Sample records for advanced photogrammetric techniques

  1. Photogrammetric techniques for aerospace applications

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Burner, Alpheus W.; Jones, Thomas W.; Barrows, Danny A.

    2012-10-01

    Photogrammetric techniques have been used for measuring the important physical quantities in both ground and flight testing including aeroelastic deformation, attitude, position, shape and dynamics of objects such as wind tunnel models, flight vehicles, rotating blades and large space structures. The distinct advantage of photogrammetric measurement is that it is a non-contact, global measurement technique. Although the general principles of photogrammetry are well known particularly in topographic and aerial survey, photogrammetric techniques require special adaptation for aerospace applications. This review provides a comprehensive and systematic summary of photogrammetric techniques for aerospace applications based on diverse sources. It is useful mainly for aerospace engineers who want to use photogrammetric techniques, but it also gives a general introduction for photogrammetrists and computer vision scientists to new applications.

  2. A close-range photogrammetric technique for mapping neotectonic features in trenches

    USGS Publications Warehouse

    Fairer, G.M.; Whitney, J.W.; Coe, J.A.

    1989-01-01

    Close-range photogrammetric techniques and newly available computerized plotting equipment were used to map exploratory trench walls that expose Quaternary faults in the vicinity of Yucca Mountain, Nevada. Small-scale structural, lithologic, and stratigraphic features can be rapidly mapped by the photogrammetric method. This method is more accurate and significantly more rapid than conventional trench-mapping methods, and the analytical plotter is capable of producing cartographic definition of high resolution when detailed trench maps are necessary. -from Authors

  3. Comparison of a novel photogrammetric technique and modified USPHS criteria to monitor the wear of restorations.

    PubMed

    Chadwick, R G; McCabe, J F; Walls, A W; Mitchell, H L; Storer, R

    1991-02-01

    This paper describes monitoring the wear of restorations borne by partial dentures over a 12 months period using a novel photogrammetric technique and modified United States Public Health Service (USPHS) criteria. The performance of Class II restorations of Dispersalloy was compared with that of similar restorations of either KetacFil or Occlusin. The photogrammetric technique highlighted differences in performance not detected by the modified USPHS criteria. It is concluded that the photogrammetric technique should prove valuable in the in vivo assessment of the performance of restorative materials but that further refinement of the method is required particularly with regard to the orientation of replicas for sequential measurements.

  4. An in vitro comparison of photogrammetric and conventional complete-arch implant impression techniques.

    PubMed

    Bergin, Junping Ma; Rubenstein, Jeffrey E; Mancl, Lloyd; Brudvik, James S; Raigrodski, Ariel J

    2013-10-01

    Conventional impression techniques for recording the location and orientation of implant-supported, complete-arch prostheses are time consuming and prone to error. The direct optical recording of the location and orientation of implants, without the need for intermediate transfer steps, could reduce or eliminate those disadvantages. The objective of this study was to assess the feasibility of using a photogrammetric technique to record the location and orientation of multiple implants and to compare the results with those of a conventional complete-arch impression technique. A stone cast of an edentulous mandibular arch containing 5 implant analogs was fabricated to create a master model. The 3-dimensional (3D) spatial orientations of implant analogs on the master model were measured with a coordinate measuring machine (CMM) (control). Five definitive casts were made from the master model with a splinted impression technique. The positions of the implant analogs on the 5 casts were measured with a NobelProcera scanner (conventional method). Prototype optical targets were attached to the master model implant analogs, and 5 sets of images were recorded with a digital camera and a standardized image capture protocol. Dimensional data were imported into commercially available photogrammetry software (photogrammetric method). The precision and accuracy of the 2 methods were compared with a 2-sample t test (α=.05) and a 95% confidence interval. The location precision (standard error of measurement) for CMM was 3.9 µm (95% CI 2.7 to 7.1), for photogrammetry, 5.6 µm (95% CI 3.4 to 16.1), and for the conventional method, 17.2 µm (95% CI 10.3 to 49.4). The average measurement error was 26.2 µm (95% CI 15.9 to 36.6) for the conventional method and 28.8 µm (95% CI 24.8 to 32.9) for the photogrammetric method. The overall measurement accuracy was not significantly different when comparing the conventional to the photogrammetric method (mean difference = -2.6 µm, 95% CI

  5. Conceptual issues of softcopy photogrammetric workstations

    NASA Technical Reports Server (NTRS)

    Schenk, Toni; Toth, Charles K.

    1992-01-01

    A conceptual approach to digital photogrammetry is presented. Automation of photogrammetric processes on digital photogrammetric workstations is considered with particular attention given to the automatic orientation and the surface reconstruction module. It is suggested that major progress toward autonomous softcopy workstations depends more on advances on the conceptual level rather than on refinement of system components such as hardware and algorithms.

  6. Experimental Methods Using Photogrammetric Techniques for Parachute Canopy Shape Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Downey, James M.; Lunsford, Charles B.; Desabrais, Kenneth J.; Noetscher, Gregory

    2007-01-01

    NASA Langley Research Center in partnership with the U.S. Army Natick Soldier Center has collaborated on the development of a payload instrumentation package to record the physical parameters observed during parachute air drop tests. The instrumentation package records a variety of parameters including canopy shape, suspension line loads, payload 3-axis acceleration, and payload velocity. This report discusses the instrumentation design and development process, as well as the photogrammetric measurement technique used to provide shape measurements. The scaled model tests were conducted in the NASA Glenn Plum Brook Space Propulsion Facility, OH.

  7. Dot Projection Photogrammetric Technique for Shape Measurements of Aerospace Test Articles

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Pappa, Richard S.

    2002-01-01

    Results from initial laboratory investigations with the dot projection photogrammetric technique are presented for three wind-tunnel test articles with a range of surface scattering and reflection properties. These test articles are a semispan model and a micro air vehicle with a latex wing that are both diffusely reflecting, and a highly polished specularly reflecting model used for high Reynolds number testing. Results using both white light and laser illumination are presented. Some of the advantages and limitations of the dot projection technique are discussed. Although a desirable final outcome of this research effort is the characterization of dynamic behavior, only static laboratory results are presented in this preliminary effort.

  8. Photogrammetric DSM denoising

    NASA Astrophysics Data System (ADS)

    Nex, F.; Gerke, M.

    2014-08-01

    Image matching techniques can nowadays provide very dense point clouds and they are often considered a valid alternative to LiDAR point cloud. However, photogrammetric point clouds are often characterized by a higher level of random noise compared to LiDAR data and by the presence of large outliers. These problems constitute a limitation in the practical use of photogrammetric data for many applications but an effective way to enhance the generated point cloud has still to be found. In this paper we concentrate on the restoration of Digital Surface Models (DSM), computed from dense image matching point clouds. A photogrammetric DSM, i.e. a 2.5D representation of the surface is still one of the major products derived from point clouds. Four different algorithms devoted to DSM denoising are presented: a standard median filter approach, a bilateral filter, a variational approach (TGV: Total Generalized Variation), as well as a newly developed algorithm, which is embedded into a Markov Random Field (MRF) framework and optimized through graph-cuts. The ability of each algorithm to recover the original DSM has been quantitatively evaluated. To do that, a synthetic DSM has been generated and different typologies of noise have been added to mimic the typical errors of photogrammetric DSMs. The evaluation reveals that standard filters like median and edge preserving smoothing through a bilateral filter approach cannot sufficiently remove typical errors occurring in a photogrammetric DSM. The TGV-based approach much better removes random noise, but large areas with outliers still remain. Our own method which explicitly models the degradation properties of those DSM outperforms the others in all aspects.

  9. Photogrammetric application of viking orbital photography

    USGS Publications Warehouse

    Wu, S.S.C.; Elassal, A.A.; Jordan, R.; Schafer, F.J.

    1982-01-01

    Special techniques are described for the photogrammetric compilation of topographic maps and profiles from stereoscopic photographs taken by the two Viking Orbiter spacecraft. These techniques were developed because the extremely narrow field of view of the Viking cameras precludes compilation by conventional photogrammetric methods. The techniques adjust for internal consistency the Supplementary Experiment Data Record (SEDR-the record of spacecraft orientation when photographs were taken) and the computation of geometric orientation parameters of the stereo models. A series of contour maps of Mars is being compiled by these new methods using a wide variety of Viking Orbiter photographs, to provide the planetary research community with topographic information. ?? 1982.

  10. Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2016-01-01

    Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests.

  11. Photogrammetric aspects of remapping procedures

    NASA Technical Reports Server (NTRS)

    Mikhail, E. M.

    1982-01-01

    Photogrammetric control generation is discussed. Techniques in remote sensing data reduction are described. Emphasis is placed on methods of rectification of aerial photography and frame photography. Examples of multispectral band scanner data that were processed are presented.

  12. Photogrammetric Techniques for Paleoanthropological Objects Preserving and Studying

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.; Leybova, N. A.; Galeev, R.; Novikov, M.; Gaboutchian, A. V.

    2018-05-01

    Paleo-anthropological research has its specificity closely related with studied objects. Their complicated shape arises from anatomical features of human skull and other skeletal bones. The degree of preservation is associated with the fragility of palaeo-anthropological material which usually has high historical and scientific value. The circumstances mentioned above enhance the relevance of photogrammetry implementation in anthropological studies. Thus, such combination of scientific methodologies with up-to-date technology creates a potential for improvement of various stages of palaeo-anthropological studies. This can be referred to accurate documenting of anthropological material and creation of databases accessible for wide range of users, predominantly research scientists and students; preservation of highly valuable samples and possibility of sharing information as 3D images or printed copies, improving co-operation of scientists world-wide; potential for replication of contact anthropometric studies on 3D images or printed copies providing for development of new biometric methods, and etc. This paper presents an approach based on photogrammetric techniques and non-contact measurements, providing technological and methodological development of paleo-anthropological studies, including data capturing, processing and representing.

  13. STS-74/Mir photogrammetric appendage structural dynamics experiment

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Gilbert, Michael G.

    1996-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) is an International Space Station (ISS) Phase-1 risk mitigation experiment. Phase-1 experiments are performed during docking missions of the U.S. Space Shuttle to the Russian Space Station Mir. The purpose of the experiment is to demonstrate the use of photogrammetric techniques for determination of structural dynamic mode parameters of solar arrays and other spacecraft appendages. Photogrammetric techniques are a low cost alternative to appendage mounted accelerometers for the ISS program. The objective of the first flight of PASDE, on STS-74 in November 1995, was to obtain video images of Mir Kvant-2 solar array response to various structural dynamic excitation events. More than 113 minutes of high quality structural response video data was collected during the mission. The PASDE experiment hardware consisted of three instruments each containing two video cameras, two video tape recorders, a modified video signal time inserter, and associated avionics boxes. The instruments were designed, fabricated, and tested at the NASA Langley Research Center in eight months. The flight hardware was integrated into standard Hitchhiker canisters at the NASA Goddard Space Flight Center and then installed into the Space Shuttle cargo bay in locations selected to achieve good video coverage and photogrammetric geometry.

  14. Dynamic photogrammetric calibration of industrial robots

    NASA Astrophysics Data System (ADS)

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot

  15. Experiences with semiautomatic aerotriangulation on digital photogrammetric stations

    NASA Astrophysics Data System (ADS)

    Kersten, Thomas P.; Stallmann, Dirk

    1995-12-01

    With the development of higher-resolution scanners, faster image-handling capabilities, and higher-resolution screens, digital photogrammetric workstations promise to rival conventional analytical plotters in functionality, i.e. in the degree of automation in data capture and processing, and in accuracy. The availability of high quality digital image data and inexpensive high capacity fast mass storage offers the capability to perform accurate semi- automatic or automatic triangulation of digital aerial photo blocks on digital photogrammetric workstations instead of analytical plotters. In this paper, we present our investigations and results on two photogrammetric triangulation blocks, the OEEPE (European Organisation for Experimental Photogrammetric Research) test block (scale 1;4'000) and a Swiss test block (scale 1:12'000) using digitized images. Twenty-eight images of the OEEPE test block were scanned on the Zeiss/Intergraph PS1 and the digital images were delivered with a resolution of 15 micrometer and 30 micrometer, while 20 images of the Swiss test block were scanned on the Desktop Publishing Scanner Agfa Horizon with a resolution of 42 micrometer and on the PS1 with 15 micrometer. Measurements in the digital images were performed on the commercial Digital photogrammetric Station Leica/Helava DPW770 and with basic hard- and software components of the Digital Photogrammetric Station DIPS II, an experimental system of the Institute of Geodesy and Photogrammetry, ETH Zurich. As a reference, the analog images of both photogrammetric test blocks were measured at analytical plotters. On DIPS II measurements of fiducial marks, signalized and natural tie points were performed by least squares template and image matching, while on DPW770 all points were measured by the cross correlation technique. The observations were adjusted in a self-calibrating bundle adjustment. The comparisons between these results and the experiences with the functionality of the commercial

  16. Photogrammetric point cloud compression for tactical networks

    NASA Astrophysics Data System (ADS)

    Madison, Andrew C.; Massaro, Richard D.; Wayant, Clayton D.; Anderson, John E.; Smith, Clint B.

    2017-05-01

    We report progress toward the development of a compression schema suitable for use in the Army's Common Operating Environment (COE) tactical network. The COE facilitates the dissemination of information across all Warfighter echelons through the establishment of data standards and networking methods that coordinate the readout and control of a multitude of sensors in a common operating environment. When integrated with a robust geospatial mapping functionality, the COE enables force tracking, remote surveillance, and heightened situational awareness to Soldiers at the tactical level. Our work establishes a point cloud compression algorithm through image-based deconstruction and photogrammetric reconstruction of three-dimensional (3D) data that is suitable for dissimination within the COE. An open source visualization toolkit was used to deconstruct 3D point cloud models based on ground mobile light detection and ranging (LiDAR) into a series of images and associated metadata that can be easily transmitted on a tactical network. Stereo photogrammetric reconstruction is then conducted on the received image stream to reveal the transmitted 3D model. The reported method boasts nominal compression ratios typically on the order of 250 while retaining tactical information and accurate georegistration. Our work advances the scope of persistent intelligence, surveillance, and reconnaissance through the development of 3D visualization and data compression techniques relevant to the tactical operations environment.

  17. Photogrammetric Measurements of CEV Airbag Landing Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Berry, Felecia C.; Dismond, Harriett R.; Cate, Kenneth H.

    2008-01-01

    High-speed photogrammetric measurements are being used to assess the impact dynamics of the Orion Crew Exploration Vehicle (CEV) for ground landing contingency upon return to earth. Test articles representative of the Orion capsule are dropped at the NASA Langley Landing and Impact Research (LandIR) Facility onto a sand/clay mixture representative of a dry lakebed from elevations as high as 62 feet (18.9 meters). Two different types of test articles have been evaluated: (1) half-scale metal shell models utilized to establish baseline impact dynamics and soil characterization, and (2) geometric full-scale drop models with shock-absorbing airbags which are being evaluated for their ability to cushion the impact of the Orion CEV with the earth s surface. This paper describes the application of the photogrammetric measurement technique and provides drop model trajectory and impact data that indicate the performance of the photogrammetric measurement system.

  18. Imaging characteristics of photogrammetric camera systems

    USGS Publications Warehouse

    Welch, R.; Halliday, J.

    1973-01-01

    In view of the current interest in high-altitude and space photographic systems for photogrammetric mapping, the United States Geological Survey (U.S.G.S.) undertook a comprehensive research project designed to explore the practical aspects of applying the latest image quality evaluation techniques to the analysis of such systems. The project had two direct objectives: (1) to evaluate the imaging characteristics of current U.S.G.S. photogrammetric camera systems; and (2) to develop methodologies for predicting the imaging capabilities of photogrammetric camera systems, comparing conventional systems with new or different types of systems, and analyzing the image quality of photographs. Image quality was judged in terms of a number of evaluation factors including response functions, resolving power, and the detectability and measurability of small detail. The limiting capabilities of the U.S.G.S. 6-inch and 12-inch focal length camera systems were established by analyzing laboratory and aerial photographs in terms of these evaluation factors. In the process, the contributing effects of relevant parameters such as lens aberrations, lens aperture, shutter function, image motion, film type, and target contrast procedures for analyzing image quality and predicting and comparing performance capabilities. ?? 1973.

  19. Analysis of accuracy in photogrammetric roughness measurements

    NASA Astrophysics Data System (ADS)

    Olkowicz, Marcin; Dąbrowski, Marcin; Pluymakers, Anne

    2017-04-01

    Regarding permeability, one of the most important features of shale gas reservoirs is the effective aperture of cracks opened during hydraulic fracturing, both propped and unpropped. In a propped fracture, the aperture is controlled mostly by proppant size and its embedment, and fracture surface roughness only has a minor influence. In contrast, in an unpropped fracture aperture is controlled by the fracture roughness and the wall displacement. To measure fracture surface roughness, we have used the photogrammetric method since it is time- and cost-efficient. To estimate the accuracy of this method we compare the photogrammetric measurements with reference measurements taken with a White Light Interferometer (WLI). Our photogrammetric setup is based on high resolution 50 Mpx camera combined with a focus stacking technique. The first step for photogrammetric measurements is to determine the optimal camera positions and lighting. We compare multiple scans of one sample, taken with different settings of lighting and camera positions, with the reference WLI measurement. The second step is to perform measurements of all studied fractures with the parameters that produced the best results in the first step. To compare photogrammetric and WLI measurements we regrid both data sets onto a regular 10 μm grid and determined the best fit, followed by a calculation of the difference between the measurements. The first results of the comparison show that for 90 % of measured points the absolute vertical distance between WLI and photogrammetry is less than 10 μm, while the mean absolute vertical distance is 5 μm. This proves that our setup can be used for fracture roughness measurements in shales.

  20. Comparison of photogrammetric and astrometric data reduction results for the wild BC-4 camera

    NASA Technical Reports Server (NTRS)

    Hornbarger, D. H.; Mueller, I., I.

    1971-01-01

    The results of astrometric and photogrammetric plate reduction techniques for a short focal length camera are compared. Several astrometric models are tested on entire and limited plate areas to analyze their ability to remove systematic errors from interpolated satellite directions using a rigorous photogrammetric reduction as a standard. Residual plots are employed to graphically illustrate the analysis. Conclusions are made as to what conditions will permit the astrometric reduction to achieve comparable accuracies to those of photogrammetric reduction when applied for short focal length ballistic cameras.

  1. A paired-laser photogrammetric method for in situ length measurement of benthic fishes

    USGS Publications Warehouse

    Rizzo, Austin A.; Welsh, Stuart A.; Thompson, Patricia A.

    2017-01-01

    Photogrammetry, a technique to obtain measurements from photographs, may be a valid method for measuring lengths of rare, threatened, or endangered species. Photogrammetric methods of measurement are nonintrusive and reduce the possibility of physical damage or physiological stress associated with the capture and handling of individuals. We evaluated precision and accuracy of photogrammetric length measurements relative to board measurements of Greenside Darters Etheostoma blennioides and Variegate Darters E. variatum in an aquarium and applied photogrammetry in a field study of the Diamond Darter Crystallaria cincotta, a federally listed endangered species. Digital photographs were taken of each individual using a waterproof camera equipped with two parallel lasers. Photogrammetric length measurements were digitized with ImageJ software. Agreement between board and photogrammetric measurements were high for Greenside and Variegate darters. The magnitude of differences was small between direct and photogrammetric measurements, ranging from 0.6% to 3.1%, depending on the species measured and the type of measurement taken. These results support photogrammetry as a useful method for obtaining length measurements of benthic stream fishes. Photogrammetric methods allowed for length measurements and an assessment of length frequency of 199 Diamond Darters, informative data for management that could not be collected with conventional measuring-board methods.

  2. STS-74/MIR Photogrammetric Appendage Structural Dynamics Experiment Preliminary Data Analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Welch, Sharon S.; Pappa, Richard S.; Demeo, Martha E.

    1997-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment was designed, developed, and flown to demonstrate and prove measurement of the structural vibration response of a Russian Space Station Mir solar array using photogrammetric methods. The experiment flew on the STS-74 Space Shuttle mission to Mir in November 1995 and obtained video imagery of solar array structural response to various excitation events. The video imagery has been digitized and triangulated to obtain response time history data at discrete points on the solar array. This data has been further processed using the Eigensystem Realization Algorithm modal identification technique to determine the natural vibration frequencies, damping, and mode shapes of the solar array. The results demonstrate that photogrammetric measurement of articulating, nonoptically targeted, flexible solar arrays and appendages is a viable, low-cost measurement option for the International Space Station.

  3. A photogrammetric technique for generation of an accurate multispectral optical flow dataset

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2017-06-01

    A presence of an accurate dataset is the key requirement for a successful development of an optical flow estimation algorithm. A large number of freely available optical flow datasets were developed in recent years and gave rise for many powerful algorithms. However most of the datasets include only images captured in the visible spectrum. This paper is focused on the creation of a multispectral optical flow dataset with an accurate ground truth. The generation of an accurate ground truth optical flow is a rather complex problem, as no device for error-free optical flow measurement was developed to date. Existing methods for ground truth optical flow estimation are based on hidden textures, 3D modelling or laser scanning. Such techniques are either work only with a synthetic optical flow or provide a sparse ground truth optical flow. In this paper a new photogrammetric method for generation of an accurate ground truth optical flow is proposed. The method combines the benefits of the accuracy and density of a synthetic optical flow datasets with the flexibility of laser scanning based techniques. A multispectral dataset including various image sequences was generated using the developed method. The dataset is freely available on the accompanying web site.

  4. Self-Assembled Rov and Photogrammetric Surveys with Low Cost Techniques

    NASA Astrophysics Data System (ADS)

    Costa, E.; Guerra, F.; Vernier, P.

    2018-05-01

    In last years, ROVs, have been employed to explore underwater environments and have played an important role for documentation and surveys in different fields of scientific application. In 2017, the Laboratorio di Fotogrammetria of Iuav University of Venice has decided to buy an OpenRov, a low cost ROV that could be assembled by ourselves to add some external components for our necessities, to document archaeological sites. The paper is related to the photogrammetric survey for the documentation of underwater environments and to the comparison between different solutions applied on a case studio, five marble columns on a sandy bottom at 5 meters deep. On the lateral sides of the ROV, we have applied two GoPro Hero4 Session, which have documented the items both with a series of images and with a video. The geometric accuracy of the obtained 3D model has been evaluated through comparison with a photogrammetric model realized with a professional reflex camera, Nikon D610. Some targets have been topographically surveyed with a trilateration and have been used to connected in the same reference system the different models, allowing the comparisons of the point clouds. Remote Operating Vehicles offer not only safety for their operators, but are also a relatively low cost alternative. The employment of a low-cost vehicle adapted to the necessities of surveys support a request for safer, cheaper and efficient methods for exploring underwater environments.

  5. Validation of Laser-Induced Fluorescent Photogrammetric Targets on Membrane Structures

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Dorrington, Adrian A.; Shortis, Mark R.; Hendricks, Aron R.

    2004-01-01

    The need for static and dynamic characterization of a new generation of inflatable space structures requires the advancement of classical metrology techniques. A new photogrammetric-based method for non-contact ranging and surface profiling has been developed at NASA Langley Research Center (LaRC) to support modal analyses and structural validation of this class of space structures. This full field measurement method, known as Laser-Induced Fluorescence (LIF) photogrammetry, has previously yielded promising experimental results. However, data indicating the achievable measurement precision had not been published. This paper provides experimental results that indicate the LIF-photogrammetry measurement precision for three different target types used on a reflective membrane structure. The target types were: (1) non-contact targets generated using LIF, (2) surface attached retro-reflective targets, and (3) surface attached diffuse targets. Results from both static and dynamic investigations are included.

  6. Use of a Light Uav and Photogrammetric Techniques to Study the Evolution of a Landslide in JAÉN (southern Spain)

    NASA Astrophysics Data System (ADS)

    Fernández, T.; Pérez, J. L.; Cardenal, F. J.; López, A.; Gómez, J. M.; Colomo, C.; Delgado, J.; Sánchez, M.

    2015-08-01

    This paper presents a methodology for slope instability monitoring using photogrammetric techniques with very high resolution images from an unmanned aerial vehicle (UAV). An unstable area located in La Guardia (Jaen, Southern Spain), where an active mud flow has been identified, was surveyed between 2012 and 2014 by means of four UAV flights. These surveys were also compared with those data from a previous conventional aerial photogrammetric and LiDAR survey. The UAV was an octocopter equipped with GPS, inertial units and a mirrorless interchangeable-lens camera. The flight height was 90 m, which allowed covering an area of about 250 x 100 m with a ground pixel size of 2.5 cm. The orientation of the UAV flights were carried out by means of ground control points measured with GPS, but the previous aerial photogrammetric/LiDAR flight was oriented by means of direct georeferencing with in flight positioning and inertial data, although some common ground control points were used to adjust all flights in the same reference system. The DSMs of all surveys were obtained by automatic image correlation and then the differential models were calculated, allowing estimate changes in the surface. At the same time, orthophotos were obtained so horizontal and vertical displacements between relevant points were registered. Significant displacements were observed between some campaigns (some centimeters on the vertical and meters on the horizontal). Finally, we have analyzed the relation of displacements to rainfalls in recent years in the area, finding a significant temporal correlation between the two variables.

  7. Development of AN All-Purpose Free Photogrammetric Tool

    NASA Astrophysics Data System (ADS)

    González-Aguilera, D.; López-Fernández, L.; Rodriguez-Gonzalvez, P.; Guerrero, D.; Hernandez-Lopez, D.; Remondino, F.; Menna, F.; Nocerino, E.; Toschi, I.; Ballabeni, A.; Gaiani, M.

    2016-06-01

    Photogrammetry is currently facing some challenges and changes mainly related to automation, ubiquitous processing and variety of applications. Within an ISPRS Scientific Initiative a team of researchers from USAL, UCLM, FBK and UNIBO have developed an open photogrammetric tool, called GRAPHOS (inteGRAted PHOtogrammetric Suite). GRAPHOS allows to obtain dense and metric 3D point clouds from terrestrial and UAV images. It encloses robust photogrammetric and computer vision algorithms with the following aims: (i) increase automation, allowing to get dense 3D point clouds through a friendly and easy-to-use interface; (ii) increase flexibility, working with any type of images, scenarios and cameras; (iii) improve quality, guaranteeing high accuracy and resolution; (iv) preserve photogrammetric reliability and repeatability. Last but not least, GRAPHOS has also an educational component reinforced with some didactical explanations about algorithms and their performance. The developments were carried out at different levels: GUI realization, image pre-processing, photogrammetric processing with weight parameters, dataset creation and system evaluation. The paper will present in detail the developments of GRAPHOS with all its photogrammetric components and the evaluation analyses based on various image datasets. GRAPHOS is distributed for free for research and educational needs.

  8. High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations

    NASA Astrophysics Data System (ADS)

    Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas

    2007-10-01

    A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.

  9. Photogrammetric technique for in-flight ranging of trailing vortices using entrained balloons

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Burner, Alpheus W.; Goad, William K.

    1989-01-01

    A method for experimentally determining the radial distance of a probe aircraft from a trailing vortex is described. The method relies on photogrammetric triangulation of targets entrained in the vortex core. The theory and preliminary testing were described using laboratory mock-ups. Solid state video cameras were to provide data at 300 Hz rates. Practical methods for seeding the vortex are under separate investigation and are not addressed.

  10. Robot calibration with a photogrammetric on-line system using reseau scanning cameras

    NASA Astrophysics Data System (ADS)

    Diewald, Bernd; Godding, Robert; Henrich, Andreas

    1994-03-01

    The possibility for testing and calibration of industrial robots becomes more and more important for manufacturers and users of such systems. Exacting applications in connection with the off-line programming techniques or the use of robots as measuring machines are impossible without a preceding robot calibration. At the LPA an efficient calibration technique has been developed. Instead of modeling the kinematic behavior of a robot, the new method describes the pose deviations within a user-defined section of the robot's working space. High- precision determination of 3D coordinates of defined path positions is necessary for calibration and can be done by digital photogrammetric systems. For the calibration of a robot at the LPA a digital photogrammetric system with three Rollei Reseau Scanning Cameras was used. This system allows an automatic measurement of a large number of robot poses with high accuracy.

  11. An integrated photogrammetric and spatial database management system for producing fully structured data using aerial and remote sensing images.

    PubMed

    Ahmadi, Farshid Farnood; Ebadi, Hamid

    2009-01-01

    3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs); direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium) standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS) is presented.

  12. Accurate documentation in cultural heritage by merging TLS and high-resolution photogrammetric data

    NASA Astrophysics Data System (ADS)

    Grussenmeyer, Pierre; Alby, Emmanuel; Assali, Pierre; Poitevin, Valentin; Hullo, Jean-François; Smigiel, Eddie

    2011-07-01

    Several recording techniques are used together in Cultural Heritage Documentation projects. The main purpose of the documentation and conservation works is usually to generate geometric and photorealistic 3D models for both accurate reconstruction and visualization purposes. The recording approach discussed in this paper is based on the combination of photogrammetric dense matching and Terrestrial Laser Scanning (TLS) techniques. Both techniques have pros and cons, and criteria as geometry, texture, accuracy, resolution, recording and processing time are often compared. TLS techniques (time of flight or phase shift systems) are often used for the recording of large and complex objects or sites. Point cloud generation from images by dense stereo or multi-image matching can be used as an alternative or a complementary method to TLS. Compared to TLS, the photogrammetric solution is a low cost one as the acquisition system is limited to a digital camera and a few accessories only. Indeed, the stereo matching process offers a cheap, flexible and accurate solution to get 3D point clouds and textured models. The calibration of the camera allows the processing of distortion free images, accurate orientation of the images, and matching at the subpixel level. The main advantage of this photogrammetric methodology is to get at the same time a point cloud (the resolution depends on the size of the pixel on the object), and therefore an accurate meshed object with its texture. After the matching and processing steps, we can use the resulting data in much the same way as a TLS point cloud, but with really better raster information for textures. The paper will address the automation of recording and processing steps, the assessment of the results, and the deliverables (e.g. PDF-3D files). Visualization aspects of the final 3D models are presented. Two case studies with merged photogrammetric and TLS data are finally presented: - The Gallo-roman Theatre of Mandeure, France); - The

  13. An Integrated Photogrammetric and Photoclinometric Approach for Pixel-Resolution 3d Modelling of Lunar Surface

    NASA Astrophysics Data System (ADS)

    Liu, W. C.; Wu, B.

    2018-04-01

    High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading) is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo). Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC) images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this research

  14. Photogrammetric measurement to one part in a million

    NASA Astrophysics Data System (ADS)

    Fraser, Clive S.

    1992-03-01

    Industrial photogrammetric measurement to accuracies of 1 part in 1,000,000 of the size of the object is discussed. Network design concepts are reviewed, especially with regard both to the relationships between the first- and second-order design phases and to minimization of the influences of uncompensated systematic error. Photogrammetric system aspects are also briefly touched upon. The network optimization process for the measurement of a large compact range reflector is described and results of successive alignment surveys of this structure are summarized. These photogrammetric measurements yielded three dimensional (3D) coordinate accuracies surpassing one part in a million.

  15. Photogrammetric Archaeological Survey with UAV

    NASA Astrophysics Data System (ADS)

    Mouget, A.; Lucet, G.

    2014-05-01

    This document describes a way to obtain various photogrammetric products from aerial photograph using a drone. The aim of the project was to develop a methodology to obtain information for the study of the architecture of pre-Columbian archaeological sites in Mexico combining the manoeuvrability and low cost of a drone with the accuracy of the results of the open source photogrammetric MicMac software. It presents the UAV and the camera used, explains how to manipulate it to carry out stereoscopic photographs, the flight and camera parameters chosen, the treatments performed to obtain orthophotos and 3D models with a centimetric resolution, and finally outlines the quality of the results.

  16. Photogrammetric camera calibration

    USGS Publications Warehouse

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  17. Three Dimensional Reconstruction Workflows for Lost Cultural Heritage Monuments Exploiting Public Domain and Professional Photogrammetric Imagery

    NASA Astrophysics Data System (ADS)

    Wahbeh, W.; Nebiker, S.

    2017-08-01

    In our paper, we document experiments and results of image-based 3d reconstructions of famous heritage monuments which were recently damaged or completely destroyed by the so-called Islamic state in Syria and Iraq. The specific focus of our research is on the combined use of professional photogrammetric imagery and of publicly available imagery from the web for optimally 3d reconstructing those monuments. The investigated photogrammetric reconstruction techniques include automated bundle adjustment and dense multi-view 3d reconstruction using public domain and professional imagery on the one hand and an interactive polygonal modelling based on projected panoramas on the other. Our investigations show that the combination of these two image-based modelling techniques delivers better results in terms of model completeness, level of detail and appearance.

  18. PC-assisted translation of photogrammetric papers

    NASA Astrophysics Data System (ADS)

    Güthner, Karlheinz; Peipe, Jürgen

    A PC-based system for machine translation of photogrammetric papers from the English into the German language and vice versa is described. The computer-assisted translating process is not intended to create a perfect interpretation of a text but to produce a rough rendering of the content of a paper. Starting with the original text, a continuous data flow is effected into the translated version by means of hardware (scanner, personal computer, printer) and software (OCR, translation, word processing, DTP). An essential component of the system is a photogrammetric microdictionary which is being established at present. It is based on several sources, including e.g. the ISPRS Multilingual Dictionary.

  19. Photogrammetric Measurements of Heritage Objects

    NASA Astrophysics Data System (ADS)

    Tumeliene, E.; Nareiko, V.; Suziedelyte Visockiene, J.

    2017-12-01

    Cultural heritage is an invaluable example of human culture and creativity. The majority of them can become unstable or can be destroyed due to a combination of human and natural disturbances. In order to restore, preserve, and systematize data about architectural heritage objects, it is necessary to have geodetic, photogrammetric measurements of such data and to constantly monitor condition of the objects. The data of immovable cultural objects for many years are stored in photogrammetric data archives. Such archives have Germany, Lithuania, England and other countries. The article gives a brief introduction of the history of data archives formation and presents a photogrammetric and modern methods of modelling the spatial geometric properties of objects currently used to reveal immovable cultural properties and to evaluate geometric sizes. The pilot work was done with the Concept Capture simulation program that was developed by the Bentley company with photos of the Blessed Virgin Mary painting in Pivašiūnai of Trakai district. A shot from the ground with 12.4 MP resolution Pentax K-x camera was done using lenses with different focal lengths. The painting of the Blessed Virgin Mary is coordinated by 4 reference geodesic points and therefore after the modelling work it was possible to evaluate the accuracy of the created model. Based on the results of the spatial (3D) model, photo shooting and modelling recommendations are presented, the advantages of the new technology are distinguished.

  20. Feasibility of Close-Range Photogrammetric Models for Geographic Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Luke; /Rice U.

    2011-06-22

    The objective of this project was to determine the feasibility of using close-range architectural photogrammetry as an alternative three dimensional modeling technique in order to place the digital models in a geographic information system (GIS) at SLAC. With the available equipment and Australis photogrammetry software, the creation of full and accurate models of an example building, Building 281 on SLAC campus, was attempted. After conducting several equipment tests to determine the precision achievable, a complete photogrammetric survey was attempted. The dimensions of the resulting models were then compared against the true dimensions of the building. A complete building model wasmore » not evidenced to be obtainable using the current equipment and software. This failure was likely attributable to the limits of the software rather than the precision of the physical equipment. However, partial models of the building were shown to be accurate and determined to still be usable in a GIS. With further development of the photogrammetric software and survey procedure, the desired generation of a complete three dimensional model is likely still feasible.« less

  1. a Metadata Based Approach for Analyzing Uav Datasets for Photogrammetric Applications

    NASA Astrophysics Data System (ADS)

    Dhanda, A.; Remondino, F.; Santana Quintero, M.

    2018-05-01

    This paper proposes a methodology for pre-processing and analysing Unmanned Aerial Vehicle (UAV) datasets before photogrammetric processing. In cases where images are gathered without a detailed flight plan and at regular acquisition intervals the datasets can be quite large and be time consuming to process. This paper proposes a method to calculate the image overlap and filter out images to reduce large block sizes and speed up photogrammetric processing. The python-based algorithm that implements this methodology leverages the metadata in each image to determine the end and side overlap of grid-based UAV flights. Utilizing user input, the algorithm filters out images that are unneeded for photogrammetric processing. The result is an algorithm that can speed up photogrammetric processing and provide valuable information to the user about the flight path.

  2. Watching Grass - a Pilot Study on the Suitability of Photogrammetric Techniques for Quantifying Change in Aboveground Biomass in Grassland Experiments

    NASA Astrophysics Data System (ADS)

    Kröhnert, M.; Anderson, R.; Bumberger, J.; Dietrich, P.; Harpole, W. S.; Maas, H.-G.

    2018-05-01

    Grassland ecology experiments in remote locations requiring quantitative analysis of the biomass in defined plots are becoming increasingly widespread, but are still limited by manual sampling methodologies. To provide a cost-effective automated solution for biomass determination, several photogrammetric techniques are examined to generate 3D point cloud representations of plots as a basis, to estimate aboveground biomass on grassland plots, which is a key ecosystem variable used in many experiments. Methods investigated include Structure from Motion (SfM) techniques for camera pose estimation with posterior dense matching as well as the usage of a Time of Flight (TOF) 3D camera, a laser light sheet triangulation system and a coded light projection system. In this context, plants of small scales (herbage) and medium scales are observed. In the first pilot study presented here, the best results are obtained by applying dense matching after SfM, ideal for integration into distributed experiment networks.

  3. The Estimation of Precisions in the Planning of Uas Photogrammetric Surveys

    NASA Astrophysics Data System (ADS)

    Passoni, D.; Federici, B.; Ferrando, I.; Gagliolo, S.; Sguerso, D.

    2018-05-01

    The Unmanned Aerial System (UAS) is widely used in the photogrammetric surveys both of structures and of small areas. Geomatics focuses the attention on the metric quality of the final products of the survey, creating several 3D modelling applications from UAS images. As widely known, the quality of results derives from the quality of images acquisition phase, which needs an a priori estimation of the expected precisions. The planning phase is typically managed using dedicated tools, adapted from the traditional aerial-photogrammetric flight plan. But UAS flight has features completely different from the traditional one. Hence, the use of UAS for photogrammetric applications today requires a growth in knowledge in planning. The basic idea of this research is to provide a drone photogrammetric flight planning tools considering the required metric precisions, given a priori the classical parameters of a photogrammetric planning: flight altitude, overlaps and geometric parameters of the camera. The created "office suite" allows a realistic planning of a photogrammetric survey, starting from an approximate knowledge of the Digital Surface Model (DSM), and the effective attitude parameters, changing along the route. The planning products are the overlapping of the images, the Ground Sample Distance (GSD) and the precision on each pixel taking into account the real geometry. The different tested procedures, the obtained results and the solution proposed for the a priori estimates of the precisions in the particular case of UAS surveys are here reported.

  4. Polarization and Color Filtering Applied to Enhance Photogrammetric Measurements of Reflective Surfaces

    NASA Technical Reports Server (NTRS)

    Wells, Jeffrey M.; Jones, Thomas W.; Danehy, Paul M.

    2005-01-01

    Techniques for enhancing photogrammetric measurement of reflective surfaces by reducing noise were developed utilizing principles of light polarization. Signal selectivity with polarized light was also compared to signal selectivity using chromatic filters. Combining principles of linear cross polarization and color selectivity enhanced signal-to-noise ratios by as much as 800 fold. More typical improvements with combining polarization and color selectivity were about 100 fold. We review polarization-based techniques and present experimental results comparing the performance of traditional retroreflective targeting materials, cornercube targets returning depolarized light, and color selectivity.

  5. Photogrammetric Network for Evaluation of Human Faces for Face Reconstruction Purpose

    NASA Astrophysics Data System (ADS)

    Schrott, P.; Detrekői, Á.; Fekete, K.

    2012-08-01

    Facial reconstruction is the process of reconstructing the geometry of faces of persons from skeletal remains. A research group (BME Cooperation Research Center for Biomechanics) was formed representing several organisations to combine knowledgebases of different disciplines like anthropology, medical, mechanical, archaeological sciences etc. to computerize the face reconstruction process based on a large dataset of 3D face and skull models gathered from living persons: cranial data from CT scans and face models from photogrammetric evaluations. The BUTE Dept. of Photogrammetry and Geoinformatics works on the method and technology of the 3D data acquisition for the face models. In this paper we will present the research and results of the photogrammetric network design, the modelling to deal with visibility constraints, and the investigation of the developed basic photogrammetric configuration to specify the result characteristics to be expected using the device built for the photogrammetric face measurements.

  6. Performance Analysis of the SIFT Operator for Automatic Feature Extraction and Matching in Photogrammetric Applications.

    PubMed

    Lingua, Andrea; Marenchino, Davide; Nex, Francesco

    2009-01-01

    In the photogrammetry field, interest in region detectors, which are widely used in Computer Vision, is quickly increasing due to the availability of new techniques. Images acquired by Mobile Mapping Technology, Oblique Photogrammetric Cameras or Unmanned Aerial Vehicles do not observe normal acquisition conditions. Feature extraction and matching techniques, which are traditionally used in photogrammetry, are usually inefficient for these applications as they are unable to provide reliable results under extreme geometrical conditions (convergent taking geometry, strong affine transformations, etc.) and for bad-textured images. A performance analysis of the SIFT technique in aerial and close-range photogrammetric applications is presented in this paper. The goal is to establish the suitability of the SIFT technique for automatic tie point extraction and approximate DSM (Digital Surface Model) generation. First, the performances of the SIFT operator have been compared with those provided by feature extraction and matching techniques used in photogrammetry. All these techniques have been implemented by the authors and validated on aerial and terrestrial images. Moreover, an auto-adaptive version of the SIFT operator has been developed, in order to improve the performances of the SIFT detector in relation to the texture of the images. The Auto-Adaptive SIFT operator (A(2) SIFT) has been validated on several aerial images, with particular attention to large scale aerial images acquired using mini-UAV systems.

  7. A Photogrammetric System for Model Attitude Measurement in Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2007-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and photogrammetric principles for point tracking to compute model position including pitch, roll and yaw. A discussion of the constraints encountered during the design, and a review of the measurement results obtained from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  8. Object extraction in photogrammetric computer vision

    NASA Astrophysics Data System (ADS)

    Mayer, Helmut

    This paper discusses state and promising directions of automated object extraction in photogrammetric computer vision considering also practical aspects arising for digital photogrammetric workstations (DPW). A review of the state of the art shows that there are only few practically successful systems on the market. Therefore, important issues for a practical success of automated object extraction are identified. A sound and most important powerful theoretical background is the basis. Here, we particularly point to statistical modeling. Testing makes clear which of the approaches are suited best and how useful they are for praxis. A key for commercial success of a practical system is efficient user interaction. As the means for data acquisition are changing, new promising application areas such as extremely detailed three-dimensional (3D) urban models for virtual television or mission rehearsal evolve.

  9. Photogrammetric 3d Acquisition and Analysis of Medicamentous Induced Pilomotor Reflex ("goose Bumps")

    NASA Astrophysics Data System (ADS)

    Schneider, D.; Hecht, A.

    2016-06-01

    In a current study at the University Hospital Dresden, Department of Neurology, the autonomous function of nerve fibres of the human skin is investigated. For this purpose, a specific medicament is applied on a small area of the skin of a test person which results in a local reaction (goose bumps). Based on the extent of the area, where the stimulation of the nerve fibres is visible, it can be concluded how the nerve function of the skin works. The aim of the investigation described in the paper is to generate 3D data of these goose bumps. Therefore, the paper analyses and compares different photogrammetric surface measurement techniques in regard to their suitability for the 3D acquisition of silicone imprints of the human skin. Furthermore, an appropriate processing procedure for analysing the recorded point cloud data is developed and presented. It was experimentally proven that by using (low-cost) photogrammetric techniques medicamentous induced goose bumps can be acquired in three dimensions and can be analysed almost fully automatically from the perspective of medical research questions. The relative accuracy was determined with 1% (RMSE) of the area resp. the volume of an individual goose bump.

  10. Photogrammetric system and method used in the characterization of a structure

    NASA Technical Reports Server (NTRS)

    Watson, Kent A. (Inventor); Connell, John W. (Inventor); Pappa, Richard S. (Inventor); Belvin, W. Keith (Inventor); Dorrington, Adrian A. (Inventor); Jones, Thomas W. (Inventor); Danehy, Paul M. (Inventor)

    2010-01-01

    A photogrammetric system uses an array of spaced-apart targets coupled to a structure. Each target exhibits fluorescence when exposed to a broad beam of illumination. A photogrammetric imaging system located remotely with respect to the structure detects and processes the fluorescence (but not the illumination wavelength) to measure the shape of a structure.

  11. A digital photogrammetric method for measuring horizontal surficial movements on the slumgullion earthflow, Hinsdale county, Colorado

    USGS Publications Warehouse

    Powers, P.S.; Chiarle, M.; Savage, W.Z.

    1996-01-01

    The traditional approach to making aerial photographic measurements uses analog or analytic photogrammetric equipment. We have developed a digital method for making measurements from aerial photographs which uses geographic information system (GIS) software, and primarily DOS-based personal computers. This method, which is based on the concept that a direct visual comparison can be made between images derived from two sets of aerial photographs taken at different times, was applied to the surface of the active portion of the Slumgullion earthflow in Colorado to determine horizontal displacement vectors from the movements of visually identifiable objects, such as trees and large rocks. Using this method, more of the slide surface can be mapped in a shorter period of time than using the standard photogrammetric approach. More than 800 horizontal displacement vectors were determined on the active earthflow surface using images produced by our digital photogrammetric technique and 1985 (1:12,000-scale) and 1990 (1:6,000-scale) aerial photographs. The resulting displacement field shows, with a 2-m measurement error (??? 10%), that the fastest moving portion of the landslide underwent 15-29 m of horizontal displacement between 1985 and 1990. Copyright ?? 1996 Elsevier Science Ltd.

  12. Highly accurate photogrammetric measurements of the Planck reflectors

    NASA Astrophysics Data System (ADS)

    Amiri Parian, Jafar; Gruen, Armin; Cozzani, Alessandro

    2017-11-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000'000 and 1:400'000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  13. Angular photogrammetric analysis of the soft-tissue facial profile of Indian adults.

