30 years or more.

  3. Structural and Electronic Investigations of Complex Intermetallic Compounds

    SciTech Connect

    Ko, Hyunjin

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  4. SYNTHESIS AND CHARACTERIZATION OF NEW INTERMETALLIC COMPOUNDS

    SciTech Connect

    Professor Monica Sorescu

    2003-05-07

    This six-month work is focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}2, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T=Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe(80-20 wt%) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x=0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co(80-20 wt%) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which are currently being considered for publication in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Journal of Materials Science. The contributions reveal for the first time in literature the effect of

  5. Effects of elastic anisotropy on mechanical behavior of intermetallic compounds

    SciTech Connect

    Yoo, M.H.

    1991-01-01

    Fundamental aspects of the deformation and fracture behavior of ordered intermetallic compounds are examined within the framework of linear anisotropic elasticity theory of dislocations and cracks. The orientation dependence and the tension/compression asymmetry of yield stress are explained in terms of the anisotropic coupling effect of non-glide stresses to the glide strain. The anomalous yield behavior is related to the disparity (edge/screw) of dislocation mobility and the critical stress required for the dislocation multiplication mechanism of Frank-Read type. The slip-twin conjugate relationship, extensive faulting, and pseudo-twinning (martensitic transformation) at a crack tip can be enhanced also by the anisotropic coupling effect, which may lead to transformation toughening of shear type.

  6. Overview of the development of FeAl intermetallic alloys

    SciTech Connect

    Maziasz, P.J.; Liu, C.T.; Goodwin, G.M.

    1995-09-01

    B2-phase FeAl ordered intermetallic alloys based on an Fe-36 at.% Al composition are being developed to optimize a combination of properties that includes high-temperature strength, room-temperature ductility, and weldability. Microalloying with boron and proper processing are very important for FeAl properties optimization. These alloys also have the good to outstanding resistance to oxidation, sulfidation, and corrosion in molten salts or chlorides at elevated temperatures, characteristic of FeAl with 30--40 at.% Al. Ingot- and powder-metallurgy (IM and PM, respectively) processing both produce good properties, including strength above 400 MPa up to about 750 C. Technology development to produce FeAl components for industry testing is in progress. In parallel, weld-overlay cladding and powder coating technologies are also being developed to take immediate advantage of the high-temperature corrosion/oxidation and erosion/wear resistance of FeAl.

  7. 75 FR 9156 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... Policy Bulletin 98.3--Policies Regarding the Conduct of Five-year (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998) . The Notice of Initiation of...

  8. 78 FR 65611 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... Department's Policy Bulletin 98.3--Policies Regarding the Conduct of Five-year (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice...

  9. 78 FR 25422 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16.... Carbon and Certain Alloy Steel Wire Rod from Jennifer Moats (202) Trinidad and Tobago (A-274-804)...

  10. 76 FR 11198 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Five-year (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR... & Dana Mermelstein Pressure Pipe (Under 4\\1/2\\ Inches) from (202) 482-1391. Romania (A-485-805)...

  11. 77 FR 266 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16... (A-588-838) (3rd David Goldberger, (202) 482-4136. Review). Pure Magnesium in Granular Form from...

  12. 76 FR 18153 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... Hancock, 570-899). (202) 482-1394. Gray Portland Cement and Dana Mermelstein, Cement Clinker from Japan...

  13. 75 FR 60720 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year (``Sunset... Chromium from Japan (A-588-866). Dana Mermelstein (202) 482-1391. Cased Pencils from the People's...

  14. 77 FR 12561 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of... Pressure Pipe From Germany Dana Mermelstein (202) 482-1391. (A-428-820) (3rd Review). ] Countervailing...

  15. 77 FR 39215 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... Investigations Lemon Juice from Argentina (A-357-818) (1st Sally Gannon Review). (202) 482-0162 Lemon Juice...

  16. 77 FR 5485 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... Five-Year Sunset Reviews. Antidumping Duty Proceedings Activated Carbon From China (A-570-904) (1st... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of...

  17. 77 FR 53862 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...) Dana Mermelstein (202) (2nd Review). 482-1391 Silicomanganese from Venezuela (A-307-820) (2nd...

  18. 78 FR 46575 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16... Garment Hangers Jennifer Moats (202) 482-5047. from China (A-570-918) (1st Review). Countervailing...

  19. 76 FR 61087 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998) . The Notice of Initiation of Five-Year (``Sunset...). Stainless Steel Butt-Weld Pipe Fittings from Dana Mermelstein, (202) 482-1391. the Philippines...

  20. 78 FR 39255 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... Magnets from Jennifer Moats China (A-570-922) (1st (202) 482-5047 Review). Raw Flexible Magnets from David... Magnets from Jennifer Moats China (C-570-923) (1st (202) 482-5047 Review). Suspended Investigations...

  1. 77 FR 45582 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year (``Sunset... Initiation of Five-Year Sunset Review. Department Contact Antidumping Duty Proceedings Certain Pasta from Italy (A-475-818) (3rd David Goldberger, (202) 482-4136. Review). Certain Pasta from Turkey...

  2. 77 FR 32530 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... Review)......... Jennifer Moats, (202) 482-5047. Steel Concrete Reinforcing Bars from Belarus (A-822... Moats, (202) 482-5047. Steel Concrete Reinforcing Bars from China (A-570-860) David Goldberger,...

  3. 78 FR 60252 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... Five-year (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR...) (3rd Review). Ferrovanadium from South Africa (A-791-815) David Goldberger, (202) 482-4136. (2nd Review... Innerspring Units from South Africa David Goldberger, (202) 482-4136. (A-791-821) (1st Review)....

  4. 75 FR 5037 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16... Department contact Magnesium Metal from the People's Republic Jennifer Moats; (202) 482- of China (A-570-896). 5047. Magnesium Metal from Russia (A-821-819)... Dana Mermelstein; (202) 482- 1391. Countervailing...

  5. 75 FR 30371 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... Mermelstein (202) 482-1391. Japan (A-588-046) (3rd Review). Petroleum Wax Candles from Jennifer Moats (202... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998) . The Notice of Initiation of Five-Year... receives a Notice of Intent to Participate from a member of the domestic industry within 15 days of...

  6. 75 FR 67081 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... Regulations, 75 FR 59611 (September 28, 2010). While this import ban remains in effect, 19 U.S.C. 1675(c)(7... Comprehensive Iran Sanctions, Accountability, and Divestment Act of 2010 includes a ban on all U.S. imports from... antidumping order on raw pistachios from Iran until two months after the import ban on pistachios is...

  7. 75 FR 45095 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Terephthalate (PET) Film from Dana Mermelstein South Korea (A-580-807) (3rd Review). (202) 482-1391. Stainless.... Stainless Steel Butt-Weld Pipe Fittings Dana Mermelstein from South Korea (A-580-813) (3rd Review). (202... Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...

  8. 75 FR 16738 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...) (3rd Review). 482-5047. Iron Construction Castings from Brazil (A-351- Dana Mermelstein, 503) (3rd Review). (202) 482-1391. Iron Construction Castings from Canada (A-122- Dana Mermelstein, 503)...

  9. 76 FR 31587 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of... Steel Dana Mermelstein, (202) 482-1391. Pipe & Tube from Taiwan (A-583-803) (3rd Review). Stainless Steel Wire Rod from India (A-533-808) Dana Mermelstein, (202) 482-1391. (3rd Review). Welded...

  10. 75 FR 74681 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... Five-year (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR... Salmon from Norway (A-403- Patricia Tran, (202) 482-1503. 801) (3rd Review). Countervailing Duty Proceedings Fresh & Chilled Atlantic Salmon from Norway (C-403- Patricia Tran, (202) 482-1503. 802)...

  11. 77 FR 19623 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... be likely to lead to continuation or recurrence of dumping or a countervailable subsidy (as the case... Sunset Review. Antidumping duty proceedings Department contact Polyester Staple Fiber from the Jennifer... Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice...

  12. Advanced properties of extended plasmas for efficient high-order harmonic generation

    SciTech Connect

    Ganeev, R. A.; Suzuki, M.; Kuroda, H.

    2014-05-15

    We demonstrate the advanced properties of extended plasma plumes (5 mm) for efficient harmonic generation of laser radiation compared with the short lengths of plasmas (∼0.3–0.5 mm) used in previous studies. The harmonic conversion efficiency quadratically increased with the growth of plasma length. The studies of this process along the whole extreme ultraviolet range using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced laser frequency conversion and two-color pump, are presented. Such plasmas could be used for the quasi-phase matching experiments by proper modulation of the spatial characteristics of extended ablating area and formation of separated plasma jets.

  13. Intermetallic strengthened alumina-forming austenitic steels for energy applications

    NASA Astrophysics Data System (ADS)

    Hu, Bin

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, materials required are strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe 2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. This research starts with microstructural and microchemical analyses of these intermetallic strengthened alumina-forming austenitic steels in a scanning electron microscope. The microchemistry of precipitates, as determined by energy-dispersive x-ray spectroscopy and transmission electron microscope, is also studied. Different thermo-mechanical treatments were carried out to these stainless steels in an attempt to further improve their mechanical properties. The microstructural and microchemical analyses were again performed after the thermo-mechanical processing. Synchrotron X-ray diffraction was used to measure the lattice parameters of these steels after different thermo-mechanical treatments. Tensile tests at both room and elevated temperatures were performed to study mechanical behaviors of this novel alloy system; the deformation mechanisms were studied by strain rate jump tests at elevated temperatures. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these alumina-forming austenitic steels after creep tests. Experiments were carried out to study the effects of boron and carbon additions in the aged alumina-forming austenitic steels.

  14. Nonstoichiometry of Al-Zr intermetallic phases

    SciTech Connect

    Radmilovic, V.; Thomas, G.

    1994-06-01

    Nonstoichiometry of metastable cubic {beta}{prime} and equilibrium tetragonal {beta} Al-Zr intermetallic phases of the nominal composition Al{sub 3}Zr in Al-rich alloys has been extensively studied. It is proposed that the ``dark contrast`` of {beta}{prime} core in {beta}{prime}/{sigma}{prime} complex precipitates, in Al-Li-Zr based alloys, is caused by incorporation of Al and Li atoms into the {beta}{prime} phase on Zr sublattice sites, forming nonstoichiometric Al-Zr intermetallic phases, rather than by Li partitioning only. {beta}{prime} particles contain very small amounts of Zr, approximately 5 at.%, much less than the stoichiometric 25 at.% in the Al{sub 3}Zr metastable phase. These particles are, according to simulation of high resolution images, of the Al{sub 3}(Al{sub 0.4}Li{sub 0.4}Zr{sub 0.2}) type. Nonstoichiometric particles of average composition Al{sub 4}Zr and Al{sub 6}Zr are observed also in the binary Al-Zr alloy, even after annealing for several hours at 600{degree}C.

  15. Cold Sprayed Intermetallic Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Leshchinsky, Evgeny

    Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bond coat and a ceramic heat-isolative topcoat. Several recent research activities are concentrated on the development of improved multilayer bond coat and TBC materials. This study represents an investigation performed for the aluminum based bond coats, especially those with reduced thermal conductivities. Using alternative TBC materials, such as metal alloys and intermetallics, their processing methods can be further optimized to achieve the best thermal physical parameters. One example is the ten-layer system in which cold sprayed aluminum based intermetallics are synthesized. These systems demonstrated improved heat insulation and thermal fatigue capabilities compared to conventional TBC. The microstructures and properties of the laminar coatings were characterized by SEM, EDS, XRD; micromechanical and durability tests were performed to define the structure and coating formation mechanisms. Application prospects for HCCI engines are discussed. Fuel energy can be utilized more efficiently with the concept of low heat rejection engines with applied TBC.

  16. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Hollis, K.J.; Kung, H.H.

    1998-11-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries.

  17. Advanced order management in ERM systems: the tic-tac-toe algorithm

    NASA Astrophysics Data System (ADS)

    Badell, Mariana; Fernandez, Elena; Puigjaner, Luis

    2000-10-01

    The concept behind improved enterprise resource planning systems (ERP) systems is the overall integration of the whole enterprise functionality into the management systems through financial links. Converting current software into real management decision tools requires crucial changes in the current approach to ERP systems. This evolution must be able to incorporate the technological achievements both properly and in time. The exploitation phase of plants needs an open web-based environment for collaborative business-engineering with on-line schedulers. Today's short lifecycles of products and processes require sharp and finely tuned management actions that must be guided by scheduling tools. Additionally, such actions must be able to keep track of money movements related to supply chain events. Thus, the necessary outputs require financial-production integration at the scheduling level as proposed in the new approach of enterprise management systems (ERM). Within this framework, the economical analysis of the due date policy and its optimization become essential to manage dynamically realistic and optimal delivery dates with price-time trade-off during the marketing activities. In this work we propose a scheduling tool with web-based interface conducted by autonomous agents when precise economic information relative to plant and business actions and their effects are provided. It aims to attain a better arrangement of the marketing and production events in order to face the bid/bargain process during e-commerce. Additionally, management systems require real time execution and an efficient transaction-oriented approach capable to dynamically adopt realistic and optimal actions to support marketing management. To this end the TicTacToe algorithm provides sequence optimization with acceptable tolerances in realistic time.

  18. Effects of intermetallic particles on the SCC initiation of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Wakashima, Y.; Imahashi, H.; Nagai, M.

    1985-06-01

    In order to investigate effects of intermetallic particles on SCC initiation of zirconium alloys, tensile tests were conducted in an iodine atmosphere using zirconium plates with different amounts of impurities, and Zircaloy-2 plates. SCC susceptibility of zirconium increased significantly with its iron content. Even small amounts of iron could form the intermetallic compound ZrFe 2 whose particle size and number increased with iron content. In the case of Zircaloy-2, two different types of ternary compounds were detected, namely Zr(CrFe) 2 and Zr 2(NiFe). Metallographic examinations showed that the particles located at grain boundaries were important sites of SCC initiation in zirconium alloys. The initiation probability increased significantly with the amount of the particles, which supported the strong correlation between SCC susceptibility of zirconium and its iron content.

  19. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    NASA Astrophysics Data System (ADS)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-03-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from intact classes. A researcher-constructed Biology Cognitive Skills Test was used to collect the quantitative data. Qualitative data were collected through interviews and students' personal documents. The data showed that the participants utilized concept mapping in various ways and they described positive experiences while being engaged in its use. The main challenge cited by teachers was the limited time available for more consistent use. The results showed that the use of concept mapping in advanced level biology can lead to learning gains that exceed those achieved in classes where mainly traditional methods are used. The students in the concept mapping experimental groups performed significantly better than their peers in the control group on both the lower-order (F(1) = 21.508; p < .001) and higher-order (F(1) = 42.842, p < .001) cognitive items of the biology test. A mean effect size of .56 was calculated representing the contribution of treatment to the students' performance on the test items.

  20. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    SciTech Connect

    DiSalvo, Francis J.

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  1. Containerless automated processing of intermetallic compounds and composites

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.

    1993-01-01

    An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.

  2. Titanium aluminide intermetallic alloys with improved wear resistance

    DOEpatents

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  3. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  4. Roles of Titanium-Intermetallic Compound Layer

    NASA Astrophysics Data System (ADS)

    Lee, Chii-Chang

    Four different configurations have been tested: Al-Cu, Ti/Al-Cu, Al-Cu/Ti, and Ti/Al-Cu/Ti to evaluate the possible contributions of Ti-intermetallic compound layer(s) to enhancement of the lifetime to failure. Basically, the proposed mechanisms can be classified into two groups: shunting effect and effects limited to changes in Al-Cu conducting layer(s). A resistance monitoring technique was adopted to supplement lifetime measurement to separate these two effects. By correlating the first resistance jump (spike) to the happening of a complete open across Al-Cu layer, it was found that the shunting effect contributes to enhancement of the lifetime by 4 times in Ti/Al-Cu, 2 times in Al-Cu/Ti, and 2 times in Ti/Al-Cu/Ti. A Ti underlayer was found to contribute mainly the shunting effect. However, from drift velocity measurements and failure mode analysis, it is possible to deduce that a Ti overlayer contributes not only the shunting effect but also another effect that acts to diminish the grain boundary mass transport rate by a factor of about 76. It is believed that the latter effect is a consequence of the high compressive yield stength conferred by the Ti-intermetallic compound overlayer to the Al-Cu layer. Finally, an important non-destructive technique, based on the characteristic x-rays generated by energetic electrons, to characterize the mass divergences in multilayer interconnects, was developed in this research, called SMEISIS, representing Simultaneous Multiple Elements Intensity Scanning of Interconnecting Stripes. This technique was proved to be capable of revealing detail about the shapes, nature, and location of mass divergence that cannot be revealed by thermal wave image technique and that requires time consuming multiple sectioning in TEM and SEM methods.

  5. Determination of site-occupancies in aluminide intermetallics by ALCHEMI

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-04-01

    The site-distributions of Fe in four B2-ordered NiAl-based alloys with Fe concentrations of 10%, 2%, and 0.5% have been determined by ALCHEMI (atom-location by channeling-enhanced microanalysis). Site-distributions have been extracted with standard errors between {approximately} 1.5% (10% Fe concentration) and {approximately} 6% (0.5% Fe concentration). The results show that Fe has no strong site-preference in NiAl and tends to reside on the site of the stoichiometrically deficient host element. An improved ALCHEMI analysis procedure is outlined. The analysis explicitly addresses the phenomenon of ionization delocalization, which previously complicated the determination of site-distributions in aluminide intermetallics, leading to inaccurate and oftentimes nonphysical results. The improved ALCHEMI analysis also addresses the presence of anti-site defects. The data acquisition conditions have been optimized to minimize the sources of statistical and systematic error. This optimized procedure should be suitable for all analyses of B2-ordered alloys. Several analyses at different channeling orientations show that the extracted site-occupancies are robust as long as the data are acquired at orientations that are remote from any major pole of the crystal.

  6. Processing and properties of molybdenum silicide intermetallics containing boron

    SciTech Connect

    Schneibel, J.H.; Liu, C.T.; Heatherly, L. Jr.; Carmichael, C.A.

    1998-11-01

    The processing and mechanical properties of Mo-Si-B intermetallic alloys with compositions Mo-26.7Si-7.3B and Mo-12Si-8.5B (at.%) were investigated. The first alloy consisted of the phases Mo{sub 3}Si, Mo{sub 5}Si{sub 3} (T1) and Mo{sub 5}SiB{sub 2} (T2). Attempts to extrude castings of this alloy at 1700 or 1800 C were not successful. Hot isostatic pressing of elemental powders was more promising and room temperature flexure strengths on the order of 200 MPa were reached. The second alloy with the composition Mo-12Si-8.5B could be readily cast and consisted of {alpha}-Mo inclusion in a brittle matrix of Mo{sub 3}Si and T2. A heat treatment of 1 day at 1600C in vacuum improved the room temperature strength and fracture toughness. Values on the order of 500 MPa and 10 MPa m{sup 1/2}, respectively, were obtained. Consistent with ductile phase toughening, limited plastic deformation as well as debonding of the {alpha}-Mo inclusions were seen on fracture surfaces.

  7. 49 CFR 39.37 - May PVOs require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... provide advance notice in order to obtain particular auxiliary aids and services or to arrange group... aids and services or to arrange group travel? (a) Except as provided in this section, as a PVO you must... particular auxiliary aids and services, you may request reasonable advance notice to guarantee...

  8. 49 CFR 39.37 - May PVOs require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provide advance notice in order to obtain particular auxiliary aids and services or to arrange group... aids and services or to arrange group travel? (a) Except as provided in this section, as a PVO you must... particular auxiliary aids and services, you may request reasonable advance notice to guarantee...

  9. 49 CFR 39.37 - May PVOs require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... provide advance notice in order to obtain particular auxiliary aids and services or to arrange group... aids and services or to arrange group travel? (a) Except as provided in this section, as a PVO you must... particular auxiliary aids and services, you may request reasonable advance notice to guarantee...

  10. 49 CFR 39.37 - May PVOs require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provide advance notice in order to obtain particular auxiliary aids and services or to arrange group... aids and services or to arrange group travel? (a) Except as provided in this section, as a PVO you must... particular auxiliary aids and services, you may request reasonable advance notice to guarantee...

  11. 49 CFR 39.37 - May PVOs require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... provide advance notice in order to obtain particular auxiliary aids and services or to arrange group... aids and services or to arrange group travel? (a) Except as provided in this section, as a PVO you must... particular auxiliary aids and services, you may request reasonable advance notice to guarantee...

  12. Metallic and intermetallic-bonded ceramic composites

    SciTech Connect

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  13. Intermetallic and ceramic matrix composites for 815 to 1370 C (1500 to 2500 F) gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1990-01-01

    Revolutionary improvements in gas turbine engine specific fuel consumption and specific thrust are expected to be gained through incorporation of CMCs and of MMCs (whose intermetallic matrices are reinforced by highly refractory ceramic fibers). A status development evaluation is presented for NASA's Advanced High Temperature Engine Materials Technology Program, with a view to projections of early-21st century transport aircraft performance levels obtainable through the use of MMCs and CMCs in ultrahigh bypass turbofan engines.

  14. Improved Low-cloud Simulation from the Community Atmosphere Model with an Advanced Third-order Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Xu, K.

    2013-12-01

    This presentation describes the implementation and testing of an advanced third-order turbulence closure, an intermediately-prognostic higher-order turbulence closure (IPHOC), into the Community Atmosphere Model version 5 (CAM5). The third-order turbulence closure introduces a joint double-Gaussian distribution of liquid water potential temperature, total water mixing ratio, and vertical velocity to represent the subgrid scale variations including skewed turbulence circulations. The distribution is inferred from the first-, second-, and third-order moments of the variables given above and is used to diagnose cloud fraction and grid-mean liquid water mixing ratio, as well as the buoyancy term and fourth-order terms in the equations describing the evolution of the second- and third-order moments. In addition, a diagnostic planetary boundary layer (PBL) height approach has been incorporated in IPHOC in order to resolve the strong inversion above PBL for the coarse general circulation model (GCM) vertical grid-spacing. The IPHOC replaces PBL, shallow convection, and cloud macrophysics parameterizations in CAM5. The coupling of CAM5 with IPHOC (CAM5-IP) represents a more unified treatment of boundary layer and shallow convective processes. Results from global climate simulations are presented and suggest that CAM5-IP can provide a better treatment of boundary layer clouds and processes when compared to CAM5. The global annual mean low cloud fraction and precipitation are compared among CAM5, CAM5-IP, and a multi-scale modeling framework model with IPHOC (MMF-IP). The low cloud amounts near the west coast of the subtropical continents are well produced in CAM5-IP and are more abundant than in other two models. The global mean liquid water path is the closest to the SSM/I observation. The cloud structures from CAM5-IP, represented by the cloud fraction and cloud water content at 15°S transect, compare well with the CloudSat/CALIPSO observations. The shallow cumulus

  15. First Principles Study of Al-Li Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, Hai-li; Duan, Xiao-hui; Ma, Yong-jun; Zeng, Min

    2012-12-01

    The structural properties, heats of formation, elastic properties, and electronic structures of four compositions of binary Al-Li intermetallics, Al3Li, AlLi, Al2Li3, and Al4Li9, are analyzed in detail by using density functional theory. The calculated formation heats indicate a strong chemical interaction between Al and Li for all the Al-Li intermetallics. In particular, in the Li-rich Al-Li compounds, the thermodynamic stability of intermetallics linearly decreases with increasing concentration of Li. According to the computational single crystal elastic constants, all the four Al-Li intermetallic compounds considered here are mechanically stable. The polycrystalline elastic modulus and Poisson's ratio have been deduced by using Voigt, Reuss, and Hill approximations, and the calculated ratios of bulk modulus to shear modulus indicate that the four compositions of binary Al-Li intermetallics are brittle materials. With the increase of Li concentration, the bulk modulus of Al-Li intermetallics decreases in a linear manner.

  16. First-principles studies of Al-Ni intermetallic compounds

    SciTech Connect

    Shi Dongmin; Wen Bin; Melnik, Roderick; Yao Shan; Li Tingju

    2009-10-15

    The structural properties, heats of formation, elastic properties, and electronic structures of Al-Ni intermetallic compounds are analyzed here in detail by using density functional theory. Higher calculated absolute values of heats of formation indicate a very strong chemical interaction between Al and Ni for all Al-Ni intermetallic compounds. According to the computational single crystal elastic constants, all the Al-Ni intermetallic compounds considered here are mechanically stable. The polycrystalline elastic modulus and Poisson's ratio have been deduced by using Voigt, Reuss, and Hill (VRH) approximations, and the calculated ratio of shear modulus to bulk modulus indicated that AlNi, Al{sub 3}Ni, AlNi{sub 3} and Al{sub 3}Ni{sub 5} compounds are ductile materials, but Al{sub 4}Ni{sub 3} and Al{sub 3}Ni{sub 2} are brittle materials. With increasing Ni concentration, the bulk modulus of Al-Ni intermetallic compounds increases in a linear manner. The electronic energy band structures confirm that all Al-Ni intermetallic compounds are conductors. - Graphical abstract: Calculated bulk modulus compared to experimental and other theoretical values for the Al-Ni intermetallic compounds.

  17. Full Field and Anomaly Initialisation using a low order climate model: a comparison, and proposals for advanced formulations

    NASA Astrophysics Data System (ADS)

    Weber, Robin; Carrassi, Alberto; Guemas, Virginie; Doblas-Reyes, Francisco; Volpi, Danila

    2014-05-01

    Full Field (FFI) and Anomaly Initialisation (AI) are two schemes used to initialise seasonal-to-decadal (s2d) prediction. FFI initialises the model on the best estimate of the actual climate state and minimises the initial error. However, due to inevitable model deficiencies, the trajectories drift away from the observations towards the model's own attractor, inducing a bias in the forecast. AI has been devised to tackle the impact of drift through the addition of this bias onto the observations, in the hope of gaining an initial state closer to the model attractor. Its goal is to forecast climate anomalies. The large variety of experimental setups, global coupled models, and observational networks adopted world-wide have led to varying results with regards to the relative performance of AI and FFI. Our research is firstly motivated in a comparison of these two initialisation approaches under varying circumstances of observational errors, observational distributions, and model errors. We also propose and compare two advanced schemes for s2d prediction. Least Square Initialisation (LSI) intends to propagate observational information of partially initialized systems to the whole model domain, based on standard practices in data assimilation and using the covariance of the model anomalies. Exploring the Parameters Uncertainty (EPU) is an online drift correction technique applied during the forecast run after initialisation. It is designed to estimate, and subtract, the bias in the forecast related to parametric error. Experiments are carried out using an idealized coupled dynamics in order to facilitate better control and robust statistical inference. Results show that an improvement of FFI will necessitate refinements in the observations, whereas improvements in AI are subject to model advances. A successful approximation of the model attractor using AI is guaranteed only when the differences between model and nature probability distribution functions (PDFs) are

  18. Processing and properties of molybdenum silicide intermetallics containing boron

    SciTech Connect

    Schneibel, J.H.; Liu, C.T.; Heatherly, L.; Wright, J.L.; Carmichael, C.A.

    1997-08-01

    Molybdenum-silicon-boron intermetallics with the composition Mo-10.5 Si-1.1 B, wt% (Mo-26.7 Si-7.3 B, at. %) were fabricated by several processing techniques. Powder processing (PM) resulted in macrocrack-free material containing no or only few microcracks. The PM materials contained quasi-equilibrium pores and large concentrations of oxygen. Average room temperature flexure strengths of 270 MPa were obtained. At 1,200 C in air, flexure strengths as high as 600 MPa were observed. These high values are attributed to crack healing and incipient plasticity. Ingot metallurgy (IM) materials contained much less oxygen than their PM counterparts. Depending on the cooling rate during solidification, they developed either mostly macrocracks or mostly microcracks. Due to the high flaw densities, the room temperature flexure strengths were only of the order of 100 MPa. However, the flexure strengths at 1,200 C were up to 3 times higher than those at room temperature. Again, this is attributed to crack healing and incipient plasticity. The IM materials will require secondary processing to develop their full potential. A preliminary examination of secondary processing routes included isothermal forging and hot extrusion.

  19. A magnetization study of RCo 12B 6 intermetallics

    NASA Astrophysics Data System (ADS)

    Mittag, M.; Rosenberg, M.; Buschow, K. H. J.

    1989-11-01

    The magnetic properties of polycrystalline intermetallics RCo 12B 6 with R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm have been studied in the temperature range 3-300 K and in fields up to 2 T. All compounds order magnetically between Tc=134.3 K for CeCo 12B 6 and Tc=162 K for GdCo 12B 6. YCo 12B 6 has an average Co moment of 0.42μ B. Since the Co moment is constant for all samples the R moments can be easily obtained and they are in good agreement with free R 3+ ion values. Ce is quadripositive in CeCo 12B 6 and therefore nonmagnetic. All light rare-earth compounds are ferromagnetic, while all heavy rare-earth compounds are ferrimagnetic with compensation points between Tcomp=11.6 K ( TmCo12B6) and Tcomp=82.8 K ( TbCo12B6). In the paramagnetic state an effective magnetic moment of 1.94μ B per Co atom has been found. The mean-field approximation yields a 3d-3d exchange integral of {J CoCo}/{k B}=110 K . The 3d-4f exchange integral is much smaller and equal to about {J RCo}/{k B}=6 K .

  20. Molecular assembly and organic film growth on complex intermetallic surfaces

    NASA Astrophysics Data System (ADS)

    Al-Mahboob, Abdullah; Sharma, Hem Raj; Sadowski, Jerzy T.; Ledieu, Julian; Fournée, Vincent; McGrath, Ronan

    We extensively studied the role of molecular symmetry and symmetry/structures of wide ranges of substrate-surfaces from non-periodic to periodic to quasi-crystalline in nucleation, growth and phase transition in films made of organic molecular materials. Recently, most interest in quasicrystals is due to the generalization of aperiodic ordering to several classes of systems. Compared to periodic materials, these provide a closer approximation to an isotropic first Brillouin zone, which is of great importance to the design of new functional materials. Here, we present results obtained from our ongoing study of interface mediated molecular assembly extended on complex intermetallic surfaces with specific examples of C60 and Zn-phthalocyanine on quasicrystalline and approximant surfaces. We employed in-situ real-time low-energy electron microscopy (LEEM) for investigation of the processes in assembly and film growth and post-growth STM study and DFT calculations to understand structural details and growth mechanism. Research were carried out in part at the Center for Functional Nanomaterials, Brookhaven National Lab, USA; partly at Institut Jean Lamour, Université de Lorraine, France; and partly at the Surface Science Research Centre, University of Liverpool, UK.

  1. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  2. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  3. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  4. SCB ignition of pyrotechnics, thermites and intermetallics

    SciTech Connect

    Bickes, R.W. Jr.; Grubelich, M.C.

    1996-09-01

    We investigated ignition of pyrotechnics, metal-fuel/metal-oxide compositions (thermites), and exothermic alloy compositions (intermetallics) using a semiconductor bridge (SCB). It was shown that these materials could be ignited at low energy levels with an appropriately designed SCB, proper loading density, and good thermal isolation. Materials tested included Al/CuO, B/BaCrO{sub 4}, TiH{sub 1.65}/KClO{sub 4}, Ti/KClO{sub 4}, Zr/BaCrO{sub 4}, Zr/CuO, Zr/Fe{sub 2}O{sub 3}, Zr/KClO{sub 4}, and 100-mesh Al/Pd. Firing set was a capacitor discharge unit with charge capacitors ranging from 3 to 20,000 {mu}F at charge voltages 5-50 V. Devices functioned a few miliseconds after onset of current pulse at input energies as low as 3 mJ. We also report on a thermite torch design.

  5. Development of the High-Order Decoupled Direct Method in Three Dimensions for Particulate Matter: Enabling Advanced Sensitivity Analysis in Air Quality Models

    EPA Science Inventory

    The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity...

  6. First-principles studies of Ni-Ta intermetallic compounds

    SciTech Connect

    Zhou Yi; Wen Bin; Ma Yunqing; Melnik, Roderick; Liu Xingjun

    2012-03-15

    The structural properties, heats of formation, elastic properties, and electronic structures of Ni-Ta intermetallic compounds are investigated in detail based on density functional theory. Our results indicate that all Ni-Ta intermetallic compounds calculated here are mechanically stable except for P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2}. Furthermore, we found that Pmmn-Ni{sub 3}Ta is the ground state stable phase of Ni{sub 3}Ta polymorphs. The polycrystalline elastic modulus has been deduced by using the Voigt-Reuss-Hill approximation. All Ni-Ta intermetallic compounds in our study, except for NiTa, are ductile materials by corresponding G/K values and poisson's ratio. The calculated heats of formation demonstrated that Ni{sub 2}Ta are thermodynamically unstable. Our results also indicated that all Ni-Ta intermetallic compounds analyzed here are conductors. The density of state demonstrated the structure stability increases with the Ta concentration. - Graphical abstract: Mechanical properties and formation heats of Ni-Ta intermetallic compounds are discussed in detail in this paper. Highlights: Black-Right-Pointing-Pointer Ni-Ta intermetallic compounds are investigated by first principle calculations. Black-Right-Pointing-Pointer P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2} are mechanically unstable phases. Black-Right-Pointing-Pointer Pmmn-Ni{sub 3}Ta is ground stable phase of Ni{sub 3}Ta polymorphs. Black-Right-Pointing-Pointer All Ni-Ta intermetallic compounds are conducting materials.

  7. A Low-order Coupled Chemistry Meteorology Model for Testing Online and Offline Advanced Data Assimilation Schemes

    NASA Astrophysics Data System (ADS)

    Bocquet, M.; Haussaire, J. M.

    2015-12-01

    Bocquet and Sakov have recently introduced a low-order model based on the coupling of thechaotic Lorenz-95 model which simulates winds along a mid-latitude circle, with thetransport of a tracer species advected by this wind field. It has been used to testadvanced data assimilation methods with an online model that couples meteorology andtracer transport. In the present study, the tracer subsystem of the model is replacedwith a reduced photochemistry module meant to emulate reactive air pollution. Thiscoupled chemistry meteorology model, the L95-GRS model, mimics continental andtranscontinental transport and photochemistry of ozone, volatile organic compounds andnitrogen dioxides.The L95-GRS is specially useful in testing advanced data assimilation schemes, such as theiterative ensemble Kalman smoother (IEnKS) that combines the best of ensemble andvariational methods. The model provides useful insights prior to any implementation ofthe data assimilation method on larger models. For instance, online and offline dataassimilation strategies based on the ensemble Kalman filter or the IEnKS can easily beevaluated with it. It allows to document the impact of species concentration observationson the wind estimation. The model also illustrates a long standing issue in atmosphericchemistry forecasting: the impact of the wind chaotic dynamics and of the chemical speciesnon-chaotic but highly nonlinear dynamics on the selected data assimilation approach.

  8. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  9. DOE-EPSCoR. Exchange interactions in epitaxial intermetallic layered systems

    SciTech Connect

    LeClair, Patrick R.; Gary, Mankey J.

    2015-05-25

    The goal of this research is to develop a fundamental understanding of the exchange interactions in epitaxial intermetallic alloy thin films and multilayers, including films and multilayers of Fe-Pt, Co-Pt and Fe-P-Rh alloys deposited on MgO and Al2O3 substrates. Our prior results have revealed that these materials have a rich variety of ferromagnetic, paramagnetic and antiferromagnetic phases which are sensitive functions of composition, substrate symmetry and layer thickness. Epitaxial antiferromagnetic films of FePt alloys exhibit a different phase diagram than bulk alloys. The antiferromagnetism of these materials has both spin ordering transitions and spin orienting transitions. The objectives include the study of exchange-inversion materials and the interface of these materials with ferromagnets. Our aim is to formulate a complete understanding of the magnetic ordering in these materials, as well as developing an understanding of how the spin structure is modified through contact with a ferromagnetic material at the interface. The ultimate goal is to develop the ability to tune the phase diagram of the materials to produce layered structures with tunable magnetic properties. The alloy systems that we will study have a degree of complexity and richness of magnetic phases that requires the use of the advanced tools offered by the DOE-operated national laboratory facilities, such as neutron and x-ray scattering to measure spin ordering, spin orientations, and element-specific magnetic moments. We plan to contribute to DOE’s mission of producing “Materials by Design” with properties determined by alloy composition and crystal structure. We have developed the methods for fabricating and have performed neutron diffraction experiments on some of the most interesting phases, and our work will serve to answer questions raised about the element-specific magnetizations using the magnetic x-ray dichroism techniques and interface magnetism in layered structures

  10. Identification and control of grinding processes for intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Razavi, Hosein Ali

    2000-10-01

    An intermetallic compound (IMC) is a combination of two or more metals with a particular atomic formula by having either ionic and covalent bonds, or metallic bonds with specific crystal structures. They may be thought of as the intermediate between metals and ceramics. These new materials may combine the best of each class: the ductility, heat and electric conductivity of metals with the strength and oxidation resistance of ceramics. Previous study has proposed that the depth of plastic deformation can be used as a parameter to describe the influence of grinding conditions on other physical properties of subsurface layers. Accordingly, the indentation model has been developed to correlate the depth of plastic deformation with the normal component of grinding force. It has been reported that the under certain grinding conditions the depth of plastic deformation does not follow the indentation model. The primary objective of this research is to explain such deviations and to demonstrate that this model can be used to control and predict the depth of plastic deformation. Elements of this research include the development of an open architecture platform to study grinding process, a signal processing algorithm for gap elimination, introducing and implementation of model reference unfalsification and learning concept, development of a mathematical model for grinding gamma-TiAl, a comparison between conventional and superabrasive grinding, control and prediction of the depth of plastic deformation, and initiation of one of the first databases for grinding gamma-TiAl. This work not only serves as a step toward the use of IMCs in future technology but also serves as a step toward autonomous machining systems using intelligent control and advanced monitoring which is a feature of the future abrasive technology.

  11. Phase stability in processing of high temperature intermetallic alloys

    SciTech Connect

    Perepezko, J.H.; Nunes, C.A.; Yi, S.H.; Thoma, D.J.

    1997-12-31

    In the development of high temperature intermetallics involving various aluminides, silicides and Laves phases, it has become evident that it is essential to consider the strong influence of materials processing throughout all stages. The underlying basis for alloy synthesis, processing and the assessment of thermal stability is established by the relevant phase equilibria, the characteristic diffusivities and the possible solidification reaction pathways. In almost all cases the microstructures of the most useful metallic alloys are multiphase assemblies in which the relative phase fractions, compositions and morphologies play key roles in optimizing the performance under high temperature conditions. The microstructure designs are usually tailored for strength, toughness, creep resistance and environmental stability and involve a balance of features derived from mixtures of a ductile phase and intermetallic phases. There is a clear experience that the level of materials processing can only be as sophisticated as the level of knowledge of the phase equilibria and the underlying kinetics. In many of the contemporary intermetallic alloys the phase stability must be considered in terms of multicomponent equilibria and non-stoichiometric intermetallic compositions. Recent developments in several important intermetallic alloy classes illustrate the guidance into alloy design and processing options provided by systematic studies of phase stability. 58 refs., 7 figs.

  12. Intermetallic and ceramic matrix composites for 815 to 1370 C (1500 to 2500F) gas turbine engine applications

    SciTech Connect

    Stephens, J.R.

