Sample records for advanced photovoltaic solar

  1. Advanced photovoltaic solar array development

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul

    1989-01-01

    Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.

  2. Advanced Rainbow Solar Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism

  3. Organic Photovoltaic Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Organic Photovoltaic Solar Cells Organic Photovoltaic Solar Cells The National Center for Photovoltaics (NCPV) at NREL has strong complementary research capabilities in organic photovoltaic (OPV) cells pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic PV Advanced PV

  4. Advanced photovoltaic solar array design assessment

    NASA Technical Reports Server (NTRS)

    Stella, Paul; Scott-Monck, John

    1987-01-01

    The Advanced Photovoltaic Solar Array (APSA) program seeks to bring to flight readiness a solar array that effectively doubles the specific power of the Solar Array Flight Experiment/Solar Electric Propulsion (SAFE/SEP) design that was successfully demonstrated during the Shuttle 41-D mission. APSA is a critical intermediate milestone in the effort to demonstrate solar array technologies capable of 300 W/kg and 300 W/square m at beginning of life (BOL). It is not unreasonable to anticipate the development of solar array designs capable of 300 W/kg at BOL for operational power levels approx. greater than 25 kW sub e. It is also quite reasonable to expect that high performance solar arrays capable of providing at least 200 W/kg at end of life for most orbits now being considered by mission planners will be realized in the next decade.

  5. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1992-01-01

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  6. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Astrophysics Data System (ADS)

    Stella, Paul M.; Kurland, Richard M.

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  7. The advanced photovoltaic solar array program

    NASA Technical Reports Server (NTRS)

    Kurland, R. M.; Stella, Paul M.

    1989-01-01

    The background and development status of an ultralightweight flexible-blanket flatpack, fold-out solar array is presented. It is scheduled for prototype demonstration in late 1989. The Advanced Photovoltaic Solar Array (APSA) design represents a critical intermediate milestone of the goal of 300 W/kg at beginning-of-life (BOL) with specific performance characteristics of 130 W/kg (BOL) and 100 W/kg at end-of-life (EOL) for a 10-year geosynchronous geostationary earth orbit 10-kW (BOL) space power system. The APSA wing design is scalable over a power range of 2 to 15 kW and is suitable for a full range of missions including Low Earth Orbit (LEO), orbital transfer from LEO to geostationary earth orbit and interplanetary flight.

  8. Solar photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Forney, R. G.

    1978-01-01

    The Department of Energy's photovoltaic program is outlined. The main objective of the program is the development of low cost reliable terrestrial photovoltaic systems. A second objective is to foster widespread use of the system in residential, industrial and commercial application. The system is reviewed by examining each component; silicon solar cell, silicon solar cell modules, advanced development modules and power systems. Cost and applications of the system are discussed.

  9. Plasma chamber testing of advanced photovoltaic solar array coupons

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1994-01-01

    The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.

  10. Latest developments in the Advanced Photovoltaic Solar Array Program

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1990-01-01

    In 1985, the Advanced Photovoltaic Solar Array (APSA) Program was established to demonstrate a producible array system with a specific power greater than 130 W/kg at a 10-kW (BOL) power level. The latest program phase completed fabrication and initial functional testing of a prototype wing representative of a full-scale 5-kW (BOL) wing (except truncated in length to about 1 kW), with weight characteristics that could meet the 130-W/kg (BOL) specific power goal using thin silicon solar cell modules and weight-efficient structural components. The wing configuration and key design details are reviewed, along with results from key component-level and wing-level tests. Projections for future enhancements that may be expected through the use of advanced solar cells and structural components are shown. Performance estimates are given for solar electric propulsion orbital transfer missions through the Van Allen radiation belts. The latest APSA program plans are presented.

  11. Photovoltaic solar concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting themore » photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.« less

  12. Mission applications for advanced photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.

    1990-01-01

    The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.

  13. Demonstration of the advanced photovoltaic solar array

    NASA Technical Reports Server (NTRS)

    Kurland, R. M.; Stella, P. M.

    1991-01-01

    The Advanced Photovoltaic Solar Array (APSA) design is reviewed. The testing results and performance estimates are summarized. The APSA design represents a critical intermediate milestone for the NASA Office of Aeronautics, Exploration, and Technology (OAET) goal of 300 W/kg at Beginning Of Life (BOL), with specific performance characteristics of 130 W/kg (BOL) and 100 W/kg at End Of Life (EOL) for a 10 year geosynchronous (GEO) 10 kW (BOL) space power system. The APSA wing design is scalable over a power range of 1 to 15 kW and is suitable for a full range of missions including Low Earth Orbit (LEO), orbital transfer from LEO to GEO and interplanetary out to 5 AU.

  14. Advanced photovoltaic power system technology for lunar base applications

    NASA Astrophysics Data System (ADS)

    Brinker, David J.; Flood, Dennis J.