    PubMed

    Pandian, K Saravana; Krishnan, Sindhuja; Kumar, S Aravind

    2018-01-01

    Soft-tissue analysis has become an important component of orthodontic diagnosis and treatment planning. Photographic evaluation of an orthodontic patient is a very close representation of the appearance of the person. The previously established norms for soft-tissue analysis will vary for different ethnic groups. Thus, there is a need to develop soft-tissue facial profile norms pertaining to Indian ethnic groups. The aim of this study is to establish the angular photogrammetric standards of soft-tissue facial profile for Indian males and females and also to compare sexual dimorphism present between them. The lateral profile photographs of 300 random participants (150 males and 150 females) between ages 18 and 25 years were taken and analyzed using FACAD tracing software. Inclusion criteria were angles Class I molar occlusion with acceptable crowding and proclination, normal growth and development with well-aligned dental arches, and full complements of permanent teeth irrespective of third molar status. This study was conducted in Indian population, and samples were taken from various cities across India. Descriptive statistical analysis was carried out, and sexual dimorphism was evaluated by Student's t-test between males and females. The results of the present study showed statistically significant (P < 0.05) gender difference in 5 parameters out of 12 parameters in Indian population. In the present study, soft-tissue facial measurements were established by means of photogrammetric analysis to facilitate orthodontists to carry out more quantitative evaluation and make disciplined decisions. The mean values obtained can be used for comparison with records of participants with the same characteristics by following this photogrammetric technique.

  14. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  15. Multi-temporal change image inference towards false alarms reduction for an operational photogrammetric rockfall detection system

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Kallimani, Christina; Tripolitsiotis, Achilleas

    2015-06-01

    Rockfall incidents affect civil security and hamper the sustainable growth of hard to access mountainous areas due to casualties, injuries and infrastructure loss. Rockfall occurrences cannot be easily prevented, whereas previous studies for rockfall multiple sensor early detection systems have focused on large scale incidents. However, even a single rock may cause the loss of a human life along transportation routes thus, it is highly important to establish methods for the early detection of small-scale rockfall incidents. Terrestrial photogrammetric techniques are prone to a series of errors leading to false alarm incidents, including vegetation, wind, and non relevant change in the scene under consideration. In this study, photogrammetric monitoring of rockfall prone slopes is established and the resulting multi-temporal change imagery is processed in order to minimize false alarm incidents. Integration of remote sensing imagery analysis techniques is hereby applied to enhance early detection of a rockfall. Experimental data demonstrated that an operational system able to identify a 10-cm rock movement within a 10% false alarm rate is technically feasible.

  16. Thermal photogrammetric imaging: A new technique for monitoring dome eruptions

    NASA Astrophysics Data System (ADS)

    Thiele, Samuel T.; Varley, Nick; James, Mike R.

    2017-05-01

    Structure-from-motion (SfM) algorithms greatly facilitate the generation of 3-D topographic models from photographs and can form a valuable component of hazard monitoring at active volcanic domes. However, model generation from visible imagery can be prevented due to poor lighting conditions or surface obscuration by degassing. Here, we show that thermal images can be used in a SfM workflow to mitigate these issues and provide more continuous time-series data than visible-light equivalents. We demonstrate our methodology by producing georeferenced photogrammetric models from 30 near-monthly overflights of the lava dome that formed at Volcán de Colima (Mexico) between 2013 and 2015. Comparison of thermal models with equivalents generated from visible-light photographs from a consumer digital single lens reflex (DSLR) camera suggests that, despite being less detailed than their DSLR counterparts, the thermal models are more than adequate reconstructions of dome geometry, giving volume estimates within 10% of those derived using the DSLR. Significantly, we were able to construct thermal models in situations where degassing and poor lighting prevented the construction of models from DSLR imagery, providing substantially better data continuity than would have otherwise been possible. We conclude that thermal photogrammetry provides a useful new tool for monitoring effusive volcanic activity and assessing associated volcanic risks.

  17. Comparison of anthropometry with photogrammetry based on a standardized clinical photographic technique using a cephalostat and chair.

    PubMed

    Han, Kihwan; Kwon, Hyuk Joon; Choi, Tae Hyun; Kim, Jun Hyung; Son, Daegu

    2010-03-01

    The aim of this study was to standardize clinical photogrammetric techniques, and to compare anthropometry with photogrammetry. To standardize clinical photography, we have developed a photographic cephalostat and chair. We investigated the repeatability of the standardized clinical photogrammetric technique. Then, with 40 landmarks, a total of 96 anthropometric measurement items was obtained from 100 Koreans. Ninety six photogrammetric measurements from the same subjects were also obtained from standardized clinical photographs using Adobe Photoshop version 7.0 (Adobe Systems Corporation, San Jose, CA, USA). The photogrammetric and anthropometric measurement data (mm, degree) were then compared. A coefficient was obtained by dividing the anthropometric measurements by the photogrammetric measurements. The repeatability of the standardized photography was statistically significantly high (p=0.463). Among the 96 measurement items, 44 items were reliable; for these items the photogrammetric measurements were not different to the anthropometric measurements. The remaining 52 items must be classified as unreliable. By developing a photographic cephalostat and chair, we have standardized clinical photogrammetric techniques. The reliable set of measurement items can be used as anthropometric measurements. For unreliable measurement items, applying a suitable coefficient to the photogrammetric measurement allows the anthropometric measurement to be obtained indirectly.

  18. Photogrammetric portrayal of Mars topography.

    USGS Publications Warehouse

    Wu, S.S.C.

    1979-01-01

    Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.-Author

  19. Photogrammetric portrayal of Mars topography

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1979-01-01

    Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.

  20. Stability analysis for a multi-camera photogrammetric system.

    PubMed

    Habib, Ayman; Detchev, Ivan; Kwak, Eunju

    2014-08-18

    Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  1. Stability Analysis for a Multi-Camera Photogrammetric System

    PubMed Central

    Habib, Ayman; Detchev, Ivan; Kwak, Eunju

    2014-01-01

    Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction. PMID:25196012

  2. In-flight photogrammetric camera calibration and validation via complementary lidar

    NASA Astrophysics Data System (ADS)

    Gneeniss, A. S.; Mills, J. P.; Miller, P. E.

    2015-02-01

    This research assumes lidar as a reference dataset against which in-flight camera system calibration and validation can be performed. The methodology utilises a robust least squares surface matching algorithm to align a dense network of photogrammetric points to the lidar reference surface, allowing for the automatic extraction of so-called lidar control points (LCPs). Adjustment of the photogrammetric data is then repeated using the extracted LCPs in a self-calibrating bundle adjustment with additional parameters. This methodology was tested using two different photogrammetric datasets, a Microsoft UltraCamX large format camera and an Applanix DSS322 medium format camera. Systematic sensitivity testing explored the influence of the number and weighting of LCPs. For both camera blocks it was found that when the number of control points increase, the accuracy improves regardless of point weighting. The calibration results were compared with those obtained using ground control points, with good agreement found between the two.

  3. Preliminary Tests of a New Low-Cost Photogrammetric System

    NASA Astrophysics Data System (ADS)

    Santise, M.; Thoeni, K.; Roncella, R.; Sloan, S. W.; Giacomini, A.

    2017-11-01

    This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B) single board computer connected to a PiCamera Module V2 (8 MP) and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.

  4. Integration of Infrared Thermography and Photogrammetric Surveying of Built Landscape

    NASA Astrophysics Data System (ADS)

    Scaioni, M.; Rosina, E.; L'Erario, A.; Dìaz-Vilariño, L.

    2017-05-01

    The thermal analysis of buildings represents a key-step for reduction of energy consumption, also in the case of Cultural Heritage. Here the complexity of the constructions and the adopted materials might require special analysis and tailored solutions. Infrared Thermography (IRT) is an important non-destructive investigation technique that may aid in the thermal analysis of buildings. The paper reports the application of IRT on a listed building, belonging to the Cultural Heritage and to a residential one, as a demonstration that IRT is a suitable and convenient tool for analysing the existing buildings. The purposes of the analysis are the assessment of the damages and energy efficiency of the building envelope. Since in many cases the complex geometry of historic constructions may involve the thermal analysis, the integration of IRT and accurate 3D models were developed during the latest years. Here authors propose a solution based on the up-to-date photogrammetric solutions for purely image-based 3D modelling, including automatic image orientation/sensor calibration using Structure-from-Motion and dense matching. Thus, an almost fully automatic pipeline for the generation of accurate 3D models showing the temperatures on a building skin in a realistic manner is described, where the only manual task is given by the measurement of a few common points for co-registration of RGB and IR photogrammetric projects.

  5. Cultural Heritage: An example of graphical documentation with automated photogrammetric systems

    NASA Astrophysics Data System (ADS)

    Giuliano, M. G.

    2014-06-01

    In the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used, in particular for the study and for the documentation of the ancient ruins. This work has been carried out during the PhD cycle that was produced the "Carta Archeologica del territorio intorno al monte Massico". The study suggests the archeological documentation of the mausoleum "Torre del Ballerino" placed in the south-west area of Falciano del Massico, along the Via Appia. The graphic documentation has been achieved by using photogrammetric system (Image Based Modeling) and by the classical survey with total station, Nikon Nivo C. The data acquisition was carried out through digital camera Canon EOS 5D Mark II with Canon EF 17-40 mm f/4L USM @ 20 mm with images snapped in RAW and corrected in Adobe Lightroom. During the data processing, the camera calibration and orientation was carried out by the software Agisoft Photoscans and the final result has allowed to achieve a scaled 3D model of the monument, imported in software MeshLab for the different view. Three orthophotos in jpg format were extracted by the model, and then were imported in AutoCAD obtaining façade's surveys.

  6. Review of advanced imaging techniques

    PubMed Central

    Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737

  7. Applications of UAV Photogrammetric Surveys to Natural Hazard Detection and Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Trizzino, Rosamaria; Caprioli, Mauro; Mazzone, Francesco; Scarano, Mario

    2017-04-01

    Unmanned Aerial Vehicle (UAV) systems are increasingly seen as an attractive low-cost alternative or supplement to aerial and terrestrial photogrammetry due to their low cost, flexibility, availability and readiness for duty. In addition, UAVs can be operated in hazardous or temporarily inaccessible locations. The combination of photogrammetric aerial and terrestrial recording methods using a mini UAV (also known as "drone") opens a broad range of applications, such as surveillance and monitoring of the environment and infrastructural assets. In particular, these methods and techniques are of paramount interest for the documentation of cultural heritage sites and areas of natural importance, facing threats from natural deterioration and hazards. In order to verify the reliability of these technologies an UAV survey and a LIDAR survey have been carried out along about 1 km of coast in the Salento peninsula, near the towns of San Foca, Torre dell' Orso and SantAndrea ( Lecce, Southern Italy). This area is affected by serious environmental hazards due to the presence of dangerous rocky cliffs named "falesie". The UAV platform was equipped with a photogrammetric measurement system that allowed us to obtain a mobile mapping of the fractured fronts of dangerous rocky cliffs. UAV-images data have been processed using dedicated software (Agisoft Photoscan). The point clouds obtained from both the UAV and LIDAR surveys have been processed using Cloud Compare software, with the aim of testing the UAV results with respect to the LIDAR ones. The analysis were done using the C2C algorithm which provides good results in terms of Euclidian distances, highlighting differences between the 3D models obtained from both the survey techiques. The total error obtained was of centimeter-order that is a very satisfactory result. In the the 2nd study area, the opportunities of obtaining more detailed documentation of cultural goods throughout UAV survey have been investigated. The study

  8. Photogrammetric mapping for cadastral land information systems

    NASA Astrophysics Data System (ADS)

    Muzakidis, Panagiotis D.

    The creation of a "clean" digital database is a most important and complex task, upon which the usefulness of a Parcel-Based Land Information System depends. Capturing data by photogrammetric methods for cadastral purposes necessitates the transformation of data into a computer compatible form. Such input requires the encoding, editing and structuring of data. The research is carried out in two phases, the first is concerned with defining the data modelling schemes and the classification of basic data for a parcel-based land information system together with the photogrammetric methods to be adopted to collect these data. The second deals with data editing and data structuring processes in order to produce "clean" information relevant to such a system. Implementation of the proposed system at both the data collection stage and within the data processing stage itself demands a number of flexible criteria to be defined within the methodology. Development of these criteria will include consideration of the cadastral characteristics peculiar to Greece.

  9. Preliminary Evaluation of a Commercial 360 Multi-Camera Rig for Photogrammetric Purposes

    NASA Astrophysics Data System (ADS)

    Teppati Losè, L.; Chiabrando, F.; Spanò, A.

    2018-05-01

    The research presented in this paper is focused on a preliminary evaluation of a 360 multi-camera rig: the possibilities to use the images acquired by the system in a photogrammetric workflow and for the creation of spherical images are investigated and different tests and analyses are reported. Particular attention is dedicated to different operative approaches for the estimation of the interior orientation parameters of the cameras, both from an operative and theoretical point of view. The consistency of the six cameras that compose the 360 system was in depth analysed adopting a self-calibration approach in a commercial photogrammetric software solution. A 3D calibration field was projected and created, and several topographic measurements were performed in order to have a set of control points to enhance and control the photogrammetric process. The influence of the interior parameters of the six cameras were analyse both in the different phases of the photogrammetric workflow (reprojection errors on the single tie point, dense cloud generation, geometrical description of the surveyed object, etc.), both in the stitching of the different images into a single spherical panorama (some consideration on the influence of the camera parameters on the overall quality of the spherical image are reported also in these section).

  10. Towards a Low-Cost Real-Time Photogrammetric Landslide Monitoring System Utilising Mobile and Cloud Computing Technology

    NASA Astrophysics Data System (ADS)

    Chidburee, P.; Mills, J. P.; Miller, P. E.; Fieber, K. D.

    2016-06-01

    Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM) pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i) the development of an Android mobile application; (ii) the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii) performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan) and a web-based system (Autodesk 123D Catch). Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard at a local-scale.

  11. Photogrammetric recognition of subglacial drainage channels during glacier lake outburst events

    NASA Astrophysics Data System (ADS)

    Schwalbe, Ellen; Koschitzki, Robert

    2016-04-01

    In recent years, many glaciers all over the world have been distinctly retreating and thinning. One of the consequences of this is the increase of so called glacier lake outburst flood events (GLOFs): Lakes that have been dammed by a glacier spontaneously start to drain through a subglacial channel underneath the glacier due to their outweighing hydrostatic pressure. In a short period of time, the lake water drains under the glacier and causes floods in downstream valleys. In many cases the latter become hazardous for people and their property. Due to glacier movement, the tunnel will soon collapse, and the glacier lake refills, thus starting a new GLOF cycle. The mechanisms ruling GLOF events are yet still not fully understood by glaciologists. Thus, there is a demand for data and measurement values that can help to understand and model the phenomena. In view of the above, we will show how photogrammetric image sequence analysis can be used to collect data which allows for drawing conclusions about the location and development of a subglacial channel. The work is a follow-up on earlier work on a photogrammetric GLOF early warning system (Mulsow et. al., 2013). For the purpose of detecting the subglacial tunnel, a camera has been installed in a pilot study to observe the area of the Colonia glacier (Northern Patagonian ice field) where it dams the lake Lago Cachet II. To verify the hypothesis, that the course of the subglacial tunnel is indicated by irregular surface motion patterns during its collapse, the camera acquired image sequences of the glacier surface during several GLOF events. Applying LSM-based tracking techniques to these image sequences, surface feature motion trajectories could be obtained for a dense raster of glacier points. Since only a single camera has been used for image sequence acquisition, depth information is required to scale the trajectories. Thus, for scaling and georeferencing of the measurements a GPS-supported photogrammetric network

  12. Lightweight Hyperspectral Mapping System and a Novel Photogrammetric Processing Chain for UAV-based Sensing

    NASA Astrophysics Data System (ADS)

    Suomalainen, Juha; Franke, Jappe; Anders, Niels; Iqbal, Shahzad; Wenting, Philip; Becker, Rolf; Kooistra, Lammert

    2014-05-01

    We have developed a lightweight Hyperspectral Mapping System (HYMSY) and a novel processing chain for UAV based mapping. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing us to mount it on a relatively small octocopter. The novel processing chain exploits photogrammetry in the georectification process of the hyperspectral data. At first stage the photos are processed in a photogrammetric software producing a high-resolution RGB orthomosaic, a Digital Surface Model (DSM), and photogrammetric UAV/camera position and attitude at the moment of each photo. These photogrammetric camera positions are then used to enhance the internal accuracy of GPS-INS data. These enhanced GPS-INS data are then used to project the hyperspectral data over the photogrammetric DSM, producing a georectified end product. The presented photogrammetric processing chain allows fully automated georectification of hyperspectral data using a compact GPS-INS unit while still producingin UAV use higher georeferencing accuracy than would be possible using the traditional processing method. During 2013, we have operated HYMSY on 150+ octocopter flights at 60+ sites or days. On typical flight we have produced for a 2-10ha area: a RGB orthoimagemosaic at 1-5cm resolution, a DSM in 5-10cm resolution, and hyperspectral datacube at 10-50cm resolution. The targets have mostly consisted of vegetated targets including potatoes, wheat, sugar beets, onions, tulips, coral reefs, and heathlands,. In this poster we present the Hyperspectral Mapping System and the photogrammetric processing chain with some of our first mapping results.

  13. Effect of simulated intraoral variables on the accuracy of a photogrammetric imaging technique for complete-arch implant prostheses.

    PubMed

    Bratos, Manuel; Bergin, Jumping M; Rubenstein, Jeffrey E; Sorensen, John A

    2018-03-17

    Conventional impression techniques to obtain a definitive cast for a complete-arch implant-supported prosthesis are technique-sensitive and time-consuming. Direct optical recording with a camera could offer an alternative to conventional impression making. The purpose of this in vitro study was to test a novel intraoral image capture protocol to obtain 3-dimensional (3D) implant spatial measurement data under simulated oral conditions of vertical opening and lip retraction. A mannequin was assembled simulating the intraoral conditions of a patient having an edentulous mandible with 5 interforaminal implants. Simulated mouth openings with 2 interincisal openings (35 mm and 55 mm) and 3 lip retractions (55 mm, 75 mm, and 85 mm) were evaluated to record the implant positions. The 3D spatial orientations of implant replicas embedded in the reference model were measured using a coordinate measuring machine (CMM) (control). Five definitive casts were made with a splinted conventional impression technique of the reference model. The positions of the implant replicas for each of the 5 casts were measured with a Nobel Procera Scanner (conventional digital method). For the prototype, optical targets were secured to the implant replicas, and 3 sets of 12 images each were recorded for the photogrammetric process of 6 groups of retractions and openings using a digital camera and a standardized image capture protocol. Dimensional data were imported into photogrammetry software (photogrammetry method). The calculated and/or measured precision and accuracy of the implant positions in 3D space for the 6 groups were compared with 1-way ANOVA with an F-test (α=.05). The precision (standard error [SE] of measurement) for CMM was 3.9 μm (95% confidence interval [CI] 2.7 to 7.1 μm). For the conventional impression method, the SE of measurement was 17.2 μm (95% CI 10.3 to 49.4 μm). For photogrammetry, a grand mean was calculated for groups MinR-AvgO, MinR-MaxO, AvgR-AvgO, and Max

  14. Study of the Integration of LIDAR and Photogrammetric Datasets by in Situ Camera Calibration and Integrated Sensor Orientation

    NASA Astrophysics Data System (ADS)

    Mitishita, E.; Costa, F.; Martins, M.

    2017-05-01

    Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO) approach was performed using Interior Orientation Parameter (IOP) values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE) of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.

  15. Evaluation of terrestrial photogrammetric point clouds derived from thermal imagery

    NASA Astrophysics Data System (ADS)

    Metcalf, Jeremy P.; Olsen, Richard C.

    2016-05-01

    Computer vision and photogrammetric techniques have been widely applied to digital imagery producing high density 3D point clouds. Using thermal imagery as input, the same techniques can be applied to infrared data to produce point clouds in 3D space, providing surface temperature information. The work presented here is an evaluation of the accuracy of 3D reconstruction of point clouds produced using thermal imagery. An urban scene was imaged over an area at the Naval Postgraduate School, Monterey, CA, viewing from above as with an airborne system. Terrestrial thermal and RGB imagery were collected from a rooftop overlooking the site using a FLIR SC8200 MWIR camera and a Canon T1i DSLR. In order to spatially align each dataset, ground control points were placed throughout the study area using Trimble R10 GNSS receivers operating in RTK mode. Each image dataset is processed to produce a dense point cloud for 3D evaluation.

  16. From Panoramic Photos to a Low-Cost Photogrammetric Workflow for Cultural Heritage 3d Documentation

    NASA Astrophysics Data System (ADS)

    D'Annibale, E.; Tassetti, A. N.; Malinverni, E. S.

    2013-07-01

    The research aims to optimize a workflow of architecture documentation: starting from panoramic photos, tackling available instruments and technologies to propose an integrated, quick and low-cost solution of Virtual Architecture. The broader research background shows how to use spherical panoramic images for the architectural metric survey. The input data (oriented panoramic photos), the level of reliability and Image-based Modeling methods constitute an integrated and flexible 3D reconstruction approach: from the professional survey of cultural heritage to its communication in virtual museum. The proposed work results from the integration and implementation of different techniques (Multi-Image Spherical Photogrammetry, Structure from Motion, Imagebased Modeling) with the aim to achieve high metric accuracy and photorealistic performance. Different documentation chances are possible within the proposed workflow: from the virtual navigation of spherical panoramas to complex solutions of simulation and virtual reconstruction. VR tools make for the integration of different technologies and the development of new solutions for virtual navigation. Image-based Modeling techniques allow 3D model reconstruction with photo realistic and high-resolution texture. High resolution of panoramic photo and algorithms of panorama orientation and photogrammetric restitution vouch high accuracy and high-resolution texture. Automated techniques and their following integration are subject of this research. Data, advisably processed and integrated, provide different levels of analysis and virtual reconstruction joining the photogrammetric accuracy to the photorealistic performance of the shaped surfaces. Lastly, a new solution of virtual navigation is tested. Inside the same environment, it proposes the chance to interact with high resolution oriented spherical panorama and 3D reconstructed model at once.

  17. Combination of photogrammetric and geoelectric methods to assess 3d structures associated to natural hazards

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille

    2016-04-01

    The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the

  18. Possibilities of Processing Archival Photogrammetric Images Captured by Rollei 6006 Metric Camera Using Current Method

    NASA Astrophysics Data System (ADS)

    Dlesk, A.; Raeva, P.; Vach, K.

    2018-05-01

    Processing of analog photogrammetric negatives using current methods brings new challenges and possibilities, for example, creation of a 3D model from archival images which enables the comparison of historical state and current state of cultural heritage objects. The main purpose of this paper is to present possibilities of processing archival analog images captured by photogrammetric camera Rollei 6006 metric. In 1994, the Czech company EuroGV s.r.o. carried out photogrammetric measurements of former limestone quarry the Great America located in the Central Bohemian Region in the Czech Republic. All the negatives of photogrammetric images, complete documentation, coordinates of geodetically measured ground control points, calibration reports and external orientation of images calculated in the Combined Adjustment Program are preserved and were available for the current processing. Negatives of images were scanned and processed using structure from motion method (SfM). The result of the research is a statement of what accuracy is possible to expect from the proposed methodology using Rollei metric images originally obtained for terrestrial intersection photogrammetry while adhering to the proposed methodology.

  19. 13. DETAIL SOUTH FACADE, ENTRANCE Copy photograph of photogrammetric plate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL- SOUTH FACADE, ENTRANCE Copy photograph of photogrammetric plate LC-HABS-GS07-1116-102R. - Provident Life & Trust Company Bank, 407-409 Chestnut Street, Philadelphia, Philadelphia County, PA

  20. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system

    PubMed Central

    Hinke, Jefferson T.; Perryman, Wayne L.; Goebel, Michael E.; LeRoi, Donald J.

    2017-01-01

    Measurements of body size and mass are fundamental to pinniped population management and research. Manual measurements tend to be accurate but are invasive and logistically challenging to obtain. Ground-based photogrammetric techniques are less invasive, but inherent limitations make them impractical for many field applications. The recent proliferation of unmanned aerial systems (UAS) in wildlife monitoring has provided a promising new platform for the photogrammetry of free-ranging pinnipeds. Leopard seals (Hydrurga leptonyx) are an apex predator in coastal Antarctica whose body condition could be a valuable indicator of ecosystem health. We aerially surveyed leopard seals of known body size and mass to test the precision and accuracy of photogrammetry from a small UAS. Flights were conducted in January and February of 2013 and 2014 and 50 photogrammetric samples were obtained from 15 unrestrained seals. UAS-derived measurements of standard length were accurate to within 2.01 ± 1.06%, and paired comparisons with ground measurements were statistically indistinguishable. An allometric linear mixed effects model predicted leopard seal mass within 19.40 kg (4.4% error for a 440 kg seal). Photogrammetric measurements from a single, vertical image obtained using UAS provide a noninvasive approach for estimating the mass and body condition of pinnipeds that may be widely applicable. PMID:29186134

  1. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system.

    PubMed

    Krause, Douglas J; Hinke, Jefferson T; Perryman, Wayne L; Goebel, Michael E; LeRoi, Donald J

    2017-01-01

    Measurements of body size and mass are fundamental to pinniped population management and research. Manual measurements tend to be accurate but are invasive and logistically challenging to obtain. Ground-based photogrammetric techniques are less invasive, but inherent limitations make them impractical for many field applications. The recent proliferation of unmanned aerial systems (UAS) in wildlife monitoring has provided a promising new platform for the photogrammetry of free-ranging pinnipeds. Leopard seals (Hydrurga leptonyx) are an apex predator in coastal Antarctica whose body condition could be a valuable indicator of ecosystem health. We aerially surveyed leopard seals of known body size and mass to test the precision and accuracy of photogrammetry from a small UAS. Flights were conducted in January and February of 2013 and 2014 and 50 photogrammetric samples were obtained from 15 unrestrained seals. UAS-derived measurements of standard length were accurate to within 2.01 ± 1.06%, and paired comparisons with ground measurements were statistically indistinguishable. An allometric linear mixed effects model predicted leopard seal mass within 19.40 kg (4.4% error for a 440 kg seal). Photogrammetric measurements from a single, vertical image obtained using UAS provide a noninvasive approach for estimating the mass and body condition of pinnipeds that may be widely applicable.

  2. The possibility of using photogrammetric and remote sensing techniques to model lavaka (gully erosion) development in Madagascar

    NASA Astrophysics Data System (ADS)

    Raveloson, Andrea; Székely, Balázs; Molnár, Gábor; Rasztovits, Sascha

    2013-04-01

    Gully erosion is a worldwide problem for it has a number of undesirable effects and their development is hard to follow. Madagascar is one of the most affected countries for its highlands are densely covered with gullies named lavakas. Lavaka formation and development seems to be triggered by many regional and local causes but the actual reasons are still poorly understood. Furthermore lavakas differ from normal gullies due to their enormous size and special shape. Field surveys are time consuming and data from two-dimensional measurements and pictures (even aerial) might lack major information for morphologic studies. Therefore close range surveying technologies should be used to get three-dimensional information about these unusual and complex features. This contribution discusses which remote sensing and photogrammetric techniques are adequate to survey the development of lavakas, their volume change and sediment budget. Depending on the types and properties (such as volume, depth, shape, vegetation) of the lavaka different methods will be proposed showing pros and cons of each one of them. Our goal is to review techniques to model, survey and analyze lavakas development to better understand the cause of their formation, special size and shape. Different methods are evaluated and compared from field survey through data processing, analyzing cost-effectiveness, potential errors and accuracy for each one of them. For this purpose we will also consider time- and cost-effectiveness of the softwares able to render the images into 3D model as well as the resolution and accuracy of the outputs. Further studies will concentrate on using the three dimensional models of lavakas which will be later on used for geomorphological studies in order to understand their special shape and size. This is ILARG-contribution #07.

  3. 17. INTERIOR: SKYLIGHT FROM MAIN LOBBY Copy photograph of photogrammetric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR: SKYLIGHT FROM MAIN LOBBY Copy photograph of photogrammetric plate LC-HABS-GS07-1116-111L. - Provident Life & Trust Company Bank, 407-409 Chestnut Street, Philadelphia, Philadelphia County, PA

  4. Comparison of Low Cost Photogrammetric Survey with Tls and Leica Pegasus Backpack 3d Modelss

    NASA Astrophysics Data System (ADS)

    Masiero, A.; Fissore, F.; Guarnieri, A.; Piragnolo, M.; Vettore, A.

    2017-11-01

    This paper considers Leica backpack and photogrammetric surveys of a mediaeval bastion in Padua, Italy. Furhtermore, terrestrial laser scanning (TLS) survey is considered in order to provide a state of the art reconstruction of the bastion. Despite control points are typically used to avoid deformations in photogrammetric surveys and ensure correct scaling of the reconstruction, in this paper a different approach is considered: this work is part of a project aiming at the development of a system exploiting ultra-wide band (UWB) devices to provide correct scaling of the reconstruction. In particular, low cost Pozyx UWB devices are used to estimate camera positions during image acquisitions. Then, in order to obtain a metric reconstruction, scale factor in the photogrammetric survey is estimated by comparing camera positions obtained from UWB measurements with those obtained from photogrammetric reconstruction. Compared with the TLS survey, the considered photogrammetric model of the bastion results in a RMSE of 21.9cm, average error 13.4cm, and standard deviation 13.5cm. Excluding the final part of the bastion left wing, where the presence of several poles make reconstruction more difficult, (RMSE) fitting error is 17.3cm, average error 11.5cm, and standard deviation 9.5cm. Instead, comparison of Leica backpack and TLS surveys leads to an average error of 4.7cm and standard deviation 0.6cm (4.2cm and 0.3cm, respectively, by excluding the final part of the left wing).

  5. Photogrammetric 3d Reconstruction in Matlab: Development of a Free Tool

    NASA Astrophysics Data System (ADS)

    Masiero, A.

    2017-11-01

    This paper presents the current state of development of a free Matlab tool for photogrammetric reconstruction developed at the University of Padova, Italy. The goal of this software is mostly educational, i.e. allowing students to have a close look to the specific steps which lead to the computation of a dense point cloud. As most of recently developed photogrammetric softwares, it is based on a Structure from Motion approach. Despite being mainly motivated by educational purposes, certain implementation details are clearly inspired by recent research works, e.g. limiting the computational burden of the feature matching by determining a suboptimal set of features to be considered, using information provided by external sensors to ease the matching process.

  6. Photogrammetric registration of dental plaque accumulation in vivo.

    PubMed

    Bergström, J

    1981-01-01

    Using the labial surface of upper anterior laterals for determination, the accumulation of plaque was assessed by means of a stereo-photogrammetric method. The stereoimages were subjected to photogrammetric evaluation, the part of the surface area covered by plaque being given in per cent of the total surface area of the tooth. Plaque extension and plaque topography was studied in young adults with healthy periodontia during a 20 day period of no oral hygiene. At the end of the experimental period, on an average 75 per cent of the surface area was covered by plaque, corresponding to an extension rate of 3.75 per cent per day. The correlation between plaque values obtained by photogrammetry and various estimates obtained from clinical scoring ranged between r = 0.66 and r = 0.78. It is concluded that the method introduced is a sensitive means of determining small amounts of plaque and should prove useful for in vivo investigation of plaque growth and plaque suppression, where measurements of high quality is of importance.

  7. Photogrammetric Analysis of Historical Image Repositories for Virtual Reconstruction in the Field of Digital Humanities

    NASA Astrophysics Data System (ADS)

    Maiwald, F.; Vietze, T.; Schneider, D.; Henze, F.; Münster, S.; Niebling, F.

    2017-02-01

    Historical photographs contain high density of information and are of great importance as sources in humanities research. In addition to the semantic indexing of historical images based on metadata, it is also possible to reconstruct geometric information about the depicted objects or the camera position at the time of the recording by employing photogrammetric methods. The approach presented here is intended to investigate (semi-) automated photogrammetric reconstruction methods for heterogeneous collections of historical (city) photographs and photographic documentation for the use in the humanities, urban research and history sciences. From a photogrammetric point of view, these images are mostly digitized photographs. For a photogrammetric evaluation, therefore, the characteristics of scanned analog images with mostly unknown camera geometry, missing or minimal object information and low radiometric and geometric resolution have to be considered. In addition, these photographs have not been created specifically for documentation purposes and so the focus of these images is often not on the object to be evaluated. The image repositories must therefore be subjected to a preprocessing analysis of their photogrammetric usability. Investigations are carried out on the basis of a repository containing historical images of the Kronentor ("crown gate") of the Dresden Zwinger. The initial step was to assess the quality and condition of available images determining their appropriateness for generating three-dimensional point clouds from historical photos using a structure-from-motion evaluation (SfM). Then, the generated point clouds were assessed by comparing them with current measurement data of the same object.

  8. Application of Integrated Photogrammetric and Terrestrial Laser Scanning Data to Cultural Heritage Surveying

    NASA Astrophysics Data System (ADS)

    Klapa, Przemyslaw; Mitka, Bartosz; Zygmunt, Mariusz

    2017-12-01

    The terrestrial laser scanning technology has a wide spectrum of applications, from land surveying, civil engineering and architecture to archaeology. The technology is capable of obtaining, in a short time, accurate coordinates of points which represent the surface of objects. Scanning of buildings is therefore a process which ensures obtaining information on all structural elements a building. The result is a point cloud consisting of millions of elements which are a perfect source of information on the object and its surrounding. The photogrammetric techniques allow documenting an object in high resolution in the form of orthophoto plans, or are a basis to develop 2D documentation or obtain point clouds for objects and 3D modelling. Integration of photogrammetric data and TLS brings a new quality in surveying historic monuments. Historic monuments play an important cultural and historical role. Centuries-old buildings require constant renovation and preservation of their structural and visual invariability while maintaining safety of people who use them. The full process of surveying allows evaluating the actual condition of monuments and planning repairs and renovations. Huge sizes and specific types of historic monuments cause problems in obtaining reliable and full information on them. The TLS technology allows obtaining such information in a short time and is non-invasive. A point cloud is not only a basis for developing architectural and construction documentation or evaluation of actual condition of a building. It also is a real visualization of monuments and their entire environment. The saved image of object surface can be presented at any time and place. A cyclical TLS survey of historic monuments allows detecting structural changes and evaluating damage and changes that cause deformation of monument’s components. The paper presents application of integrated photogrammetric data and TLS illustrated on an example of historic monuments from southern

  9. Modular Bundle Adjustment for Photogrammetric Computations

    NASA Astrophysics Data System (ADS)

    Börlin, N.; Murtiyoso, A.; Grussenmeyer, P.; Menna, F.; Nocerino, E.

    2018-05-01

    In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation) of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013) based on the Photogrammetric and Computer Vision interpretations of Brown (1971) lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.

  10. Calibration of Action Cameras for Photogrammetric Purposes

    PubMed Central

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-01-01

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution. PMID:25237898

  11. Calibration of action cameras for photogrammetric purposes.

    PubMed

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-09-18

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.

  12. Photogrammetric Analysis of CPAS Main Parachutes

    NASA Technical Reports Server (NTRS)

    Ray, Eric; Bretz, David

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown with a cluster of two to three Main parachutes. The instantaneous rate of descent varies based on parachute fly-out angles and geometric inlet area. Parachutes in a cluster oscillate between significant fly-out angles and colliding into each other. The former presents a sub-optimal inlet area and the latter lowers the effective drag area as the parachutes interfere with each other. The fly-out angles are also important in meeting a twist torque requirement. Understanding cluster behavior necessitates measuring the Mains with photogrammetric analysis. Imagery from upward looking cameras is analyzed to determine parachute geometry. Fly-out angles are measured from each parachute vent to an axis determined from geometry. Determining the scale of the objects requires knowledge of camera and lens calibration as well as features of known size. Several points along the skirt are tracked to compute an effective circumference, diameter, and inlet area as a function of time. The effects of this geometry are clearly seen in the system drag coefficient time history. Photogrammetric analysis is key in evaluating the effects of design features such as an Over-Inflation Control Line (OICL), Main Line Length Ratio (MLLR), and geometric porosity, which are varied in an attempt to minimize cluster oscillations. The effects of these designs are evaluated through statistical analysis.

  13. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  14. Investigating the Suitability of Mirrorless Cameras in Terrestrial Photogrammetric Applications

    NASA Astrophysics Data System (ADS)

    Incekara, A. H.; Seker, D. Z.; Delen, A.; Acar, A.

    2017-11-01

    Digital single-lens reflex cameras (DSLR) which are commonly referred as mirrored cameras are preferred for terrestrial photogrammetric applications such as documentation of cultural heritage, archaeological excavations and industrial measurements. Recently, digital cameras which are called as mirrorless systems that can be used with different lens combinations have become available for using similar applications. The main difference between these two camera types is the presence of the mirror mechanism which means that the incoming beam towards the lens is different in the way it reaches the sensor. In this study, two different digital cameras, one with a mirror (Nikon D700) and the other without a mirror (Sony a6000), were used to apply close range photogrammetric application on the rock surface at Istanbul Technical University (ITU) Ayazaga Campus. Accuracy of the 3D models created by means of photographs taken with both cameras were compared with each other using difference values between field and model coordinates which were obtained after the alignment of the photographs. In addition, cross sections were created on the 3D models for both data source and maximum area difference between them is quite small because they are almost overlapping. The mirrored camera has become more consistent in itself with respect to the change of model coordinates for models created with photographs taken at different times, with almost the same ground sample distance. As a result, it has been determined that mirrorless cameras and point cloud produced using photographs obtained from these cameras can be used for terrestrial photogrammetric studies.

  15. Fusion of light-field and photogrammetric surface form data

    NASA Astrophysics Data System (ADS)

    Sims-Waterhouse, Danny; Piano, Samanta; Leach, Richard K.

    2017-08-01

    Photogrammetry based systems are able to produce 3D reconstructions of an object given a set of images taken from different orientations. In this paper, we implement a light-field camera within a photogrammetry system in order to capture additional depth information, as well as the photogrammetric point cloud. Compared to a traditional camera that only captures the intensity of the incident light, a light-field camera also provides angular information for each pixel. In principle, this additional information allows 2D images to be reconstructed at a given focal plane, and hence a depth map can be computed. Through the fusion of light-field and photogrammetric data, we show that it is possible to improve the measurement uncertainty of a millimetre scale 3D object, compared to that from the individual systems. By imaging a series of test artefacts from various positions, individual point clouds were produced from depth-map information and triangulation of corresponding features between images. Using both measurements, data fusion methods were implemented in order to provide a single point cloud with reduced measurement uncertainty.

  16. Photogrammetric Technique for Center of Gravity Determination

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Johnson, Thomas H.; Shemwell, Dave; Shreves, Christopher M.

    2012-01-01

    A new measurement technique for determination of the center of gravity (CG) for large scale objects has been demonstrated. The experimental method was conducted as part of an LS-DYNA model validation program for the Max Launch Abort System (MLAS) crew module. The test was conducted on the full scale crew module concept at NASA Langley Research Center. Multi-camera photogrammetry was used to measure the test article in several asymmetric configurations. The objective of these measurements was to provide validation of the CG as computed from the original mechanical design. The methodology, measurement technique, and measurement results are presented.

  17. Photogrammetric Deflection Measurements for the Tiltrotor Test Rig (TTR) Multi-Component Rotor Balance Calibration

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Meyn, Larry

    2016-01-01

    Calibrating the internal, multi-component balance mounted in the Tiltrotor Test Rig (TTR) required photogrammetric measurements to determine the location and orientation of forces applied to the balance. The TTR, with the balance and calibration hardware attached, was mounted in a custom calibration stand. Calibration loads were applied using eleven hydraulic actuators, operating in tension only, that were attached to the forward frame of the calibration stand and the TTR calibration hardware via linkages with in-line load cells. Before the linkages were installed, photogrammetry was used to determine the location of the linkage attachment points on the forward frame and on the TTR calibration hardware. Photogrammetric measurements were used to determine the displacement of the linkage attachment points on the TTR due to deflection of the hardware under applied loads. These measurements represent the first photogrammetric deflection measurements to be made to support 6-component rotor balance calibration. This paper describes the design of the TTR and the calibration hardware, and presents the development, set-up and use of the photogrammetry system, along with some selected measurement results.

  18. A 3D photogrammetric reconstruction attempt of specimens of Badenian echinoids

    NASA Astrophysics Data System (ADS)

    Polonkai, Bálint; Raveloson, Andrea; Görög, Ágnes; Bodor, Emese; Székely, Balázs

    2016-04-01

    photogrammetric technologies have been used as our initial experiments showed that it could be a good tool to get three dimensional information about the collected fossils. This contribution discusses which photogrammetric techniques are adequate to study and compare the studied echinoid specimens. Our goal is to review modern techniques and current software solutions to model the fossils and also to study the resulting 3D point cloud. Different methods are evaluated and compared from taking the pictures (with different camera types and different target tables) through data processing, analyzing potential errors, resolution and accuracy for each one of them. Time- and cost-effectiveness of the software packages were also taken into account in order to render the images into 3D model effectively. Preliminary results show that 3D analysis using photogrammetrical method is a good tool to study the collected echinoid specimens showing more information than the classical morphometry studies, especially in the convex part of the studied fossils. Furthermore, the resulting 3D point clouds of different fossils make it possible to compare and maybe even quantify the differences across the specimens. Balázs Székely contributed as an Alexander von Humboldt Research Fellow.

  19. Feasibility of employing a smartphone as the payload in a photogrammetric UAV system

    NASA Astrophysics Data System (ADS)

    Kim, Jinsoo; Lee, Seongkyu; Ahn, Hoyong; Seo, Dongju; Park, Soyoung; Choi, Chuluong

    2013-05-01

    Smartphones can be operated in a 3G network environment at any time or location, and they also cost less than existing photogrammetric UAV systems, providing high-resolution images and 3D location and attitude data from a variety of built-in sensors. This study aims to assess the feasibility of using a smartphone as the payload for a photogrammetric UAV system. To carry out the assessment, a smartphone-based photogrammetric UAV system was developed and utilized to obtain image, location, and attitude data under both static and dynamic conditions. The accuracy of the location and attitude data obtained and sent by this system was then evaluated. The smartphone images were converted into ortho-images via image triangulation, which was carried out both with and without consideration of the interior orientation (IO) parameters determined by camera calibration. In the static experiment, when the IO parameters were taken into account, the triangulation results were less than 1.28 pixels (RMSE) for all smartphone types, an improvement of at least 47% compared with the case when IO parameters were not taken into account. In the dynamic experiment, on the other hand, the accuracy of smartphone image triangulation was not significantly improved by considering IO parameters. This was because the electronic rolling shutter within the complementary metal-oxide semiconductor (CMOS) sensor built into the smartphone and the actuator for the voice coil motor (VCM)-type auto-focusing affected by the vibration and the speed of the UAV, which is likely to have a negative effect on image-based digital elevation model (DEM) generation. However, considering that these results were obtained using a single smartphone, this suggests that a smartphone is not only feasible as the payload for a photogrammetric UAV system but it may also play a useful role when installed in existing UAV systems.

  20. Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach

    NASA Astrophysics Data System (ADS)

    Vasuki, Yathunanthan; Holden, Eun-Jung; Kovesi, Peter; Micklethwaite, Steven

    2014-08-01

    Recent advances in data acquisition technologies, such as Unmanned Aerial Vehicles (UAVs), have led to a growing interest in capturing high-resolution rock surface images. However, due to the large volumes of data that can be captured in a short flight, efficient analysis of this data brings new challenges, especially the time it takes to digitise maps and extract orientation data. We outline a semi-automated method that allows efficient mapping of geological faults using photogrammetric data of rock surfaces, which was generated from aerial photographs collected by a UAV. Our method harnesses advanced automated image analysis techniques and human data interaction to rapidly map structures and then calculate their dip and dip directions. Geological structures (faults, joints and fractures) are first detected from the primary photographic dataset and the equivalent three dimensional (3D) structures are then identified within a 3D surface model generated by structure from motion (SfM). From this information the location, dip and dip direction of the geological structures are calculated. A structure map generated by our semi-automated method obtained a recall rate of 79.8% when compared against a fault map produced using expert manual digitising and interpretation methods. The semi-automated structure map was produced in 10 min whereas the manual method took approximately 7 h. In addition, the dip and dip direction calculation, using our automated method, shows a mean±standard error of 1.9°±2.2° and 4.4°±2.6° respectively with field measurements. This shows the potential of using our semi-automated method for accurate and efficient mapping of geological structures, particularly from remote, inaccessible or hazardous sites.

  1. Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.

    1990-01-01

    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.

  2. Reprocessing Close Range Terrestrial and Uav Photogrammetric Projects with the Dbat Toolbox for Independent Verification and Quality Control

    NASA Astrophysics Data System (ADS)

    Murtiyoso, A.; Grussenmeyer, P.; Börlin, N.

    2017-11-01

    Photogrammetry has recently seen a rapid increase in many applications, thanks to developments in computing power and algorithms. Furthermore with the democratisation of UAVs (Unmanned Aerial Vehicles), close range photogrammetry has seen more and more use due to the easier capability to acquire aerial close range images. In terms of photogrammetric processing, many commercial software solutions exist in the market that offer results from user-friendly environments. However, in most commercial solutions, a black-box approach to photogrammetric calculations is often used. This is understandable in light of the proprietary nature of the algorithms, but it may pose a problem if the results need to be validated in an independent manner. In this paper, the Damped Bundle Adjustment Toolbox (DBAT) developed for Matlab was used to reprocess some photogrammetric projects that were processed using the commercial software Agisoft Photoscan. Several scenarios were experimented on in order to see the performance of DBAT in reprocessing terrestrial and UAV close range photogrammetric projects in several configurations of self-calibration setting. Results show that DBAT managed to reprocess PS projects and generate metrics which can be useful for project verification.

  3. Application Possibility of Smartphone as Payload for Photogrammetric Uav System

    NASA Astrophysics Data System (ADS)

    Yun, M. H.; Kim, J.; Seo, D.; Lee, J.; Choi, C.

    2012-07-01

    Smartphone can not only be operated under 3G network environment anytime and anyplace but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study is aimed to assess the possibility of smartphone as a payload for photogrammetric UAV system. Prior to such assessment, a smartphone-based photogrammetric UAV system application was developed, through which real-time image, location and attitude data was obtained using smartphone under both static and dynamic conditions. Subsequently the accuracy assessment on the location and attitude data obtained and sent by this system was conducted. The smartphone images were converted into ortho-images through image triangulation. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration. In case IO parameters were taken into account in the static experiment, the results from triangulation for any smartphone type were within 1.5 pixel (RMSE), which was improved at least by 35% compared to when IO parameters were not taken into account. On the contrary, the improvement effect of considering IO parameters on accuracy in triangulation for smartphone images in dynamic experiment was not significant compared to the static experiment. It was due to the significant impact of vibration and sudden attitude change of UAV on the actuator for automatic focus control within the camera built in smartphone under the dynamic condition. This cause appears to have a negative impact on the image-based DEM generation. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  4. Improved CPAS Photogrammetric Capabilities for Engineering Development Unit (EDU) Testing

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Bretz, David R.