    1989-01-01

    Light weight and potential high temperature capability of intermetallic compounds, such as the aluminides, and structural ceramics, such as the carbides and nitrides, make these materials attractive for gas turbine engine applications. In terms of specific fuel consumption and specific thrust, revolutionary improvements over current technology are being sought by realizing the potential of these materials through their use as matrices combined with high strength, high temperature fibers. The U.S. along with other countries throughout the world have major research and development programs underway to characterize these composites materials; improve their reliability; identify and develop new processing techniques, new matrix compositions, and new fiber compositions; and to predict their life and failure mechanisms under engine operating conditions. The status is summarized of NASA's Advanced High Temperature Engine Materials Technology Program (HITEMP) and the potential benefits are described to be gained in 21st century transport aircraft by utilizing intermetallic and ceramic matrix composite materials.

  13. Intermetallic and ceramic matrix composites for 815 to 1370 C (1500 to 2500 F) gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1989-01-01

    Light weight and potential high temperature capability of intermetallic compounds, such as the aluminides, and structural ceramics, such as the carbides and nitrides, make these materials attractive for gas turbine engine applications. In terms of specific fuel consumption and specific thrust, revolutionary improvements over current technology are being sought by realizing the potential of these materials through their use as matrices combined with high strength, high temperature fibers. The U.S. along with other countries throughout the world have major research and development programs underway to characterize these composites materials; improve their reliability; identify and develop new processing techniques, new matrix compositions, and new fiber compositions; and to predict their life and failure mechanisms under engine operating conditions. The status is summarized of NASA's Advanced High Temperature Engine Materials Technology Program (HITEMP) and the potential benefits are described to be gained in 21st century transport aircraft by utilizing intermetallic and ceramic matrix composite materials.

  14. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C.

    2016-04-01

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compounds with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications.

  15. Microwave assisted combustion synthesis of non-equilibrium intermetallic compounds.

    PubMed

    Veronesi, Paolo; Rosa, Roberto; Colombini, Elena; Leonelli, Cristina; Poli, Giorgio; Casagrande, Angelo

    2010-01-01

    A simplified model of the microwave-assisted combustion synthesis of Ni and Al metal powders to form the NiAl intermetallic on titanium and steel substrates is presented. The simulation couples an electro-thermal model with a chemical model, accounting for local heat generation due to the highly exothermic nature of the reactions between the powders. Numerical results, validated by experimental values, show that the capability of microwaves to convey energy, and not heat, can be used to alter the temperature profiles during and after the combustion synthesis, leading to unique intermetallic microstructures. This phenomenon is ascribed to the extended existence of high temperature liquid intermetallic phases, which react with the metallic substrates at the interface. Moreover, microwave heating selectivity allows to maintain the bulk of the substrate metallic materials to a much lower temperature, compared to combustion synthesis in conventionally heated furnaces, thus reducing possible unwanted transformations like phase change or oxidation. PMID:21721328

  16. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  17. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  18. Deposition of Functional Coatings Based on Intermetallic Systems TiAl on the Steel Surface by Vacuum Arc Plasma

    NASA Astrophysics Data System (ADS)

    Budilov, V.; Vardanyan, E.; Ramazanov, K.

    2015-11-01

    Laws governing the formation of intermetallic phase by sequential deposition of nano-sized layers coatings from vacuum arc plasma were studied. Mathematical modeling process of deposition by vacuum arc plasma was performed. In order to identify the structural and phase composition of coatings and to explain their physical and chemical behaviour XRD studies were carried out. Production tests of the hardened punching tools were performed.

  19. Stress distribution in a continuously cast intermetallic strip

    NASA Astrophysics Data System (ADS)

    Roy, George; Wronski, Zbignew; Sahoo, Mahi; Kiff, Dave

    Results of a study on the determination of the residual stress state in a nickel aluminide intermetallic strip by the hole drilling method (HDM) are presented. Special correlation functions that relate the relaxed surface strain and the original stresses before drilling were developed. It is shown that the HDM may be used to determine residual stresses in anisotropic materials such as intermetallic strips. The results indicate that a complex stress field develops through the thickness and across the width of the strip. However, a suitable thermomechanical treatment may be applied to redistribute the stresses before aluminide strips can be used to make engineering components.

  20. Lattice structure transformation and change in surface hardness of Ni3Nb and Ni3Ta intermetallic compounds induced by energetic ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Yoshizaki, H.; Kaneno, Y.; Semboshi, S.; Hori, F.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2016-04-01

    Ni3Nb and Ni3Ta intermetallic compounds, which show the complicated lattice structures were irradiated with 16 MeV Au5+ ions at room temperature. The X-ray diffraction measurement revealed that the lattice structure of these intermetallic compounds changed from the ordered structures to the amorphous state by the ion irradiation. The irradiation-induced amorphization caused the increase in Vickers hardness. The result was compared with our previous results for Ni3Al and Ni3V, and was discussed in terms of the intrinsic lattice structures of the samples.

  1. An MHD heat source based on intermetallic reactions

    SciTech Connect

    Sadjian, H.; Zavitsanos, P. ); Marston, C.H. )

    1991-05-06

    The main objective of this program was the development of an MHD heat source of potential use in Space - Based Multi Megawatt, MHD Power Systems. The approach is based on extension of high temperature chemical/ion release technology developed by the General Sciences, Incorporated (GSI) team and successfully applied in other Space Applications. Solid state reactions have been identified which can deliver energy densities and electrons in excess of those from high energy explosives as well as other conventional fuels. The use of intermetallic reactions can be used to generate hot hydrogen plasma from the reaction, to create a high level of seedant ionization, can be packaged as a cartridge type fuels for discrete pulses. The estimated weight for energizing a (100 MW - 1000 sec) Pulsed MHD Power System can range from 12 to 25 {times} 10{sup 3} kg depending on reaction system and strength of the magnetic field. The program consisted of two major tasks with eight subtasks designed to systematically evaluate these concepts in order to reduce fuel weight requirements. Laboratory measurements on energy release, reaction product identification and levels of ionization were conducted in the first task to screen candidate fuels. The second task addressed the development of a reaction chamber in which conductivity, temperature and pressure were measured. Instrumentation was developed to measure these parameters under high temperature pulsed conditions in addition to computer programs to reduce the raw data. Measurements were conducted at GSI laboratories for fuel weights of up to 120 grams and at the Franklin Research Center* for fuel weights up to 1 kilogram. The results indicate that fuel weight can be scaled using modular packaging. Estimates are presented for fuel weight requirements. 15 refs.

  2. 14 CFR 382.27 - May a carrier require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false May a carrier require a passenger with a disability to provide advance notice in order to obtain certain specific services in connection with a flight? 382.27 Section 382.27 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL...

  3. PAC Studies on Zr-Based Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Damonte, L. C.; Mendoza-Zélis, L. A.

    2004-11-01

    The Zr2Al, Zr3Al2 and Zr6NiAl2 intermetallic compounds were characterized by means of time differential perturbed angular correlation (TDPAC) and X-ray diffraction. Our interest in these Zr(Hf) aluminides comes from crystallization studies of Zr(Hf)-based bulk metallic glasses which have a wide supercooled liquid region.

  4. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-05-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods (i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  5. Unique intermetallic compounds prepared by shock wave synthesis

    NASA Technical Reports Server (NTRS)

    Otto, G.; Reece, O. Y.; Roy, U.

    1971-01-01

    Technique compresses fine ground metallic powder mixture beyond crystal fusion point. Absence of vapor pressure voids and elimination of incongruous effects permit application of technique to large scale fabrication of intermetallic compounds with specific characteristics, e.g., semiconduction, superconduction, or magnetic properties.

  6. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-08-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  7. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    SciTech Connect

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  8. Processing, properties, and ballistic performance of titanium-aluminum titanium metal-intermetallic laminate (MIL) composites

    NASA Astrophysics Data System (ADS)

    Harach, David John

    2000-10-01

    A systematic investigation into the processing of Ti-Al3Ti metal-intermetallic laminate (MIL) composites from elemental titanium and aluminum foils in open air by a novel one step technique, and subsequent characterization, physical, mechanical and ballistic testing was carried out. Al3Ti is the only intermetallic phase to form, and no oxides or other phases are formed. Composites with Ti volume fractions of ˜0, 14, 20, 35, and 57 percent can be processed consistently, with measured density agreeing well with calculated density. The intermetallic reaction occurs in two parts that are linear with respect to Al3Ti growth with time: oxide controlled diffusion of Al, and the order of magnitude faster chemical reaction that occurs after the oxide layer breaks down and transient liquid phases are formed. A reaction model based on the production of Al3Ti spheroids that are ejected from the Ti reaction surface has been developed, and is titled reactive foil sintering. Quasi-static and dynamic compression tests resulted in maximum yield stresses for the 20Ti composite, and end-confined quasi-static and dynamic compression tests, tension tests, and 3-point bend tests resulted in maximum yield stresses and bending loads for the 35Ti composite. Maximum yield stresses occurred in specimens tested with layers parallel to the load. Arrester orientation R-curve testing was completed for the 14Ti composite under large-scale bridging conditions, with initiation toughness values obtained for 20Ti and 35Ti which developed cracks in the intermetallic layer growing perpendicular to the load axis. Divider orientation R-curves were obtained, with the 20Ti and 35Ti curves closely approaching calculated steady-state toughness values. Ballistics testing of bonded Ti, bonded Ti-Al, 5Ti, 14Ti, 35Ti, 57Ti, and Al3Ti at projectile velocities of 500--700 m/s resulted in the 14Ti and 35Ti having the best ballistic performance based on mass efficiency. Ballistics testing of 14Ti, 20Ti, and 35Ti

  9. Full-field and anomaly initialization using a low-order climate model: a comparison and proposals for advanced formulations

    NASA Astrophysics Data System (ADS)

    Carrassi, A.; Weber, R. J. T.; Guemas, V.; Doblas-Reyes, F. J.; Asif, M.; Volpi, D.

    2014-04-01

    Initialization techniques for seasonal-to-decadal climate predictions fall into two main categories; namely full-field initialization (FFI) and anomaly initialization (AI). In the FFI case the initial model state is replaced by the best possible available estimate of the real state. By doing so the initial error is efficiently reduced but, due to the unavoidable presence of model deficiencies, once the model is let free to run a prediction, its trajectory drifts away from the observations no matter how small the initial error is. This problem is partly overcome with AI where the aim is to forecast future anomalies by assimilating observed anomalies on an estimate of the model climate. The large variety of experimental setups, models and observational networks adopted worldwide make it difficult to draw firm conclusions on the respective advantages and drawbacks of FFI and AI, or to identify distinctive lines for improvement. The lack of a unified mathematical framework adds an additional difficulty toward the design of adequate initialization strategies that fit the desired forecast horizon, observational network and model at hand. Here we compare FFI and AI using a low-order climate model of nine ordinary differential equations and use the notation and concepts of data assimilation theory to highlight their error scaling properties. This analysis suggests better performances using FFI when a good observational network is available and reveals the direct relation of its skill with the observational accuracy. The skill of AI appears, however, mostly related to the model quality and clear increases of skill can only be expected in coincidence with model upgrades. We have compared FFI and AI in experiments in which either the full system or the atmosphere and ocean were independently initialized. In the former case FFI shows better and longer-lasting improvements, with skillful predictions until month 30. In the initialization of single compartments, the best

  10. Quaternary borocarbides: Relatively high Tc intermetallic superconductors and magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Mazumdar, Chandan; Nagarajan, R.

    2015-07-01

    Discovery of superconductivity in Y-Ni-B-C (Tc ∼ 13 K) gave rise to the class of quaternary rare earth transition metal borocarbide superconductors. Before the discovery of Fe-based arsenide superconductors, this was the only class of materials containing a magnetic element, viz., Ni, yet exhibiting Tcs > 5 K. Many members of this class have high Tc (>10 K). Tc of ∼23 K in Y-Pd-B-C system equaled the record Tc known then, for intermetallics. Another feature that sets this class apart, is the occurrence of the exotic phenomenon of coexistence of superconductivity and magnetism at temperatures >5 K. Availability of large and electronically 'clean' single crystals and large Ginzburg-Landau (G-L) parameter, κ, have enabled detailed investigation of nonlocal effects of superconductivity. Intermediate value of upper critical field Hc2, has enabled detailed investigation of superconductivity in this class, over the complete H-T plane. This has revealed details of anisotropy of superconductivity (e.g., a fourfold symmetry in the square a-b plane is found) and raised questions on the symmetry of order parameter. After a brief outline of the discovery, this article gives a summary of the materials and highlights of superconducting properties of this class of materials. Interesting results from studies, using various techniques, on YNi2B2C (Tc ∼ 15 K) and LuNi2B2C (Tc ∼ 16 K) are presented, including observation of unusual square vortex lattice and its structural transformation with H and T. With conduction electrons involved in the magnetic order of this class of superconductors, the interplay of superconductivity and magnetism is intimate in these magnetic superconductors. With Tc (∼11 K) > TN (∼6 K) in ErNi2B2C, Tc (∼8 K) = TN (∼8 K) in HoNi2B2C and Tc (∼6 K) < TN (∼11 K) in DyNi2B2C, and with other parameters being favorable as mentioned earlier, this class of magnetic superconductors have become ideal materials to investigate the coexistence

  11. Multiconfigurational nature of 5f orbitals in uranium and plutonium and their intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Booth, Corwin

    2013-03-01

    The structural, electronic, and magnetic properties of U and Pu elements and intermetallics remain poorly understood despite decades of effort, and currently represent an important scientific frontier toward understanding matter. The last decade has seen great progress both due to the discovery of superconductivity in PuCoGa5 and advances in theory that finally can explain fundamental ground state properties in elemental plutonium, such as the phonon dispersion curve, the non-magnetic ground state, and the volume difference between the α and δ phases. A new feature of the recent calculations is the presence not only of intermediate valence of the Pu 5f electrons, but of multiconfigurational ground states, where the different properties of the α and δ phases are primarily governed by the different relative weights of the 5f4, 5f5, and 5f6 electronic configurations. The usual method for measuring multiconfigurational states in the lanthanides is to measure the lanthanide LIII-edge x-ray absorption near-edge structure (XANES), a method that is severely limited for the actinides because the spectroscopic features are not well enough separated. Advances in resonant x-ray emission spectroscopy (RXES) have now allowed for spectra with sufficient resolution to resolve individual resonances associated with the various actinide valence states. Utilizing a new spectrometer at the Stanford Synchrotron Radiation Lightsource (SSRL), RXES data have been collected that show, for the first time, spectroscopic signatures of each of these configurations and their relative changes in various uranium and plutonium intermetallic compounds. In combination with conventional XANES spectra on related compounds, these data indicate such states may be ubiquitous in uranium and plutonium intermetallics, providing a new framework toward understanding properties ranging from heavy fermion behavior, superconductivity, and intermediate valence to mechanical and fundamental bonding behavior in

  12. Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials

    SciTech Connect

    Nie, Anmin; Gan, Li-yong; Cheng, Yingchun; Tao, Xinyong; Yuan, Yifei; Sharifi-Asl, Soroosh; He, Kun; Asayesh-Ardakani, Hasti; Vasiraju, Venkata; Lu, Jun; Mashayek, Farzad; Klie, Robert; Vaddiraju, Sreeram; Schwingenschlögl, Udo; Shahbazian-Yassar, Reza

    2015-12-17

    The progress on sodium-ion battery technology faces many grand challenges, one of which is the considerably lower rate of sodium insertion/deinsertion in electrode materials due to the larger size of sodium (Na) ions and complicated redox reactions compared to the lithium-ion systems. Here, it is demonstrated that sodium ions can be reversibly stored in Zn-Sb intermetallic nanowires at speeds that can exceed 295 nm s-1. Remarkably, these values are one to three orders of magnitude higher than the sodiation rate of other nanowires electrochemically tested with in situ transmission electron micro­scopy. It is found that the nanowires display about 161% volume expansion after the first sodiation and then cycle with an 83% reversible volume expansion. Despite their massive expansion, the nanowires can be cycled without any cracking or facture during the ultrafast sodiation/desodiation process. Additionally, most of the phases involved in the sodiation/desodiation process possess high electrical conductivity. More specifically, the NaZnSb exhibits a layered structure, which provides channels for fast Na+ diffusion. This observation indicates that Zn-Sb intermetallic nanomaterials offer great promise as high rate and good cycling stability anodic materials for the next generation of sodium-ion batteries.

  13. Processing and operating experience of Ni{sub 3}Al-based intermetallic alloy IC-221M

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Orth, J.E.

    1997-05-01

    The cast Ni{sub 3}Al-based intermetallic alloy IC-221M is the most advanced in its commercial applications. This paper presents progress made for this alloy in the areas of: (1) composition optimization; (2) melting process development; (3) casting process; (4) mechanical properties; (5) welding process, weld repairs, and thermal aging response; and (6) applications. This paper also reviews the operating experience with several of the components. The projection for future growth in the applications of nickel aluminide is also discussed.

  14. Kinetics of accumulation of the intermetallic compound of nickel and cadmium during storage of charged cadmium electrodes in alkali

    SciTech Connect

    Reshetov, V.A.; Grachev, D.K.; Pen'kova, L.I.; L'vova, L.A.; Ryabskaya, I.A.; Logvinets, N.P.

    1983-05-20

    When charged cadmium electrodes containing nickelous hydroxide (NHO) are stored in alkali an intermetallic compound (IMC) of the composition Ni/sub 5/Cd/sub 21/ is formed. The appearance of a step corresponding to oxidation of the IMC at a potential more positive by 0.12-0.18 V than the potential of the principal discharge process leads to appreciable lowering of the electrode capacity after storage. A systematic study was carried out of the kinetics of accumulation of the IMC at various temperatures and with additions of various amounts of NHO in order to elucidate the mechanism of formation of the intermetallic compound and to examine the possibility of predicting the loss of capacity of cadmium electrodes during storage. A kinetic equation, which can be used for predicting capacity losses of charged cadmium electrodes because of formation of the intermetallic compound Ni/sub 5/Cd/sub 21/ in them during storage, is proposed. The two-step form of the kinetic curves indicates that the IMC can be formed in cadmium electrodes during storage by two parallel mechanisms, involving both Ni/sup 0/ and Ni/sup 2 +/.

  15. Cutting tool performance characteristics in the machining of a nickel aluminide intermetallic compound

    SciTech Connect

    Chatterjee, S.; Srivatsan, T.S.; Giusti, P.

    1994-05-01

    Ductile nickel aluminide, Ni{sub 3}Al, containing traces of boron, is an intermetallic compound with high strength, making it a promising structural material for elevated, ambient and cryogenic temperature applications. In order to be able to use alloys, they must be capable of being fabricated by machining. The machinability of a cast nickel aluminide, Ni{sub 3}Al, alloy containing boron was studied by conventional machining using the lathe. Three different cutting tool inserts and two types of coolants, namely kerosene oil mist and soluble oil, were chosen. The machining performance of the cutting tool insert and the influence of coolant type were established through measurements of volume of material removed and tool wear. The tool wear analysis was made using microscopic examination of the cutting tool insert in order to elucidate information of the influence of machining parameters and choice of coolant on performance capability of the insert. The overall machinability performance of these materials is rationalized.

  16. Surface integrity on grinding of gamma titanium aluminide intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Murtagian, Gregorio Roberto

    Gamma-TiAl is an ordered intermetallic compound characterized by high strength to density ratio, good oxidation resistance, and good creep properties at elevated temperatures. However, it is intrinsically brittle at room temperature. This thesis investigates the potential for the use of grinding to process TiAl into useful shapes. Grinding is far from completely understood, and many aspects of the individual mechanical interactions of the abrasive grit with the material and their effect on surface integrity are unknown. The development of new synthetic diamond superabrasives in which shape and size can be controlled raises the question of the influence of those variables on the surface integrity. The goal of this work is to better understand the fundamentals of the abrasive grit/material interaction in grinding operations. Experimental, analytical, and numerical work was done to characterize and predict the resultant deformation and surface integrity on ground lamellar gamma-TiAl. Grinding tests were carried out, by analyzing the effects of grit size and shape, workpiece speed, wheel depth of cut, and wear on the subsurface plastic deformation depth (PDD). A practical method to assess the PDD is introduced based on the measurement of the lateral material flow by 3D non-contact surface profilometry. This method combines the quantitative capabilities of the microhardness measurement with the sensitivity of Nomarski microscopy. The scope and limitations of this technique are analyzed. Mechanical properties were obtained by quasi-static and split Hopkinson bar compression tests. Residual stress plots were obtained by x-ray, and surface roughness and cracking were evaluated. The abrasive grit/material interaction was accounted by modeling the force per abrasive grit for different grinding conditions, and studying its correlation to the PDD. Numerical models of this interaction were used to analyze boundary conditions, and abrasive size effects on the PDD. An explicit 2D

  17. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  18. Theoretical energy release of thermites, intermetallics, and combustible metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1998-06-01

    Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, the authors review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  19. Fracture toughness of Cu-Sn intermetallic thin films

    NASA Astrophysics Data System (ADS)

    Balakrisnan, B.; Chum, C. C.; Li, M.; Chen, Z.; Cahyadi, T.

    2003-03-01

    Intermetallic compounds (IMCs) are formed as a result of interaction between solder and metallization to form joints in electronic packaging. These joints provide mechanical and electrical contacts between components. The knowledge of fracture strength of the IMCs will facilitate predicting the overall joint property, as it is more disposed to failure at the joint compared to the solder because of its brittle characteristics. The salient feature of this paper is the measurement of the fracture toughness and the critical energy-release rate of Cu3Sn and Cu6Sn5 intermetallic thin films, which is the result of the interaction between Sn from the solder and Cu from the metallization. To achieve the objective, a controlled buckling test was used. A buckling test in the current work refers to one that displays large transverse displacement caused by axial compressive loading on a slender beam. The stress and strain along the beam can be easily calculated by the applied displacement. Fracture-toughness values of Cu3Sn and Cu6Sn5 are 2.85 MPa √m ± 0.17 MPa √m and 2.36 MPa √m ± 0.15 MPa √m, respectively. Corresponding critical energy-release rate values are 65.5 J/m2 ± 8.0 J/m2 and 55.9 J/m2 ± 7.3 J/m2, respectively. The values obtained were much higher than the ones measured in bulk intermetallic samples but correlated well with those values obtained from conventional fracture-toughness specimens when fracture was confined within the intermetallic layers. Hence, the controlled buckling test is a promising fast and effective way to elucidate mechanical properties of thin films.

  20. Magnetism and superconductivity of uranium and intermetallic compounds

    SciTech Connect

    Cooley, J. C.; Gay, E. C.; Hanrahan, R. J.; Hults, W. L.; Lashley, J. C.; Manley, M. E.; McPheeters, C. C.; Schmiedeshoff, G. M.; Thoma, D. J.; Touton, S.; Smith, J. L.

    2001-01-01

    Heat capacity, resistivity, and phonon density of states have been measured on uranium and reported already. Many of the results are on single crystals of purity that has been unavailable before. Some intermetallic compounds have been measured that are in the class of so-called heavy-fermion materials. We present here the latest results along with a discussion of the occurrence of superconductivity or magnetism in these materials.

  1. An intermetallic forming steel under radiation for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hofer, C.; Stergar, E.; Maloy, S. A.; Wang, Y. Q.; Hosemann, P.

    2015-03-01

    In this work we investigated the formation and stability of intermetallics formed in a maraging steel PH 13-8 Mo under proton radiation up to 2 dpa utilizing nanoindentation, microcompression testing and atom probe tomography. A comprehensive discussion analyzing the findings utilizing rate theory is introduced, comparing the aging process to radiation induced diffusion. New findings of radiation induced segregation of undersize solute atoms (Si) towards the precipitates are considered.

  2. Cluster expansion of fcc Pd-V intermetallics

    SciTech Connect

    de Fontaine, D.; Wolverton, C.; Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-06-01

    A cluster expansion is used to compute fcc ground states from first principles for the Pd-V system. Intermetallic structures are not assumed but derived rigorously by minimizing the configurational energy subject to linear constraints. A large number of concentration-independent interactions are calculated by the method of direct configurational averaging. Agreement with the fcc-based portion of the experimentally-determined Pd-V phase diagram is quite satisfactory. 25 refs., 2 figs.

  3. Training Preschoolers on First-Order False Belief Understanding: Transfer on Advanced ToM Skills and Metamemory

    ERIC Educational Resources Information Center

    Lecce, Serena; Bianco, Federica; Demicheli, Patrizia; Cavallini, Elena

    2014-01-01

    This study investigated the relation between theory of mind (ToM) and metamemory knowledge using a training methodology. Sixty-two 4- to 5-year-old children were recruited and randomly assigned to one of two training conditions: A first-order false belief (ToM) and a control condition. Intervention and control groups were equivalent at pretest for…

  4. Advances in the floral structural characterization of the major subclades of Malpighiales, one of the largest orders of flowering plants

    PubMed Central

    Endress, Peter K.; Davis, Charles C.; Matthews, Merran L.

    2013-01-01

    Background and Aims Malpighiales are one of the largest angiosperm orders and have undergone radical systematic restructuring based on molecular phylogenetic studies. The clade has been recalcitrant to molecular phylogenetic reconstruction, but has become much more resolved at the suprafamilial level. It now contains so many newly identified clades that there is an urgent need for comparative studies to understand their structure, biology and evolution. This is especially true because the order contains a disproportionally large diversity of rain forest species and includes numerous agriculturally important plants. This study is a first broad systematic step in this endeavour. It focuses on a comparative structural overview of the flowers across all recently identified suprafamilial clades of Malpighiales, and points towards areas that desperately need attention. Methods The phylogenetic comparative analysis of floral structure for the order is based on our previously published studies on four suprafamilial clades of Malpighiales, including also four related rosid orders (Celastrales, Crossosomatales, Cucurbitales, Oxalidales). In addition, the results are compiled from a survey of over 3000 publications on macrosystematics, floral structure and embryology across all orders of the core eudicots. Key Results Most new suprafamilial clades within Malpighiales are well supported by floral structural features. Inner morphological structures of the gynoecium (i.e. stigmatic lobes, inner shape of the locules, placentation, presence of obturators) and ovules (i.e. structure of the nucellus, thickness of the integuments, presence of vascular bundles in the integuments, presence of an endothelium in the inner integument) appear to be especially suitable for characterizing suprafamilial clades within Malpighiales. Conclusions Although the current phylogenetic reconstruction of Malpighiales is much improved compared with earlier versions, it is incomplete, and further focused

  5. Training preschoolers on first-order false belief understanding: transfer on advanced ToM skills and metamemory.

    PubMed

    Lecce, Serena; Bianco, Federica; Demicheli, Patrizia; Cavallini, Elena

    2014-01-01

    This study investigated the relation between theory of mind (ToM) and metamemory knowledge using a training methodology. Sixty-two 4- to 5-year-old children were recruited and randomly assigned to one of two training conditions: A first-order false belief (ToM) and a control condition. Intervention and control groups were equivalent at pretest for age, parents' education, verbal ability, inhibition, and ToM. Results showed that after the intervention children in the ToM group improved in their first-order false belief understanding significantly more than children in the control condition. Crucially, the positive effect of the ToM intervention was stable over 2 months and generalized to more complex ToM tasks and metamemory. PMID:25040788

  6. Grain boundary intermetallic phases in alloy 718

    SciTech Connect

    Burke, M.G. . Science and Technology Center); Miller, M.K. )

    1990-01-01

    A nickel base superalloy which is widely used in power generation applications, Alloy 718, has been studied by analytical electron microscopy in order to elucidate the development of the complex microstructure which is produced during a typical multistage thermal treatment. The distribution of {delta}, {gamma}{double prime}, {gamma}{prime} and Laves phases was found to be strongly dependent on aging treatment. 7 refs., 5 figs.

  7. Understanding what the public know and value about geoheritage sites in order to advance Earth science literacy

    NASA Astrophysics Data System (ADS)

    Vye, E. C.; Rose, W. I.

    2013-12-01

    With its impressive geology and rich cultural history, Michigan's Keweenaw Peninsula is ideally suited for Earth science education and geotourism initiatives, such as a Geopark. Geologic events that have shaped this region can be interpreted in such a way as to engage learners, not only through an intellectual connection to Earth science subject matter, but also through an emotional connection via culture, history, and sense of place. The notion that landscape is special because it is the sum total of all the interacting earth systems, including people as part of the biosphere, can be used to drive these initiatives as they affect one personally. It is speculated that most people in the Keweenaw have a basic understanding of the local cultural history and some understanding of geology. Advanced awareness and understanding of the geological significance of the Keweenaw stands to greatly enrich our community's sense of place and desire to advance further education and geotourism initiatives. It is anticipated that these initiatives will ultimately lead to increased Earth science literacy and understanding and recognition of one's own environs. This will aid in the further development of publications, teaching media, trails info, on-site museums, etc. Although the community has embraced geo-outreach thus far, it is germane to know what people value, what they know of the geology and how they connect to place. Results from semi-structured interviews administered with the aim and focus of determining what places are special to people, why they are special and how they formed will be presented in this paper. The results from this research will be used to direct the creation and continued development of geologic interpretation of our region. It is hoped that this understanding will reveal common misconceptions that can be used to improve interpretive material that not only addresses misconceptions but also connects the immediate past with the deep geologic past of the

  8. Distribution of intermetallic particles and its effects on SCC of Zirconium alloys

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Wakashima, Y.; Imahashi, H.; Nagai, M.

    1986-04-01

    In order to investigate effects of the distribution of intermetallic particles on the SCC of zirconium alloys, SCC tests were carried out on non-irradiated Zircaloy-2 and zirconium which were heat-treated under various conditions. Relatively large particles were randomly dispersed in samples annealed at temperatures in the α-phase domain. Quenching from relatively low temperatures in the (α + β)-phase domain, such as 1148 K, produced the grain boundary segregation of very small particles. Widmanstätten structures were seldom formed by the quenching. The frequency of transgranular cracks increased with the volume fraction of the particles on grain boundaries, while that of intergranular cracks increased with the averaged spacing of grain boundary particles. Not intergranular cracks, but transgranular cracks propagated rapidly enough to cause short time brittle fracture, and SCC susceptibility increased with the volume fraction of grain boundary particles.

  9. Layered antiferromagnetism with high Neel temperature in the intermetallic compound Mn2Au

    NASA Astrophysics Data System (ADS)

    Khmelevskyi, Sergii; Mohn, Peter

    2008-10-01

    On the basis of earlier experimental studies the intermetallic compound Mn2Au has been characterized as a nonmagnetically ordered material. Here we report the results of first-principles calculations based on local spin-density approximation that describes Mn2Au to have a narrow band ground state with rigid local moments on the Mn sites. Calculations of the interatomic exchange constants based on the magnetic force theorem and a Monte Carlo modeling of the resulting Heisenberg-like Hamiltonian predict a high Neel temperature of ˜1600 K. This temperature is considerably higher than for the other known high-temperature antiferromagnetic L10-type Mn based binary alloys used in magnetic storage applications.

  10. Influence of magnetic fluctuations in the magnetocaloric effect on rare-earth intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Álvarez, P.; Gorria, P.; Blanco, J. A.

    2011-07-01

    A theoretical model including both crystal-field and exchange interactions that considers the effect of magnetic fluctuations is developed to evaluate the temperature dependence of the isothermal magnetic entropy changes in ferromagnetic rare-earth-based intermetallic compounds. The Green’s functions are derived from their equation of motion. The magnetic moment correlation functions are determined beyond the random phase approximation by incorporating a measure of magnetic spontaneous fluctuations in a way that ensures self-consistency with regard to the fluctuation-dissipation theorem. In particular, the exact magnitude of the entropy change without magnetic moment fluctuations depends on the ratio of both the crystal-field first- and the crystal-field third-order magnetic susceptibilities at the Curie temperature, TC. These theoretical predictions are compared with experimental data on cubic RM2 (R=rareearth and M=Al and Ni) compounds, where the principal crystal-field and exchange parameters are well known.

  11. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds.

    PubMed

    Keast, V J; Barnett, R L; Cortie, M B

    2014-07-30

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications. PMID:25001413

  12. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Barnett, R. L.; Cortie, M. B.

    2014-07-01

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications.

  13. Pressure tuning of competing magnetic interactions in intermetallic CeFe2

    SciTech Connect

    Wang, Jiyang; Feng, Yejun; Jaramillo, R.; van Wezel, Jasper; Canfield, Paul C.; Rosenbaum, T.F.

    2012-07-20

    We use high-pressure magnetic x-ray diffraction and numerical simulation to determine the low-temperature magnetic phase diagram of stoichiometric CeFe2. Near 1.5 GPa we find a transition from ferromagnetism to antiferromagnetism, accompanied by a rhombohedral distortion of the cubic Laves crystal lattice. By comparing pressure and chemical substitution we find that the phase transition is controlled by a shift of magnetic frustration from the Ce-Ce to the Fe-Fe sublattice. Notably the dominant Ce-Fe magnetic interaction, which sets the temperature scale for the onset of long-range order, remains satisfied throughout the phase diagram but does not determine the magnetic ground state. Our results illustrate the complexity of a system with multiple competing magnetic energy scales and lead to a general model for magnetism in cubic Laves phase intermetallic compounds.

  14. Lattice dynamics of the mixed-conducting intermetallic compound,. beta. -LiAl

    SciTech Connect

    Brun, T.O.; Robinson, J.E.; Susman, S.; Mildner, D.F.R.; Dejus, R.; Skoeld K.

    1983-04-01

    The intermetallic compound, ..beta..-LiAl, that crystallizes in the uncommon Zintl structure is a mixed-conducting electrode and has many unusual properties pointing to the existence of unusual bonding in the semi-metallic compound. In order to elucidate the nature of the bonding in LiAl, we have studied the lattice dynamics of ..beta..-LiAl by inelastic neutron scattering. Results for the phonon dispersion curves have been obtained for the principal symmetry directions. A force constant fit to the results indicates that the Al-Al force constants are unusually large. Pair potentials were constructed by conventional pseudopotential calculations. The pair interactions favoring the Zintl structure were used to compute phonon dispersion curves. Good agreement between theory and experiment can be obtained for the acoustic branches.

  15. Complex antiferromagnetic structure in the intermediate-valence intermetallic Ce2RuZn4

    NASA Astrophysics Data System (ADS)

    Hartwig, Steffen; Prokeš, Karel; Hansen, Thomas; Ritter, Clemens; Gerke, Birgit; Pöttgen, Rainer; Mydosh, J. A.; Förster, Tobias

    2015-07-01

    Neutron powder diffraction experiments were performed on the intermediate-valence Ce2RuZn4 intermetallic compound and combined with magnetic bulk measurements including high magnetic field experiments up to 58 T. Previous theoretical studies suggest that only one (here Ce1) out of two inequivalent Ce sites is magnetically active. Ce2RuZn4 orders antiferromagnetically at TN=2.3 K . The magnetic structure is characterized by an incommensurate propagation vector qm=(0.384 ,0.384 ,1/2 ). Assuming that the Ce2 site does not carry any substantial moment, Ce1 magnetic moments are confined to the (110)-type planes and transversely modulated with an amplitude of 1.77 (3 )μB.

  16. Advanced Applications of Adifor 3.0 for Efficient Calculation of First-and Second-Order CFD Sensitivity Derivatives

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III

    2004-01-01

    This final report will document the accomplishments of the work of this project. 1) The incremental-iterative (II) form of the reverse-mode (adjoint) method for computing first-order (FO) aerodynamic sensitivity derivatives (SDs) has been successfully implemented and tested in a 2D CFD code (called ANSERS) using the reverse-mode capability of ADIFOR 3.0. These preceding results compared very well with similar SDS computed via a black-box (BB) application of the reverse-mode capability of ADIFOR 3.0, and also with similar SDs calculated via the method of finite differences. 2) Second-order (SO) SDs have been implemented in the 2D ASNWERS code using the very efficient strategy that was originally proposed (but not previously tested) of Reference 3, Appendix A. Furthermore, these SO SOs have been validated for accuracy and computational efficiency. 3) Studies were conducted in Quasi-1D and 2D concerning the smoothness (or lack of smoothness) of the FO and SO SD's for flows with shock waves. The phenomenon is documented in the publications of this study (listed subsequently), however, the specific numerical mechanism which is responsible for this unsmoothness phenomenon was not discovered. 4) The FO and SO derivatives for Quasi-1D and 2D flows were applied to predict aerodynamic design uncertainties, and were also applied in robust design optimization studies.

  17. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2008-08-19

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  18. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2005-12-13

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  19. Advanced properties of extended laser-produced plasmas for efficient generation of the high-order harmonics of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2015-04-01

    The review of the studies showing the advanced properties of extended plasma plumes (5 mm) for efficient high-order harmonic generation of laser radiation compared with the short lengths of plasmas (~0.3-0.5 mm) used in previous studies is presented. The harmonic conversion efficiency quadratically increased with the growth of plasma length at the optimal conditions of plasma formation. The studies of this process using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced harmonic generation, two-color pump, and extended nanoparticle plasma, are discussed.

  20. Chemistry and shock initiation of intermetallic reactions

    SciTech Connect

    Hardt, A.P.; McHugh, S.L.; Weinland, S.L.

    1986-04-22

    Shock initiation of pyrotechnic mixtures is a relatively new discipline. In earlier studies, the estimation of the Hugoniots of porous mixtures had been described and application of experimental results to pyrotechnic mixtures was reported. In this investigation, the shocked reaction mixture was recovered in order to demonstrate that reaction took place. The mixture hafnium-platinum was chosen for its low thermal initiation threshold and highly exothermic reaction. Specimens were subjected to shock in a gas gun using aluminum fliers. The product was recovered from a steel catcher and examined by metallography. The initiation threshold in terms of flier velocity was predicted from the Herrmann P-..cap alpha.. model and the initiation enthalpy. Although reacted material was clearly identified, the initiation threshold was not bracketed. The reaction product, Pt/sub 3/Hf, was characterized by density and metallography. Although shock was shown to compact the starting mixture, the product, after melting, contained a uniform distribution of micropores.

  1. Chemistry and shock initiation of intermetallic reactions

    SciTech Connect

    Hardt, A.P.; McHugh, S.L.; Weinland, S.L.

    1986-03-27

    Shock initiation of pyrotechnic mixtures is a relatively new discipline. In earlier studies, the estimation of the Hugoniots of porous mixtures had been described (1) and application of experimental results to pyrotechnic mixtures was reported (2). In this investigation the shocked reaction mixture was recovered in order to determine whether or not reaction took place. The mixture hafnium-platinum was chosen for its low thermal initiation threshold and highly exothermic reaction. Specimens were subjected to shock in a gas gun using aluminum fliers. The product was recovered from a steel catcher and examined by metallography. The initiation threshold in terms of flier velocity was predicted from the Herrmann P-..cap alpha.. model and the initiation enthalpy. Whereas there was a distinct difference between reacted and unreacted material, it was not possible to observe a narrow initiation threshold. The reaction product was characterized by spherical micropores. 9 refs., 8 figs.

  2. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  3. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.