    1992-09-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  15. The Advanced Photovoltaic Solar Array (APSA) technology status and performance

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1991-01-01

    In 1985, the Jet Propulsion Laboratory initiated the Advanced Photovoltaic Solar Array (APSA) program. The program objective is to demonstrate a producible array system by the early 1990s with a specific performance of at least 130 W/kG (beginning-of-life) as an intermediate milestone towards the long range goal of 300 W/kG. The APSA performance represents an approximately four-fold improvement over existing rigid array technology and a doubling of the performance of the first generation NASA/OAST SAFE flexible blanket array of the early 1980s.

  16. All-Weather Solar Cells: A Rising Photovoltaic Revolution.

    PubMed

    Tang, Qunwei

    2017-06-16

    Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-weather solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-weather solar cells so that these advanced photovoltaic technologies can be an indication for global solar industry in bringing down the cost of energy harvesting. How the all-weather solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-weather solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  18. Recent Advances in Wide-Bandgap Photovoltaic Polymers.

    PubMed

    Cai, Yunhao; Huo, Lijun; Sun, Yanming

    2017-06-01

    The past decade has witnessed significant advances in the field of organic solar cells (OSCs). Ongoing improvements in the power conversion efficiency of OSCs have been achieved, which were mainly attributed to the design and synthesis of novel conjugated polymers with different architectures and functional moieties. Among various conjugated polymers, the development of wide-bandgap (WBG) polymers has received less attention than that of low-bandgap and medium-bandgap polymers. Here, we briefly summarize recent advances in WBG polymers and their applications in organic photovoltaic (PV) devices, such as tandem, ternary, and non-fullerene solar cells. Addtionally, we also dissuss the application of high open-circuit voltage tandem solar cells in PV-driven electrochemical water dissociation. We mainly focus on the molecular design strategies, the structure-property correlations, and the photovoltaic performance of these WBG polymers. Finally, we extract empirical regularities and provide invigorating perspectives on the future development of WBG photovoltaic materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. APSA - A new generation of photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Kurland, R. M.

    1989-01-01

    This paper provides details on the Advanced Photovoltaic Solar Array (APSA) wing design, fabrication, and testing. The impact of array size change on performance and mechanical characteristics is discussed. Projections for future performance enhancements that may be expected through the use of advanced solar cells presently under development are examined.

  20. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  1. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  2. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  3. Solar Photovoltaic Technology Basics | NREL

    Science.gov Websites

    For more information about solar photovoltaic energy, visit the following resources: Solar PV Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the

  4. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  5. Real-Time Photovoltaic and Solar Resource Testing | Photovoltaic Research |

    Science.gov Websites

    community toward developing comprehensive PV standards. Each year, NCPV researchers, along with solar performance Bill Marion: Solar radiation resource information, and PV module and system performance modeling NREL Real-Time Photovoltaic and Solar Resource Testing Real-Time Photovoltaic and Solar

  6. Spectrally-engineered solar thermal photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenert, Andrej; Bierman, David; Chan, Walker

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies belowmore » the bandgap.« less

  7. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  8. Lightweight Solar Photovoltaic Blankets

    NASA Technical Reports Server (NTRS)

    Ceragioli, R.; Himmler, R.; Nath, P.; Vogeli, C.; Guha, S.

    1995-01-01

    Lightweight, flexible sheets containing arrays of stacked solar photovoltaic cells developed to supply electric power aboard spacecraft. Solar batteries satisfying stringent requirements for operation in outer space also adaptable to terrestrial environment. Attractive for use as long-lived, portable photovoltaic power sources. Cells based on amorphous silicon which offers potential for order-of-magnitude increases in power per unit weight, power per unit volume, and endurance in presence of ionizing radiation.

  9. Silicon solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Ferber, R. R.; Pittman, P. F.; Marshall, B. W.

    1977-01-01

    Modular design of components and arrays, cost estimates for modules and support structures, and cost/performance analysis of a central solar photovoltaic power plant are discussed. Costs of collector/reflector arrays are judged the dominant element in the total capital investment. High-concentration solar tracking arrays are recommended as the most economic means for producing solar photovoltaic energy when solar cells costs are high ($500 per kW generated). Capital costs for power conditioning subsystem components are itemized and system busbar energy costs are discussed at length.

  10. Preliminary flight test results from the advanced photovoltaic experiment

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight, limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  11. Preliminary results from the advanced photovoltaic experiment flight test

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight; limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  12. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  13. Solar photovoltaic reflective trough collection structure

    DOEpatents

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  14. Advanced tendencies in development of photovoltaic cells for power engineering

    NASA Astrophysics Data System (ADS)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  15. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),

    Science.gov Websites

    2017-2030 | Solar Research | NREL Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 This report Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying

  16. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells

    NASA Astrophysics Data System (ADS)

    Aeberhard, Urs; Rau, Uwe

    2017-06-01

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p -i -n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  17. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.

    PubMed

    Aeberhard, Urs; Rau, Uwe

    2017-06-16

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  18. Solar Photovoltaics Technology: The Revolution Begins . . .