    2013-01-01

    This paper focuses on two key improvements to the photogrammetric analysis capabilities of the Capsule Parachute Assembly System (CPAS) for the Orion vehicle. The Engineering Development Unit (EDU) system deploys Drogue and Pilot parachutes via mortar, where an important metric is the muzzle velocity. This can be estimated using a high speed camera pointed along the mortar trajectory. The distance to the camera is computed from the apparent size of features of known dimension. This method was validated with a ground test and compares favorably with simulations. The second major photogrammetric product is measuring the geometry of the Main parachute cluster during steady-state descent using onboard cameras. This is challenging as the current test vehicles are suspended by a single-point attachment unlike earlier stable platforms suspended under a confluence fitting. The mathematical modeling of fly-out angles and projected areas has undergone significant revision. As the test program continues, several lessons were learned about optimizing the camera usage, installation, and settings to obtain the highest quality imagery possible.

  5. Photogrammetric Data Set, 1957-2000, and Bathymetric Measurements for Columbia Glacier, Alaska

    USGS Publications Warehouse

    Krimmel, Robert M.

    2001-01-01

    Major changes in the length, speed, surface altitude, and calving rate of Columbia Glacier, Alaska have been recorded with stereo vertical photography acquired on 119 dates from 1957 to 2000. Photogrammetric analysis of this photographic record has resulted in precise measurement of these changes. From 1982 to 2000 Columbia Glacier retreated 12 kilometers, reduced its thickness by as much as 400 meters, increased its speed from about 5 to 30 meters per day, and increased its calving rate from 3 to 18 million cubic meters per day. All photogrammetric data for Columbia Glacier from 1957 to 2000 are included in this report, as well as supplemental data of ice-dammed lake surface levels, stagnant ice ablation rate, forebay bathymetry, ground control, and camera calibrations. These data are contained in 481 files, all preserved on a CD-ROM included with this report.

  6. DISTA: a portable software solution for 3D compilation of photogrammetric image blocks

    NASA Astrophysics Data System (ADS)

    Boochs, Frank; Mueller, Hartmut; Neifer, Markus

    2001-04-01

    A photogrammetric evaluation system used for the precise determination of 3D-coordinates from blocks of large metric images will be presented. First, the motivation for the development is shown, which is placed in the field of processing tools for photogrammetric evaluation tasks. As the use and availability of metric images of digital type rapidly increases corresponding equipment for the measuring process is needed. Systems which have been developed up to now are either very special ones, founded on high end graphics workstations with an according pricing or simple ones with restricted measuring functionality. A new conception will be shown, avoiding special high end graphics hardware but providing a complete processing chain for all elementary photogrammetric tasks ranging from preparatory steps over the formation of image blocks up to the automatic and interactive 3D-evaluation within digital stereo models. The presented system is based on PC-hardware equipped with off the shelf graphics boards and uses an object oriented design. The specific needs of a flexible measuring system and the corresponding requirements which have to be met by the system are shown. Important aspects as modularity and hardware independence and their value for the solution are shown. The design of the software will be presented and first results with a prototype realised on a powerful PC-hardware configuration will be featured

  7. Development of a photogrammetric method of measuring tree taper outside bark

    Treesearch

    David R. Larsen

    2006-01-01

    A photogrammetric method is presented for measuring tree diameters outside bark using calibrated control ground-based digital photographs. The method was designed to rapidly collect tree taper information from subject trees for the development of tree taper equations. Software that is commercially available, but designed for a different purpose, can be readily adapted...

  8. Photogrammetric Trajectory Estimation of Foam Debris Ejected From an F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.

    2006-01-01

    Photogrammetric analysis of high-speed digital video data was performed to estimate trajectories of foam debris ejected from an F-15B aircraft. This work was part of a flight test effort to study the transport properties of insulating foam shed by the Space Shuttle external tank during ascent. The conical frustum-shaped pieces of debris, called "divots," were ejected from a flight test fixture mounted underneath the F-15B aircraft. Two onboard cameras gathered digital video data at two thousand frames per second. Time histories of divot positions were determined from the videos post flight using standard photogrammetry techniques. Divot velocities were estimated by differentiating these positions with respect to time. Time histories of divot rotations were estimated using four points on the divot face. Estimated divot position, rotation, and Mach number for selected cases are presented. Uncertainty in the results is discussed.

  9. Photogrammetric Measurements of an EH-60L Brownout Cloud

    NASA Technical Reports Server (NTRS)

    Wong, Oliver D.; Tanner, Philip E.

    2010-01-01

    There is a critical lack of quantitative data regarding the mechanism of brownout cloud formation. Recognizing this, tests were conducted during the Air Force Research Lab 3D-LZ Brownout Test at the US Army Yuma Proving Ground. Photogrammetry was utilized during two rounds of flight tests with an instrumented EH-60L Black Hawk to determine if this technique could quantitatively measure the formation and evolution of a brownout cloud. Specific areas of interest include the location, size, and average convective velocity of the cloud, along with the characteristics of any defined structures within it. Following the first flight test, photogrammetric data were validated through comparison with onboard vehicle data. Lessons learned from this test were applied to the development of an improved photogrammetry system. A second flight test, utilizing the improved system, demonstrated that obtaining quantitative measurements of the brownout cloud are possible. Results from these measurements are presented in the paper. Flow visualization with chalk dust seeding was also tested. It was observed that pickup forces of the brownout cloud appear to be very low. Overall, these tests demonstrate the viability of photogrammetry as a means for quantifying brownout cloud formation and evolution.

  10. Automated 3D architecture reconstruction from photogrammetric structure-and-motion: A case study of the One Pilla pagoda, Hanoi, Vienam

    NASA Astrophysics Data System (ADS)

    To, T.; Nguyen, D.; Tran, G.

    2015-04-01

    Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.

  11. Photogrammetric Analysis of Rotor Clouds Observed during T-REX

    NASA Astrophysics Data System (ADS)

    Romatschke, U.; Grubišić, V.

    2017-12-01

    Stereo photogrammetric analysis is a rarely utilized but highly valuable tool for studying smaller, highly ephemeral clouds. In this study, we make use of data that was collected during the Terrain-induced Rotor Experiment (T-REX), which took place in Owens Valley, eastern California, in the spring of 2006. The data set consists of matched digital stereo photographs obtained at high temporal (on the order of seconds) and spatial resolution (limited by the pixel size of the cameras). Using computer vision techniques we have been able to develop algorithms for camera calibration, automatic feature matching, and ultimately reconstruction of 3D cloud scenes. Applying these techniques to images from different T-REX IOPs we capture the motion of clouds in several distinct mountain wave scenarios ranging from short lived lee wave clouds on an otherwise clear sky day to rotor clouds formed in an extreme turbulence environment with strong winds and high cloud coverage. Tracking the clouds in 3D space and time allows us to quantify phenomena such as vertical and horizontal movement of clouds, turbulent motion at the upstream edge of rotor clouds, the structure of the lifting condensation level, extreme wind shear, and the life cycle of clouds in lee waves. When placed into context with the existing literature that originated from the T-REX field campaign, our results complement and expand our understanding of the complex dynamics observed in a variety of different lee wave settings.

  12. Assessing the Accuracy of Ortho-image using Photogrammetric Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Jeong, H. H.; Park, J. W.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Smart-camera can not only be operated under network environment anytime and any place but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study's proposed UAV photogrammetric method, low-cost UAV and smart camera were used. The elements of interior orientation were acquired through camera calibration. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration, The Digital Elevation Model (DEM) was constructed using the image data photographed at the target area and the results of the ground control point survey. This study also analyzes the proposed method's application possibility by comparing a Ortho-image the results of the ground control point survey. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  13. Calibration of Low Cost Digital Camera Using Data from Simultaneous LIDAR and Photogrammetric Surveys

    NASA Astrophysics Data System (ADS)

    Mitishita, E.; Debiasi, P.; Hainosz, F.; Centeno, J.

    2012-07-01

    Digital photogrammetric products from the integration of imagery and lidar datasets are a reality nowadays. When the imagery and lidar surveys are performed together and the camera is connected to the lidar system, a direct georeferencing can be applied to compute the exterior orientation parameters of the images. Direct georeferencing of the images requires accurate interior orientation parameters to perform photogrammetric application. Camera calibration is a procedure applied to compute the interior orientation parameters (IOPs). Calibration researches have established that to obtain accurate IOPs, the calibration must be performed with same or equal condition that the photogrammetric survey is done. This paper shows the methodology and experiments results from in situ self-calibration using a simultaneous images block and lidar dataset. The calibration results are analyzed and discussed. To perform this research a test field was fixed in an urban area. A set of signalized points was implanted on the test field to use as the check points or control points. The photogrammetric images and lidar dataset of the test field were taken simultaneously. Four strips of flight were used to obtain a cross layout. The strips were taken with opposite directions of flight (W-E, E-W, N-S and S-N). The Kodak DSC Pro SLR/c digital camera was connected to the lidar system. The coordinates of the exposition station were computed from the lidar trajectory. Different layouts of vertical control points were used in the calibration experiments. The experiments use vertical coordinates from precise differential GPS survey or computed by an interpolation procedure using the lidar dataset. The positions of the exposition stations are used as control points in the calibration procedure to eliminate the linear dependency of the group of interior and exterior orientation parameters. This linear dependency happens, in the calibration procedure, when the vertical images and flat test field are

  14. Advanced techniques to prepare seed to sow

    Treesearch

    Robert P. Karrfalt

    2013-01-01

    This paper reviews research on improving the basic technique of cold stratification for tree and shrub seeds. Advanced stratification techniques include long stratification, stratification re-dry, or multiple cycles of warm-cold stratification. Research demonstrates that careful regulation of moisture levels and lengthening the stratification period have produced a...

  15. Photogrammetric Verification of Fiber Optic Shape Sensors on Flexible Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Moore, Jason P.; Rogge, Matthew D.; Jones, Thomas W.

    2012-01-01

    Multi-core fiber (MCF) optic shape sensing offers the possibility of providing in-flight shape measurements of highly flexible aerospace structures and control surfaces for such purposes as gust load alleviation, flutter suppression, general flight control and structural health monitoring. Photogrammetric measurements of surface mounted MCF shape sensing cable can be used to quantify the MCF installation path and verify measurement methods.

  16. Spatial analysis of fractured rock around fault zones based on photogrammetric data

    NASA Astrophysics Data System (ADS)

    Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.

    2009-04-01

    The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of

  17. [Advance in interferogram data processing technique].

    PubMed

    Jing, Juan-Juan; Xiangli, Bin; Lü, Qun-Bo; Huang, Min; Zhou, Jin-Song

    2011-04-01

    Fourier transform spectrometry is a type of novel information obtaining technology, which integrated the functions of imaging and spectra, but the data that the instrument acquired is the interference data of the target, which is an intermediate data and couldn't be used directly, so data processing must be adopted for the successful application of the interferometric data In the present paper, data processing techniques are divided into two classes: general-purpose and special-type. First, the advance in universal interferometric data processing technique is introduced, then the special-type interferometric data extracting method and data processing technique is illustrated according to the classification of Fourier transform spectroscopy. Finally, the trends of interferogram data processing technique are discussed.

  18. An evaluation of three-dimensional photogrammetric and morphometric techniques for estimating volume and mass in Weddell seals Leptonychotes weddellii

    PubMed Central

    Ruscher-Hill, Brandi; Kirkham, Amy L.; Burns, Jennifer M.

    2018-01-01

    Body mass dynamics of animals can indicate critical associations between extrinsic factors and population vital rates. Photogrammetry can be used to estimate mass of individuals in species whose life histories make it logistically difficult to obtain direct body mass measurements. Such studies typically use equations to relate volume estimates from photogrammetry to mass; however, most fail to identify the sources of error between the estimated and actual mass. Our objective was to identify the sources of error that prevent photogrammetric mass estimation from directly predicting actual mass, and develop a methodology to correct this issue. To do this, we obtained mass, body measurements, and scaled photos for 56 sedated Weddell seals (Leptonychotes weddellii). After creating a three-dimensional silhouette in the image processing program PhotoModeler Pro, we used horizontal scale bars to define the ground plane, then removed the below-ground portion of the animal’s estimated silhouette. We then re-calculated body volume and applied an expected density to estimate animal mass. We compared the body mass estimates derived from this silhouette slice method with estimates derived from two other published methodologies: body mass calculated using photogrammetry coupled with a species-specific correction factor, and estimates using elliptical cones and measured tissue densities. The estimated mass values (mean ± standard deviation 345±71 kg for correction equation, 346±75 kg for silhouette slice, 343±76 kg for cones) were not statistically distinguishable from each other or from actual mass (346±73 kg) (ANOVA with Tukey HSD post-hoc, p>0.05 for all pairwise comparisons). We conclude that volume overestimates from photogrammetry are likely due to the inability of photo modeling software to properly render the ventral surface of the animal where it contacts the ground. Due to logistical differences between the “correction equation”, “silhouette slicing”, and

  19. Assessing the usefulness of the photogrammetric method in the process of capturing data on parcel boundaries

    NASA Astrophysics Data System (ADS)

    Benduch, Piotr; Pęska-Siwik, Agnieszka

    2017-06-01

    A parcel is the most important object of real estate cadastre. Its primary spatial attribute are boundaries, determining the extent of property rights. Capturing the data on boundaries should be performed in the way ensuring sufficiently high accuracy and reliability. In recent years, as part of the project "ZSIN - Construction of Integrated Real Estate Information System - Stage I", in the territories of the participating districts, actions were taken aimed at the modernization of the register of land and buildings. In many cases, this process was carried out basing on photogrammetric materials. Applicable regulations allow such a possibility. This paper, basing on the documentation from the National Geodetic and Cartographic Documentation Center and on the authors' own surveys attempts to assess the applicability of the photogrammetric method to capture data on the boundaries of cadastral parcels. The scope of the research, most importantly, included the problem of accuracy with which it was possible to determine the position of a boundary point using photogrammetric surveys carried out on the terrain model created from processed aerial photographs. The article demonstrates the manner of recording this information in the cadastral database, as well as the resulting legal consequences. Moreover, the level of reliability of the entered values of the selected attributes of boundary points was assessed.

  20. Toward Automatic Georeferencing of Archival Aerial Photogrammetric Surveys

    NASA Astrophysics Data System (ADS)

    Giordano, S.; Le Bris, A.; Mallet, C.

    2018-05-01

    Images from archival aerial photogrammetric surveys are a unique and relatively unexplored means to chronicle 3D land-cover changes over the past 100 years. They provide a relatively dense temporal sampling of the territories with very high spatial resolution. Such time series image analysis is a mandatory baseline for a large variety of long-term environmental monitoring studies. The current bottleneck for accurate comparison between epochs is their fine georeferencing step. No fully automatic method has been proposed yet and existing studies are rather limited in terms of area and number of dates. State-of-the art shows that the major challenge is the identification of ground references: cartographic coordinates and their position in the archival images. This task is manually performed, and extremely time-consuming. This paper proposes to use a photogrammetric approach, and states that the 3D information that can be computed is the key to full automation. Its original idea lies in a 2-step approach: (i) the computation of a coarse absolute image orientation; (ii) the use of the coarse Digital Surface Model (DSM) information for automatic absolute image orientation. It only relies on a recent orthoimage+DSM, used as master reference for all epochs. The coarse orthoimage, compared with such a reference, allows the identification of dense ground references and the coarse DSM provides their position in the archival images. Results on two areas and 5 dates show that this method is compatible with long and dense archival aerial image series. Satisfactory planimetric and altimetric accuracies are reported, with variations depending on the ground sampling distance of the images and the location of the Ground Control Points.

  1. Photogrammetric 3D reconstruction using mobile imaging

    NASA Astrophysics Data System (ADS)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  2. Close-range photogrammetric reconstruction of moraine dam failures

    NASA Astrophysics Data System (ADS)

    Westoby, M. J.; Brasington, J.; Glasser, N. F.; Hambrey, M. J.; Reynolds, J. M.

    2012-04-01

    Glacial Lake Outburst Floods (GLOFs) from moraine-dammed lakes represent a high magnitude, low frequency catastrophic glacio-fluvial phenomena, with the potential to cause significant damage to property and infrastructure in high-mountain regions. Detailed accounts of GLOF dynamics, in particular the initiation and propagation of dam breaching are extremely rare, owing to their occurrence in often remote, inaccessible areas, as well as the impracticalities associated with attempting to directly instrument such high magnitude, turbulent flows. In addition to the dearth of detailed, first-hand observations of dam failures, reconstruction of breaches and failure mechanisms derived from morphological evidence is hampered by the lack of high-quality, high-resolution DTMs of remote alpine areas. Previous studies have therefore resorted to the use of coarse resolution data products (SRTM, ASTER GDEM) to quantify characteristics of failure events, e.g. pre-flood lake volume, dam height/width, which may give rise to considerable uncertainty in related numerical simulations and assessments of downstream flood hazards. In this paper we employ a novel low-cost, close-range photogrammetric technique, termed 'Structure-from-Motion' (SfM) to provide detailed in-situ reconstructions of dam and valley topography for two moraine dam complexes which have produced historical GLOFs in the Khumbu Himal, Nepal. Requiring little more than a consumer-grade digital camera and suitable ground control for implementation, the resolution of the final data products are comparable to that obtained using ground-based or airborne LiDAR. These data facilitate the extraction of precise estimates of dam (and breach) geometry, volumes of water and sediment removed during the outburst events, and the downstream channel topography. We conclude by directly comparing such key metrics derived from low-resolution topographic datasets, with those acquired in situ using the SfM technique, and discuss the

  3. Photogrammetric method to measure the discrepancy between clinical and software-designed positions of implants.

    PubMed

    Rivara, Federico; Lumetti, Simone; Calciolari, Elena; Toffoli, Andrea; Forlani, Gianfranco; Manfredi, Edoardo

    2016-06-01

    The position of dental implants placed with software-guided systems should be highly accurate in order to ensure safety and a passive fit of the immediate prosthesis. The purpose of this study was to measure the discrepancy between the clinical and software-planned position of dental implants by applying a photogrammetric method. Two casts were obtained, 1 from the surgical template and 1 from the actual position of the implants on the alveolar ridge of a patient. Photogrammetry was then applied to precisely locate the position of each implant on the casts. Because this mathematical technique required the identification of image points and of the relative spatial coordinates, 4 marks were drilled on the implant screw. The position of the implants was then identified as the geometric center of the 4 marks, while the orientation of the implant axis was represented by a vector normal to the plane fitting the points. A series of 16 convergent images all around the object was made using a high-resolution digital camera. A mathematical method called "rototranslation" was used to superimpose the cast images for the comparison. The tests performed on the casts resulted in an average precision level of 4 μm for the locations and less than 1 degree for the axis of the implants. A series of empirical and numerical tests were performed to assess the performance of the procedure and of the measurement protocol. The photogrammetric method is reproducible and can be used to measure the discrepancy between the software-planned and the real position of dental implants. Considering that the average precision level required for an implant-based prosthesis is approximately 50 μm, the error associated with this method can be considered as negligible. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Hare, T.; Dorrer, E.; Cook, D.; Becker, K.; Thompson, K.; Redding, B.; Blue, J.; Galuszka, D.; Lee, E.M.; Gaddis, L.R.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Smith, P.H.; Britt, D.T.

    1999-01-01

    This paper describes our photogrammetric analysis of the Imager for Mars Pathfinder data, part of a broader program of mapping the Mars Pathfinder landing site in support of geoscience investigations. This analysis, carried out primarily with a commercial digital photogrammetric system, supported by our in-house Integrated Software for Imagers and Spectrometers (ISIS), consists of three steps: (1) geometric control: simultaneous solution for refined estimates of camera positions and pointing plus three-dimensional (3-D) coordinates of ???103 features sitewide, based on the measured image coordinates of those features; (2) topographic modeling: identification of ???3 ?? 105 closely spaced points in the images and calculation (based on camera parameters from step 1) of their 3-D coordinates, yielding digital terrain models (DTMs); and (3) geometric manipulation of the data: combination of the DTMs from different stereo pairs into a sitewide model, and reprojection of image data to remove parallax between the different spectral filters in the two cameras and to provide an undistorted planimetric view of the site. These processes are described in detail and example products are shown. Plans for combining the photogrammetrically derived topographic data with spectrophotometry are also described. These include photometric modeling using surface orientations from the DTM to study surface microtextures and improve the accuracy of spectral measurements, and photoclinometry to refine the DTM to single-pixel resolution where photometric properties are sufficiently uniform. Finally, the inclusion of rover images in a joint photogrammetric analysis with IMP images is described. This challenging task will provide coverage of areas hidden to the IMP, but accurate ranging of distant features can be achieved only if the lander is also visible in the rover image used. Copyright 1999 by the American Geophysical Union.

  5. Use of Fisheye Parrot Bebop 2 Images for 3d Modelling Using Commercial Photogrammetric Software

    NASA Astrophysics Data System (ADS)

    Pagliari, D.; Pinto, L.

    2018-05-01

    Fisheye camera installed on-board mass market UAS are becoming very popular and it is more and more frequent the use of such platforms for photogrammetric purposes. The interest of wide-angles images for 3D modelling is confirmed by the introduction of fisheye models in several commercial software packages. The paper exploits the different mathematical models implemented in the most famous commercial photogrammetric software packages, highlighting the different processing pipelines and analysing the achievable results in terms of checkpoint residuals, as well as the quality of the delivered 3D point clouds. A two-step approach based on the creation of undistorted images has been tested too. An experimental test has been carried out using a Parrot Bebop 2 UAS by performing a flight over an historical complex located near Piacenza (Northern Italy), which is characterized by the simultaneous presence of horizontal, vertical and oblique surfaces. Different flight configurations have been tested to evaluate the potentiality and possible drawbacks of the previously mentioned UAS platform. Results confirmed that the fisheye images acquired with the Parrot Bebop 2 are suitable for 3D modelling, ensuring accuracies of the photogrammetric blocks of the order of the GSD (about 0.05 m normal to the optic axis in case of a flight height equal to 35 m). The generated point clouds have been compared to a reference scan, acquired by means of a MS60 MultiStation, resulting in differences below 0.05 in all directions.

  6. Photogrammetric Assessment of the Hubble Space Telescope Solar Arrays During the Second Servicing Mission

    NASA Technical Reports Server (NTRS)

    Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.

    1998-01-01

    This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.

  7. Angular photogrammetric analysis and evaluation of facial esthetics of young Ivorians with normal dental occlusion.

    PubMed

    Beugre, Jean-Bertin; Diomande, Moussa; Assi, Assi Raoul; Koueita, Mariam Kadi; Vaysse, Frédéric

    2017-03-01

    The aim of this study was to evaluate the angular photogrammetric characteristics of subjects according to the facial esthetics criteria applicable in Côte d'Ivoire. This was a horizontal study, concerning of group of young people from Côte d'Ivoire whose attractiveness and photogrammetric characteristics were assessed. The data obtained were analyzed using SPSS 20.0 statistical software. The limit of statistical significance was P<0.05. Subjects were characterized by PCA. Attractive subjects had a large mid-face section with an upturned nose (P<0.01). Attractive women had facial profiles that were more convex than men who were judged handsome. Despite the subjectivity of the notion of beauty, certain angles of the facial profile contribute to the esthetic balance of black Ivorian faces. Copyright © 2016 CEO. Published by Elsevier Masson SAS. All rights reserved.

  8. A robust close-range photogrammetric target extraction algorithm for size and type variant targets

    NASA Astrophysics Data System (ADS)

    Nyarko, Kofi; Thomas, Clayton; Torres, Gilbert

    2016-05-01

    The Photo-G program conducted by Naval Air Systems Command at the Atlantic Test Range in Patuxent River, Maryland, uses photogrammetric analysis of large amounts of real-world imagery to characterize the motion of objects in a 3-D scene. Current approaches involve several independent processes including target acquisition, target identification, 2-D tracking of image features, and 3-D kinematic state estimation. Each process has its own inherent complications and corresponding degrees of both human intervention and computational complexity. One approach being explored for automated target acquisition relies on exploiting the pixel intensity distributions of photogrammetric targets, which tend to be patterns with bimodal intensity distributions. The bimodal distribution partitioning algorithm utilizes this distribution to automatically deconstruct a video frame into regions of interest (ROI) that are merged and expanded to target boundaries, from which ROI centroids are extracted to mark target acquisition points. This process has proved to be scale, position and orientation invariant, as well as fairly insensitive to global uniform intensity disparities.

  9. Wafer hot spot identification through advanced photomask characterization techniques

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2016-10-01

    As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.

  10. Teaching advanced wound closure techniques using cattle digits.

    PubMed

    Khalil, Philipe N; Kanz, Karl-Georg; Siebeck, Matthias; Mutschler, Wolf

    2011-03-01

    To evaluate a model used to impart advanced wound closure skills because available models do not meet the necessary requirements to a substantial degree. Seventy-one residents were asked to evaluate a 75-minute-long skills course using cadaveric cattle digits to learn Z-plasty, V-Y-plasty, and oval-shaped rotational flaps. A short film and the course instructor demonstrated each technique first. A Likert rating scale ranging from 1 to 6 was used for questions in the survey given to the residents. There was strong agreement among residents (1.65 ± 1.17 years of experience) that advanced wound closure training courses are necessary (5.73 ± 0.73), which corresponded to the residents' low level of knowledge and self-assessment of practical skills and present experience (2.84 ± 1.01). The course was evaluated with high acceptance, even though it was found to be demanding for the trainees (5.84 ± 0.40). This might also be related to the high rating of the model itself, which was found to be a suitable method for teaching advanced wound closure techniques (5.50 ± 0.71) that was easily comprehensible (5.73 ± 0.53). Skills training courses for young trainees are warranted to impart advanced wound closure techniques. The curriculum using cattle digits presented here is recommended. The authors have indicated no significant interest with commercial supporters. © 2011 by the American Society for Dermatologic Surgery, Inc.

  11. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  12. Photogrammetric fingerprint unwrapping

    NASA Astrophysics Data System (ADS)

    Paar, Gerhard; del Pilar Caballo Perucha, Maria; Bauer, Arnold; Nauschnegg, Bernhard

    2008-04-01

    Fingerprints are important biometric cues. Compared to conventional fingerprint sensors the use of contact-free stereoscopic image acquisition of the front-most finger segment has a set of advantages: Finger deformation is avoided, the entire relevant area for biometric use is covered, some technical aspects like sensor maintenance and cleaning are facilitated, and access to a three-dimensional reconstruction of the covered area is possible. We describe a photogrammetric workflow for nail-to-nail fingerprint reconstruction: A calibrated sensor setup with typically 5 cameras and dedicated illumination acquires adjacent stereo pairs. Using the silhouettes of the segmented finger a raw cylindrical model is generated. After preprocessing (shading correction, dust removal, lens distortion correction), each individual camera texture is projected onto the model. Image-to-image matching on these pseudo ortho images and dense 3D reconstruction obtains a textured cylindrical digital surface model with radial distances around the major axis and a grid size in the range of 25-50 µm. The model allows for objective fingerprint unwrapping and novel fingerprint matching algorithms since 3D relations between fingerprint features are available as additional cues. Moreover, covering the entire region with relevant fingerprint texture is particularly important for establishing a comprehensive forensic database. The workflow has been implemented in portable C and is ready for industrial exploitation. Further improvement issues are code optimization, unwrapping method, illumination strategy to avoid highlights and to improve the initial segmentation, and the comparison of the unwrapping result to conventional fingerprint acquisition technology.

  13. Ground-Level Digital Terrain Model (DTM) Construction from Tandem-X InSAR Data and Worldview Stereo-Photogrammetric Images

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo, Temilola; Lagomasino, David; Osmanoglu, Batuhan; Feliciano, Emanuelle

    2016-01-01

    The ground-level digital elevation model (DEM) or digital terrain model (DTM) information are invaluable for environmental modeling, such as water dynamics in forests, canopy height, forest biomass, carbon estimation, etc. We propose to extract the DTM over forested areas from the combination of interferometric complex coherence from single-pass TanDEM-X (TDX) data at HH polarization and Digital Surface Model (DSM) derived from high-resolution WorldView (WV) image pair by means of random volume over ground (RVoG) model. The RVoG model is a widely and successfully used model for polarimetric SAR interferometry (Pol-InSAR) technique for vertical forest structure parameter retrieval [1][2][3][4]. The ground-level DEM have been obtained by complex volume decorrelation in the RVoG model with the DSM using stereo-photogrammetric technique. Finally, the airborne lidar data were used to validate the ground-level DEM and forest canopy height results.

  14. Computer-assisted photogrammetric mapping systems for geologic studies-A progress report

    USGS Publications Warehouse

    Pillmore, C.L.; Dueholm, K.S.; Jepsen, H.S.; Schuch, C.H.

    1981-01-01

    Photogrammetry has played an important role in geologic mapping for many years; however, only recently have attempts been made to automate mapping functions for geology. Computer-assisted photogrammetric mapping systems for geologic studies have been developed and are currently in use in offices of the Geological Survey of Greenland at Copenhagen, Denmark, and the U.S. Geological Survey at Denver, Colorado. Though differing somewhat, the systems are similar in that they integrate Kern PG-2 photogrammetric plotting instruments and small desk-top computers that are programmed to perform special geologic functions and operate flat-bed plotters by means of specially designed hardware and software. A z-drive capability, in which stepping motors control the z-motions of the PG-2 plotters, is an integral part of both systems. This feature enables the computer to automatically position the floating mark on computer-calculated, previously defined geologic planes, such as contacts or the base of coal beds, throughout the stereoscopic model in order to improve the mapping capabilities of the instrument and to aid in correlation and tracing of geologic units. The common goal is to enhance the capabilities of the PG-2 plotter and provide a means by which geologists can make conventional geologic maps more efficiently and explore ways to apply computer technology to geologic studies. ?? 1981.

  15. Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos

    NASA Astrophysics Data System (ADS)

    Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.

    2018-04-01

    It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.

  16. Application of Structured Light System Technique for Authentication of Wooden Panel Paintings.

    PubMed

    Buchón-Moragues, Fernando; Bravo, José María; Ferri, Marcelino; Redondo, Javier; Sánchez-Pérez, Juan Vicente

    2016-06-14

    This paper presents a new application of photogrammetric techniques for protecting cultural heritage. The accuracy of the method and the fact that it can be used to carry out different tests without contact between the sample and the instruments can make this technique very useful for authenticating and cataloging artworks. The application focuses on the field of pictorial artworks, and wooden panel paintings in particular. In these works, the orography formed by the brushstrokes can be easily digitalized using a photogrammetric technique, called Structured Light System, with submillimeter accuracy. Thus, some of the physical characteristics of the brushstrokes, like minimum and maximum heights or slopes become a fingerprint of the painting. We explain in detail the general principles of the Structured Light System Technique and the specific characteristics of the commercial set-up used in this work. Some experiments are carried out on a sample painted by us to check the accuracy limits of the technique and to propose some tests that can help to stablish a methodology for authentication purposes. Finally, some preliminary results obtained on a real pictorial artwork are presented, providing geometrical information of its metric features as an example of the possibilities of this application.

  17. Comparison of parameters characterizing lumbar lordosis in radiograph and photogrammetric examination of adults.

    PubMed

    Drzał-Grabiec, Justyna; Truszczyńska, Aleksandra; Tarnowski, Adam; Płaszewski, Maciej

    2015-01-01

    The purpose of this study was to test validity of photogrammetry compared with radiography as a method of measuring the Cobb angle and the size of anterior-posterior spine curvatures in adults. The study included 50 volunteers, 23 men and 27 women whose mean age was 52.6 years. The average weight of the subjects was 81.3 kg, average body height was 172.0 cm, and the average body mass index was 27.4. Based on radiologic examination, the length and depth of lumbar lordosis were determined and the size of the Cobb angle of lumbar scoliosis. After the radiologic examination, a photogrammetric test was performed for each subject with the projection moire phenomenon. The Pearson correlation found statistically significant associations concerning the length of lordosis (P < .001) and the Cobb angle (P < .001). Correlation of the depth of lordosis indicated a strong trend (P = .063). This study found that the moire method of photogrammetric measurement produced similar findings to radiographic measurements in determining size of the Cobb angle and the length of lumbar lordosis. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  18. High Resolution Photogrammetric Digital Elevation Models Across Calving Fronts and Meltwater Channels in Greenland

    NASA Astrophysics Data System (ADS)

    Le Bel, D. A.; Brown, S.; Zappa, C. J.; Bell, R. E.; Frearson, N.; Tinto, K. J.

    2014-12-01

    Photogrammetric digital elevation models (DEMs) are a powerful approach for understanding elevation change and dynamics along the margins of the large ice sheets. The IcePod system, mounted on a New York Air National Guard LC-130, can measure high-resolution surface elevations with a Riegl VQ580 scanning laser altimeter and Imperx Bobcat IGV-B6620 color visible-wavelength camera (6600x4400 resolution); the surface temperature with a Sofradir IRE-640L infrared camera (spectral response 7.7-9.5 μm, 640x512 resolution); and the structure of snow and ice with two radar systems. We show the use of IcePod imagery to develop DEMs across calving fronts and meltwater channels in Greenland. Multiple over-flights of the Kangerlussaq Airport ramp have provided a test of the technique at a location with accurate, independently-determined elevation. Here the photogrammetric DEM of the airport, constrained by ground control measurements, is compared with the Lidar results. In July 2014 the IcePod ice-ocean imaging system surveyed the calving fronts of five outlet glaciers north of Jakobshavn Isbrae. We used Agisoft PhotoScan to develop a DEM of each calving front using imagery captured by the IcePod systems. Adjacent to the ice sheet, meltwater plumes foster mixing in the fjord, moving warm ocean water into contact with the front of the ice sheet where it can undercut the ice front and trigger calving. The five glaciers provide an opportunity to examine the calving front structure in relation to ocean temperature, fjord circulation, and spatial scale of the meltwater plumes. The combination of the accurate DEM of the calving front and the thermal imagery used to constrain the temperature and dynamics of the adjacent plume provides new insights into the ice-ocean interactions. Ice sheet margins provide insights into the connections between the surface meltwater and the fate of the water at the ice sheet base. Surface meltwater channels are visualized here for the first time using

  19. Sonic Fatigue Design Techniques for Advanced Composite Aircraft Structures

    DTIC Science & Technology

    1980-04-01

    AFWAL-TR-80.3019 AD A 090553 SONIC FATIGUE DESIGN TECHNIQUES FOR ADVANCED COMPOSITE AIRCRAFT STRUCTURES FINAL REPORT Ian Holehouse Rohr Industries...5 2. General Sonic Fatigue Theory .... ....... 7 3. Composite Laminate Analysis .. ....... ... 10 4. Preliminary Sonic Fatigue...overall sonic fatigue design guides. These existing desiyn methcds have been developed for metal structures. However, recent advanced composite

  20. Implementation of a Real-Time Stacking Algorithm in a Photogrammetric Digital Camera for Uavs

    NASA Astrophysics Data System (ADS)

    Audi, A.; Pierrot-Deseilligny, M.; Meynard, C.; Thom, C.

    2017-08-01

    In the recent years, unmanned aerial vehicles (UAVs) have become an interesting tool in aerial photography and photogrammetry activities. In this context, some applications (like cloudy sky surveys, narrow-spectral imagery and night-vision imagery) need a longexposure time where one of the main problems is the motion blur caused by the erratic camera movements during image acquisition. This paper describes an automatic real-time stacking algorithm which produces a high photogrammetric quality final composite image with an equivalent long-exposure time using several images acquired with short-exposure times. Our method is inspired by feature-based image registration technique. The algorithm is implemented on the light-weight IGN camera, which has an IMU sensor and a SoC/FPGA. To obtain the correct parameters for the resampling of images, the presented method accurately estimates the geometrical relation between the first and the Nth image, taking into account the internal parameters and the distortion of the camera. Features are detected in the first image by the FAST detector, than homologous points on other images are obtained by template matching aided by the IMU sensors. The SoC/FPGA in the camera is used to speed up time-consuming parts of the algorithm such as features detection and images resampling in order to achieve a real-time performance as we want to write only the resulting final image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images, as well as block diagrams of the described architecture. The resulting stacked image obtained on real surveys doesn't seem visually impaired. Timing results demonstrate that our algorithm can be used in real-time since its processing time is less than the writing time of an image in the storage device. An interesting by-product of this algorithm is the 3D rotation estimated by a

  1. a Critical Review of Automated Photogrammetric Processing of Large Datasets

    NASA Astrophysics Data System (ADS)

    Remondino, F.; Nocerino, E.; Toschi, I.; Menna, F.

    2017-08-01

    The paper reports some comparisons between commercial software able to automatically process image datasets for 3D reconstruction purposes. The main aspects investigated in the work are the capability to correctly orient large sets of image of complex environments, the metric quality of the results, replicability and redundancy. Different datasets are employed, each one featuring a diverse number of images, GSDs at cm and mm resolutions, and ground truth information to perform statistical analyses of the 3D results. A summary of (photogrammetric) terms is also provided, in order to provide rigorous terms of reference for comparisons and critical analyses.

  2. Advanced neuroimaging techniques for the term newborn with encephalopathy.

    PubMed

    Chau, Vann; Poskitt, Kenneth John; Miller, Steven Paul

    2009-03-01

    Neonatal encephalopathy is associated with a high risk of morbidity and mortality in the neonatal period and of long-term neurodevelopmental disability in survivors. Advanced magnetic resonance techniques now play a major role in the clinical care of newborns with encephalopathy and in research addressing this important condition. From conventional magnetic resonance imaging, typical patterns of injury have been defined in neonatal encephalopathy. When applied in contemporary cohorts of newborns with encephalopathy, the patterns of brain injury on magnetic resonance imaging distinguish risk factors, clinical presentation, and risk of abnormal outcome. Advanced magnetic resonance techniques such as magnetic resonance spectroscopy, diffusion-weighted imaging, and diffusion tensor imaging provide novel perspectives on neonatal brain metabolism, microstructure, and connectivity. With the application of these imaging tools, it is increasingly apparent that brain injury commonly occurs at or near the time of birth and evolves over the first weeks of life. These observations have complemented findings from trials of emerging strategies of brain protection, such as hypothermia. Application of these advanced magnetic resonance techniques may enable the earliest possible identification of newborns at risk of neurodevelopmental impairment, thereby ensuring appropriate follow-up with rehabilitation and psychoeducational resources.

  3. D Cultural Heritage Documentation: a Comparison Between Different Photogrammetric Software and Their Products

    NASA Astrophysics Data System (ADS)

    Gagliolo, S.; Ausonio, E.; Federici, B.; Ferrando, I.; Passoni, D.; Sguerso, D.

    2018-05-01

    The conservation of Cultural Heritage depends on the availability of means and resources and, consequently, on the possibility to make effective operations of data acquisition. In facts, on the one hand the creation of data repositories allows the description of the present state-of-art, in order to preserve the testimonial value and to permit the fruition. On the other hand, data acquisition grants a metrical knowledge, which is particularly useful for a direct restoration of the surveyed objects, through the analysis of their 3D digital models. In the last decades, the continuous increase and improvement of 3D survey techniques and of tools for the geometric and digital data management have represented a great support to the development of documentary activities. In particular, Photogrammetry is a survey technique highly appropriate in the creation of data repositories in the field of Cultural Heritage, thanks to its advantages of cheapness, flexibility, speed, and the opportunity to ensure the operators' safety in hazardous areas too. In order to obtain a complete documentation, the high precision of the on-site operations must be coupled with an effective post-processing phase. Hence, a comparison among some of the photogrammetric software currently available was performed by the authors, with a particular attention to the workflow completeness and the final products quality.

  4. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  5. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  6. Advances in Testing Techniques for Digital Microfluidic Biochips

    PubMed Central

    Shukla, Vineeta; Hussin, Fawnizu Azmadi; Hamid, Nor Hisham; Zain Ali, Noohul Basheer

    2017-01-01

    With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips. PMID:28749411

  7. Advances in Testing Techniques for Digital Microfluidic Biochips.

    PubMed

    Shukla, Vineeta; Hussin, Fawnizu Azmadi; Hamid, Nor Hisham; Zain Ali, Noohul Basheer

    2017-07-27

    With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips.

  8. Filtering Photogrammetric Point Clouds Using Standard LIDAR Filters Towards DTM Generation

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M. Y.

    2018-05-01

    Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level.

  9. Shape and rotational elements of comet 67P/ Churyumov-Gerasimenko derived by stereo-photogrammetric analysis of OSIRIS NAC image data

    NASA Astrophysics Data System (ADS)

    Preusker, Frank; Scholten, Frank; Matz, Klaus-Dieter; Roatsch, Thomas; Willner, Konrad; Hviid, Stubbe; Knollenberg, Jörg; Kührt, Ekkehard; Sierks, Holger

    2015-04-01

    The European Space Agency's Rosetta spacecraft is equipped with the OSIRIS imaging system which consists of a wide-angle and a narrow-angle camera (WAC and NAC). After the approach phase, Rosetta was inserted into a descent trajectory of comet 67P/Churyumov-Gerasimenko (C-G) in early August 2014. Until early September, OSIRIS acquired several hundred NAC images of C-G's surface at different scales (from ~5 m/pixel during approach to ~0.9 m/pixel during descent). In that one month observation period, the surface was imaged several times within different mapping sequences. With the comet's rotation period of ~12.4 h and the low spacecraft velocity (< 1 m/s), the entire NAC dataset provides multiple NAC stereo coverage, adequate for stereo-photogrammetric (SPG) analysis towards the derivation of 3D surface models. We constrained the OSIRIS NAC images with our stereo requirements (15° < stereo angles < 45°, incidence angles <85°, emission angles <45°, differences in illumination < 10°, scale better than 5 m/pixel) and extracted about 220 NAC images that provide at least triple stereo image coverage for the entire illuminated surface in about 250 independent multi-stereo image combinations. For each image combination we determined tie points by multi-image matching in order to set-up a 3D control network and a dense surface point cloud for the precise reconstruction of C-G's shape. The control point network defines the input for a stereo-photogrammetric least squares adjustment. Based on the statistical analysis of adjustments we first refined C-G's rotational state (pole orientation and rotational period) and its behavior over time. Based upon this description of the orientation of C-G's body-fixed reference frame, we derived corrections for the nominal navigation data (pointing and position) within a final stereo-photogrammetric block adjustment where the mean 3D point accuracy of more than 100 million surface points has been improved from ~10 m to the sub

  10. Advanced wiring technique and hardware application: Airplane and space vehicle

    NASA Technical Reports Server (NTRS)

    Ernst, H. L.; Eichman, C. D.

    1972-01-01

    An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.

  11. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  12. Advanced techniques in placental biology -- workshop report.

    PubMed

    Nelson, D M; Sadovsky, Y; Robinson, J M; Croy, B A; Rice, G; Kniss, D A

    2006-04-01

    Major advances in placental biology have been realized as new technologies have been developed and existing methods have been refined in many areas of biological research. Classical anatomy and whole-organ physiology tools once used to analyze placental structure and function have been supplanted by more sophisticated techniques adapted from molecular biology, proteomics, and computational biology and bioinformatics. In addition, significant refinements in morphological study of the placenta and its constituent cell types have improved our ability to assess form and function in highly integrated manner. To offer an overview of modern technologies used by investigators to study the placenta, this workshop: Advanced techniques in placental biology, assembled experts who discussed fundamental principles and real time examples of four separate methodologies. Y. Sadovsky presented the principles of microRNA function as an endogenous mechanism of gene regulation. J. Robinson demonstrated the utility of correlative microscopy in which light-level and transmission electron microscopy are combined to provide cellular and subcellular views of placental cells. A. Croy provided a lecture on the use of microdissection techniques which are invaluable for isolating very small subsets of cell types for molecular analysis. Finally, G. Rice presented an overview methods on profiling of complex protein mixtures within tissue and/or fluid samples that, when refined, will offer databases that will underpin a systems approach to modern trophoblast biology.

  13. Advanced Diffusion-Weighted Magnetic Resonance Imaging Techniques of the Human Spinal Cord

    PubMed Central

    Andre, Jalal B.; Bammer, Roland

    2012-01-01

    Unlike those of the brain, advances in diffusion-weighted imaging (DWI) of the human spinal cord have been challenged by the more complicated and inhomogeneous anatomy of the spine, the differences in magnetic susceptibility between adjacent air and fluid-filled structures and the surrounding soft tissues, and the inherent limitations of the initially used echo-planar imaging techniques used to image the spine. Interval advances in DWI techniques for imaging the human spinal cord, with the specific aims of improving the diagnostic quality of the images, and the simultaneous reduction in unwanted artifacts have resulted in higher-quality images that are now able to more accurately portray the complicated underlying anatomy and depict pathologic abnormality with improved sensitivity and specificity. Diffusion tensor imaging (DTI) has benefited from the advances in DWI techniques, as DWI images form the foundation for all tractography and DTI. This review provides a synopsis of the many recent advances in DWI of the human spinal cord, as well as some of the more common clinical uses for these techniques, including DTI and tractography. PMID:22158130

  14. Inter-Ethnic/Racial Facial Variations: A Systematic Review and Bayesian Meta-Analysis of Photogrammetric Studies

    PubMed Central

    Wen, Yi Feng; Wong, Hai Ming; Lin, Ruitao; Yin, Guosheng; McGrath, Colman

    2015-01-01

    Background Numerous facial photogrammetric studies have been published around the world. We aimed to critically review these studies so as to establish population norms for various angular and linear facial measurements; and to determine inter-ethnic/racial facial variations. Methods and Findings A comprehensive and systematic search of PubMed, ISI Web of Science, Embase, and Scopus was conducted to identify facial photogrammetric studies published before December, 2014. Subjects of eligible studies were either Africans, Asians or Caucasians. A Bayesian hierarchical random effects model was developed to estimate posterior means and 95% credible intervals (CrI) for each measurement by ethnicity/race. Linear contrasts were constructed to explore inter-ethnic/racial facial variations. We identified 38 eligible studies reporting 11 angular and 18 linear facial measurements. Risk of bias of the studies ranged from 0.06 to 0.66. At the significance level of 0.05, African males were found to have smaller nasofrontal angle (posterior mean difference: 8.1°, 95% CrI: 2.2°–13.5°) compared to Caucasian males and larger nasofacial angle (7.4°, 0.1°–13.2°) compared to Asian males. Nasolabial angle was more obtuse in Caucasian females than in African (17.4°, 0.2°–35.3°) and Asian (9.1°, 0.4°–17.3°) females. Additional inter-ethnic/racial variations were revealed when the level of statistical significance was set at 0.10. Conclusions A comprehensive database for angular and linear facial measurements was established from existing studies using the statistical model and inter-ethnic/racial variations of facial features were observed. The results have implications for clinical practice and highlight the need and value for high quality photogrammetric studies. PMID:26247212

  15. Inter-Ethnic/Racial Facial Variations: A Systematic Review and Bayesian Meta-Analysis of Photogrammetric Studies.

    PubMed

    Wen, Yi Feng; Wong, Hai Ming; Lin, Ruitao; Yin, Guosheng; McGrath, Colman

    2015-01-01

    Numerous facial photogrammetric studies have been published around the world. We aimed to critically review these studies so as to establish population norms for various angular and linear facial measurements; and to determine inter-ethnic/racial facial variations. A comprehensive and systematic search of PubMed, ISI Web of Science, Embase, and Scopus was conducted to identify facial photogrammetric studies published before December, 2014. Subjects of eligible studies were either Africans, Asians or Caucasians. A Bayesian hierarchical random effects model was developed to estimate posterior means and 95% credible intervals (CrI) for each measurement by ethnicity/race. Linear contrasts were constructed to explore inter-ethnic/racial facial variations. We identified 38 eligible studies reporting 11 angular and 18 linear facial measurements. Risk of bias of the studies ranged from 0.06 to 0.66. At the significance level of 0.05, African males were found to have smaller nasofrontal angle (posterior mean difference: 8.1°, 95% CrI: 2.2°-13.5°) compared to Caucasian males and larger nasofacial angle (7.4°, 0.1°-13.2°) compared to Asian males. Nasolabial angle was more obtuse in Caucasian females than in African (17.4°, 0.2°-35.3°) and Asian (9.1°, 0.4°-17.3°) females. Additional inter-ethnic/racial variations were revealed when the level of statistical significance was set at 0.10. A comprehensive database for angular and linear facial measurements was established from existing studies using the statistical model and inter-ethnic/racial variations of facial features were observed. The results have implications for clinical practice and highlight the need and value for high quality photogrammetric studies.