    PubMed

    Mohammadi, Hadi; Bahramian, Fereshteh; Wan, Wankei

    2009-11-01

    Modeling soft tissue using the finite element method is one of the most challenging areas in the field of biomechanical engineering. To date, many models have been developed to describe heart valve leaflet tissue mechanics, which are accurate to some extent. Nevertheless, there is no comprehensive method to modeling soft tissue mechanics, This is because (1) the degree of anisotropy in the heart valve leaflet changes layer by layer due to a variety of collagen fiber densities and orientations that cannot be taken into account in the model and also (2) a constitutive material model fully describing the mechanical properties of the leaflet structure is not available in the literature. In this framework, we develop a new high-order element using p-type finite element formulation to create anisotropic material properties similar to those of the heart valve leaflet tissue in only one single element. This element also takes the nonlinearity of the leaflet tissue into consideration using a bilinear material model. This new element is composed a two-dimensional finite element in the principal directions of leaflet tissue and a p-type finite element in the direction of thickness. The proposed element is easy to implement, much more efficient than standard elements available in commercial finite element packages. This study is one step towards the modeling of soft tissue mechanics using a meshless finite element approach to be applied in real-time haptic feedback of soft-tissue models in virtual reality simulation. PMID:19773193

  4. An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrates by atomic layer deposition.

    PubMed

    Subannajui, Kittitat; Güder, Firat; Danhof, Julia; Menzel, Andreas; Yang, Yang; Kirste, Lutz; Wang, Chunyu; Cimalla, Volker; Schwarz, Ulrich; Zacharias, Margit

    2012-06-15

    In this work, the controlled fabrication of highly ordered ZnO nanowire (NW) arrays on silicon substrates is reported. Si NWs fabricated by a combination of phase shift lithography and etching are used as a template and are subsequently substituted by ZnO NWs with a dry-etching technique and atomic layer deposition. This fabrication technique allows the vertical ZnO NWs to be fabricated on 4 in Si wafers. Room temperature photoluminescence and micro-photoluminescence are used to observe the optical properties of the atomic layer deposition (ALD) based ZnO NWs. The sharp UV luminescence observed from the ALD ZnO NWs is unexpected for the polycrystalline nanostructure. Surprisingly, the defect related luminescence is much decreased compared to an ALD ZnO film deposited at the same time ona plane substrate. Electrical characterization was carried out by using nanomanipulators. With the p-type Si substrate and the n-type ZnO NWs the nanodevices represent p–n NW diodes.The nanowire diodes show a very high breakthrough potential which implies that the ALD ZnO NWs can be used for future electronic applications. PMID:22609898

  5. Development of intermetallic coatings for fusion power applications

    SciTech Connect

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1994-03-01

    In the design of liquid-metal cooling systems, corrosion resistance of structural materials and magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys are potential materials for structural applications in a fusion reactor. Insulator coatings inside the tubing are required when the system is cooled by liquid metals. Various intermetallic films were produced on V, V-t, and V-20 Ti, V-5Cr-t and V-15Cr-t, and Ti, and Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid lithium of 3--5 at.% and containing dissolved metallic solutes at temperatures of 416--880{degrees}C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved nitrogen in liquid lithium or by air oxidation under controlled conditions at 600--1000{degrees}C. These reactions converted the intermetallic layers to electrically insulating oxide/nitride or oxy-nitride layers. This coating method could be applied to a commercial product. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes because the coating is formed by liquid-phase reaction. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid lithium at high temperatures.

  6. Exo-Melt{trademark} process for intermetallic powders

    SciTech Connect

    Sikka, V.K.; Deevi, S.C.

    1996-06-01

    The methods of powder production for intermetallics are reviewed. An innovative method known as Exo-Melt{trademark} is described for producing molten aluminides for gas- and water-atomization processes that require a molten metal stream. The Exo-Melt{trademark} process is based on the effective utilization of the heats of formation of aluminides from their constituent elements. The Exo-Melt{trademark} process principles are discussed along with a description of a furnace-loading sequence that uses the principles for practical applications. The benefits of the Exo-Melt{trademark} process are compared with the problems associated with the conventional melting process.

  7. Oxygen-stabilized zirconium-vanadium intermetallic compound

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1981-10-06

    An oxygen stabilized intermetallic compound having the formula Zr/sub x/OV/sub y/ where x = 0.7 to 2.0 and y = 0.18 to 0.33 is described. The compound is capable of reversibly sorbing hydrogen at temperatures from - 196/sup 0/C to 450/sup 0/C at pressures down to 10/sup -6/ Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO/sub 2/.

  8. Study of Intermetallic Nanostructures for Light-Water Reactors

    SciTech Connect

    Jensen, Niels Grobech; Asta, Mark D.; Hosemann, Peter; Maloy, Stuart

    2015-09-30

    High temperature mechanical measurements were conducted to study the effect of the dynamic precipitation process of PH 13-8 Mo maraging steel. Yield stress, ultimate tensile strength, total elongation, hardness, strain rate sensitivity and activation volume were evaluated as a function of the temperature. The dynamic changes in the mechanical properties at different temperatures were evaluated and a balance between precipitation hardening and annealed softening is discussed. A comparison between hardness and yield stress and ultimate tensile strength over a temperature range from 300 to 600 °C is made. The behavior of the strain rate sensitivity was correlated with the intermetallic precipitates formed during the experiments.

  9. A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1996-08-01

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnics. Advantages include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. This paper reviews the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. 50 refs, tables.

  10. Treatment strategies for advanced hormone receptor-positive and human epidermal growth factor 2-negative breast cancer: the role of treatment order.

    PubMed

    Perez, Edith A

    2016-01-01

    Although survival rates among patients with breast cancer have improved in recent years, those diagnosed with advanced disease with distant metastasis face a 5-year survival rate of less than 25%, making the management of these patients an area still in significant need of continued research. Selecting the optimal treatment order from among the variety of currently available therapy options presents a relevant challenge for medical oncologists. With the understanding that the majority of patients with breast cancer and those who succumb to this disease have HR-positive disease, this review will focus on treatment options and treatment order in patients with HR-positive advanced breast cancer. While endocrine therapy is considered the preferred treatment for first-line therapy in HR-positive/HER2-negative breast cancer, selection of the specific agent depends on the menopausal status of the patient. Palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, is also recommended as first-line treatment in patients with ER-positive/HER2-negative disease. In patients with endocrine therapy-resistant disease, specific strategies include sequencing of other antiestrogen receptor agents, or agents that target other molecular pathways. Future treatment strategies for patients with primary or secondary resistance to endocrine therapy for advanced disease are discussed. These strategies include first-line therapy with high-dose fulvestrant or everolimus (in combination with exemestane or letrozole or with other endocrine therapies), use of the PI3K inhibitors (e.g., buparlisib, alpelisib, pictilisib, taselisib), entinostat, CDK 4/6 inhibitors (e.g., palbociclib, ribociclib, abemaciclib), and novel selective estrogen receptor degradation agents that may enhance the targeting of acquired mutations in the ESR1 gene. PMID:26830312

  11. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1999-05-14

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  12. SURFACE MODIFICATION OF ZIRCALOY-4 SUBSTRATES WITH NICKEL ZIRCONIUM INTERMETALLICS

    SciTech Connect

    Luscher, Walter G.; Gilbert, Edgar R.; Pitman, Stan G.; Love, Edward F.

    2013-02-01

    Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel-zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290°, 330°, and 370°C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness.

  13. Formation and nitridation of vanadium-aluminum intermetallic compounds.

    PubMed

    Lewalter, H; Bock, W; Kolbesen, B O

    2002-10-01

    V(5)Al(8) and V(3)Al intermetallics have been formed by interdiffusion, by annealing of sputtered V/Al-multilayers at 700 degrees C in vacuo; sapphire (102) was used as substrate. The V/Al intermetallics were nitridated in NH(3) at 900 degrees C for 1 min by RTP (rapid thermal processing). The samples were investigated with XRD (X-ray diffraction), SNMS (secondary neutral mass spectrometry), and AFM (atomic force microscopy). A 5-10 nm thick AlN film (001 textured) was formed by nitridation of V(5)Al(8) (110 textured) and 2-3% nitrogen was incorporated in the V(5)Al(8) bulk. Nitridation of V(3)Al resulted in the formation of VN and AlN. Direct nitridation of V/Al-multilayers showed that near the surface nitridation is faster than intermixing of the V and Al layers. The capability of VN as diffusion barrier for Al could also be shown. PMID:12397502

  14. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  15. Estimation of the effective parameter of spinorbital interaction of electrons in intermetallic Er-In system compounds from the kinetic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kuvandikov, O. K.; Hamraev, N. S.; Razhabov, R. M.; Éshkulov, A. A.

    2012-05-01

    Normal, R 0 and anomalous, R S components of the Hall coefficient are determined from the results of experimental investigations of temperature dependences of the Hall coefficient, magnetic susceptibility, and specific electrical resistance for intermetallic Er2In, ErIn, and Er3In5 compounds. Effective parameters of spinorbital interaction λSO of intermetallic compounds are calculated from anomalous components RS of the Hall coefficient and specific electrical resistance. The results calculated for the band parameters and effective parameters of spin-orbital interaction λSO for Er-In system intermetallides coincide by orders of magnitude with the results obtained in [4,7,8] from the optical spectra of pure rare-earth metals.

  16. Discovery and characterization of magnetism in sigma-phase intermetallic Fe-Re compounds

    SciTech Connect

    Cieślak, J. Dubiel, S. M.; Tobola, J.; Reissner, M.

    2014-11-14

    Systematic experimental studies (vibrating sample magnetometry) supported by theoretical calculations (electronic structure by spin self-consistent Korringa-Kohn-Rostoker Green's function method) were performed on a series of intermetallic sigma-phase Fe{sub 100−x}Re{sub x} (x = 43–53) compounds. All investigated samples exhibit magnetism with an ordering temperature ranging between ∼65 K for x = 43 and ∼23 K for x = 53. The magnetism was revealed to be itinerant and identified as a spin-glass (SG) possibly having a re-entrant character. The SG was found to be heterogeneous, viz., two regimes could be distinguished as far as irreversibility in temperature dependence of magnetization is concerned: (1) of a weak irreversibility and (2) of a strong one. According to the theoretical calculations, the main contribution to the magnetism comes from Fe atoms occupying all five sub lattices, while Re atoms have rather small magnetic moments. However, the calculated average magnetic moments highly (ferromagnetic ordering model) or moderately (antiparallel ordering model) overestimate the experimental data.

  17. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    SciTech Connect

    Vijay Vasudevan

    2008-03-31

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which

  18. Role of Ag in the formation of interfacial intermetallic phases in Sn-Zn soldering

    NASA Astrophysics Data System (ADS)

    Song, Jenn-Ming; Liu, Pei-Chi; Shih, Chia-Ling; Lin, Kwang-Lung

    2005-09-01

    This study explored the effect of Ag as the substrate or alloying element of solders on the interfacial reaction in Sn-Zn soldering. Results show that instead of Ag-Sn compounds, ζ-AgZn and γ-Ag5Zn8 form at the Sn-Zn/Ag interface. The addition of Ag in Sn-Zn solders leads to the precipitation of ɛ-AgZn3 from the liquid solder on preformed interfacial intermetallics. The morphology of this additional AgZn3 is closely related to the solidification process of Ag-Zn intermetallics and the under intermetallic layer.

  19. Formation of intermetallics at the interface of explosively welded Ni-Al multilayered composites during annealing

    NASA Astrophysics Data System (ADS)

    Ogneva, T. S.; Lazurenko, D. V.; Bataev, I. A.; Mali, V. I.; Esikov, M. A.; Bataev, A. A.

    2016-04-01

    The Ni-Al multilayer composite was fabricated using explosive welding. The zones of mixing of Ni and Al are observed at the composite interfaces after the welding. The composition of these zones is inhomogeneous. Continuous homogeneous intermetallic layers are formed at the interface after heat treatment at 620 °C during 5 h These intermetallic layers consist of NiAl3 and Ni2Al3 phases. The presence of mixed zones significantly accelerates the growth rate of intermetallic phases at the initial stages of heating.

  20. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Technical Reports Server (NTRS)

    Doychak, J.

    1992-01-01

    The requirements for high specific strength refractory materials of prospective military, civil, and space propulsion systems are presently addressed in the context of emerging capabilities in metal- and intermetallic-matrix composites. The candidate systems encompass composite matrix compositions of superalloy, Nb-Zr refractory alloy, Cu-base, and Ti-base alloy types, as well as such intermetallics as TiAl, Ti3Al, NiAl, and MoSi2. The brittleness of intermetallic matrices remains a major consideration, as does their general difficulty of fabrication.

  1. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  2. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect

    Han, M.K.

    2006-05-06

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline

  3. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect

    Mi-Kyung Han

    2006-05-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline

  4. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, J.; Smialek, J. L.; Barrett, C. A.

    1989-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al203 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  5. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  6. Modeling of Intermetallic Compounds Growth Between Dissimilar Metals

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Yin; Prangnell, Philip; Robson, Joseph

    2015-09-01

    A model has been developed to predict growth kinetics of the intermetallic phases (IMCs) formed in a reactive diffusion couple between two metals for the case where multiple IMC phases are observed. The model explicitly accounts for the effect of grain boundary diffusion through the IMC layer, and can thus be used to explore the effect of IMC grain size on the thickening of the reaction layer. The model has been applied to the industrially important case of aluminum to magnesium alloy diffusion couples in which several different IMC phases are possible. It is demonstrated that there is a transition from grain boundary-dominated diffusion to lattice-dominated diffusion at a critical grain size, which is different for each IMC phase. The varying contribution of grain boundary diffusion to the overall thickening kinetics with changing grain size helps explain the large scatter in thickening kinetics reported for diffusion couples produced under different conditions.

  7. Development of New Cryocooler Regenerator Materials-Ductile Intermetallic Compounds

    SciTech Connect

    K.A. Gschneidner; A.O. Pecharsky; V.K. Pecharsky

    2004-09-30

    The volumetric heat capacities of a number of binary and ternary Er- and Tm-based intermetallic compounds, which exhibited substantial ductilities, were measured from {approx}3 to {approx}350 K. They have the RM stoichiometry (where R = Er or Tm, and M is a main group or transition metal) and crystallize in the CsCl-type structure. The heat capacities of the Tm-based compounds are in general larger than the corresponding Er-based materials. Many of them have heat capacities which are significantly larger than those of the low temperature (<15 K) prototype cryocooler regenerator materials HoCu{sub 2}, Er{sub 3}Ni and ErNi. Utilization of the new materials as regenerators in the various cryocoolers should improve the performance of these refrigeration units for cooling below 15 K.

  8. Compton Profile Study of Intermetallic Ti{sub 3}Al

    SciTech Connect

    Vyas, V.; Sharma, G.; Mishra, M. C.; Sharma, B. K.; Joshi, K. B.

    2011-10-20

    The Compton scattering measurement on intermetallic alloy Ti{sub 3}Al is reported in this work. The measurement is made using 59.54 keV gamma-rays from Am{sup 241} source. Theoretical calculation of Compton profile is also performed employing CRYSTAL code within the framework of density functional theory to compare with the measurement. The theoretical profile of the alloy is also synthesized following the superposition model taking the published Compton profiles of elemental solids from the APW method. The experimental study of charge transfer in the alloys has also been done by performing the experimental Compton profile measurements on Ti and Al following the superposition model and charge transfer from Al to Ti is clearly seen on the alloy formation.

  9. Absence of the hyperfine magnetic field at the Ru site in ferromagnetic rare-earth intermetallics

    SciTech Connect

    Coffey, D.; DeMarco, M.; Ho, P. C.; Maple, M. B.; Sayles, T.; Lynn, J. W.; Huang, Q.; Toorongian, S.; Haka, M.

    2010-05-01

    The Moessbauer effect (ME) is frequently used to investigate magnetically ordered systems. One usually assumes that the magnetic order induces a hyperfine magnetic field, B{sub hyperfine}, at the ME active site. This is the case in the ruthenates, where the temperature dependence of B{sub hyperfine} at {sup 99}Ru sites tracks the temperature dependence of the ferromagnetic or antiferromagnetic order. However this does not happen in the rare-earth intermetallics, GdRu{sub 2} and HoRu{sub 2}. Specific heat, magnetization, magnetic susceptibility, Moessbauer effect, and neutron diffraction have been used to study the nature of the magnetic order in these materials. Both materials are found to order ferromagnetically at 83.1 and 15.3 K, respectively. Despite the ferromagnetic order of the rare-earth moments in both systems, there is no evidence of a correspondingly large B{sub hyperfine} in the Moessbauer spectrum at the Ru site. Instead the measured spectra consist of a narrow peak at all temperatures which points to the absence of magnetic order. To understand the surprising absence of a transferred hyperfine magnetic field, we carried out ab initio calculations which show that spin polarization is present only on the rare-earth site. The electron spin at the Ru sites is effectively unpolarized and, as a result, B{sub hyperfine} is very small at those sites. This occurs because the 4d Ru electrons form broad conduction bands rather than localized moments. These 4d conduction bands are polarized in the region of the Fermi energy and mediate the interaction between the localized rare-earth moments.

  10. Magnetic age hardening of cold-deformed bulk equiatomic Fe-Pd intermetallics during isothermal annealing

    NASA Astrophysics Data System (ADS)

    Deshpande, A. R.; Wiezorek, J. M. K.

    2004-03-01

    The interplay between the ordering reaction with recovery and recrystallization of the as-deformed state leads to combined reactions (CRs) during annealing of cold-deformed disordered Fe-Pd intermetallics at temperatures below the critical ordering temperature. CRs can be exploited to control the scale and morphology of the Fe-Pd alloy microstructures in order to optimize alloy properties. Here, the magnetic age hardening behavior and microstructural evolution of cold-deformed (cold rolled to 97% reduction in thickness) binary equiatomic Fe-Pd has been studied for isothermal annealing at temperatures of 400°C, 500°C, and 600°C. The evolution of the microstructure during the annealing treatments has been characterized by a combination of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The magnetic age hardening behavior, the evolution of the coercivity as a function of annealing time, has been determined using a vibrating sample magnetometer (VSM). The microstructures of the transforming material have been characterized quantitatively using computer assisted image analysis methods. The CR transformed microstructures are morphologically equiaxed with average grain sizes in the sub-micron range and show coercivity up to five-fold larger than for conventionally processed equiatomic bulk Fe-Pd. During annealing the coercivity increases up to a maximum peak value and has been correlated with the increasing fraction of ordered material. The maximum coercivity obtains, as the ordering phase transformation is complete. With respect to conventionally processed material the ordering transformation in the cold-deformed material exhibits accelerated kinetics and is facilitated by a CR, which involves heterogeneous nucleation and growth processes akin to a 'massive ordering' reaction. Further annealing leads to decreasing coercivity, which has been attributed to the onset of grain growth in the population of CR-transformed grains. The characteristic magnetic

  11. Absence of the hyperfine magnetic field at the Ru site in ferromagnetic rare-earth intermetallics

    NASA Astrophysics Data System (ADS)

    Coffey, D.; Demarco, M.; Ho, P. C.; Maple, M. B.; Sayles, T.; Lynn, J. W.; Huang, Q.; Toorongian, S.; Haka, M.

    2010-05-01

    The Mössbauer effect (ME) is frequently used to investigate magnetically ordered systems. One usually assumes that the magnetic order induces a hyperfine magnetic field, Bhyperfine , at the ME active site. This is the case in the ruthenates, where the temperature dependence of Bhyperfine at R99u sites tracks the temperature dependence of the ferromagnetic or antiferromagnetic order. However this does not happen in the rare-earth intermetallics, GdRu2 and HoRu2 . Specific heat, magnetization, magnetic susceptibility, Mössbauer effect, and neutron diffraction have been used to study the nature of the magnetic order in these materials. Both materials are found to order ferromagnetically at 83.1 and 15.3 K, respectively. Despite the ferromagnetic order of the rare-earth moments in both systems, there is no evidence of a correspondingly large Bhyperfine in the Mössbauer spectrum at the Ru site. Instead the measured spectra consist of a narrow peak at all temperatures which points to the absence of magnetic order. To understand the surprising absence of a transferred hyperfine magnetic field, we carried out ab initio calculations which show that spin polarization is present only on the rare-earth site. The electron spin at the Ru sites is effectively unpolarized and, as a result, Bhyperfine is very small at those sites. This occurs because the 4d Ru electrons form broad conduction bands rather than localized moments. These 4d conduction bands are polarized in the region of the Fermi energy and mediate the interaction between the localized rare-earth moments.

  12. Thermal stability of sputtered intermetallic Al-Au coatings

    SciTech Connect

    Moser, M.; Mayrhofer, P. H.; Ross, I. M.; Rainforth, W. M.

    2007-09-15

    Recently, the authors have shown that single-phase Al{sub 2}Au coatings, prepared by unbalanced magnetron sputtering, exhibit a dense columnar structure and highest hardness and indentation moduli of 8 and 144 GPa, respectively, within the Al-Au films investigated. This study focuses on the thermal stability of Al{sub 2}Au with respect to films containing more Al and Au having Al/Au at. % ratios of 4.32 and 1.85, respectively. Single-phase Al{sub 2}Au has the highest onset temperature for recovery of 475 deg. C and recrystallization of 575 deg. C. Upon annealing Au- and Al-rich films, their stresses deviate from the linear thermoelastic behavior at temperatures (T) above 200 and 450 deg. C, respectively, due to pores and metallic phases present. Metastable Au within the as-deposited Au-rich film is consumed by the growing intermetallic AlAu and AlAu{sub 2} phases at T{>=}450 deg. C, which themselves melt at {approx}625 deg. C. Due to nanometer scale segregations of Al, encapsulated by Al{sub 2}Au in Al-rich coatings, their melting point is reduced by {approx}85 deg. C to 575 deg. C. Dynamic thermal analyses up to 1100 deg. C in synthetic air reveal the single-phase Al{sub 2}Au films with a superior thermal stability and only negligible oxidation. At 750 deg. C, the mass gain is {approx}1.5 mg/cm{sup 2} after 50 h isothermal exposure. Based on the investigations, the authors can conclude that single-phase intermetallic Al{sub 2}Au films have a high potential for oxidation protection of sensitive materials.

  13. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  14. Radiation-induced crystalline-to-amorphous transition in intermetallic compounds of the Cu-Ti alloy system

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.; Devanathan, R. ); Sabochick, M.J. . Computer Applications Div.)

    1992-02-01

    Recent progress in molecular-dynamics studies of radiation-induced crystalline-to-amorphous transition in the ordered intermetallic compounds of the Cu-Ti system is discussed. The effect of irradiation was simulated by the generation of Frenkel pairs,which resulted in both the formation of stable point defects and chemical disorder upon defect recombination. The thermodynamic, structural and mechanical responses of the compounds during irradiation were determined by monitoring changes in the system potential energy, volume expansion, pair correlation function, diffraction patterns, and elastic constants. It was found that the intermetallics Cu{sub 4}Ti{sub 3}, CuTi, and CuTi{sub 2} could be rendered amorphous by the creation of Frenkel pairs, but Cu{sub 4}Ti could not, consistent with experimental observations during electron irradiation. However, the simulations showed that Cu{sub 4}Ti did become amorphous when clusters of Frenkel pairs were introduced, indicating that this compound may be susceptible to amorphization by heavy-ion bombardment. A generalization of the Lindemann criterion was used to develop a thermodynamic description of solid-state amorphization as a disorder- induced melting process.

  15. Layered antiferromagnetism with high Neel temperature in the intermetallic compound Mn2Au

    NASA Astrophysics Data System (ADS)

    Khmelevskyi, Sergii; Mohn, Peter

    2009-03-01

    On the basis of earlier experimental studies the intermetallic compound Mn2Au has been characterized as a non-magnetically ordered material. Here we report the results of first-principles calculations based on Local Spin-Density Approximation which describe Mn2Au to have a narrow band antiferromagnetic ground state with rigid local moments on the Mn sites. Calculations of the inter-atomic exchange constants based on the magnetic force theorem and a Monte-Carlo modeling of the resulting Heisenberg-like Hamiltonian predict a very high Neel-temperature of ˜1580K. This temperature is considerably higher than for the other known high-temperature antiferromagnetic L10-type Mn based binary alloys, which are widely used in magnetic storage applications. The source of the difficulties in determining magnetic order from the earlier experiments is discussed. The observed meta-magnetic like behavior and a susceptibility anomaly at low temperatures are linked to the frustrated magnetism on Mn anti-site impurities. We believe that the high temperature antiferromagnetism of Mn2Au may have quite an impact in technology. In particular, it can be considered as a candidate for the application as a ``pinning'' layer in GMR devices.

  16. Synthesis and design of intermetallic materials - molybdenum disilicide

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1995-05-01

    The objective of this program is to develop structural silicide-based composite materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature composite materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with the advanced materials company Advanced Refractory Technologies Inc. and interactions targeted at developing industrial gas burner and metal and glass melting/processing applications. Current experimental emphasis is on the development and characterization of SiC reinforced-MoSi{sub 2} matrix composites, plasma sprayed MoSi{sub 2}-based materials and microlaminate composites, and MoSi{sub 2} reinforced-Si{sub 3}N{sub 4} matrix composites. We are developing processing methods for MoSi{sub 2{minus}}based materials and microlaminate composites, and MoSi{sub 2} reinforced-Si{sub 3}N{sub 4} matrix composites. We are developing processing methods for MoSi{sub 2{minus}} based materials, such as plasma spraying/spray forming and electrophoretic deposition. We are also pursuing the fabrication of prototype industrial gas burner and injection tube components of these materials, as well as prototype components for glass processing.

  17. A diffraction based study of the deformation mechanisms in anomalously ductile B2 intermetallics

    NASA Astrophysics Data System (ADS)

    Mulay, Rupalee Prashant

    For many decades, the brittle nature of most intermetallic compounds (e.g. NiAl) has been the limiting factor in their practical application. Many B2 (CsCl prototypical structure) intermetallics are known to exhibit slip on the <001>{110} slip mode, which provides only 3 independent slip systems and, hence, is unable to satisfy the von Mises (a.k.a. Taylor) criterion for polycrystalline ductility. As a result, inherent polycrystalline ductility is unexpected. Recent discovery of a number of ductile B2 intermetallics has raised questions about possible violation of the von Mises criterion by these alloys. These ductile intermetallic compounds are MR (metal (M) combined with a rare earth metal or group IV refractory metal (R)) alloys and are stoichiometric, ordered compounds. Single crystal slip trace analyses have only identified the presence of <100>{011} or <100>{010} slip systems. More than 100 other B2 MR compounds are known to exist and many of them have already been shown to be ductile (e.g., CuY, AgY, CuDy, CoZr, CoTi, etc.). Furthermore, these alloys exhibit a large Bauschinger effect. The present work uses several diffraction based techniques including electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and in-situ neutron diffraction; in conjunction with scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing, and crystal plasticity modeling, to elucidate the reason for ductility in select B2 alloys, explore the spread of this ductility over the B2 family, and understand the Bauschinger effect in these alloys. Several possible explanations (e.g., slip of <111> dislocations, strong texture, phase transformations and twinning) for the anomalous ductility were explored. An X-ray diffraction based analysis ruled out texture, phase purity and departure from order as explanations for the anomalous ductility in MR alloys. In-situ neutron diffraction and post deformation SEM, EBSD, and TEM were unable to

  18. BFS Method for Alloys Optimized and Verified for the Study of Ordered Intermetallic Material

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The aerospace industry has a need for new metallic alloys that are lightweight and have high strength at elevated temperatures. The BFS (Bozzolo, Ferrante, and Smith) method is a new, computationally efficient and physically sound quantum semi-perturbative approach for describing metals and their defects. Based on a simple interpretation of the alloy formation process that identifies strain and chemical contributions to the energy of the alloy, the method provides an atom-by-atom description of an alloy. Its implementation requires little more than algebra and the solution of transcendental equations. At the NASA Lewis Research Center, we have demonstrated that BFS can investigate the properties of a large number of alloys with a minimum computational effort on low-level computers. This screening allows the selection of the best alloy candidates for a particular application and, therefore, promises large cost savings over current approaches.

  19. Effects of Al Content and Addition of Third Element on Fabrication of Ti-Al Intermetallic Coatings by Heat Treatment of Warm-Sprayed Precursors

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, J.; Kuroda, S.; Minagawa, K.; Murakami, H.; Araki, H.; Kurzydłowski, K. J.

    2015-06-01

    Four powder mixtures of titanium and aluminum with 50:50, 40:60, 30:70, and 20:80 atomic ratios were used as feedstock for Warm Spray process to produce composite coatings. A two-stage heat treatment at 600 and 1000 °C was applied to the deposits in order to obtain titanium aluminide intermetallic phases. The microstructure, chemical, and phase composition of the as-deposited and heat-treated coatings were investigated using SEM, EDS, and XRD. It was found that the Al content affects on the thickness expansion of the heat-treated Ti-Al coatings significantly and also has a major influence on the porosity development, which is caused by the Kirkendall effect. The effects of adding a third element Si and heat treatment with pressure to produce denser Ti-Al intermetallic coating were also examined. The investigated hot-pressed coatings with addition of Si exhibited much denser microstructure and contained Ti-Al intermetallic phases with titanium silicide precipitates.

  20. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    DOE PAGESBeta

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, alongmore » with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.« less

  1. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    SciTech Connect

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  2. Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    NASA Astrophysics Data System (ADS)

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-01

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  3. Zintl and intermetallic phases grown from calcium/lithium flux

    NASA Astrophysics Data System (ADS)

    Blankenship, Trevor

    Metal flux synthes is a useful alternative method to high temperature solid state synthesis; it allows easy diffusion of reactants at lower temperatures, and presents favorable conditions for crystal growth. A mixed flux of calcium and lithium in a 1:1 ratio was explored in this work; this mixture melts at 300°C and is an excellent solvent for main group elements and CaH 2. Reactions of p-block elements in a 1:1 Ca/Li flux have produced several new intermetallic and Zintl phases. Electronegative elements from groups 14 and 15 are reduced to anions in this flux, yielding charge-balanced products. More electropositive metals from group 13 are not fully reduced; the resulting products are complex intermetallics. The reactions of tin or lead and carbon in Ca/Li flux produced the analogous phases Ca11Tt3C8 (Tt = Sn, Pb) in the monoclinic C21/c space group (a = 13.2117(8) A, b =10.7029(7) A, c = 14.2493(9) A, beta = 105.650(1)° for the Sn analog). These compounds are carbide Zintl phases that includes the rare combination of C3 4- and C22- units as well as Sn4- or Pb4- anions. Ca/Li flux reactions of CaH2 and arsenic have produced the Zintl phases LiCa3As 2H in orthorhombic Pnma (a = 11.4064(7), b = 4.2702(3), c = 11.8762(8) A), and Ca 13As6C0.46N1.155H6.045in tetragonal P4/mbm (a = 15.7493(15), c = 9.1062(9) A). The complex stoichiometry of the latter phase was caused by incorporation of light element contaminants and was studied by neutron diffraction, showing mixing of anionic sites to achieve charge balance. Ca/Li flux reactions with group 13 metals have resulted in several new intermetallic phases. Reactions of indium and CaH2 in the Ca/Li flux (with or without boron) formed Ca53In13B4-x H23+x(2.4 < x < 4.0) in cubic space group Im-3 (a = 16.3608(6) A) which features metallic indium atoms and ionic hydride sites. The electronic properties of this "subhydride" were confirmed by 1H and 115In NMR spectroscopy. Attempts to replace boron with carbon yielded Ca12InC13-x

  4. Deformation-Induced Amorphization of Copper-Titanium Intermetallics

    NASA Astrophysics Data System (ADS)

    Askenazy, Philip Douglas

    Two methods of inducing amorphization in Cu-Ti intermetallic compounds by mechanical means have been investigated. Ingots of compositions Cu_{35}Ti _{65} and Cu_ {33.3}Ti_{66.7} were rapidly quenched into ribbons. The microstructure consisted largely of microcrystals in an amorphous matrix, which were either quenched in or grown by annealing. The ribbons were cold-rolled, which reduced their effective thickness by a factor of about 8. The status of the intermetallic compound CuTi_2 was monitored by x-ray diffraction and transmission electron microscopy (TEM). The crystals were found to amorphize as rolling progressed. This behavior was not reproduced in polycrystalline samples that had no amorphous matrix present initially. The presence of the amorphous phase is thus necessary for amorphization of the crystal: it eliminates the need to nucleate the new glass, and it prevents the ribbon from disintegrating at high deformation stages. It may also change the deformation mechanism that occurs in the crystals, retarding the onset of amorphization. Diffuse scattering in close-packed directions is similar to that seen in electron irradiation experiments. It is postulated that the chemical disorder present in antiphase boundaries caused by deformation raises the free energy of the crystal higher than that of the amorphous phase. Ingots of the same compound were worn against each other in a custom-built wear apparatus. The design eliminates iron contamination of the wear sample and requires relatively small quantities of material. Alteration of the surface structure was monitored by plane-view and cross -sectional TEM. Larger subsurface crystals exhibit diffuse scattering, similar to that found in the rolled samples. A wide range of grain sizes was observed, due to the inhomogeneous nature of the wear process. An unusual phase was observed at the surface, consisting of a nanometer-scale mixture of aligned nanocrystalline regions and disordered areas. Some amorphous phase is

  5. Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders

    NASA Astrophysics Data System (ADS)

    Yen, Yee-Wen; Chou, Weng-Ting; Tseng, Yu; Lee, Chiapyng; Hsu, Chun-Lei

    2008-01-01

    This study investigates the dissolution behavior of the metallic substrates Cu and Ag and the intermetallic compound (IMC)-Ag3Sn in molten Sn, Sn-3.0Ag-0.5Cu, Sn-58Bi and Sn-9Zn (in wt.%) at 300, 270 and 240°C. The dissolution rates of both Cu and Ag in molten solder follow the order Sn > Sn-3.0Ag-0.5Cu >Sn-58Bi > Sn-9Zn. Planar Cu3Sn and scalloped Cu6Sn5 phases in Cu/solders and the scalloped Ag3Sn phase in Ag/solders are observed at the metallic substrate/solder interface. The dissolution mechanism is controlled by grain boundary diffusion. The planar Cu5Zn8 layer formed in the Sn-9Zn/Cu systems. AgZn3, Ag5Zn8 and AgZn phases are found in the Sn-9Zn/Ag system and the dissolution mechanism is controlled by lattice diffusion. Massive Ag3Sn phases dissolved into the solders and formed during solidification processes in the Ag3Sn/Sn or Sn-3.0Ag-0.5Cu systems. AgZn3 and Ag5Zn8 phases are formed at the Sn-9Zn/Ag3Sn interface. Zn atoms diffuse through Ag-Zn IMCs to form (Ag, Zn)Sn4 and Sn-rich regions between Ag5Zn8 and Ag3Sn.

  6. Structural properties, phase stability, elastic properties and electronic structures of Cu-Ti intermetallics

    NASA Astrophysics Data System (ADS)

    Chen, Shuai; Duan, Yong-Hua; Huang, Bo; Hu, Wen-Cheng

    2015-11-01

    The structural properties, phase stabilities, anisotropic elastic properties and electronic structures of Cu-Ti intermetallics have been systematically investigated using first principles based on the density functional theory. The calculated equilibrium structural parameters agree well with available experimental data. The ground-state convex hull of formation enthalpies as a function of Cu content is slightly symmetrical at CuTi with a minimal formation enthalpy (-13.861 kJ/mol of atoms), which indicates that CuTi is the most stable phase. The mechanical properties, including elastic constants, polycrystalline moduli and anisotropic indexes, were evaluated. G/B is more pertinent to hardness than to the shear modulus G due to the high power indexes of 1.137 for G/B. The mechanical anisotropy was also characterized by describing the three-dimensional (3D) surface constructions. The order of elastic anisotropy is Cu4Ti3 > Cu3Ti2 > α-Cu4Ti > Cu2Ti > CuTi > β-Cu4Ti > CuTi2. Finally, the electronic structures were discussed and Cu2Ti is a semiconductor.

  7. Launch Load Resistant Spacecraft Mechanism Bearings Made From NiTi Superelastic Intermetallic Materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.

    2014-01-01

    Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50mm bore ball-bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (3.1GPa) between that of 440C (2.4GPa) and REX20 (3.8GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5kg mass reaction wheel, was modeled with respect to launch load capability when supported on 440C, 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings.

  8. A new approach to study vacancy defects in high-temperature intermetallic compounds

    SciTech Connect

    Collins, G.S.; Sinha, P.

    1995-08-01

    Perturbed angular correlations of gamma rays (PAC) is being applied to study defects in ordered intermetallic alloys. Vacancies on both Pd and In sublattices in the B2 system PdIn were detected after quenching through quadrupole interactions induced at nearby {sup 111}In probe atoms. Fractions of probe atoms having each type of neighboring defect were observed to increase monotonically with quenching temperature over the range 825--1,500 K. For compositions close to 50.15 at.% Pd, nearly equal site fractions were observed for Pd and In vacancies, indicating that the Schottky vacancy-pair defect is the thermal defect at high temperature. The formation enthalpy of the Schottky defect was determined to be 1.3(2) eV through analysis of quenching data from in the range 825--1,200 K. Above 1200 K, however, the vacancy concentration was observed to saturate at a value of 1.4(2) atomic percent, perhaps due to breakdown of the law of mass action for high defect concentrations.

  9. Atomic disorder induced by mechanical milling in the intermetallic compound CoAl

    NASA Astrophysics Data System (ADS)

    Di, L. M.; Bakker, H.; de Boer, F. R.

    1992-10-01

    The stoichiometric intermetallic compound CoAl with the CsCl-structure was subjected to ball milling. Structural changes during ball milling were studied by measurements of the magnetization and the lattice parameter. The behaviour of Coal upon milling turns out to be quite similar to that of CoGa. The increase of the magnetization and the decrease of the lattice parameter with the milling time show that, similar to CoGa, triple-defect disorder is generated by ball milling. By comparing the measured magnetization to the magnetization of Co xAl 100- x compounds with excess Co, the concentration of defects is derived for milled samples. In order to interpret our results, the existing experimental data of lattice parameters, X-ray densities calculated from the lattice parameters and macroscopic densities for Co xAl 100- x compounds were analyzed according to Edelin's equations. The defect volumes for vacancies and anti-site atoms obtained by fitting these experimental data have reasonable values. By means of the defect concentrations obtained from our magnetization measurements and the defect volumes by fitting the experimental data, the change of the lattice parameter was calculated by means of Edelin's equation. The agreement between the calculated lattice parameter and the measured lattice parameter is quite satisfactory.

  10. Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound

    PubMed Central

    Ghosh, Krishanu; Mazumdar, Chandan; Ranganathan, R.; Mukherjee, S.

    2015-01-01

    The rare coexistence of a Griffiths phase (GP) and a geometrically frustrated antiferromagnetism in the non-stoichiometric intermetallic compound GdFe0.17Sn2 (the paramagnetic Weiss temperature θp ~ −59 K) is reported in this work. The compound forms in the Cmcm space group with large structural anisotropy (b/c ~ 4). Interestingly, all the atoms in the unit cell possess the same point group symmetry (Wycoff position 4c), which is rather rare. The frustration parameter, f = |θp|/TN has been established as 3.6, with the Néel temperature TN and Griffiths temperature TG being 16.5 and 32 K, respectively. The TG has been determined from the heat capacity measurement and also from the magnetocaloric effect (MCE). It is also shown that substantial difference in GP region may exist between zero field and field cooled measurements - a fact hitherto not emphasized so far. PMID:26515256

  11. Thermal stress effects in intermetallic matrix composites. Final report

    SciTech Connect

    Wright, P.K.; Sensmeier, M.D.; Kupperman, D.S.; Wadley, H.N.G.

    1993-09-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  12. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du Yong

    2012-12-15

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  13. Excitonic correlations in the intermetallic Fe2VAl

    NASA Astrophysics Data System (ADS)

    Weht, Ruben; Pickett, W. E.