    NASA Astrophysics Data System (ADS)

    Kazmerski, Lawrence

    2009-11-01

    The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is at a tipping point in the complex worldwide energy outlook. The emphasis of this presentation is on R&D advances (cell, materials, and module options), with indications of the limitations and strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). The contributions and technological pathways for now and near-term technologies (silicon, III-Vs, and thin films) and status and forecasts for next- generation PV (organics, nanotechnologies, non-conventional junction approaches) are evaluated. Recent advances in concentrators with efficiencies headed toward 50%, new directions for thin films (20% and beyond), and materials/device technology issues are discussed in terms of technology progress. Insights into technical and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy portfolio. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, solar hydrogen. . . ) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. Issues relating to manufacturing are explored-especially with the requirements for the next-generation technologies. This presentation provides insights into how this technology has developed-and where the R&D investments should be made and we can expect to be by this mid-21st century.

  19. The effect of the low Earth orbit environment on space solar cells: Results of the advanced photovoltaic experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1992-01-01

    The Advanced Photovoltaic Experiment (APEX), containing over 150 solar cells and sensors, was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. Located on the leading edge of the Long Duration Exposure Facility (LDEF), APEX received the maximum possible dosage of atomic oxygen and ultraviolet radiation, as well as enormous numbers of impacts from micrometeoroids and debris. The effect of the low earth orbital (LEO) environment on the solar cells and materials of APEX will be discussed in this paper. The on-orbit performance of the solar cells, as well as a comparison of pre- and postflight laboratory performance measurements, will be presented.

  20. Advanced Photovoltaic Solar Array program status

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul M.

    1989-01-01

    The Advanced Photolvoltaic Solar Array (APSA) Program is discussed. The objective of the program is to demonstrate a producible array system by the end of this decade with a beginning-of-life (BOL) specific power of 130 W/kg at 10 kW as an intermediate milestone toward the ultimate goal of 300 W/kg at 25 kW by the year 2000. The near-term goal represents a significant improvement over existing rigid panel flight arrays (25 to 45 W/kg) and the first-generation flexible blanket NASA/OAST SAFE I array of the early 1980s, which was projected to provide about 60 W/kg BOL. The prototype wing hardware is in the last stages of fabrication and integration. The current status of the program is reported. The array configuration and key design details are shown. Projections are shown for future performance enhancements that may be expected through the use of advanced structural components and solar cells.

  1. Solar Photovoltaic Manufacturing Cost Analysis | Energy Analysis | NREL

    Science.gov Websites

    Solar Photovoltaic Manufacturing Cost Analysis Solar Photovoltaic Manufacturing Cost Analysis NREL's photovoltaic (PV) manufacturing cost analysis-part of our broader effort supporting manufacturing manufacturing sector, and is that growth sustainable? NREL's manufacturing cost analysis studies show that: U.S

  2. Decentralized solar photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Krupka, M. C.

    1980-09-01

    Emphasis was placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ utilizing a unique solar cell array roof shingle combination. Silicon solar cells, rated at 13.5 percent efficiency at 28 C and 100 mW/sq cm insolation are used to generate 10 kW (peak). An all electric home is considered with lead acid battery storage, DC AC inversion and utility backup. The reference home is compared to others in regions of different insolation. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  3. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  4. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  5. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  6. Advancing colloidal quantum dot photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  7. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  8. Photovoltaics: A Solar Technology for Powering Tomorrow.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    1983-01-01

    Photovoltaics, the technology that converts sunlight directly into electricity, may soon be a reliable power source for the world's poor. The one major challenge is cost reduction. Many topics are discussed, including solar powering the Third World, designing the solar building, investing in the sun, and the future of photovoltaics. (NW)

  9. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  10. Solar radiation on Mars: Stationary photovoltaic array

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  11. Effects of solar photovoltaic technology on the environment in China.

    PubMed

    Qi, Liqiang; Zhang, Yajuan

    2017-10-01

    Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.

  12. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  13. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  14. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    ERIC Educational Resources Information Center

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  15. Recent advances in the PV-CSP hybrid solar power technology

    NASA Astrophysics Data System (ADS)

    Ju, Xing; Xu, Chao; Han, Xue; Zhang, Hui; Wei, Gaosheng; Chen, Lin

    2017-06-01

    Photovoltaic - Concentrated Solar Power (PV-CSP) hybrid technology is considered to be an important future research trend in solar energy engineering. The development of the PV-CSP hybrid technology accelerates in recent years with the rapid maturation of photovoltaics (PV) and concentrated solar power (CSP). This paper presents the recent advances on PV-CSP technology, including different technologies based on new dispatch strategies, Organic Rankine Cycles, spectral beam filters and so on. The research status and the hybrid system performance of the recent researches are summarized, aimed to provide an extended recognition on the PV-CSP hybrid technology. The advantages and limitations of the hybrid system are concluded according to the researches reviewed.

  16. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The development of photovoltaic arrays beyond the next generation is discussed with attention given to the potentials of thin-film polycrystalline and amorphous cells. Of particular importance is the efficiency (the fraction of incident solar energy converted to electricity) and specific power (power to weight ratio). It is found that the radiation tolerance of thin-film materials is far greater than that of single crystal materials. CuInSe2 shows no degradation when exposed to 1-MeV electrons.