  16. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  17. Application of Structured Light System Technique for Authentication of Wooden Panel Paintings

    PubMed Central

    Buchón-Moragues, Fernando; Bravo, José María; Ferri, Marcelino; Redondo, Javier; Sánchez-Pérez, Juan Vicente

    2016-01-01

    This paper presents a new application of photogrammetric techniques for protecting cultural heritage. The accuracy of the method and the fact that it can be used to carry out different tests without contact between the sample and the instruments can make this technique very useful for authenticating and cataloging artworks. The application focuses on the field of pictorial artworks, and wooden panel paintings in particular. In these works, the orography formed by the brushstrokes can be easily digitalized using a photogrammetric technique, called Structured Light System, with submillimeter accuracy. Thus, some of the physical characteristics of the brushstrokes, like minimum and maximum heights or slopes become a fingerprint of the painting. We explain in detail the general principles of the Structured Light System Technique and the specific characteristics of the commercial set-up used in this work. Some experiments are carried out on a sample painted by us to check the accuracy limits of the technique and to propose some tests that can help to stablish a methodology for authentication purposes. Finally, some preliminary results obtained on a real pictorial artwork are presented, providing geometrical information of its metric features as an example of the possibilities of this application. PMID:27314353

  18. Stakeout surveys for check dams in gullied areas by using the FreeXSap photogrammetric method

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Marín-Moreno, Víctor; Taguas, Encarnación V.

    2017-04-01

    Prior to any check dam construction work, it is necessary to carry out field stakeout surveys to define the layout of the dam series according to spacing criteria. While in expensive and complex settings, accurate measurement techniques might be justified (e.g. differential GPS), for small to medium-sized check dams typical of areas affected by gully erosion, simpler methodologies might be more cost-efficient. Innovative 3D photogrammetric techniques based on Structure-from-Motion (SfM) algorithms have proved to be useful across different geomorphological applications and have been successfully applied for gully assessment. In this communication, we present an efficient methodology consisting of the application of a free interface for photogrammetric reconstruction (FreeXSap) combined with simple distance measurements to obtain channel cross-sections determining the width and height of the check dam for a particular cross-section. We will illustrate its use for a hundred-meter-long gully under conventional agriculture in Córdoba (Spain). FreeXSap is an easy-to-use graphical user interface written in Matlab Code (Mathworks, 2016) for the reconstruction of 3D models from image sets taken with digital consumer-grade cameras. The SfM algorithms are based on MicMac scripts (Pierrot-Deseilligny and Cléry, 2011) along with routines specifically developed for the orientation, determination and geometrical analysis of cross-sections. It only requires the collection of a few pictures of a channel cross-section (normally below 5) by the camera operator to build an accurate 3D model, while a second operator holds a pole in vertical position (with the help of a bubble level attached to the pole) in order to provide orientation and scale for further processing. The spacing between check dams was determined using the head-to-toe rule by using a clinometer App on a Smartphone. In this work we will evaluate the results of the application of this methodology in terms of time and

  19. Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs

    NASA Astrophysics Data System (ADS)

    Guo, T.; Capra, A.; Troyer, M.; Gruen, A.; Brooks, A. J.; Hench, J. L.; Schmitt, R. J.; Holbrook, S. J.; Dubbini, M.

    2016-06-01

    Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  20. Blade Displacement Measurement Technique Applied to a Full-Scale Rotor Test

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Olson, Lawrence E.; Romander, Ethan A.; Barrows, Danny A.; Burner, Alpheus W.

    2012-01-01

    Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.

  1. The analysis of the accuracy of spatial models using photogrammetric software: Agisoft Photoscan and Pix4D

    NASA Astrophysics Data System (ADS)

    Barbasiewicz, Adrianna; Widerski, Tadeusz; Daliga, Karol

    2018-01-01

    This article was created as a result of research conducted within the master thesis. The purpose of the measurements was to analyze the accuracy of the positioning of points by computer programs. Selected software was a specialized computer software dedicated to photogrammetric work. For comparative purposes it was decided to use tools with similar functionality. As the basic parameters that affect the results selected the resolution of the photos on which the key points were searched. In order to determine the location of the determined points, it was decided to follow the photogrammetric resection rule. In order to automate the measurement, the measurement session planning was omitted. The coordinates of the points collected by the tachymetric measure were used as a reference system. The resulting deviations and linear displacements oscillate in millimeters. The visual aspects of the cloud points have also been briefly analyzed.

  2. Advanced Communication Processing Techniques

    NASA Astrophysics Data System (ADS)

    Scholtz, Robert A.

    This document contains the proceedings of the workshop Advanced Communication Processing Techniques, held May 14 to 17, 1989, near Ruidoso, New Mexico. Sponsored by the Army Research Office (under Contract DAAL03-89-G-0016) and organized by the Communication Sciences Institute of the University of Southern California, the workshop had as its objective to determine those applications of intelligent/adaptive communication signal processing that have been realized and to define areas of future research. We at the Communication Sciences Institute believe that there are two emerging areas which deserve considerably more study in the near future: (1) Modulation characterization, i.e., the automation of modulation format recognition so that a receiver can reliably demodulate a signal without using a priori information concerning the signal's structure, and (2) the incorporation of adaptive coding into communication links and networks. (Encoders and decoders which can operate with a wide variety of codes exist, but the way to utilize and control them in links and networks is an issue). To support these two new interest areas, one must have both a knowledge of (3) the kinds of channels and environments in which the systems must operate, and of (4) the latest adaptive equalization techniques which might be employed in these efforts.

  3. Novel and Advanced Techniques for Complex IVC Filter Retrieval.

    PubMed

    Daye, Dania; Walker, T Gregory

    2017-04-01

    Inferior vena cava (IVC) filter placement is indicated for the treatment of venous thromboembolism (VTE) in patients with a contraindication to or a failure of anticoagulation. With the advent of retrievable IVC filters and their ease of placement, an increasing number of such filters are being inserted for prophylaxis in patients at high risk for VTE. Available data show that only a small number of these filters are retrieved within the recommended period, if at all, prompting the FDA to issue a statement on the need for their timely removal. With prolonged dwell times, advanced techniques may be needed for filter retrieval in up to 60% of the cases. In this article, we review standard and advanced IVC filter retrieval techniques including single-access, dual-access, and dissection techniques. Complicated filter retrievals carry a non-negligible risk for complications such as filter fragmentation and resultant embolization of filter components, venous pseudoaneurysms or stenoses, and breach of the integrity of the caval wall. Careful pre-retrieval assessment of IVC filter position, any significant degree of filter tilting or of hook, and/or strut epithelialization and caval wall penetration by filter components should be considered using dedicated cross-sectional imaging for procedural planning. In complex cases, the risk for retrieval complications should be carefully weighed against the risks of leaving the filter permanently indwelling. The decision to remove an embedded IVC filter using advanced techniques should be individualized to each patient and made with caution, based on the patient's age and existing comorbidities.

  4. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  5. Advanced decision aiding techniques applicable to space

    NASA Technical Reports Server (NTRS)

    Kruchten, Robert J.

    1987-01-01

    RADC has had an intensive program to show the feasibility of applying advanced technology to Air Force decision aiding situations. Some aspects of the program, such as Satellite Autonomy, are directly applicable to space systems. For example, RADC has shown the feasibility of decision aids that combine the advantages of laser disks and computer generated graphics; decision aids that interface object-oriented programs with expert systems; decision aids that solve path optimization problems; etc. Some of the key techniques that could be used in space applications are reviewed. Current applications are reviewed along with their advantages and disadvantages, and examples are given of possible space applications. The emphasis is to share RADC experience in decision aiding techniques.

  6. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  7. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  8. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    NASA Astrophysics Data System (ADS)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by

  9. Structure-from-motion for MAV image sequence analysis with photogrammetric applications

    NASA Astrophysics Data System (ADS)

    Schönberger, J. L.; Fraundorfer, F.; Frahm, J.-M.

    2014-08-01

    MAV systems have found increased attention in the photogrammetric community as an (autonomous) image acquisition platform for accurate 3D reconstruction. For an accurate reconstruction in feasible time, the acquired imagery requires specialized SfM software. Current systems typically use high-resolution sensors in pre-planned flight missions from far distance. We describe and evaluate a new SfM pipeline specifically designed for sequential, close-distance, and low-resolution imagery from mobile cameras with relatively high frame-rate and high overlap. Experiments demonstrate reduced computational complexity by leveraging the temporal consistency, comparable accuracy and point density with respect to state-of-the-art systems.

  10. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  11. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects.

    PubMed

    Biswas, Abhijit; Bayer, Ilker S; Biris, Alexandru S; Wang, Tao; Dervishi, Enkeleda; Faupel, Franz

    2012-01-15

    This review highlights the most significant advances of the nanofabrication techniques reported over the past decade with a particular focus on the approaches tailored towards the fabrication of functional nano-devices. The review is divided into two sections: top-down and bottom-up nanofabrication. Under the classification of top-down, special attention is given to technical reports that demonstrate multi-directional patterning capabilities less than or equal to 100 nm. These include recent advances in lithographic techniques, such as optical, electron beam, soft, nanoimprint, scanning probe, and block copolymer lithography. Bottom-up nanofabrication techniques--such as, atomic layer deposition, sol-gel nanofabrication, molecular self-assembly, vapor-phase deposition and DNA-scaffolding for nanoelectronics--are also discussed. Specifically, we describe advances in the fabrication of functional nanocomposites and graphene using chemical and physical vapor deposition. Our aim is to provide a comprehensive platform for prominent nanofabrication tools and techniques in order to facilitate the development of new or hybrid nanofabrication techniques leading to novel and efficient functional nanostructured devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A Low Cost Rokkaku Kite Setup for Aerial Photogrammetric System

    NASA Astrophysics Data System (ADS)

    Khan, A. F.; Khurshid, K.; Saleh, N.; Yousuf, A. A.

    2015-03-01

    Orthogonally Projected Area (OPA) of a geographical feature has primarily been studied utilizing rather time consuming field based sampling techniques. Remote sensing on the contrary provides the ability to acquire large scale data at a snapshot of time and lets the OPA to be calculated conveniently and with reasonable accuracy. Unfortunately satellite based remote sensing provides data at high cost and limited spatial resolution for scientific studies focused at small areas such as micro lakes micro ecosystems, etc. More importantly, recent satellite data may not be readily available for a particular location. This paper describes a low cost photogrammetric system to measure the OPA of a small scale geographic feature such as a plot of land, micro lake or an archaeological site, etc. Fitted with a consumer grade digital imaging system, a Rokkaku kite aerial platform with stable flight characteristics is designed and fabricated for image acquisition. The data processing procedure involves automatic Ground Control Point (GCP) detection, intelligent target area shape determination with minimal human input. A Graphical User Interface (GUI) is built from scratch in MATLAB to allow the user to conveniently process the acquired data, archive and retrieve the results. Extensive on-field experimentation consists of multiple geographic features including flat land surfaces, buildings, undulating rural areas, and an irregular shaped micro lake, etc. Our results show that the proposed system is not only low cost, but provides a framework that is easy and fast to setup while maintaining the required constraints on the accuracy.

  13. Advanced flow MRI: emerging techniques and applications

    PubMed Central

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  14. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  15. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  16. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  17. Computer and photogrammetric general land use study of central north Alabama

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R.; Larsen, P. A.; Campbell, C. W.

    1974-01-01

    The object of this report is to acquaint potential users with two computer programs, developed at NASA, Marshall Space Flight Center. They were used in producing a land use survey and maps of central north Alabama from Earth Resources Technology Satellite (ERTS) digital data. The report describes in detail the thought processes and analysis procedures used from the initiation of the land use study to its completion, as well as a photogrammetric study that was used in conjunction with the computer analysis to produce similar land use maps. The results of the land use demonstration indicate that, with respect to computer time and cost, such a study may be economically and realistically feasible on a statewide basis.

  18. Endoscopic therapy for early gastric cancer: Standard techniques and recent advances in ESD

    PubMed Central

    Kume, Keiichiro

    2014-01-01

    The technique of endoscopic submucosal dissection (ESD) is now a well-known endoscopic therapy for early gastric cancer. ESD was introduced to resect large specimens of early gastric cancer in a single piece. ESD can provide precision of histologic diagnosis and can also reduce the recurrence rate. However, the drawback of ESD is its technical difficulty, and, consequently, it is associated with a high rate of complications, the need for advanced endoscopic techniques, and a lengthy procedure time. Various advances in the devices and techniques used for ESD have contributed to overcoming these drawbacks. PMID:24914364

  19. Photogrammetric determination of spatio-temporal velocity fields at Glaciar San Rafael in the Northern Patagonian Icefield

    NASA Astrophysics Data System (ADS)

    Maas, H.-G.; Casassa, G.; Schneider, D.; Schwalbe, E.; Wendt, A.

    2010-11-01

    Glaciar San Rafael in the Northern Patagonian Icefield, with a length of 46 km and an ice area of 722 km2, is the lowest latitude tidewater outlet glacier in the world and one of the fastest and most productive glaciers in southern South America in terms of iceberg flux. In a joint project of the TU Dresden and CECS, spatio-temporal velocity fields in the region of the glacier front were determined in a campaign in austral spring of 2009. Monoscopic terrestrial image sequences were recorded with an intervallometer mode high resolution digital camera over several days. In these image sequences, a large number of glacier surface points were tracked by subpixel accuracy feature tracking techniques. Scaling and georeferencing of the trajectories obtained from image space tracking was performed via a multi-station GPS-supported photogrammetric network. The technique allows for tracking hundreds of glacier surface points at a measurement accuracy in the order of one decimeter and an almost arbitrarily high temporary resolution. The results show velocities of up to 16 m per day. No significant tidal signals could be observed. Our velocities are in agreement with earlier measurements from theodolite and satellite interferometry performed in 1986-1994, suggesting that the current thinning of 3.5 m/y at the front is not due to dynamic thinning but rather by enhanced melting.

  20. A methodology for luminance map retrieval using airborne hyperspectral and photogrammetric data

    NASA Astrophysics Data System (ADS)

    Pipia, Luca; Alamús, Ramon; Tardà, Anna; Pérez, Fernando; Palà, Vicenç; Corbera, Jordi

    2014-10-01

    This paper puts forward a methodology developed at the Institut Cartogràfic i Geològic de Catalunya (ICGC) to quantify upwelling light flux using hyperspectral and photogrammetric airborne data. The work was carried out in the frame of a demonstrative study requested by the municipality of Sant Cugat del Vallès, in the vicinity of Barcelona (Spain), and aimed to envisage a new approach to assess artificial lighting policies and actions as alternative to field campaigns. Hyperspectral and high resolution multispectral/panchromatic data were acquired simultaneously over urban areas. In order to avoid moon light contributions, data were acquired during the first days of new moon phase. Hyperspectral data were radiometrically calibrated. Then, National Center for Environmental Prediction (NCEP) atmospheric profiles were employed to estimate the actual Column Water Vapor (CWV) to be passed to ModTran5.0 for the atmospheric transmissivity τ calculation. At-the-ground radiance was finally integrated using the photopic sensitivity curve to generate a luminance map (cdm-2) of the flown area by mosaicking the different flight tracks. In an attempt to improve the spatial resolution and enhance the dynamic range of the luminance map, a sensor-fusion strategy was finally looked into. DMC Photogrammetric data acquired simultaneously to hyperspectral information were converted into at-the-ground radiance and upscaled to CASI spatial resolution. High-resolution (HR) luminance maps with enhanced dynamic range were finally generated by linearly fitting up-scaled DMC mosaics to the CASI-based luminance information. In the end, a preliminary assessment of the methodology is carried out using non-simultaneous in-situ measurements.

  1. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  2. Photogrammetric Measurements in Fixed Wing Uav Imagery

    NASA Astrophysics Data System (ADS)

    Gülch, E.

    2012-07-01

    Several flights have been undertaken with PAMS (Photogrammetric Aerial Mapping System) by Germap, Germany, which is briefly introduced. This system is based on the SmartPlane fixed-wing UAV and a CANON IXUS camera system. The plane is equipped with GPS and has an infrared sensor system to estimate attitude values. A software has been developed to link the PAMS output to a standard photogrammetric processing chain built on Trimble INPHO. The linking of the image files and image IDs and the handling of different cases with partly corrupted output have to be solved to generate an INPHO project file. Based on this project file the software packages MATCH-AT, MATCH-T DSM, OrthoMaster and OrthoVista for digital aerial triangulation, DTM/DSM generation and finally digital orthomosaik generation are applied. The focus has been on investigations on how to adapt the "usual" parameters for the digital aerial triangulation and other software to the UAV flight conditions, which are showing high overlaps, large kappa angles and a certain image blur in case of turbulences. It was found, that the selected parameter setup shows a quite stable behaviour and can be applied to other flights. A comparison is made to results from other open source multi-ray matching software to handle the issue of the described flight conditions. Flights over the same area at different times have been compared to each other. The major objective was here to see, on how far differences occur relative to each other, without having access to ground control data, which would have a potential for applications with low requirements on the absolute accuracy. The results show, that there are influences of weather and illumination visible. The "unusual" flight pattern, which shows big time differences for neighbouring strips has an influence on the AT and DTM/DSM generation. The results obtained so far do indicate problems in the stability of the camera calibration. This clearly requests a usage of GCPs for all

  3. Analysis of Low-Light and Night-Time Stereo-Pair Images for Photogrammetric Reconstruction

    NASA Astrophysics Data System (ADS)

    Santise, M.; Thoeni, K.; Roncella, R.; Diotri, F.; Giacomini, A.

    2018-05-01

    Rockfalls and rockslides represent a significant risk to human lives and infrastructures because of the high levels of energy involved in the phenomena. Generally, these events occur in accordance to specific environmental conditions, such as temperature variations between day and night, that can contribute to the triggering of structural instabilities in the rock-wall and the detachment of blocks and debris. The monitoring and the geostructural characterization of the wall are required for reducing the potential hazard and to improve the management of the risk at the bottom of the slopes affected by such phenomena. In this context, close range photogrammetry is largely used for the monitoring of high-mountain terrains and rock walls in mine sites allowing for periodic survey of rockfalls and wall movements. This work focuses on the analysis of low-light and night-time images of a fixed-base stereo pair photogrammetry system. The aim is to study the reliability of the images acquired over the night to produce digital surface models (DSMs) for change detection. The images are captured by a high-sensitivity DLSR camera using various settings accounting for different values of ISO, aperture and time of exposure. For each acquisition, the DSM is compared to a photogrammetric reference model produced by images captured in optimal illumination conditions. Results show that, with high level of ISO and maintaining the same grade of aperture, extending the exposure time improves the quality of the point clouds in terms of completeness and accuracy of the photogrammetric models.

  4. Transportation informatics : advanced image processing techniques automated pavement distress evaluation.

    DOT National Transportation Integrated Search

    2010-01-01

    The current project, funded by MIOH-UTC for the period 1/1/2009- 4/30/2010, is concerned : with the development of the framework for a transportation facility inspection system using : advanced image processing techniques. The focus of this study is ...

  5. State-of-the-art characterization techniques for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wu, Tianpin; Amine, Khalil

    2017-03-01

    To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.

  6. A versatile photogrammetric camera automatic calibration suite for multispectral fusion and optical helmet tracking

    NASA Astrophysics Data System (ADS)

    de Villiers, Jason; Jermy, Robert; Nicolls, Fred

    2014-06-01

    This paper presents a system to determine the photogrammetric parameters of a camera. The lens distortion, focal length and camera six degree of freedom (DOF) position are calculated. The system caters for cameras of different sensitivity spectra and fields of view without any mechanical modifications. The distortion characterization, a variant of Brown's classic plumb line method, allows many radial and tangential distortion coefficients and finds the optimal principal point. Typical values are 5 radial and 3 tangential coefficients. These parameters are determined stably and demonstrably produce superior results to low order models despite popular and prevalent misconceptions to the contrary. The system produces coefficients to model both the distorted to undistorted pixel coordinate transformation (e.g. for target designation) and the inverse transformation (e.g. for image stitching and fusion) allowing deterministic rates far exceeding real time. The focal length is determined to minimise the error in absolute photogrammetric positional measurement for both multi camera systems or monocular (e.g. helmet tracker) systems. The system determines the 6 DOF position of the camera in a chosen coordinate system. It can also determine the 6 DOF offset of the camera relative to its mechanical mount. This allows faulty cameras to be replaced without requiring a recalibration of the entire system (such as an aircraft cockpit). Results from two simple applications of the calibration results are presented: stitching and fusion of the images from a dual-band visual/ LWIR camera array, and a simple laboratory optical helmet tracker.

  7. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  8. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    PubMed

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  9. Photogrammetric Method and Software for Stream Planform Identification

    NASA Astrophysics Data System (ADS)

    Stonedahl, S. H.; Stonedahl, F.; Lohberg, M. M.; Lusk, K.; Miller, D.

    2013-12-01

    Accurately characterizing the planform of a stream is important for many purposes, including recording measurement and sampling locations, monitoring change due to erosion or volumetric discharge, and spatial modeling of stream processes. While expensive surveying equipment or high resolution aerial photography can be used to obtain planform data, our research focused on developing a close-range photogrammetric method (and accompanying free/open-source software) to serve as a cost-effective alternative. This method involves securing and floating a wooden square frame on the stream surface at several locations, taking photographs from numerous angles at each location, and then post-processing and merging data from these photos using the corners of the square for reference points, unit scale, and perspective correction. For our test field site we chose a ~35m reach along Black Hawk Creek in Sunderbruch Park (Davenport, IA), a small, slow-moving stream with overhanging trees. To quantify error we measured 88 distances between 30 marked control points along the reach. We calculated error by comparing these 'ground truth' distances to the corresponding distances extracted from our photogrammetric method. We placed the square at three locations along our reach and photographed it from multiple angles. The square corners, visible control points, and visible stream outline were hand-marked in these photos using the GIMP (open-source image editor). We wrote an open-source GUI in Java (hosted on GitHub), which allows the user to load marked-up photos, designate square corners and label control points. The GUI also extracts the marked pixel coordinates from the images. We also wrote several scripts (currently in MATLAB) that correct the pixel coordinates for radial distortion using Brown's lens distortion model, correct for perspective by forcing the four square corner pixels to form a parallelogram in 3-space, and rotate the points in order to correctly orient all photos of

  10. Advanced Diagnostic Techniques in Autoimmune Bullous Diseases

    PubMed Central

    Jindal, Anuradha; Rao, Raghavendra; Bhogal, Balbir S

    2017-01-01

    Autoimmune blistering diseases are diverse group of conditions characterized by blisters in the skin with or without mucosal lesions. There may be great degree of clinical and histopathological overlap; hence, advanced immunological tests may be necessary for more precise diagnosis of these conditions. Direct immunofluorescence microscopy is the gold standard tests to demonstrate the tissue-bound antibodies and should be done in all cases. Magnitude of antibody level in patient’ serum can be assessed by indirect immunofluorescence and enzyme linked immunosorbent assay. In this article we have reviewed the various techniques that are available in the diagnosis of autoimmune blistering diseases. PMID:28584369

  11. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGES

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  12. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  13. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  14. Photogrammetric Point Clouds Generation in Urban Areas from Integrated Image Matching and Segmentation

    NASA Astrophysics Data System (ADS)

    Ye, L.; Wu, B.

    2017-09-01

    High-resolution imagery is an attractive option for surveying and mapping applications due to the advantages of high quality imaging, short revisit time, and lower cost. Automated reliable and dense image matching is essential for photogrammetric 3D data derivation. Such matching, in urban areas, however, is extremely difficult, owing to the complexity of urban textures and severe occlusion problems on the images caused by tall buildings. Aimed at exploiting high-resolution imagery for 3D urban modelling applications, this paper presents an integrated image matching and segmentation approach for reliable dense matching of high-resolution imagery in urban areas. The approach is based on the framework of our existing self-adaptive triangulation constrained image matching (SATM), but incorporates three novel aspects to tackle the image matching difficulties in urban areas: 1) occlusion filtering based on image segmentation, 2) segment-adaptive similarity correlation to reduce the similarity ambiguity, 3) improved dense matching propagation to provide more reliable matches in urban areas. Experimental analyses were conducted using aerial images of Vaihingen, Germany and high-resolution satellite images in Hong Kong. The photogrammetric point clouds were generated, from which digital surface models (DSMs) were derived. They were compared with the corresponding airborne laser scanning data and the DSMs generated from the Semi-Global matching (SGM) method. The experimental results show that the proposed approach is able to produce dense and reliable matches comparable to SGM in flat areas, while for densely built-up areas, the proposed method performs better than SGM. The proposed method offers an alternative solution for 3D surface reconstruction in urban areas.

  15. Photogrammetric Retrieval of Etna's Plume Height from SEVIRI and MODIS

    NASA Astrophysics Data System (ADS)

    Zaksek, K.; Ganci, G.; Hort, M. K.

    2013-12-01

    Even remote volcanoes can impact the modern society due to volcanic ash dispersion in the atmosphere. A lot of research is currently dedicated to minimizing the impact of volcanic ash on air traffic. But the ash transport in the atmosphere and its deposition on land and in the oceans may also significantly influence the climate through modifications of atmospheric CO2. The emphasis of this contribution is the retrieval of volcanic ash plume height. This is important information for air traffic, to predict ash transport and to estimate the mass flux of the ejected material. The best way to monitor volcanic ash cloud top height (ACTH) on the global level is using satellite remote sensing. The most commonly used method for satellite ACTH compares brightness temperature of the cloud with the atmospheric temperature profile. Because of well-known uncertainties of this method we propose photogrammetric methods based on the parallax between data retrieved from geostationary (SEVIRI, HRV band; 1000 m spatial resolution) and polar orbiting satellites (MODIS, band 1; 250 m spatial resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously butMODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. ACTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The proposed method has already been tested for the case of the Eyjafjallajökull eruption in April 2010. This case study had almost perfect conditions as the plume was vast and stretching over a homogeneous background - ocean. Here we show results of ACTH estimation during lava fountaining activity of Mount Etna in years 2011-2013. This activity resulted in volcanic ash plumes that are much smaller than

  16. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  17. Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: A minireview.

    PubMed

    Lü, Fan; Shao, Li-Ming; Zhang, Hua; Fu, Wen-Ding; Feng, Shi-Jin; Zhan, Liang-Tong; Chen, Yun-Min; He, Pin-Jing

    2018-01-01

    Bio-stability is a key feature for the utilization and final disposal of biowaste-derived residues, such as aerobic compost or vermicompost of food waste, bio-dried waste, anaerobic digestate or landfilled waste. The present paper reviews conventional methods and advanced techniques used for the assessment of bio-stability. The conventional methods are reclassified into two categories. Advanced techniques, including spectroscopic (fluorescent, ultraviolet-visible, infrared, Raman, nuclear magnetic resonance), thermogravimetric and thermochemolysis analysis, are emphasized for their application in bio-stability assessment in recent years. Their principles, pros and cons are critically discussed. These advanced techniques are found to be convenient in sample preparation and to supply diversified information. However, the viability of these techniques as potential indicators for bio-stability assessment ultimately lies in the establishment of the relationship of advanced ones with the conventional methods, especially with the methods based on biotic response. Furthermore, some misuses in data explanation should be noted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The role of alternative (advanced) conscious sedation techniques in dentistry for adult patients: a series of cases.

    PubMed

    Robb, N

    2014-03-01

    The basic techniques of conscious sedation have been found to be safe and effective for the management of anxiety in adult dental patients requiring sedation to allow them to undergo dental treatment. There remains great debate within the profession as to the role of the so called advanced sedation techniques. This paper presents a series of nine patients who were managed with advanced sedation techniques where the basic techniques were either inappropriate or had previously failed to provide adequate relief of anxiety. In these cases, had there not been the availability of advanced sedation techniques, the most likely recourse would have been general anaesthesia--a treatment modality that current guidance indicates should not be used where there is an appropriate alternative. The sedation techniques used have provided that appropriate alternative management strategy.

  19. Photogrammetric Processing Using ZY-3 Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Kornus, W.; Magariños, A.; Pla, M.; Soler, E.; Perez, F.

    2015-03-01

    This paper evaluates the stereoscopic capacities of the Chinese sensor ZiYuan-3 (ZY-3) for the generation of photogrammetric products. The satellite was launched on January 9, 2012 and carries three high-resolution panchromatic cameras viewing in forward (22º), nadir (0º) and backward direction (-22º) and an infrared multi-spectral scanner (IRMSS), which is slightly looking forward (6º). The ground sampling distance (GSD) is 2.1m for the nadir image, 3.5m for the two oblique stereo images and 5.8m for the multispectral image. The evaluated ZY-3 imagery consists of a full set of threefold-stereo and a multi-spectral image covering an area of ca. 50km x 50km north-west of Barcelona, Spain. The complete photogrammetric processing chain was executed including image orientation, the generation of a digital surface model (DSM), radiometric image correction, pansharpening, orthoimage generation and digital stereo plotting. All 4 images are oriented by estimating affine transformation parameters between observed and nominal RPC (rational polynomial coefficients) image positions of 17 ground control points (GCP) and a subsequent calculation of refined RPC. From 10 independent check points RMS errors of 2.2m, 2.0m and 2.7m in X, Y and H are obtained. Subsequently, a DSM of 5m grid spacing is generated fully automatically. A comparison with the Lidar data results in an overall DSM accuracy of approximately 3m. In moderate and flat terrain higher accuracies in the order of 2.5m and better are achieved. In a next step orthoimages from the high resolution nadir image and the multispectral image are generated using the refined RPC geometry and the DSM. After radiometric corrections a fused high resolution colour orthoimage with 2.1m pixel size is created using an adaptive HSL method. The pansharpen process is performed after the individual geocorrection due to the different viewing angles between the two images. In a detailed analysis of the colour orthoimage artifacts are

  20. Numerical characterization of landing gear aeroacoustics using advanced simulation and analysis techniques

    NASA Astrophysics Data System (ADS)

    Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G.

    2017-09-01

    With the objective of aircraft noise mitigation, we here address the numerical characterization of the aeroacoustics by a simplified nose landing gear (NLG), through the use of advanced simulation and signal processing techniques. To this end, the NLG noise physics is first simulated through an advanced hybrid approach, which relies on Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) calculations. Compared to more traditional hybrid methods (e.g. those relying on the use of an Acoustic Analogy), and although it is used here with some approximations made (e.g. design of the CFD-CAA interface), the present approach does not rely on restrictive assumptions (e.g. equivalent noise source, homogeneous propagation medium), which allows to incorporate more realism into the prediction. In a second step, the outputs coming from such CFD-CAA hybrid calculations are processed through both traditional and advanced post-processing techniques, thus offering to further investigate the NLG's noise source mechanisms. Among other things, this work highlights how advanced computational methodologies are now mature enough to not only simulate realistic problems of airframe noise emission, but also to investigate their underlying physics.

  1. In situ growth rates of deep-water octocorals determined from 3D photogrammetric reconstructions

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Kwasnitschka, Tom; Metaxas, Anna; Dullo, Wolf-Christian

    2016-12-01

    Growth rates of deep-water corals provide important information on the recovery potential of these ecosystems, for example from fisheries-induced impacts. Here, we present in situ growth dynamics that are currently largely unknown for deep-water octocorals, calculated by applying a non-destructive method. Videos of a boulder harbouring multiple colonies of Paragorgia arborea and Primnoa resedaeformis in the Northeast Channel Coral Conservation Area at the entrance to the Gulf of Maine at 863 m depth were collected in 2006, 2010 and 2014. Photogrammetric reconstructions of the boulder and the fauna yielded georeferenced 3D models for all sampling years. Repeated measurements of total length and cross-sectional area of the same colonies allowed the observation of growth dynamics. Growth rates of total length of Paragorgia arborea decreased over time with higher rates between 2006 and 2010 than between 2010 and 2014, while growth rates of cross-sectional area remained comparatively constant. A general trend of decreasing growth rates of total length with size of the coral colony was documented. While no growth was observed for the largest colony (165 cm in length) between 2010 and 2014, a colony 50-65 cm in length grew 3.7 cm yr-1 between 2006 and 2010. Minimum growth rates of 1.6-2.7 cm yr-1 were estimated for two recruits (<23 cm in 2014) of Primnoa resedaeformis. We successfully extracted biologically meaningful data from photogrammetric models and present the first in situ growth rates for these coral species in the Northwest Atlantic.

  2. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  3. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  4. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    PubMed

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  5. Comparison of 3D point clouds obtained by photogrammetric UAVs and TLS to determine the attitude of dolerite outcrops discontinuities.

    NASA Astrophysics Data System (ADS)

    Duarte, João; Gonçalves, Gil; Duarte, Diogo; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    Photogrammetric Unmanned Aerial Vehicles (UAVs) and Terrestrial Laser Scanners (TLS) are two emerging technologies that allows the production of dense 3D point clouds of the sensed topographic surfaces. Although image-based stereo-photogrammetric point clouds could not, in general, compete on geometric quality over TLS point clouds, fully automated mapping solutions based on ultra-light UAVs (or drones) have recently become commercially available at very reasonable accuracy and cost for engineering and geological applications. The purpose of this paper is to compare the two point clouds generated by these two technologies, in order to automatize the manual process tasks commonly used to detect and represent the attitude of discontinuities (Stereographic projection: Schmidt net - Equal area). To avoid the difficulties of access and guarantee the data survey security conditions, this fundamental step in all geological/geotechnical studies, applied to the extractive industry and engineering works, has to be replaced by a more expeditious and reliable methodology. This methodology will allow, in a more actuated clear way, give answers to the needs of evaluation of rock masses, by mapping the structures present, which will reduce considerably the associated risks (investment, structures dimensioning, security, etc.). A case study of a dolerite outcrop locate in the center of Portugal (the dolerite outcrop is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones) will be used to assess this methodology. The results obtained show that the 3D point cloud produced by the Photogrammetric UAV platform has the appropriate geometric quality for extracting the parameters that define the discontinuities of the dolerite outcrops. Although, they are comparable to the manual extracted parameters, their quality is inferior to parameters extracted from the TLS point cloud.

  6. Comparison of Facial Proportions Between Beauty Pageant Contestants and Ordinary Young Women of Korean Ethnicity: A Three-Dimensional Photogrammetric Analysis.

    PubMed

    Kim, Sung-Chan; Kim, Hyung Bae; Jeong, Woo Shik; Koh, Kyung S; Huh, Chang Hun; Kim, Hee Jin; Lee, Woo Shun; Choi, Jong Woo

    2018-06-01

    Although the harmony of facial proportions is traditionally perceived as an important element of facial attractiveness, there have been few objective studies that have investigated this esthetic balance using three-dimensional photogrammetric analysis. To better understand why some women appear more beautiful, we investigated differences in facial proportions between beauty pageant contestants and ordinary young women of Korean ethnicity using three-dimensional (3D) photogrammetric analyses. A total of 43 prize-winning beauty pageant contestants (group I) and 48 ordinary young women (group II) of Korean ethnicity were photographed using 3D photography. Numerous soft tissue landmarks were identified, and 3D photogrammetric analyses were performed to evaluate 13 absolute lengths, 5 angles, 3 volumetric proportions, and 12 length proportions between soft tissue landmarks. Group I had a greater absolute length of the middle face, nose height, and eye height and width; a smaller absolute length of the lower face, intercanthal width, and nasal width; a larger nasolabial angle; a greater proportion of the upper and middle facial volume, nasal height, and eye height and width; and a lower proportion of the lower facial volume, lower face height, intercanthal width, nasal width, and mouth width. All these differences were statistically significant. These results indicate that there are significant differences between the faces of beauty pageant contestants and ordinary young women, and help elucidate which factors contribute to facial beauty. The group I mean values could be used as reference values for attractive facial profiles. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  7. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  8. Sensor-agnostic photogrammetric image registration with applications to population modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Devin A; Moehl, Jessica J

    2016-01-01

    Photogrammetric registration of airborne and spaceborne imagery is a crucial prerequisite to many data fusion tasks. While embedded sensor models provide a rough geolocation estimate, these metadata may be incomplete or imprecise. Manual solutions are appropriate for small-scale projects, but for rapid streams of cross-modal, multi-sensor, multi-temporal imagery with varying metadata standards, an automated approach is required. We present a high-performance image registration workflow to address this need. This paper outlines the core development concepts and demonstrates its utility with respect to the 2016 data fusion contest imagery. In particular, Iris ultra-HD video is georeferenced to the Earth surface viamore » registration to DEIMOS-2 imagery, which serves as a trusted control source. Geolocation provides opportunity to augment the video with spatial context, stereo-derived disparity, spectral sensitivity, change detection, and numerous ancillary geospatial layers. We conclude by leveraging these derivative data layers towards one such fusion application: population distribution modeling.« less

  9. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  10. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  11. Anterior Urethral Advancement as a Single-Stage Technique for Repair of Anterior Hypospadias: Our Experience.

    PubMed

    Gite, Venkat A; Nikose, Jayant V; Bote, Sachin M; Patil, Saurabh R

    2017-07-02

    Many techniques have been described to correct anterior hypospadias with variable results. Anterior urethral advancement as one stage technique was first described by Ti Chang Shing in 1984. It was also used for the repair of strictures and urethrocutaneous fistulae involving distal urethra. We report our experience of using this technique with some modification for the repair of anterior hypospadias. In the period between 2013-2015, 20 cases with anterior hypospadias including 2 cases of glanular, 3 cases of coronal, 12 cases of subcoronal and 3 cases of distal penile hypospadias were treated with anterior urethral advancement technique. Patients' age groups ranged from 18 months to 10 years. Postoperatively, patients were passing urine from tip of neomeatus with satisfactory stream during follow up period of 6 months to 2 years. There were no major complications in any of our patients except in one patient who developed meatal stenosis which was treated by periodic dilatation. Three fold urethral mobilization was sufficient in all cases. Anterior urethral advancement technique is a single-stage procedure with good cosmetic results and least complications for anterior hypospadias repair in properly selected cases.

  12. Historical shoreline mapping (I): improving techniques and reducing positioning errors

    USGS Publications Warehouse

    Thieler, E. Robert; Danforth, William W.

    1994-01-01

    A critical need exists among coastal researchers and policy-makers for a precise method to obtain shoreline positions from historical maps and aerial photographs. A number of methods that vary widely in approach and accuracy have been developed to meet this need. None of the existing methods, however, address the entire range of cartographic and photogrammetric techniques required for accurate coastal mapping. Thus, their application to many typical shoreline mapping problems is limited. In addition, no shoreline mapping technique provides an adequate basis for quantifying the many errors inherent in shoreline mapping using maps and air photos. As a result, current assessments of errors in air photo mapping techniques generally (and falsely) assume that errors in shoreline positions are represented by the sum of a series of worst-case assumptions about digitizer operator resolution and ground control accuracy. These assessments also ignore altogether other errors that commonly approach ground distances of 10 m. This paper provides a conceptual and analytical framework for improved methods of extracting geographic data from maps and aerial photographs. We also present a new approach to shoreline mapping using air photos that revises and extends a number of photogrammetric techniques. These techniques include (1) developing spatially and temporally overlapping control networks for large groups of photos; (2) digitizing air photos for use in shoreline mapping; (3) preprocessing digitized photos to remove lens distortion and film deformation effects; (4) simultaneous aerotriangulation of large groups of spatially and temporally overlapping photos; and (5) using a single-ray intersection technique to determine geographic shoreline coordinates and express the horizontal and vertical error associated with a given digitized shoreline. As long as historical maps and air photos are used in studies of shoreline change, there will be a considerable amount of error (on the

  13. A Refrigerated Web Camera for Photogrammetric Video Measurement inside Biomass Boilers and Combustion Analysis

    PubMed Central

    Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín

    2011-01-01

    This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes. PMID:22319349

  14. A refrigerated web camera for photogrammetric video measurement inside biomass boilers and combustion analysis.

    PubMed

    Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín

    2011-01-01

    This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes.

  15. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques.

    PubMed

    Kranz, Christine

    2014-01-21

    In recent years, major developments in scanning electrochemical microscopy (SECM) have significantly broadened the application range of this electroanalytical technique from high-resolution electrochemical imaging via nanoscale probes to large scale mapping using arrays of microelectrodes. A major driving force in advancing the SECM methodology is based on developing more sophisticated probes beyond conventional micro-disc electrodes usually based on noble metals or carbon microwires. This critical review focuses on the design and development of advanced electrochemical probes particularly enabling combinations of SECM with other analytical measurement techniques to provide information beyond exclusively measuring electrochemical sample properties. Consequently, this critical review will focus on recent progress and new developments towards multifunctional imaging.

  16. Irreversible electroporation of stage 3 locally advanced pancreatic cancer: optimal technique and outcomes

    PubMed Central

    2015-01-01

    Objective Irreversible electroporation (IRE) of stage 3 pancreatic adenocarcinoma has been used to provide quality of life time in patients who have undergone appropriate induction therapy. The optimal technique has been reported within the literature, but not in video form. IRE of locally advanced pancreatic cancer is technically demanding requiring precision ultrasound use for continuous imaging in multiple needle placements and during IRE energy delivery. Methods Appropriate patients with locally advanced pancreatic cancer should have undergone appropriate induction chemotherapy for a reasonable duration. The safe and effective technique for irreversible electroporation is preformed through an open approach with the emphasis on intra-operative ultrasound and intra-operative electroporation management. Results The technique of open irreversible electroporation of the pancreas involves bracketing the target tumor with IRE probes and any and all invaded vital structures including the celiac axis, superior mesenteric artery (SMA), superior mesenteric-portal vein, and bile duct with continuous intraoperative ultrasound imaging through a caudal to cranial approach. Optimal IRE delivery requires a change in amperage of at least 12 amps from baseline tissue conductivity in order to achieve technical success. Multiple pull-backs are necessary since the IRE ablation probe lengths are 1 cm and thus needed to achieve technical success along the caudal to cranial plane. Conclusions Irreversible electroporation in combination with multi-modality therapy for locally advanced pancreatic carcinoma is feasible for appropriate patients with locally advanced cancer. Technical demands are high and require the highest quality ultrasound for precise spacing measurements and optimal delivery to ensure adequate change in tissue resistance. PMID:29075594

  17. Analysis of the Three-Dimensional Vector FAÇADE Model Created from Photogrammetric Data

    NASA Astrophysics Data System (ADS)

    Kamnev, I. S.; Seredovich, V. A.

    2017-12-01

    The results of the accuracy assessment analysis for creation of a three-dimensional vector model of building façade are described. In the framework of the analysis, analytical comparison of three-dimensional vector façade models created by photogrammetric and terrestrial laser scanning data has been done. The three-dimensional model built from TLS point clouds was taken as the reference one. In the course of the experiment, the three-dimensional model to be analyzed was superimposed on the reference one, the coordinates were measured and deviations between the same model points were determined. The accuracy estimation of the three-dimensional model obtained by using non-metric digital camera images was carried out. Identified façade surface areas with the maximum deviations were revealed.

  18. Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies

    PubMed Central

    Walker, Simon M.; Thomas, Adrian L.R.; Taylor, Graham K.

    2008-01-01

    Here, we present a suite of photogrammetric methods for reconstructing insect wing kinematics, to provide instantaneous topographic maps of the wing surface. We filmed tethered locusts (Schistocerca gregaria) and free-flying hoverflies (Eristalis tenax) using four high-speed digital video cameras. We digitized multiple natural features and marked points on the wings using manual and automated tracking. Epipolar geometry was used to identify additional points on the hoverfly wing outline which were anatomically indistinguishable. The cameras were calibrated using a bundle adjustment technique that provides an estimate of the error associated with each individual data point. The mean absolute three-dimensional measurement error was 0.11 mm for the locust and 0.03 mm for the hoverfly. The error in the angle of incidence was at worst 0.51° (s.d.) for the locust and 0.88° (s.d.) for the hoverfly. The results we present are of unprecedented spatio-temporal resolution, and represent the most detailed measurements of insect wing kinematics to date. Variable spanwise twist and camber are prominent in the wingbeats of both the species, and are of such complexity that they would not be adequately captured by lower resolution techniques. The role of spanwise twist and camber in insect flight has yet to be fully understood, and accurate insect wing kinematics such as we present here are required to be sure of making valid predictions about their aerodynamic effects. PMID:18682361

  19. Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery

    PubMed Central

    Zhang, Peipei; Xia, Junfei; Luo, Sida

    2018-01-01

    Micro/nanoparticles have great potentials in biomedical applications, especially for drug delivery. Existing studies identified that major micro/nanoparticle features including size, shape, surface property and component materials play vital roles in their in vitro and in vivo applications. However, a demanding challenge is that most conventional particle synthesis techniques such as emulsion can only generate micro/nanoparticles with a very limited number of shapes (i.e., spherical or rod shapes) and have very loose control in terms of particle sizes. We reviewed the advanced manufacturing techniques for producing micro/nanoparticles with precisely defined characteristics, emphasizing the use of these well-controlled micro/nanoparticles for drug delivery applications. Additionally, to illustrate the vital roles of particle features in therapeutic delivery, we also discussed how the above-mentioned micro/nanoparticle features impact in vitro and in vivo applications. Through this review, we highlighted the unique opportunities in generating controllable particles via advanced manufacturing techniques and the great potential of using these micro/nanoparticles for therapeutic delivery. PMID:29670013

  20. Object-Based Coregistration of Terrestrial Photogrammetric and ALS Point Clouds in Forested Areas

    NASA Astrophysics Data System (ADS)

    Polewski, P.; Erickson, A.; Yao, W.; Coops, N.; Krzystek, P.; Stilla, U.