    1998-09-01

    The intermetallic compound Fe2VAl looks nonmetallic in transport and strongly metallic in thermodynamic and photoemission data. It has in its band structure a highly differentiated set of valence and conduction bands leading to a semimetallic system with a very low density of carriers. The pseudogap itself is sensitive to the presence of Al states, but the resulting carriers have only minor Al character. The effects of generalized gradient corrections to the local density band structure are shown to be important, reducing the carrier density by a factor of 3. Spin-orbit coupling results in a redistribution of the holes among pockets at the Brillouin zone center. Doping of this nonmagnetic compound by 0.5 electrons per cell in a virtual crystal fashion results in a moment of 0.5μB and destroys the pseudogap. We assess the tendencies toward the formation of an excitonic condensate and toward an excitonic Wigner crystal and find both to be unlikely. We propose a model in which the observed properties result from excitonic correlations arising from two interpenetrating lattices of distinctive electrons (eg on V) and holes (t2g on Fe) of low density (one carrier of each sign per 350 formula units).

  14. Magnetic Anisotropy and Crystalline Electric Field in Quaternary Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Lee, W. C.

    All isostructural compounds RNi2B2C (R =Er, Ho, Dy) show some magnetic transitions in magnetization isotherms at certain applied magnetic fields and temperatures above and below Neel and superconducting temperatures (TN, TC) where TN/TC varies from 0.57 to 1.66 for ErNi2B2C and DyNi2B2C. By using theoretical group analysis of D4h (I4/mmm) to the energy level scheme of crystalline electric field of magnetization isotherms anisotropy at various temperatures, we have obtained some possible ground state energy levels such as singlet Γ4 and first excited doublet state Γ5 in addition to another excited singlet Γ1 . Our crystalline electric field energy scheme analysis shows some qualitative agreement between theoretical calculation and experiments at high magnetic fields regime only, which means the interplay between antiferromagnetsm and superconductivity should be included. Magnetic Anisotropy and Crystalline Electric Field in Quaternary Intermetallic Compounds.

  15. Complex Magnetism of Lanthanide Intermetallics and the Role of their Valence Electrons: Ab Initio Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Petit, L.; Paudyal, D.; Mudryk, Y.; Gschneidner, K. A.; Pecharsky, V. K.; Lüders, M.; Szotek, Z.; Banerjee, R.; Staunton, J. B.

    2015-11-01

    We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f -electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar-1 for GdCd confirmed by our experimental measurements of +1.6 K kbar-1 . Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. Replacing 35% of the Mg atoms with Zn removes this transition, in excellent agreement with long-standing experimental data.

  16. Effect of Mg2Sn Intermetallic on the Grain Refinement in As-cast AM Series Alloy

    NASA Astrophysics Data System (ADS)

    She, J.; Pan, F. S.; Hu, H. H.; Tang, A. T.; Yu, Z. W.; Song, K.

    2015-08-01

    In the present work, in order to investigate the grain refinement mechanism of AM containing Sn alloys, the as-cast AM60, AM90 alloys, and the alloys with addition of 1 wt.% Sn were fabricated by traditional casting, respectively. During the solidification of AM + Sn alloys, the morphology of divorced eutectic Mg17Al12 was refined by Mg2Sn intermetallic that served as the heterogeneous nucleation cores. The modified Mg17Al12 effectively restricted the grain growth and resulted in a grain refinement. As a result, the yield strength of as-cast AM alloys was significantly enhanced by addition of Sn, while the ductility also improved. Moreover, the edge-to-edge model was employed to predict the orientation relationship between Mg17Al12 and Mg2Sn.

  17. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  18. FP-LAPW study of structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic

    NASA Astrophysics Data System (ADS)

    Jain, Ekta; Pagare, Gitanjali; Sanyal, S. P.

    2016-05-01

    The structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic compound in B2-type (CsCl) structure have been investigated using first-principles calculations. The exchange-correlation term was treated within generalized gradient approximation. Ground state properties i.e. lattice constants (a0), bulk modulus (B) and first-order pressure derivative of bulk modulus (B') are presented. The density of states are derived which show the metallic character of present compound. Our results for C11, C12 and C44 agree well with previous theoretical data. Using Pugh's criteria (B/GH < 1.75), brittle character of AlFe is satisfied. In addition shear modulus (GH), Young's modulus (E), sound wave velocities and Debye temperature (θD) have also been estimated.

  19. Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-09-01

    Understanding the thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical to alloy design and application of Mo-containing austenitic steels. Coupled with thermodynamic modeling, the thermal stability of intermetallic Chi and Laves phases in two Fe-Cr-Ni-Mo alloys was investigated at 1273 K, 1123 K, and 973 K (1000 °C, 850 °C, and 700 °C) for different annealing times. The morphologies, compositions, and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Two key findings resulted from this study. First, the Chi phase is stable at high temperature, and with the decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, and Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. The thermodynamic models that were developed were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  20. Modeling non-isothermal intermetallic layer growth in the 63Sn-37Pb/Cu system

    SciTech Connect

    Vianco, P.T.; Hopkins, P.L.; Erickson, K.L.; Frear, D.R.; Davidson, R.

    1996-12-31

    A model describing diffusion-controlled growth of multiple intermetallic layers and the displacement of the interfaces between layers was developed and implemented in a 1-D computer code based on method-of-lines. The code was applied to analysis of intermetallic layer growth in isothermal solder aging experiments performed with 100 Sn/Cu and 63Sn-37Pb/Cu solder-substrate systems. Analyses indicated that intermetallic layer growth was consistent with a bulk diffusion mechanism involving Cu and/or Sn. In this work, nonisothermal solder-aging experiments were done with the 63Sn- 37Pb/Cu system using two temperature histories (4 cycles/day between 223-443 K, and 72 cycles/day between 223-443 K). Isothermal experiments were also done at 443 K. Thickness of Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic layers were determined vs time for each temperature history. An updated version of the model and code were used to predict the intermetallic layer growth. Arrhenius expressions for diffusion coefficients in both Cu3Sn and Cu6Sn5 layers were determined. Agreement between prediction and experiment was generally good. In some cases, predicted layer growth was less than experiment, but within error. This paper describes the nonisothermal experiments and a comparison of predicted and observed layer growth vs time.

  1. Synthesis of cerium rich intermetallics using molten metal eutectics

    NASA Astrophysics Data System (ADS)

    Tucker, Patricia Christine

    Metal eutectic fluxes are useful for exploratory synthesis of new intermetallic phases. In this work the use of cerium/transition metal eutectics such as: Ce/Co, Ce/Ni, and Ce/Fe have yielded many new synthetically and magnetically complex phases. Structural units that were previously observed in phases grown in La/Ni eutectic reactions have also been observed in new structures and analogs grown from cerium/transition metal eutectics. These structural units include a main group element coordinated by 9 rare-earth atoms (such as the Al Ce9 clusters seen in Ce31.0(2)Fe11.8(5)Al6.5(6) B13C4), trigonal planar FeC3 units (also seen in Ce31.0(2)Fe11.8(5)Al6.5(6)B 13C4), iron clusters capped by light elements (Fe4C 6 frustrated tetrahedral in Ce21Fe8M7C 14, and larger Fe clusters in Ce33Fe14B25 C34). Variants of these building blocks were observed in Ce10Co2B7C16 with square Co units and chains of B and C connected to them, Fe2C8 units observed in Ce7Fe2C9, and FeC4 observed in Ce4FeGa0.85Al0.15C4 and Ce4FeAlC4. Two new phases were grown from Ce/Fe eutectic, Ce33Fe 14B25C34 and Ce33Fe13B 18C34 which exhibits very similar structures, but significantly different magnetic behavior. Structurally these two phases are similar. Both crystallize in the Im-3m space group, but differ by the centering of the Fe clusters. Ce33Fe14B25C34 contains Fe clusters centered by B atoms and Al doped on the Fe2 site. In Ce33Fe13B18C34, the Fe cluster is a perfect cuboctahedron. Ce33Fe14B25 C34 exhibits mixed valent behavior of cerium at 75K and no magnetic moment on iron, where-as Ce33Fe13B18C 34 exhibits tetravalent cerium and its iron clusters undergo a ferromagnetic transition at 180K. Another borocarbide, Ce10Co2B7C 16 was synthesized from Ce/Co eutectic flux. This structure features squares of Co surrounded by chains of C and B and a sea of cerium atoms. Temperature dependent magnetic susceptibility measurements at 1 Tesla were fit to a modified Curie-Weiss law and a moment per Ce was

  2. Magnetic and crystallographic structures in UTX intermetallic compounds

    SciTech Connect

    Robinson, R.A.; Lawson, A.C.; Sechovsky, V.; Havela, L.; Kergadallan, Y.; Nakotte, H.; de Boer, F.R.

    1993-08-01

    Uranium, along with other actinides and lanthanides, forms a large group of ternary intermetallic compounds of stoichiometry UTX (T = transition metal, X = p-electron metal). These compounds are formed in several structure types and the occurrence and stability of particular structures with respect to the transition metal content suggests reasonable systematics. The authors have also investigated the magnetic structures of selected UTX compounds and it is revealing to relate the crystallographic and magnetic structures, because of the relationship between the magnetic symmetry and that of the U-atom environment produced by the 5f-ligand hybridization, and the consequent anisotropic exchange. Those of ZrNiAl structure type are collinear, with moments along the hexagonal c-axis. In the orthorhombic NiSiTi structure type, the moments are confined to the b- c plane (perpendicular to the uranium chains) and the structures are often incommensurate. In the hexagonal CaIn{sub 2} (or GaGeLi) structure type, the magnetic structures form in an orthorhombic cell, and at least in the disordered centric group, again the moments lie perpendicular to the nearest-neighbor uranium spacing. This work presents a phenomenology of trends in UTX ternary compounds. It is shown that there is an apparent strong hybridization parallel to nearest neighbor U-U directions, with ferromagnetic coupling in the same directions. There may be a systematic relationship between the hybridization anisotropy and the magnetic anisotropy, in which the quantization axes are the same and the moments point along directions of relatively weak hybridization.

  3. New Interest in Intermetallic Compound ZnSb

    NASA Astrophysics Data System (ADS)

    Fedorov, M. I.; Prokof'eva, L. V.; Pshenay-Severin, D. A.; Shabaldin, A. A.; Konstantinov, P. P.

    2014-06-01

    The intermetallic compound ZnSb has been known since the 1830s. It has semiconductor properties, but its mechanical, thermal, and chemical properties are very close to those of a metallic alloy. When thermoelectrics based on (BiSb)2(TeSe)3 solid solutions were created, interest in ZnSb subsided. However, the current situation is different, as tellurium has become expensive and rare. Moreover, its compounds are too toxic, and it is too difficult to produce such materials and devices from these solid solutions. Recently, n-type material based on Mg2(SnSi) solid solution was proposed in the Laboratory of Physics for Thermoelements of the Ioffe Physical-Technical Institute. This material together with ZnSb may form a promising couple for creating various thermoelectric modules. In this paper, various properties (Hall and Seebeck coefficients, electrical and thermal conductivities) are reported in the temperature range from 80 K to 797 K. Different acceptor impurities have been tested. The Hall concentration at room temperature varied from 1.5 × 1018 cm-3 to 2.7 × 1019 cm-3. Some features have been discovered in the behavior of the thermoelectric parameters of double-doped ZnSb samples at temperatures above 500 K. Their nature points to a temperature-dependent increase of the Hall concentration. The existence of two temperature ranges with additional doping is revealed by Hall coefficient and electrical conductivity measurements in the range from 80 K to 797 K. The experimental data are discussed based on a model of the energy spectrum with impurity and native defect states localized in the energy gap. It is shown that the dimensionless thermoelectric figure of merit of ZnSb: Cd, Ag, Sn is not less than 1.0 at 600 K.

  4. Crystal plasticity aspects of a lamellar intermetallic microstructure

    SciTech Connect

    Schloegl, S.M.; Fischer, F.D.; Minchev, O.I.; Rammerstorfer, F.G.

    1995-12-31

    Two-phase TiAl intermetallics consisting of {gamma} (TiAl) and {alpha}{sub 2} (Ti{sub 3}Al) lamellae possess mechanical properties which significantly differ from that of single-phase alloys. There are many experimental results of polysynthetically twinned (PST) TiAl crystals, which contain only a single set of lamellae with a specific orientation. Their yield stress at room temperature depends strongly on the angle {theta} between the orientation of the lamellae and the load axis. Furthermore, when compression loads are applied in the direction of the lamellae some sort of {open_quote}microbuckling{close_quote} could be observed, especially at high temperature during the primary forming process. In the paper this nonlinear anisotropic behavior is simulated by micromechanical computational methods with regard to finding a constitutive law for a polycrystal with lamellar grains. The modeling is based on the unit-cell techniques using the finite element method. Because of the orientation relationship of (111){sub {gamma}} {parallel} (0001){sub {alpha}2} and {l_angle}1{rvec 1}0{r_angle}{sub {gamma}} {parallel} {l_angle}11{rvec 2}0{r_angle}{sub {alpha}2}, is necessary to use crystal plasticity. The major deformation modes of the -Y phase at room temperature are ordinary slip along (110) and deformation twinning, i.e., true twinning of the (111){l_angle}11{rvec 2} type. These two modes are simulated in the unit-cell analyses. Using the micromechanical models, stress-strain curves are calculated for orientation angles {theta} varying in the range of 0{degrees} {le} {theta} {le} 90{degrees}, and the computed yield stresses are compared with experimental results. The {open_quote}microbuckling{close_quote} of the lamellae under compression loading is studied as well.

  5. Radiation-induced amorphization of intermetallic compounds: A molecular-dynamics study of CuTi and Cu sub 4 Ti sub 3

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R. ); Sabochick, M.J. . Dept. of Engineering Physics)

    1991-06-01

    In the present paper, important results of our recent computer simulation of radiation-induced amorphization in the ordered compounds CuTi and Cu{sub 4}Ti{sub 3} are summarized. The energetic, structural, thermodynamic and mechanical responses of these intermetallics during chemical disordering, point-defect production and heating were simulated, using molecular dynamics and embedded-atom potentials. From the atomistic details obtained, the critical role of radiation-induced structural disorder in driving the crystalline-to-amorphous phase transformation is discussed. 25 refs., 4 figs.

  6. Elementary diffusion jump of iron atoms in intermetallic phases studied by Moessbauer spectroscopy; 1: Fe-Al close to equiatomic stoichiometry

    SciTech Connect

    Vogl, G.; Sepiol, B. . Inst. fuer Festkoerperphysik)

    1994-09-01

    The authors have studied the quasielastic broadening of the [sup 57]Fe Moessbauer resonance in the intermetallic compound FeAl in order to determine the diffusion jump mechanism of the Fe atoms. From the angular dependence of the line broadening relative to an oriented single crystal they deduce that the Fe atoms jump effectively to different neighbor sites on the Fe sublattice. The jump is, however, not a direct one, but rather a combination of a jump into a nearest neighbor vacancy--leading to short-time occupation of an antistructure site on the Al sublattice--and a jump into a vacancy back on the Fe sublattice.

  7. Magnetoelastic properties of substituted Er1-xGdxMn6Sn6 intermetallic system

    NASA Astrophysics Data System (ADS)

    Tabatabai Yazdi, Sh.; Tajabor, N.; Roknabadi, M. Rezaee; Behdani, M.; Pourarian, F.

    2014-06-01

    The forced magnetostriction of polycrystalline samples of Er1-xGdxMn6Sn6 (0≤x≤1) intermetallics with hexagonal HfFe6Ge6-type structure is investigated in the temperature range of 77-480 K. Gd substitution has a significant effect on interatomic distances and especially on inter-sublattice R-Mn couplings. The replacement of Er by Gd results in increasing the ordering temperature followed by reinforcement of the R-Mn coupling, as well as decreasing the magnetostriction values owing to the S-state character of Gd3+ ions. The results show that the contribution of Er sublattice to anisotropic magnetoelastic effects is positive, while that of Gd and Mn is negative. All the examined samples exhibit considerable magnetovolume anomalies at the ordering temperature (TC=338, 381, 412 and 434 K for the samples with x=0, 0.2, 0.6 and 1.0, respectively). While the unsubstituted sample exhibits metamagnetic transitions, Gd-contained compounds do not show this behavior, owing to the strong Gd-Mn coupling. The experimental results obtained are discussed in the framework of the two-magnetic sublattice by bearing in mind the lattice parameter dependence of the interlayer Mn-Mn exchange interaction in these layered compounds. From the temperature dependence of magnetostriction values and considering the magnetostriction equation for a hexagonal structure, we attempt to determine the signs of some of the magnetostriction constants for these compounds and the influence of Gd substitution on them.

  8. The preparation of the Ti-Al alloys based on intermetallic phases

    NASA Astrophysics Data System (ADS)

    Kosova, N.; Sachkov, V.; Kurzina, I.; Pichugina, A.; Vladimirov, A.; Kazantseva, L.; Sachkova, A.

    2016-01-01

    This article deals with a method of obtaining materials in the Ti-Al system. Research was carried out in accordance with the phase diagram of the system state. It was established, that both single-phase and multiphase systems, containing finely dispersed intermetallic compositions of phases Ti3Al, TiAl and TiAl3, are formed. Additionally, it was found that the pure finely dispersed (coherent-scattering region (CSR) up to 100 nm) intermetallic compound TiAl3 is formed at molar ratio of Ti:Al = 1:3. Experimentally proved the possibility of produce the complex composition of alloys and intermetallic compounds and products based on them.

  9. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  10. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  11. On the micromechanics of low temperature strength and toughness of intermetallic/metallic microlaminate composites

    SciTech Connect

    Heathcote, J.; Odette, G.R.; Lucas, G.E.; Rowe, R.G.; Skelly, D.W.

    1996-11-01

    Tensile strength and fracture resistance curves were measured for different combination of brittle intermetallic/ductile metallic microlaminates. Metal layer bridging, characterized by the closure stress ({sigma})-crack opening (u) displacement function, produced toughening by factors of 2--5. The key composite property, {sigma}(u), was evaluated by fitting resistance curves using a large scale bridging code coupled with independent estimates of the maximum stress and ligament height. These functions were used in a bridging-crack stability analysis of tensile strength controlled by pre-existing processing defects. Assuming similar flaws, the composites are roughly 4--6 times stronger than the intermetallic, with predicted strengths in agreement with experiment within a standard deviation of 45 MPa. Composite strength is primarily sensitive to the intermetallic toughness and the constrained strength of the metal layer. Greater strength can also be achieved by better control of the growth defects.

  12. Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element

    SciTech Connect

    Yang, S. C.; Ho, C. E.; Chang, C. W.; Kao, C. R.

    2007-04-15

    Massive spalling of intermetallic compounds has been reported in the literature for several solder/substrate systems, including SnAgCu soldered on Ni substrate, SnZn on Cu, high-Pb PbSn on Cu, and high-Pb PbSn on Ni. In this work, a unified thermodynamic argument is proposed to explain this rather unusual phenomenon. According to this argument, two necessary conditions must be met. The number one condition is that at least one of the reactive constituents of the solder must be present in a limited amount, and the second condition is that the soldering reaction has to be very sensitive to its concentration. With the growth of intermetallic, more and more atoms of this constituent are extracted out of the solder and incorporated into the intermetallic. As the concentration of this constituent decreases, the original intermetallic at the interface becomes a nonequilibrium phase, and the spalling of the original intermetallic occurs.

  13. Intermetallic NaAu2 as a heterogeneous catalyst for low-temperature CO oxidation.

    PubMed

    Xiao, Chaoxian; Wang, Lin-Lin; Maligal-Ganesh, Raghu V; Smetana, Volodymyr; Walen, Holly; Thiel, Patricia A; Miller, Gordon J; Johnson, Duane D; Huang, Wenyu

    2013-07-01

    The enhanced stability and modified electronic structure of intermetallic compounds provide discovery of superior catalysts for chemical conversions with high activity, selectivity, and stability. We find that the intermetallic NaAu2 is an active catalyst for CO oxidation at low temperatures. From density functional theory calculations, a reaction mechanism is suggested to explain the observed low reaction barrier of CO oxidation by NaAu2, in which a CO molecule reacts directly with an adsorbed O2 to form an OOCO* intermediate. The presence of surface Na increases the binding energy of O2 and decreases the energy barrier of the transition states. PMID:23758405

  14. Microstructure and Mechanical Properties of the Ti-45Al-5Fe Intermetallic Alloy

    NASA Astrophysics Data System (ADS)

    Nazarova, T. I.; Imayev, V. M.; Imayev, R. M.

    2015-10-01

    Microstructure including changes in the phase composition and mechanical compression properties of the Ti-45Al-5Fe (at.%) intermetallic alloy manufactured by casting and subjected to homogenization annealing are investigated as functions of the temperature. The initial alloy has a homogeneous predominantly lamellar structure with relatively small size of colonies of three intermetallic phases: γ(TiAl), τ2(Al2FeTi), and α2(Ti3Al) in the approximate volume ratio 75:20:5. Compression tests have revealed the enhanced strength at room temperature and the improved hot workability at 800°C compared to those of TNM alloys of last generation.

  15. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    ERIC Educational Resources Information Center

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers…

  16. Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases

    NASA Astrophysics Data System (ADS)

    Soboyejo, W. O.; Rao, K. T. Venkateswara; Sastry, S. M. L.; Ritchie, R. O.

    1993-03-01

    The results of recent studies on the fatigue and fracture behavior of extruded Ti-48A1 + 20 vol pct TiNb and hot-isostatically pressed (“hipped”) MoSi2 + 20 vol pct Nb are presented (compositions in atomic percent unless stated otherwise). The effects of ductile phase reinforcement of Ti-48A1 and MoSi2 on the micromechanisms of fracture under monotonie and cyclic loading are elucidated. Micromechanics models are applied to the prediction of crack-tip shielding components, and the effects of temperature on tensile/compressive/flexure strengths are discussed. Ductile phase toughening under monotonie loading conditions is shown to be associated with lower fatigue crack growth resistance. The lower fatigue resistance is attributed to the absence of crack-tip shielding, higher crack opening displacements, and the effects of inelastic strains that are developed in ductile phase-reinforced composites under cyclic loading conditions.

  17. Atomic jump frequencies in intermetallic compounds studied using perturbed angular correlation of gamma rays

    NASA Astrophysics Data System (ADS)

    Newhouse, Randal Leslie

    Atomic jump frequencies were determined in a variety of intermetallic compounds through analysis of nuclear relaxation of spectra measured using the nuclear hyperfine technique, perturbed angular correlation (PAC) of gamma rays. Observed at higher temperatures, this relaxation is attributed to fluctuations in the orientation or magnitude of electric field gradients (EFG) at nuclei of 111In/Cd probe atoms as the atoms make diffusive jumps. Jump frequencies were obtained by fitting dynamically relaxed PAC spectra using either an empirical relaxation function or using ab initio relaxation models created using the program PolyPacFit. Jump frequency activation enthalpies were determined from measurements over a range of temperatures. Diffusion was studied in the following systems: 1) Pseudo-binary alloys having the L12 crystal structure such as In3(La1-xPrx). The goal was to see how jump frequencies were affected by random disorder. 2) The family of layered phases, LanCoIn3n+2 ( n=0,1,2,3…∞). The goal was to see how jump frequencies varied with the spacing of Co layers, which were found to block diffusion. 3) Phases having the FeGa3 structure. The goal was to analyze dynamical relaxation for probe atoms having multiple inequivalent jump vectors. 4) Phases having the tetragonal Al4Ba structure. The goal was to search for effects in the PAC spectra caused by fluctuations in magnitudes of EFGs without fluctuations in orientations. Ab initio relaxation models were developed to simulate and fit dynamical relaxation for PAC spectra of FeGa3, and several phases with the Al4Ba structure in order to determine underlying microscopic jump frequencies. In the course of this work, site preferences also were observed for 111In/Cd probe atoms in several FeGa 3 and Al4Ba phases.

  18. Launch Load Resistant Spacecraft Mechanism Bearings Made From NiTi Superelastic Intermetallic Materials

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III

    2014-01-01

    Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50-mm-bore ball bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (approximately 3.1 GPa) between that of 440C (2.4 GPa) and REX20 (3.8 GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5-kg mass reaction wheel, was modeled with respect to launch load capability when supported on standard (catalogue geometry) design 440C; 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings

  19. Investigations of intermetallic alloy hydriding mechanisms. Annual progress report, May 1 1979-April 30, 1980

    SciTech Connect

    Livesay, B.R.; Larsen, J.W.

    1980-05-01

    Investigations are being conducted on mechanisms involved with the hydrogen-metal interactions which control the absorption and desorption processes in intermetallic compounds. The status of the following investigations is reported: modeling of hydride formation; microbalance investigations; microstructure investigations; flexure experiments; resistivity experiments; and nuclear backscattering measurements. These investigations concern fundamental hydrogen interaction mechanisms involved in storage alloys.

  20. Correlation between valence electronic structure and magnetic properties in RCo5 (R = rare earth) intermetallic compound

    NASA Astrophysics Data System (ADS)

    Zhi-Qin, Xue; Yong-Quan, Guo

    2016-06-01

    The magnetisms of RCo5 (R = rare earth) intermetallics are systematically studied with the empirical electron theory of solids and molecules (EET). The theoretical moments and Curie temperatures agree well with experimental ones. The calculated results show strong correlations between the valence electronic structure and the magnetic properties in RCo5 intermetallic compounds. The moments of RCo5 intermetallics originate mainly from the 3d electrons of Co atoms and 4f electrons of rare earth, and the s electrons also affect the magnetic moments by the hybridization of d and s electrons. It is found that moment of Co atom at 2c site is higher than that at 3g site due to the fact that the bonding effect between R and Co is associated with an electron transformation from 3d electrons into covalence electrons. In the heavy rare-earth-based RCo5 intermetallics, the contribution to magnetic moment originates from the 3d and 4f electrons. The covalence electrons and lattice electrons also affect the Curie temperature, which is proportional to the average moment along the various bonds. Project supported by the National Natural Science Foundation of China (Grant No. 11274110).

  1. Investigation of Laser Generation and Detection of Ultrasound in Ceramic Matrix Composites and Intermetallics

    NASA Technical Reports Server (NTRS)

    Ehrlich, Michael J.

    1998-01-01

    The goal of this program is to assess the feasibility of using laser based ultrasonic techniques for inspecting and characterizing materials of interest to NASA, specifically those used in propulsion and turbomachinery applications, such as ceramic composites, metal matrix composites, and intermetallics.

  2. First-principle studies of Ca-X (X=Si,Ge,Sn,Pb) intermetallic compounds

    SciTech Connect

    Yang Zhiwen; Shi Dongmin; Wen Bin; Melnik, Roderick; Yao Shan; Li Tingju

    2010-01-15

    The structural properties, elastic properties, heats of formation, electronic structures, and densities of states of 20 intermetallic compounds in the Ca-X (X=Si, Ge, Sn, Pb) systems have been systematically investigated by using first-principle calculations. Our computational results indicated that with increasing atomic weight of X, the bulk modulus of Ca-X intermetallic compounds decreases gradually. It was also found that Ca{sub 36}Sn{sub 23} and CaPb are mechanically unstable phases. Results on the electronic energy band and densities of states also indicated that Ca{sub 3}Si{sub 4} is an indirect band gap semiconductor with a band gap of 0.598 eV, and Ca{sub 2}Si, Ca{sub 2}Ge, Ca{sub 2}Sn, and Ca{sub 2}Pb are direct band gap semiconductors with band gaps of 0.324, 0.265, 0.06, and 0.07 eV, respectively. In addition, it is found that the absolute values of heats of formation for all Ca-X intermetallics are larger than 30 kJ/mol atom. - Graphical abstract: Calculated (a) bulk moduli and (b) shear moduli of Ca-X system intermetallic compounds.

  3. Exploratory Synthesis: The Fascinating and Diverse Chemistry of Polar Intermetallic Phases

    SciTech Connect

    Corbett, John D.

    2009-12-07

    Exploratory synthetic adventures regarding the inorganic chemistry of polar intermetallic phases have proven to be especially productive of novel compositions, new and unprecedented structures, and unusual bonding regimes. Reactions of diverse elements with widely different electronegativities allow the definition of two opposed classes of products: polycationic or polyanionic clusters or networks of metals paired with the corresponding monatomic anions or cations. These can be usefully viewed as intermetallic 'salts', redox products of simpler neutral intermetallic systems but with widely different factors governing their stabilities. Thus, combinations of rare-earth metals alone or with late transition metals form a novel variety of polymetal network structures with relatively isolated telluride (or halide) spacer anions. Similarly, extensions of traditional Zintl phases of the alkali or alkaline-earth metals from the later p elements to the earlier triels, Ga-Tl especially, yield many new and elegant polyanionic structures. The substitution or addition of still earlier p or late d metal components produces still electron-poorer and more condensed polar intermetallic phases with increasingly delocalized bonding, higher coordination numbers, and more unusual structures and bonding. These discoveries have also led to new approaches: electronic tuning via band calculations to generate new families of quasicrystals and their crystalline approximants with their characteristic structural regimes and regularities. Gold as a substituent generates particularly novel bonding in arrays of mixed metals or polygold anionic networks.

  4. Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment

    SciTech Connect

    Anantha Narayanan, L. |; Samuel, F.H.; Gruzleski, J.E.

    1995-08-01

    Conventional heat treatment techniques in Al-Si alloys to achieve optimum mechanical properties are limited to precipitation strengthening processes due to the presence of second-phase particles and spheroidization of silicon particles. The iron intermetallic compounds present in the microstructure of these alloys are reported to be stable, and they do not dissolve during conventional (equilibrium) heat treatments. The dissolution behavior of iron intermetallics on nonequilibrium heat treatment has been investigated by means of microstructure and mechanical property studies. The dissolution of iron intermetallics improves with increasing solution temperature. The addition of manganese to the alloy hinders the dissolution of iron intermetallics. Nonequilibrium heat treatment increases the strength properties of high iron alloys until a critical solution temperature is exceeded. Above this temperature, a large amount of liquid phase is formed as a result of interdendritic and grain boundary melting. The optimum solution treatment temperature for Al-6Si-3.5Cu-0.3Mg-1Fe alloys is found to be between 515 C and 520 C.

  5. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  6. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    DOEpatents

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  7. Modification of Surface Layers by Surfacing Intermetallic Coatings with Variable Properties

    NASA Astrophysics Data System (ADS)

    Makeev, D. N.; Zakharov, O. V.; Vinogradov, A. N.; Kochetkov, A. V.

    2016-02-01

    The paper considers the possibility of forming coating layers for parts within wide limits of microhardness. The technology uses surfacing of intermetallic coatings provided by a unique experimental setup. Theoretical and experimental dependence of the coating layer microhardness on the filler concentration using the changes in the speed of the filler wire feed and current intensity were determined.

  8. Bergman Clusters, Multiple Bonds, and Defect Planes: Synthetic Outcomes of Chemical Frustration in Ternary Intermetallic Systems

    NASA Astrophysics Data System (ADS)

    Hadler, Amelia Beth

    Intermetallics crystallize in a variety of complex structures, many of which show unusual bonding or intriguing properties. Understanding what factors drive this structural chemistry would be a valuable step towards designing new intermetallics with specific structures or properties. One pathway towards understanding and predicting the structures of complex intermetallics is chemical frustration, a design tool which harnesses competition between incompatible bonding or packing modes to induce complexity in ternary intermetallic systems. The research outlined in this thesis focuses on developing chemical frustration through exploratory synthesis in ternary systems designed to induce frustration between the tetrahedral close packing of many intermetallics and the simple cubic packing seen for ionic salts or elemental metals. Syntheses in three systems yielded six new ternary intermetallics, four of which crystallize in novel structure types. Three were discovered in the Ca-Cu-Cd system: Ca5Cu2Cd and Ca2Cu 2Cd9, which adopt ternary variants of binary structures, and Ca10Cu2Cd27, which crystallizes in a new structure built from Bergman clusters. All three structures can be traced to electronic packing frustration induced by the similar electronegativities but different metallic radii of Cu and Cd. The Gd-Fe-C system yielded the new carbometalate Gd13Fe 10C13 and an oxycarbide derivative. These phases crystallize in structures built from Gd tricapped trigonal prisms interpenetrated by an Fe-C network. Theoretical analyses reveal that Fe-Fe and Fe-C multiple bonding is found throughout this network. A theoretical investigation of similar carbides uncovers additional metal-metal, metal-carbon, and carbon-carbon multiple bonding. This unusual bonding stabilizes the carbides by satisfying preferred electron counts for their transition metal sites. One new phase, Mg4.5Pd5Ge1.5, was found in the Mg-Pd-Ge system. Its structure is closely related to the CsCl-type structure of

  9. Do-not-resuscitate order

    MedlinePlus

    ... order; DNR; DNR order; Advance care directive - DNR; Health care agent - DNR; Health care proxy - DNR; End-of-life - DNR; Living ... medical order written by a doctor. It instructs health care providers not to do cardiopulmonary resuscitation (CPR) ...

  10. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    PubMed

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-01

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system. PMID:22420716

  11. Development of intermetallic-hardened abrasion-resistant weld hardfacing alloys

    SciTech Connect

    School, M.R.

    1986-01-01

    Chromium and cobalt are strategic materials in the US and both are major constituents in many weld hardfacing alloys. Substitution for these materials or alternatives to their use was a primary direction of this investigation which was conducted in conjunction with the US Bureau of Mines. Minimization of the use of strategic materials was the criteria guiding the development of intermetallic-hardened abrasion resistant weld hardfacing materials. Other criteria were that the new alloy contain a hard intermetallic compound in an FCC matrix, and that these intermetallic compounds be stable at room temperature. A survey of ternary systems was made and the Fe-Mo-Ni system was selected to provide a basis for alloy development. Fe-Mo-Ni alloys synthesized by arc-melting and similar alloys made by welding possessed similar microstructures, a (Fe, Ni){sub 7}Mo{sub 6} intermetallic plus austenite eutectic in an austenitic matrix. These materials exhibited poor abrasive resistance. Silicon additions to the alloy promoted formation of a Laves phase FeMoSi intermetallic which helped increase the abrasive wear resistance. Through a series of alloy chemistry iterations a final composition of Fe-20Mo-15Ni-5Si was selected. Heat treatment of this alloy at 550 to 650 C caused second phase precipitation in the matrix and raised the hardness about 14 points HRC to 50 HRC. The alloy's wear rate, measured with the pin-on-drum abrasive wear test, was 6.3 to 6.5 mg/m. However this was twice the wear rate observed in commercial high-carbon high-chromium alloys. Based on examination of the alloy microstructures, their chemistry, and an analysis of the Fe-Mo-Si phase system; directions for further research are to increase the molybdenum and silicon content to produce a Fe-20Mo-10Ni-15Si composition.

  12. The magnetic behavior of the intermetallic compound NdMn2Ge2 studied by magnetization and hyperfine interactions measurements

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-01

    The magnetic behavior of the intermetallic compound NdMn2Ge2 was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ-γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around TN ˜ 425 K and a well defined ferromagnetic transition at TC ˜ 320 K. Moreover, at ˜210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ˜25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using 140La(140Ce) and 111In(111Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (Bhf) at Nd and Mn sites, respectively. PAC results with 111Cd probe nuclei at Mn sites show that the dependence of Bhf with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with 140Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to Bhf.

  13. Surface structures of In-Pd intermetallic compounds. I. Experimental study of In thin films on Pd(111) and alloy formation

    SciTech Connect

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C. de; Fournée, V.

    2014-08-28

    A combination of experimental methods was used to study the structure of In thin films deposited on the Pd(111) surface and the alloying behavior. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy results indicate that surface alloying takes place at room temperature. Below 2 monolayer equivalents (MLEs), the LEED patterns show the formation of three rotational domains of InPd(110) of poor structural quality on top of the Pd(111) substrate. Both core-levels and valence band XPS spectra show that the surface alloy does not yet exhibit the electronic structure characteristic of the 1:1 intermetallic compound under these conditions. Annealing the 1 MLE thin film up to 690 K yields to a transition from a multilayer InPd near-surface intermetallic phase to a monolayer-like surface alloy exhibiting a well ordered (√(3)×√(3)) R30{sup ∘} superstructure and an estimated composition close to In{sub 2}Pd{sub 3}. Annealing above 690 K leads to further In depletion and a (1 × 1) pattern is recovered. The (√(3)×√(3)) R30{sup ∘} superstructure is not observed for thicker films. Successive annealing of the 2 MLE thin film leads the progressive disappearance of the InPd diffraction spots till a sharp (1 × 1) pattern is recovered above 690 K. In the high coverage regime (from 4 to 35 MLE), the formation of three rotational domains of a bcc-In{sub 7}Pd{sub 3} compound with (110) orientation is observed. This In-rich phase probably grows on top of interfacial InPd(110) domains and is metastable. It transforms into a pure InPd(110) near-surface intermetallic phase in a temperature range between 500 and 600 K depending on the initial coverage. At this stage, the surface alloy exhibits core-level chemical shifts and valence band (VB) spectra identical to those of the 1:1 InPd intermetallic compound and resembling Cu-like density of states. Annealing at higher temperatures yields to a decrease of the In

  14. Whisker formation in Sn and Pb-Sn coatings: Role of intermetallic growth, stress evolution, and plastic deformation processes

    SciTech Connect

    Chason, E.; Jadhav, N.; Kumar, K. S.; Chan, W. L.; Reinbold, L.

    2008-04-28

    We have simultaneously measured the evolution of intermetallic volume, stress, and whisker density in Sn and Pb-Sn alloy layers on Cu to study the fundamental mechanisms controlling whisker formation. For pure Sn, the stress becomes increasingly compressive and then saturates, corresponding to a plastically deformed region spreading away from the growing intermetallic particles. Whisker nucleation begins after the stress saturates. Pb-Sn layers have similar intermetallic growth kinetics but the resulting stress and whisker density are much less. Measurements after sputtering demonstrate the important role of the surface oxide in inhibiting stress relaxation.

  15. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    NASA Astrophysics Data System (ADS)

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-10-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.

  16. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties.