  17. Photovoltaic solar array technology required for three wide scale generating systems for terrestrial applications: rooftop, solar farm, and satellite

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.

  18. Concentrating photovoltaic solar panel

    DOEpatents

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  19. White butterflies as solar photovoltaic concentrators.

    PubMed

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  20. White butterflies as solar photovoltaic concentrators

    PubMed Central

    Shanks, Katie; Senthilarasu, S.; ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-01-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off. PMID:26227341

  1. White butterflies as solar photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  2. Laser and solar-photovoltaic space power systems comparison. II.

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Stripling, J.; Enderson, T. M.; Humes, D. H.; Davis, W. T.

    1984-01-01

    A comparison of total system cost is made between solar photovoltaic and laser/receiver systems. The laser systems assume either a solar-pumped CO2 blackbody transfer laser with MHD receiver or a solar pumped liquid neodymium laser with a photovoltaic receiver. Total system costs are less for the laser systems below 300 km where drag is significant. System costs are highly dependent on altitude.

  3. You're a What? Solar Photovoltaic Installer

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2009-01-01

    This article talks about solar photovoltaic (PV) installer and features Rebekah Hren, a solar PV installer who puts solar panels on roofs and in other sunny places to turn the sun's power into electricity. Hren enjoys promoting renewable energy, in part because it's an emerging field. In solar PV systems, solar cells--devices that convert sunlight…

  4. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  5. Solar technology assessment project. Volume 6: Photovoltaic technology assessment

    NASA Astrophysics Data System (ADS)

    Backus, C. E.

    1981-04-01

    Industrial production of photovoltaic systems and volume of sales are reviewed. Low cost silicon production techniques are reviewed, including the Czochralski process, heat exchange method, edge defined film fed growth, dentritic web growth, and silicon on ceramic process. Semicrystalline silicon, amorphous silicon, and low cost poly-silicon are discussed as well as advanced materials and concentrator systems. Balance of system components beyond those needed to manufacture the solar panels are included. Nontechnical factors are assessed. The 1986 system cost goals are briefly reviewed.

  6. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  7. Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry

    PubMed Central

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed. PMID:24459433

  8. Advancements in n-type base crystalline silicon solar cells and their emergence in the photovoltaic industry.

    PubMed

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed.

  9. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    PubMed Central

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  10. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.

    PubMed

    Jia, Jieyang; Seitz, Linsey C; Benck, Jesse D; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S; Jaramillo, Thomas F

    2016-10-31

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

  11. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  12. Flexo-photovoltaic effect.

    PubMed

    Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin

    2018-05-25

    It is highly desirable to discover photovoltaic mechanisms that enable enhanced efficiency of solar cells. Here we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We used either an atomic force microscope or a micrometer-scale indentation system to introduce strain gradients, thus creating very large photovoltaic currents from centrosymmetric single crystals of strontium titanate, titanium dioxide, and silicon. This strain gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p-n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Laminated photovoltaic modules using back-contact solar cells

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  14. Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production

    NASA Astrophysics Data System (ADS)

    Czirjak, Daniel

    2017-04-01

    Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.

  15. Solar photovoltaic power systems: an electric utility R & d perspective.

    PubMed

    Demeo, E A; Taylor, R W

    1984-04-20

    Solar photovoltaic technology is receiving increasing attention as a prospective source of bulk, electric utility power within the next 10 to 20 years. Successful development will require solar energy conversion efficiencies of about 15 percent for photovoltaic flat-plate modules, or about 25 percent for photovoltaic cells using highly concentrated sunlight. Three different cell technologies have a better than even chance of achieving these target efficiencies with costs and operating lifetimes that would allow significant use by electric utilities. The challenge for the next decade is to push photovoltaic technology to its physical limits while expanding markets and user confidence with currently available systems.

  16. Cadmium Telluride Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Cadmium Telluride Solar Cells Cadmium Telluride Solar Cells Photovoltaic (PV) solar cells based on leadership. The United States is the leader in CdTe PV manufacturing, and NREL has been at the forefront of research and development (R&D) in this area. PV Research Other Materials & Devices pages: High

  17. Solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Pittman, P. F.; Ferber, R. R.; Marshall, B. W.

    1977-01-01

    The subsystems of a solar photovoltaic central power system are identified and the cost of major components are estimated. The central power system, which would have a peak power capability in the range of 50 to 1000 MW, utilizes two types of subsystems - a power conditioner and a solar array. Despite differences in costs of inverters, the overall cost of the total power conditioning subsystem is about the same for all approaches considered. A combination of two inverters operating from balanced dc buses as a pair of 6-pulse groups is recommended. A number of different solar cell modules and tracking array structures were analyzed. It is concluded that when solar cell costs are high (greater than $500/kW), high concentration modules are more cost effective than those with low concentration. Vertical-axis tracking is the most effective of the studied tracking modes. For less expensive solar cells (less than $400/kW), fixed tilt collector/reflector modules are more cost effective than those which track.