    2016-06-01

    Airborne Laser Scanning (ALS) and terrestrial photogrammetry are methods applicable for mapping forested environments. While ground-based techniques provide valuable information about the forest understory, the measured point clouds are normally expressed in a local coordinate system, whose transformation into a georeferenced system requires additional effort. In contrast, ALS point clouds are usually georeferenced, yet the point density near the ground may be poor under dense overstory conditions. In this work, we propose to combine the strengths of the two data sources by co-registering the respective point clouds, thus enriching the georeferenced ALS point cloud with detailed understory information in a fully automatic manner. Due to markedly different sensor characteristics, coregistration methods which expect a high geometric similarity between keypoints are not suitable in this setting. Instead, our method focuses on the object (tree stem) level. We first calculate approximate stem positions in the terrestrial and ALS point clouds and construct, for each stem, a descriptor which quantifies the 2D and vertical distances to other stem centers (at ground height). Then, the similarities between all descriptor pairs from the two point clouds are calculated, and standard graph maximum matching techniques are employed to compute corresponding stem pairs (tiepoints). Finally, the tiepoint subset yielding the optimal rigid transformation between the terrestrial and ALS coordinate systems is determined. We test our method on simulated tree positions and a plot situated in the northern interior of the Coast Range in western Oregon, USA, using ALS data (76 x 121 m2) and a photogrammetric point cloud (33 x 35 m2) derived from terrestrial photographs taken with a handheld camera. Results on both simulated and real data show that the proposed stem descriptors are discriminative enough to derive good correspondences. Specifically

  1. Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at -90K

    NASA Technical Reports Server (NTRS)

    Mule, Peter; Hill, Michael D.; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg. at 90 GHz.) map of the Cosmic Microwave Background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of -90 K is a critical element to ensure mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric metrology data taken under vacuum with the reflectors at -90 K. Contour maps showing reflector distortion were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.

  2. Uav-Based Photogrammetric Point Clouds and Hyperspectral Imaging for Mapping Biodiversity Indicators in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M. A.; Luoma, V.; Tommaselli, A. M. G.; Imai, N. N.; Ribeiro, E. A. W.; Guimarães, R. B.; Holopainen, M.; Hyyppä, J.

    2017-10-01

    Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5 m, with a standard deviation of 0.9 m. The volume predictions for deciduous and dead trees were underestimated by 32.4 m3/ha and 1.7 m3/ha, respectively, with standard deviation of 50.2 m3/ha for deciduous and 3.2 m3/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.

  3. A new surgical technique for concealed penis using an advanced musculocutaneous scrotal flap.

    PubMed

    Han, Dong-Seok; Jang, Hoon; Youn, Chang-Shik; Yuk, Seung-Mo

    2015-06-19

    Until recently, no single, universally accepted surgical method has existed for all types of concealed penis repairs. We describe a new surgical technique for repairing concealed penis by using an advanced musculocutaneous scrotal flap. From January 2010 to June 2014, we evaluated 12 patients (12-40 years old) with concealed penises who were surgically treated with an advanced musculocutaneous scrotal flap technique after degloving through a ventral approach. All the patients were scheduled for regular follow-up at 6, 12, and 24 weeks postoperatively. The satisfaction grade for penile size, morphology, and voiding status were evaluated using a questionnaire preoperatively and at all of the follow-ups. Information regarding complications was obtained during the postoperative hospital stay and at all follow-ups. The patients' satisfaction grades, which included the penile size, morphology, and voiding status, improved postoperatively compared to those preoperatively. All patients had penile lymphedema postoperatively; however, this disappeared within 6 weeks. There were no complications such as skin necrosis and contracture, voiding difficulty, or erectile dysfunction. Our advanced musculocutaneous scrotal flap technique for concealed penis repair is technically easy and safe. In addition, it provides a good cosmetic appearance, functional outcomes and excellent postoperative satisfaction grades. Lastly, it seems applicable in any type of concealed penis, including cases in which the ventral skin defect is difficult to cover.

  4. Concordance and Reliability of Photogrammetric Protocols for Measuring the Cervical Lordosis Angle: A Systematic Review of the Literature.

    PubMed

    de Albuquerque, Priscila Maria Nascimento Martins; de Alencar, Geisa Guimarães; de Oliveira, Daniela Araújo; de Siqueira, Gisela Rocha

    2018-01-01

    The aim of this study was to examine and interpret the concordance, accuracy, and reliability of photogrammetric protocols available in the literature for evaluating cervical lordosis in an adult population aged 18 to 59 years. A systematic search of 6 electronic databases (MEDLINE via PubMed, LILACS, CINAHL, Scopus, ScienceDirect, and Web of Science) located studies that assessed the reliability and/or concordance and/or accuracy of photogrammetric protocols for evaluating cervical lordosis, compared with radiography. Articles published through April 2016 were selected. Two independent reviewers used a critical appraisal tool (QUADAS and QAREL) to assess the quality of the selected studies. Two studies were included in the review and had high levels of reliability (intraclass correlation coefficient: 0.974-0.98). Only 1 study assessed the concordance between the methods, which was calculated using Pearson's correlation coefficient. To date, the accuracy of photogrammetry has not been investigated thoroughly. We encountered no study in the literature that investigated the accuracy of photogrammetry in diagnosing hyperlordosis of cervical spine. However, both current studies report high levels of intra- and interrater reliability. To increase the level of evidence of photogrammetry in the evaluation of cervical lordosis, it is necessary to conduct further studies using a larger sample to increase the external validity of the findings. Copyright © 2018. Published by Elsevier Inc.

  5. Photogrammetric Applications of Immersive Video Cameras

    NASA Astrophysics Data System (ADS)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  6. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Whitehead, Ken; Brown, Owen W.; Barchyn, Thomas E.; Moorman, Brian J.; LeClair, Adam; Riddell, Kevin; Hamilton, Tayler

    2013-07-01

    Small unmanned aircraft systems (sUAS) are a relatively new type of aerial platform for acquiring high-resolution remote sensing measurements of Earth surface processes and landforms. However, despite growing application there has been little quantitative assessment of sUAS performance. Here we present results from a field experiment designed to evaluate the accuracy of a photogrammetrically-derived digital terrain model (DTM) developed from imagery acquired with a low-cost digital camera onboard an sUAS. We also show the utility of the high-resolution (0.1 m) sUAS imagery for resolving small-scale biogeomorphic features. The experiment was conducted in an area with active and stabilized aeolian landforms in the southern Canadian Prairies. Images were acquired with a Hawkeye RQ-84Z Areohawk fixed-wing sUAS. A total of 280 images were acquired along 14 flight lines, covering an area of 1.95 km2. The survey was completed in 4.5 h, including GPS surveying, sUAS setup and flight time. Standard image processing and photogrammetric techniques were used to produce a 1 m resolution DTM and a 0.1 m resolution orthorectified image mosaic. The latter revealed previously un-mapped bioturbation features. The vertical accuracy of the DTM was evaluated with 99 Real-Time Kinematic GPS points, while 20 of these points were used to quantify horizontal accuracy. The horizontal root mean squared error (RMSE) of the orthoimage was 0.18 m, while the vertical RMSE of the DTM was 0.29 m, which is equivalent to the RMSE of a bare earth LiDAR DTM for the same site. The combined error from both datasets was used to define a threshold of the minimum elevation difference that could be reliably attributed to erosion or deposition in the seven years separating the sUAS and LiDAR datasets. Overall, our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR for geomorphological mapping.

  7. Photogrammetric Analysis of Attractiveness in Indian Faces

    PubMed Central

    Duggal, Shveta; Kapoor, DN; Verma, Santosh; Sagar, Mahesh; Lee, Yung-Seop; Moon, Hyoungjin

    2016-01-01

    Background The objective of this study was to assess the attractive facial features of the Indian population. We tried to evaluate subjective ratings of facial attractiveness and identify which facial aesthetic subunits were important for facial attractiveness. Methods A cross-sectional study was conducted of 150 samples (referred to as candidates). Frontal photographs were analyzed. An orthodontist, a prosthodontist, an oral surgeon, a dentist, an artist, a photographer and two laymen (estimators) subjectively evaluated candidates' faces using visual analog scale (VAS) scores. As an objective method for facial analysis, we used balanced angular proportional analysis (BAPA). Using SAS 10.1 (SAS Institute Inc.), the Turkey's studentized range test and Pearson correlation analysis were performed to detect between-group differences in VAS scores (Experiment 1), to identify correlations between VAS scores and BAPA scores (Experiment 2), and to analyze the characteristic features of facial attractiveness and gender differences (Experiment 3); the significance level was set at P=0.05. Results Experiment 1 revealed some differences in VAS scores according to professional characteristics. In Experiment 2, BAPA scores were found to behave similarly to subjective ratings of facial beauty, but showed a relatively weak correlation coefficient with the VAS scores. Experiment 3 found that the decisive factors for facial attractiveness were different for men and women. Composite images of attractive Indian male and female faces were constructed. Conclusions Our photogrammetric study, statistical analysis, and average composite faces of an Indian population provide valuable information about subjective perceptions of facial beauty and attractive facial structures in the Indian population. PMID:27019809

  8. Wafer hot spot identification through advanced photomask characterization techniques: part 2

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; Cho, Young; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2017-03-01

    Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for mask end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on sub-resolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. To overcome the limitation of 1D metrics, there are numerous on-going industry efforts to better define wafer-predictive metrics through both standard mask metrology and aerial CD methods. Even with these improvements, the industry continues to struggle to define useful correlative metrics that link the mask to final device performance. In part 1 of this work, we utilized advanced mask pattern characterization techniques to extract potential hot spots on the mask and link them, theoretically, to issues with final wafer performance. In this paper, part 2, we complete the work by verifying these techniques at wafer level. The test vehicle (TV) that was used for hot spot detection on the mask in part 1 will be used to expose wafers. The results will be used to verify the mask-level predictions. Finally, wafer performance with predicted and verified mask/wafer condition will be shown as the result of advanced mask characterization. The goal is to maximize mask end user yield through mask-wafer technology harmonization. This harmonization will provide the necessary feedback to determine optimum design, mask specifications, and mask-making conditions for optimal wafer process margin.

  9. Underwater photogrammetric theoretical equations and technique

    NASA Astrophysics Data System (ADS)

    Fan, Ya-bing; Huang, Guiping; Qin, Gui-qin; Chen, Zheng

    2011-12-01

    In order to have a high level of accuracy of measurement in underwater close-range photogrammetry, this article deals with a study of three varieties of model equations according to the way of imaging upon the water. First, the paper makes a careful analysis for the two varieties of theoretical equations and finds out that there are some serious limitations in practical application and has an in-depth study for the third model equation. Second, one special project for this measurement has designed correspondingly. Finally, one rigid antenna has been tested by underwater photogrammetry. The experimental results show that the precision of 3D coordinates measurement is 0.94mm, which validates the availability and operability in practical application with this third equation. It can satisfy the measurement requirements of refraction correction, improving levels of accuracy of underwater close-range photogrammetry, as well as strong antijamming and stabilization.

  10. 'Boomerang' technique: an improved method for conformal treatment of locally advanced nasopharyngeal cancer.

    PubMed

    Corry, June; Hornby, Colin; Fisher, Richard; D'Costa, Ieta; Porceddu, Sandro; Rischin, Danny; Peters, Lester J

    2004-06-01

    The primary aim of the present study was to assess radiation dosimetry and subsequent clinical outcomes in patients with locally advanced nasopharyngeal cancer using a novel radiation technique termed the 'Boomerang'. Dosimetric comparisons were made with both conventional and intensity modulated radiation therapy (IMRT) techniques. This is a study of 22 patients treated with this technique from June 1995 to October 1998. The technique used entailed delivery of 36 Gy in 18 fractions via parallel opposed fields, then 24 Gy in 12 fractions via asymmetric rotating arc fields for a total of 60 Gy in 30 fractions. Patients also received induction and concurrent chemotherapy. The radiation dosimetry was excellent. Dose-volume histograms showed that with the arc fields, 90% of the planning target volume received 94% of the prescribed dose. Relative to other conventional radiation therapy off-cord techniques, the Boomerang technique results in a 27% greater proportion of the prescribed dose being received by 90% of the planning target volume. This translates into an overall 10% greater dose received for the same prescribed dose. At 3 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 91, 75 and 91%, respectively. At 5 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 74, 62 and 71%, respectively. The Boomerang technique provided excellent radiation dosimetry with correspondingly good loco-regional control rates (in conjunction with chemotherapy) and very acceptable acute and late toxicity profiles. Because treatment can be delivered with conventional standard treatment planning and delivery systems, it is a validated treatment option for centres that do not have the capability or capacity for IMRT. A derivative of the Boomerang technique, excluding the parallel opposed component, is now our standard for patients with locally advanced

  11. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui

    2017-12-01

    More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.

  12. Application of advanced control techniques to aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1984-01-01

    Two programs are described which involve the application of advanced control techniques to the design of engine control algorithms. Multivariable control theory is used in the F100 MVCS (multivariable control synthesis) program to design controls which coordinate the control inputs for improved engine performance. A systematic method for handling a complex control design task is given. Methods of analytical redundancy are aimed at increasing the control system reliability. The F100 DIA (detection, isolation, and accommodation) program, which investigates the uses of software to replace or augment hardware redundancy for certain critical engine sensor, is described.

  13. [Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.

    PubMed

    Ying, Bin-Wu

    2016-11-01

    Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.

  14. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Ye, W.; Qiao, G.; Kong, F.; Guo, S.; Ma, X.; Tong, X.; Li, R.

    2016-06-01

    Global climate change is one of the major challenges that all nations are commonly facing. Long-term observations of the Antarctic ice sheet have been playing a critical role in quantitatively estimating and predicting effects resulting from the global changes. The film-based ARGON reconnaissance imagery provides a remarkable data source for studying the Antarctic ice-sheet in 1960s, thus greatly extending the time period of Antarctica surface observations. To deal with the low-quality images and the unavailability of camera poses, a systematic photogrammetric approach is proposed to reconstruct the interior and exterior orientation information for further glacial mapping applications, including ice flow velocity mapping and mass balance estimation. Some noteworthy details while performing geometric modelling using the ARGON images were introduced, including methods and results for handling specific effects of film deformation, damaged or missing fiducial marks and calibration report, automatic fiducial mark detection, control point selection through Antarctic shadow and ice surface terrain analysis, and others. Several sites in East Antarctica were tested. As an example, four images in the Byrd glacier region were used to assess the accuracy of the geometric modelling. A digital elevation model (DEM) and an orthophoto map of Byrd glacier were generated. The accuracy of the ground positions estimated by using independent check points is within one nominal pixel of 140 m of ARGON imagery. Furthermore, a number of significant features, such as ice flow velocity and regional change patterns, will be extracted and analysed.

  15. An Effective Technique for Endoscopic Resection of Advanced Stage Angiofibroma

    PubMed Central

    Mohammadi Ardehali, Mojtaba; Samimi, Seyyed Hadi; Bakhshaee, Mehdi

    2014-01-01

    Introduction: In recent years, the surgical management of angiofibroma has been greatly influenced by the use of endoscopic techniques. However, large tumors that extend into difficult anatomic sites present major challenges for management by either endoscopy or an open-surgery approach which needs new technique for the complete en block resection. Materials and Methods: In a prospective observational study we developed an endoscopic transnasal technique for the resection of angiofibroma via pushing and pulling the mass with 1/100000 soaked adrenalin tampons. Thirty two patients were treated using this endoscopic technique over 7 years. The mean follow-up period was 36 months. The main outcomes measured were tumor staging, average blood loss, complications, length of hospitalization, and residual and/or recurrence rate of the tumor. Results: According to the Radkowski staging, 23,5, and 4 patients were at stage IIC, IIIA, and IIIB, respectively. Twenty five patients were operated on exclusively via transnasal endoscopy while 7 patients were managed using endoscopy-assisted open-surgery techniques. Mean blood loss in patients was 1261± 893 cc. The recurrence rate was 21.88% (7 cases) at two years following surgery. Mean hospitalization time was 3.56 ± 0.6 days. Conclusion: Using this effective technique, endoscopic removal of more highly advanced angiofibroma is possible. Better visualization, less intraoperative blood loss, lower rates of complication and recurrence, and shorter hospitalization time are some of the advantages. PMID:24505571

  16. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  17. Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at Approximately 90 K

    NASA Technical Reports Server (NTRS)

    Mule, Peter; Hill, Michael D.; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of approximately 90 K is a critical element to ensuring mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric (PG) metrology data taken under vacuum with the reflectors at approximately 90 K. Contour maps showing reflector distortion analytical extrapolations were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.

  18. Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation

    PubMed Central

    Martín Noguerol, Teodoro; Luna, Antonio; Gómez Cabrera, Marta; Riofrio, Alexie D

    2017-01-01

    Magnetic resonance imaging (MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response. PMID:28979849

  19. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliescu, Bogdan; Haskal, Ziv J., E-mail: ziv2@mac.com

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful,more » with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.« less

  20. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  1. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  2. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis.

    PubMed

    Deeb, Sami El; Wätzig, Hermann; El-Hady, Deia Abd; Albishri, Hassan M; de Griend, Cari Sänger-van; Scriba, Gerhard K E

    2014-01-01

    Since the introduction about 30 years ago, CE techniques have gained a significant impact in pharmaceutical analysis. The present review covers recent advances and applications of CE for the analysis of pharmaceuticals. Both small molecules and biomolecules such as proteins are considered. The applications range from the determination of drug-related substances to the analysis of counterions and the determination of physicochemical parameters. Furthermore, general considerations of CE methods in pharmaceutical analysis are described. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Applications of Advanced, Waveform Based AE Techniques for Testing Composite Materials

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1996-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been previously used to evaluate damage progression in laboratory tests of composite coupons. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite structures, the effects of wave propagation over larger distances and through structural complexities must be well characterized and understood. In this research, measurements were made of the attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels. As these materials have applications in a cryogenic environment, the effects of cryogenic insulation on the attenuation of plate mode AE signals were also documented.

  4. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  5. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    PubMed

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified

  6. Community tools for cartographic and photogrammetric processing of Mars Express HRSC images

    USGS Publications Warehouse

    Kirk, Randolph L.; Howington-Kraus, Elpitha; Edmundson, Kenneth L.; Redding, Bonnie L.; Galuszka, Donna M.; Hare, Trent M.; Gwinner, K.; Wu, B.; Di, K.; Oberst, J.; Karachevtseva, I.

    2017-01-01

    The High Resolution Stereo Camera (HRSC) on the Mars Express orbiter (Neukum et al. 2004) is a multi-line pushbroom scanner that can obtain stereo and color coverage of targets in a single overpass, with pixel scales as small as 10 m at periapsis. Since commencing operations in 2004 it has imaged ~ 77 % of Mars at 20 m/pixel or better. The instrument team uses the Video Image Communication And Retrieval (VICAR) software to produce and archive a range of data products from uncalibrated and radiometrically calibrated images to controlled digital topographic models (DTMs) and orthoimages and regional mosaics of DTM and orthophoto data (Gwinner et al. 2009; 2010b; 2016). Alternatives to this highly effective standard processing pipeline are nevertheless of interest to researchers who do not have access to the full VICAR suite and may wish to make topographic products or perform other (e. g., spectrophotometric) analyses prior to the release of the highest level products. We have therefore developed software to ingest HRSC images and model their geometry in the USGS Integrated Software for Imagers and Spectrometers (ISIS3), which can be used for data preparation, geodetic control, and analysis, and the commercial photogrammetric software SOCET SET (® BAE Systems; Miller and Walker 1993; 1995) which can be used for independent production of DTMs and orthoimages. The initial implementation of this capability utilized the then-current ISIS2 system and the generic pushbroom sensor model of SOCET SET, and was described in the DTM comparison of independent photogrammetric processing by different elements of the HRSC team (Heipke et al. 2007). A major drawback of this prototype was that neither software system then allowed for pushbroom images in which the exposure time changes from line to line. Except at periapsis, HRSC makes such timing changes every few hundred lines to accommodate changes of altitude and velocity in its elliptical orbit. As a result, it was

  7. Recent Advances in Techniques for Starch Esters and the Applications: A Review

    PubMed Central

    Hong, Jing; Zeng, Xin-An; Brennan, Charles S.; Brennan, Margaret; Han, Zhong

    2016-01-01

    Esterification is one of the most important methods to alter the structure of starch granules and improve its applications. Conventionally, starch esters are prepared by conventional or dual modification techniques, which have the disadvantages of being expensive, have regent overdoses, and are time-consuming. In addition, the degree of substitution (DS) is often considered as the primary factor in view of its contribution to estimate substituted groups of starch esters. In order to improve the detection accuracy and production efficiency, different detection techniques, including titration, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis/infrared spectroscopy (TGA/IR) and headspace gas chromatography (HS-GC), have been developed for DS. This paper gives a comprehensive overview on the recent advances in DS analysis and starch esterification techniques. Additionally, the advantages, limitations, some perspectives on future trends of these techniques and the applications of their derivatives in the food industry are also presented. PMID:28231145

  8. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  9. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  10. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  11. New techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry

    USGS Publications Warehouse

    Warrick, Jonathan; Ritchie, Andy; Adelman, Gabrielle; Adelman, Ken; Limber, Patrick W.

    2017-01-01

    Oblique aerial photograph surveys are commonly used to document coastal landscapes. Here it is shown that adequate overlap may exist in these photographic records to develop topographic models with Structure-from-Motion (SfM) photogrammetric techniques. Using photographs of Fort Funston, California, from the California Coastal Records Project, imagery were combined with ground control points in a four-dimensional analysis that produced topographic point clouds of the study area’s cliffs for 5 years spanning 2002 to 2010. Uncertainty was assessed by comparing point clouds with airborne LIDAR data, and these uncertainties were related to the number and spatial distribution of ground control points used in the SfM analyses. With six or more ground control points, the root mean squared errors between the SfM and LIDAR data were less than 0.30 m (minimum 1⁄4 0.18 m), and the mean systematic error was less than 0.10 m. The SfM results had several benefits over traditional airborne LIDAR in that they included point coverage on vertical- to-overhanging sections of the cliff and resulted in 10–100 times greater point densities. Time series of the SfM results revealed topographic changes, including landslides, rock falls, and the erosion of landslide talus along the Fort Funston beach. Thus, it was concluded that SfM photogrammetric techniques with historical oblique photographs allow for the extraction of useful quantitative information for mapping coastal topography and measuring coastal change. The new techniques presented here are likely applicable to many photograph collections and problems in the earth sciences.

  12. Photogrammetric and photometric investigation of a smoke plume viewed from space.

    NASA Technical Reports Server (NTRS)

    Randerson, D.; Garcia, J. G.; Whitehead, V. S.

    1971-01-01

    Use of detailed analyses of an Apollo 6 stereographic photograph of a smoke plume which originated in southern Arizona and crossed over into Mexico to illustrate how high-resolution photography can aid meteorologists in evaluating specific air pollution events. Photogrammetric analysis of the visible smoke plume revealed that the plume was 8.06 miles long and attained a maximum width of 4000 ft, 3.0 miles from the 570-ft chimney emitting the effluent. Stereometric analysis showed that the visible top of the plume rose nearly 2400 ft above stack top, attaining 90% of this total rise 1.75 miles downwind from the source. Photometric analysis of the plume revealed a field of plume optical density that portrayed leptokurtic and bimodal distributions rather than a true Gaussian distribution. A horizontal eddy diffusivity of about 650,000 sq cm/sec and a vertical eddy diffusivity of 230,000 sq cm/sec were determined from the plume dimensions. Neutron activation analysis of plume samples revealed the elemental composition of the smoke to be copper, arsenic, selenium, indium and antimony, with trace amounts of vanadium and scandium.

  13. Advanced spacecraft thermal control techniques

    NASA Technical Reports Server (NTRS)

    Fritz, C. H.

    1977-01-01

    The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function.

  14. Photogrammetric discharge monitoring of small tropical mountain rivers - A case study at Rivière des Pluies, Réunion island

    NASA Astrophysics Data System (ADS)

    Stumpf, André; Augereau, Emmanuel; Delacourt, Christophe; Bonnier, Julien

    2016-04-01

    Reliable discharge measurements are indispensable for an effective management of natural water resources and floods. Limitations of classical current meter profiling and stage-discharge ratings have stimulated the development of more accurate and efficient gauging techniques. While new discharge measurements technologies such as acoustic doppler current profilers and large-scale image particle velocimetry (LSPIV) have been developed and tested in numerous studies, the continuous monitoring of small mountain rivers and discharge dynamics during strong meteorological events remains challenging. More specifically LSPIV studies are often focused on short-term measurements during flood events and there are still very few studies that address its use for long-term monitoring of small mountain rivers. To fill this gap this study targets the development and testing of largely autonomous photogrammetric discharge measurement system with a special focus on the application to small mountain river with high discharge variability and a mobile riverbed in the tropics. It proposes several enhancements among previous LSPIV methods regarding camera calibration, more efficient processing in image geometry, the automatic detection of the water level as well as the statistical calibration and estimation of the discharge from multiple profiles. To account for changes in the bed topography the riverbed is surveyed repeatedly during the dry seasons using multi-view photogrammetry or terrestrial laser scanners. The presented case study comprises the analysis of several thousand videos spanning over two and a half year (2013-2015) to test the robustness and accuracy of different processing steps. An analysis of the obtained results suggests that the quality of the camera calibration reaches a sub-pixel accuracy. The median accuracy of the watermask detections is F1=0.82, whereas the precision is systematically higher than the recall. The resulting underestimation of the water surface area

  15. The sanctuary of Punta Stilo at Kaulonia-Monasterace (Rc, Italy): preliminary results of the close range photogrammetric surveys 2012-2013

    NASA Astrophysics Data System (ADS)

    Taccola, E.; Parra, M. C.; Ampolo, C.

    2014-06-01

    During the 2012-2013 excavations at the Sanctuary of Punta Stilo at Kaulonia, carried out by the University of Pisa and the Scuola Normale Superiore of Pisa, close range aerial and terrestrial photogrammetric surveys were tested for the first time. The aim of the test was to verify the accuracy of the site planimetry currently used, dating back also to a century ago. The 3D data obtained have allowed new data to be acquired for correcting and updating the mapping of the site.

  16. Evaluation of an advanced physical diagnosis course using consumer preferences methods: the nominal group technique.

    PubMed

    Coker, Joshua; Castiglioni, Analia; Kraemer, Ryan R; Massie, F Stanford; Morris, Jason L; Rodriguez, Martin; Russell, Stephen W; Shaneyfelt, Terrance; Willett, Lisa L; Estrada, Carlos A

    2014-03-01

    Current evaluation tools of medical school courses are limited by the scope of questions asked and may not fully engage the student to think on areas to improve. The authors sought to explore whether a technique to study consumer preferences would elicit specific and prioritized information for course evaluation from medical students. Using the nominal group technique (4 sessions), 12 senior medical students prioritized and weighed expectations and topics learned in a 100-hour advanced physical diagnosis course (4-week course; February 2012). Students weighted their top 3 responses (top = 3, middle = 2 and bottom = 1). Before the course, 12 students identified 23 topics they expected to learn; the top 3 were review sensitivity/specificity and high-yield techniques (percentage of total weight, 18.5%), improving diagnosis (13.8%) and reinforce usual and less well-known techniques (13.8%). After the course, students generated 22 topics learned; the top 3 were practice and reinforce advanced maneuvers (25.4%), gaining confidence (22.5%) and learn the evidence (16.9%). The authors observed no differences in the priority of responses before and after the course (P = 0.07). In a physical diagnosis course, medical students elicited specific and prioritized information using the nominal group technique. The course met student expectations regarding education of the evidence-based physical examination, building skills and confidence on the proper techniques and maneuvers and experiential learning. The novel use for curriculum evaluation may be used to evaluate other courses-especially comprehensive and multicomponent courses.

  17. Photogrammetric determination of discrepancies between actual and planned position of dental implants

    NASA Astrophysics Data System (ADS)

    Forlani, G.; Rivara, F.

    2014-05-01

    The paper describes the design and testing of a photogrammetric measurement protocol set up to determine the discrepancies between the planned and actual position of computer-guided template-based dental implants. Two moulds with the implants positioned in pre- and post- intervention are produced and separately imaged with a highly redundant block of convergent images; the model with the implants is positioned on a steel frame with control points and with suitable targets attached. The theoretical accuracy of the system is better than 20 micrometers and 0.3-0.4° respectively for positions of implants and directions of implant axes. In order to compare positions and angles between the planned and actual position of an implant, coordinates and axes directions are brought to a common reference system with a Helmert transformation. A procedure for comparison of positions and directions to identify out-of-tolerance discrepancies is presented; a numerical simulation study shows the effectiveness of the procedure in identifying the implants with significant discrepancies between pre- and post- intervention.

  18. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-729] Certain Semiconductor Products Made by... the sale within the United States after importation of certain semiconductor products made by advanced lithography techniques and products containing same by reason of infringement of certain claims of U.S. Patent...

  19. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  20. Advancement of Techniques for Modeling the Effects of Atmospheric Gravity-Wave-Induced Inhomogeneities on Infrasound Propagation

    DTIC Science & Technology

    2010-09-01

    ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound

  1. 75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Semiconductor Products Made by Advanced Lithography Techniques and Products Containing Same; Notice of... Mexico) (``STC''), alleging a violation of section 337 in the importation, sale for [[Page 81644

  2. Advancements in optical techniques and imaging in the diagnosis and management of bladder cancer.

    PubMed

    Rose, Tracy L; Lotan, Yair

    2018-03-01

    Accurate detection and staging is critical to the appropriate management of urothelial cancer (UC). The use of advanced optical techniques during cystoscopy is becoming more widespread to prevent recurrent nonmuscle invasive bladder cancer. Standard of care for muscle-invasive UC includes the use of computed tomography and/or magnetic resonance imaging, but staging accuracy of these tests remains imperfect. Novel imaging modalities are being developed to improve current test performance. Positron emission tomography/computed tomography has a role in the initial evaluation of select patients with muscle-invasive bladder cancer and in disease recurrence in some cases. Several novel immuno-positron emission tomography tracers are currently in development to address the inadequacy of current imaging modalities for monitoring of tumor response to newer immune-based treatments. This review summaries the current standards and recent advances in optical techniques and imaging modalities in localized and metastatic UC. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Tenon advancement and duplication technique to prevent postoperative Ahmed valve tube exposure in patients with refractory glaucoma.

    PubMed

    Tamcelik, Nevbahar; Ozkok, Ahmet; Sarıcı, Ahmet Murat; Atalay, Eray; Yetik, Huseyin; Gungor, Kivanc

    2013-07-01

    To present and compare the long-term results of Dr. Tamcelik's previously described technique of Tenon advancement and duplication with the conventional Ahmed glaucoma valve (AGV) implantation technique in patients with refractory glaucoma. This study was a multicenter, retrospective case series that included 303 eyes of 276 patients with refractory glaucoma who underwent glaucoma valve implantation surgery. The patients were divided into three groups according to the surgical technique applied and the outcomes compared. In group 1, 96 eyes of 86 patients underwent AGV implant surgery without patch graft; in group 2, 78 eyes of 72 patients underwent AGV implant surgery with donor scleral patch; in group 3, 129 eyes of 118 patients underwent Ahmed valve implant surgery with "combined short scleral tunnel with Tenon advancement and duplication technique". The endpoint assessed was tube exposure through the conjunctiva. In group 1, conjunctival tube exposure was seen in 11 eyes (12.9 %) after a mean 9.2 ± 3.7 years of follow-up. In group 2, conjunctival tube exposure was seen in six eyes (2.2 %) after a mean 8.9 ± 3.3 years of follow-up. In group 3, there was no conjunctival exposure after a mean 7.8 ± 2.8 years of follow-up. The difference between the groups was statistically significant. (P = 0.0001, Chi-square test). This novel surgical technique combining a short scleral tunnel with Tenon advancement and duplication was found to be effective and safe to prevent conjunctival tube exposure after AGV implantation surgery in patients with refractory glaucoma.

  4. Advances in Procedural Techniques - Antegrade

    PubMed Central

    Wilson, William; Spratt, James C.

    2014-01-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the “hybrid’ approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited “interventional” collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  5. Evaluation of an Area-Based matching algorithm with advanced shape models

    NASA Astrophysics Data System (ADS)

    Re, C.; Roncella, R.; Forlani, G.; Cremonese, G.; Naletto, G.

    2014-04-01

    Nowadays, the scientific institutions involved in planetary mapping are working on new strategies to produce accurate high resolution DTMs from space images at planetary scale, usually dealing with extremely large data volumes. From a methodological point of view, despite the introduction of a series of new algorithms for image matching (e.g. the Semi Global Matching) that yield superior results (especially because they produce usually smooth and continuous surfaces) with lower processing times, the preference in this field still goes to well established area-based matching techniques. Many efforts are consequently directed to improve each phase of the photogrammetric process, from image pre-processing to DTM interpolation. In this context, the Dense Matcher software (DM) developed at the University of Parma has been recently optimized to cope with very high resolution images provided by the most recent missions (LROC NAC and HiRISE) focusing the efforts mainly to the improvement of the correlation phase and the process automation. Important changes have been made to the correlation algorithm, still maintaining its high performance in terms of precision and accuracy, by implementing an advanced version of the Least Squares Matching (LSM) algorithm. In particular, an iterative algorithm has been developed to adapt the geometric transformation in image resampling using different shape functions as originally proposed by other authors in different applications.

  6. Advances in magnetic resonance neuroimaging techniques in the evaluation of neonatal encephalopathy.

    PubMed

    Panigrahy, Ashok; Blüml, Stefan

    2007-02-01

    Magnetic resonance (MR) imaging has become an essential tool in the evaluation of neonatal encephalopathy. Magnetic resonance-compatible neonatal incubators allow sick neonates to be transported to the MR scanner, and neonatal head coils can improve signal-to-noise ratio, critical for advanced MR imaging techniques. Refinement of conventional imaging techniques include the use of PROPELLER techniques for motion correction. Magnetic resonance spectroscopic imaging and diffusion tensor imaging provide quantitative assessment of both brain development and brain injury in the newborn with respect to metabolite abnormalities and hypoxic-ischemic injury. Knowledge of normal developmental changes in MR spectroscopy metabolite concentration and diffusion tensor metrics is essential to interpret pathological cases. Perfusion MR and functional MR can provide additional physiological information. Both MR spectroscopy and diffusion tensor imaging can provide additional information in the differential of neonatal encephalopathy, including perinatal white matter injury, hypoxic-ischemic brain injury, metabolic disease, infection, and birth injury.

  7. Integrated Photogrammetric Survey and Bim Modelling for the Protection of School Heritage, Applications on a Case Study

    NASA Astrophysics Data System (ADS)

    Palestini, C.; Basso, A.; Graziani, L.

    2018-05-01

    The contribution, considering the use of low-cost photogrammetric detection methodologies and the use of asset Historical-BIM, has as its aim the theme of knowledge and the adaptation of safety in school buildings, a topic brought to attention by the many situations of seismic risk that have interested the central Apennines in Italy. The specific investigation is referred to the Abruzzo region, hit by the recent earthquakes of 2016 and 2009 that have highlighted the vulnerability of the building structures involved in a large seismic crater covering large areas of the territory. The need to consider in advance the performance standards of building components, especially concerning the strategic ways of the functions contained in them, starts here. In this sense, the school buildings have emerged among the types on which to pay attention, a study theme to be promptly considered, considering the functions performed within them and the possible criticality of such constructions, often dated, enlarged or readjusted without appropriate seismic adaptation plans. From here derives the purpose of the research that is directed towards a systematic recognition of the scholastic heritage, deriving from objective and rapid surveys at low cost, taking into consideration the as-built and the different formal and structural aspects that define the architectural organisms to analyse and manage through three-dimensional models that can be interrogated using HBIM connected to databases containing information of a structural and functional nature. In summary, through the implementation of information in the BIM model, it will be possible to query and obtain in real time all the necessary information to optimize, in terms of efficiency, costs, and future maintenance operations.

  8. Photogrammetric 3D skull/photo superimposition: A pilot study.

    PubMed

    Santoro, Valeria; Lubelli, Sergio; De Donno, Antonio; Inchingolo, Alessio; Lavecchia, Fulvio; Introna, Francesco

    2017-04-01

    The identification of bodies through the examination of skeletal remains holds a prominent place in the field of forensic investigations. Technological advancements in 3D facial acquisition techniques have led to the proposal of a new body identification technique that involves a combination of craniofacial superimposition and photogrammetry. The aim of this study was to test the method by superimposing various computerized 3D images of skulls onto various photographs of missing people taken while they were still alive in cases when there was a suspicion that the skulls in question belonged to them. The technique is divided into four phases: preparatory phase, 3d acquisition phase, superimposition phase, and metric image analysis 3d. The actual superimposition of the images was carried out in the fourth step. and was done so by comparing the skull images with the selected photos. Using a specific software, the two images (i.e. the 3D avatar and the photo of the missing person) were superimposed. Cross-comparisons of 5 skulls discovered in a mass grave, and of 2 skulls retrieved in the crawlspace of a house were performed. The morphologyc phase reveals a full overlap between skulls and photos of disappeared persons. Metric phase reveals that correlation coefficients of this values, higher than 0.998-0,997 allow to confirm identification hypothesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  10. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  11. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  12. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  13. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  14. Feasibility of Smartphone Based Photogrammetric Point Clouds for the Generation of Accessibility Maps

    NASA Astrophysics Data System (ADS)

    Angelats, E.; Parés, M. E.; Kumar, P.

    2018-05-01

    Accessible cities with accessible services are an old claim of people with reduced mobility. But this demand is still far away of becoming a reality as lot of work is required to be done yet. First step towards accessible cities is to know about real situation of the cities and its pavement infrastructure. Detailed maps or databases on street slopes, access to sidewalks, mobility in public parks and gardens, etc. are required. In this paper, we propose to use smartphone based photogrammetric point clouds, as a starting point to create accessible maps or databases. This paper analyses the performance of these point clouds and the complexity of the image acquisition procedure required to obtain them. The paper proves, through two test cases, that smartphone technology is an economical and feasible solution to get the required information, which is quite often seek by city planners to generate accessible maps. The proposed approach paves the way to generate, in a near term, accessibility maps through the use of point clouds derived from crowdsourced smartphone imagery.

  15. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  16. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US

  17. REVIEW ARTICLE: Emission measurement techniques for advanced powertrains

    NASA Astrophysics Data System (ADS)

    Adachi, Masayuki

    2000-10-01

    Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

  18. Mapping coastal morphodynamics with geospatial techniques, Cape Henry, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Allen, Thomas R.; Oertel, George F.; Gares, Paul A.

    2012-01-01

    The advent and proliferation of digital terrain technologies have spawned concomitant advances in coastal geomorphology. Airborne topographic Light Detection and Ranging (LiDAR) has stimulated a renaissance in coastal mapping, and field-based mapping techniques have benefitted from improvements in real-time kinematic (RTK) Global Positioning System (GPS). Varied methodologies for mapping suggest a need to match geospatial products to geomorphic forms and processes, a task that should consider product and process ontologies from each perspective. Towards such synthesis, coastal morphodynamics on a cuspate foreland are reconstructed using spatial analysis. Sequential beach ridge and swale topography are mapped using photogrammetric spot heights and airborne LiDAR data and integrated with digital bathymetry and large-scale vector shoreline data. Isobaths from bathymetric charts were digitized to determine slope and toe depth of the modern shoreface and a reconstructed three-dimensional antecedent shoreface. Triangulated irregular networks were created for the subaerial cape and subaqueous shoreface models of the cape beach ridges and sets for volumetric analyses. Results provide estimates of relative age and progradation rate and corroborate other paleogeologic sea-level rise data from the region. Swale height elevations and other measurements quantifiable in these data provide several parameters suitable for studying coastal geomorphic evolution. Mapped paleoshorelines and volumes suggest the Virginia Beach coastal compartment is related to embryonic spit development from a late Holocene shoreline located some 5 km east of the current beach.

  19. Geoinformation techniques for the 3D visualisation of historic buildings and representation of a building's pathology

    NASA Astrophysics Data System (ADS)

    Tsilimantou, Elisavet; Delegou, Ekaterini; Ioannidis, Charalabos; Moropoulou, Antonia

    2016-08-01

    In this paper, the documentation of an historic building registered as Cultural Heritage asset is presented. The aim of the survey is to create a 3D geometric representation of a historic building and in accordance with multidisciplinary study extract useful information regarding the extent of degradation, constructions' durability etc. For the implementation of the survey, a combination of different types of acquisition technologies is used. The project focuses on the study of Villa Klonaridi, in Athens, Greece. For the complete documentation of the building, conventional topography, photogrammetric and laser scanning techniques is combined. Close range photogrammetric techniques are used for the acquisition of the façades and architectural details. One of the main objectives is the development of an accurate 3D model, where the photorealistic representation of the building is achieved, along with the decay pathology, historical phases and architectural components. In order to achieve a suitable graphical representation for the study of the material and decay patterns beyond the 2D representation, 3D modelling and additional information modelling is performed for comparative analysis. The study provides various conclusions regarding the scale of deterioration obtained by the 2D and 3D analysis respectively. Considering the variation in material and decay patterns, comparative results are obtained regarding the degradation of the building. Overall, the paper describes a process performed on a Historic Building, where the 3D digital acquisition of the monuments' structure is realized with the combination of close range surveying and laser scanning methods.

  20. Airway emergencies presenting to the paediatric emergency department requiring advanced management techniques.

    PubMed

    Simma, Leopold; Cincotta, Domenic; Sabato, Stefan; Long, Elliot

    2017-09-01

    Airway emergencies presenting to the emergency department (ED) are usually managed with conventional equipment and techniques. The patient group managed urgently in the operating room (OR) has not been described. This study aims to describe a case series of children presenting to the ED with airway emergencies managed urgently in the OR, particularly the anaesthetic equipment and techniques used and airway findings. A retrospective cohort study undertaken at The Royal Children's Hospital, Melbourne, Australia. All patients presenting to the ED between 1 January 2012 and 30 July 2015 (42 months) with an airway emergency who were subsequently managed in the OR were included. Patient characteristics, anaesthetic equipment and technique and airway findings were recorded. Twenty-two airway emergencies in 21 patients were included over the study period, on average one every 2 months. Median age was 18 months and 43% were male. Inhalational induction was used in 77.3%, combined inhalational and intravenous induction in 9.1%, and intravenous induction alone in 13.6%. The most commonly used inhalational induction agent was sevoflurane, and the most commonly used intravenous induction agents were ketamine and propofol. Ten airway emergencies did not require intubation, seven for removal of inhaled foreign body, two with progressive tracheal stenosis requiring emergent dilatation and one examination under anaesthesia to rule out inhaled foreign body. Of the 12 airway emergencies that required immediate intubation, direct laryngoscopy was used in 9 and fibre-optic intubating bronchoscopy in 3. For intubations performed by direct laryngoscopy, one was difficult (Cormack and Lehane grade 3). First pass success was 83.3%. Adverse events occurred in 3/22 (13.6%) cases. Advanced airway techniques, including inhalational induction and intubation via fibre-optic intubating bronchoscope, are rarely but predictably required in the management of patients presenting to the ED

  1. Implementation of a close range photogrammetric system for 3D reconstruction of a scoliotic torso

    NASA Astrophysics Data System (ADS)

    Detchev, Ivan Denislavov

    Scoliosis is a deformity of the human spine most commonly encountered with children. After being detected, periodic examinations via x-rays are traditionally used to measure its progression. However, due to the increased risk of cancer, a non-invasive and radiation-free scoliosis detection and progression monitoring methodology is needed. Quantifying the scoliotic deformity through the torso surface is a valid alternative, because of its high correlation with the internal spine curvature. This work proposes a low-cost multi-camera photogrammetric system for semi-automated 3D reconstruction of a torso surface with sub-millimetre level accuracy. The thesis describes the system design and calibration for optimal accuracy. It also covers the methodology behind the reconstruction and registration procedures. The experimental results include the complete reconstruction of a scoliotic torso mannequin. The final accuracy is evaluated through the goodness of fit between the reconstructed surface and a more accurate set of points measured by a coordinate measuring machine.

  2. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  3. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    PubMed Central

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors. PMID:12587031

  4. Biotechnology apprenticeship for secondary-level students: teaching advanced cell culture techniques for research.

    PubMed

    Lewis, Jennifer R; Kotur, Mark S; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A; Ferrell, Nick; Sullivan, Kathryn D; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors.

  5. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  7. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.

    PubMed

    Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees

    2017-08-01

    While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  9. Automation in photogrammetry: Recent developments and applications (1972-1976)

    USGS Publications Warehouse

    Thompson, M.M.; Mikhail, E.M.

    1976-01-01

    An overview of recent developments in the automation of photogrammetry in various countries is presented. Conclusions regarding automated photogrammetry reached at the 1972 Congress in Ottawa are reviewed first as a background for examining the developments of 1972-1976. Applications are described for each country reporting significant developments. Among fifteen conclusions listed are statements concerning: the widespread practice of equipping existing stereoplotters with simple digitizers; the growing tendency to use minicomputers on-line with stereoplotters; the optimization of production of digital terrain models by progressive sampling in stereomodels; the potential of digitization of a photogrammetric model by density correlation on epipolar lines; the capabilities and economic aspects of advanced systems which permit simultaneous production of orthophotos, contours, and digital terrain models; the economy of off-line orthophoto systems; applications of digital image processing; automation by optical techniques; applications of sensors other than photographic imagery, and the role of photogrammetric phases in a completely automated cartographic system. ?? 1976.