    PubMed

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors. PMID:26456769

  17. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    PubMed Central

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors. PMID:26456769

  18. Structure and mechanical properties of cement and intermetallic compounds via ab-initio simulations

    NASA Astrophysics Data System (ADS)

    Dharmawardhana, Chamila Chathuranga

    Calcium silicate hydrates comprise a class of minerals formed synthetically during Portland cement hydration or naturally through various geological processes. The importance of these minerals is immense since they are the primary binding phases for Portland cement derived construction materials. Efforts spanning centuries have been devoted to understand the structural aspects of cohesion in these minerals. In recent years, the focus has progressively turned to atomic level comprehension. Structurally these minerals can range from crystalline to highly disordered amorphous phases. This thesis focuses upon unraveling the nature of chemical bonding in a large subset of calcium silicate hydrate (CSH) crystals. Thus their electronic structure was calculated and bonding mechanisms were investigated quantitatively. Results highlight a wide range of contributions from each type of bonding (Si-O, Ca-O, O-H and hydrogen bond) with respect to silicate polymerization, crystal symmetry, water and OH content. Consequently, total bond order density (TBOD) was designated as the overall single criterion for characterizing crystal cohesion. The TBOD categorization indicates that a rarely known orthorhombic phase Suolunite is closest to the ideal composition and structure of cement. Present work finds the relationship of partial bond order density (PBOD) of each bond species, especially HBs to the mechanical properties of CSH crystals. This can be used as a basis to validate existing C-S-H models and to build improved ones. This work goes further and validates the recently proposed models (2014) for C-S-H (I) phase on the same basis of proposed electronic structure parameters. Then the respective Calcium aluminosilicate hydrates C-A-S-H (I) phase models are proposed. Finally, these results lead to improved interpretations and construction of realistic atomistic models of cement hydrates. Ab initio molecular dynamics (AIMD) could be vital to solve critical problems in complex

  19. Electrodeposited nickel(3) aluminide base intermetallic coatings and their resistance to high temperature degradation in hydrocarbon cracking environments

    NASA Astrophysics Data System (ADS)

    Liu, Haifeng

    This research was aimed at developing novel Ni-A1 base intermetallic coatings to protect commercial Fe-Ni-Cr tube alloys from severe corrosive degradation at high temperatures. These alloys are widely used in petrochemical, chemical, and energy conversion industries. The coating process and coating evaluation were the two main aspects of this investigation. A two-step coating processing has been successfully developed to in situ apply pure and CeO2-modified Ni3Al intermetallic coatings onto Fe-Ni-Cr substrates. The process consists of the electrodeposition of Ni-Al and Ni-Al-CeO2 composite coatings from a Watt's nickel bath containing Al and CeO2 particles via a cost-effective electroplating technique and an annealing treatment of the as-plated coatings. It was found that the deposition of Al particles obeyed a Guglielmi model, and that REO particles interfered significantly with the deposition of Al particles. The long-term resistance of pure and CeO2-modified Ni 3A1 coatings to cyclic oxidation, carburization, coke formation, and metal dusting was evaluated in flowing dry air, 2 % CH4-H 2, and CO-H2-H2O respectively. Due to the high porosity, pure and CeO2-dispersed Ni3Al coatings exhibited poor resistance to cyclic oxidation at 850°C. CeO2 improved the spallation resistance of the Ni3Al base coatings during cyclic oxidation at 1050°C. CeO2-dispersed Ni3Al coatings showed better carburization resistance, particularly at 1050°C. Ni 3A1-based coatings. Those CeO2-dispersed were susceptible to coke formation and metal dusting at 650°C. Pre-oxidation improved the resistance of Ni3Al-based coatings to coke formation and metal dusting at 650°C, but the effectiveness depended on the integrity of the induced alumina scale. Special attention was paid to several aspects of coating degradation. These aspects included microstructure changes, degradation mechanisms, coating/substrate interdiffusion, effect of corrosive atmosphere, and effect of CeO2 on coating

  20. Insight into structural, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Zhan, Yongzhong; Wu, Junyan; Wei, Xuanchen

    2015-11-01

    The structural, phase stabilities, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system are investigated by using first-principles method. The equilibrium lattice constants, enthalpy of formation (ΔHform) and elastic constants are obtained and compared with available experimental and theoretical data. The configuration of Zr4Sn is measured with reasonable precision. The ΔHform of five hypothetical structures are obtained in order to find possible metastable phase for Zr-Sn system. The mechanical properties, including bulk modulus, shear modulus, Young's modulus and Poisson's ratio, are calculated by Voigt-Reuss-Hill approximation and the Zr5Sn4 and Zr5Sn3 show excellent mechanical properties. The electronic density of states for Zr5Sn4, Zr5Sn3 and cP8-Zr3Sn are calculated to further investigate the stability of intermetallic compounds. Through the quasi-harmonic Debye model, the Debye temperature, heat capacity and thermal expansion coefficient under temperature of 0-300 K and pressure of 0-50 GPa for Zr5Sn3 and Zr5Sn4 are deeply investigated.

  1. Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg.

    PubMed

    Ma, Zhipeng; Zhao, Weiwei; Yan, Jiuchun; Li, Dacheng

    2011-09-01

    Ultrasonic-assisted brazing of Al4Cu1Mg and Ti6Al4V using Zn-based filler metal (without and with Si) has been investigated. Before brazing, the Ti6Al4V samples were pre-treated by hot-dip aluminizing and ultrasonic dipping in a molten filler metal bath in order to control the formation of intermetallic compounds between the Ti6Al4V samples and the filler metal. The results show that the TiAl(3) phase was formed in the interface between the Ti6Al4V substrate and the aluminized coating. For the Zn-based filler metal without Si, the Ti6Al4V interfacial area of the brazed joint did not change under the effect of the ultrasonic wave, and only consisted of the TiAl(3) phase. For the Zn-based filler metal with Si, the TiAl(3) phase disappeared and a Ti(7)Al(5)Si(12) phase was formed at the interfacial area of the brazed joints under the effect of the ultrasonic wave. Due to the TiAl(3) phase completely changing to a Ti(7)Al(5)Si(12) phase, the morphology of the intermetallic compounds changed from a block-like shape into a lamellar-like structure. The highest shear strength of 138MPa was obtained from the brazed joint free of the block-like TiAl(3) phase. PMID:21489846

  2. First-principles investigations on vibrational, thermodynamic, mechanical properties and thermal conductivity of L12 Al3X (X = Sc, Er, Tm, Yb) intermetallics

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Jiang, Wei

    2015-06-01

    The lattice dynamics, thermodynamic, mechanical properties and thermal conductivity of L12 Al3X (X = Sc, Er, Tm, Yb) intermetallics have been investigated from first-principles calculations by means of using the VASP code. Our results agree well with the previous experiments and calculations. The phonon dispersion curves and the density of phonon states have been calculated by means of using the PHONONPY code and compared with the experimental results. The four compounds stay dynamically stable in the L12 structure. We also calculated the thermodynamics properties and give the relationships between thermal parameters and temperature. The elastic constants of the considered compounds are satisfied with mechanical stability criteria. The related mechanical parameters predict that Al3Sc has higher hardness than the other three compounds, and four compounds all posses a brittle nature. The mechanical anisotropy is predicted by anisotropic constants AU and AZ. The results show that the four compounds are all elastically isotropic. We also calculated the thermal conductivity by means of the Clarke’s model and Cahill’s model and found that the thermal conductivity of the four intermetallics follows the order: Al3Sc > Al3Er > Al3Tm > Al3Yb.

  3. Chemical bonding in equiatomic cerium intermetallics - The case of CeMgSn, CePdSn, and CeMgPb

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.; Pöttgen, Rainer

    2015-10-01

    The electronic and magnetic structures and the properties of chemical bonding in isopointal CeMgSn and CePdSn (both phases belong to the family of TiNiSi related intermetallics, space group Pnma) and CeMgPb belonging to the family of CeScSi intermetallics, space group I4/mmm, have been investigated within the density functional theory (DFT). The charge analyses indicate negatively charged tin and lead leading to assign the compounds as stannides and plumbides, as also illustrated by the mapping of the electron localization function ELF. Calculations within spin-degenerate non-magnetic spin-polarized ferro- (SP-F) and SP-antiferromagnetic configurations led to assign a major role of Ce 4f states in the onset of ordered moments within SP-AF ground states from energy differences. Chemical bonding analyses from crystal orbital overlap populations revealed the strongest interactions for Ce-Sn in CeMgSn, Ce-Pb in CeMgPb, and Ce-Pd in CePdSn.

  4. Morphological and compositional evolution of Pt-Si intermetallic thin films prepared by the activated adsorption of SiH{sub 4} on Pt(111)

    SciTech Connect

    Bondos, J.C.; Gewirth, A.A.; Nuzzo, R.G.

    1999-04-22

    The authors have investigated using scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES) the growth and structural evolution of Pt-Si intermetallic phases formed via a chemical vapor deposition (CVD) mediated process. The Pt silicide thin films were prepared though the exposure of a Pt(111) crystal to silane (SiH{sub 4}) followed by various annealing treatments. The deposition of Si via the decomposition of silane at room temperature preferentially forms clusters at step edges that avoid the centers of Pt terraces. The sizes and coverages of the clusters increases with silane exposure. The clusters are of intermetallic character (composed of both Si and Pt) and coarsen to give cluster heights much larger than a Pt(111) step height. These observations implicitly establish that Si interdiffusion in the near-surface region is weakly activated. Studies performed as a function of the silane exposure and annealing temperature reveal a complicated phase behavior that incorporates seven separate atomically ordered phases in addition to large-scale surface features such as three-dimensional islands. Growth and degradation mechanisms have been constructed, and the phenomena observed are contrasted with standard kinetic models based on sequential phase growth.

  5. Intermetallics Characterization of Lead-Free Solder Joints under Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Choubey, Anupam; Yu, Hao; Osterman, Michael; Pecht, Michael; Yun, Fu; Yonghong, Li; Ming, Xu

    2008-08-01

    Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.

  6. Optical properties of Group X-XII intermetallic compounds studied by HR-EELS.

    PubMed

    Sato, Yohei; Terauchi, Masami; Kameoka, Satoshi; Tsai, An-Pang

    2014-11-01

    Electronic structure of d orbital states in transition metals is a key factor for their physical properties and chemical functions. Copper and intermetallic compound PdZn have good catalysis function for the methanol steam reforming reaction. Tsai et al. showed that from results of XPS measurements the d electronic structure of PdZn was similar with that of copper, and the catalysis function should be related to the d electron states [1]. This similarity of d electronic states leads to another view point of the mechanism for coloring the intermetallic compounds. It is well-known that the characteristic red color of copper is caused by interband transition from the d electrons. Therefore, PdZn and Group X-XII intermetallic compounds are expected to be colored and the optical properties should depend on the d electronic states. In this study, the relations between optical properties and d electron states of Group X-XII intermetallic compounds were investigated by using high energy-resolution electron energy-loss spectroscopy (HR-EELS) based on transmission electron microscopy (TEM). From the relation between optical properties and d electronic states, the mechanism of colored intermetallic compounds will be discussed.Figure shows the optical reflectivity of NiZn, PdZn and PtZn, which were derived from EELS spectra by Kramers-Kronig analysis. Intensity drops (arrows) of the reflectivity were observed in visible energy region. These are caused by the interband transitions from d electronic states. The energy positions of the reflectivity drops have tendency of shifting to higher energy side with increasing atomic number of Group X elements (Ni → Pd → Pt). This indicates that the transition energies of d electrons become larger with the atomic number of the elements. First principle calculations (WIEN2k) confirmed that the interband transitions of d electronic states were excitations from bonding d states to hybrid states of anti-bonding s, p, and d states of Group

  7. Lightweight Intermetallics with Laves Structures as Potential Hydrogen Storage Materials

    NASA Astrophysics Data System (ADS)

    Billet, Beau Austin

    Hydrogen storage was identified by the US Department of Energy as a "grand challenge" for the implementation of hydrogen-powered fuel cell vehicles for reduced CO2 emissions from transportation vehicles. None of the hydrogen storage options currently developed can satisfy the high gravimetric, volumetric and system design requirements. Intermetallic compounds with Laves structures in the formula of AB2 have long been known to store hydrogen in their interstitial sites to serve as reversible hydrogen storage materials (A and B are metallic elements). They have the potential to be hydrided to a maximum of ~ AB2H6 due to the impeding H-H interactions at neighboring interstitial sites. To achieve the highest weight percent of hydrogen storage in AB2H6, the lowest combined atomic weight of AB2 is required. The CaLi2 compound is the lightest known Laves phase, but it could not maintain its Laves structure when it was hydrided. Existing work of Akiba's group showed that a ternary Laves phase CaLi1.8Mg0.2 could be hydrided to form a hydrogenated Laves phase, but the absorbed hydrogen could not be released for reversible storage. Substitutions (Ca,X)Li1.8Mg0.2 are explored in the present study to see whether heavier elements [X = Sr, Ba and Ce] in small quantities can make the lightweight Laves compounds reversibly store hydrogen. Induction melting was successful in obtaining the desired Laves phases. The base system, CaLi1.8Mg0.2, formed a single phase, consistent with the literature result. Both Ca0.9Ba0.1Li 1.8Mg0.2 and Ca0.9Ce0.1Li1.8Mg 0.2 also formed a single-phase C14 Laves, whereas both Ca0.9Sr 0.1Li1.8Mg0.2 and Ca0.8Sr0.2Li 1.8Mg0.2 formed two seperature Laves phases with the same crystal structure, indicating a phase separation. The Ca0.8Ba 0.2Li1.8Mg0.2 composition completely lost the Laves-phase structure, forming CaLi2, CaMg2, BaLi 4 and Ca. All compounds tested at temperatures from 25 °C to 150 °C show the characteristic "plateau" behavior in the pressure

  8. Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Fernández, J. R.

    2015-12-01

    Interaction for both pure Al and Al-U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al-U interaction fits various properties of the Al2U, Al3U and Al4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al3U intermetallic in the Al/U interface in agreement with experimental evidence.

  9. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    SciTech Connect

    Fredrickson, Daniel C

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  10. Advancing techniques to constrain the geometry of the seismic rupture plane on subduction interfaces a priori: Higher-order functional fits

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Wald, David J.; Keranen, Katie

    2009-09-01

    Ongoing developments in earthquake source inversions incorporate nonplanar fault geometries as inputs to the inversion process, improving previous approaches that relied solely on planar fault surfaces. This evolution motivates advancing the existing framework for constraining fault geometry, particularly in subduction zones where plate boundary surfaces that host highly hazardous earthquakes are clearly nonplanar. Here, we improve upon the existing framework for the constraint of the seismic rupture plane of subduction interfaces by incorporating active seismic and seafloor sediment thickness data with existing independent data sets and inverting for the most probable nonplanar subduction geometry. Constraining the rupture interface a priori with independent geological and seismological information reduces the uncertainty in the derived earthquake source inversion parameters over models that rely on simpler assumptions, such as the moment tensor inferred fault plane. Examples are shown for a number of well-constrained global locations. We expand the coverage of previous analyses to a more uniform global data set and show that even in areas of sparse data this approach is able to accurately constrain the approximate subduction geometry, particularly when aided with the addition of data from local active seismic surveys. In addition, we show an example of the integration of many two-dimensional profiles into a three-dimensional surface for the Sunda subduction zone and introduce the development of a new global three-dimensional subduction interface model: Slab1.0.

  11. Advancing techniques to constrain the geometry of the seismic rupture plane on subduction interfaces a priori: Higher-order functional fits

    USGS Publications Warehouse

    Hayes, G.P.; Wald, D.J.; Keranen, K.

    2009-01-01

    Ongoing developments in earthquake source inversions incorporate nonplanar fault geometries as inputs to the inversion process, improving previous approaches that relied solely on planar fault surfaces. This evolution motivates advancing the existing framework for constraining fault geometry, particularly in subduction zones where plate boundary surfaces that host highly hazardous earthquakes are clearly nonplanar. Here, we improve upon the existing framework for the constraint of the seismic rupture plane of subduction interfaces by incorporating active seismic and seafloor sediment thickness data with existing independent data sets and inverting for the most probable nonplanar subduction geometry. Constraining the rupture interface a priori with independent geological and seismological information reduces the uncertainty in the derived earthquake source inversion parameters over models that rely on simpler assumptions, such as the moment tensor inferred fault plane. Examples are shown for a number of wellconstrained global locations. We expand the coverage of previous analyses to a more uniform global data set and show that even in areas of sparse data this approach is able to accurately constrain the approximate subduction geometry, particularly when aided with the addition of data from local active seismic surveys. In addition, we show an example of the integration of many two-dimensional profiles into a threedimensional surface for the Sunda subduction zone and introduce the development of a new global threedimensional subduction interface model: Slab1.0. ?? 2009 by the American Geophysical Union.

  12. Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions

    DOEpatents

    Rawers, James C.; Alman, David E.; Petty, Jr., Arthur V.

    1996-01-01

    Industrial applications of composites often require that the final product have a complex shape. In this invention intermetallic or ceramic phases are formed from sheets of unreacted elemental metals. The process described in this invention allows the final product shape be formed prior to the formation of the composite. This saves energy and allows formation of shaped articles of metal-intermetallic composites composed of brittle materials that cannot be deformed without breaking.

  13. Higher-order modes of storage ring rf cavities and their interaction with the beam at the Advanced Photon Source (APS)

    SciTech Connect

    Song, J.J.; Harkay, K.C.; Kang, Y.W.

    1997-09-01

    The higher-order modes (HOMs) of APS storage ring (SR) rf cavities and waveguides were measured under various operating conditions. The HOMs of the 352-MHz rf cavity can be one of the major contributors to the coupled bunch (CB) instability. The distribution of HOMs under various conditions of beam current, cavity temperature, cavity tuning, single-bunch and multi-bunch operation, and fill patterns, are presented. The HOMs` shunt impedance of the loaded cavities were also measured. The effect of stagger tuning of the 16 cavities and their waveguide system is compared, and the HOM dampers are examined.

  14. The adsorption, catalytic and structural characteristics of LaNi /SUB 5-x/ Co /SUB x/ intermetallic compounds and their hydrides -

    SciTech Connect

    Konenko, I.R.; Fedorovskaya, E.A.; Klabunovskii, E.I.; Slinkin, A.A.; Starodubtseva, E.V.; Stepanov, Y.P.

    1986-10-01

    The hydrogen adsorption, propylene hydrogenation catalysis, and magnetic properties of LaNi /SUB 5-x/ Co /SUB x/ (0 intermetallic compounds (IMC) and their hydrides were studied. An extremal dependence of the specific catalytic activity on the catalyst composition was found. The rate of propylene hydrogenation obeys a kinetic equation which is zero-order in hydrogen and first-order relative to the olefin. Comparison of the data for the catalytic, magnetic, and physicochemical properties of the IMC and their hydrides showed that the catalytic activity of these compounds is related to the hydrogen affinity of the IMC and their structural features related to the ratio of the nickel and cobalt atoms.

  15. Wear Behavior and Mechanism of Fe-Al Intermetallic Coating Prepared by Hot-Dip Aluminizing and Diffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Y.; Zhou, Y.; Liu, J. Q.; Chen, K. M.; Mo, J. G.; Cui, X. H.; Wang, S. Q.

    2016-05-01

    A Fe-Al intermetallic compound coating was prepared on AISI H13 steel by hot-dip aluminizing and subsequent high-temperature diffusion. Dry sliding wear tests of the Fe-Al intermetallic coating were performed at 298 K to 873 K (25 °C to 600 °C). The wear behavior of the Fe-Al intermetallic coating was noticed to vary markedly with the temperature and load. At 298 K (25 °C), the wear rate rapidly increased with an increase of the load. As the temperature was elevated, the wear rate dramatically decreased except for the cases under 300 N at 473 K and 673 K (200 °C and 400 °C). The Fe-Al intermetallic coating possessed an excellent elevated-temperature wear performance, especially at 673 K to 873 K (400 °C to 600 °C), but worse room-temperature one, which were noticed to be attributed to the existence and inexistence of thin tribo-oxide layers, respectively. Such a thin tribo-oxide layer was considered to provide a protection for the intermetallic compound. When the tribo-oxide layer did not form at room temperature or the formed one was massively delaminated above the critical load at elevated temperatures, Fe-Al intermetallic coating possessed poor wear resistance.

  16. Extreme Poisson's ratios and their electronic origin in B2 CsCl-type AB intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Jones, Travis E.; Li, W.; Zhou, Y. C.

    2012-04-01

    Negative Poisson's ratios have been observed in a variety of metals and alloys. However, the electronic origin of this effect remains unclear, as is evident by our limited knowledge about intermetallics showing this behavior. In an effort to clarify the electronic origin of a negative Poisson's ratio, we have performed a systematic and comprehensive study of extreme (both positive and negative) Poisson's ratios behavior in the B2 CsCl-type AB intermetallic family (including 14 common intermetallics and 128 rare-earth-metal transition or main-group-metal intermetallics) by way of density functional theory calculations. We found a pronounced correlation between the extreme Poisson's ratios and the elastic anisotropy, with approximately 70% of the B2 intermetallics showing intrinsic auxetic behavior. We went on to examine the topology and geometry of the electron charge density and found that the extreme Poisson's ratios are attributable to the directionality of the bonds of the material. Auxetic materials were found to have nondirectional bonds, and nonauxetic compounds had directional bonds. Our findings provide an essential electronic perspective to forecast the auxetic behavior, and suggest a new application for intermetallic compounds.

  17. Europium substitution into intermetallic phases grown in Ca/Zn flux

    SciTech Connect

    Stojanovic, Milorad; Latturner, Susan E.

    2009-08-15

    Replacement of calcium with europium in the phases Ca{sub 21}Ni{sub 2}Zn{sub 36} and CaNi{sub 2}Zn{sub 3} was attempted to explore the possibility of substitution in metal flux reactions and potential magnetic interactions between closely spaced Eu{sup 2+} ions. Limited substitution occurs when Eu is added to the reaction of nickel in a Ca/Zn flux mixture, up to stoichiometries of Eu{sub 5.8(3)}Ca{sub 15.2(3)}Ni{sub 2}Zn{sub 36} and Eu{sub 0.42(8)}Ca{sub 0.58(8)}Ni{sub 2}Zn{sub 3}. Structural characterization and magnetic susceptibility studies on Eu{sub x}Ca{sub 21-x}Ni{sub 2}Zn{sub 36} phases indicate that the Eu and Ca ions do not form an even solid solution on their sites, but instead segregate in separate regions of the crystals. The europium-rich regions of the samples order ferromagnetically, with T{sub C} dependent on the size of the clusters. If the concentration of Eu in the flux is raised above 20 mol%, a new compound Eu{sub 1.63(1)}Ca{sub 1.37(1)}Ni{sub 2}Zn{sub 3} (Cmcm, a=4.1150(5) A, b=16.948(2) A, c=10.302(1) A, Z=4, R{sub 1}=0.0396) is produced. - Graphical abstract: Exploration of europium substitution into intermetallic compounds grown in Ca/Zn flux has yielded analogs of Eu{sub x}Ca{sub 21-x}Ni{sub 2}Zn{sub 36} with unusual magnetic properties due to segregation of europium in the crystals; high concentrations of Eu in the flux trigger the growth of Eu{sub 1.63(1)}Ca{sub 1.37(1)}Ni{sub 2}Zn{sub 3} with a new structure type.

  18. Identification and Characterization of the Iron - Intermetallics Formed in Galvanneal Steel.

    NASA Astrophysics Data System (ADS)

    Grant, Richard Frederick George

    1995-01-01

    The demand to improve the corrosion resistance of steel sheet, particularly for use within the automotive industry, has led to a dramatic increase in the use of coated steels in place of cold-rolled sheet steel. Galvanneal steel results from the post annealing of the zinc-coated steel sheet, in which iron and zinc are interdiffused to form an iron-zinc alloy coating. Within this alloy coating, four main iron-zinc phases, Zeta, Delta, Gamma-1, and Gamma may be present. Manufacture of the most suitable coating requires identifying which phases form during the galvannealing process, an understanding of the properties of each phase and knowing how to control the formation of any particular phase or phases in order to obtain optimum material performance. Positive identification of each phase and the fraction present in a galvanneal coating is very difficult. The primary cause of this difficulty has been the lack of high quality data on the crystal structure and the related microstructure of the separate iron-zinc phases. Therefore, through a detailed investigation of the iron-zinc alloys, we have compiled a database of their microstructural properties and used this information to study commercially produced galvanneal steel coatings. A series of high purity iron-zinc alloys with iron concentrations in the range 5-30 at.% Fe were prepared and characterized. Bulk iron concentration of the samples were determined by chemical titration and induction coupled plasma spectroscopy. Sample homogeneity was analyzed with an electron microprobe and a scanning transmission electron microscope. Finally, Mossbauer spectroscopy and X-ray diffraction were employed to characterize the microstructural properties of the alloys as a function of iron concentration across each phase. Next, a new Mossbauer detector capable of analyzing commercial produced galvanneal coatings in-situ was constructed and tested. The detector is able to simultaneously detect the gamma-rays, X-rays, and conversion

  19. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    NASA Astrophysics Data System (ADS)

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-08-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys.

  20. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    PubMed Central

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-01-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys. PMID:27488621

  1. Phase stability of laves intermetallics in stainless steel-zirconium alloys.

    SciTech Connect

    Abraham, D. P.

    1999-04-08

    Phase transformations occurring in a stainless steel-15 wt% zirconium (SS-15Zr) alloy were studied by in situ neutron diffraction. Neutron diffraction patterns as a function of time were obtained on alloys that were held at various elevated temperatures (1084-1275 C). As-cast SS-15Zr alloys contain ferrite, austenite, ZrFe{sub 2}-type Laves polytypes C36 and C15, and small amounts of a Fe{sub 23}Zr{sub 6}-type intermetallic. Annealing at high temperatures resulted in an increase of the Fe{sub 23}Zr{sub 6}, intermetallic content. The C15 Laves polytype is the equilibrium phase for T {le} 1230 C; C36 is the stable polytype at higher temperatures ({approximately}1275 C). Phase changes were slow for temperatures <1100 C.These findings have important implications for use of the SS-15Zr alloy as a nuclear waste form.

  2. A reliability study on tin based lead free micro joint including intermetallic and void evolution

    NASA Astrophysics Data System (ADS)

    Feyissa, Frezer Assefa

    In microelectronics soldering to Cu pad lead to formation of two intermetallic structures in the solder -pad interface. The growth of these layers is accompanied by microscopic voids that usually cause reliability concern in the industry. Therefore it is important to understand factors that contribute for the growth of IMC using various combination of reflow time, Sn thickness and aging temperature. Systematic study was conducted on Cu-Sn system to investigate the formation and growth of intermetallic compound (IMC) as well as voiding evolution for different solder thicknesses. The growth of the Cu6Sn5 IMC layer was found to be increasing as the Sn thicknesses increase after reflow while the Cu3Sn layer were decreasing under same conditions. Also after reflow and aging more voiding were shown to occur in the thin solder than thicker one.

  3. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    NASA Astrophysics Data System (ADS)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  4. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    SciTech Connect

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  5. Na-Au intermetallic compounds formed under high pressure at room temperature

    NASA Astrophysics Data System (ADS)

    Takemura, K.; Fujihisa, H.

    2011-07-01

    High-pressure powder x-ray diffraction experiments have revealed that sodium and gold react at room temperature and form Na-Au intermetallic compounds under high pressure. We have identified four intermetallic phases up to 60 GPa. The first phase (phase I) is the known Na2Au with the tetragonal CuAl2-type structure. It changed to the second phase (phase II) at ˜0.8 GPa, which has the composition Na3Au with the trigonal Cu3As-type or hexagonal Cu3P-type structure. Phase II further transformed to phase III at 3.6 GPa. Phase III has the same composition, Na3Au, with the cubic BiF3-type structure. Finally, phase III changed to phase IV at ˜54 GPa. Phase IV gives broad diffraction peaks, indicating large structural disorder.

  6. Self-assembling of atomic vacancies at an oxide/intermetallic alloy interface.

    PubMed

    Maurice, Vincent; Despert, Guillaume; Zanna, Sandrine; Bacos, Marie-Pierre; Marcus, Philippe

    2004-10-01

    Oxide layers grown on the surface provide an effective way of protecting metallic materials against corrosion for sustainable use in a broad range of applications. However, the growth of cavities at the metal/oxide interface weakens the adherence of the protective layer and can promote its spallation under service conditions, as observed for alumina layers formed by selective oxidation of aluminide intermetallic alloys used in high-temperature applications. Here we show that direct atomic-scale observations of the interface between an ultrathin protective oxide layer (alumina) grown on an intermetallic titanium aluminide substrate (TiAl) can be performed with techniques sensitive to the topmost atomic layers at the surface. Nanocavities resulting from the self-assembling of atomic vacancies injected at the interface by the growth mechanism of the protective oxide are observed for the first time, bringing new insight into the understanding of the fate of injected cavities in oxidation processes. PMID:15378049

  7. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound.

    PubMed

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-01-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys. PMID:27488621

  8. The role of zinc on the chemistry of complex intermetallic compounds

    SciTech Connect

    Xie, Weiwei

    2014-01-01

    Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co8+xZn12–x was analyzed for their crystal and electronic structures.

  9. Kinetically Controlling Surface Structure to Construct Defect-Rich Intermetallic Nanocrystals: Effective and Stable Catalysts.

    PubMed

    Rong, Hongpan; Mao, Junjie; Xin, Pingyu; He, Dongsheng; Chen, Yuanjun; Wang, Dingsheng; Niu, Zhiqiang; Wu, Yuen; Li, Yadong

    2016-04-01

    Kinetic control of surface defects is achieved, and cubic, concave cubic, and defect-rich cubic intermetallic Pt3 Sn nanocrystals are prepared for the electro-oxidation of formic acid. The generality of this kinetic approach is demonstrated by the fabrication of Pt-Mn nanocrystals with different surface defects. The defect-rich nanocrystals exhibit high catalytic activity and stability concurrently, indicating their potential application in fuel cells. PMID:26836038

  10. Hydrogen cycling-induced phase segregation in AB{sub 5}-type intermetallics

    SciTech Connect

    Mordkovich, V.Z.

    1998-12-31

    A study of hydrogen cycling-induced phase segregation in AB{sub 5}-type intermetallics is presented. Influence of temperature for the alloy compositions YNi{sub 4}Al, LaNi{sub 5}, Ce{sub 0.5}La{sub 0.5}Ni{sub 5} and Ce{sub 0.7}La{sub 0.3}Ni{sub 5} is shown. Morphology of the nanostructured particles formed is studied and discussed.

  11. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  12. Quantitative HAADF-STEM tomography of unsupported intermetallic Ga-Pd catalysts

    NASA Astrophysics Data System (ADS)

    Leary, Rowan; Saghi, Zineb; Armbrüster, Marc; Schlögl, Robert; Meurig Thomas, John; Midgley, Paul

    2012-07-01

    HAADF-STEM tomography has been used for characterisation of novel unsupported intermetallic Ga-Pd catalysts, with accompanying analysis by HRTEM and EDXS. Image processing techniques applied to the tomogram have facilitated segmentation and the subsequent extraction of size and shape parameters. The fidelity of the analysis has been critically examined, enabling identification of reconstruction artefacts and thereby more reliable determination of catalytically relevant properties. Further steps towards robust and accurate metrology by electron tomography are discussed.

  13. In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases

    PubMed Central

    Rameshan, Christoph; Stadlmayr, Werner; Penner, Simon; Lorenz, Harald; Mayr, Lukas; Hävecker, Michael; Blume, Raoul; Rocha, Tulio; Teschner, Detre; Knop-Gericke, Axel; Schlögl, Robert; Zemlyanov, Dmitry; Memmel, Norbert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503–523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase. In general, the composition of the PdGa model system is much more variable than that of its PdZn counterpart, which results in gradual changes of the near-surface composition with increasing annealing or reaction temperature. In contrast to near-surface PdZn, in methanol steam reforming, no temperature region with pronounced CO2 selectivity was observed, which is due to the inability of purely intermetallic PdGa to efficiently activate water. This allows to pinpoint the water-activating role of the intermetallic/support interface and/or of the oxide support in the related supported PdxGa/Ga2O3 systems, which exhibit high CO2 selectivity in a broad temperature range. In contrast, corresponding experiments starting on the purely bimetallic model surface in oxidative methanol reforming yielded high CO2 selectivity already at low temperatures (∼460 K), which is due to efficient O2 activation on PdGa. In situ detected partial and reversible oxidative Ga segregation on intermetallic PdGa is associated with total oxidation of intermediate C1 oxygenates to CO2. PMID:22875996

  14. The electron structure and magnetic properties of TiCo intermetallic

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.; Svechkarev, I. V.

    1987-05-01

    The energy band structure and magnetic and some thermodynamic characteristics of TiCo are investigated theoretically in the low-temperature region. The nature of the stability of this intermetallic is determined. It is shown that TiCo is characterized by a strong exchange enhancement of spin susceptibility. The factors responsible for the strong paramagnetism and superconductivity of TiCo are identified; the parameters of electron-photon and electron-paramagnon interactions are determined.

  15. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  16. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGESBeta

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  17. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Qian Chen

    2008-08-18

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  18. Preparation of nanocrystalline metal oxides and intermetallic phases by controlled thermolysis of organometallic coordination polymers

    NASA Astrophysics Data System (ADS)

    Rehbein, Marcus; Epple, Matthias; Fischer, R. Dieter

    2000-06-01

    Organometallic coordination polymers of the super-Prussian blue type [(Me 3Sn) nM(CN) 6] (Me=CH 3; n=3, 4; M=Fe, Co, Ru) were subjected to thermolysis in different atmospheres (air, argon, hydrogen/nitrogen). In air, oxides were found: Fe 2O 3/SnO 2 (crystalline and nanocrystalline), Co 2SnO 4 and RuO 2. In argon and in hydrogen, the intermetallic phases FeSn 2, CoSn 2, Ru 3Sn 7 and Fe 3SnC were obtained. A detailed mechanistic study was carried out using thermogravimetry (TG), X-ray diffraction (XRD), X-ray absorption spectroscopy (EXAFS) at Fe, Co, Ru and Sn K-edges, infrared spectroscopy (IR) and elemental analysis. Below 250°C, Me 3SnCN and (CN) 2 are released, whereas above 250°C oxidation or pyrolysis leads to the corresponding oxides or intermetallic phases. Polymeric cyanides containing at least two metals have turned out to be suitable precursors to prepare well-defined oxides and intermetallic phases at comparatively low temperature.

  19. Evolution of Intermetallic Phases in Soldering of the Die Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Song, Jie; Wang, Xiaoming; DenOuden, Tony; Han, Qingyou

    2016-06-01

    Most die failures are resulted from chemical reactions of dies and molten aluminum in the die casting of aluminum. The formation of intermetallic phases between a steel die and molten aluminum is investigated by stationary immersion tests and compared to a real die casting process. Three intermetallic phases are identified in the stationary immersion tests: a composite layer and two compact layers. The composite layer is a mixture of α bcc, Al, and Si phases. The α bcc phase changes in morphology from rod-like to spherical shape, while the growth rate of the layer changes from parabolic to linear pattern with immersion time. The first compact layer forms rapidly after immersion and maintains a relatively constant thickness. The second compact layer forms after 4 hours of immersion and exhibits parabolic growth with immersion time. In comparison, only a composite layer and the first compact layer are observed in a real die casting process. The fresh molten aluminum of high growth rate washes away the second intermetallic layer easily.

  20. Synthesis and densification of Ni{sub 3}(Si, Ti) intermetallics by hot isostatic pressing

    SciTech Connect

    Van Dyck, S.; Delaey, L.; Froyen, L.; Buekenhout, L.

    1996-12-31

    The production of complex parts from Ni{sub 3}(Si, Ti) intermetallic materials by reactive powder metallurgy offers significant advantages over more conventional processing techniques. The main problem associated with reactive powder metallurgy is controlling the exothermic reaction accompanying the synthesis of the intermetallic compound. The uncontrolled release of heat during the conversion of the reactants into nickel silicide leads to unacceptable deformation and melting of the part. The thermal evolution of a part during reactive synthesis of the intermetallic phase is described based on kinetic and heat transfer equations, giving the temperature and phase change as a function of the applied temperature cycle and the mass and size of the part under consideration. From this model, methods for controlling the exothermic reaction during synthesis are derived. When preparing nickel silicides by reactive powder metallurgy, the application of external pressure is required to eliminate porosity and to obtain good mechanical properties. The properties of materials produced by hot isostatic pressing, with different methods of reaction control, are compared to materials prepared from prealloyed powders. It is shown that by reactive HIP, materials can be obtained with a fracture strength exceeding 2,000 MPa.

  1. Prediction of Host-Guest Na-Fe Intermetallics at High Pressures.

    PubMed

    Zhou, Yuanyuan; Wang, Hui; Zhu, Chunye; Liu, Hanyu; Tse, John S; Ma, Yanming

    2016-07-18

    High pressure can fundamentally alter the electronic structure of elemental metals, leading to the unexpected formation of intermetallics with unusual structural features. In the present study, the phase stabilities and structural changes of Na-Fe intermetallics under pressure were studied using unbiased structure searching methods, combined with density functional theory calculations. Two intermetallics with stoichiometries Na3Fe and Na4Fe are found to be thermodynamically stable at pressures above 120 and 155 GPa, respectively. An interesting structural feature is that both have form a host-guest-like structure with Na sublattices constructed from small and large polygons similar to the host framework of the self-hosting incommensurate phases observed in Group I and II elements. Apart from the one-dimensional (1D) Fe chains running through the large channels, more interestingly, electrides are found to localize in the small channels between the layers. Electron topological analysis shows secondary bonding interactions between the Fe atoms and the interstitial electrides help to stabilize these structures. PMID:27341197

  2. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    NASA Astrophysics Data System (ADS)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  3. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    NASA Astrophysics Data System (ADS)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  4. A-site ordered quadruple perovskite oxides

    NASA Astrophysics Data System (ADS)

    Youwen, Long

    2016-07-01

    The A-site ordered perovskite oxides with chemical formula display many intriguing physical properties due to the introduction of transition metals at both A‧ and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A‧-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu–Fe intermetallic charge transfer leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms. Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).

  5. Intermetallic alloys: patterns and complexity. Final technical report

    SciTech Connect

    Chakraborty, Bulbul

    2001-11-07

    This report summarizes the research accomplishment of the P.I. and her collaborators. The major findings are (a) in the area of ordering in metallic alloys, the interplay between chemical and structural short-range order and (b) in the area of glassy dynamics in frustrated spin models. In the context of alloys, the development of a theoretical framework for incorporating the correlation between chemical and structural degrees of freedom has been a major accomplishment. The work on frustrated spin models has had a major impact on the understanding of the glass transition.

  6. Low temperature properties of some Er-rich intermetallic compounds

    SciTech Connect

    K.A. Gshneidner,jr; A.O. Pecharsky; L.Hale; V.K. Pecharsky

    2004-09-30

    The low temperature volumetric heat capacity ({approx}3.5 to 350 K) and magnetic susceptibility ({approx}4 to 320 K) of Er{sub 3}Rh, Er{sub 3}Ir, Er{sub 3}Pt, Er{sub 2}Al, and Er{sub 2}Sn have been measured. All of the compounds order antiferromagnetically (or ferrimagnetically), and most exhibit more than one magnetic ordering transition. The volumetric heat capacities in general are smaller than those of the prototype magnetic regenerator materials, except for Er{sub 3}Ir in the 12 to 14 K temperature range.

  7. Comparison of advanced DSP techniques for spectrally efficient Nyquist-WDM signal generation using digital FIR filters at transmitters based on higher-order modulation formats

    NASA Astrophysics Data System (ADS)

    Weng, Yi; Wang, Junyi; Pan, Zhongqi

    2016-02-01

    To support the ever-increasing demand for high-speed optical communications, Nyquist spectral shaping serves as a promising technique to improve spectral efficiency (SE) by generating near-rectangular spectra with negligible crosstalk and inter-symbol interference in wavelength-division-multiplexed (WDM) systems. Compared with specially-designed optical methods, DSP-based electrical filters are more flexible as they can generate different filter shapes and modulation formats. However, such transmitter-side pre-filtering approach is sensitive to the limited taps of finite-impulse-response (FIR) filter, for the complexity of the required DSP and digital-to-analog converter (DAC) is limited by the cost and power consumption of optical transponder. In this paper, we investigate the performance and complexity of transmitter-side FIR-based DSP with polarization-division-multiplexing (PDM) high-order quadrature-amplitude-modulation (QAM) formats. Our results show that Nyquist 64-QAM, 16-QAM and QPSK WDM signals can be sufficiently generated by digital FIR filters with 57, 37, and 17 taps respectively. Then we explore the effects of the required spectral pre-emphasis, bandwidth and resolution on the performance of Nyquist-WDM systems. To obtain negligible OSNR penalty with a roll-off factor of 0.1, two-channel-interleaved DAC requires a Gaussian electrical filter with the bandwidth of 0.4-0.6 times of the symbol rate for PDM-64QAM, 0.35-0.65 times for PDM-16QAM, and 0.3-0.8 times for PDM-QPSK, with required DAC resolutions as 8, 7, 6 bits correspondingly. As a tradeoff, PDM-64QAM can be a promising candidate for SE improvement in next-generation optical metro networks.