  18. Enhanced EOS photovoltaic power system capability with InP solar cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  19. Solar Radiation on Mars: Tracking Photovoltaic Array

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  20. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  1. Advanced photovoltaic solar array - Design and performance

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Stella, Paul

    1992-01-01

    This paper reports on the development of an ultralightweight flexible blanket, flatpack, foldout solar array design that can provide 3- to 4-fold improvement on specific power performance of current rigid panel arrays and a factor of two improvement over a first-generation flexible blanket array developed as a forerunner to the Space Station Freedom array. To date a prototype wing has been built with a projected specific power performance of about 138 W/kg at beginning-of-life (BOL) and 93 W/kg end-of-life (EOL) at 12 kW (BOL) for a 10-year geosynchronous (GEO) mission. The prototype wing hardware has been subjected to a series of system-level tests to demonstrate design feasibility. The design of the array is summarized. The major trade studies that led to the selection of the baseline design are discussed. Key system-level and component-level testing are described. Array-level performance projections are presented as a function of existing and advanced solar array component technology for various mission applications.

  2. Spin-enhanced organic bulk heterojunction photovoltaic solar cells.

    PubMed

    Zhang, Ye; Basel, Tek P; Gautam, Bhoj R; Yang, Xiaomei; Mascaro, Debra J; Liu, Feng; Vardeny, Z Valy

    2012-01-01

    Recently, much effort has been devoted to improve the efficiency of organic photovoltaic solar cells based on blends of donors and acceptors molecules in bulk heterojunction architecture. One of the major losses in organic photovoltaic devices has been recombination of polaron pairs at the donor-acceptor domain interfaces. Here, we present a novel method to suppress polaron pair recombination at the donor-acceptor domain interfaces and thus improve the organic photovoltaic solar cell efficiency, by doping the device active layer with spin 1/2 radical galvinoxyl. At an optimal doping level of 3 wt%, the efficiency of a standard poly(3-hexylthiophene)/1-(3-(methoxycarbonyl)propyl)-1-1-phenyl)(6,6)C(61) solar cell improves by 18%. A spin-flip mechanism is proposed and supported by magneto-photocurrent measurements, as well as by density functional theory calculations in which polaron pair recombination rate is suppressed by resonant exchange interaction between the spin 1/2 radicals and charged acceptors, which convert the polaron pair spin state from singlet to triplet.

  3. Advanced Solar Cells for Satellite Power Systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  4. Advanced solar cells for satellite power systems

    NASA Astrophysics Data System (ADS)

    Flood, Dennis J.; Weinberg, Irving

    1994-11-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  5. Design and development of high performance solar photovoltaic inverter with advanced modulation techniques to improve power quality

    NASA Astrophysics Data System (ADS)

    Alexander Stonier, Albert

    2017-02-01

    In addition to the focus towards growing demand on electrical energy due to the increase in population, industries, consumer loads, etc., the need for improving the quality of electrical power also needs to be considered. The design and development of solar photovoltaic (PV) inverter with reduced harmonic distortions is proposed. Unlike the conventional solar PV inverters, the proposed inverter provides the advantages of reduced harmonic distortions thereby intend towards the improvement in power quality. This inverter comprises of multiple stages which provides the required 230VRMS, 50 Hz in spite of variations in solar PV due to temperature and irradiance. The reduction of harmonics is governed by applying proper switching sequences required for the inverter switches. The detailed analysis is carried out by employing different switching techniques and observing its performance. With a separate mathematical model for a solar PV, simulations are performed in MATLAB software. To show the advantage of the system proposed, a 3 kWp photovoltaic plant coupled with multilevel inverter is demonstrated in hardware. The novelty resides in the design of a single chip controller which can provide the switching sequence based on the requirement and application. As per the results obtained, the solar-fed multistage inverter improves the quality of power which makes this inverter suitable for both stand-alone and grid-connected systems.

  6. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  7. New Markets for Solar Photovoltaic Power Systems

    NASA Astrophysics Data System (ADS)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  8. Siting Solar Photovoltaics at Airports: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, A.; Romero, R.

    2014-06-01

    Airports present a significant opportunity for hosting solar technologies due to their open land; based on a 2010 Federal Aviation Administration study, the US Department of Agriculture, and the US Fish and Wildlife Service, there's potential for 116,704 MW of solar photovoltaics (PV) on idle lands at US airports. PV has a low profile and likely low to no impact on flight operations. This paper outlines guidance for implementing solar technologies at airports and airfields, focusing largely on the Federal Aviation Administration's policies. The paper also details best practices for siting solar at airports, provides information on the Solar Glaremore » Hazard Analysis Tool, and highlights a case study example where solar has been installed at an airport.« less

  9. Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization.

    PubMed

    Fan, Wenguang; Leung, Michael K H

    2016-02-02

    Increasing utilization of solar energy is an effective strategy to tackle our energy and energy-related environmental issues. Both solar photocatalysis (PC) and solar photovoltaics (PV) have high potential to develop technologies of many practical applications. Substantial research efforts are devoted to enhancing visible light activation of the photoelectrocatalytic reactions by various modifications of nanostructured semiconductors. This review paper emphasizes the recent advancement in material modifications by means of the promising localized surface plasmonic resonance (LSPR) mechanisms. The principles of LSPR and its effects on the photonic efficiency of PV and PC are discussed here. Many research findings reveal the promise of Au and Ag plasmonic nanoparticles (NPs). Continual investigation for increasing the stability of the plasmonic NPs will be fruitful.