  10. Advances in Tissue Engineering Techniques for Articular Cartilage Repair

    PubMed Central

    Haleem, AM; Chu, CR

    2010-01-01

    The limited repair potential of human articular cartilage contributes to development of debilitating osteoarthritis and remains a great clinical challenge. This has led to evolution of cartilage treatment strategies from palliative to either reconstructive or reparative methods in an attempt to delay or “bridge the gap” to joint replacement. Further development of tissue engineering-based cartilage repair methods have been pursued to provide a more functional biological tissue. Currently, tissue engineering of articular cartilage has three cornerstones; a cell population capable of proliferation and differentiation into mature chondrocytes, a scaffold that can host these cells, provide a suitable environment for cellular functioning and serve as a sustained-release delivery vehicle of chondrogenic growth factors and thirdly, signaling molecules and growth factors that stimulate the cellular response and the production of a hyaline extracellular matrix (ECM). The aim of this review is to summarize advances in each of these three fields of tissue engineering with specific relevance to surgical techniques and technical notes. PMID:29430164

  11. Second Iteration of Photogrammetric Pipeline to Enhance the Accuracy of Image Pose Estimation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. G.; Pierrot-Deseilligny, M.; Muller, J.-M.; Thom, C.

    2017-05-01

    In classical photogrammetric processing pipeline, the automatic tie point extraction plays a key role in the quality of achieved results. The image tie points are crucial to pose estimation and have a significant influence on the precision of calculated orientation parameters. Therefore, both relative and absolute orientations of the 3D model can be affected. By improving the precision of image tie point measurement, one can enhance the quality of image orientation. The quality of image tie points is under the influence of several factors such as the multiplicity, the measurement precision and the distribution in 2D images as well as in 3D scenes. In complex acquisition scenarios such as indoor applications and oblique aerial images, tie point extraction is limited while only image information can be exploited. Hence, we propose here a method which improves the precision of pose estimation in complex scenarios by adding a second iteration to the classical processing pipeline. The result of a first iteration is used as a priori information to guide the extraction of new tie points with better quality. Evaluated with multiple case studies, the proposed method shows its validity and its high potiential for precision improvement.

  12. Mapping of terrain by computer clustering techniques using multispectral scanner data and using color aerial film

    NASA Technical Reports Server (NTRS)

    Smedes, H. W.; Linnerud, H. J.; Woolaver, L. B.; Su, M. Y.; Jayroe, R. R.

    1972-01-01

    Two clustering techniques were used for terrain mapping by computer of test sites in Yellowstone National Park. One test was made with multispectral scanner data using a composite technique which consists of (1) a strictly sequential statistical clustering which is a sequential variance analysis, and (2) a generalized K-means clustering. In this composite technique, the output of (1) is a first approximation of the cluster centers. This is the input to (2) which consists of steps to improve the determination of cluster centers by iterative procedures. Another test was made using the three emulsion layers of color-infrared aerial film as a three-band spectrometer. Relative film densities were analyzed using a simple clustering technique in three-color space. Important advantages of the clustering technique over conventional supervised computer programs are (1) human intervention, preparation time, and manipulation of data are reduced, (2) the computer map, gives unbiased indication of where best to select the reference ground control data, (3) use of easy to obtain inexpensive film, and (4) the geometric distortions can be easily rectified by simple standard photogrammetric techniques.

  13. Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances

    PubMed Central

    Mincholé, Ana; Martínez, Juan Pablo; Laguna, Pablo; Rodriguez, Blanca

    2018-01-01

    Widely developed for clinical screening, electrocardiogram (ECG) recordings capture the cardiac electrical activity from the body surface. ECG analysis can therefore be a crucial first step to help diagnose, understand and predict cardiovascular disorders responsible for 30% of deaths worldwide. Computational techniques, and more specifically machine learning techniques and computational modelling are powerful tools for classification, clustering and simulation, and they have recently been applied to address the analysis of medical data, especially ECG data. This review describes the computational methods in use for ECG analysis, with a focus on machine learning and 3D computer simulations, as well as their accuracy, clinical implications and contributions to medical advances. The first section focuses on heartbeat classification and the techniques developed to extract and classify abnormal from regular beats. The second section focuses on patient diagnosis from whole recordings, applied to different diseases. The third section presents real-time diagnosis and applications to wearable devices. The fourth section highlights the recent field of personalized ECG computer simulations and their interpretation. Finally, the discussion section outlines the challenges of ECG analysis and provides a critical assessment of the methods presented. The computational methods reported in this review are a strong asset for medical discoveries and their translation to the clinical world may lead to promising advances. PMID:29321268

  14. Advances in regional anaesthesia: A review of current practice, newer techniques and outcomes

    PubMed Central

    Wahal, Christopher; Kumar, Amanda; Pyati, Srinivas

    2018-01-01

    Advances in ultrasound guided regional anaesthesia and introduction of newer long acting local anaesthetics have given clinicians an opportunity to apply novel approaches to block peripheral nerves with ease. Consequently, improvements in outcomes such as quality of analgesia, early rehabilitation and patient satisfaction have been observed. In this article we will review some of the newer regional anaesthetic techniques, long acting local anaesthetics and adjuvants, and discuss evidence for key outcomes such as cancer recurrence and safety with ultrasound guidance. PMID:29491513

  15. Advanced endografting techniques: snorkels, chimneys, periscopes, fenestrations, and branched endografts.

    PubMed

    Kansagra, Kartik; Kang, Joseph; Taon, Matthew-Czar; Ganguli, Suvranu; Gandhi, Ripal; Vatakencherry, George; Lam, Cuong

    2018-04-01

    The anatomy of aortic aneurysms from the proximal neck to the access vessels may create technical challenges for endovascular repair. Upwards of 30% of patients with abdominal aortic aneurysms (AAA) have unsuitable proximal neck morphology for endovascular repair. Anatomies considered unsuitable for conventional infrarenal stent grafting include short or absent necks, angulated necks, conical necks, or large necks exceeding size availability for current stent grafts. A number of advanced endovascular techniques and devices have been developed to circumvent these challenges, each with unique advantages and disadvantages. These include snorkeling procedures such as chimneys, periscopes, and sandwich techniques; "homemade" or "back-table" fenestrated endografts as well as manufactured, customized fenestrated endografts; and more recently, physician modified branched devices. Furthermore, new devices in the pipeline under investigation, such as "off-the-shelf" fenestrated stent grafts, branched stent grafts, lower profile devices, and novel sealing designs, have the potential of solving many of the aforementioned problems. The treatment of aortic aneurysms continues to evolve, further expanding the population of patients that can be treated with an endovascular approach. As the technology grows so do the number of challenging aortic anatomies that endovascular specialists take on, further pushing the envelope in the arena of aortic repair.

  16. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  17. Automatic Detection of Storm Damages Using High-Altitude Photogrammetric Imaging

    NASA Astrophysics Data System (ADS)

    Litkey, P.; Nurminen, K.; Honkavaara, E.

    2013-05-01

    The risks of storms that cause damage in forests are increasing due to climate change. Quickly detecting fallen trees, assessing the amount of fallen trees and efficiently collecting them are of great importance for economic and environmental reasons. Visually detecting and delineating storm damage is a laborious and error-prone process; thus, it is important to develop cost-efficient and highly automated methods. Objective of our research project is to investigate and develop a reliable and efficient method for automatic storm damage detection, which is based on airborne imagery that is collected after a storm. The requirements for the method are the before-storm and after-storm surface models. A difference surface is calculated using two DSMs and the locations where significant changes have appeared are automatically detected. In our previous research we used four-year old airborne laser scanning surface model as the before-storm surface. The after-storm DSM was provided from the photogrammetric images using the Next Generation Automatic Terrain Extraction (NGATE) algorithm of Socet Set software. We obtained 100% accuracy in detection of major storm damages. In this investigation we will further evaluate the sensitivity of the storm-damage detection process. We will investigate the potential of national airborne photography, that is collected at no-leaf season, to automatically produce a before-storm DSM using image matching. We will also compare impact of the terrain extraction algorithm to the results. Our results will also promote the potential of national open source data sets in the management of natural disasters.

  18. Recent advances in stable isotope labeling based techniques for proteome relative quantification.

    PubMed

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2014-10-24

    The large scale relative quantification of all proteins expressed in biological samples under different states is of great importance for discovering proteins with important biological functions, as well as screening disease related biomarkers and drug targets. Therefore, the accurate quantification of proteins at proteome level has become one of the key issues in protein science. Herein, the recent advances in stable isotope labeling based techniques for proteome relative quantification were reviewed, from the aspects of metabolic labeling, chemical labeling and enzyme-catalyzed labeling. Furthermore, the future research direction in this field was prospected. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Application of selection techniques to electric-propulsion options on an advanced synchronous satellite

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.; Degrey, S. P.

    1973-01-01

    This paper addresses the comparison of several candidate auxiliary-propulsion systems and system combinations for an advanced synchronous satellite. Economic selection techniques, evolved at the Jet Propulsion Laboratory, are used as a basis for system option comparisons. Electric auxiliary-propulsion types considered include pulsed plasma and ion bombardment, with hydrazine systems used as a state-of-the-art reference. Current as well as projected electric-propulsion system performance data are used, as well as projected hydrazine system costs resulting from NASA standardization program projections.

  20. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  1. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    PubMed

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. © 2014 Australian Veterinary Association.

  2. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  3. Application of the guided lock technique to Advanced Virgo's high-finesse cavities using reduced actuation

    NASA Astrophysics Data System (ADS)

    Bersanetti, Diego

    2018-02-01

    The recent upgrades of the Advanced Virgo experiment required an update of the locking strategy for the long, high-finesse arm cavities of the detector. In this work we will present a full description of the requirements and the constraints of such system in relation to the lock acquisition of the cavities; the focus of this work is the strategy used to accomplish this goal, which is the adaptation and use of the guided lock technique, which dynamically slows down a suspended optical cavity in order to make the lock possible. This work describes the first application of such locking technique to 3km long optical cavities, which are affected by stringent constraints as the low force available on the actuators, the high finesse and the maximum sustainable speed of the cavities, which is quite low due to a number of technical reasons that will be explained. A full set of optical time domain simulations has been developed in order to study the feasibility and the performance of this algorithm and will be throughout discussed, while finally the application on the real Advanced Virgo's arm cavities will be reported.

  4. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    NASA Technical Reports Server (NTRS)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  5. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  6. The high resolution stereo camera (HRSC): acquisition of multi-spectral 3D-data and photogrammetric processing

    NASA Astrophysics Data System (ADS)

    Neukum, Gerhard; Jaumann, Ralf; Scholten, Frank; Gwinner, Klaus

    2017-11-01

    At the Institute of Space Sensor Technology and Planetary Exploration of the German Aerospace Center (DLR) the High Resolution Stereo Camera (HRSC) has been designed for international missions to planet Mars. For more than three years an airborne version of this camera, the HRSC-A, has been successfully applied in many flight campaigns and in a variety of different applications. It combines 3D-capabilities and high resolution with multispectral data acquisition. Variable resolutions depending on the camera control settings can be generated. A high-end GPS/INS system in combination with the multi-angle image information yields precise and high-frequent orientation data for the acquired image lines. In order to handle these data a completely automated photogrammetric processing system has been developed, and allows to generate multispectral 3D-image products for large areas and with accuracies for planimetry and height in the decimeter range. This accuracy has been confirmed by detailed investigations.

  7. Advanced Intellect-Augmentation Techniques.

    ERIC Educational Resources Information Center

    Engelbart, D. C.

    This progress report covers a two-year project which is part of a program that is exploring the value of computer aids in augmenting human intellectual capability. The background and nature of the program, its resources, and the activities it has undertaken are outlined. User experience in applying augmentation tools and techniques to various…

  8. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  9. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction

    NASA Astrophysics Data System (ADS)

    Woodrow, Kathryn; Lindsay, John B.; Berg, Aaron A.

    2016-09-01

    Although digital elevation models (DEMs) prove useful for a number of hydrological applications, they are often the end result of numerous processing steps that each contains uncertainty. These uncertainties have the potential to greatly influence DEM quality and to further propagate to DEM-derived attributes including derived surface and near-surface drainage patterns. This research examines the impacts of DEM grid resolution, elevation source data, and conditioning techniques on the spatial and statistical distribution of field-scale hydrological attributes for a 12,000 ha watershed of an agricultural area within southwestern Ontario, Canada. Three conditioning techniques, including depression filling (DF), depression breaching (DB), and stream burning (SB), were examined. The catchments draining to each boundary of 7933 agricultural fields were delineated using the surface drainage patterns modeled from LiDAR data, interpolated to a 1 m, 5 m, and 10 m resolution DEMs, and from a 10 m resolution photogrammetric DEM. The results showed that variation in DEM grid resolution resulted in significant differences in the spatial and statistical distributions of contributing areas and the distributions of downslope flowpath length. Degrading the grid resolution of the LiDAR data from 1 m to 10 m resulted in a disagreement in mapped contributing areas of between 29.4% and 37.3% of the study area, depending on the DEM conditioning technique. The disagreements among the field-scale contributing areas mapped from the 10 m LiDAR DEM and photogrammetric DEM were large, with nearly half of the study area draining to alternate field boundaries. Differences in derived contributing areas and flowpaths among various conditioning techniques increased substantially at finer grid resolutions, with the largest disagreement among mapped contributing areas occurring between the 1 m resolution DB DEM and the SB DEM (37% disagreement) and the DB-DF comparison (36.5% disagreement in mapped

  10. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Schaffers, K I; Bayramian, A J

    2008-02-26

    Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.

  11. Use of advanced modeling techniques to optimize thermal packaging designs.

    PubMed

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  12. Advanced Atmospheric Ensemble Modeling Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.; Chiswell, S.; Kurzeja, R.

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two releasemore » times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.« less

  13. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  14. Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials

    NASA Astrophysics Data System (ADS)

    Guz, Nataliia

    In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.

  15. D Recording, Modelling and Visualisation of the Fortification Kristiansten in Trondheim (norway) by Photogrammetric Methods and Terrestrial Laser Scanning in the Framework of Erasmus Programmes

    NASA Astrophysics Data System (ADS)

    Kersten, T.; Lindstaedt, M.; Maziull, L.; Schreyer, K.; Tschirschwitz, F.; Holm, K.

    2015-02-01

    In this contribution the 3D recording, 3D modelling and 3D visualisation of the fortification Kristiansten in Trondheim (Norway) by digital photogrammetry and terrestrial laser scanning are presented. The fortification Kristiansten was built after the large city fire in the year 1681 above the city and has been a museum since 1997. The recording of the fortress took place in each case at the end of August/at the beginning of September 2010 and 2011 during two two-week summer schools with the topic "Digital Photogrammetry & Terrestrial Laser Scanning for Cultural Heritage Documentation" at NTNU Trondheim with international students in the context of ERASMUS teaching programs. For data acquisition, a terrestrial laser scanner and digital SLR cameras were used. The establishment of a geodetic 3D network, which was later transformed into the Norwegian UTM coordinate system using control points, ensured a consistent registration of the scans and an orientation of the photogrammetric images. The fortress buildings were constructed in detail from photogrammetric photographs and point clouds using AutoCAD, while the fortress area and walls were modelled by triangle meshing in Geomagic. The visualisation of the fortress was carried out 2013 with the software Cinema 4D in the context of a lecture in the Master study programme Geomatics. The 3D model was textured and afterwards presented in a video. This 3D model was finally transferred into the game engine Unity for an interactive 3D visualisation on 3D monitors.

  16. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs).

    PubMed

    Zepon Tarpani, Raphael Ricardo; Azapagic, Adisa

    2018-06-01

    Pharmaceutical and personal care products (PPCPs) are of increasing interest because of their ecotoxicological properties and environmental impacts. Wastewater treatment plants (WWTPs) are the main pathway for their release into freshwaters due to the inefficiency of conventional WWTPs in removing many of these contaminants from effluents. Therefore, different advanced effluent treatment techniques have been proposed for their treatment. However, it is not known at present how effective these treatment methods are and whether on a life cycle basis they cause other environmental impacts which may outweigh the benefits of the treatment. In an effort to provide an insight into this question, this paper considers life cycle environmental impacts of the following advanced treatment techniques aimed at reducing freshwater ecotoxicity potential of PPCPs: granular activated carbon (GAC), nanofiltration (NF), solar photo-Fenton (SPF) and ozonation. The results suggest that on average NF has the lowest impacts for 13 out of 18 categories considered. GAC is the best alternative for five impacts, including metals and water depletion, but it has the highest marine eutrophication. SPF and ozonation are the least sustainable for eight impacts, including ecotoxicity and climate change. GAC and NF are also more efficient in treating heavy metals while avoiding generation of harmful by-products during the treatment, thus being more suitable for potable reuse of wastewater. However, releasing the effluent without advanced treatment to agricultural land achieves a much higher reduction of freshwater ecotoxicity than treating it by any of the advanced treatments and releasing to the environment. Therefore, the use of advanced effluent treatment for agricultural purposes is not recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Recommended advanced techniques for waterborne pathogen detection in developing countries.

    PubMed

    Alhamlan, Fatimah S; Al-Qahtani, Ahmed A; Al-Ahdal, Mohammed N

    2015-02-19

    The effect of human activities on water resources has expanded dramatically during the past few decades, leading to the spread of waterborne microbial pathogens. The total global health impact of human infectious diseases associated with pathogenic microorganisms from land-based wastewater pollution was estimated to be approximately three million disability-adjusted life years (DALY), with an estimated economic loss of nearly 12 billion US dollars per year. Although clean water is essential for healthy living, it is not equally granted to all humans. Indeed, people who live in developing countries are challenged every day by an inadequate supply of clean water. Polluted water can lead to health crises that in turn spread waterborne pathogens. Taking measures to assess the water quality can prevent these potential risks. Thus, a pressing need has emerged in developing countries for comprehensive and accurate assessments of water quality. This review presents current and emerging advanced techniques for assessing water quality that can be adopted by authorities in developing countries.

  18. Hierarchical Regularization of Polygons for Photogrammetric Point Clouds of Oblique Images

    NASA Astrophysics Data System (ADS)

    Xie, L.; Hu, H.; Zhu, Q.; Wu, B.; Zhang, Y.

    2017-05-01

    Despite the success of multi-view stereo (MVS) reconstruction from massive oblique images in city scale, only point clouds and triangulated meshes are available from existing MVS pipelines, which are topologically defect laden, free of semantical information and hard to edit and manipulate interactively in further applications. On the other hand, 2D polygons and polygonal models are still the industrial standard. However, extraction of the 2D polygons from MVS point clouds is still a non-trivial task, given the fact that the boundaries of the detected planes are zigzagged and regularities, such as parallel and orthogonal, cannot preserve. Aiming to solve these issues, this paper proposes a hierarchical polygon regularization method for the photogrammetric point clouds from existing MVS pipelines, which comprises of local and global levels. After boundary points extraction, e.g. using alpha shapes, the local level is used to consolidate the original points, by refining the orientation and position of the points using linear priors. The points are then grouped into local segments by forward searching. In the global level, regularities are enforced through a labeling process, which encourage the segments share the same label and the same label represents segments are parallel or orthogonal. This is formulated as Markov Random Field and solved efficiently. Preliminary results are made with point clouds from aerial oblique images and compared with two classical regularization methods, which have revealed that the proposed method are more powerful in abstracting a single building and is promising for further 3D polygonal model reconstruction and GIS applications.

  19. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  20. Advanced intellect-augmentation techniques

    NASA Technical Reports Server (NTRS)

    Engelbart, D. C.

    1972-01-01

    User experience in applying our augmentation tools and techniques to various normal working tasks within our center is described so as to convey a subjective impression of what it is like to work in an augmented environment. It is concluded that working-support, computer-aid systems for augmenting individuals and teams, are undoubtedly going to be widely developed and used. A very special role in this development is seen for multi-access computer networks.

  1. Advancement on Visualization Techniques

    DTIC Science & Technology

    1980-10-01

    proposed STOL airport , a missed approach requires a go-around path = that must simultaneously (1) avoid existing reserved flight corridors ( JFK and Newark...absent but the aim is still to produce a particular colour sensation at a given spatio-temporal position on the display. Economical representation of...and p, q, r ... respectively. 1.5.1 Selection techniques An element is selected by applying a suitable signal between one of the row and one of the

  2. Photogrammetric Techniques for Promotion of Archaeological Heritage: the Archaeological Museum of Parma (italy)

    NASA Astrophysics Data System (ADS)

    Dall'Asta, E.; Bruno, N.; Bigliardi, G.; Zerbi, A.; Roncella, R.

    2016-06-01

    In a context rich in history and cultural heritage, such as the Italian one, promotion and enhancement of historical evidences are crucial. The paper describes the case study of the Archaeological Museum of Parma, which, for the main part, conserves evidences found in the roman archaeological site of Veleia (Piacenza, Italy). To enhance the comprehension of the past, the project aims to promote the exhibits through new digital contents, in particular 3D models and AR applications, to improve their usability by the public. Projects like this pose some difficulties especially in data acquisition and restitution due to complexity of the objects and their dimension and position that are not always adequate for an easy survey. Furthermore, in this case, it was necessary to find a solution that takes into account, on one hand, the necessity of a high degree of detail to ensure high metric quality and, on the other hand, the need of producing small files, in order to easy load and consult them on the web or smartphone applications. For all these reasons, close-range photogrammetry was considered the most adequate technique to produce the major part of the models. In this paper, particular attention will be dedicated to the description of the survey campaign and data processing, underlining difficulties and adopted solutions, in order to provide a methodological summary of the actions performed.

  3. Volumetric measurement of rock movement using photogrammetry

    PubMed Central

    Benton, Donovan J.; Iverson, Stephen R.; Martin, Lewis A.; Johnson, Jeffrey C.; Raffaldi, Michael J.

    2016-01-01

    NIOSH ground control safety research program at Spokane, Washington, is exploring applications of photogrammetry to rock mass and support monitoring. This paper describes two ways photogrammetric techniques are being used. First, photogrammetric data of laboratory testing is being used to correlate energy input and support deformation. This information can be used to infer remaining support toughness after ground deformation events. This technique is also demonstrated in a field application. Second, field photogrammetric data is compared to crackmeter data from a deep underground mine. Accuracies were found to average 8 mm, but have produced results within 0.2 mm of true displacement, as measured by crackmeters. Application of these techniques consists of monitoring overall fault activity by monitoring multiple points around the crackmeter. A case study is provided in which a crackmeter is clearly shown to have provided insufficient information regarding overall fault ground deformation. Photogrammetry is proving to be a useful ground monitoring tool due to its unobtrusiveness and ease of use. PMID:27110429

  4. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  5. Advanced Techniques for Simulating the Behavior of Sand

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2009-12-01

    research is to simulate the look and behavior of sand, this work will go beyond simple particle collision. In particular, we can continue to use our parallel algorithms not only on single particles but on particle “clumps” that consist of multiple combined particles. Since sand is typically not spherical in nature, these particle “clumps” help to simulate the coarse nature of sand. In a simulation environment, multiple combined particles could be used to simulate the polygonal and granular nature of sand grains. Thus, a diversity of sand particles can be generated. The interaction between these particles can then be parallelized using GPU hardware. As such, this research will investigate different graphics and physics techniques and determine the tradeoffs in performance and visual quality for sand simulation. An enhanced sand model through the use of high performance computing and GPUs has great potential to impact research for both earth and space scientists. Interaction with JPL has provided an opportunity for us to refine our simulation techniques that can ultimately be used for their vehicle simulator. As an added benefit of this work, advancements in simulating sand can also benefit scientists here on earth, especially in regard to understanding landslides and debris flows.

  6. Feasibility study consisting of a review of contour generation methods from stereograms

    NASA Technical Reports Server (NTRS)

    Kim, C. J.; Wyant, J. C.

    1980-01-01

    A review of techniques for obtaining contour information from stereo pairs is given. Photogrammetric principles including a description of stereoscopic vision are presented. The use of conventional contour generation methods, such as the photogrammetric plotting technique, electronic correlator, and digital correlator are described. Coherent optical techniques for contour generation are discussed and compared to the electronic correlator. The optical techniques are divided into two categories: (1) image plane operation and (2) frequency plane operation. The description of image plane correlators are further divided into three categories: (1) image to image correlator, (2) interferometric correlator, and (3) positive negative transparencies. The frequency plane correlators are divided into two categories: (1) correlation of Fourier transforms, and (2) filtering techniques.

  7. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  8. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  9. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  10. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  11. Development of advanced strain diagnostic techniques for reactor environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less

  12. Recent advances in lossless coding techniques

    NASA Astrophysics Data System (ADS)

    Yovanof, Gregory S.

    Current lossless techniques are reviewed with reference to both sequential data files and still images. Two major groups of sequential algorithms, dictionary and statistical techniques, are discussed. In particular, attention is given to Lempel-Ziv coding, Huffman coding, and arithmewtic coding. The subject of lossless compression of imagery is briefly discussed. Finally, examples of practical implementations of lossless algorithms and some simulation results are given.

  13. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  14. Multi-temporal monitoring of a regional riparian buffer network (>12,000 km) with LiDAR and photogrammetric point clouds.

    PubMed

    Michez, Adrien; Piégay, Hervé; Lejeune, Philippe; Claessens, Hugues

    2017-11-01

    Riparian buffers are of major concern for land and water resource managers despite their relatively low spatial coverage. In Europe, this concern has been acknowledged by different environmental directives which recommend multi-scale monitoring (from local to regional scales). Remote sensing methods could be a cost-effective alternative to field-based monitoring, to build replicable "wall-to-wall" monitoring strategies of large river networks and associated riparian buffers. The main goal of our study is to extract and analyze various parameters of the riparian buffers of up to 12,000 km of river in southern Belgium (Wallonia) from three-dimensional (3D) point clouds based on LiDAR and photogrammetric surveys to i) map riparian buffers parameters on different scales, ii) interpret the regional patterns of the riparian buffers and iii) propose new riparian buffer management indicators. We propose different strategies to synthesize and visualize relevant information at different spatial scales ranging from local (<10 km) to regional scale (>12,000 km). Our results showed that the selected parameters had a clear regional pattern. The reaches of Ardenne ecoregion have channels with the highest flow widths and shallowest depths. In contrast, the reaches of the Loam ecoregion have the narrowest and deepest flow channels. Regional variability in channel width and depth is used to locate management units potentially affected by human impact. Riparian forest of the Loam ecoregion is characterized by the lowest longitudinal continuity and mean tree height, underlining significant human disturbance. As the availability of 3D point clouds at the regional scale is constantly growing, our study proposes reproducible methods which can be integrated into regional monitoring by land managers. With LiDAR still being relatively expensive to acquire, the use of photogrammetric point clouds combined with LiDAR data is a cost-effective means to update the characterization of the

  15. Advanced Millimeter-Wave Security Portal Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  16. Clinical Application of a Hybrid RapidArc Radiotherapy Technique for Locally Advanced Lung Cancer.

    PubMed

    Silva, Scott R; Surucu, Murat; Steber, Jennifer; Harkenrider, Matthew M; Choi, Mehee

    2017-04-01

    Radiation treatment planning for locally advanced lung cancer can be technically challenging, as delivery of ≥60 Gy to large volumes with concurrent chemotherapy is often associated with significant risk of normal tissue toxicity. We clinically implemented a novel hybrid RapidArc technique in patients with lung cancer and compared these plans with 3-dimensional conformal radiotherapy and RapidArc-only plans. Hybrid RapidArc was used to treat 11 patients with locally advanced lung cancer having bulky mediastinal adenopathy. All 11 patients received concurrent chemotherapy. All underwent a 4-dimensional computed tomography planning scan. Hybrid RapidArc plans concurrently combined static (60%) and RapidArc (40%) beams. All cases were replanned using 3- to 5-field 3-dimensional conformal radiotherapy and RapidArc technique as controls. Significant reductions in dose were observed in hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans for total lung V20 and mean (-2% and -0.6 Gy); contralateral lung mean (-2.92 Gy); and esophagus V60 and mean (-16.0% and -2.2 Gy; all P < .05). Contralateral lung doses were significantly lower for hybrid RapidArc plans compared to RapidArc-only plans (all P < .05). Compared to 3-dimensional conformal radiotherapy, heart V60 and mean dose were significantly improved with hybrid RapidArc (3% vs 5%, P = .04 and 16.32 Gy vs 16.65 Gy, P = .03). However, heart V40 and V45 and maximum spinal cord dose were significantly lower with RapidArc plans compared to hybrid RapidArc plans. Conformity and homogeneity were significantly better with hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans ( P < .05). Treatment was well tolerated, with no grade 3+ toxicities. To our knowledge, this is the first report on the clinical application of hybrid RapidArc in patients with locally advanced lung cancer. Hybrid RapidArc permitted safe delivery of 60 to 66 Gy to large lung tumors with concurrent

  17. Network design and quality checks in automatic orientation of close-range photogrammetric blocks.

    PubMed

    Dall'Asta, Elisa; Thoeni, Klaus; Santise, Marina; Forlani, Gianfranco; Giacomini, Anna; Roncella, Riccardo

    2015-04-03

    Due to the recent improvements of automatic measurement procedures in photogrammetry, multi-view 3D reconstruction technologies are becoming a favourite survey tool. Rapidly widening structure-from-motion (SfM) software packages offer significantly easier image processing workflows than traditional photogrammetry packages. However, while most orientation and surface reconstruction strategies will almost always succeed in any given task, estimating the quality of the result is, to some extent, still an open issue. An assessment of the precision and reliability of block orientation is necessary and should be included in every processing pipeline. Such a need was clearly felt from the results of close-range photogrammetric surveys of in situ full-scale and laboratory-scale experiments. In order to study the impact of the block control and the camera network design on the block orientation accuracy, a series of Monte Carlo simulations was performed. Two image block configurations were investigated: a single pseudo-normal strip and a circular highly-convergent block. The influence of surveying and data processing choices, such as the number and accuracy of the ground control points, autofocus and camera calibration was investigated. The research highlights the most significant aspects and processes to be taken into account for adequate in situ and laboratory surveys, when modern SfM software packages are used, and evaluates their effect on the quality of the results of the surface reconstruction.

  18. Advances in High-Fidelity Multi-Physics Simulation Techniques

    DTIC Science & Technology

    2008-01-01

    predictor - corrector method is used to advance the solution in time. 33 x (m) y (m ) 0 1 2 3.00001 0 1 2 3 4 5 40 x 50 Grid 3 Figure 17: Typical...Unclassified c . THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 60 Datta Gaitonde 19b. TELEPHONE...advanced parallel computing platforms. The motivation to develop high-fidelity algorithms derives from considerations in various areas of current

  19. Correction of nasal deformity in infants with unilateral cleft lip and palate using multiple digital techniques.

    PubMed

    Zheng, Yaqi; Zhang, Dapeng; Qin, Tian; Wu, Guofeng

    2016-06-01

    Presurgical correction of severe nasal deformities before cheiloplasty is often recommended for infants with cleft lip and palate. This article describes an approach for the computer-aided design and fabrication of a nasal molding stent. A 3-dimensional photogrammetric system was used to obtain the shape information of the nosewing that was then built as the nostril support for the nasal molding stent. The stent was fabricated automatically with a rapid prototyping machine. This technique may be an alternative approach to presurgical nasal molding in the clinic. Moreover, the patient's nasal morphology can be saved as clinical data for future study. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. SU-E-T-398: Feasibility of Automated Tools for Robustness Evaluation of Advanced Photon and Proton Techniques in Oropharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liang, X; Kalbasi, A

    2014-06-01

    Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician

  1. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  2. Photogrammetric accuracy measurements of head holder systems used for fractionated radiotherapy.

    PubMed

    Menke, M; Hirschfeld, F; Mack, T; Pastyr, O; Sturm, V; Schlegel, W

    1994-07-30

    We describe how stereo photogrammetry can be used to determine immobilization and repositioning accuracies of head holder systems used for fractionated radiotherapy of intracranial lesions. The apparatus consists of two video cameras controlled by a personal computer and a bite block based landmark system. Position and spatial orientation of the landmarks are monitored by the cameras and processed for the real-time calculation of a target point's actual position relative to its initializing position. The target's position is assumed to be invariant with respect to the landmark system. We performed two series of 30 correlated head motion measurements on two test persons. One of the series was done with a thermoplastic device, the other one with a cast device developed for stereotactic treatment at the German Cancer Research Center. Immobilization and repositioning accuracies were determined with respect to a target point situated near the base of the skull. The repositioning accuracies were described in terms of the distributions of the mean displacements of the single motion measurements. Movements of the target in the order of 0.05 mm caused by breathing could be detected with a maximum resolution in time of 12 ms. The data derived from the investigation of the two test persons indicated similar immobilization accuracies for the two devices, but the repositioning errors were larger for the thermoplastic device than for the cast device. Apart from this, we found that for the thermoplastic mask the lateral repositioning error depended on the order in which the mask was closed. The photogrammetric apparatus is a versatile tool for accuracy measurements of head holder devices used for fractionated radiotherapy.

  3. Recent advances in endovascular techniques for management of acute nonvariceal upper gastrointestinal bleeding

    PubMed Central

    Loffroy, Romaric F; Abualsaud, Basem A; Lin, Ming D; Rao, Pramod P

    2011-01-01

    Over the past two decades, transcatheter arterial embolization has become the first-line therapy for the management of upper gastrointestinal bleeding that is refractory to endoscopic hemostasis. Advances in catheter-based techniques and newer embolic agents, as well as recognition of the effectiveness of minimally invasive treatment options, have expanded the role of interventional radiology in the management of hemorrhage for a variety of indications, such as peptic ulcer bleeding, malignant disease, hemorrhagic Dieulafoy lesions and iatrogenic or trauma bleeding. Transcatheter interventions include the following: selective embolization of the feeding artery, sandwich coil occlusion of the gastroduodenal artery, blind or empiric embolization of the supposed bleeding vessel based on endoscopic findings and coil pseudoaneurysm or aneurysm embolization by three-dimensional sac packing with preservation of the parent artery. Transcatheter embolization is a fast, safe and effective, minimally invasive alternative to surgery when endoscopic treatment fails to control bleeding from the upper gastrointestinal tract. This article reviews the various transcatheter endovascular techniques and devices that are used in a variety of clinical scenarios for the management of hemorrhagic gastrointestinal emergencies. PMID:21860697

  4. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  5. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  6. Bringing Advanced Computational Techniques to Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  7. Multidirectional mobilities: Advanced measurement techniques and applications

    NASA Astrophysics Data System (ADS)

    Ivarsson, Lars Holger

    Today high noise-and-vibration comfort has become a quality sign of products in sectors such as the automotive industry, aircraft, components, households and manufacturing. Consequently, already in the design phase of products, tools are required to predict the final vibration and noise levels. These tools have to be applicable over a wide frequency range with sufficient accuracy. During recent decades a variety of tools have been developed such as transfer path analysis (TPA), input force estimation, substructuring, coupling by frequency response functions (FRF) and hybrid modelling. While these methods have a well-developed theoretical basis, their application combined with experimental data often suffers from a lack of information concerning rotational DOFs. In order to measure response in all 6 DOFs (including rotation), a sensor has been developed, whose special features are discussed in the thesis. This transducer simplifies the response measurements, although in practice the excitation of moments appears to be more difficult. Several excitation techniques have been developed to enable measurement of multidirectional mobilities. For rapid and simple measurement of the loaded mobility matrix, a MIMO (Multiple Input Multiple Output) technique is used. The technique has been tested and validated on several structures of different complexity. A second technique for measuring the loaded 6-by-6 mobility matrix has been developed. This technique employs a model of the excitation set-up, and with this model the mobility matrix is determined from sequential measurements. Measurements on ``real'' structures show that both techniques give results of similar quality, and both are recommended for practical use. As a further step, a technique for measuring the unloaded mobilities is presented. It employs the measured loaded mobility matrix in order to calculate compensation forces and moments, which are later applied in order to compensate for the loading of the

  8. Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Diefenbach, Angela K.; Crider, Juliet G.; Schilling, Steve P.; Dzurisin, Daniel

    2012-01-01

    We describe a low-cost application of digital photogrammetry using commercially available photogrammetric software and oblique photographs taken with an off-the-shelf digital camera to create sequential digital elevation models (DEMs) of a lava dome that grew during the 2004–2008 eruption of Mount St. Helens (MSH) volcano. Renewed activity at MSH provided an opportunity to devise and test this method, because it could be validated against other observations of this well-monitored volcano. The datasets consist of oblique aerial photographs (snapshots) taken from a helicopter using a digital single-lens reflex camera. Twelve sets of overlapping digital images of the dome taken during 2004–2007 were used to produce DEMs and to calculate lava dome volumes and extrusion rates. Analyses of the digital images were carried out using photogrammetric software to produce three-dimensional coordinates of points identified in multiple photos. The evolving morphology of the dome was modeled by comparing successive DEMs. Results were validated by comparison to volume measurements derived from traditional vertical photogrammetric surveys by the US Geological Survey Cascades Volcano Observatory. Our technique was significantly less expensive and required less time than traditional vertical photogrammetric techniques; yet, it consistently yielded volume estimates within 5% of the traditional method. This technique provides an inexpensive, rapid assessment tool for tracking lava dome growth or other topographic changes at restless volcanoes.

  9. Sculpting 3D worlds with music: advanced texturing techniques

    NASA Astrophysics Data System (ADS)

    Greuel, Christian; Bolas, Mark T.; Bolas, Niko; McDowall, Ian E.

    1996-04-01

    Sound within the virtual environment is often considered to be secondary to the graphics. In a typical scenario, either audio cues are locally associated with specific 3D objects or a general aural ambiance is supplied in order to alleviate the sterility of an artificial experience. This paper discusses a completely different approach, in which cues are extracted from live or recorded music in order to create geometry and control object behaviors within a computer- generated environment. Advanced texturing techniques used to generate complex stereoscopic images are also discussed. By analyzing music for standard audio characteristics such as rhythm and frequency, information is extracted and repackaged for processing. With the Soundsculpt Toolkit, this data is mapped onto individual objects within the virtual environment, along with one or more predetermined behaviors. Mapping decisions are implemented with a user definable schedule and are based on the aesthetic requirements of directors and designers. This provides for visually active, immersive environments in which virtual objects behave in real-time correlation with the music. The resulting music-driven virtual reality opens up several possibilities for new types of artistic and entertainment experiences, such as fully immersive 3D `music videos' and interactive landscapes for live performance.

  10. Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques

    NASA Technical Reports Server (NTRS)

    Miller, Glenn E.

    1994-01-01

    NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.

  11. Community Tools for Cartographic and Photogrammetric Processing of Mars Express HRSC Images

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Edmundson, K.; Redding, B.; Galuszka, D.; Hare, T.; Gwinner, K.

    2017-07-01

    The High Resolution Stereo Camera (HRSC) on the Mars Express orbiter (Neukum et al. 2004) is a multi-line pushbroom scanner that can obtain stereo and color coverage of targets in a single overpass, with pixel scales as small as 10 m at periapsis. Since commencing operations in 2004 it has imaged  77 % of Mars at 20 m/pixel or better. The instrument team uses the Video Image Communication And Retrieval (VICAR) software to produce and archive a range of data products from uncalibrated and radiometrically calibrated images to controlled digital topographic models (DTMs) and orthoimages and regional mosaics of DTM and orthophoto data (Gwinner et al. 2009; 2010b; 2016). Alternatives to this highly effective standard processing pipeline are nevertheless of interest to researchers who do not have access to the full VICAR suite and may wish to make topographic products or perform other (e. g., spectrophotometric) analyses prior to the release of the highest level products. We have therefore developed software to ingest HRSC images and model their geometry in the USGS Integrated Software for Imagers and Spectrometers (ISIS3), which can be used for data preparation, geodetic control, and analysis, and the commercial photogrammetric software SOCET SET (® BAE Systems; Miller and Walker 1993; 1995) which can be used for independent production of DTMs and orthoimages. The initial implementation of this capability utilized the then-current ISIS2 system and the generic pushbroom sensor model of SOCET SET, and was described in the DTM comparison of independent photogrammetric processing by different elements of the HRSC team (Heipke et al. 2007). A major drawback of this prototype was that neither software system then allowed for pushbroom images in which the exposure time changes from line to line. Except at periapsis, HRSC makes such timing changes every few hundred lines to accommodate changes of altitude and velocity in its elliptical orbit. As a

  12. A multi-scale approach of fluvial biogeomorphic dynamics using photogrammetry.

    PubMed

    Hortobágyi, Borbála; Corenblit, Dov; Vautier, Franck; Steiger, Johannes; Roussel, Erwan; Burkart, Andreas; Peiry, Jean-Luc

    2017-11-01

    Over the last twenty years, significant technical advances turned photogrammetry into a relevant tool for the integrated analysis of biogeomorphic cross-scale interactions within vegetated fluvial corridors, which will largely contribute to the development and improvement of self-sustainable river restoration efforts. Here, we propose a cost-effective, easily reproducible approach based on stereophotogrammetry and Structure from Motion (SfM) technique to study feedbacks between fluvial geomorphology and riparian vegetation at different nested spatiotemporal scales. We combined different photogrammetric methods and thus were able to investigate biogeomorphic feedbacks at all three spatial scales (i.e., corridor, alluvial bar and micro-site) and at three different temporal scales, i.e., present, recent past and long term evolution on a diversified riparian landscape mosaic. We evaluate the performance and the limits of photogrammetric methods by targeting a set of fundamental parameters necessary to study biogeomorphic feedbacks at each of the three nested spatial scales and, when possible, propose appropriate solutions. The RMSE varies between 0.01 and 2 m depending on spatial scale and photogrammetric methods. Despite some remaining difficulties to properly apply them with current technologies under all circumstances in fluvial biogeomorphic studies, e.g. the detection of vegetation density or landform topography under a dense vegetation canopy, we suggest that photogrammetry is a promising instrument for the quantification of biogeomorphic feedbacks at nested spatial scales within river systems and for developing appropriate river management tools and strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Practical Repair Method for Unilateral Cleft Lips: Straight-Line Advanced Release Technique.

    PubMed

    Baek, Rong-Min; Choi, Jun-Ho; Kim, Baek-Kyu

    2016-04-01

    Straight-line closure repair of unilateral cleft lips was first introduced in the 1840s, and since then, many different techniques have been attempted for cleft repair. However, these methods have several disadvantages and are difficult to adopt. In this study, we describe our novel technique, known as Straight-Line Advanced Release Technique (StART), and its application in treating several cases of unilateral cleft lip. The preoperative design of the surgical method is drawn on the skin, the vermilion, and the oral mucosa. A total of 13 points are marked (points 0-12). The A flap, B flap, triangular flap, M (medial mucosal) flap, and L (lateral mucosal) flap are designed. After completion of the preoperative marking, the wide dissection is performed to separate the orbicularis oris muscle completely from the abnormally inserted bony structure and the enveloped skin-mucosal flap. The freed orbicularis oris muscle is then reconstructed with full width. After all planes of the lip wound are closed, a straight vertical skin suture line is achieved without any unnecessary transverse scar. Unilateral cleft lip repair using StART was conducted in 145 patients between 1993 and 2012. Cases of microform cleft lip were excluded. A total of 21 patients (14%) required a secondary operation on the lip after the first unilateral cheiloplasty. In all patients, satisfactory surgical outcomes were obtained with an indistinct straight-lined scar and a well-aligned lip contour. To acquire a natural and balanced shape in unilateral cleft lip repair, we recommend the novel StART.

  14. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  15. SFM Technique and Focus Stacking for Digital Documentation of Archaeological Artifacts

    NASA Astrophysics Data System (ADS)

    Clini, P.; Frapiccini, N.; Mengoni, M.; Nespeca, R.; Ruggeri, L.

    2016-06-01

    Digital documentation and high-quality 3D representation are always more requested in many disciplines and areas due to the large amount of technologies and data available for fast, detailed and quick documentation. This work aims to investigate the area of medium and small sized artefacts and presents a fast and low cost acquisition system that guarantees the creation of 3D models with an high level of detail, making the digitalization of cultural heritage a simply and fast procedure. The 3D models of the artefacts are created with the photogrammetric technique Structure From Motion that makes it possible to obtain, in addition to three-dimensional models, high-definition images for a deepened study and understanding of the artefacts. For the survey of small objects (only few centimetres) it is used a macro lens and the focus stacking, a photographic technique that consists in capturing a stack of images at different focus planes for each camera pose so that is possible to obtain a final image with a higher depth of field. The acquisition with focus stacking technique has been finally validated with an acquisition with laser triangulation scanner Minolta that demonstrates the validity compatible with the allowable error in relation to the expected precision.

  16. Development of a real-time aeroperformance analysis technique for the X-29A advanced technology demonstrator

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Hicks, J. W.; Alexander, R. I.

    1988-01-01

    The X-29A advanced technology demonstrator has shown the practicality and advantages of the capability to compute and display, in real time, aeroperformance flight results. This capability includes the calculation of the in-flight measured drag polar, lift curve, and aircraft specific excess power. From these elements many other types of aeroperformance measurements can be computed and analyzed. The technique can be used to give an immediate postmaneuver assessment of data quality and maneuver technique, thus increasing the productivity of a flight program. A key element of this new method was the concurrent development of a real-time in-flight net thrust algorithm, based on the simplified gross thrust method. This net thrust algorithm allows for the direct calculation of total aircraft drag.

  17. Treatment of multiple adjacent Miller Class I and II gingival recessions with collagen matrix and the modified coronally advanced tunnel technique.

    PubMed

    Molnár, Bálint; Aroca, Sofia; Keglevich, Tibor; Gera, István; Windisch, Péter; Stavropoulos, Andreas; Sculean, Anton

    2013-01-01

    To clinically evaluate the treatment of Miller Class I and II multiple adjacent gingival recessions using the modified coronally advanced tunnel technique combined with a newly developed bioresorbable collagen matrix of porcine origin. Eight healthy patients exhibiting at least three multiple Miller Class I and II multiple adjacent gingival recessions (a total of 42 recessions) were consecutively treated by means of the modified coronally advanced tunnel technique and collagen matrix. The following clinical parameters were assessed at baseline and 12 months postoperatively: full mouth plaque score (FMPS), full mouth bleeding score (FMBS), probing depth (PD), recession depth (RD), recession width (RW), keratinized tissue thickness (KTT), and keratinized tissue width (KTW). The primary outcome variable was complete root coverage. Neither allergic reactions nor soft tissue irritations or matrix exfoliations occurred. Postoperative pain and discomfort were reported to be low, and patient acceptance was generally high. At 12 months, complete root coverage was obtained in 2 out of the 8 patients and 30 of the 42 recessions (71%). Within their limits, the present results indicate that treatment of Miller Class I and II multiple adjacent gingival recessions by means of the modified coronally advanced tunnel technique and collagen matrix may result in statistically and clinically significant complete root coverage. Further studies are warranted to evaluate the performance of collagen matrix compared with connective tissue grafts and other soft tissue grafts.

  18. SEOM-SERAM-SEMNIM guidelines on the use of functional and molecular imaging techniques in advanced non-small-cell lung cancer.