  8. Effect of carbon content on high temperature tensile properties of Fe{sub 3}Al based intermetallic alloys

    SciTech Connect

    Baligidad, R.G.; Prakash, U.; Radhakrishna, A.; Rao, V.R.; Rao, P.K.; Ballal, N.B.

    1997-01-01

    Ordered intermetallic alloys based on the iron aluminide Fe{sub 3}Al are being considered for high temperature structural applications. Though these alloys exhibit poor room temperature ductility and low fracture toughness, significant improvement in these respects can be achieved by alloying addition and process control. Most of the reported literature is on compositions with very low (<0.01 wt.%) carbon contents because carbon is known to embrittle these alloys causing significant reduction in ductility. However, no reasons have been ascribed to this loss in ductility. Recently the authors have reported that addition of carbon in the range of 0.14 to 0.50 wt.% significantly increases the room temperature strength of Fe-16 wt.% (28 at.%)Al alloys. These alloys also exhibited good room temperature by the interstitial carbon, as well as precipitation hardening due to the presence of Fe{sub 3}AlC precipitates. Here, the authors report elevated temperature tensile properties of these alloys.

  9. Synthesis, crystal structure, and magnetic properties of novel intermetallic compounds R2Co2SiC (R = Pr, Nd).

    PubMed

    Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E

    2014-06-16

    The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments. PMID:24898034

  10. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb{sub 3} intermetallic compound

    SciTech Connect

    Pagare, Gitanjali Jain, Ekta; Abraham, Jisha Annie; Sanyal, Sankar P.

    2015-08-28

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has not been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.

  11. Effect of Laser Processing Parameters on the Formation of Intermetallic Compounds in Fe-Al Dissimilar Welding

    NASA Astrophysics Data System (ADS)

    Meco, Sonia; Ganguly, Supriyo; Williams, Stewart; McPherson, Norman

    2014-09-01

    Fusion welding of steel to aluminum is difficult due to formation of different types of Fe-Al intermetallics (IMs). In this work, 2 mm-thick steel was joined to 6 mm aluminum in overlap configuration using a 8 kW CW fiber laser. A defocused laser beam was used to control the energy input and allow melting of the aluminum alone and form the bond by wetting of the steel substrate. Experimentally, the process energy was varied by changing the power density (PD) and interaction time separately to understand the influence of each of these parameters on the IM formation. It was observed that the IM formation is a complex function of PD and interaction time. It was also found that the mechanical strength of such joint could not be simply correlated to the IM layer thickness but also depends on the area of wetting of the steel substrate by molten aluminum. In order to form a viable joint, PD needs to be over a threshold value where although IM growth will increase, the strength will be better due to increased wetting. Any increase in interaction time, with PD over the threshold, will have negative effect on the bond strength.

  12. High-current vacuum-arc ion and plasma source ``Raduga-5'' application to intermetallic phase formation

    NASA Astrophysics Data System (ADS)

    Stepanov, Igor B.; Ryabchikov, Alexander I.; Kozlov, Eduard V.; Sharkeev, Yurii P.; Shulepov, Ivan A.; Kurzina, Irina A.; Sivin, Denis O.

    2006-03-01

    Phase composition, structural state, and mechanical properties of the ion-doped surface layers of Ni, Ti, and Fe targets with Al and Ti ions implanted into using the metal ion beam and plasma source Raduga 5 have been investigated. The high-intensity mode of implantation allowed us to obtain the ion-doped layers with the thickness exceeding the ion projected range by several orders of magnitude. By the transmission electron microscopy, it has been found that the fine-dispersed equilibrium intermetallic phases (Me3Al, MeAl) and the solid solution of aluminum were formed in the doped Ni, Ti, and Fe surface layers at the depth of up to 2600nm. The maximum dopant concentration reached 75%. It has been shown that the average size of the formed phases was of 70nm. The microhardness of the different target surface layers increased by 1.5-3 times. The wear resistance of the samples did not change within the temperature range of 300-700K.

  13. Rattling-enhanced superconductivity in M V2A l20(M =Sc ,Lu ,Y ) intermetallic cage compounds

    NASA Astrophysics Data System (ADS)

    Winiarski, M. J.; Wiendlocha, B.; Sternik, M.; Wiśniewski, P.; O'Brien, J. R.; Kaczorowski, D.; Klimczuk, T.

    2016-04-01

    Polycrystalline samples of four intermetallic compounds: M V2A l20 (M =Sc , Y, La, and Lu) were synthesized using an arc-melting technique. The crystal structures were analyzed by means of powder x-ray diffraction and Rietveld analysis, and the physical properties were studied by means of heat capacity, electrical resistivity, and magnetic susceptibility measurements down to 0.4 K. For Sc V2A l20 , Lu V2A l20 , and Y V2A l20 , superconductivity was observed with critical temperatures Tc=1.00 , 0.57, and 0.60 K, respectively. Superconductivity for the Lu compound is reported. Theoretical calculations of the electronic and phonon structures were conducted in order to analyze the superconductivity and dynamics in Sc V2A l20 , Y V2A l20 , and Lu V2A l20 and to explain the lack of a superconducting transition in La V2A l20 down to 0.4 K. The results of the experimental and theoretical studies show that all the compounds are weakly coupled type-II BCS superconductors, and reveal the importance of the M -atom anharmonic "rattling" modes for the superconductivity in these materials, which seem to enhance Tc, especially for Sc V2A l20 .

  14. Addressing Machining Issues for the Intermetallic Compound 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Wozniak, Walter A.; McCue, Terry R.

    2012-01-01

    60-NITINOL (60 wt.% Ni - 40 wt.% Ti) is being studied as a material for advanced aerospace components. Frequent wire breakage during electrical-discharge machining of this material was investigated. The studied material was fabricated from hot isostatically pressed 60-NITINOL powder obtained through a commercial source. Bulk chemical analysis of the material showed that the composition was nominal but had relatively high levels of certain impurities, including Al and O. It was later determined that Al2O3 particles had contaminated the material during the hot isostatic pressing procedure and that these particles were the most likely cause of the wire breakage. The results of this investigation highlight the importance of material cleanliness to its further implementation.

  15. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time. PMID:17817782

  16. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect

    Alvin, M.A.

    2002-09-19

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  17. Synthesis of ferromagnetic nanoparticles, formic acid oxidation catalyst nanocomposites, and late-transition metal-boride intermetallics by unique synthetic methods and single-source precursors

    NASA Astrophysics Data System (ADS)

    Wellons, Matthew S.

    The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their

  18. Solidification processing and phase transformations in ordered high temperature alloys. Final report, 30 March 1990-30 September 1992

    SciTech Connect

    Boettinger, W.J.; Bendersky, L.A.; Kattner, U.R.

    1993-01-20

    Useful high temperature alloys generally have microstructures consisting of more than one phase. Multiphase microstructures are necessary to develop acceptable toughness and creep strength in high temperature intermetallic alloy matrices. The optimum microstructures must be developed by a careful selection of processing path that includes both solidification and solid state heat treatment. Research has been conducted on the rapid solidification of selected intermetallic alloys and on the phase transformation paths that occur during cooling, primarily in the Ti-Al-Nb system. This report describes research performed in the Metallurgy Division at NIST under DARPA order 7469 between 1/1/89 and 12/31/92. Various research tasks were completed and the results have been published or have been submitted for publication.... Intermetallics, Ti-Al-Nb Alloys, Phase Diagrams, Phase Transformations, Ti-Al-Ta Alloys, MoSi2 Alloys.

  19. Drilling of intermetallic alloys gamma TiAl

    SciTech Connect

    Beranoagirre, A.; Olvera, D.; Lopez de Lacalle, L. N.; Urbicain, G.

    2011-01-17

    Due to their high strength/weight ratio and resistance to corrosion and wear, superalloys such as gamma TiAl or Inconel 718 appear as the best choice for the high mechanical/thermal demands in the vicinity of the combustion chamber of aircraft engines. There are assembled parts such as cases, disks or blisks; in the manufacturing of these components the last drilling operation could jeopardize the full work integrity adding new costs to the just very expensive parts. Therefore drilling is a high-added value step in the complete sequence. The present work is framed within the study of hole making in advanced materials used for lightweight applications in aerospace sector. Within this context, the paper presents the results from milling tests on three types of gamma TiAl alloys (extruded MoCuSi, ingot MoCuSi and TNB) to define an optimal set of cutting parameters, which will contribute to open the increase in use of these special alloys. Drilling tools made of integral hard metal were used, applying different feeds and cutting speeds. The influence of cutting speed and feed is discussed.

  20. Magnetic properties and structure of nonstoichiometric rare-earth transition-metal intermetallic compounds TbNi2Mn x (0 ≤ x ≤ 1.5)

    NASA Astrophysics Data System (ADS)

    Mushnikov, N. V.; Gaviko, V. S.; Gerasimov, E. G.; Terent'ev, P. B.; Tkach, I. A.

    2010-09-01

    Crystal structure, magnetization, coercive force, magnetic susceptibility, and anisotropic magnetostriction of nonstoichiometric rare-earth transition-metal intermetallic compounds TbNi2Mn x (0 ≤ x ≤ 1.5) have been studied. The samples with x ≤ 1 have an fcc structure, whereas TbNi2Mn1.25 has a rhombohedral structure of the PuNi3 type. It has been found that the magnetic ordering temperature increases sharply when manganese is added. As the Mn concentration grows, the magnetization and the magnetostriction decrease monotonically, while the coercive force increases. The experimental data obtained have been interpreted on the assumption that a partial substitution of manganese for terbium in TbNi2Mn x leads to local distortions of the crystal field acting on Tb ions, to the appearance of a local uniaxial random anisotropy, and to the formation of a noncollinear magnetic structure in the terbium sublattice.

  1. A Study on the Formation of Intermetallics During the Heat Treatment of Explosively Welded Al-Ti Multilayers

    NASA Astrophysics Data System (ADS)

    Foadian, Farzad; Soltanieh, Mansour; Adeli, Mandana; Etminanbakhsh, Majid

    2014-04-01

    Metallic-intermetallic laminate composites are promising materials for many applications, namely, in the aerospace industry. Ti/TiAl3 laminates are one of the interesting laminate composites, which are mostly used in aerospace applications. In this work, commercially pure aluminum and titanium sheets were explosively joined. The multilayer samples were annealed between 1 and 260 hours at 903 K (630 °C) in ambient atmosphere, and the formation and growth of the intermetallic compound at the Ti/Al interface were monitored. Microstructural investigations were carried out using optical and scanning electron microscopes equipped with energy-dispersive spectroscopy and the X-ray diffraction technique. The microhardness profile of the layers was also determined. The thickness and type of Al-Ti intermetallics were determined. It was found that the only intermetallic phase observed in the interfaces was TiAl3. It was also shown that two mechanisms for TiAl3 growth exist: reaction and diffusion controlled. The growth exponent was equal to 0.94 for the reaction-controlled mechanism (first step) and 0.31 for the diffusion-controlled mechanism (second step). These values were in good agreement with theoretical values (1 and 0.5 for the first and second steps, respectively). Based on the results of this research, a kinetic model for the formation and growth of TiAl3 intermetallic phase was proposed.

  2. Effect of Specific Energy Input on Microstructure and Mechanical Properties of Nickel-Base Intermetallic Alloy Deposited by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Kumar, Santosh; Chandra, Kamlesh; Vishwanadh, B.; Kishore, R.; Viswanadham, C. S.; Srivastava, D.; Dey, G. K.

    2012-12-01

    This article describes the microstructural features and mechanical properties of nickel-base intermetallic alloy laser-clad layers on stainless steel-316 L substrate, with specific attention on the effect of laser-specific energy input (defined as the energy required per unit of the clad mass, kJ/g) on the microstructure and properties of the clad layer, keeping the other laser-cladding parameters same. Defect-free clad layers were observed, in which various solidified zones could be distinguished: planar crystallization near the substrate/clad interface, followed by cellular and dendritic morphology towards the surface of the clad layer. The clad layers were characterized by the presence of a hard molybdenum-rich hexagonal close-packed (hcp) intermetallic Laves phase dispersed in a relatively softer face-centered cubic (fcc) gamma solid solution or a fine lamellar eutectic phase mixture of an intermetallic Laves phase and gamma solid solution. The microstructure and properties of the clad layers showed a strong correlation with the laser-specific energy input. As the specific energy input increased, the dilution of the clad layer increased and the microstructure changed from a hypereutectic structure (with a compact dispersion of characteristic primary hard intermetallic Laves phase in eutectic phase mixture) to near eutectic or hypoeutectic structure (with reduced fraction of primary hard intermetallic Laves phase) with a corresponding decrease in the clad layer hardness.

  3. Hydrogen sorption rate by intermetallic compounds suitable for tritium storage

    SciTech Connect

    Penzhorn, R.D.; Sirch, M.; Perevezentsev, A.N.; Borisenko, A.N.

    1995-10-01

    The kinetics of the sorption of molecular hydrogen by ZrCo and Zr{sub 0.8}Ti{sub 0.3}Mn{sub 1.9} was investigated as function of temperature at several constant pressures of hydrogen. A comparison between the isothermal hydrogen sorption rates by ZrCo, Zr{sub 0.8}Ti{sub 0.3}Mn{sub 1.9} and LaNi{sub 4.7}Al{sub 0.3} is given and reaction mechanisms are discussed. From fittings of the experimental results to well known gas/solid reaction rate laws it was concluded that the reaction mechanisms of the reaction with ZrCo is complex and dependent upon the prevailing reaction conditions. The hydrogen sorption rate by the powder of all three IMC`s was found to be second order in hydrogen pressure. 8 refs., 7 figs., 1 tab.

  4. Mechanical Properties of Iron Alumininides Intermetallic Alloy with Molybdenum Addition

    SciTech Connect

    Zuhailawati, H.; Fauzi, M. N. A.

    2010-03-11

    In this work, FeAl-based alloys with and without molybdenum addition were fabricated by sintering of mechanically alloyed powders in order to investigate the effect of molybdenum on iron aluminide mechanical properties. Bulk samples were prepared by mechanical alloying for 4 hours, pressing at 360 MPa and sintering at 1000 deg. C for 2 hours. The specimens were tested in compression at room temperature using Instron machine. The phase identification and microstructure of the consolidated material was examined by x-ray diffraction and scanning electron microscope correspondingly. Results show that 2.5 wt%Mo addition significantly increased the ultimate stress and ultimate strain in compressive mode due to solid solution hardening. However, the addition of Mo more than 2.5 wt% was accompanied by a reduction in both properties caused by the presence of Mo-rich precipitate particles.

  5. Random-anisotropy ferromagnetic state in the C u5G d0.54C a0.42 intermetallic compound

    NASA Astrophysics Data System (ADS)

    Krnel, M.; Vrtnik, S.; Koželj, P.; Kocjan, A.; Jagličić, Z.; Boulet, P.; de Weerd, M. C.; Dubois, J. M.; Dolinšek, J.

    2016-03-01

    By applying the alloy design concept that stable intermetallic phases between two immiscible elements can be formed by adding a third element that forms stable compounds with both elements, we have synthesized the first known stable intermetallic compound of Cu, Gd, and Ca, where copper acts as the mediating element between the immiscible Gd and Ca. A compound with the composition C u84G d9C a7 (equivalent to C u5G d0.54C a0.42 ) was synthesized by the Czochralski technique in the form of a large single crystal of high structural perfection, and the structural model was determined by x-ray diffraction (XRD). The compound crystallizes in the hexagonal system, space group P 6 /mmm, and the crystal structure is isotypic to the C u5.44T b0.78 . The unit cell contains inherent disorder due to partial occupation of the Cu3 site and the substitutional disorder at the Gd/Ca mixed site located at the vertices of the hexagonal unit cell, where Gd and Ca randomly substitute each other. The random substitution of magnetic Gd by nonmagnetic Ca atoms makes the magnetic Gd lattice disordered, which leads to interesting magnetic ordering at low temperatures that occurs below TC=24 K in zero and low external magnetic fields. By performing a large set of complementary experiments along two perpendicular crystallographic directions (the [001] hexagonal-axis direction and the [100] hexagonal-plane direction), we show that the zero-field collective magnetic state can be described as a random-anisotropy ferromagnetic state, where random magnetic anisotropies originate from the magnetic dipole interactions between the Gd moments in the magnetically disordered lattice. The random-anisotropy ferromagnetic state in the C u84G d9C a7 is characterized by randomness and frustration of magnetic interactions, which are the two ingredients that allow classifying this state into the generic class of spin glasses. Our paper opens the possibility to search for new ternary intermetallic phases in the

  6. Shock-loading response of advanced materials

    NASA Astrophysics Data System (ADS)

    Gray, G. T., III

    1993-05-01

    Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper, the issues relevant to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials are reviewed.

  7. Development of Cu alloy anode and separator coated with Al-Ni intermetallic compound

    SciTech Connect

    Toyokura, K.; Hoshino, K.; Yamamoto, M.

    1996-12-31

    Anode made of Cu alloy and separator coated with Al-Ni intermetallic compound have been developed for VCFC. Anode of Ni alloy is usually used. However, the alternative of cost lower than Ni alloy anode should be needed, because Ni is expensive. Cu is attractive as an anode material for VCFC because it is inexpensive and electrochemically noble. However, the creep resistance of Cu is not sufficient, compared with Ni alloy. In this study, strengthening due to oxide-dispersed microstructure has been developed in Cu-Ni-Al alloy with the two-step sintering process. A wet-seal technique has been widely applied for gas-sealing and supporting of electrolyte in MCFC. Since the wet-seal area is exposed to a severe corrosive environment, corrosion resistance of material for wet sealing is related with the cell performance. Al-Ni plating with post-heat treating for stainless steel has been investigated. Stainless steel substrate was plated with Al after being coated with Ni, then heat-treated at 750 {degrees}C for 1 hour in Ar gas atmosphere. Due to the treatment, Al-Ni intermetallic compound ( mainly Al3Ni2 ) layer is formed on stainless steel surface. The long-term immersion test was carried out till 14,500 hours in 62 mol% Li{sub 2}CO{sub 3}-38 mol% K{sub 2}CO{sub 3} at 650 {degrees}C under air-30%CO{sub 2} atmosphere, for the purpose of evaluating the corrosion resistance and thermal stability of Al-Ni intermetallic compound layer in actual generating with VCFC.

  8. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.

    PubMed

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J

    2015-02-01

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others. PMID:25652998

  9. Determining factor of median diameter in intermetallic compound nanoparticles prepared by pulsed wire discharge

    NASA Astrophysics Data System (ADS)

    Nagasawa, Shinobu; Koishi, Tetsuya; Tokoi, Yoshinori; Suzuki, Tsuneo; Nakayama, Tadachika; Suematsu, Hisayuki; Niihara, Koichi

    2014-02-01

    The preparation of NiAl intermetallic compound nanoparticles was carried out by pulsed wire discharge (PWD) using twisted pure Ni and Al wires in N2 ambient gas with varying number of turns of the wire (Nt), energy ratio (K), and ambient gas pressure (P). From the voltage and current waveforms during the wire heating, the energy deposition ratio up to the voltage peak (Kp) was calculated. It increased with an increase in Nt to 0.4 turns/mm and with increases in K and P. Under all the conditions, with an increase in Kp, the Ni composition ratio of the prepared particles (CNi) became closer to that of the wire (= 51.2 mol %). Furthermore, the collection rate (Rc) increased and the median particle diameter (d50) decreased. In particular, the change in d50 due to the change in Nt was not predicted by the relationship of d50 and Dth in our previous report. Single-phase NiAl intermetallic compound nanoparticles were successfully prepared under the condition in which Nt is 0.4 turns/mm, K is 3.4, and P is 100 kPa, where relatively high value of Kp was obtained. From these results, Kp was determined to be an important factor that determines the composition, collection rate, and median diameter of intermetallic compound nanoparticles synthesized by PWD using different kinds of twisted wires under various experimental conditions. This may be because of the selective wire heating in high-resistance parts that are associated with the introduction of lattice defects and/or necks by overwinding.

  10. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-08-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  11. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J.

    2015-02-01

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  12. Lattice defects affecting moisture-induced embrittlement of Ni-based L1{sub 2} ordered intermetallics

    SciTech Connect

    Takasugi, T.; Hanada, S.

    1997-12-31

    Moisture-induced embrittlement of L1{sub 2} alloys (such as Ni{sub 3}(Si,Ti) and Ni{sub 3}Al) is observed by tensile test and SEM fractography. A variety of microstructures were prepared by selecting pre-deformation and heat treatment conditions. It is shown that tensile ductility and the associated fractography depend on structure as well as test atmosphere. Well-annealed specimens are susceptible to moisture-induced embrittlement while pre-deformed specimens are resistive to moisture-induced embrittlement. Also, this embrittlement is generally sensitive to the heat treatment scheme preceded by the pre-deformation. Results indicate that the embrittlement occurs when hydrogen is enriched on grain boundaries. On the other hand, the embrittlement can be suppressed when hydrogen is trapped at lattice defects such as dislocations and vacancies. These results are discussed in association with the kinetics of hydrogen in the pre-deformed microstructure.

  13. Investigation of Strain Aging in the Ordered Intermetallic Compound beta-NiAl. Ph.D. Thesis Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Weaver, Mark Lovell

    1995-01-01

    The phenomenon of strain aging has been investigated in polycrystalline and single crystal NiAl alloys at temperatures between 300 and 1200 K. Static strain aging studies revealed that after annealing at 1100 K for 7200 s (i.e., 2h) followed by furnace cooling, high purity, nitrogen-doped and titanium-doped polycrystalline alloys exhibited continuous yielding, while conventional-purity and carbon-doped alloys exhibited distinct yield points and Luders strains. Prestraining by hydrostatic pressurization removed the yield points, but they could be reintroduced by further annealing treatments. Yield points could be reintroduced more rapidly if the specimens were prestrained uniaxially rather than hydrostatically, owing to the arrangement of dislocations into cell structures during uniaxial deformation. The time dependence of the strain aging events followed at t(exp 2/3) relationship suggesting that the yield points observed in polycrystalline NiAl were the result of the pinning of mobile dislocations by interstitials, specifically carbon. Between 700 and 800 K, yield stress plateaus, yield stress transients upon a ten-fold increase in strain rate, work hardening peaks, and dips in the strain rate sensitivity (SRS) have been observed in conventional-purity and carbon-doped polycrystals. In single crystals, similar behavior was observed; in conventional-purity single crystals, however, the strain rate sensitivity became negative resulting in serrated yielding, whereas, the strain rate sensitivity stayed positive in high purity and in molybdenum-doped NiAl. These observations are indicative of dynamic strain aging (DSA) and are discussed in terms of conventional strain aging theories. The impact of these phenomena on the composition-structure-property relations are discerned. Finally, a good correlation has been demonstrated between the properties of NiAl alloys and a recently developed model for strain aging in metals and alloys developed by Reed-Hill et al.

  14. Order Up

    ERIC Educational Resources Information Center

    Gibeault, Michael

    2005-01-01

    Change orders. The words can turn the stomachs of administrators. Horror stories about change orders create fear and distrust among school officials, designers and builders. Can change orders be avoided? If car manufacturers can produce millions of intricately designed vehicles, why can't the same quality control be achieved on a construction…

  15. Fabrication of intermetallic coatings for electrical insulation and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.-H.; Cho, W.D.

    1996-11-01

    Several intermetallic films were applied to high-temperature alloys (V alloys and 304, 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain growth at 1000 C for the V-5Cr-5Ti alloy was investigated to determine stability of the alloy substrate during coating formation by CVD or metallic vapor processes at 800-850 C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and XRD analysis; they were also tested for electrical resistivity and corrosion resistance. Results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  16. Method of fabricating a homogeneous wire of inter-metallic alloy

    DOEpatents

    Ohriner, Evan Keith; Blue, Craig Alan

    2001-01-01

    A method for fabricating a homogeneous wire of inter-metallic alloy comprising the steps of providing a base-metal wire bundle comprising a metal, an alloy or a combination thereof; working the wire bundle through at least one die to obtain a desired dimension and to form a precursor wire; and, controllably heating the precursor wire such that a portion of the wire will become liquid while simultaneously maintaining its desired shape, whereby substantial homogenization of the wire occurs in the liquid state and additional homogenization occurs in the solid state resulting in a homogenous alloy product.

  17. Preparation and properties of the Ni-Al/Fe-Al intermetallics composite coating produced by plasma cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Min; Liu, Bang-Wu; Sun, Dong-Bai

    2011-12-01

    A novel approach to produce an intermetallic composite coating was put forward. The microstructure, microhardness, and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) analysis, microhardness test, and ball-on-disc wear experiment. XRD results indicate that some new phases FeAl, Fe0.23Ni0.77Al, and Ni3Al exit in the composite coating with the Al2O3 addition. SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures. The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating. The formation mechanism of the intermetallic compounds was also investigated.

  18. Hydrogen occupancy in the RNi{sub 4}Mg (R=Y, La, Ce, and Nd) intermetallic compounds and hydrides

    SciTech Connect

    Hahn-Herrera, Otto; Orgaz, Emilio; Aburto, Andrea

    2009-10-15

    We have investigated the effect of hydrogen on the electronic strtucture of the RNi{sub 4}Mg (R=Y, La, Ce, Pr, and Nd) intermetallics. By means of a two-step approach, the projected plane-wave and linearized plane-waves methods, we studied the hydrogen-insertion energetics on the intermetallic matrix and the H-vacancy formation in the hydride compound. We found that particular interstitial sites in the intermetallics are suitable to allocate hydrogen and form a solid solution. The effect of these interstitials on the electronic structure is discussed. In the other hand, the hydrogen-occupied sites in the hydride are found to be energetically equivalent.

  19. Mechanical behavior of molybdenum-modified Cr{sub 3}Si/Cr{sub 5}Si{sub 3} intermetallics

    SciTech Connect

    Nazmy, M.; Noseda, C.; Augustin, S.; Lipetzky, P.; Stoloff, N.S.

    1997-12-31

    Two molybdenum-modified chromium silicide base intermetallics have been prepared by powder metallurgy and investigated with respect to the hardness, flexural strength and fracture toughness at different temperatures. As toughening phase, tungsten, Pt-6%Rh and Saphikon fibers were tried to improve the toughness of these two intermetallics. The tungsten fibers generated microcracks in the base material due to the large mismatch in the coefficients of thermal expansion (CTE) between the fiber and the intermetallic. The Pt-6%Rh and Saphikon fibers did not exhibit such cracking. An improvement in the fracture toughness was observed especially at elevated temperatures. The Saphikon fibers did not show interfacial reaction. Some limited diffusion of silicon was detected in the Pt-6%Rh phase after 1,400 C treatment.

  20. Reduced workfunction intermetallic seed layers allow growth of porous n-GaN and low resistivity, ohmic electron transport.

    PubMed

    Bilousov, Oleksandr V; Carvajal, Joan J; Drouin, Dominique; Mateos, Xavier; Díaz, Francesc; Aguiló, Magdalena; O'Dwyer, Colm

    2012-12-01

    Porous GaN crystals have been successfully grown and electrically contacted simultaneously on Pt- and Au-coated silicon substrates as porous crystals and as porous layers. By the direct reaction of metallic Ga and NH(3) gas through chemical vapor deposition, intermetallic metal-Ga alloys form at the GaN-metal interface, allowing vapor-solid-solid seeding and subsequent growth of porous GaN. Current-voltage and capacitance-voltage measurements confirm that the intermetallic seed layers prevent interface oxidation and give a high-quality reduced workfunction contact that allows exceptionally low contact resistivities. Additionally, the simultaneous formation of a lower workfunction intermetallic permits ohmic electron transport to n-type GaN grown using high workfunction metals that best catalyze the formation of porous GaN layers and may be employed to seed and ohmically contact a range of III-N compounds and alloys for broadband absorption and emission. PMID:23167596

  1. CeRu2Al10: Anomalous Magnetic Ordering and Its Field Stability

    NASA Astrophysics Data System (ADS)

    Strydom, A. M.

    2010-04-01

    The intermetallic compound CeRu2Al10 orders in a new crystal structure type that is cage-like on account of its peculiar atomic arrangement and large interatomic distances—especially concerning the environment of the rare-earth element Ce. In previous work we showed that anomalous thermal, electronic, and magnetic properties of this compound coalesce into a phase transition at T *=27 K, which is exceptionally high for a cerium intermetallic compound. T * has been characterized through various temperature-dependent properties which suggest a multi-parameter nature of the ordering at T *. Here we report on continued investigations into this compound and focus in particular on the response to applied magnetic fields. Whereas transport properties in the ordered region are receptive to magnetic fields, the transition itself turns out to be more robust and is insensitive to static fields up to 14 T.

  2. An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy

    SciTech Connect

    Soboyejo, W.O.; Dipasquale, J.; Ye, F.; Mercer, C.; Srivatsan, T.S.; Konitzer, D.G.

    1999-04-01

    This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa{radical}m), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress ({approximately}9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the unzipping of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics.

  3. Electric field gradients at Ta in Zr and Hf inter-metallic compounds

    NASA Astrophysics Data System (ADS)

    Terrazos, L. A.; Petrilli, H. M.; Marszalek, M.; Saitovitch, H.; Silva, P. R. J.; Blaha, P.; Schwarz, K.

    2002-03-01

    Here we calculate the electric field gradient (EFG) at the nucleus of the substitutional Ta impurity site in Zr 2T and Hf 2T (T=Cu, Ag, Au, and Pd) C11 b inter-metallic compounds. We use the ab initio FP-LAPW method as embodied in the Wien97 code in a super-cell approach and include lattice relaxations around the impurity. Our results are compared with EFG values inferred from measurements of the quadrupole coupling constants at the 111Ta probe in these compounds performed with the time differential perturbed angular correlation (TDPAC) technique. We also performed EFG calculations for the pure inter-metallic compounds. Through the comparison of theoretical and experimental EFGs in these cases, we elucidate the role played by the Ta probe in the TDPAC measurements of Hf and Zr compounds. Our results show that, although the EFGs at the Hf site are very similar to the EFGs at the Ta impurity, there is no direct correlation between the Zr and Ta EFGs.

  4. First-principles study of the binary intermetallics in the Au-Rb system

    NASA Astrophysics Data System (ADS)

    Benmechri, Achraf; Djaballah, Yassine; Amer, Ahmed Said; Belgacem-Bouzida, Aissa; Bouderba, Hichem

    2014-06-01

    First-principles calculations within density functional theory (DFT) with the projector augmented wave (PAW) technique were used to investigate the stabilities of intermetallics in the Au-Rb system at 0 K. Four intermetallics: Au7Rb3, Au3Rb2, Au5Rb and AuRb were investigated in their observed experimental structures. The Au2Rb compound, reported in the Au-Rb phase diagrams without specifying explicitly its structure, was also investigated by inspecting several hypothetical structures. A suspect compound (AuRb2) was also investigated. Results show that: (i) The Au3Rb2 and Au7Rb3 compounds, which were never reported in any Au-Rb phase diagram, are stable at 0 K. (ii) The Au2Rb compound is not a ground state for all the tested structures. (iii) Stability of the Au5Rb and AuRb compounds was confirmed. (iv) The new compound AuRb2, not yet reported experimentally, is found mechanically stable at 0 K.

  5. Mining for elastic constants of intermetallics from the charge density landscape

    NASA Astrophysics Data System (ADS)

    Kong, Chang Sun; Broderick, Scott R.; Jones, Travis E.; Loyola, Claudia; Eberhart, Mark E.; Rajan, Krishna

    2015-02-01

    There is a significant challenge in designing new materials for targeted properties based on their electronic structure. While in principle this goal can be met using knowledge of the electron charge density, the relationships between the density and properties are largely unknown. To help overcome this problem we develop a quantitative structure-property relationship (QSPR) between the charge density and the elastic constants for B2 intermetallics. Using a combination of informatics techniques for screening all the potentially relevant charge density descriptors, we find that C11 and C44 are determined solely from the magnitude of the charge density at its critical points, while C12 is determined by the shape of the charge density at its critical points. From this reduced charge density selection space, we develop models for predicting the elastic constants of an expanded number of intermetallic systems, which we then use to predict the mechanical stability of new systems. Having reduced the descriptors necessary for modeling elastic constants, statistical learning approaches may then be used to predict the reduced knowledge-based required as a function of the constituent characteristics.

  6. Properties Evaluation and Studying Production Mechanism of Nanocrystalline NiAl Intermetallic Compound by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Khajesarvi, Ali; Akbari, Golamhossein

    2016-04-01

    Ni50Al50 intermetallic compound was synthesized by mechanical alloying (MA) of elemental mixtures of Ni and Al powders in a planetary ball mill. After 16 hours of milling and obtaining crystallites with a critical size, the initial NiAl compound was formed along with the combustive reaction after opening the vial lid. In the time interval of 16 to 128 hours, the reaction from combustive state reached the explosive state. Finally, after 128 hours of milling, the initial powders were wholly transformed into NiAl before completion of the milling time. Structural changes of powder particles during MA were studied by X-ray diffractometry and scanning electron microscopy. The crystallite size measurements revealed that the grain size of the NiAl phase decreased from 155 to 26 nm with increasing MA time from 8 to 128 hours. Microhardness for nanocrystalline Ni50Al50 intermetallic compound produced after 128 hours of milling was measured as about 350 Hv.

  7. Numerical Investigation of the Ballistic Performance of Metal-Intermetallic Laminate Composites

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Zhu, Shifan; Guo, Chunhuan; Vecchio, Kenneth S.; Jiang, Fengchun

    2015-08-01

    Metal-intermetallic laminate composites (MIL) based on the Ti-aluminide system are a new class of lightweight structural materials that can be used as either appliqué or structural armor. The explicit 2D finite element code LS-DYNA was employed to investigate the ballistic performance and failure mechanism of MIL composite plate subjected to impact loading. For comparison's sake, the penetration simulation was also conducted for a monolithic intermetallic Al3Ti sample under the same conditions. Damage tolerant abilities of the two targets were evaluated based on the analysis of the projectile tail velocity, crack density and absorbed material energy. The simulation results indicated that when cracks initiated in the Al3Ti matrix propagated to the interface between the matrix and reinforcement, their directions changed due to the bridging effect of the reinforcement Ti, which enabled the MIL composite to consume more energy as a result of the increase of the crack path lengths created by the crack deflection and bifurcation. Additionally, some other energy-absorbing mechanisms, such as deflection of cracks, plastic deformation of the ductile Ti also play important roles in enhancing the energy-absorbing capacity of the MIL composites.

  8. Observations of a dynamical-to-kinematic diffraction transition in plastically deformed polycrystalline intermetallic YCu

    SciTech Connect

    Williams, Scott H.; Brown, Donald W.; Clausen, Bjorn; Russell, Alan; Gschneidner Jr., Karl A.

    2014-03-01

    Unlike most intermetallic compounds, polycrystalline YCu, a B2 (CsCl-type) intermetallic, is ductile at room temperature. The mechanisms for this behavior are not fully understood. In situ neutron diffraction was used to investigate whether a stress-induced phase transformation or twinning contribute to the ductility; however, neither mechanism was found to be active in YCu. Surprisingly, this study revealed that the intensities of the diffraction peaks increased after plastic deformation. It is thought that annealing the samples created nearly perfect crystallinity, and subsequent deformation reduced this high degree of lattice coherency, resulting in a modified mosaic structure that decreased or eliminated the extinction effect. Analysis of changes in diffraction peak intensity showed a region of primary plasticity that exhibits significant changes in diffraction behavior. Fully annealed samples initially contain diffracting volumes large enough to follow the dynamical theory of diffraction. When loaded beyond the yield point, dislocation motion disrupts the lattice perfection, and the diffracting volume is reduced to the point that diffraction follows the kinematic theory of diffraction. Since the sample preparation and deformation mechanisms present in this study are common in numerous material systems, this dynamical to kinematic diffraction transition should also be considered in other diffraction experiments. These measurements also suggest the possibility of a new method of investigating structural characteristics. (C) 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  9. Strengthening by intermetallic nanoprecipitation in Fe–Cr–Al–Ti alloy

    DOE PAGESBeta

    Capdevila, C.; Aranda, M. M.; Rementeria, R.; Chao, J.; Urones-Garrote, E.; Aldazabal, J.; Miller, Michael K.

    2016-02-05

    In this paper, the strengthening mechanism observed during ageing at temperatures of 435 and 475 °C in the oxide dispersion strengthened (ODS) Fe–Cr–Al–Ti system has been investigated. Atom probe tomography (APT) and high-resolution transmission electron microscopy (HRTEM) analyses determined that the alloy undergoes simultaneous precipitation of Cr-rich (α' phase) and nanoscale precipitation of TiAl-rich intermetallic particles (β' phase). APT indicated that the composition of the intermetallic β' phase is Fe2AlTi0.6Cr0.4, and the evolving composition of α' phase with ageing time was also determined. The results obtained from HRTEM analyses allow us to confirm that the β' precipitates exhibit a cubicmore » structure and hence their crystallography is related to the Heusler-type Fe2AlTi (L21) structure. Finally, the strengthening could be explained on the basis of two hardening effects that occur simultaneously: the first is due to the α-α' phase separation through the modulus effect, and the second mechanism is due to the interaction of nanoscale β' particles with dislocations.« less

  10. Crystal structures of three intermetallic phases in the Mo-Pt-Si system

    SciTech Connect

    Joubert, J.-M.; Tokaychuk, Ya.; Cerny, R.

    2010-01-15

    The crystal structures of three ternary Mo-Pt-Si intermetallic compounds have been determined ab initio from powder X-ray diffraction data. All three structures are representative of new structure types. Both the X (MoPt{sub 2}Si{sub 3}, Pmc2{sub 1}, oP12, a=3.48438(6), b=9.1511(2), c=5.48253(8) A) and Y (MoPt{sub 3}Si{sub 4}, Pnma, oP32, a=5.51210(9), b=3.49474(7), c=24.3090(4) A) phases derive from PtSi (FeAs type) structure while the Z phase (ideal composition Mo{sub 32}Pt{sub 20}Si{sub 16}, refined composition Mo{sub 29.9(2)}Pt{sub 21.0(3)}Si{sub 17.1(1)}, Cc, mC68, a=13.8868(3), b=8.0769(2), c=9.6110(2) A, beta=100.898(1){sup o}) present similarities with the group of Frank-Kasper phases. - Graphical abstract: The crystal structures of three ternary Mo-Pt-Si intermetallic compounds have been determined ab initio from powder X-ray diffraction data. The three structures represent new structure types.

  11. Theoretical Prediction of Transition Metal Alloying Effects on the Lightweight TiAl Intermetallic

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Tang, Chenghuang; Zhan, Yongzhong

    2016-03-01

    The structural, mechanical properties and Debye temperature of doped intermetallic Ti7Al8X (X = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W) have been investigated by employing the pseudo-potential plane-wave approach based on density functional theory, within the generalized gradient approximation (GGA) function. The calculated lattice constants of TiAl are found to be within 1 pct error, compared with the experimental values. The stability of calculated structures of Ti7Al8X at 0 GPa is measured by studying mechanical stability conditions and formation energy. All the single crystals are proved to be elastically anisotropic. The Young's modulus as a function of crystal orientations has been systematically investigated. Mechanical properties of polycrystals are computed from values of shear modulus ( G), bulk modulus ( B), Young's modulus ( E), Poisson's ratio ( υ), and microhardness parameter ( H) for Ti7Al8X. It is indicated that addition of alloying elements reduces the brittleness and microhardness of TiAl intermetallic. Debye temperature of TiAl calculated using elastic data of the present work is found to be influenced by the addition of alloying elements, which is further confirmed by the phonon dispersions of Ti8Al8, Ti7Al8Zr, and Ti7Al8Hf.