  10. Hybrid Tandem Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Hybrid Tandem Solar Cells Hybrid Tandem Solar Cells To achieve aggressive cost reductions in photovoltaics (PV) beyond the 6¢/kWh SunShot Initiative 2020 goal, module efficiency must be increased beyond on a silicon platform and that aim to provide viable prototypes for commercialization. PV Research

  11. Solar photovoltaics: current state and trends

    NASA Astrophysics Data System (ADS)

    Milichko, V. A.; Shalin, A. S.; Mukhin, I. S.; Kovrov, A. E.; Krasilin, A. A.; Vinogradov, A. V.; Belov, P. A.; Simovski, C. R.

    2016-08-01

    Basic aspects of current solar photovoltaics (PVs) are reviewed, starting from the recently developed already-on-the-market first-generation solar cells and ending with promising but not yet commercialized third-generation cells and materials possibly leading to new cell designs. The emphasis is on the physical principles of operation of various solar cells, which are divided into several groups according to our classification scheme. To make the picture complete, some technological and economic aspects of the field are discussed. A separate chapter considers antireflection coatings and light-trapping textures — structures which, while not having appeared yet in the PV review literature, are an integral part of the solar cells.

  12. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  13. Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1979-01-01

    Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.

  14. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  15. NASA advanced space photovoltaic technology-status, potential and future mission applications

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  16. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  17. Photovoltaic and photoelectrochemical conversion of solar energy.

    PubMed

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  18. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  19. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  20. 18th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L. (Compiler)

    2005-01-01

    The 18th Space Photovoltaic Research and Technology (SPRAT XVIII) Conference was held September 16 to 18, 2003, at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. The SPRAT conference, hosted by the Photovoltaic and Space Environments Branch of the NASA Glenn Research Center, brought together representatives of the space photovoltaic community from around the world to share the latest advances in space solar cell technology. This year s conference continued to build on many of the trends shown in SPRAT XVII-the continued advances of thin-film and multijunction solar cell technologies and the new issues required to qualify those types of cells for space applications.

  1. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    ERIC Educational Resources Information Center

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  2. Proceedings of the First ERDA Semiannual Solar Photovoltaic Conversion Program Conference

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Organization, basic research and applied technology for the Solar Photovoltaic Conversion Program are outlined. The program aims to provide a technology base for low cost thin film solar cells and solar arrays.

  3. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  4. Silicon nanowires for photovoltaic solar energy conversion.

    PubMed

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  5. Photovoltaic Experiment Using Light from a Solar Simulator Lamp.

    ERIC Educational Resources Information Center

    Chow, R. H.

    1980-01-01

    A photovoltaic cell experiment utilizing the convenience of a solar simulating type lamp is described. Insight into the solid state aspect of a solar cell is gained by the student in studying the characteristics, and deducing from them cell parameters and efficiency. (Author/CS)

  6. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    PubMed

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  7. Floating Solar Photovoltaics Gaining Ground | State, Local, and Tribal

    Science.gov Websites

    Gaining Ground January 24, 2017 by Alison Holm Floating solar photovoltaic (PV) systems, so-called flotovoltaics (a trademarked term) or floating solar, represent an emerging application in which PV panels are sited on bodies of water. The PV panel technology used for floating solar applications is very similar

  8. Advancing solar energy forecasting through the underlying physics

    NASA Astrophysics Data System (ADS)

    Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.

    2017-12-01

    As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.

  9. Photovoltaic (PV) Systems Comparison at Fort Hood

    DTIC Science & Technology

    2010-06-01

    Monocrystalline PV panels • Energy Photovoltaics, EPV-42 Solar Modules: Thin film PV panels • OutBack Flexware PV Advanced Photovoltaic Combiner...energy for an administrative building – Compare the performance between two different PV technologies: thin film and crystalline PV panels • Demo Team...Center for Energy and Environment PV Technology • Monocrystalline silicon1 • Thin film2 1 “About Solar,” DBK Corporation, http://www.dbksolar.com

  10. Modular assembly of a photovoltaic solar energy receiver

    DOEpatents

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  11. Recent advances in plasmonic dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rho, Won-Yeop; Song, Da Hyun; Yang, Hwa-Young; Kim, Ho-Sub; Son, Byung Sung; Suh, Jung Sang; Jun, Bong-Hyun

    2018-02-01

    Dye-sensitized solar cells (DSSCs) are among the best devices in generating electrons from solar light energy due to their high efficiency, low-cost in processing and transparency in building integrated photovoltaics. There are several ways to improve their energy-conversion efficiency, such as increasing light harvesting and electron transport, of which plasmon and 3-dimensional nanostructures are greatly capable. We review recent advances in plasmonic effects which depend on optimizing sizes, shapes, alloy compositions and integration of metal nanoparticles. Different methods to integrate metal nanoparticles into 3-dimensional nanostructures are also discussed. This review presents a guideline for enhancing the energy-conversion efficiency of DSSCs by utilizing metal nanoparticles that are incorporated into 3-dimensional nanostructures.