    PubMed

    Fernández Pérez, G; Sánchez Escribano, R; García Vicente, A M; Luna Alcalá, A; Ceballos Viro, J; Delgado Bolton, R C; Vilanova Busquets, J C; Sánchez Rovira, P; Fierro Alanis, M P; García Figueiras, R; Alés Martínez, J E

    2018-05-25

    Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advancedmore » digital control/optimization phase of the project.« less

  20. A technique for processing of planetary images with heterogeneous characteristics for estimating geodetic parameters of celestial bodies with the example of Ganymede

    NASA Astrophysics Data System (ADS)

    Zubarev, A. E.; Nadezhdina, I. E.; Brusnikin, E. S.; Karachevtseva, I. P.; Oberst, J.

    2016-09-01

    The new technique for generation of coordinate control point networks based on photogrammetric processing of heterogeneous planetary images (obtained at different time, scale, with different illumination or oblique view) is developed. The technique is verified with the example for processing the heterogeneous information obtained by remote sensing of Ganymede by the spacecraft Voyager-1, -2 and Galileo. Using this technique the first 3D control point network for Ganymede is formed: the error of the altitude coordinates obtained as a result of adjustment is less than 5 km. The new control point network makes it possible to obtain basic geodesic parameters of the body (axes size) and to estimate forced librations. On the basis of the control point network, digital terrain models (DTMs) with different resolutions are generated and used for mapping the surface of Ganymede with different levels of detail (Zubarev et al., 2015b).

  1. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    PubMed Central

    Dirk, Brennan S.; Van Nynatten, Logan R.; Dikeakos, Jimmy D.

    2016-01-01

    Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle. PMID:27775563

  2. Automated Ground-based Time-lapse Camera Monitoring of West Greenland ice sheet outlet Glaciers: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Ahn, Y.; Box, J. E.; Balog, J.; Lewinter, A.

    2008-12-01

    Monitoring Greenland outlet glaciers using remotely sensed data has drawn a great attention in earth science communities for decades and time series analysis of sensory data has provided important variability information of glacier flow by detecting speed and thickness changes, tracking features and acquiring model input. Thanks to advancements of commercial digital camera technology and increased solid state storage, we activated automatic ground-based time-lapse camera stations with high spatial/temporal resolution in west Greenland outlet and collected one-hour interval data continuous for more than one year at some but not all sites. We believe that important information of ice dynamics are contained in these data and that terrestrial mono-/stereo-photogrammetry can provide theoretical/practical fundamentals in data processing along with digital image processing techniques. Time-lapse images over periods in west Greenland indicate various phenomenon. Problematic is rain, snow, fog, shadows, freezing of water on camera enclosure window, image over-exposure, camera motion, sensor platform drift, and fox chewing of instrument cables, and the pecking of plastic window by ravens. Other problems include: feature identification, camera orientation, image registration, feature matching in image pairs, and feature tracking. Another obstacle is that non-metric digital camera contains large distortion to be compensated for precise photogrammetric use. Further, a massive number of images need to be processed in a way that is sufficiently computationally efficient. We meet these challenges by 1) identifying problems in possible photogrammetric processes, 2) categorizing them based on feasibility, and 3) clarifying limitation and alternatives, while emphasizing displacement computation and analyzing regional/temporal variability. We experiment with mono and stereo photogrammetric techniques in the aide of automatic correlation matching for efficiently handling the enormous

  3. The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.; Christensen, P.; Smith, D. E.; Neumann, G. A.; Kirk, R. L.; Caplinger, M. A.; Albee, A. A.; Seregina, N. V.; Neukum, G.; Archinal, B. A.

    2014-12-01

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses in the year 2000 tied Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to update the location of Airy-0. Based upon this tie and radiometric tracking of landers/rovers from Earth, new expressions for the Mars spin axis direction, spin rate, and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Since the Mars Global Surveyor mission and Mars Orbiter Laser Altimeter global digital terrain model were completed some time ago, a more exhaustive study has been performed to determine the accuracy of the Airy-0 location and orientation of Mars at the standard epoch. Thermal Emission Imaging System (THEMIS) IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be about 0.001° east of its predicted location using the currently defined International Astronomical Union (IAU) prime meridian location. Information on this new location and how it was derived will be provided to the NASA Mars Exploration Program Geodesy and Cartography Working Group for their assessment. This NASA group will make a recommendation to the IAU Working Group on Cartographic Coordinates and Rotational Elements to update the expression for the Mars spin axis direction, spin rate, and prime meridian location.

  4. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  5. Advanced imaging techniques for small bowel Crohn's disease: what does the future hold?

    PubMed

    Pita, Inês; Magro, Fernando

    2018-01-01

    Treatment of Crohn's disease (CD) is intrinsically reliant on imaging techniques, due to the preponderance of small bowel disease and its transmural pattern of inflammation. Ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) are the most widely employed imaging methods and have excellent diagnostic accuracy in most instances. Some limitations persist, perhaps the most clinically relevant being the distinction between inflammatory and fibrotic strictures. In this regard, several methodologies have recently been tested in animal models and human patients, namely US strain elastography, shear wave elastography, contrast-enhanced US, magnetization transfer MRI and contrast dynamics in standard MRI. Technical advances in each of the imaging methods may expand their indications. The addition of oral contrast to abdominal US appears to substantially improve its diagnostic capabilities compared to standard US. Ionizing dose-reduction methods in CT can decrease concern about cumulative radiation exposure in CD patients and diffusion-weighted MRI may reduce the need for gadolinium contrast. Clinical indexes of disease activity and severity are also increasingly relying on imaging scores, such as the recently developed Lémann Index. In this review we summarize some of the recent advances in small bowel CD imaging and how they might affect clinical practice in the near future.

  6. Recording Approach of Heritage Sites Based on Merging Point Clouds from High Resolution Photogrammetry and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Grussenmeyer, P.; Alby, E.; Landes, T.; Koehl, M.; Guillemin, S.; Hullo, J. F.; Assali, P.; Smigiel, E.

    2012-07-01

    Different approaches and tools are required in Cultural Heritage Documentation to deal with the complexity of monuments and sites. The documentation process has strongly changed in the last few years, always driven by technology. Accurate documentation is closely relied to advances of technology (imaging sensors, high speed scanning, automation in recording and processing data) for the purposes of conservation works, management, appraisal, assessment of the structural condition, archiving, publication and research (Patias et al., 2008). We want to focus in this paper on the recording aspects of cultural heritage documentation, especially the generation of geometric and photorealistic 3D models for accurate reconstruction and visualization purposes. The selected approaches are based on the combination of photogrammetric dense matching and Terrestrial Laser Scanning (TLS) techniques. Both techniques have pros and cons and recent advances have changed the way of the recording approach. The choice of the best workflow relies on the site configuration, the performances of the sensors, and criteria as geometry, accuracy, resolution, georeferencing, texture, and of course processing time. TLS techniques (time of flight or phase shift systems) are widely used for recording large and complex objects and sites. Point cloud generation from images by dense stereo or multi-view matching can be used as an alternative or as a complementary method to TLS. Compared to TLS, the photogrammetric solution is a low cost one, as the acquisition system is limited to a high-performance digital camera and a few accessories only. Indeed, the stereo or multi-view matching process offers a cheap, flexible and accurate solution to get 3D point clouds. Moreover, the captured images might also be used for models texturing. Several software packages are available, whether web-based, open source or commercial. The main advantage of this photogrammetric or computer vision based technology is to

  7. Photogrammetric Recording and Reconstruction of Town Scale Models - the Case of the Plan-Relief of Strasbourg

    NASA Astrophysics Data System (ADS)

    Macher, H.; Grussenmeyer, P.; Landes, T.; Halin, G.; Chevrier, C.; Huyghe, O.

    2017-08-01

    The French collection of Plan-Reliefs, scale models of fortified towns, constitutes a precious testimony of the history of France. The aim of the URBANIA project is the valorisation and the diffusion of this Heritage through the creation of virtual models. The town scale model of Strasbourg at 1/600 currently exhibited in the Historical Museum of Strasbourg was selected as a case study. In this paper, the photogrammetric recording of this scale model is first presented. The acquisition protocol as well as the data post-processing are detailed. Then, the modelling of the city and more specially building blocks is investigated. Based on point clouds of the scale model, the extraction of roof elements is considered. It deals first with the segmentation of the point cloud into building blocks. Then, for each block, points belonging to roofs are identified and the extraction of chimney point clouds as well as roof ridges and roof planes is performed. Finally, the 3D parametric modelling of the building blocks is studied by considering roof polygons and polylines describing chimneys as input. In a future works section, the semantically enrichment and the potential usage scenarios of the scale model are envisaged.

  8. Conference Proceedings on Guidance and Control Techniques for Advanced Space Vehicles (37th) Held at Florence, Italy on 27-30 September 1983.

    DTIC Science & Technology

    1984-01-01

    P AD-A14l 969 CONFERENCE PROCEEDINGS ON GUIDANCE AND CONTROL 1 TECHNIQUES FOR ADVANCED SP-.(U,) ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT...findings of these various planning groups relativie to the ’e for advanced controls technology, and the perceived status of the technology t. me-,t... control of large flexible spacecraft. The program has also involved experimental activities to guide Ind validate the theoretical work. The

  9. Photophysics of Laser Dye-Doped Polymer Membranes for Laser-Induced Fluorescence Photogrammetry

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.

    2004-01-01

    Laser-induced fluorescence target generation in dye-doped polymer films has recently been introduced as a promising alternative to more traditional photogrammetric targeting techniques for surface profiling of highly transparent or reflective membrane structures. We investigate the photophysics of these dye-doped polymers to help determine their long-term durability and suitability for laser-induced fluorescence photogrammetric targeting. These investigations included experimental analysis of the fluorescence emission pattern, spectral content, temporal lifetime, linearity, and half-life. Results are presented that reveal an emission pattern wider than normal Lambertian diffuse surface scatter, a fluorescence time constant of 6.6 ns, a pump saturation level of approximately 20 micro J/mm(exp 2), and a useful lifetime of more than 300,000 measurements. Furthermore, two demonstrations of photogrammetric measurements by laser-induced fluorescence targeting are presented, showing agreement between photogrammetric and physically measured dimensions within the measurement scatter of 100 micron.

  10. SPRUCE Advanced Molecular Techniques Provide a Rigorous Method for Characterizing Organic Matter Quality in Complex Systems: Supporting Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Rachel M; Tfaily, Malak M

    These data are provided in support of the Commentary, Advanced molecular techniques provide a rigorous method for characterizing organic matter quality in complex systems, Wilson and Tfaily (2018). Measurement results demonstrate that optical characterization of peatland dissolved organic matter (DOM) may not fully capture classically identified chemical characteristics and may, therefore, not be the best measure of organic matter quality.

  11. Advanced Neuroimaging in Traumatic Brain Injury

    PubMed Central

    Edlow, Brian L.; Wu, Ona

    2013-01-01

    Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization and interpretation. PMID:23361483

  12. Application of Advanced Signal Processing Techniques to Angle of Arrival Estimation in ATC Navigation and Surveillance Systems

    DTIC Science & Technology

    1982-06-23

    Administration Systems Research and Development Service 14, Spseq Aese Ce ’ Washington, D.C. 20591 It. SeppkW•aae metm The work reported in this document was...consider sophisticated signal processing techniques as an alternative method of improving system performanceH Some work in this area has already taken place...demands on the frequency spectrum. As noted in Table 1-1, there has been considerable work on advanced signal processing in the MLS context

  13. Advanced Visualization and Interactive Display Rapid Innovation and Discovery Evaluation Research (VISRIDER) Program Task 6: Point Cloud Visualization Techniques for Desktop and Web Platforms

    DTIC Science & Technology

    2017-04-01

    ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms

  14. Documenting for Posterity: Advocating the Use of Advanced Recording Techniques for Documentation in the Field of Building Archaeology

    NASA Astrophysics Data System (ADS)

    De Vos, P. J.

    2017-08-01

    Since the new millennium, living in historic cities has become extremely popular in the Netherlands. As a consequence, historic environments are being adapted to meet modern living standards. Houses are constantly subjected to development, restoration and renovation. Although most projects are carried out with great care and strive to preserve and respect as much historic material as possible, nevertheless a significant amount of historical fabric disappears. This puts enormous pressure on building archaeologists that struggle to rapidly and accurately capture in situ authentic material and historical evidence in the midst of construction works. In Leiden, a medieval city that flourished during the seventeenth century and that today counts over 3,000 listed monuments, a solution to the problem has been found with the implementation of advanced recording techniques. Since 2014, building archaeologists of the city council have experienced first-hand that new recording techniques, such as laser scanning and photogrammetry, have dramatically decreased time spent on site with documentation. Time they now use to uncover, analyse and interpret the recovered historical data. Nevertheless, within building archaeology education, a strong case is made for hand drawing as a method for understanding a building, emphasising the importance of close observation and physical contact with the subject. In this paper, the use of advanced recording techniques in building archaeology is being advocated, confronting traditional educational theory with practise, and research tradition with the rapid rise of new recording technologies.

  15. From Metric Image Archives to Point Cloud Reconstruction: Case Study of the Great Mosque of Aleppo in Syria

    NASA Astrophysics Data System (ADS)

    Grussenmeyer, P.; Khalil, O. Al

    2017-08-01

    The paper presents photogrammetric archives from Aleppo (Syria), collected between 1999 and 2002 by the Committee for maintenance and restoration of the Great Mosque in partnership with the Engineering Unit of the University of Aleppo. During that period, terrestrial photogrammetric data and geodetic surveys of the Great Omayyad mosque were recorded for documentation purposes and geotechnical studies. During the recent war in Syria, the Mosque has unfortunately been seriously damaged and its minaret has been completely destroyed. The paper presents a summary of the documentation available from the past projects as well as solutions of 3D reconstruction based on the processing of the photogrammetric archives with the latest 3D image-based techniques.

  16. Evaluation of the Effectiveness of an Alar Transfixion Suture for the Correction of a Vestibular Web and Alar-Facial Groove: A Photogrammetric Analysis.

    PubMed

    Han, Kihwan; Oh, Sangho; Choi, Jaehoon; Park, Sang Woo

    2018-05-01

    Alar transfixion sutures are commonly used for vestibular web correction. The purpose of this study was to evaluate the long-term results of the use of alar transfixion sutures in patients with a unilateral cleft lip nasal deformity using photogrammetric analysis. The study included 42 patients who were divided into child and adult groups. A total of 4 measurement items were evaluated from a basal view by photogrammetry using standardized clinical photographic techniques preoperatively, immediately postoperatively, 3 months postoperatively, and 6 months postoperatively. When the preoperative and last postoperative values were compared, no significant changes in any measurement items were noted in the adult group. In the child group, the proportional index (the ratio of the cleft side to the noncleft side) of the alar slope line inclination was significantly increased, but other measurement items showed no significant change. When the measurement items were compared between time points, no significant changes in any measurement items were noted in the adult group. In the child group, the proportional indexes of the alar length, the width between the subnasale and the alare, and the webbing degree were significantly decreased immediately postoperatively compared with the preoperative values. However, these significant changes were diminished at 3 months postoperatively. The proportional index of the alar slope line inclination was significantly increased at 3 months postoperatively compared with the preoperative value, but the significant change was diminished at 6 months postoperatively. The alar transfixion suture procedure is not effective for correcting a vestibular web and alar-facial groove.

  17. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    PubMed

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival.

  18. Photogrammetry for documentation of vehicle deformations--a tool in a system for advanced accident data collection.

    PubMed

    Kullgren, A; Lie, A; Tingvall, C

    1994-02-01

    Vehicle deformations are important sources for information about the performance of safety systems. Photogrammetry has developed vastly under recent years. In this study modern photogrammetrical methods have been used for vehicle deformation analysis. The study describes the equipment for documentation and recording in the field (semi-metric camera), and a system for photogrammetrical measurements of the images in laboratory environment (personal computer and digitizing tablet). The material used is approximately 500 collected and measured cases. The study shows that the reliability is high and that accuracies around 15mm can be achieved even if the equipment and routines used are relatively simple. The effects of further development using video cameras for data capture and digital images for measurements are discussed.

  19. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  20. Utilization of advanced calibration techniques in stochastic rock fall analysis of quarry slopes

    NASA Astrophysics Data System (ADS)

    Preh, Alexander; Ahmadabadi, Morteza; Kolenprat, Bernd

    2016-04-01

    In order to study rock fall dynamics, a research project was conducted by the Vienna University of Technology and the Austrian Central Labour Inspectorate (Federal Ministry of Labour, Social Affairs and Consumer Protection). A part of this project included 277 full-scale drop tests at three different quarries in Austria and recording key parameters of the rock fall trajectories. The tests involved a total of 277 boulders ranging from 0.18 to 1.8 m in diameter and from 0.009 to 8.1 Mg in mass. The geology of these sites included strong rock belonging to igneous, metamorphic and volcanic types. In this paper the results of the tests are used for calibration and validation a new stochastic computer model. It is demonstrated that the error of the model (i.e. the difference between observed and simulated results) has a lognormal distribution. Selecting two parameters, advanced calibration techniques including Markov Chain Monte Carlo Technique, Maximum Likelihood and Root Mean Square Error (RMSE) are utilized to minimize the error. Validation of the model based on the cross validation technique reveals that in general, reasonable stochastic approximations of the rock fall trajectories are obtained in all dimensions, including runout, bounce heights and velocities. The approximations are compared to the measured data in terms of median, 95% and maximum values. The results of the comparisons indicate that approximate first-order predictions, using a single set of input parameters, are possible and can be used to aid practical hazard and risk assessment.

  1. Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.

    PubMed

    Murphy, James D; Chang, Daniel T; Abelson, Jon; Daly, Megan E; Yeung, Heidi N; Nelson, Lorene M; Koong, Albert C

    2012-02-15

    Radiotherapy may improve the outcome of patients with pancreatic cancer but at an increased cost. In this study, the authors evaluated the cost-effectiveness of modern radiotherapy techniques in the treatment of locally advanced pancreatic cancer. A Markov decision-analytic model was constructed to compare the cost-effectiveness of 4 treatment regimens: gemcitabine alone, gemcitabine plus conventional radiotherapy, gemcitabine plus intensity-modulated radiotherapy (IMRT); and gemcitabine with stereotactic body radiotherapy (SBRT). Patients transitioned between the following 5 health states: stable disease, local progression, distant failure, local and distant failure, and death. Health utility tolls were assessed for radiotherapy and chemotherapy treatments and for radiation toxicity. SBRT increased life expectancy by 0.20 quality-adjusted life years (QALY) at an increased cost of $13,700 compared with gemcitabine alone (incremental cost-effectiveness ratio [ICER] = $69,500 per QALY). SBRT was more effective and less costly than conventional radiotherapy and IMRT. An analysis that excluded SBRT demonstrated that conventional radiotherapy had an ICER of $126,800 per QALY compared with gemcitabine alone, and IMRT had an ICER of $1,584,100 per QALY compared with conventional radiotherapy. A probabilistic sensitivity analysis demonstrated that the probability of cost-effectiveness at a willingness to pay of $50,000 per QALY was 78% for gemcitabine alone, 21% for SBRT, 1.4% for conventional radiotherapy, and 0.01% for IMRT. At a willingness to pay of $200,000 per QALY, the probability of cost-effectiveness was 73% for SBRT, 20% for conventional radiotherapy, 7% for gemcitabine alone, and 0.7% for IMRT. The current results indicated that IMRT in locally advanced pancreatic cancer exceeds what society considers cost-effective. In contrast, combining gemcitabine with SBRT increased clinical effectiveness beyond that of gemcitabine alone at a cost potentially acceptable by

  2. The potential of 3D techniques for cultural heritage object documentation

    NASA Astrophysics Data System (ADS)

    Bitelli, Gabriele; Girelli, Valentina A.; Remondino, Fabio; Vittuari, Luca

    2007-01-01

    The generation of 3D models of objects has become an important research point in many fields of application like industrial inspection, robotics, navigation and body scanning. Recently the techniques for generating photo-textured 3D digital models have interested also the field of Cultural Heritage, due to their capability to combine high precision metrical information with a qualitative and photographic description of the objects. In fact this kind of product is a fundamental support for documentation, studying and restoration of works of art, until a production of replicas by fast prototyping techniques. Close-range photogrammetric techniques are nowadays more and more frequently used for the generation of precise 3D models. With the advent of automated procedures and fully digital products in the 1990s, it has become easier to use and cheaper, and nowadays a wide range of commercial software is available to calibrate, orient and reconstruct objects from images. This paper presents the complete process for the derivation of a photorealistic 3D model of an important basalt stela (about 70 x 60 x 25 cm) discovered in the archaeological site of Tilmen Höyük, in Turkey, dating back to 2nd mill. BC. We will report the modeling performed using passive and active sensors and the comparison of the achieved results.

  3. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection.

    PubMed

    Rostami, Ali; Karanis, Panagiotis; Fallahi, Shirzad

    2018-06-01

    Toxoplasmosis is worldwide distributed zoonotic infection disease with medical importance in immunocompromised patients, pregnant women and congenitally infected newborns. Having basic information on the traditional and new developed methods is essential for general physicians and infectious disease specialists for choosing a suitable diagnostic approach for rapid and accurate diagnosis of the disease and, consequently, timely and effective treatment. We conducted English literature searches in PubMed from 1989 to 2016 using relevant keywords and summarized the recent advances in diagnosis of toxoplasmosis. Enzyme-linked immunosorbent assay (ELISA) was most used method in past century. Recently advanced ELISA-based methods including chemiluminescence assays (CLIA), enzyme-linked fluorescence assay (ELFA), immunochromatographic test (ICT), serum IgG avidity test and immunosorbent agglutination assays (ISAGA) have shown high sensitivity and specificity. Recent studies using recombinant or chimeric antigens and multiepitope peptides method demonstrated very promising results to development of new strategies capable of discriminating recently acquired infections from chronic infection. Real-time PCR and loop-mediated isothermal amplification (LAMP) are two recently developed PCR-based methods with high sensitivity and specificity and could be useful to early diagnosis of infection. Computed tomography, magnetic resonance imaging, nuclear imaging and ultrasonography could be useful, although their results might be not specific alone. This review provides a summary of recent developed methods and also attempts to improve their sensitivity for diagnosis of toxoplasmosis. Serology, molecular and imaging technologies each has their own advantages and limitations which can certainly achieve definitive diagnosis of toxoplasmosis by combining these diagnostic techniques.

  4. Advanced applications of numerical modelling techniques for clay extruder design

    NASA Astrophysics Data System (ADS)

    Kandasamy, Saravanakumar

    Ceramic materials play a vital role in our day to day life. Recent advances in research, manufacture and processing techniques and production methodologies have broadened the scope of ceramic products such as bricks, pipes and tiles, especially in the construction industry. These are mainly manufactured using an extrusion process in auger extruders. During their long history of application in the ceramic industry, most of the design developments of extruder systems have resulted from expensive laboratory-based experimental work and field-based trial and error runs. In spite of these design developments, the auger extruders continue to be energy intensive devices with high operating costs. Limited understanding of the physical process involved in the process and the cost and time requirements of lab-based experiments were found to be the major obstacles in the further development of auger extruders.An attempt has been made herein to use Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) based numerical modelling techniques to reduce the costs and time associated with research into design improvement by experimental trials. These two techniques, although used widely in other engineering applications, have rarely been applied for auger extruder development. This had been due to a number of reasons including technical limitations of CFD tools previously available. Modern CFD and FEA software packages have much enhanced capabilities and allow the modelling of the flow of complex fluids such as clay.This research work presents a methodology in using Herschel-Bulkley's fluid flow based CFD model to simulate and assess the flow of clay-water mixture through the extruder and the die of a vacuum de-airing type clay extrusion unit used in ceramic extrusion. The extruder design and the operating parameters were varied to study their influence on the power consumption and the extrusion pressure. The model results were then validated using results from

  5. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Advances in radiotherapy techniques and delivery for non-small cell lung cancer: benefits of intensity-modulated radiation therapy, proton therapy, and stereotactic body radiation therapy

    PubMed Central

    Diwanji, Tejan P.; Mohindra, Pranshu; Vyfhuis, Melissa; Snider, James W.; Kalavagunta, Chaitanya; Mossahebi, Sina; Yu, Jen; Feigenberg, Steven

    2017-01-01

    The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement. PMID:28529896

  7. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    DOE PAGES

    Hess, Nancy J.; Pasa-Tolic, Ljiljana; Bailey, Vanessa L.; ...

    2017-04-12

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  8. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  9. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  10. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key stepmore » in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).« less

  11. Low-Cost Photogrammetric Technique Used to Measure Dome Growth at Mount St. Helens Volcano, 2007-2007

    NASA Astrophysics Data System (ADS)

    Diefenbach, A. K.; Crider, J. G.; Schilling, S. P.; Dzurisin, D.

    2007-12-01

    We describe a low-cost application of digital photogrammetry using commercial grade software, an off-the-shelf digital camera, a laptop computer and oblique photographs to reconstruct volcanic dome morphology during the on-going eruption at Mount St. Helens, Washington. Renewed activity at Mount St. Helens provides a rare opportunity to devise and test new methods for better understanding and predicting volcanic events, because the new method can be validated against other observations on this well-instrumented volcano. Uncalibrated, oblique aerial photographs (snap shots) taken from a helicopter are the raw data. Twelve sets of overlapping digital images of the dome taken during 2004-2007 were used to produce digital elevation models (DEMs) from which dome height, eruption volume and extrusion rate can be derived. Analyses of the digital images were carried out using PhotoModeler software, which produces three dimensional coordinates of points identified in multiple photos. The steps involved include: (1) calibrating the digital camera using this software package, (2) establishing control points derived from existing DEMs, (3) identifying tie points located in each photo of any given model date, and (4) identifying points in pairs of photos to build a three dimensional model of the evolving dome at each photo date. Text files of three-dimensional points encompassing the dome at each date were imported into ArcGIS and three-dimensional models (triangulated irregular network or TINs) were generated. TINs were then converted to 2 m raster DEMs. The evolving morphology of the growing dome was modeled by comparison of successive DEMs. The volume of extruded lava visible in each DEM was calculated using the 1986 pre-eruption crater floor topography as a basal surface. Results were validated by comparing volume measurements derived from traditional aerophotogrammetric surveys run by the USGS Cascades Volcano Observatory. Our new "quick and cheap" technique yields

  12. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  13. Advance of RNA interference technique in Hemipteran insects.

    PubMed

    Li, Jie; Wang, Xiaoping; Wang, Manqun; Ma, Weihua; Hua, Hongxia

    2012-07-24

    RNA interference (RNAi) suppressed the expression of the target genes by post transcriptional regulation and the double-stranded RNA (dsRNA) mediated gene silencing has been a conserved mechanism in many eukaryotes, which prompted RNAi to become a valuable tool for unveiling the gene function in many model insects. Recent research attested that RNAi technique can be also effective in downregulation target genes in Hemipteran insects. In this review, we collected the researches of utilizing RNAi technique in gene functional analysis in Hemipteran insects, highlighted the methods of dsRNA/siRNA uptake by insects and discussed the knock-down efficiency of these techniques. Although the RNA interference technique has drawbacks and obscure points, our primary goal of this review is try to exploit it for further discovering gene functions and pest control tactic in the Hemipteran insects. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  14. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive

  15. Laparoscopic Pelvic Exenteration for Locally Advanced Rectal Cancer, Technique and Short-Term Outcomes.

    PubMed

    Pokharkar, Ashish; Kammar, Praveen; D'souza, Ashwin; Bhamre, Rahul; Sugoor, Pavan; Saklani, Avanish

    2018-05-09

    Since last two decades minimally invasive techniques have revolutionized surgical field. In 2003 Pomel first described laparoscopic pelvic exenteration, since then very few reports have described minimally invasive approaches for total pelvic exenteration. We report the 10 cases of locally advanced rectal adenocarcinoma which were operated between the periods from March 1, 2017 to November 11, 2017 at the Tata Memorial Hospital, Mumbai. All male patients had lower rectal cancer with prostate involvement on magnetic resonance imaging (MRI). One female patient had uterine and fornix involvement. All perioperative and intraoperative parameters were collected retrospectively from prospectively maintained electronic data. Nine male patients with diagnosis of nonmetastatic locally advanced lower rectal adenocarcinoma were selected. All patients were operated with minimally invasive approach. All patients underwent abdominoperineal resection with permanent sigmoid stoma. Ileal conduit was constructed with Bricker's procedure through small infraumbilical incision (4-5 cm). Lateral pelvic lymph node dissection was done only when postchemoradiotherapy MRI showed enlarged pelvic nodes. All 10 patients received neoadjuvant chemo radiotherapy, whereas 8 patients received additional neoadjuvant chemotherapy. Mean body mass index was 21.73 (range 19.5-26.3). Mean blood loss was 1000 mL (range 300-2000 mL). Mean duration of surgery was 9.13 hours (range 7-13 hours). One patient developed paralytic ileus, which was managed conservatively. One patient developed intestinal obstruction due to herniation of small intestine behind the left ureter and ileal conduit. The same patient developed acute pylonephritis, which was managed with antibiotics. Mean postoperative stay was 14.6 days (range 9-25 days). On postoperative histopathology, all margins were free of tumor in all cases. Minimally invasive approaches can be used safely for total pelvic exenteration in locally advanced

  16. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  17. A novel technique: Carbon dioxide gas-assisted total peritonectomy, diaphragm and intestinal meso stripping in open surgery for advanced ovarian cancer (Çukurova technique).

    PubMed

    Khatib, Ghanim; Guzel, Ahmet Baris; Gulec, Umran Kucukgoz; Vardar, Mehmet Ali

    2017-09-01

    Most of the ovarian cancers are diagnosed at advanced stages. As peritoneal carcinomatosis increases, especially when it extends to the diaphragm and intestinal mesos, probability of obtaining complete cytoreduction is reduced. Complete cytoreduction (residue zero: R0) is one of the main factors affecting survival [1-3]. Here we present a novel technique of stripping the peritoneal surfaces as a part of cytoreductive surgery in such cases. A 55year-old woman diagnosed with peritoneal carcinomatosis was considered appropriate for primary cytoreduction after assessment of her thorax-abdominopelvic tomography, which revealed resectable intra-abdominal disease. Upon laparotomy, omental cake adherent to pelvis-filling mass, disseminated implants on the diaphragm, meso of the descending colon and small intestine were observed. The mass invaded the rectosigmoid colon, uterus, adnexa and the bladder resulting in frozen pelvis. Palpable retroperitoneal pelvic and para-aortic lymph nodes were detected. On the other side, stomach, anti-mesenteric surfaces and mesentery root of the small bowel were tumor-free. Hence, upon these perioperative and preoperative imaging findings, complete cytoreduction was thought to be achievable. Therefore, primary cytoreduction was performed. Total omentectomy, hysterectomy with bilateral salpingo-oophorectomy, rectosigmoid low anterior resection and retroperitoneal lymphadenectomy were performed. With the assistance of an injector needle connected to the insufflator tube (as in laparoscopic surgery), carbon dioxide gas was blown into the right retroperitoneal area and subsequently peritoneum was rapidly stripped up to the right diaphragm. The same procedure was then applied to the diaphragm and meso of the bowels, respectively. Owing to this technique, total stripping of all involved peritoneal surfaces was clearly facilitated and R0 goal was reached. Gas insufflation caused convenient detachment of the peritoneal surfaces along their

  18. Investigation of advanced phase-shifting projected fringe profilometry techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu

    1999-11-01

    The phase-shifting projected fringe profilometry (PSPFP) technique is a powerful tool in the profile measurements of rough engineering surfaces. Compared with other competing techniques, this technique is notable for its full-field measurement capacity, system simplicity, high measurement speed, and low environmental vulnerability. The main purpose of this dissertation is to tackle three important problems, which severely limit the capability and the accuracy of the PSPFP technique, with some new approaches. Chapter 1 provides some background information of the PSPFP technique including the measurement principles, basic features, and related techniques is briefly introduced. The objectives and organization of the thesis are also outlined. Chapter 2 gives a theoretical treatment to the absolute PSPFP measurement. The mathematical formulations and basic requirements of the absolute PSPFP measurement and its supporting techniques are discussed in detail. Chapter 3 introduces the experimental verification of the proposed absolute PSPFP technique. Some design details of a prototype system are discussed as supplements to the previous theoretical analysis. Various fundamental experiments performed for concept verification and accuracy evaluation are introduced together with some brief comments. Chapter 4 presents the theoretical study of speckle- induced phase measurement errors. In this analysis, the expression for speckle-induced phase errors is first derived based on the multiplicative noise model of image- plane speckles. The statistics and the system dependence of speckle-induced phase errors are then thoroughly studied through numerical simulations and analytical derivations. Based on the analysis, some suggestions on the system design are given to improve measurement accuracy. Chapter 5 discusses a new technique combating surface reflectivity variations. The formula used for error compensation is first derived based on a simplified model of the detection process

  19. Bim Automation: Advanced Modeling Generative Process for Complex Structures

    NASA Astrophysics Data System (ADS)

    Banfi, F.; Fai, S.; Brumana, R.

    2017-08-01

    The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.

  20. Bricklaying Curriculum: Advanced Bricklaying Techniques. Instructional Materials. Revised.

    ERIC Educational Resources Information Center

    Turcotte, Raymond J.; Hendrix, Laborn J.

    This curriculum guide is designed to assist bricklaying instructors in providing performance-based instruction in advanced bricklaying. Included in the first section of the guide are units on customized or architectural masonry units; glass block; sills, lintels, and copings; and control (expansion) joints. The next two units deal with cut,…

  1. Remote measurement methods for 3-D modeling purposes using BAE Systems' Software

    NASA Astrophysics Data System (ADS)

    Walker, Stewart; Pietrzak, Arleta

    2015-06-01

    Efficient, accurate data collection from imagery is the key to an economical generation of useful geospatial products. Incremental developments of traditional geospatial data collection and the arrival of new image data sources cause new software packages to be created and existing ones to be adjusted to enable such data to be processed. In the past, BAE Systems' digital photogrammetric workstation, SOCET SET®, met fin de siècle expectations in data processing and feature extraction. Its successor, SOCET GXP®, addresses today's photogrammetric requirements and new data sources. SOCET GXP is an advanced workstation for mapping and photogrammetric tasks, with automated functionality for triangulation, Digital Elevation Model (DEM) extraction, orthorectification and mosaicking, feature extraction and creation of 3-D models with texturing. BAE Systems continues to add sensor models to accommodate new image sources, in response to customer demand. New capabilities added in the latest version of SOCET GXP facilitate modeling, visualization and analysis of 3-D features.

  2. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  3. The effect of spinal curvature on the photogrammetric assessment on static balance in elderly women.

    PubMed

    Drzał-Grabiec, Justyna; Rachwał, Maciej; Podgórska-Bednarz, Justyna; Rykała, Justyna; Snela, Sławomir; Truszczyńska, Aleksandra; Trzaskoma, Zbigniew

    2014-05-29

    Involutional changes to the body in elderly patients affect the shape of the spine and the activity of postural muscles. The purpose of this study was to assess the influence of age-related changes in spinal curvature on postural balance in elderly women. The study population consisted of 90 women, with a mean age of 70 ± 8.01 years. Static balance assessments were conducted on a tensometric platform, and posturographic assessments of body posture were performed using a photogrammetric method based on the Projection Moiré method. The results obtained were analysed using the Spearman's rank correlation coefficient test. We found a statistically significant correlation between body posture and the quality of the balance system response based on the corrective function of the visual system. The shape of the spinal curvature influenced postural stability, as measured by static posturography. Improvement in the quality of the balance system response depended on corrective information from the visual system and proprioceptive information from the paraspinal muscles. The sensitivity of the balance system to the change of centre of pressure location was influenced by the direction of the change in rotation of the shoulder girdle and spine. Development of spinal curvature in the sagittal plane and maintenance of symmetry in the coronal and transverse planes are essential for correct balance control, which in turn is essential for the development of a properly proportioned locomotor system.

  4. Individual case photogrammetric calibration of the Hirschberg Ratio (HR) for corneal light reflection test strabometry.

    PubMed

    Romano, Paul E

    2006-01-01

    The HR (prism diopters [PD] per mm of corneal light reflection test [CLRT] asymmetry for strabometry) varies in humans from 14 to 24 PD/mm, but is totally unpredictable. Photo(grammetric) HR calibration in (of) each case facilitates acceptable strabometry precision and accuracy. Take 3 flash photos of the patient with both the preferred eye and then the deviating eye fixating straight ahead and then again with the deviation eye fixing at (+/-5-10 PD) the strabismic angle on a metric rule (stick) one meter away from the camera lens (where 1 cm = 1 PD). On these 3 photos, make four precise measurements of the position of the CLR with reference to the limbus: In the deviating eye fixing straight ahead and fixating at the angle of deviation. Divide the mm difference in location into the change in the angle of fixation to determine the HR for this patient at this angle. Then determine the CLR position in both the deviating eye and the fixing eye in the straight ahead primary position picture. Apply the calculated calibrated HR to the asymmetry of the CLRs in primary position to determine the true strabismic deviation. This imaging method insures accurate Hirschberg CLRT strabometry in each case, determining the deviation in "free space", under conditions of normal binocular viewing, uncontaminated by the artifacts or inaccuracies of other conventional strabometric methods or devices. So performed, the Hirschberg CLRT is the gold standard of strabometry.

  5. Laser-Induced Fluorescence Photogrammetry for Dynamic Characterization of Transparent and Aluminized Membrane Structures

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.; Pappa, Richard S.

    2003-01-01

    Photogrammetry has proven to be a valuable tool for static and dynamic profiling of membrane based inflatable and ultra-lightweight space structures. However, the traditional photogrammetric targeting techniques used for solid structures, such as attached retro-reflective targets and white-light dot projection, have some disadvantages and are not ideally suited for measuring highly transparent or reflective membrane structures. In this paper, we describe a new laser-induced fluorescence based target generation technique that is more suitable for these types of structures. We also present several examples of non-contact non-invasive photogrammetric measurements of laser-dye doped polymers, including the dynamic measurement and modal analysis of a 1m-by-1m aluminized solar sail style membrane.

  6. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques.

    PubMed

    Pindelska, Edyta; Sokal, Agnieszka; Kolodziejski, Waclaw

    2017-08-01

    The main goal of a novel drug development is to obtain it with optimal physiochemical, pharmaceutical and biological properties. Pharmaceutical companies and scientists modify active pharmaceutical ingredients (APIs), which often are cocrystals, salts or carefully selected polymorphs, to improve the properties of a parent drug. To find the best form of a drug, various advanced characterization methods should be used. In this review, we have described such analytical methods, dedicated to solid drug forms. Thus, diffraction, spectroscopic, thermal and also pharmaceutical characterization methods are discussed. They all are necessary to study a solid API in its intrinsic complexity from bulk down to the molecular level, gain information on its structure, properties, purity and possible transformations, and make the characterization efficient, comprehensive and complete. Furthermore, these methods can be used to monitor and investigate physical processes, involved in the drug development, in situ and in real time. The main aim of this paper is to gather information on the current advancements in the analytical methods and highlight their pharmaceutical relevance. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir

    2018-03-01

    The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.

  8. Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical

  9. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  10. Advanced Techniques for Ultrasonic Imaging in the Presence of Material and Geometrical Complexity

    NASA Astrophysics Data System (ADS)

    Brath, Alexander Joseph

    The complexity of modern engineering systems is increasing in several ways: advances in materials science are leading to the design of materials which are optimized for material strength, conductivity, temperature resistance etc., leading to complex material microstructure; the combination of additive manufacturing and shape optimization algorithms are leading to components with incredibly intricate geometrical complexity; and engineering systems are being designed to operate at larger scales in ever harsher environments. As a result, at the same time that there is an increasing need for reliable and accurate defect detection and monitoring capabilities, many of the currently available non-destructive evaluation techniques are rendered ineffective by this increasing material and geometrical complexity. This thesis addresses the challenges posed by inspection and monitoring problems in complex engineering systems with a three-part approach. In order to address material complexities, a model of wavefront propagation in anisotropic materials is developed, along with efficient numerical techniques to solve for the wavefront propagation in inhomogeneous, anisotropic material. Since material and geometrical complexities significantly affect the ability of ultrasonic energy to penetrate into the specimen, measurement configurations are tailored to specific applications which utilize arrays of either piezoelectric (PZT) or electromagnetic acoustic transducers (EMAT). These measurement configurations include novel array architectures as well as the exploration of ice as an acoustic coupling medium. Imaging algorithms which were previously developed for isotropic materials with simple geometry are adapted to utilize the more powerful wavefront propagation model and novel measurement configurations.

  11. Science with a selfie stick: Plant biomass estimation using smartphone based ‘Structure From Motion’ photogrammetry

    USDA-ARS?s Scientific Manuscript database

    Significant advancements in photogrammetric Structure-from-Motion (SfM) software, coupled with improvements in the quality and resolution of smartphone cameras, has made it possible to create ultra-fine resolution three-dimensional models of physical objects using an ordinary smartphone. Here we pre...

  12. Advanced nondestructive techniques applied for the detection of discontinuities in aluminum foams

    NASA Astrophysics Data System (ADS)

    Katchadjian, Pablo; García, Alejandro; Brizuela, Jose; Camacho, Jorge; Chiné, Bruno; Mussi, Valerio; Britto, Ivan

    2018-04-01

    Metal foams are finding an increasing range of applications by their lightweight structure and physical, chemical and mechanical properties. Foams can be used to fill closed moulds for manufacturing structural foam parts of complex shape [1]; foam filled structures are expected to provide good mechanical properties and energy absorption capabilities. The complexity of the foaming process and the number of parameters to simultaneously control, demand a preliminary and hugely wide experimental activity to manufacture foamed components with a good quality. That is why there are many efforts to improve the structure of foams, in order to obtain a product with good properties. The problem is that even for seemingly identical foaming conditions, the effective foaming can vary significantly from one foaming trial to another. The variation of the foams often is related by structural imperfections, joining region (foam-foam or foam-wall mold) or difficulties in achieving a complete filling of the mould. That is, in a closed mold, the result of the mold filling and its structure or defects are not known a priori and can eventually vary significantly. These defects can cause a drastic deterioration of the mechanical properties [2] and lead to a low performance in its application. This work proposes the use of advanced nondestructive techniques for evaluating the foam distribution after filling the mold to improve the manufacturing process. To achieved this purpose ultrasonic technique (UT) and cone beam computed tomography (CT) were applied on plate and structures of different thicknesses filled with foam of different porosity. UT was carried out on transmission mode with low frequency air-coupled transducers [3], in focused and unfocused configurations.

  13. Stochastic Feedforward Control Technique

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  14. A simplified close range photogrammetric technique for soil erosion assessment

    USDA-ARS?s Scientific Manuscript database

    Surface reconstruction using digital photogrammetry offers a great advantage for soil erosion research. The technology can be cumbersome for field application as it relies on the accurate measurement of control points often using a survey grade instruments. Also, even though digital photogrammetry h...

  15. Application of advanced signal processing techniques to the rectification and registration of spaceborne imagery. [technology transfer, data transmission

    NASA Technical Reports Server (NTRS)

    Caron, R. H.; Rifman, S. S.; Simon, K. W.

    1974-01-01

    The development of an ERTS/MSS image processing system responsive to the needs of the user community is discussed. An overview of the TRW ERTS/MSS processor is presented, followed by a more detailed discussion of image processing functions satisfied by the system. The particular functions chosen for discussion are evolved from advanced signal processing techniques rooted in the areas of communication and control. These examples show how classical aerospace technology can be transferred to solve the more contemporary problems confronting the users of spaceborne imagery.

  16. Systems-Level Synthetic Biology for Advanced Biofuel Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less

  17. Advances in dental materials.

    PubMed

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  18. Expanding the Impact of Photogrammetric Topography Through Improved Data Archiving and Access

    NASA Astrophysics Data System (ADS)

    Crosby, C. J.; Arrowsmith, R.; Nandigam, V.

    2016-12-01

    Centimeter to decimeter-scale 2.5 to 3D sampling of the Earth surface topography coupled with the potential for photorealistic coloring of point clouds and texture mapping of meshes enables a wide range of science applications. Not only is the configuration and state of the surface as imaged valuable, but repeat surveys enable quantification of topographic change (erosion, deposition, and displacement) caused by various geologic processes. We are in an era of ubiquitous point clouds which come from both active sources such as laser scanners and radar as well as passive scene reconstruction via structure from motion (SfM) photogrammetry. With the decreasing costs of high-resolution topography (HRT) data collection, via methods such as SfM, the number of researchers collecting these data is increasing. These "long-tail" topographic data are of modest size but great value, and challenges exist to making them widely discoverable, shared, annotated, cited, managed and archived. Presently, there are no central repositories or services to support storage and curation of these datasets. The NSF funded OpenTopography (OT) employs cyberinfrastructure including large-scale data management, high-performance computing, and service-oriented architectures, to provide efficient online access to large HRT (mostly lidar) datasets, metadata, and processing tools. With over 200 datasets and 12,000 registered users, OT is well positioned to provide curation for community collected photogrammetric topographic data. OT is developing a "Community DataSpace", a service built on a low cost storage cloud (e.g. AWS S3) to make it easy for researchers to upload, curate, annotate and distribute their datasets. The system's ingestion workflow will extract metadata from data uploaded; validate it; assign a digital object identifier (DOI); and create a searchable catalog entry, before publishing via the OT portal. The OT Community DataSpace will enable wider discovery and utilization of these HRT

  19. Irreversible electroporation of locally advanced pancreatic neck/body adenocarcinoma

    PubMed Central

    2015-01-01

    Objective Irreversible electroporation (IRE) of locally advanced pancreatic adenocarcinoma of the neck has been used to palliate appropriate stage 3 pancreatic cancers without evidence of metastasis and who have undergone appropriate induction therapy. Currently there has not been a standardized reported technique for pancreatic mid-body tumors for patient selection and intra-operative technique. Patients Subjects are patients with locally advanced pancreatic adenocarcinoma of the body/neck who have undergone appropriate induction chemotherapy for a reasonable duration. Main outcome measures Technique of open IRE of locally advanced pancreatic adenocarcinoma of the neck/body is described, with the emphasis on intra-operative ultrasound and intra-operative electroporation management. Results The technique of open IRE of the pancreatic neck/body with bracketing of the celiac axis and superior mesenteric artery with continuous intraoperative ultrasound imaging and consideration of intraoperative navigational system is described. Conclusions IRE of locally advanced pancreatic adenocarcinoma of the body/neck is feasible for appropriate patients with locally advanced unresectable pancreatic cancer. PMID:26029461

  20. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  1. Advanced control techniques for teleoperation in earth orbit

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Brooks, T. L.

    1980-01-01

    Emerging teleoperation tasks in space invite advancements in teleoperator control technology. This paper briefly summarizes the generic issues related to earth orbital applications of teleoperators, and describes teleoperator control technology development work including visual and non-visual sensors and displays, kinesthetic feedback and computer-aided controls. Performance experiments were carried out using sensor and computer aided controls with promising results which are briefly summarized.