  12. Fabrication of NiAl intermetallic from dense elemental powder blends via solid state reactions

    SciTech Connect

    Farber, L.; Gotman, I.; Gutmanas, E.Y.

    1997-12-31

    Dense NiAl intermetallic was synthesized from very fine elemental powders via solid state reactions. Homogeneous blends of micron size Ni and Al powders were consolidated to full density and heat treated in a 425--800 C temperature range. During heat treatment, formation of various intermediate intermetallics phases: NiAl{sub 3}, Ni{sub 2}Al{sub 3}, Ni{sub 3}Al and NiAl was observed. The sequence and kinetics of these phase formations at different temperatures were studied employing X-ray diffraction analysis (XRD). A model for a description of synthesis reaction kinetics in Ni-Al blends was developed. Based on the obtained results, the synthesis of NiAl was performed in two stages: reactions in 425--550 C range with consumption of Al, followed by a reaction at up to 800 C. It allowed uncontrolled SHS (self propagating high temperature synthesis, resulting in the occurrence of liquid phases and in formation of reaction products in a very fast/explosive manner) to be avoided. The synthesis temperatures are considerably lower than those used currently in processing of NiAl.

  13. Surface structures of In-Pd intermetallic compounds. II. A theoretical study

    SciTech Connect

    Gaudry, É.; McGuirk, G. M.; Ledieu, J.; Fournée, V.

    2014-08-28

    The (110) surface of the InPd intermetallic compound and the In–Pd surface alloy properties are investigated in the framework of the density functional theory, within the projector augmented plane-wave method. Surface segregation is calculated to be energetically unfavorable at stoichiometric InPd(110) surfaces, while indium antisites are shown to segregate to the surface in off-stoichiometric InPd(110) systems. Concerning surface alloys obtained by burying In-doped Pd layers in Pd(111), we demonstrated that the most stable ones are those presenting atomic indium concentrations below 50 at. % (11 at. %, 25 at. %, 33 at. %). According to our calculations, the In-doped Pd layers with concentration above or equal to 50% lead to In-doped Pd multilayers, each presenting an atomic indium concentration below 50 at. %. Alloying and segregation effects in InPd intermetallic compound and In–Pd surface alloys clearly agree with the larger bonding strength of In–Pd (−0.44 eV) compared to In–In (−0.29 eV) and Pd–Pd (−0.31 eV)

  14. Effect of sample size on intermetallic Al2Cu microstructure and orientation evolution during directional solidification

    NASA Astrophysics Data System (ADS)

    Gao, Ka; Li, Shuangming; Xu, Lei; Fu, Hengzhi

    2014-05-01

    Al-40% Cu hypereutectic alloy samples were successfully directionally solidified at a growth rate of 10 μm/s in different sizes (4 mm, 1.8 mm, and 0.45 mm thickness in transverse section). Using the serial sectioning technique, the three-dimensional (3D) microstructures of the primary intermetallic Al2Cu phase of the alloy can be observed with various growth patterns, L-shape, E-shape, and regular rectangular shape with respect to growth orientations of the (110) and (310) plane. The L-shape and regular rectangular shape of Al2Cu phase are bounded by {110} facets. When the sample size was reduced from 4 mm to 0.45 mm, the solidified microstructures changed from multi-layer dendrites to single-layer dendrite along the growth direction, and then the orientation texture was at the plane (310). The growth mechanism for the regular faceted intermetallic Al2Cu at different sample sizes was interpreted by the oriented attachment mechanism (OA). The experimental results showed that the directionally solidified Al-40% Cu alloy sample in a much smaller size can achieve a well-aligned morphology with a specific growth texture.

  15. Development and commercialization status of Fe{sub 3}Al-based intermetallic alloys

    SciTech Connect

    Sikka, V.K.; Viswanathan, S.; McKamey, C.G.

    1993-06-01

    The Fe{sub 3}Al-based intermetallic alloys offer unique benefits of excellent oxidation and sulfidation resistance, limited by poor room-temperature (RT) ductility and low high-temperature strength. Recent understanding of environmental effects on RT ductility of these alloys has led to progress toward taking commercial advantage of Fe{sub 3}Al-based materials. Cause of low ductility appears to be related to hydrogen formed from reaction with moisture. The environmental effect has been reduced in these intermetallic alloys by two methods. The first deals with producing a more hydrogen-resistant microstructure through thermomechanical processing, and the second dealed with compositional modification. The alloys showing reduced environmental effect have been melted and processed by many different methods. Laboratory and commercial heats have been characterized. Tests have been conducted in both air and controlled environments to quantify environmental effects on these properties. These materials were also tested for aqueous corrosion and resistance to stress corrosion cracking. Oxidation and sulfidation data were generated and effects of minor alloying elements on were also investigated. Several applications have been identified for the newly developed iron aluminides. Commercialization status of these alloys is described.

  16. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Jorgensen, David J.; Titus, Michael S.; Pollock, Tresa M.

    2015-10-01

    The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm2 and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm2. Two sizes of nanoparticles consisting of Al, NiAl, Ni3Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1-30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm2 pulse, one hundred 1.7 J/cm2 pulses, or one thousand 250 mJ/cm2 pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  17. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  18. Structure and plasticity in hot deformed FeAl intermetallic phase base alloy

    SciTech Connect

    Kuc, Dariusz; Niewielski, Grzegorz; Bednarczyk, Iwona

    2009-10-15

    This paper constitutes part of research conducted on the possibility of forming alloys based on intermetallic phases from the Fe-Al system via thermoplastic processing. Insufficient plasticity, which is an inhibitor of further development of these intermetallics as construction materials, makes the range of their applications limited. In the paper, an analysis is conducted of the influence of deformation parameters on the structure of an alloy of Fe-Al with the B2 type structure. Axi-symmetric compression tests were carried out at temperatures ranging from 600 deg. C to 1200 deg. C and at a deformation rate from 0.001 s{sup 1} to 10 s{sup -1}. Structural examination was carried out using light microscopy and transmission electron microscopy. A quantitative evaluation of the structure was made with the use of 'Met-Ilo'. The results obtained will be used for the development of mathematical models determining the influence of deformation parameters on the alloy structure.

  19. Self-irradiation damage to the local structure of plutonium and plutonium intermetallics

    SciTech Connect

    Booth, C. H.; Jiang Yu; Medling, S. A.; Wang, D. L.; Costello, A. L.; Schwartz, D. S.; Mitchell, J. N.; Tobash, P. H.; Bauer, E. D.; McCall, S. K.; Wall, M. A.; Allen, P. G.

    2013-03-07

    The effect of self-irradiation damage on the local structure of {delta}-Pu, PuAl{sub 2}, PuGa{sub 3}, and other Pu intermetallics has been determined for samples stored at room temperature using the extended x-ray absorption fine-structure (EXAFS) technique. These measurements indicate that the intermetallic samples damage at a similar rate as indicated in previous studies of PuCoGa{sub 5}. In contrast, {delta}-Pu data indicate a much slower damage accumulation rate. To explore the effect of storage temperature and possible room temperature annealing effects, we also collected EXAFS data on a {delta}-Pu sample that was held at less than 32 K for a two month period. This sample damaged much more quickly. In addition, the measurable damage was annealed out at above only 135 K. Data from samples of {delta}-Pu with different Ga concentrations and results on all samples collected from different absorption edges are also reported. These results are discussed in terms of the vibrational properties of the materials and the role of Ga in {delta}-Pu as a network former.

  20. Order Nidovirales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter, entitled "Order Nidovirales", is for inclusion in the Ninth Report of the International Committee on Taxonomy of Viruses (ICTV), to be published as both a single volume text and online. The chapter details the taxonomy of members of the Nidovirus order, including family Arteriviridae o...

  1. Intermetallic compounds LaNi/sub 5/- /SUB x/ Cu /SUB x/ and their hydrides in the sorption of hydrogen and the hydrogenation of olefins

    SciTech Connect

    Konenko, I.R.; Fedorovskaya, E.A.; Slinkin, A.A.; Starodubtseva, E.V.; Stepanov, Y.P.

    1985-09-01

    This paper studies the sorptive and catalytic properties of the intermetallic compounds (IMC) LaNi /SUB 5-x/ Cu /SUB x/ and also of their hydrides in the hydrogenation of propylene. The existence of an inverse dependence between the bond strength in the IMC-H system and the rate of formation of the alpha-phase of the hydrides was established. It was shown that the observed extremal dependence of the specific catalytic activity of the hydrides on composition is determined by the optimum value of the bond energy of the hydrogen in the IMC matrix. It was found that the rate of hydrogenation of an olefin on IMC hydrides follows a rate equation zero-order in hydrogen and first-order in olefin. In the case of the same IMC, on the contrary, the rate is first-order in H/sub 2/ and zero-order in C/sub 3/H/sub 6/. It is proposed that the sorptive and catalytic properties of the catalysts show the effect of the structure on the surface active center - a cluster.

  2. Results on powder injection molding of Ni{sub 3}Al and application to other intermetallic compositions

    SciTech Connect

    Cooper, R.M.

    1992-12-31

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni{sub 3}Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  3. Results on powder injection molding of Ni[sub 3]Al and application to other intermetallic compositions

    SciTech Connect

    Cooper, R.M.

    1992-01-01

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni[sub 3]Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  4. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    DOE PAGESBeta

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; Wang, Lin -Lin; Gustafson, Jeffrey; Pei, Yuchen; Qi, Zhiyuan; Johnson, Duane D.; Zhang, Shiran; Tao, Franklin; et al

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similarmore » activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.« less

  5. Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging

    SciTech Connect

    Minor, Andrew M.; Morris, J.W., Jr.

    1999-12-16

    Au/Ni metallization has become increasingly common in microelectronic packaging when Cu pads are joined with Pb-Sn solder. The outermost Au layer serves to protect the pad from corrosion and oxidation and the Ni layer provides a diffusion barrier to inhibit detrimental growth of Cu-Sn intermetallics. As a result of reflowing eutectic Pb-Sn on top of Au/Ni metallization, the as-solidified joints have AuSn{sub 4} precipitates distributed throughout the bulk of the solder joint, and Ni{sub 3}Sn{sub 4} intermetallics at the interface. Recent work has shown that the Au-Sn redeposits onto the interface during aging, compromising the strength of the joint. The present work shows that the redeposited intermetallic layer is a ternary compound with stoichiometry Au{sub 0.5}Ni{sub 0.5}Sn{sub 4}. The growth of this intermetallic layer was investigated, and results show that the ternary compound is observed to grow after as little as 3 hours at 150 C and after 3 weeks at 150 C has grown to a thickness of 10 {micro}m. Additionally, methods for inhibiting the growth of the ternary layer were investigated and it was determined that multiple reflows, both with and without additional aging can substantially limit the thickness of the ternary layer.

  6. Hf3Fe4Sn4 and Hf9Fe4-xSn10+x: Two stannide intermetallics with low-dimensional iron sublattices

    NASA Astrophysics Data System (ADS)

    Calta, Nicholas P.; Kanatzidis, Mercouri G.

    2016-04-01

    This article reports two new Hf-rich intermetallics synthesized using Sn flux: Hf3Fe4Sn4 and Hf9Fe4-xSn10+x. Hf3Fe4Sn4 adopts an ordered variant the Hf3Cu8 structure type in orthorhombic space group Pnma with unit cell edges of a=8.1143(5) Å, b=8.8466(5) Å, and c=10.6069(6) Å. Hf9Fe4-xSn10+x, on the other hand, adopts a new structure type in Cmc21 with unit cell edges of a=5.6458(3) Å, b=35.796(2) Å, and c=8.88725(9) Å for x=0. It exhibits a small amount of phase width in which Sn substitutes on one of the Fe sites. Both structures are fully three-dimensional and are characterized by pseudo one- and two-dimensional networks of Fe-Fe homoatomic bonding. Hf9Fe4-xSn10+x exhibits antiferromagnetic order at TN=46(2) K and its electrical transport behavior indicates that it is a normal metal with phonon-dictated resistivity. Hf3Fe4Sn4 is also an antiferromagnet with a rather high ordering temperature of TN=373(5) K. Single crystal resistivity measurements indicate that Hf3Fe4Sn4 behaves as a Fermi liquid at low temperatures, indicating strong electron correlation.

  7. Composition-Mediated Order-Disorder Transformation in FePt Nanoparticles

    SciTech Connect

    Johnston-Peck, Aaron C; Cullen, David A; Tracy, Joseph B

    2013-01-01

    Thumbnail image of graphical abstract Heat-treated alloy FePt nanoparticles transform into L10 FePt and mixed L10/L12 FePt3 intermetallic phases. Enrichment in Pt in some nanoparticles, rather than intrinsic thermodynamic effects, drives phase segregation. FePt nanoparticles of uniform, equimolar composition are expected to transform into phase-pure, highly ordered L10 FePt nanoparticles.

  8. Focused ion beam induced microstructural alterations: texture development, grain growth, and intermetallic formation.

    PubMed

    Michael, Joseph R

    2011-06-01

    Copper, gold, and tungsten thin films have been exposed to 30 kV Ga+ ion irradiation, and the resulting microstructural modifications are studied as a function of ion dose. The observed microstructural changes include texture development with respect to the easy channeling direction in the target, and in the case of Cu, an additional intermetallic phase is produced. Texture development in these target materials is a function of the starting materials grain size, and these changes are not observed in large grained materials. The accepted models of differential damage driven grain growth are not supported by the results of this study. The implications of this study to the use of focused ion beam tools for sample preparation are discussed. PMID:21466753

  9. Intermetallic formation and interdiffusion in diffusion couples made of uranium and single crystal iron

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Smith, Travis A.; Gigax, Jonathan G.; Chen, Di; Balerio, Robert; Shao, Lin; Sencer, Bulent H.; Kennedy, J. Rory

    2015-12-01

    We studied the interfacial phase formation and diffusion kinetics in uranium-iron diffusion couples. A comparison was made between polycrystalline uranium (U) bonded with polycrystalline iron (FeP) and polycrystalline uranium bonded with single crystalline Fe (FeSC). After thermal annealing at 575 °C, 600 °C, 625 °C and 650 °C, respectively, diffusion and microstructures at the interface were characterized by scanning electron microscopy and transmission electron miscopy. The presence of grain boundaries in iron has a significant influence on interface reactions. In comparison with U-FeP system, interdiffusion coefficients of the U-FeSC system are significantly lower and were governed by much higher activation energies. Integrated interdiffusion coefficients and intrinsic diffusion coefficients were obtained. The intrinsic diffusion coefficients show faster diffusion of iron atoms in both U6Fe and UFe2 intermetallic phases than uranium.

  10. A novel process for breakdown forging of coarse-grain intermetallic alloys

    SciTech Connect

    Semiatin, S.L. . Materials Directorate); McQuay, P.A. . Asian Office of Aerospace R and D); Seetharaman, V. )

    1993-11-01

    The objective of the present work was to develop a novel hot forging process for breakdown of high-temperature intermetallic alloys which exhibit dynamic recrystallization during hot working. During typical forging processes in hydraulic processes, be they based on isothermal or conventional approaches, the ram speed (or sometimes the effective strain rate) is held constant during the forging stroke. In the method introduced here, the ram speed is increased substantially during the forging stroke as the material recrystallizes to a finer-grained structure and its hot workability increases. By this means, fracture is avoided, grain size is reduced, and processing time is decreased, thus improving material quality and reducing cost. The material used to develop and demonstrate the novel forging process was the single phase gamma titanium aluminide, Ti-51Al-2Mn.

  11. TDPAC Study of the Intermetallic Compound HfCo3B2

    NASA Astrophysics Data System (ADS)

    Yaar, I.; Halevy, I.; Salhov, S.; Caspi, E. N.; Dubman, M.; Kahane, S.; Berant, Z.

    2004-11-01

    The electronic properties of the intermetallic compound HfCo3B2 were investigated using combined TDPAC measurements and first principles LAPW calculations. The V zz value at the hafnium site is determined from dominant positive p p contribution, with less than 20%, negative s d and d d contributions. Based on the calculated density of state (DOS) at 0 K, a band contribution ( γ band) of 7.26 (mJ/mol/K2) to the value of the electronic specific heat coefficient ( γ) was obtained. This relatively low γ band value is attributed to the hybridization between hafnium d-states, boron 2 p-states and cobalt 3 d-states, formed at the energy interval below E Fermi. This hybridization, together with the dip in the DOS around E Fermi, implies a possible reduction of the low temperature magnetic moment in this compound.

  12. Comparison of the Thermal Expansion Behavior of Several Intermetallic Silicide Alloys Between 293 and 1523 K

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2015-03-01

    Thermal expansion measurements were conducted on hot-pressed CrSi2, TiSi2, WSi2 and a two-phase Cr-Mo-Si intermetallic alloy between 303 and 1523 K during three heat-cool cycles. The corrected thermal expansion, (Δ L/ L 0)thermal, varied with the absolute temperature, T, as where, A, B, C, and D are regression constants. Excellent reproducibility was observed for most of the materials after the first heat-up cycle. In some cases, the data from first heat-up cycle deviated from those determined in the subsequent cycles. This deviation was attributed to the presence of residual stresses developed during processing, which are relieved after the first heat-up cycle.

  13. Slow plastic strain rate compressive flow in binary CoAl intermetallics

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1985-01-01

    Constant-velocity elevated temperature compression tests have been conducted on a series of binary CoAl intermetallics produced by hot extrusion of blended prealloyed powders. The as-extruded materials were polycrystalline, and they retained their nominal 10-micron grain size after being tested between 1100 and 1400 K at strain rates ranging from 2 x 10 to the -4th to 2 x 10 to the -7th per sec. Significant plastic flow was obtained in all cases; while cracking was observed, much of this could be due to failure at matrix-oxide interfaces along extrusion stringers rather than to solely intergranular fracture. A maximum in flow strength occurs at an aluminum-to-cobalt ratio of 0.975, and the stress exponent appears to be constant for aluminum-to-cobalt ratios of 0.85 or more. It is likely that very aluminum-deficient materials deform by a different mechanism than do other compositions.

  14. Oxidation of high-temperature intermetallics; Proceedings of the Workshop, Cleveland, OH, Sept. 22, 23, 1988

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni (Editor); Doychak, Joseph (Editor)

    1989-01-01

    The present conference on the high-temperature oxidation behavior of aerospace structures-applicable intermetallic compounds discusses the influence of reactive-element additions on the oxidation of Ni3Al base alloys, the effect of Ni3Al oxidation below 850 C on fracture behavior, the oxidation of FeAl + Hf, Zr, and B, the synergistic effect of Al and Si on the oxidation resistance of Fe alloys, and pack cementation coatings of Cr-Al on Fe, Ni, and Co alloys. Also discussed are the formation of alumina on Nb- and Ti-base alloys, the oxidation behavior of titanium aluminide alloys, silicide coatings for refractory metals, the oxidation of chromium disilicide, and the oxidation behavior of nickel beryllides.

  15. Comparison of the Thermal Expansion Behavior of Several Intermetallic Silicide Alloys Between 293 and 1523 K

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2014-01-01

    Thermal expansion measurements were conducted on hot-pressed CrSi(sub 2), TiSi(sub 2), W Si(sub 2) and a two-phase Cr-Mo-Si intermetallic alloy between 293 and 1523 K during three heat-cool cycles. The corrected thermal expansion, (L/L(sub 0)(sub thermal), varied with the absolute temperature, T, as (deltaL/L(sub 0)(sub thermal) = A(T-293)(sup 3) + B(T-293)(sup 2) + C(T-293) + D, where A, B, C and D are regression constants. Excellent reproducibility was observed for most of the materials after the first heat-up cycle. In some cases, the data from the first heatup cycle deviated from those determined in the subsequent cycles. This deviation was attributed to the presence of residual stresses developed during processing, which are relieved after the first heat-up cycle.

  16. Fabrication of intermetallic coatings for electrical and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.H.; Cho, W.D.

    1994-10-01

    Several intermetallic films were fabricated to high-temperature alloys (V-alloys and 304 and 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain-growth behavior at 1000{degrees}C for the V-5Cr-5Ti was investigated to determine the stability of alloy substrate during coating formation by chemical vapor deposition (CVD) or metallic vapor processes at 800-850{degrees}C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and X-ray diffraction analysis and tested for electrical resistivity and corrosion resistance. The results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  17. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Ellis, T.W.

    1994-11-29

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material. 9 figures.

  18. Technetium Incorporation into C14 and C15 Laves Intermetallic Phases

    SciTech Connect

    Buck, Edgar C.; Schemer-Kohrn, Alan L.; Wierschke, Jonathan B.

    2013-01-23

    Laves-type intermetallics have been observed to be the dominant phases in a series of alloy compositions being designed for the immobilization technetium in a metallic waste form. The dominant metals in the alloy compositions were Fe-Mo and Fe-Mo-Zr. Alloy composition, Fe-Mo-Zr, also contained Pd, Zr, Cr, and Ni. Both non-radioactive rhenium-containing and radioactive technetium-bearing alloy compositions were investigated. In the Fe-Mo series, phases were observed Fe2Mo (C14 Laves phase) and ferrite in agreement with predictions. Both Tc and Re resided predominantly in the Laves phase. In the Fe-Mo-Zr system, the phases included hexagonal C14 with the composition (Fe,Cr)2Mo, cubic C15 phase with a (Fe,Ni)2Zr composition, and the hcp phase Pd2Zr.

  19. Electronic structure, elasticity, bonding features and mechanical behaviour of zinc intermetallics: A DFT study

    NASA Astrophysics Data System (ADS)

    Fatima, Bushra; Acharya, Nikita; Sanyal, Sankar P.

    2016-05-01

    The structural stability, electronic structure, elastic and mechanical properties of TiZn and ZrZn intermetallics have been studied using ab-initio full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation for exchange and correlation potentials. The various structural parameters, such as lattice constant (a0), bulk modulus (B), and its pressure derivative (B') are analysed and compared. The investigation of elastic constants affirm that both TiZn and ZrZn are elastically stable in CsCl (B2 phase) structure. The electronic structures have been analysed quantitatively from the band structure which reveals the metallic nature of these compounds. To better illustrate the nature of bonding and charge transfer, we have also studied the Fermi surfaces. The three well known criterion of ductility namely Pugh's rule, Cauchy's pressure and Frantsevich rule elucidate the ductile nature of these compounds.

  20. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the Universal Slopes method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio, number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  1. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, P. A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the 'Universal Slopes' method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio (Vf), number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  2. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    SciTech Connect

    Anderson, Iver E.; Lograsso, Barbara K.; Ellis, Timothy W.

    1994-01-01

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material.

  3. Towards the role of interfacial shear in shock-induced intermetallic reactions

    NASA Astrophysics Data System (ADS)

    Collinson, Mark; Chapman, David; Williamson, David; Burchell, Mark; Eakins, Daniel

    2011-06-01

    Shock-induced intermetallic reactions have previously been shown to occur on a nanosecond timescale, within the rise time of the applied shock wave. Work in this area to date has however concentrated on continuum scale measurements, raising questions as to the processes occurring at micro and meso scales. Mass transfer due to inter-facial shear at material interfaces has been suggested as a possible explanation. We will present initial work examining the role of friction on this mass mixing process across a binary interface. This work includes plate impact experiments on an inert stainless steel - aluminum friction pair, employing spatially resolved interferometry. Results from a series of metal ball-on-angled plate impact experiments at 1-2 km/s will also be presented, supported by high-speed imaging and target recovery.

  4. High-yield growth of carbon nanofilaments on nickel foam using nickel-tin intermetallic catalysts.

    PubMed

    Jeong, Namjo; Hwang, Kyo Sik; Yang, Seung Cheol

    2014-10-01

    The integration of nanomaterials into macroscopic structures is of importance to their practical use. We report the direct synthesis of carbon nanofilaments on Ni foam using Ni-Sn intermetallic nanoparticles. The use of SnO2 nanoparticles was highly effective for the high-yield growth of carbon nanofilaments without the occurrence of surface breakup, resulting from excessive carbon accumulation in the Ni foam. Carbon nanofilaments with a diameter of 50 nm were synthesized and contained Ni3Sn nanoparticles at the tip, indicating a tip-growth mechanism. Higher vacuum conditions led to the growth of highly crystalline carbon nanofilaments. The results obtained using different sources of hydrocarbon revealed that in contrast to C2H2, CH4 or C3H8 did not induce carbon nanofilament formation on Ni foam. PMID:25942857

  5. Nonisothermal kinetics study of phase evolution of Zn-Fe intermetallics

    SciTech Connect

    Uwakweh, O.N.C.; Liu, Z.T.; Boisson, M.

    1996-12-31

    Through mechanical alloying of pure elemental powders of Fe and Zn, true homogeneous alloys of {Gamma} (Fe{sub 3}Zn{sub 10}), {Gamma}{sub 1} (Fe{sub 5}Zn{sub 21}), {delta} (FeZn{sub 7}) and {zeta} (FeZn{sub 13}) intermetallic phases are formed. Based on nonisothermal kinetics analyses, the highest activation energies associated with the metastable to stable transformations of these phases are determined as follows: 170 {+-} 1 kJ/mol, 251 {+-} 2 kJ/mol, 176 {+-} 1 kJ/mol and 737 {+-} 4 kJ/mol for the {Gamma}, {Gamma}{sub 1}, {delta} and {zeta}-phases, respectively. These values reflect different diffusion/thermally induced processes associated with the transition of each of these phases.

  6. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics

    PubMed Central

    Booth, C.H.; Jiang, Yu; Wang, D.L.; Mitchell, J.N.; Tobash, P.H.; Bauer, E.D.; Wall, M.A.; Allen, P.G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Torrez, M.A.; Sarrao, J.L.

    2012-01-01

    Uranium and plutonium’s 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials. PMID:22706643

  7. High hardness in the biocompatible intermetallic compound β-Ti3Au.

    PubMed

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M; Morosan, E

    2016-07-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  8. Role of defect coordination environment on point defects formation energies in Ni-Al intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Tennessen, Emrys; Rondinelli, James

    We present a relationship among the point defect formation energies and the bond strengths, lengths, and local coordination environment for Ni-Al intermetallic alloys based on density functional calculations, including Ni3Al, Ni5Al3, NiAl,Ni3Al4, Ni2Al3 and NiAl3. We find the energetic stability of vacancy and anti-site defects for the entire family can be attributed primarily to changes in interactions among first nearest neighbors, owing to spatially localized charge density reconstructions in the vicinity of the defect site. We also compare our interpretation of the local coordination environment with a DFT-based cluster expansion and discuss the performance of each approach in predicting defect stability in the Ni-Al system.

  9. Comparative NMR study of copper-based intermetallics with ZrCuSiAs-type structure

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; ChangJen, W. J.; Su, T. H.

    2010-07-01

    The electronic characteristics of ZrCuGe2, ZrCuSi2, and HfCuSi2 are systematically investigated using C63u NMR spectroscopy. The quadrupole splittings, Knight shifts, and spin-lattice relaxation times on each individual compound have been identified. We found that the observed electric field gradient is consistent with the covalent bonding nature within the Cu atomic layers. The Knight shifts together with relaxation rates provide a measure of Cu d partial Fermi-level density of states, Nd(EF). Universally small Nd(EF) was found in all studied materials, suggests that the Cu d states are well below the Fermi energy and therefore the characteristic electronic structure near EF is primarily of sp type. We further pointed out that the low Nd(EF) value is an important factor for the lack of superconductivity in these Cu-based intermetallics within the ZrCuSiAs-type structure.

  10. Chemical route for formation of intermetallic Zn{sub 4}Sb{sub 3} phase

    SciTech Connect

    Denoix, A.; Solaiappan, A.; Ayral, R.M.; Rouessac, F.; Tedenac, J.C.

    2010-05-15

    Synthesis of intermetallic zinc antimonide phases via low temperature solution route was investigated. Trial experiments were carried out under inert atmosphere at 70 deg. C using metallic Zn, SbCl{sub 3} and NaBH{sub 4} as reactants and tetrahydrofuran (THF), dimethylsulfoxide (DMSO) as organic media. Powder X-ray analysis confirmed the nucleation and growth of ZnSb phases in presence of excess Zn. SEM analysis revealed the existence of core-shell structure comprising of Zn core and Sb shell. Such particles get transformed into Zn{sub 4}Sb{sub 3} crystalline phases upon thermal treatment at 300 deg. C/6 h in a silica tube closed under high secondary vacuum. - Graphical abstract: TEM observation of the Zn{sub 4}Sb{sub 3} powder synthesized by soft chemistry.

  11. High hardness in the biocompatible intermetallic compound β-Ti3Au

    PubMed Central

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K.; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M.; Morosan, E.

    2016-01-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti–Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  12. Intermetallic compounds, copper and palladium alloys in Au-Pd ore of the Skaergaard pluton, Greenland

    NASA Astrophysics Data System (ADS)

    Rudashevsky, N. S.; Rudashevsky, V. N.; Nielsen, T. F. D.

    2015-12-01

    Copper-palladium intermetallic compounds and alloys (2314 grains) from the Au-Pd ore of the Skaergaard layered gabbroic pluton have been studied. Skaergaardite PdCu, nielsenite PdCu3, (Cu,Pd)β, (Cu,Pd)α, (Pd,Cu,Au,Pt) alloys, and native palladium have been identified as a result of 1680 microprobe analyses. The average compositions and various chemical varieties of these minerals are characterized, as well as vertical and lateral zoning in distribution of noble metals. The primary Pd-Cu alloys were formed within a wide temperature interval broadly synchronously with cooling and crystallization of host gabbro and in close association with separation of Fe-Cu sulfide liquid. In the course of crystallization of residual gabbroic melt enriched in iron, noble and heavy metals and saturated with the supercritical aqueous fluid, PGE and Au are selectively concentrated in the Fe-Cu sulfide phase as Pd-Cu and Cu-Au alloys.

  13. Numerical simulations of interfacial debonding in ductile-phase reinforced intermetallic matrix composites

    SciTech Connect

    Henshall, G.A.; Zywicz, E.; Strum, M.J.

    1993-08-10

    The fracture toughness of brittle intermetallic compounds can be improved by ductile-phase reinforcements. Effectiveness of the ductile phase in bridging cracks, and therefore increasing, the composite toughness, is known qualitatively to depend upon the extent of debonding, between the two phases. Numerical crack-growth simulations are used here to provide semi-quantitative predictions of the influence of interfacial debonding on the macroscopic stress-displacement behavior and, hence, the fracture toughness of an idealized Pb/glass composite. The interfacial toughness required to cause debonding, characterized by a constant critical energy release rate, is varied parametrically. As expected, higher interfacial toughness results in less interphase debonding, higher composite strength, and greater ductile-phase constraint. Consequently, the increase in ductile-phase triaxiality can potentially accelerate internal void formation and growth or facilitate cleavage fracture, either of which would likely decrease the toughness of the composite.

  14. Intermetallic Compound Formation Mechanisms for Cu-Sn Solid-Liquid Interdiffusion Bonding

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, K.; Aasmundtveit, K. E.; Hoivik, N.

    2012-09-01

    Cu-Sn solid-liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu3Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.

  15. Fundamental study about CO2 laser welding of titanium aluminide intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kuwahara, Gaku; Yamaguchi, Shigeru; Nanri, Kenzo; Ootani, Masanori; Tetsuka, Masato; Seto, Sachio; Arai, Mikiya; Fujioka, Tomoo

    2000-11-01

    Titanium aluminide intermetallic compound is attracting attentions as heat-resistant and high-specific strength material in the next generation, especially, it is promising material in the field of aerospace components. Conventional machining process including welding, however, can be hardly applied due to its very low ductility. The objective of this study, as a first stage, is to find out paying attention to crack and hardness the fundamental good conditions of the bead-on-plate welding of TiAl intermetallic compound using CO2 laser irradiation. In the experiment, we used the casting gamma titanium aluminide contained iron, vanadium and boron with a thickness of 2mm. We carried out bead-on-plate laser welding in the titanium aluminide material in inert gas environment filled with argon. We measured fused depth, Vickers hardness, transverse crack numbers and so on as major parameters of welding speed from 1000 to 4600 mm/min and initial temperature of specimen from R.T. to 873 K with a beam spot size of 0.5 mm and an output power of 1.5 kW. In addition, the specimens were analyzed by Electron Probe X-ray Micro Analyzer, Energy Dispersive X-ray Spectroscopy and X-ray Diffractometry. As a result of experiments, transverse crack-free welding was achieved, when initial temperature was at 873 K. In every condition, the value of Vickers hardness of fused zone increased compared with base. We think the reason of it is an increase of (alpha) 2(Ti3Al) phase, which is caused by rapid cooling, taking in Oxygen, fine structure and so on.

  16. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    SciTech Connect

    Jongik Park

    2004-12-19

    EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} are two members of the RT{sub 2}X{sub 2} (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr{sub 2}Si{sub 2} structure are known for their wide variety of magnetic properties, Extensive studies of the RT{sub 2}X{sub 2} series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi{sub 2}Ge{sub 2} were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  17. Growth of new ternary intermetallic phases from Ca/Zn eutectic flux

    SciTech Connect

    Stojanovic, Milorad Latturner, Susan E.

    2007-03-15

    The eutectic 7.3:2.7 molar ratio mixture of calcium and zinc metal melts at 394 deg. C and was explored as a solvent for the growth of new intermetallic phases for potential use as hydrogen storage materials. The reaction of nickel in this molten mixture produces two new phases-the CaCu{sub 5}-related structure CaNi{sub 2}Zn{sub 3} (P6/mmm, a=8.9814(5) A, c=4.0665(5) A) and a new cubic structure Ca{sub 21}Ni{sub 2}Zn{sub 36} (Fd-3m, a=21.5051(4) A). Palladium-containing reactions produced CaPd{sub 0.85}Zn{sub 1.15} with the orthorhombic TiNiSi structure type (Pnma, a=7.1728(9) A, b=4.3949(5) A, c=7.7430(9) A). Reactions of platinum in the Ca/Zn mixture produce Ca{sub 6}Pt{sub 3}Zn{sub 5}, with an orthorhombic structure related to that of W{sub 3}CoB{sub 3} (Pmmn, a=13.7339(9) A, b=4.3907(3) A, c=10.7894(7) A). - Graphical abstract: The calcium/zinc eutectic is a useful synthesis medium for the growth of new intermetallic phases. Addition of group 10 transition metals to this flux produces ternary phases CaNi{sub 2}Zn{sub 3}, Ca{sub 21}Ni{sub 2}Zn{sub 36}, CaPd{sub 0.85}Zn{sub 1.15}, and Ca{sub 6}Pt{sub 3}Zn{sub 5}. The nickel-centered zinc icosahedron surrounded by a pentagonal dodecahedron of calcium atoms is found in Ca{sub 21}Ni{sub 2}Zn{sub 36}.

  18. Study of the effect of interface slip and diffusion mechanisms on the creep of metal and intermetallic matrix composites

    NASA Astrophysics Data System (ADS)

    Nimmagadda, Prasad B. R.

    2000-09-01

    Experimental results indicate that, in general, at modest temperatures the creep strength of metal and intermetallic matrix composites is better than that of the matrix material alone. However, at temperatures higher than approximately half the melting temperature of the matrix, the composite strength is limited and in some cases the strengthening imparted by the reinforcements is completely lost despite the absence of any debonding or damage accumulation along the matrix-reinforcement interface. Slip and diffusional flow along the interface, driven by the gradient in the normal stress, are suggested as mechanisms responsible for the loss of strengthening. The composite behavior is investigated by coupling the interface diffusion and slip mechanisms with the power-law creep of the matrix. The steady state creep strength of a continuous fiber composite under transverse loading and a discontinuous fiber composite under axial loading are investigated. In the case of discontinuous fiber reinforced composites with a diffusive interface, the critical fiber aspect ratio needed for the composite to be stronger than the pure matrix is obtained. The two relaxation mechanisms are used to explain the temperature dependence of the strength of gamma-TiAl matrix reinforced with Ti 2AlC particles. A methodology is suggested for extracting the properties of the interface combining the experimental measurements of the composite creep strength with the corresponding finite element based strength predictions. The strength of the leading order singularity and the angular variation of the solution within a constant around the sharp corner of a discontinuous fiber are obtained in an asymptotic study. By comparing the asymptotic and the finite element solutions the value of this constant and the region of dominance for the singular solution are obtained. The region of dominance is found to be only of the order of 5 x 10-4 times the fiber radius. The influence of the two mechanisms on the

  19. Microstructural evolution and intermetallic formation in Al-8wt% Si-0.8wt% Fe alloy due to grain refiner and modifier additions

    NASA Astrophysics Data System (ADS)

    Hassani, Amir; Ranjbar, Khalil; Sami, Sattar

    2012-08-01

    An alloy of Al-8wt% Si-0.8wt% Fe was cast in a metallic die, and its microstructural changes due to Ti-B refiner and Sr modifier additions were studied. Apart from usual refinement and modification of the microstructure, some mutual influences of the additives took place, and no mutual poisoning effects by these additives, in combined form, were observed. It was noticed that the dimensions of the iron-rich intermetallics were influenced by the additives causing them to become larger. The needle-shaped intermetallics that were obtained from refiner addition became thicker and longer when adding the modifier. It was also found that α-Al and eutectic silicon phases preferentially nucleate on different types of intermetallic compounds. The more iron content of the intermetallic compounds and the more changes in their dimensions occurred. Formation of the shrinkage porosities was also observed.

  20. Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al-0.4Ti alloy

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Eskin, Dmitry; Connolley, Thomas; Mi, Jiawei

    2016-02-01

    High intensity ultrasonic melt treatment was applied to an Al-0.4 wt% Ti alloy over three selected temperature ranges: 810 to 770 °C (above liquidus), 770 to 730 °C (across liquidus), and 730 to 690 °C (below liquidus). The size and morphology of the primary Al3Ti intermetallic particles were studied by scanning electron microscopy. It was found that the primary Al3Ti intermetallics were refined as a result of ultrasonication over all three temperature ranges and their morphology changed from typical large dendritic plates to small compact tablets. Quenching experiments before and after the ultrasonication were also carried out to capture the high-temperature stage of intermetallic formation. Based on the size and morphology observations, the mechanisms for the refinement of primary Al3Ti intermetallics at different solidification stages are discussed.

  1. Phase diagram of the Co-Al-W system. structure and phase transformations near the Co3(Al, W) intermetallic composition range

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Demakov, S. L.; Yurovskikh, A. S.; Stepanova, N. N.; Vinogradova, N. I.; Davydov, D. I.; Lepikhin, S. V.

    2016-07-01

    Low-temperature portion of the polythermal section for the Co-Al-W system in the vicinity of the Co3(Al, W) intermetallic composition has been studied experimentally using electron microscopy and hightemperature X-ray diffraction analysis. Low-temperature structural phase transformations and temperature ranges of the existence of phases have been determined. The morphology of Co3(Al, W) intermetallic particles was studied as a function of the tungsten content in alloys.

  2. JTEC panel report on advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. J.; Grisaffe, S. J.; Hillig, W. B.; Perepezko, J. H.; Pipes, R. B.; Sheehan, J. E.

    1991-01-01

    The JTEC Panel on Advanced Composites visited Japan and surveyed the status and future directions of Japanese high performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic and carbon matrices. The panel's interests included not only what composite systems were chosen, but also how these systems were developed. A strong carbon and fiber industry makes Japan the leader in carbon fiber technology. Japan has initiated an oxidation resistant carbon/carbon composite program. The goals for this program are ambitious, and it is just starting, but its progress should be closely monitored in the United States.