  12. Photovoltaic conversion of laser energy

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  13. Designing a concentrating photovoltaic (CPV) system in adjunct with a silicon photovoltaic panel for a solar competition car

    NASA Astrophysics Data System (ADS)

    Arias-Rosales, Andrés.; Barrera-Velásquez, Jorge; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo

    2014-06-01

    Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle "Primavera", competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work. Design considerations, the system development process and implementation are presented in this document considering both the restrictions of the context and the interaction of the CPV system with the solar car setup. The measured data evidences the advantage of using this complementary system during the competition and the potential this technology has for further developments.

  14. Planetary and Deep Space Requirements for Photovoltaic Solar Arrays

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-01-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, more deep space missions now being planned have baselined photovoltaic solar arrays due to the low power requirements (usually significantly less than 100 W) needed for engineering and science payloads. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. This paper will discuss representative requirements for a range of planetary and deep space science missions now in the planning stages. We have divided the requirements into three categories: Inner planets and the sun; outer planets (greater than 3 AU); and Mars, cometary, and asteroid landers and probes. Requirements for Mercury and Ganymede landers will be covered in the Inner and Outer Planets sections with their respective orbiters. We will also discuss special requirements associated with solar electric propulsion (SEP). New technology developments will be needed to meet the demanding environments presented by these future applications as many of the technologies envisioned have not yet been demonstrated. In addition, new technologies that will be needed reside not only in the photovoltaic solar array, but also in other spacecraft systems that are key to operating the spacecraft reliably with the photovoltaics.

  15. Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii

    NASA Astrophysics Data System (ADS)

    Carl, Caroline

    As carbon based fossil fuels become increasingly scarce, renewable energy sources are coming to the forefront of policy discussions around the globe. As a result, the State of Hawaii has implemented aggressive goals to achieve energy independence by 2030. Renewable electricity generation using solar photovoltaic technologies plays an important role in these efforts. This study utilizes geographic information systems (GIS) and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how much solar photovoltaic potential exists for residential rooftops in the town of Kailua Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential rooftops within the study area. Three main areas were addressed in the execution of this research: (1) modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential from incoming solar radiation. High resolution LiDAR data and Esri's solar modeling tools and were utilized to calculate incoming solar radiation on a sample set of digitized rooftops. Photovoltaic potential for the sample set was then calculated with the equations developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical model to identify the correlation between rooftop area and lot size. Least squares multiple linear regression analysis was performed to identify the influence of slope, elevation, rooftop area, and lot size on the modeled PV potential values. The equations built from these statistical analyses of the sample set were applied to the entire study region to calculate total rooftop area and PV potential. The total study area statistical analysis findings estimate photovoltaic electric energy generation potential for rooftops is approximately 190,000,000 kWh annually. This is approximately 17 percent of the total electricity the utility provided to the entire island in

  16. Simulated hail impact testing of photovoltaic solar panels

    NASA Technical Reports Server (NTRS)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  17. Application and design of solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang

    2011-02-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  18. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less

  19. Photovoltaic reciprocity and quasi-Fermi level splitting in nanostructure-based solar cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Aeberhard, Urs

    2017-04-01

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions [1]. So far, the theory has been verified for a wide range of devices and material systems and forms the basis of a growing number of luminesecence imaging techniques used in the characterization of photovoltaic materials, cells and modules [2-5]. However, there are also some examples where the theory fails, such as in the case of amorphous silicon. In our contribution, we critically assess the assumptions made in the derivation of the theory and compare its predictions with rigorous formal relations as well as numerical computations in the framework of a comprehensive quantum-kinetic theory of photovoltaics [6] as applied to ultra-thin absorber architectures [7]. One of the main applications of the photovoltaic reciprocity relation is the determination of quasi-Fermi level splittings (QFLS) in solar cells from the measurement of luminescence. In nanostructure-based photovoltaic architectures, the determination of QFLS is challenging, but instrumental to assess the performance potential of the concepts. Here, we use our quasi-Fermi level-free theory to investigate existence and size of QFLS in quantum well and quantum dot solar cells. [1] Uwe Rau. Reciprocity relation between photovoltaic quantum efficiency and electrolumines- cent emission of solar cells. Phys. Rev. B, 76(8):085303, 2007. [2] Thomas Kirchartz and Uwe Rau. Electroluminescence analysis of high efficiency cu(in,ga)se2 solar cells. J. Appl. Phys., 102(10), 2007. [3] Thomas Kirchartz, Uwe Rau, Martin Hermle, Andreas W. Bett, Anke Helbig, and Jrgen H. Werner. Internal voltages in GaInP-GaInAs-Ge multijunction solar cells determined by electro- luminescence measurements. Appl. Phys. Lett., 92(12), 2008. [4] Thomas Kirchartz, Anke Helbig, Wilfried Reetz, Michael Reuter, Jürgen H. Werner, and

  20. Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung Duc

    Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research

  1. Production of solar photovoltaic cells on the Moon

    NASA Technical Reports Server (NTRS)

    Criswell, David R.; Ignatiev, Alex

    1991-01-01

    Solar energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based solar photovoltaic cells. A few additional types are possible. There is a small but growing literature on production of lunar derived solar cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.