  2. 3D modeling of a dolerite intrusion from the photogrammetric and geophysical data integration.

    NASA Astrophysics Data System (ADS)

    Duarte, João; Machadinho, Ana; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    The aims of this study is create a methodology based on the integration of data obtained from various available technologies, which allow a credible and complete evaluation of rock masses. In this particular case of a dolerite intrusion, which deployed an exploration of aggregates and belongs to the Jobasaltos - Extracção e Britagem. S.A.. Dolerite intrusion is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones. The integration of the surface and subsurface mapping, obtained by technology UAVs (Drone) and geophysical surveys (Electromagnetic Method - TEM 48 FAST), allows the construction of 2D and 3D models of the study local. The combination of the 3D point clouds produced from two distinct processes, modeling of photogrammetric and geophysical data, will be the basis for the construction of a single model of set. The rock masses in an integral perspective being visible their development above the surface and subsurface. The presentation of 2D and 3D models will give a perspective of structures, fracturation, lithology and their spatial correlations contributing to a better local knowledge, as well as its potential for the intended purpose. From these local models it will be possible to characterize and quantify the geological structures. These models will have its importance as a tool to assist in the analysis and drafting of regional models. The qualitative improvement in geological/structural modeling, seeks to reduce the value of characterization/cost ratio, in phase of prospecting, improving the investment/benefit ratio. This methodology helps to assess more accurately the economic viability of the projects.

  3. Assessment of Restoration Methods of X-Ray Images with Emphasis on Medical Photogrammetric Usage

    NASA Astrophysics Data System (ADS)

    Hosseinian, S.; Arefi, H.

    2016-06-01

    Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  4. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  5. Recent Advances in Voltammetry

    PubMed Central

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-01-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984

  6. Photogrammetry using Apollo 16 orbital photography, part B

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.; Schafer, F. J.; Jordan, R.; Nakata, G. M.

    1972-01-01

    Discussion is made of the Apollo 15 and 16 metric and panoramic cameras which provided photographs for accurate topographic portrayal of the lunar surface using photogrammetric methods. Nine stereoscopic models of Apollo 16 metric photographs and three models of panoramic photographs were evaluated photogrammetrically in support of the Apollo 16 geologic investigations. Four of the models were used to collect profile data for crater morphology studies; three models were used to collect evaluation data for the frequency distributions of lunar slopes; one model was used to prepare a map of the Apollo 16 traverse area; and one model was used to determine elevations of the Cayley Formation. The remaining three models were used to test photogrammetric techniques using oblique metric and panoramic camera photographs. Two preliminary contour maps were compiled and a high-oblique metric photograph was rectified.

  7. Operational experience in underwater photogrammetry

    NASA Astrophysics Data System (ADS)

    Leatherdale, John D.; John Turner, D.

    Underwater photogrammetry has become established as a cost-effective technique for inspection and maintenance of platforms and pipelines for the offshore oil industry. A commercial service based in Scotland operates in the North Sea, USA, Brazil, West Africa and Australia. 70 mm cameras and flash units are built for the purpose and analytical plotters and computer graphics systems are used for photogrammetric measurement and analysis of damage, corrosion, weld failures and redesign of underwater structures. Users are seeking simple, low-cost systems for photogrammetric analysis which their engineers can use themselves.

  8. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, D.; Chang, W.; Haran, M.; Applegate, P.; DeConto, R.

    2015-11-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.

  9. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, David; Chang, Won; Haran, Murali; Applegate, Patrick; DeConto, Robert

    2016-05-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ˜ 20 000 yr. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. The analyses provide sea-level-rise envelopes with well-defined parametric uncertainty bounds, but the simple averaging method only provides robust results with full-factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree well with the more advanced techniques. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds.

  10. Precision and Error of Three-dimensional Phenotypic Measures Acquired from 3dMD Photogrammetric Images

    PubMed Central

    Aldridge, Kristina; Boyadjiev, Simeon A.; Capone, George T.; DeLeon, Valerie B.; Richtsmeier, Joan T.

    2015-01-01

    The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic studies due to their ability to collect data rapidly and non-invasively. Before these systems can be broadly implemented the error associated with data collected from images acquired using these technologies must be assessed. This study investigates the precision, error, and repeatability associated with anthropometric landmark coordinate data collected from 3D digital photogrammetric images acquired with the 3dMDface System. Precision, error due to the imaging system, error due to digitization of the images, and repeatability are assessed in a sample of children and adults (N=15). Results show that data collected from images with the 3dMDface System are highly repeatable and precise. The average error associated with the placement of landmarks is sub-millimeter; both the error due to digitization and to the imaging system are very low. The few measures showing a higher degree of error include those crossing the labial fissure, which are influenced by even subtle movement of the mandible. These results suggest that 3D anthropometric data collected using the 3dMDface System are highly reliable and therefore useful for evaluation of clinical dysmorphology and surgery, analyses of genotype-phenotype correlations, and inheritance of complex phenotypes. PMID:16158436

  11. Advances in reduction techniques for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

  12. Thyroid Radiofrequency Ablation: Updates on Innovative Devices and Techniques

    PubMed Central

    Park, Hye Sun; Park, Auh Whan; Chung, Sae Rom; Choi, Young Jun; Lee, Jeong Hyun

    2017-01-01

    Radiofrequency ablation (RFA) is a well-known, effective, and safe method for treating benign thyroid nodules and recurrent thyroid cancers. Thyroid-dedicated devices and basic techniques for thyroid RFA were introduced by the Korean Society of Thyroid Radiology (KSThR) in 2012. Thyroid RFA has now been adopted worldwide, with subsequent advances in devices and techniques. To optimize the treatment efficacy and patient safety, understanding the basic and advanced RFA techniques and selecting the optimal treatment strategy are critical. The goal of this review is to therefore provide updates and analysis of current devices and advanced techniques for RFA treatment of benign thyroid nodules and recurrent thyroid cancers. PMID:28670156

  13. Advanced analysis techniques for uranium assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples countmore » rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.« less

  14. Recent Advance in Liquid Chromatography/Mass Spectrometry Techniques for Environmental Analysis in Japan

    PubMed Central

    Suzuki, Shigeru

    2014-01-01

    The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891

  15. Monogenean Parasite Cultures: Current Techniques and Recent Advances.

    PubMed

    Hutson, Kate Suzanne; Brazenor, Alexander Karlis; Vaughan, David Brendan; Trujillo-González, Alejandro

    2018-01-01

    Global expansion in fish production and trade of aquatic ornamental species requires advances in aquatic animal health management. Aquatic parasite cultures permit diverse research opportunities to understand parasite-host dynamics and are essential to validate the efficacy of treatments that could reduce infections in captive populations. Monogeneans are important pathogenic parasites of captured captive fishes and exhibit a single-host life cycle, which makes them amenable to in vivo culture. Continuous cultures of oviparous monogenean parasites provide a valuable resource of eggs, oncomiracidia (larvae) and adult parasites for use in varied ecological and applied scientific research. For example, the parasite-host dynamics of Entobdella soleae (van Beneden and Hesse, 1864) and its fish host, Solea solea (Linnaeus, 1758), is one of the most well-documented of all monogeneans following meticulous, dedicated study. Polystoma spp. cultures provide an intriguing model for examining evolution in monogeneans because they exhibit two alternative phenotypes depending on the age of infection of amphibians. Furthermore, assessments of the ecological, pathological and immunological effects of fish parasites in aquaculture have been achieved through cultures of Gyrodactylus von Nordmann, 1832 spp., Benedenia seriolae (Yamaguti, 1934), Neobenedenia Yamaguti, 1963 spp. and Zeuxapta seriolae (Meserve, 1938). This review critically examines methods to establish and maintain in vivo monogenean monocultures on finfish, elasmobranchs and amphibians. Four separate approaches to establish cultures are scrutinised including the collection of live infected hosts, cohabiting recipient hosts with infected stock, cohabiting hosts with parasite eggs or oncomiracidia (larvae) and direct transfer of live adult parasites onto new fish hosts. Specific parasite species' biology and behaviour permits predictive collection of parasite life stages to effectively maintain a continuous culture

  16. Advanced Wavefront Control Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S; Brase, J M; Avicola, K

    2001-02-21

    year of this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.« less

  17. Advanced Characterization Techniques for Sodium-Ion Battery Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning

    Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight intomore » the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. Here in this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Lastly, special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.« less

  18. Advanced Characterization Techniques for Sodium-Ion Battery Studies

    DOE PAGES

    Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning; ...

    2018-02-19

    Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight intomore » the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. Here in this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Lastly, special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.« less

  19. Quality control system preparation for photogrammetric and laser scanning missions of Spanish national plan of aerial orthophotogpaphy (PNOA). (Polish Title: Opracowanie systemu kontroli jakości realizacji nalotów fotogrametrycznych i skaningowych dla hiszpańskiego narodowego planu ortofotomapy lotniczej (PNOA))

    NASA Astrophysics Data System (ADS)

    Rzonca, A.

    2013-12-01

    The paper presents the state of the art of quality control of photogrammetric and laser scanning data captured by airborne sensors. The described subject is very important for photogrammetric and LiDAR project execution, because the data quality a prior decides about the final product quality. On the other hand, precise and effective quality control process allows to execute the missions without wide margin of safety, especially in case of the mountain areas projects. For introduction, the author presents theoretical background of the quality control, basing on his own experience, instructions and technical documentation. He describes several variants of organization solutions. Basically, there are two main approaches: quality control of the captured data and the control of discrepancies of the flight plan and its results of its execution. Both of them are able to use test of control and analysis of the data. The test is an automatic algorithm controlling the data and generating the control report. Analysis is a less complicated process, that is based on documentation, data and metadata manual check. The example of quality control system for large area project was presented. The project is being realized periodically for the territory of all Spain and named National Plan of Aerial Orthophotography (Plan Nacional de Ortofotografía Aérea, PNOA). The system of the internal control guarantees its results soon after the flight and informs the flight team of the company. It allows to correct all the errors shortly after the flight and it might stop transferring the data to another team or company, for further data processing. The described system of data quality control contains geometrical and radiometrical control of photogrammetric data and geometrical control of LiDAR data. According to all specified parameters, it checks all of them and generates the reports. They are very helpful in case of some errors or low quality data. The paper includes the author experience

  20. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  1. Advanced fluorescence microscopy techniques for the life sciences

    PubMed Central

    Aguib, Yasmine; Yacoub, Magdi H.

    The development of super-resolved fluorescence microscopy, for which the Nobel Prize was awarded in 2014, has been a topic of interest to physicists and biologists alike. It is inevitable that numerous questions in biomedical research cannot be answered by means other than direct observation. In this review, advances to fluorescence microscopy are covered in a widely accessible fashion to facilitate its use in decisions related to its acquisition and utilization in biomedical research. PMID:29043264

  2. Quantitative assessment of human motion using video motion analysis

    NASA Technical Reports Server (NTRS)

    Probe, John D.

    1990-01-01

    In the study of the dynamics and kinematics of the human body, a wide variety of technologies was developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development coupled with recent advances in video technology have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System to develop data on shirt-sleeved and space-suited human performance in order to plan efficient on orbit intravehicular and extravehicular activities. The system is described.

  3. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  4. Conventional and conformal technique of external beam radiotherapy in locally advanced cervical cancer: Dose distribution, tumor response, and side effects

    NASA Astrophysics Data System (ADS)

    Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.

    2017-08-01

    The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG

  5. Chapter 16: Lignin Visualization: Advanced Microscopy Techniques for Lignin Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Yining; Donohoe, Bryon S

    Visualization of lignin in plant cell walls, with both spatial and chemical resolution, is emerging as an important tool to understand lignin's role in the plant cell wall's nanoscale architecture and to understand and design processes intended to modify the lignin. As such, this chapter reviews recent advances in advanced imaging methods with respect to lignin in plant cell walls. This review focuses on the importance of lignin detection and localization for studies in both plant biology and biotechnology. Challenges going forward to identify and delineate lignin from other plant cell wall components and to quantitatively analyze lignin in wholemore » cell walls from native plant tissue and treated biomass are also discussed.« less

  6. Modulation Characterization Techniques

    DTIC Science & Technology

    1991-04-01

    34Advanced Communication Processing Techniques" was organized and held in Ruidoso , New Mexico, May 14-17, 1989. Dr. Charles Weber’s participation involved...to attend and deliver presentations at MILCOM 󈨜. • Dr. Charles Weber travelled to Ruidoso , NM, to chair the session on Modulation...Characterization at the CSI Workshop May 14-17, 1989. 26 r * Dr. Andreas Polydoros travelled to Ruidoso , NM, to attend the CSI Workshop "Advanced Communication

  7. Application of Energy Integration Techniques to the Design of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory

    2000-01-01

    Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

  8. Coupling photogrammetric data with DFN-DEM model for rock slope hazard assessment

    NASA Astrophysics Data System (ADS)

    Donze, Frederic; Scholtes, Luc; Bonilla-Sierra, Viviana; Elmouttie, Marc

    2013-04-01

    Structural and mechanical analyses of rock mass are key components for rock slope stability assessment. The complementary use of photogrammetric techniques [Poropat, 2001] and coupled DFN-DEM models [Harthong et al., 2012] provides a methodology that can be applied to complex 3D configurations. DFN-DEM formulation [Scholtès & Donzé, 2012a,b] has been chosen for modeling since it can explicitly take into account the fracture sets. Analyses conducted in 3D can produce very complex and unintuitive failure mechanisms. Therefore, a modeling strategy must be established in order to identify the key features which control the stability. For this purpose, a realistic case is presented to show the overall methodology from the photogrammetry acquisition to the mechanical modeling. By combining Sirovision and YADE Open DEM [Kozicki & Donzé, 2008, 2009], it can be shown that even for large camera to rock slope ranges (tested about one kilometer), the accuracy of the data are sufficient to assess the role of the structures on the stability of a jointed rock slope. In this case, on site stereo pairs of 2D images were taken to create 3D surface models. Then, digital identification of structural features on the unstable block zone was processed with Sirojoint software [Sirovision, 2010]. After acquiring the numerical topography, the 3D digitalized and meshed surface was imported into the YADE Open DEM platform to define the studied rock mass as a closed (manifold) volume to define the bounding volume for numerical modeling. The discontinuities were then imported as meshed planar elliptic surfaces into the model. The model was then submitted to gravity loading. During this step, high values of cohesion were assigned to the discontinuities in order to avoid failure or block displacements triggered by inertial effects. To assess the respective role of the pre-existing discontinuities in the block stability, different configurations have been tested as well as different degree of

  9. Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity

    NASA Astrophysics Data System (ADS)

    Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.

    2014-09-01

    As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.

  10. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  11. First 3D thermal mapping of an active volcano using an advanced photogrammetric method

    NASA Astrophysics Data System (ADS)

    Antoine, Raphael; Baratoux, David; Lacogne, Julien; Lopez, Teodolina; Fauchard, Cyrille; Bretar, Frédéric; Arab-Sedze, Mélanie; Staudacher, Thomas; Jacquemoud, Stéphane; Pierrot-Deseilligny, Marc

    2014-05-01

    Thermal infrared data obtained in the [7-14 microns] spectral range are usually used in many Earth Science disciplines. These studies are exclusively based on the analysis of 2D information. In this case, a quantitative analysis of the surface energy budget remains limited, as it may be difficult to estimate the radiative contribution of the topography, the thermal influence of winds on the surface or potential imprints of subsurface flows on the soil without any precise DEM. The draping of a thermal image on a recent DEM is a common method to obtain a 3D thermal map of a surface. However, this method has many disadvantages i) errors can be significant in the orientation process of the thermal images, due to the lack of tie points between the images and the DEM; ii) the use of a recent DEM implies the use of another remote sensing technique to quantify the topography; iii) finally, the characterization of the evolution of a surface requires the simultaneous acquisition of thermal data and topographic information, which may be expensive in most cases. The stereophotogrammetry method allows to reconstitute the relief of an object from photos taken from different positions. Recently, substantial progress have been realized in the generation of high spatial resolution topographic surfaces using stereophotogrammetry. However, the presence of shadows, homogeneous textures and/or weak contrasts in the visible spectrum (e.g., flowing lavas, uniform lithologies) may prevent from the use of such method, because of the difficulties to find tie points on each image. Such situations are more favorable in the thermal infrared spectrum, as any variation in the thermal properties or geometric orientation of the surfaces may induce temperature contrasts that are detectable with a thermal camera. This system, usually functioning with a array sensor (Focal Plane Array) and an optical device, have geometric characteristics that are similar to digital cameras. Thus, it may be possible

  12. The photogrammetric recording of historic transportation sites.

    DOT National Transportation Integrated Search

    1983-01-01

    The purpose of this study was to evaluate the applicability and accuracy of documentation drawings prepared from close-range me terrestrial photogrammetry and to compare them with the results of traditional documentation techniques which depend on ha...

  13. Photogrammetric retrieval of volcanic ash cloud top height from SEVIRI and MODIS

    NASA Astrophysics Data System (ADS)

    Zakšek, Klemen; Hort, Matthias; Zaletelj, Janez; Langmann, Bärbel

    2013-04-01

    Even if erupting in remote areas, volcanoes can have a significant impact on the modern society due to volcanic ash dispersion in the atmosphere. The ash does not affect merely air traffic - its transport in the atmosphere and its deposition on land and in the oceans may also significantly influence the climate through modifications of atmospheric CO2. The emphasis of this contribution is the retrieval of volcanic ash plume height (ACTH). ACTH is important information especially for air traffic but also to predict ash transport and to estimate the mass flux of the ejected material. ACTH is usually estimated from ground measurements, pilot reports, or satellite remote sensing. But ground based instruments are often not available at remote volcanoes and also the pilots reports are a matter of chance. Volcanic ash cloud top height (ACTH) can be monitored on the global level using satellite remote sensing. The most often used method compares brightness temperature of the cloud with the atmospheric temperature profile. Because of uncertainties of this method (unknown emissivity of the ash cloud, tropopause, etc.) we propose photogrammetric methods based on the parallax between data retrieved from geostationary (SEVIRI) and polar orbiting satellites (MODIS). The parallax is estimated using automatic image matching in three level image pyramids. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. ACTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The proposed method was tested using MODIS band 1 and SEVIRI HRV band for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and

  14. A Secure Test Technique for Pipelined Advanced Encryption Standard

    NASA Astrophysics Data System (ADS)

    Shi, Youhua; Togawa, Nozomu; Yanagisawa, Masao; Ohtsuki, Tatsuo

    In this paper, we presented a Design-for-Secure-Test (DFST) technique for pipelined AES to guarantee both the security and the test quality during testing. Unlike previous works, the proposed method can keep all the secrets inside and provide high test quality and fault diagnosis ability as well. Furthermore, the proposed DFST technique can significantly reduce test application time, test data volume, and test generation effort as additional benefits.

  15. PREFACE: Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques

    NASA Astrophysics Data System (ADS)

    Sakurai, Kenji

    2010-12-01

    measurement. Advances in such technologies are bringing with them new opportunities in surface and buried interface science. In the not too distant future, we will publish a special issue or a book detailing such progress. Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques contents Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity Kristopher A Lavery, Vivek M Prabhu, Sushil Satija and Wen-li Wu Orientation dependence of Pd growth on Au electrode surfaces M Takahasi, K Tamura, J Mizuki, T Kondo and K Uosaki A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures Hiroshi Okuda, Masayuki Kato, Keiji Kuno, Shojiro Ochiai, Noritaka Usami, Kazuo Nakajima and Osami Sakata High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer Kazuhiko Omote X-ray analysis of mesoporous silica thin films templated by Brij58 surfactant S Fall, M Kulij and A Gibaud Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures Kouichi Hayashi Epitaxial growth of largely mismatched crystals on H-terminated Si(111) surfaces Hidehito Asaoka Novel TiO2/ZnO multilayer mirrors at 'water-window' wavelengths fabricated by atomic layer epitaxy H Kumagai, Y Tanaka, M Murata, Y Masuda and T Shinagawa Depth-selective structural analysis of thin films using total-external-reflection x-ray diffraction Tomoaki Kawamura and Hiroo Omi Structures of Yb nanoparticle thin films grown by deposition in He and N2 gas atmospheres: AFM and x-ray reflectivity studies Martin Jerab and Kenji Sakurai Ga and As composition profiles in InP/GaInAs/InP heterostructures—x-ray CTR scattering and cross-sectional STM measurements Yoshikazu Takeda, Masao Tabuchi and Arao Nakamura Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system Naoki

  16. Benefits of advanced propulsion technology for the advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Sabatella, J. A.

    1973-01-01

    Future supersonic transports will have to provide improvement in the areas of economics, range, and emissions relative to the present generation of supersonic transports, as well as meeting or improving upon FAR 36 noise goals. This paper covers the promising propulsion systems including variable-cycle engine concepts for long-range supersonic commercial transport application. The benefits of applying advanced propulsion technology to solve the economic and environmental problems are reviewed. The advanced propulsion technologies covered are in the areas of structures, materials, cooling techniques, aerodynamics, variable engine geometry, jet noise suppressors, acoustic treatment, and low-emission burners. The results of applying the advanced propulsion technology are presented in terms of improvement in overall system takeoff gross weight and return on investment.

  17. Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar

    2018-02-01

    Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.

  18. Advanced numerical models and material characterisation techniques for composite materials subject to impact and shock wave loading

    NASA Astrophysics Data System (ADS)

    Clegg, R. A.; White, D. M.; Hayhurst, C.; Ridel, W.; Harwick, W.; Hiermaier, S.

    2003-09-01

    The development and validation of an advanced material model for orthotropic materials, such as fibre reinforced composites, is described. The model is specifically designed to facilitate the numerical simulation of impact and shock wave propagation through orthotropic materials and the prediction of subsequent material damage. Initial development of the model concentrated on correctly representing shock wave propagation in composite materials under high and hypervelocity impact conditions [1]. This work has now been extended to further concentrate on the development of improved numerical models and material characterisation techniques for the prediction of damage, including residual strength, in fibre reinforced composite materials. The work is focussed on Kevlar-epoxy however materials such as CFRP are also being considered. The paper describes our most recent activities in relation to the implementation of advanced material modelling options in this area. These enable refined non-liner directional characteristics of composite materials to be modelled, in addition to the correct thermodynamic response under shock wave loading. The numerical work is backed by an extensive experimental programme covering a wide range of static and dynamic tests to facilitate derivation of model input data and to validate the predicted material response. Finally, the capability of the developing composite material model is discussed in relation to a hypervelocity impact problem.

  19. Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view

    NASA Astrophysics Data System (ADS)

    Percoco, Gianluca; Sánchez Salmerón, Antonio J.

    2015-09-01

    The measurement of millimetre and micro-scale features is performed by high-cost systems based on technologies with narrow working ranges to accurately control the position of the sensors. Photogrammetry would lower the costs of 3D inspection of micro-features and would be applicable to the inspection of non-removable micro parts of large objects too. Unfortunately, the behaviour of photogrammetry is not known when photogrammetry is applied to micro-features. In this paper, the authors address these issues towards the application of digital close-range photogrammetry (DCRP) to the micro-scale, taking into account that in literature there are research papers stating that an angle of view (AOV) around 10° is the lower limit to the application of the traditional pinhole close-range calibration model (CRCM), which is the basis of DCRP. At first a general calibration procedure is introduced, with the aid of an open-source software library, to calibrate narrow AOV cameras with the CRCM. Subsequently the procedure is validated using a reflex camera with a 60 mm macro lens, equipped with extension tubes (20 and 32 mm) achieving magnification of up to 2 times approximately, to verify literature findings with experimental photogrammetric 3D measurements of millimetre-sized objects with micro-features. The limitation experienced by the laser printing technology, used to produce the bi-dimensional pattern on common paper, has been overcome using an accurate pattern manufactured with a photolithographic process. The results of the experimental activity prove that the CRCM is valid for AOVs down to 3.4° and that DCRP results are comparable with the results of existing and more expensive commercial techniques.

  20. A joint numerical and experimental study of the jet of an aircraft engine installation with advanced techniques

    NASA Astrophysics Data System (ADS)

    Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.

    2012-01-01

    This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.

  1. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  2. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  3. Advances and Challenges in Treatment of Locally Advanced Rectal Cancer

    PubMed Central

    Smith, J. Joshua; Garcia-Aguilar, Julio

    2015-01-01

    Dramatic improvements in the outcomes of patients with rectal cancer have occurred over the past 30 years. Advances in surgical pathology, refinements in surgical techniques and instrumentation, new imaging modalities, and the widespread use of neoadjuvant therapy have all contributed to these improvements. Several questions emerge as we learn of the benefits or lack thereof for components of the current multimodality treatment in subgroups of patients with nonmetastatic locally advanced rectal cancer (LARC). What is the optimal surgical technique for distal rectal cancers? Do all patients need postoperative chemotherapy? Do all patients need radiation? Do all patients need surgery, or is a nonoperative, organ-preserving approach warranted in selected patients? Answering these questions will lead to more precise treatment regimens, based on patient and tumor characteristics, that will improve outcomes while preserving quality of life. However, the idea of shifting the treatment paradigm (chemoradiotherapy, total mesorectal excision, and adjuvant therapy) currently applied to all patients with LARC to a more individually tailored approach is controversial. The paradigm shift toward organ preservation in highly selected patients whose tumors demonstrate clinical complete response to neoadjuvant treatment is also controversial. Herein, we highlight many of the advances and resultant controversies that are likely to dominate the research agenda for LARC in the modern era. PMID:25918296

  4. Recent Advances in Bioprinting and Applications for Biosensing

    PubMed Central

    Dias, Andrew D.; Kingsley, David M.; Corr, David T.

    2014-01-01

    Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic. PMID:25587413

  5. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  6. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  7. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques.

    PubMed

    Somorjai, Gabor A; Frei, Heinz; Park, Jeong Y

    2009-11-25

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ("green chemistry") and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  8. Hepatocellular carcinoma: Advances in diagnostic imaging.

    PubMed

    Sun, Haoran; Song, Tianqiang

    2015-10-01

    Thanks to the growing knowledge on biological behaviors of hepatocellular carcinomas (HCC), as well as continuous improvement in imaging techniques and experienced interpretation of imaging features of the nodules in cirrhotic liver, the detection and characterization of HCC has improved in the past decade. A number of practice guidelines for imaging diagnosis have been developed to reduce interpretation variability and standardize management of HCC, and they are constantly updated with advances in imaging techniques and evidence based data from clinical series. In this article, we strive to review the imaging techniques and the characteristic features of hepatocellular carcinoma associated with cirrhotic liver, with emphasis on the diagnostic value of advanced magnetic resonance imaging (MRI) techniques and utilization of hepatocyte-specific MRI contrast agents. We also briefly describe the concept of liver imaging reporting and data systems and discuss the consensus and controversy of major practice guidelines.

  9. Targeted Muscle Reinnervation for Transradial Amputation: Description of Operative Technique.

    PubMed

    Morgan, Emily N; Kyle Potter, Benjamin; Souza, Jason M; Tintle, Scott M; Nanos, George P

    2016-12-01

    Targeted muscle reinnervation (TMR) is a revolutionary surgical technique that, together with advances in upper extremity prostheses and advanced neuromuscular pattern recognition, allows intuitive and coordinated control in multiple planes of motion for shoulder disarticulation and transhumeral amputees. TMR also may provide improvement in neuroma-related pain and may represent an opportunity for sensory reinnervation as advances in prostheses and haptic feedback progress. Although most commonly utilized following shoulder disarticulation and transhumeral amputations, TMR techniques also represent an exciting opportunity for improvement in integrated prosthesis control and neuroma-related pain improvement in patients with transradial amputations. As there are no detailed descriptions of this technique in the literature to date, we provide our surgical technique for TMR in transradial amputations.

  10. Advanced imaging techniques for the study of plant growth and development.

    PubMed

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N

    2014-05-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the

  12. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  13. Data management system advanced development

    NASA Technical Reports Server (NTRS)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  14. Advanced Hypervelocity Aerophysics Facility Workshop

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)

    1989-01-01

    The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

  15. Advances in atmospheric light scattering theory and remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Sun, Wenbo; Gong, Wei

    2017-02-01

    This issue focuses especially on characterizing particles in the Earth-atmosphere system. The significant role of aerosol particles in this system was recognized in the mid-1970s [1]. Since that time, our appreciation for the role they play has only increased. It has been and continues to be one of the greatest unknown factors in the Earth-atmosphere system as evidenced by the most recent Intergovernmental Panel on Climate Change (IPCC) assessments [2]. With increased computational capabilities, in terms of both advanced algorithms and in brute-force computational power, more researchers have the tools available to address different aspects of the role of aerosols in the atmosphere. In this issue, we focus on recent advances in this topical area, especially the role of light scattering and remote sensing. This issue follows on the heels of four previous topical issues on this subject matter that have graced the pages of this journal [3-6].

  16. Advanced imaging techniques in brain tumors

    PubMed Central

    2009-01-01

    Abstract Perfusion, permeability and magnetic resonance spectroscopy (MRS) are now widely used in the research and clinical settings. In the clinical setting, qualitative, semi-quantitative and quantitative approaches such as review of color-coded maps to region of interest analysis and analysis of signal intensity curves are being applied in practice. There are several pitfalls with all of these approaches. Some of these shortcomings are reviewed, such as the relative low sensitivity of metabolite ratios from MRS and the effect of leakage on the appearance of color-coded maps from dynamic susceptibility contrast (DSC) magnetic resonance (MR) perfusion imaging and what correction and normalization methods can be applied. Combining and applying these different imaging techniques in a multi-parametric algorithmic fashion in the clinical setting can be shown to increase diagnostic specificity and confidence. PMID:19965287

  17. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs

    PubMed Central

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2015-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012. PMID:26347393

  18. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; hide

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  19. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs.

    PubMed

    Lawson, Peter R; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  20. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  1. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    PubMed

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  2. Surgical Techniques for Diaphragmatic Resection During Cytoreduction in Advanced or Recurrent Ovarian Carcinoma: A Systematic Review and Meta-analysis.

    PubMed

    Bogani, Giorgio; Ditto, Antonino; Martinelli, Fabio; Lorusso, Domenica; Chiappa, Valentina; Donfrancesco, Cristina; Di Donato, Violante; Indini, Alice; Aletti, Giovanni; Raspagliesi, Francesco

    2016-02-01

    Optimal cytoreduction is one the main factors improving survival outcomes in patients affected by ovarian cancer (OC). It is estimated that approximately 40% of OC patients have gross disease located on the diaphragm. However, no mature data evaluating outcomes of surgical techniques for the management of diaphragmatic carcinosis exist. In the present study, we aimed to estimate surgery-related morbidity of different surgical techniques for diaphragmatic cytoreduction in advanced or recurrent OC. PubMed (MEDLINE), Web of Science, and Clincaltrials.gov databases were searched for records estimating outcomes of diaphragmatic peritoneal stripping (DPS) or diaphragmatic full-thickness resection (DFTR) for OC. The meta-analysis was performed using the Cochrane Review software. For the final analysis, 5 articles were available, including 272 patients. Diaphragmatic peritoneal stripping and DFTR were performed in 197 patients (72%) and 75 patients (28%), respectively. Pooled analysis suggested that the estimated pleural effusion rate was 43% and 51% after DPS and DFTR, respectively. The need for pleural punctures or chest tube placement was 4% and 9% after DPS and DFTR, respectively. The rate of postoperative pneumothorax (4% vs 9%; odds ratio, 0.31; 95% confidence interval, 0.05-2.08) and subdiaphragmatic abscess (3% vs 3%; odds ratio, 0.45; 95% confidence interval, 0.09-2.31) were similar after the execution of DPS and DFTR. Diaphragmatic surgery is a crucial step during cytoreduction for advanced or recurrent OC. Obviously, the choice to perform DPS or DFTR depends on the infiltration of the diaphragmatic muscle or not. Both the procedures are associated with a low pulmonary complication and chest tube placement rates.

  3. Three-dimensional imaging of hold baggage for airport security

    NASA Astrophysics Data System (ADS)

    Kolokytha, S.; Speller, R.; Robson, S.

    2014-06-01

    This study describes a cost-effective check-in baggage screening system, based on "on-belt tomosynthesis" (ObT) and close-range photogrammetry, that is designed to address the limitations of the most common system used, conventional projection radiography. The latter's limitations can lead to loss of information and an increase in baggage handling time, as baggage is manually searched or screened with more advanced systems. This project proposes a system that overcomes such limitations creating a cost-effective automated pseudo-3D imaging system, by combining x-ray and optical imaging to form digital tomograms. Tomographic reconstruction requires a knowledge of the change in geometry between multiple x-ray views of a common object. This is uniquely achieved using a close range photogrammetric system based on a small network of web-cameras. This paper presents the recent developments of the ObT system and describes recent findings of the photogrammetric system implementation. Based on these positive results, future work on the advancement of the ObT system as a cost-effective pseudo-3D imaging of hold baggage for airport security is proposed.

  4. Advanced computational techniques for incompressible/compressible fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2005-07-01

    Fluid-Structure Interaction (FSI) problems are of great importance to many fields of engineering and pose tremendous challenges to numerical analyst. This thesis addresses some of the hurdles faced for both 2D and 3D real life time-dependent FSI problems with particular emphasis on parachute systems. The techniques developed here would help improve the design of parachutes and are of direct relevance to several other FSI problems. The fluid system is solved using the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation for the Navier-Stokes equations of incompressible and compressible flows. The structural dynamics solver is based on a total Lagrangian finite element formulation. Newton-Raphson method is employed to linearize the otherwise nonlinear system resulting from the fluid and structure formulations. The fluid and structural systems are solved in decoupled fashion at each nonlinear iteration. While rigorous coupling methods are desirable for FSI simulations, the decoupled solution techniques provide sufficient convergence in the time-dependent problems considered here. In this thesis, common problems in the FSI simulations of parachutes are discussed and possible remedies for a few of them are presented. Further, the effects of the porosity model on the aerodynamic forces of round parachutes are analyzed. Techniques for solving compressible FSI problems are also discussed. Subsequently, a better stabilization technique is proposed to efficiently capture and accurately predict the shocks in supersonic flows. The numerical examples simulated here require high performance computing. Therefore, numerical tools using distributed memory supercomputers with message passing interface (MPI) libraries were developed.

  5. Developments and advances concerning the hyperpolarisation technique SABRE.

    PubMed

    Mewis, Ryan E

    2015-10-01

    To overcome the inherent sensitivity issue in NMR and MRI, hyperpolarisation techniques are used. Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that utilises parahydrogen, a molecule that possesses a nuclear singlet state, as the source of polarisation. A metal complex is required to break the singlet order of parahydrogen and, by doing so, facilitates polarisation transfer to analyte molecules ligated to the same complex through the J-coupled network that exists. The increased signal intensities that the analyte molecules possess as a result of this process have led to investigations whereby their potential as MRI contrast agents has been probed and to understand the fundamental processes underpinning the polarisation transfer mechanism. As well as discussing literature relevant to both of these areas, the chemical structure of the complex, the physical constraints of the polarisation transfer process and the successes of implementing SABRE at low and high magnetic fields are discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Application of advanced shearing techniques to the calibration of autocollimators with small angle generators and investigation of error sources.

    PubMed

    Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B

    2016-05-01

    The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements.

  7. Recent advances in electronic nose techniques for monitoring of fermentation process.

    PubMed

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  8. The development of optical microscopy techniques for the advancement of single-particle studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-fieldmore » imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also

  9. Working Group 1 "Advanced GNSS Processing Techniques" of the COST Action GNSS4SWEC: Overview of main achievements

    NASA Astrophysics Data System (ADS)

    Douša, Jan; Dick, Galina; Kačmařík, Michal; Václavovic, Pavel; Pottiaux, Eric; Zus, Florian; Brenot, Hugues; Moeller, Gregor; Hinterberger, Fabian; Pacione, Rosa; Stuerze, Andrea; Eben, Kryštof; Teferle, Norman; Ding, Wenwu; Morel, Laurent; Kaplon, Jan; Hordyniec, Pavel; Rohm, Witold

    2017-04-01

    The COST Action ES1206 GNSS4SWEC addresses new exploitations of the synergy between developments in GNSS and meteorological communities. The Working Group 1 (Advanced GNSS processing techniques) deals with implementing and assessing new methods for GNSS tropospheric monitoring and precise positioning exploiting all modern GNSS constellations, signals, products etc. Besides other goals, WG1 coordinates development of advanced tropospheric products in support of weather numerical and non-numerical nowcasting. These are ultra-fast and high-resolution tropospheric products available in real time or in a sub-hourly fashion and parameters in support of monitoring an anisotropy of the troposphere, e.g. horizontal gradients and tropospheric slant path delays. This talk gives an overview of WG1 activities and, particularly, achievements in two activities, Benchmark and Real-time demonstration campaigns. For the Benchmark campaign a complex data set of GNSS observations and various meteorological data were collected for a two-month period in 2013 (May-June) which included severe weather events in central Europe. An initial processing of data sets from GNSS and numerical weather models (NWM) provided independently estimated reference parameters - ZTDs and tropospheric horizontal gradients. The comparison of horizontal tropospheric gradients from GNSS and NWM data demonstrated a very good agreement among independent solutions with negligible biases and an accuracy of about 0.5 mm. Visual comparisons of maps of zenith wet delays and tropospheric horizontal gradients showed very promising results for future exploitations of advanced GNSS tropospheric products in meteorological applications such as severe weather event monitoring and weather nowcasting. The Benchmark data set is also used for an extensive validation of line-of-sight tropospheric Slant Total Delays (STD) from GNSS, NWM-raytracing and Water Vapour Radiometer (WVR) solutions. Seven institutions delivered their STDs

  10. Advanced Software V&V for Civil Aviation and Autonomy

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume P.

    2017-01-01

    With the advances in high-computing platform (e.g., advanced graphical processing units or multi-core processors), computationally-intensive software techniques such as the ones used in artificial intelligence or formal methods have provided us with an opportunity to further increase safety in the aviation industry. Some of these techniques have facilitated building safety at design time, like in aircraft engines or software verification and validation, and others can introduce safety benefits during operations as long as we adapt our processes. In this talk, I will present how NASA is taking advantage of these new software techniques to build in safety at design time through advanced software verification and validation, which can be applied earlier and earlier in the design life cycle and thus help also reduce the cost of aviation assurance. I will then show how run-time techniques (such as runtime assurance or data analytics) offer us a chance to catch even more complex problems, even in the face of changing and unpredictable environments. These new techniques will be extremely useful as our aviation systems become more complex and more autonomous.

  11. NATO Advanced Research Workshop on Non-Thermal Plasma Techniques for Pollution Control Held in England on September 21 - 25, 1992. Program and Abstracts

    DTIC Science & Technology

    1992-09-25

    2100 DINNER NATO ADVANCED RESEARCH WORKSHOP ON NON-THERMAL PLASMA TECHNIQUES FOR POLLUTION CONTR" OL SCHEDULE Friday Morning, September 25 1 5...vessel, leading to the decrease of the concentrations of 502 and ammonia, and deposition of white powdery material on the inner surface of the vessel. From...discharges (silent discharges) revealed that in certain gas mixtures discharge conditions can be established that favour the formation of excimer or exciplex

  12. Nondestructive evaluation technique guide

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    A total of 70 individual nondestructive evaluation (NDE) techniques are described. Information is presented that permits ease of comparison of the merits and limitations of each technique with respect to various NDE problems. An NDE technique classification system is presented. It is based on the system that was adopted by the National Materials Advisory Board (NMAB). The classification system presented follows the NMAB system closely with the exception of additional categories that have been added to cover more advanced techniques presently in use. The rationale of the technique is explained. The format provides for a concise description of each technique, the physical principles involved, objectives of interrogation, example applications, limitations of each technique, a schematic illustration, and key reference material. Cross-index tabulations are also provided so that particular NDE problems can be referred to appropriate techniques.

  13. Commercial vs professional UAVs for mapping

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Koukouvelas, Ioannis

    2017-09-01

    The continuous advancements in the technology behind Unmanned Aerial Vehicles (UAVs), in accordance with the consecutive decrease to their cost and the availability of photogrammetric software, make the use of UAVs an excellent tool for large scale mapping. In addition with the use of UAVs, the problems of increased costs, time consumption and the possible terrain accessibility problems, are significantly reduced. However, despite the growing number of UAV applications there has been a little quantitative assessment of UAV performance and of the quality of the derived products (orthophotos and Digital Surface Models). Here, we present results from field experiments designed to evaluate the accuracy of photogrammetrically-derived digital surface models (DSM) developed from imagery acquired with onboard digital cameras. We also show the comparison of the high resolution vs moderate resolution imagery for largescale geomorphic mapping. The acquired data analyzed in this study comes from a small commercial and a professional UAV. The test area was mapped using the same photogrammetric grid by the two UAVs. 3D models, DSMs and orthophotos were created using special software. Those products were compared to in situ survey measurements and the results are presented in this paper.

  14. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{submore » x} burners, advanced overfire systems, and digital control system.« less

  15. Laser two focus techniques

    NASA Astrophysics Data System (ADS)

    Schodl, R.

    The development of the laser two focus velocimetry are reviewed. The fundamentals of this nonintrusive fluid flow velocity measurement technique are described. Emphasis is placed upon the advances of this technique. Results of measurements in a very small flow channel and in a small turbocharger compressor rotor are presented. The influence of beam diameter - beam separation ratio on the measuring accuracy and on the measuring time is treated. A multicolor two dimensional system with selectable beam separation is presented. The laser Doppler and the laser two focus techniques are compared.

  16. Current trends in explosive detection techniques.

    PubMed

    Caygill, J Sarah; Davis, Frank; Higson, Seamus P J

    2012-01-15

    The detection of explosives and explosive-related compounds has become a heightened priority in recent years for homeland security and counter-terrorism applications. There has been a huge increase in research within this area-through both the development of new, innovative detection approaches and the improvement of existing techniques. Developments for miniaturisation, portability, field-ruggedisation and improvements in stand-off distances, selectivity and sensitivity have been necessary to develop and improve techniques. This review provides a consolidation of information relating to recent advances in explosive detection techniques without being limited to one specific research area or explosive type. The focus of this review will be towards advances in the last 5 years, with the reader being referred to earlier reviews where appropriate. Copyright © 2011. Published by Elsevier B.V.

  17. Framework for the mapping of the monthly average daily solar radiation using an advanced case-based reasoning and a geostatistical technique.

    PubMed

    Lee, Minhyun; Koo, Choongwan; Hong, Taehoon; Park, Hyo Seon

    2014-04-15

    For the effective photovoltaic (PV) system, it is necessary to accurately determine the monthly average daily solar radiation (MADSR) and to develop an accurate MADSR map, which can simplify the decision-making process for selecting the suitable location of the PV system installation. Therefore, this study aimed to develop a framework for the mapping of the MADSR using an advanced case-based reasoning (CBR) and a geostatistical technique. The proposed framework consists of the following procedures: (i) the geographic scope for the mapping of the MADSR is set, and the measured MADSR and meteorological data in the geographic scope are collected; (ii) using the collected data, the advanced CBR model is developed; (iii) using the advanced CBR model, the MADSR at unmeasured locations is estimated; and (iv) by applying the measured and estimated MADSR data to the geographic information system, the MADSR map is developed. A practical validation was conducted by applying the proposed framework to South Korea. It was determined that the MADSR map developed through the proposed framework has been improved in terms of accuracy. The developed MADSR map can be used for estimating the MADSR at unmeasured locations and for determining the optimal location for the PV system installation.

  18. Advanced techniques in neoadjuvant radiotherapy allow dose escalation without increased dose to the organs at risk : Planning study in esophageal carcinoma.

    PubMed

    Fakhrian, K; Oechsner, M; Kampfer, S; Schuster, T; Molls, M; Geinitz, H

    2013-04-01

    The goal of this work was to investigate the potential of advanced radiation techniques in dose escalation in the radiotherapy (RT) for the treatment of esophageal carcinoma. A total of 15 locally advanced esophageal cancer (LAEC) patients were selected for the present study. For all 15 patients, we created a 3D conformal RT plan (3D-45) with 45 Gy in fractions of 1.8 Gy to the planning target volume (PTV1), which we usually use to employ in the neoadjuvant treatment of LAEC. Additionally, a 3D boost (as in the primary RT of LAEC) was calculated with 9 Gy in fractions of 1.8 Gy to the boost volume (PTV2) (Dmean) to a total dose of 54 Gy (3D-54 Gy), which we routinely use for the definitive treatment of LAEC. Three plans with a simultaneous integrated boost (SIB) were then calculated for each patient: sliding window intensity-modulated radiotherapy (IMRT-SIB), volumetric modulated arc therapy (VMAT-SIB), and helical tomotherapy (HT-SIB). For the SIB plans, the requirement was that 95 % of the PTV1 receive ≥ 100 % of the prescription dose (45 Gy in fractions of 1.8 Gy, D95) and the PTV2 was dose escalated to 52.5 Gy in fractions of 2.1 Gy (D95). The median PTV2 dose for 3D-45, 3D-54, HT-SIB, VMAT-SIB, and IMRT-SIB was 45, 55, 54, 56, and 55 Gy, respectively. Therefore, the dose to PTV2 in the SIB plans was comparable to the 3D-54 plan. The lung dose in the SIB plans was in the range of the standard 3D-45, which is applied for neoadjuvant radiotherapy. The mean lung dose for the same plans was 13, 15, 12, 12, and 13 Gy, respectively. The V5 lung volumes were 71, 74, 79, 75, and 73 %, respectively. The V20 lung volumes were 20, 25, 16, 18, and 19 %, respectively. New treatment planning techniques enable higher doses to be delivered for neoadjuvant radiotherapy of LAEC without a significant increase in the delivered dose to the organs at risk. Clinical investigations are warranted to study the clinical safety and feasibility of applying higher

  19. Coronally Advanced Flap Technique to Treat Class I and II Gingival Recession in Combination with Connective Tissue Graft or Equine Collagen Matrix: A Retrospective Study.

    PubMed

    Tarquini, Giacomo

    This retrospective study aimed to compare the effectiveness of an equine collagen matrix (ECM) with that of a subepithelial connective tissue graft (CTG) in patients affected by Class I and II gingival recessions treated with a coronally advanced flap (CAF) technique. Records of 50 consecutive patients were analyzed. Recession depth, probing depth, keratinized tissue width, and percentage of root coverage had been recorded at baseline and at the 1-year follow-up. The number of patients that achieved complete root coverage was also assessed. According to the investigated parameters, ECM and CTG provide similar results when used in association with a CAF technique.

  20. The environmental control and life support system advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.