  3. Deformation-induced dissolution of the intermetallics Ni3Ti and Ni3Al in austenitic steels at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Sagaradze, V. V.; Shabashov, V. A.; Kataeva, N. V.; Zavalishin, V. A.; Kozlov, K. A.; Kuznetsov, A. R.; Litvinov, A. V.; Pilyugin, V. P.

    2016-06-01

    An anomalous deformation-induced dissolution of the intermetallics Ni3Al and Ni3Ti in the matrix of austenitic Fe-Ni-Al(Ti) alloys has been revealed in experiment at cryogenic temperatures (down to 77 K) under rolling and high pressure torsion. The observed phenomenon is explained as the result of migration of deformation-stipulated interstitial atoms from a particle into the matrix in the stress field of moving dislocations. With increasing the temperature of deformation, the dissolution is replaced by the deformation-induced precipitation of the intermetallics, which is accelerated due to a sufficient amount of point defects in the matrix, gained as well in the course of deformation at lower temperatures.

  4. Magnetic susceptibility and parameters of electronic structure of Al2REM (Gd, Dy, and Ho) intermetallic compounds at high temperatures

    NASA Astrophysics Data System (ADS)

    Uporova, N. S.; Uporov, S. A.; Sidorov, V. E.

    2011-08-01

    The magnetic susceptibility of Al2REM (REM = Gd, Dy, and Ho) intermetallic compounds is experimentally investigated by the Faraday method in a wide temperature interval (290-2000 K) in different magnetic fields (0.3-1.3 T). In the crystalline state, the temperature dependences of the susceptibility follow the generalized Curie-Weiss law. In the liquid phase, the magnetic susceptibility of these intermetallic compounds above the melting point increases for all examined samples. The parameters of the electronic structure of the compounds are calculated based on the experimental data. It is established that the effective magnetic moment per rareearth metal atom is smaller than that characteristic of the free REM+ ion.

  5. Preparation and characterization of Fe-Al intermetallic layer on the surface of T91 heat-resistant steel

    NASA Astrophysics Data System (ADS)

    Shi, Zimu; Cao, Jianbo; Han, Fusheng

    2014-04-01

    A Fe-Al intermetallic layer was formed on the surface of T91 heat-resistant steel by a molten aluminum hot-dipping and heat diffusion treatment. It is shown that the layer was composed of Al, FeAl3 and Fe2Al5 phases in the as-dipped state while only Fe3Al phase retained after the heat treatment. The intermetallic layer exhibited typical columnar grain structure after the heat treatment, and the thickness of aluminizing layer was increased from 55 μm at 760 °C to around 100 μm at 1050 °C heat treatment. Such a phase composition and grain morphology are favorable for the oxidation and corrosion resistance of T91 steel.

  6. High-voltage electron microscope high-temperature in situ straining experiments to study dislocation dynamics in intermetallics and quasicrystals.

    PubMed

    Messerschmidt, U

    2001-07-01

    The dynamic behaviour of dislocations in several intermetallic alloys, studied by in situ straining experiments in a high-voltage electron microscope, is compared at room temperature and at high temperatures. In contrast to room temperature, the dislocations move viscously at high temperatures, which is explained by diffusion processes in the dislocation cores. In quasicrystals, the viscous dislocation motion can be interpreted by models on the cluster scale. PMID:11454156

  7. SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio

    2015-05-01

    Plates of Al-(a)Si-(b)Cu-Mg-(c)Fe alloys with varying content of (mass pct) Si ( a = 3, 4.5, 7.5, 9, 10, or 11), Cu ( b = 0, 1, or 4), and Fe ( c = 0.2, 0.5 or 0.8) were cast in sand molds with a heavy chill at one end to ensure quasi-directional solidification over a wide range of Secondary Dendrite Arm Spacing (SDAS). Statistical analysis on the size of the β-Al5FeSi, α-Al8Fe2Si, or Al2Cu intermetallics on Backscattered Electron images showed that a high Si content reduced the size of the β platelets in alloys with up to 0.5 Fe content regardless of the SDAS, whereas at small SDAS the refining effect extended up to 0.8 Fe, and involved α-phase intermetallics which replaced the beta platelets at those concentrations. At low Si contents, a high Cu level appeared to have similar refining effects as increased Si, through the formation of α-phase particles in the post-eutectic stage which agglomerated with the Al2Cu intermetallics. A high content of Si appears to make the overall refining process less critical in terms of SDAS/cooling rate.

  8. The structure and composition of chromate conversion coatings formed on aluminum-copper alloy AA2024-T3 and thin film analogs of constituent intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Vasquez, Marvin Jaime

    2002-01-01

    A comprehensive suite of spectroscopy have been used to study the composition and structure of Chromate Conversion Coatings (CCC) formed on Aluminum Copper (Al-Cu) alloy AA2024-T3 and constituent Intermetallic Compounds (IMCs). Based on previous work the CCC formed over the IMCs is expected to be thinner and therefore different in structure and composition than the CCC formed on the matrix. The formation of the CCC over the different IMCs is expected to be dependent on the chemistry and the interaction of the IMCs with accelerators such as ferricyanide. Surface chemical and structural data determined by X-ray Photoelectron Spectroscopy (XPS), Synchrotron Infrared Microspectroscopy, X-ray Absorption Near Edge Spectroscopy (XANES), Extended X-ray Absorption Fine Structure (EXAFS), Secondary Ion Mass Spectrometry (SIMS), and Secondary Electron Microscopy/Energy Dispersive Analysis of X-rays (SEM/EDAX) have been developed to refine an existing model for the CCC formed on the AA2024-T3 surface, an Al-Cu aircraft alloy, by considering the composition and structure of the CCC formed on constituent intermetallic compounds (IMCs). The limited corrosion behavior of AA2024-T3 aluminum alloy is generally attributed to the presence of a variety of constituent IMC. These IMC particles are of the order of 1--20 mum which makes their direct analysis exceedingly difficult and has lead to a limited understanding of their surface chemical properties relative to CCC formation. To overcome this limitation, it was necessary to develop for the first time large area samples composed of compositionally homogenous thin films of the various IMCs found on the AA2024-T3 surface, which were galvanically attached to thin films of Al-4.2wt%Cu (representative of the AA2024-T3 matrix). This was performed in a two-step process: Disks of IMC compositions were formed by Reactive Arc Melting (RAM), followed by ultra-fast laser ablation of the RAM IMCs resulting in the formation of homogenous thin films

  9. Evolution of Microstructure and Mechanical Properties of the Ni-25Al-27.5Fe-1.0Nb Intermetallic Alloy after Thermal Mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Fu, Chih-Chiang; Jang, Jason Shian-Ching; Tsai, Han-Chang; Li, Tsung-Hsiung

    The evolution of microstructure and mechanical properties of the Ni-25Al-27.5Fe-1.0Nb intermetallic alloy after thermal mechanical treatment (TMT) was systematically investigated by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) with electron dispersive spectrum (EDS) capability, and atmosphere-controlled tensile test at room temperature with different strain rate. The results of XRD reveals that a matrix of β' phase [(Ni, Fe) Al type ordered bcc structure] and a precipitated γ phase (Ni3Fe fcc solid solution) co-exist in this alloy after TMT. The dendritic microstructure of the as-cast alloy was eliminated after TMT process. In parallel, a refined and homogeneous distributed lath precipitates can be obtained after annealing at 820 for 4 hr. Additionally, this alloy presents a relative high strength as well as ductile mechanical behavior (UTS~1320 MPa and ɛ~8%, respectively) at room temperature in air. A 30% improvement in yield strength is suggested to be contributed by the refined microstructure from the TMT. Moreover, the tensile strength and ductility of this alloy exhibit insensitive response with respect to the loading strain rate at room temperature.

  10. Nd8Co4-xAlxGe2C3: A case study in flux growth of lanthanide-rich intermetallics

    NASA Astrophysics Data System (ADS)

    Zhou, Sixuan; Latturner, Susan E.

    2016-04-01

    The intermetallic Nd8Co4-xAlxGe2C3 (x≈0.65) was prepared from reaction of germanium and carbon in Nd/Co eutectic flux in an alumina crucible. This phase exhibits a new structure type in orthorhombic space group Pbcm, with unit cell parameters a=8.001(1) Å, b=11.696(2) Å, c=15.020(3) Å (Z=4; R1=0.0234). The structure features germanium-centered neodymium clusters Ge@Nd9 which share faces to form layers separated by zigzag chains of cobalt atoms capped by carbon. Density of states calculations confirm that this compound is metallic, and indicate that the cobalt should not have a magnetic moment. This is supported by magnetic susceptibility measurements which show a low temperature ferromagnetic ordering at TC=50 K due to the Nd3+ ions. Magnetization field dependence studies on single crystals indicate this compound is a strong ferromagnet with large anisotropy; the Nd3+ magnetic moments align along the a-axis.

  11. Perpendicular Growth Characteristics of Cu-Sn Intermetallic Compounds at the Surface of 99Sn-1Cu/Cu Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwen; Liu, Changqing; Wu, Yiping; An, Bing

    2015-12-01

    The growth of intermetallic compounds (IMCs) on the free surface of 99Sn-1Cu solder joints perpendicular to the interdiffusion direction has been investigated in this work. The specimens were specifically designed and polished to reveal a flat free surface at the solder/Cu interface for investigation. After aging at 175°C for progressively increased durations, the height of the perpendicular IMCs was examined and found to follow a parabolic law with aging duration that could be expressed as y = 0.11√ t, where t is the aging duration in hours and y is the height of the perpendicular IMCs in μm. For comparison, the planar growth of IMCs along the interdiffusion direction was also investigated in 99Sn-1Cu/Cu solder joints. After prolonged aging at 175°C, the thickness of the planar interfacial IMC layers also increased parabolically with aging duration and could be expressed as h_{{IMC}} = 0.27√ t + 4.6, where h is the thickness in μm and t is the time in hours. It was found that both the planar and perpendicular growth of the IMCs were diffusion-controlled processes, but the perpendicular growth of the IMCs was much slower than their planar growth due to the longer diffusion distance. It is proposed that Cu3Sn forms prior to the formation of Cu6Sn5 in the perpendicular IMCs, being the reverse order compared with the planar IMC growth.

  12. Evolution of the magnetic properties along the RCuBi2 (R = Ce, Pr, Nd, Gd, Sm) series of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Jesus, C. B. R.; Piva, M. M.; Rosa, P. F. S.; Adriano, C.; Pagliuso, P. G.

    2014-05-01

    In this paper, the evolution of the magnetic properties along the series of intermetallic compounds RCuBi2 (R = Ce, Pr, Nd, Gd, Sm) is discussed. These compounds crystallize in a tetragonal ZrCuSi2 (P4/nmm) structure, and our single crystals of RCuBi2 grown from Bi-flux show no evidence for Cu-deficiency [Ye et al., Acta Crystallogr. C 52, 1325 (1996)] as previously reported for R = Ce. For R = Ce, Pr, Gd, and Sm, we found an antiferromagnetic ordering at TN ˜ 16 K, 4.2 K, 13.6 K, and 4.9 K, respectively. For R = Nd, we saw no evidence for a magnetic phase transition down to T = 2 K. These values of TN clearly show a dramatic breakdown of the De Gennes factor in this series. We discuss our data taken into account the tetragonal crystalline electrical field and the anisotropic Ruderman-Kittel-Kasuya-Yoshida magnetic interaction between the R-ions in this family of compounds.

  13. Hyperfine field at Mn in the intermetallic compound LaMnSi2 measured by PAC using 111Cd nuclear probe

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2015-04-01

    Magnetic hyperfine field at Mn site has been measured in the orthorhombic intermetallic compound LaMnSi2 with PAC spectroscopy using radioactive 111In- 111Cd nuclear probe. Samples of LaMnSi2 were prepared by melting pure metallic components in stoichiometric proportion in an arc furnace under argon atmosphere. The samples were sealed in a quartz tube under helium atmosphere, annealed at 1000 °C for 60 h and quenched in water. Samples were analyzed with X-ray diffraction method. 111In was introduced in the samples by thermal diffusion at 1000 °C for 60 h. PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 50 K and 410 K. Results show well defined quadrupole and magnetic interactions at all temperatures. The magnetic hyperfine field (Bhf) measured at 50 K is 7.1(1) T. The temperature dependence of Bhf follows the normal Brillouin-like behavior expected for a simple ferromagnetic ordering. The ferromagnetic transition temperature (Tc) was determined to be 401(1) K.

  14. Different Cation Arrangements in Au-In Networks. Syntheses and Structures of Six Intermetallic Compounds in Alkali-Metal-Au-In Systems

    SciTech Connect

    Bin Li; John D. Corbett

    2007-06-20

    Six robust intermetallic compounds with cations in three different tunnel-like structures have been synthesized in alkali-metal-Au-In systems via high-temperature solid-state methods and characterized by X-ray diffraction: AAu{sub 4}-In{sub 6} [A = K (I), Rb (II), F6m2, Z = 1], K{sub 1.76(6)}Au{sub 6}Ln{sub 4} (III,; 4/mcm, Z = 4), and A{sub x}Au{sub 2}In{sub 2} [x{approx} 0.7, A = K (IV), Rb (V), Cs (VI), P4{sub 2}/nmc, Z = 8]. The first type is constructed from a single cage unit: an alkali-metal-centered 21-vertex polyhedron A@AugIn12 with 6-9-6 arrangement of planar rings. The others contain uniaxial arrays of tunnels built of differently puckered eight- and four-member Au/In rings. The largely different cation distributions depend on the tunnel constitutions and cation sizes. Tight-binding electronic structure calculations by linear muffin-tin-orbital (LMTO) methods were performed for I and idealized III in order to help understand their chemical bonding. These also reveal large differences in relativistic effects for Au d orbitals, as well as for different Au sites in each structure.

  15. Different Cation Arrangements in Au-In Networks. Syntheses and Structures of Six Intermetallic compounds in Alkali-Metal-Au-In Systems

    SciTech Connect

    Li, Bin; Corbett, John D.

    2007-06-20

    Six robust intermetallic compounds with cations in three different tunnel-like structures have been synthesized in alkali-metal-Au-In systems via high-temperature solid-state methods and characterized by X-ray diffraction: AAu{sub 4}-In{sub 6} [A = K (I), Rb (II), F6m2, Z = 1], K{sub 1.76(6)}Au{sub 6}Ln{sub 4} (III, /4/mcm, Z = 4), and A{sub x}Au{sub 2}In{sub 2} [x {approx} 0.7, A = K (IV), Rb (V), Cs (VI), P4{sub 2}/nmc, Z = 8]. The first type is constructed from a single cage unit: an alkali-metal-centered 21-vertex polyhedron A{at}AugIn{sub 12} with 6-9-6 arrangement of planar rings. The others contain uniaxial arrays of tunnels built of differently puckered eight- and four-member Au/In rings. The largely different cation distributions depend on the tunnel constitutions and cation sizes. Tight-binding electronic structure calculations by linear muffin-tin-orbital (LMTO) methods were performed for I and idealized III in order to help understand their chemical bonding. These also reveal large differences in relativistic effects for Au d orbitals, as well as for different Au sites in each structure.

  16. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    1989-01-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples.

  17. On the site preferences of ternary additions to triple defect B2 intermetallic compounds

    SciTech Connect

    Pike, L.M.; Chen, S.L.; Chang, Y.A.

    1995-12-31

    Knowledge of the site preference of ternary solute additions is essential to developing an understanding of how these solutes affect the properties of B2 intermetallic compounds. A quasichemical model will be presented which is able to predict the site preferences of dilute solute additions to triple defect B2 compounds. The only parameters required are enthalpies of formation at the stoichiometric composition. General equations are developed which can be used to determine site occupations and defect concentrations for dilute as well as non-dilute solute additions. These equations use atom pair bond enthalpies as the parameters. It is found that the site preferences of dilute additions are not always in agreement with predictions based on the solubility lobes in ternary Gibbs isotherms, Predictions for dilute additions to NiAl and FeAl are compared to experimental results found in the literature. Satisfactory correlation is found between the model and the experimental results. In addition, the predictions from the model on vacancy concentrations in Fe doped NiAl are compared to recent experimental results by the authors.

  18. FeAI and Mo-Si-B Intermetallic Coatings Prepared by Thermal Spraying

    SciTech Connect

    Terry C. Totemeier; Richard N. Wright; W. David Swank

    2004-12-01

    FeAl and Mo–Si–B intermetallic coatings for elevated temperature environmental resistance were prepared using high-velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques. For both coating types, the effect of coating parameters (spray particle velocity and temperature) on the microstructure and physical properties of the coatings was assessed. Fe–24Al (wt%) coatings were prepared using HVOF thermal spraying at spray particle velocities varying from 540 to 700 m/s. Mo–13.4Si–2.6B coatings were prepared using APS at particle velocities of 180 and 350 m/s. Residual stresses in the HVOF FeAl coatings were compressive, while stresses in the APS Mo–Si–B coatings were tensile. In both cases, residual stresses became more compressive with increasing spray particle velocity due to increased peening imparted by the spray particles. The hardness and elastic moduli of FeAl coatings also increased with increasing particle velocity. For Mo–Si–B coatings, plasma spraying at 180 m/s resulted in significant oxidation of the spray particles and conversion of the T1 phase into amorphous silica and a-Mo. The T1 phase was retained after spraying at 350 m/s.

  19. Intermetallic-ceramic coatings for metals protection against erosion-corrosion at high temperatures

    SciTech Connect

    Wang, B.Q.; Verstak, A.; Beliaev, A.

    1999-07-01

    A series of erosion-corrosion (E-C) tests was carried out on the NiAl-Al{sub 2}O{sub 3} intermetallic-ceramic coatings deposited with high-velocity oxygen-fuel method (HVOF). The tests attempted to simulate the erosion conditions at the heat exchanger tubes in coal-fired boilers. The E-C behavior of these coatings was investigated and compared with other thermal sprayed coatings. It was found that in comparison to other coatings, eroded by the bed ash at 300 C, the HVOF NiAl-40Al{sub 2}0{sub 3} coating exhibited the lowest thickness loss at a 90{degree} impact angle, and was the second best at a 30{degree} impact angle. Eroded by the fly ash under test temperatures 450--600 C, the HVOF NiAl-40Al{sub 2}O{sub 3} coating demonstrated the highest erosion-corrosion resistance at all impact angles of testing. At temperatures below 200 C, the E-C wastage of the HVOF NiAl-40Al{sub 2}O{sub 3} coating had essentially no dependence on temperature. From 200 C to 600 C the coating thickness loss increased and from 600 to 800 C the thickness loss decreased with temperature. The HVOF NiAl-40Al{sub 2}O{sub 3} coating eroded by cracking and chipping brittle mechanism.

  20. FeAl and Mo-Si-B Intermetallic Coatings Prepared by Thermal Spraying

    SciTech Connect

    Totemeier, T.C.; Wright, R.N.; Swank, W.D.

    2003-04-22

    FeAl and Mo-Si-B intermetallic coatings for elevated temperature environmental resistance were prepared using high-velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques. For both coating types, the effect of coating parameters (spray particle velocity and temperature) on the microstructure and physical properties of the coatings was assessed. Fe-24Al (wt.%) coatings were prepared using HVOF thermal spraying at spray particle velocities varying from 540 m/s to 700 m/s. Mo-13.4Si-2.6B coatings were prepared using APS at particle velocities of 180 and 350 m/s. Residual stresses in the HVOF FeAl coatings were compressive, while stresses in the APS Mo-Si-B coatings were tensile. In both cases, residual stresses became more compressive with increasing spray particle velocity due to increased peening imparted by the spray particles. The hardness and elastic moduli of FeAl coatings also increased with increasing particle velocity, again due to an increased peening effect. For Mo-Si-B coatings, plasma spraying at 180 m/s resulted in significant oxidation of the spray particles and conversion of the T1 phase into amorphous silica and {alpha}-Mo. The T1 phase was retained after spraying at 350 m/s.

  1. Optimized Cu-Sn Wafer-Level Bonding Using Intermetallic Phase Characterization

    NASA Astrophysics Data System (ADS)

    Luu, Thi-Thuy; Duan, Ani; Aasmundtveit, Knut E.; Hoivik, Nils

    2013-12-01

    The objective of this study is to optimize the Cu/Sn solid-liquid interdiffusion process for wafer-level bonding applications. To optimize the temperature profile of the bonding process, the formation of intermetallic compounds (IMCs) which takes place during the bonding process needs to be well understood and characterized. In this study, a simulation model for the development of IMCs and the unreacted remaining Sn thickness as a function of the bonding temperature profile was developed. With this accurate simulation model, we are able to predict the parameters which are critical for bonding process optimization. The initial characterization focuses on a kinetics model of the Cu3Sn thickness growth and the amount of Sn thickness that reacts with Cu to form IMCs. As-plated Cu/Sn samples were annealed using different temperatures (150°C to 300°C) and durations (0 min to 320 min). The kinetics model is then extracted from the measured thickness of IMCs of the annealed samples.

  2. Physical properties and electronic structure of La3Co and La3Ni intermetallic superconductors

    NASA Astrophysics Data System (ADS)

    Strychalska, J.; Roman, M.; Sobczak, Z.; Wiendlocha, B.; Winiarski, M. J.; Ronning, F.; Klimczuk, T.

    2016-09-01

    La3Co and La3Ni are reported superconductors with transition temperatures of 4.5 and 6 K, respectively. Here, we reinvestigate the physical properties of these two intermetallic compounds with magnetic susceptibility χ, specific heat Cp and electrical resistivity ρ measurements down to 1.9 K. Although bulk superconductivity is confirmed in La3Co, as observed previously, only a trace of it is found in La3Ni, indicating that the superconductivity in La3Ni originates from an impurity phase. Superconducting state parameters for La3Co, including lower and upper critical fields and the superconducting gap, are estimated. Results of the theoretical calculations of the electronic structure for both materials are also presented, and comparison of the Fermi level location in La3Co versus La3Ni explains its larger superconducting Tc. A major discrepancy between band structure calculations and the experimentally measured Sommerfeld coefficient is found. The measured electronic density of states is about 2.5 times larger than the theoretical value for La3Co. This effect cannot be explained by the electron-phonon interaction alone. Renormalization of γ, as well as an ∼T2 behavior of the resistivity, suggests the presence of spin fluctuations in both systems.

  3. Incorporation of Interfacial Intermetallic Morphology in Fracture Mechanism Map for Sn-Ag-Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-01-01

    A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer ( t eff) and the solder yield strength ( σ ys,eff) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t eff, based on the uniform thickness of IMC ( t u) and the average height of the IMC scallops ( t s), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t eff that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t eff, mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.

  4. Shock response of Ni/Al reactive inter-metallic composites

    NASA Astrophysics Data System (ADS)

    Cherukara, Mathew; Germann, Timothy; Kober, Edward; Strachan, Alejandro

    2014-03-01

    Intermolecular reactive composites find diverse applications in defense, microelectronics and medicine, where strong, localized sources of heat are required. Motivated by experimental work which has shown that high-energy ball milling can significantly improve the reactivity as well as the ease of ignition of Ni/Al inter-metallic composites, we present large scale (~41 million atom) molecular dynamics simulations of shock-induced chemistry in porous, polycrystalline, lamellar Ni/Al nano-composites, which are designed to capture the microstructure that is obtained post milling. Shock propagation in these porous, lamellar materials is observed to be extremely diffuse, leading to substantial inhomogeneity in the local stress states of the material. We describe the importance of pores as sites of initiation, where local temperatures can rise to several thousands of degrees, and chemical mixing is accelerated by vortex formation and jetting in the pore. We also follow the evolution of the chemistry after the shock passage by allowing the sample to ``cook'' under the shock induced pressures and temperatures for up to 0.5 ns. Multiple ``tendril-like'' reaction fronts, born in the cauldron of the pores, propagate rapidly through the sample, consuming it within a nanosecond. US Defense Threat Reduction Agency, Contract No. HDTRA1-10-1-0119.

  5. Surface structure of the Ag-In-(rare earth) complex intermetallics

    NASA Astrophysics Data System (ADS)

    Hars, S. S.; Sharma, H. R.; Smerdon, J. A.; Yadav, T. P.; Al-Mahboob, A.; Ledieu, J.; Fournée, V.; Tamura, R.; McGrath, R.

    2016-05-01

    We present a study of the surface structure of the Ag-In-RE (RE: rare-earth elements Gd, Tb, and Yb) complex intermetallics using scanning tunneling microscopy and low-energy electron diffraction. The surface of the Ag-In-Yb approximant prepared by sputter-annealing methods under ultrahigh-vacuum conditions produces a flat (100) surface with no facets. However, the Ag-In-Gd and Ag-In-Tb 1/1 approximants, which have a surface miscut of about 12∘ relative to the (100) plane, develop surface facets along various crystallographic directions. The structure of each facet can be explained as a truncation of the rhombic triacontahedral clusters, i.e., the main building blocks of these systems. Despite their differences in atomic structure, symmetry, and density, the facets show common features. The facet planes are In rich. The analysis of the nearest-neighbor atom distances suggests that In atoms form bonds with the RE atoms, which we suggest is a key factor that stabilizes even low-density facet planes.

  6. Intermetallic Formation at Interface of Al/Cu Clad Fabricated by Hydrostatic Extrusion and Its Properties.

    PubMed

    Lee, Jongbeom; Jeong, Haguk

    2015-11-01

    Al/Cu clad composed of Al core and Cu sheath has been produced by hydrostatic extrusion at 523 K, at an extrusion rate of 27. The prepared specimen was post-annealed at temperatures of 673 K and 773 K for various time durations, and the effect of annealing conditions have been analyzed. The hardness at the interface between Al and Cu matrix of the Al/Cu bimetal clad increases because of annealing. Results indicate that the hardness is more sensitive to annealing temperature than the annealing time. Three kinds of intermetallic compounds (IMC), namely, CuAl, Cu3Al2, and CuAl2, are formed at the Al-Cu interface, upon annealing at 673 K. On the other hand, four kinds of IMCs, namely, Cu4Al3, CuAl, Cu3Al2, CuAl2, are formed at the annealing temperature of 773 K. The growth of each IMC follows the parabolic law as a function of annealing times at certain annealing temperature. The growth rate of each IMC is limited to its interdiffusion rate constant. The IMC Cu4Al3 appears upon annealing at 773 K, and not during annealing at 673 K, because of the higher value of activation energy associated with its formation, when compared to other IMCs. PMID:26726557

  7. Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy

    SciTech Connect

    Narayanan, L.A.; Samuel, F.H. ); Gruzleski, J.E. . Dept. of Mining and Metallurgical Engineering)

    1994-08-01

    The crystallization behavior of iron-containing intermetallic compounds in industrial grade 319 aluminum alloy has been investigated by means of thermal analysis and metallography. In the absence of manganese, the iron compound crystallizes in the [beta] phase, at all cooling rates ranging from 0.1 C/s to 20 C/s under normal casting temperatures (750 C). However, when the melt is superheated to a high temperature (about 200 to 300 degrees above the liquidus temperature), the iron compound crystallizes in the [alpha] phase at high cooling rates. This is due to the fact that [gamma] alumina, which forms at low melt temperatures ([<=]750 C), acts as a nucleus for crystallization of [beta] phase. When the melt is superheated to high temperatures ([>=] 850 C), the [gamma] alumina transforms to [alpha] alumina. This is a poor nucleus for the [beta]-phase crystallization, and as a result, [alpha] phase forms. The importance of nucleation and growth undercooling for the crystallization of iron compounds is highlighted. In the presence of manganese, the iron compound crystallizes in [alpha] phase at low cooling rates and in both the [alpha] and [beta] phases at high cooling rates. This reverse crystallization behavior is explained in terms of phase diagram relationships.

  8. Investigation of the Growth of Intermetallic Compounds Between Cu Pillars and Solder Caps

    NASA Astrophysics Data System (ADS)

    Lin, Jui-Ching; Qin, Yi; Woertink, Julia

    2014-11-01

    In flip chip applications, Cu pillars with solder caps are regarded as next-generation electronic interconnection technology, because of high input/output density. However, because of diffusion and reaction of Sn and Cu during the high-temperature reflow process, intermetallic compounds (IMC) are formed, and grow, at the interface between the cap and the pillar. Understanding the growth behavior of interfacial IMC is critical in the design of solder interconnections, because excessive growth of IMC can reduce the reliability of connections. In this study, the growth of IMC during thermal cycling, an accelerated method of testing the service environment of electronic devices, was studied by use of focused ion beam-scanning electron microscopy. Under alternating high and low-temperature extremes, growth of Cu6Sn5 ( η-phase) and Cu3Sn ( ɛ-phase) IMC was imaged and measured as a function of the number of cycles. The total IMC layer grew significantly thicker but became more uniform during thermal cycling. The Cu3Sn layer was initially thinner than the Cu6Sn5 layer but outgrew the Cu6Sn5 layer after 1000 cycles. It was found that, with limited Cu and Sn diffusion, consumption of Cu6Sn5 for growth of the Cu3Sn layer can result in a thinner Cu6Sn5 layer after thermal cycling.

  9. Intermetallic compound layer growth kinetics in non-lead bearing solders

    SciTech Connect

    Vianco, P.T.; Kilgo, A.C.; Grant, R.

    1995-04-01

    The introduction of alternative, non-lead bearing solders into electronic assemblies requires a thorough investigation of product manufacturability and reliability. Both of these attributes can be impacted by the excessive growth of intermetallic compound (IMC) layers at the solder/substrate interface. An extensive study has documented the stoichiometry and solid state growth kinetics of IMC layers formed between copper and the lead-free solders: 96.5Sn-3.5Ag (wt.%), 95Sn-5Sb, 100Sn, and 58Bi-42Sn. Aging temperatures were 70--205 C for the Sn-based solders and 55--120 C for the Bi-rich solder. Time periods were 1--400 days for all of the alloys. The Sn/Cu, Sn-Ag/Cu, and Sn-Sb/Cu IMC layers exhibited sub-layers of Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn; the latter composition was present only following prolonged aging times or higher temperatures. The total layer growth exhibited a time exponent of n = 0.5 at low temperatures and a value of n = 0.42 at higher temperatures in each of the solder/Cu systems. Similar growth kinetics were observed with the low temperature 58Bi-42Sn solder; however, a considerably more complex sub-layer structure was observed. The kinetic data will be discussed with respect to predicting IMC layer growth based upon solder composition.

  10. Heat and mass transfer in the sorption of hydrogen by intermetallic compounds

    SciTech Connect

    Svinarev, S.V.; Trushevskii, S.N.

    1984-06-01

    Intermetallic compounds (IMC), which reversibly absorb hydrogen, are currently the subject of many investigations re their possible use in hydrogen accumulators, thermal machines, thermal pumps and accumulators, sorptional compressors, etc. The dynamics of hydrogen sorption in IMC must be investigated for the analysis and design of such devices. Trends in such studies can be distinguished: the study of the true chemical kinetics of sorption; the investigation of the sorption dynamics in extended IMC layers of dimensions characteristic for practical applications. However, these do not give criteria by which the experimental conditions may be chosen, and often the conditions themselves are not completely described. In connection with this, calculations of the sorption process in which the heat liberation and filtration of hydrogen through the IMC layer are taken into account are of interest both for practical applications and for the elucidation of the conditions in which the process may be regarded as purely kinetic or controlled by the heat and mass transfer in the layer. The authors devote themselves to this aspect in this presentation.

  11. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    NASA Astrophysics Data System (ADS)

    Ohmi, Tatsuya; Mizuma, Kiminori; Matsuura, Kiyotaka; Iguchi, Manabu

    2008-02-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  12. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands.

    PubMed

    Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng

    2015-04-01

    An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility. PMID:25803406

  13. Synthesis, Structure and bonding Analysis of the Polar Intermetallic Phase Ca2Pt2Cd

    SciTech Connect

    Samal, Saroj L.; Corbett, John D.

    2012-08-14

    The polar intermetallic phase Ca2Pt2Cd was discovered during explorations of the Ca-Pt-Cd system. The compound was synthesized by high temperature reactions, and its structure refined by single-crystal X-ray diffraction as orthorhombic, Immm, a = 4.4514(5), b = 5.8415(6), c = 8.5976(9) Å, Z = 2. The structure formally contains infinite, planar networks of [Pt2Cd]4– along the ab plane, which can be described as tessellation of six and four-member rings of the anions, with cations stuffed between the anion layers. The infinite condensed platinum chains show a substantial long–short distortion of 0.52 Å, an appreciable difference between Ca2Pt2Cd (26 valence electrons) and the isotypic but regular Ca2Cu2Ga (29 VE). The relatively large cation proportion diminishes the usual dominance of polar (Pt–Cd) and 5d–5d (Pt–Pt) contributions to the total Hamilton populations.

  14. Model-based predictions of solid state intermetallic compound layer growth in hybrid microelectronic circuits

    SciTech Connect

    Vianco, P.T.; Erickson, K.L.; Hopkins, P.L.

    1997-12-31

    A mathematical model was developed to quantitatively describe the intermetallic compound (IMC) layer growth that takes place between a Sn-based solder and a noble metal thick film conductor material used in hybrid microcircuit (HMC) assemblies. The model combined the reaction kinetics of the solder/substrate interaction, as determined from ancillary isothermal aging experiments, with a 2-D finite element mesh that took account of the porous morphology of the thick film coating. The effect of the porous morphology on the IMC layer growth when compared to the traditional 1-D computations was significant. The previous 1-D calculations under-predicted the nominal IMC layer thickness relative to the 2-D case. The 2-D model showed greater substrate consumption by IMC growth and lesser solder consumption that was determined with the 1-D computation. The new 2-D model allows the design engineer to better predict circuit aging and hence, the reliability of HMC hardware that is placed in the field.

  15. Growth kinetics of Al–Fe intermetallic compounds during annealing treatment of friction stir lap welds

    SciTech Connect

    Movahedi, M.; Kokabi, A.H.; Seyed Reihani, S.M.; Najafi, H.; Farzadfar, S.A.; Cheng, W.J.; Wang, C.J.

    2014-04-01

    In this study, we explored the growth kinetics of the Al–Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 °C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state. The results showed that the growth kinetics of the IM layer was not governed by a parabolic diffusion law. Presence of the IM compounds as well as high stored energy near the joint interface of the as-welded sample was recognized to be the origin of the observed deviation from the parabolic diffusion law. - Highlights: • This work provided a new insight into growth kinetics of Al–Fe IM thickness. • The growth kinetics of IM layer was not governed by a parabolic diffusion law. • IM near the joint interface was the origin of deviation from the parabolic law. • High stored energy at joint interface was origin of deviation from parabolic law.

  16. Disturbing the dimers: Electron and hole doping in the intermetallic insulator FeGa3

    NASA Astrophysics Data System (ADS)

    Botana, Antia S.; Quan, Yundi; Pickett, Warren E.

    2015-10-01

    Insulating FeGa3 poses peculiar puzzles beyond the occurrence of an electronic gap in an intermetallic compound. This Fe-based material has a very distinctive structural characteristic with the Fe atoms occurring in dimers. The insulating gap can be described comparably well in either the weakly correlated limit or the strongly correlated limit within density functional theory viewpoints, where the latter corresponds to singlet formation on the Fe2 dimers. Though most of the calculated occupied Wannier functions are an admixture of Fe 3 d and Ga 4 s or 4 p states, there is a single bonding-type Wannier function per spin centered on each Fe2 dimer. Density functional theory methods have been applied to follow the evolution of the magnetic properties and electronic spectrum with doping, where unusual behavior is observed experimentally. Both electron and hole doping are considered, by Ge and Zn on the Ga site, and by Co and Mn on the Fe site, the latter introducing direct disturbance of the Fe2 dimer. Results from weakly and strongly correlated pictures are compared. Regardless of the method, magnetism including itinerant phases appears readily with doping. The correlated picture suggests that in the low doping limit Mn (for Fe) produces an in-gap hole state, while Co (for Fe) introduces a localized electronic gap state.

  17. Theoretical and positron annihilation study of point defects in intermetallic compound Ni{sub 3}Al

    SciTech Connect

    Jian Sun; Dongliang Lin

    1994-01-01

    The equilibrium equation of point defects in Ll{sub 2} types of intermetallic compounds was established in a new simple method, which is independent of the chemical potentials. The formation energies of the relevant point defects in Ni{sub 3}Al were calculated by EAM potentials and statical relaxations. The concentration of point defects at 1,000 K as a function of bulk composition and the effect of temperature on them were studied for Ni{sub 3}Al alloy. The results show that the Al-antisites are the constitutional defects in hypostoichiometric Ni{sub 3}Al, and the Ni-antisite defects in hyperstoichiometric Ni{sub 3}Al. The two types of vacancies belong to thermal defects. The positron annihilation technique was also conducted to measure the concentration of vacancies in Ni{sub 3}Al alloys with and without boron. Although vacancies interact with the boron dopant, the changes of vacancy concentration Ni{sub 3}Al alloys can not be considered as the main reason in explaining the effect of stoichiometry on the segregation of boron. The effect of stoichiometry on diffusion in Ni{sub 3}Al alloys was discussed additionally.

  18. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    SciTech Connect

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-02-15

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  19. In situ HVEM investigation of catastrophic swelling in uranium intermetallic fuels

    SciTech Connect

    Birtcher, R.C.; Allen, C.W.; Hofman, G.L.; Rehn, L.E.

    1988-02-01

    The swelling of intermetallic materials depends upon the crystalline or amorphous state of the material. When U/sub 3/Si is irradiated at temperatures above its amorphization limit, it remains crystalline and does not suffer extraordinary swelling. However, when it is irradiated at temperatures below its amorphization limit, body forces associated with the irradiation cause any internal free volume to suffer a rapid growth, and the material swells at an anomalously fast rate. As has been previously noted, fission-gas bubbles are not directly responsible for this swelling; however, once formed, the bubble volume, as any interior volume, may increase rapidly. An unusual and important result is that once U/sub 3/Si has been irradiated to a high fluence, (above 2 /times/ 10/sup 20/ Kr m/sup /minus/2/), the irradiation behavior appropriate for the initial irradiation temperature is locked in, at least temporarily, and that behavior persists even at irradiation temperatures that normally result in the opposite behavior. For example, after a 620/degree/K irradiation, the crystalline state is retained during subsequent irradiation at 420/degree/K to more than ten times the fluence required to amorphize unirradiated material at 420/degree/K. 19 refs., 3 figs.

  20. Compositions and morphologies of TiAlSi intermetallics in different diffusion couples

    SciTech Connect

    Gao, Tong; Liu, Guiliang; Liu, Xiangfa

    2014-09-15

    Two kinds of diffusion couples were designed to investigate the formation of ternary TiAlSi phases in Al–Si–Ti alloys. It was found that different diffusion processes result in various compositions and morphologies of TiAlSi intermetallics. The melted Al, Si and Ti atoms in the diffusion couple leads to the formation of flake-like TiAlSi phase through liquid–liquid reaction. Besides, unidirectional diffusion of Al and Si atoms into blocky TiAl{sub 3} particles or Ti powders via a liquid–solid diffusion process also results in the formation of TiAlSi, while keeping the block-like morphology. This kind of diffusion is a gradual process, driven by the concentration gradient. The reactions in the diffusion couples are helpful to understand the compositional and morphological evolutions of TiAlSi as reported in previous work. - Highlights: • Two diffusion couples were designed to investigate the formation of TiAlSi phases. • Compositions and morphologies of TiAlSi are influenced by the diffusion process. • Liquid–liquid and liquid–solid diffusions were detected. • The corresponding mechanisms were discussed.