  2. 17th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip (Compiler)

    2002-01-01

    The 17th Space Photovoltaic Research and Technology (SPRAT XVII) Conference was held September 11-13, 2001, at the Ohio Aerospace Institute (OAI) in Cleveland, Ohio. The SPRAT conference, hosted by the Photovoltaic and Space Environments Branch of the NASA Glenn Research Center, brought together representatives of the space photovoltaic community from around the world to share the latest advances in space solar technology. This year's conference continued to build on many of the trends shown in SPRAT XVI; the use of new high-efficiency cells for commercial use and the development of novel array concepts such as Boeing's Solar Tile concept. In addition, new information was presented on space environmental interactions with solar arrays.

  3. Material Science for High-Efficiency Photovoltaics: From Advanced Optical Coatings to Cell Design for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Perl, Emmett Edward

    Solar cells based on III-V compound semiconductors are ideally suited to convert solar energy into electricity. The highest efficiency single-junction solar cells are made of gallium arsenide, and have attained an efficiency of 28.8%. Multiple III-V materials can be combined to construct multijunction solar cells, which have reached record efficiencies greater than 45% under concentration. III-V solar cells are also well suited to operate efficiently at elevated temperatures, due in large part to their high material quality. These properties make III-V solar cells an excellent choice for use in concentrator systems. Concentrator photovoltaic systems have attained module efficiencies that exceed 40%, and have the potential to reach the lowest levelized cost of electricity in sunny places like the desert southwest. Hybrid photovoltaic-thermal solar energy systems can utilize high-temperature III-V solar cells to simultaneously achieve dispatchability and a high sunlight-to-electricity efficiency. This dissertation explores material science to advance the state of III-V multijunction solar cells for use in concentrator photovoltaic and hybrid photovoltaic-thermal solar energy systems. The first half of this dissertation describes work on advanced optical designs to improve the efficiency of multijunction solar cells. As multijunction solar cells move to configurations with four or more subcells, they utilize a larger portion of the solar spectrum. Broadband antireflection coatings are essential to realizing efficiency gains for these state-of-the-art cells. A hybrid design consisting of antireflective nanostructures placed on top of multilayer interference-based optical coatings is developed. Antireflection coatings that utilize this hybrid approach yield unparalleled performance, minimizing reflection losses to just 0.2% on sapphire and 0.6% on gallium nitride for 300-1800nm light. Dichroic mirrors are developed for bonded 5-junction solar cells that utilize InGaN as

  4. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  5. Proceedings of the 19th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie (Compiler); Morton, Thomas (Compiler)

    2007-01-01

    The 19th Space Photovoltaic Research and Technology Conference (SPRAT XIX) was held September 20 to 22, 2005, at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. The SPRAT Conference, hosted by the Photovoltaic and Space Environments Branch of the NASA Glenn Research Center, brought together representatives of the space photovoltaic community from around the world to share the latest advances in space solar cell technology. This year's conference continued to build on many of the trends shown in SPRAT XVIII-the continued advances of thin-film and multijunction solar cell technologies and the new issues required to qualify those types of cells for space applications.

  6. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  7. Nanoplasmonics: a frontier of photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Gu, Min; Ouyang, Zi; Jia, Baohua; Stokes, Nicholas; Chen, Xi; Fahim, Narges; Li, Xiangping; Ventura, Michael James; Shi, Zhengrong

    2012-12-01

    Nanoplasmonics recently has emerged as a new frontier of photovoltaic research. Noble metal nanostructures that can concentrate and guide light have demonstrated great capability for dramatically improving the energy conversion efficiency of both laboratory and industrial solar cells, providing an innovative pathway potentially transforming the solar industry. However, to make the nanoplasmonic technology fully appreciated by the solar industry, key challenges need to be addressed; including the detrimental absorption of metals, broadband light trapping mechanisms, cost of plasmonic nanomaterials, simple and inexpensive fabrication and integration methods of the plasmonic nanostructures, which are scalable for full size manufacture. This article reviews the recent progress of plasmonic solar cells including the fundamental mechanisms, material fabrication, theoretical modelling and emerging directions with a distinct emphasis on solutions tackling the above-mentioned challenges for industrial relevant applications.

  8. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  9. Photovoltaic research and development in Japan

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1983-01-01

    The status of the Japanese photovoltaic (PV) R&D activities was surveyed through literature searches, private communications, and site visits in 1982. The results show that the Japanese photovoltaic technology is maturing rapidly, consistent with the steady government funding under the Sunshine Project. Two main thrusts of the Project are: (1) completion of the solar panel production pilot plants using cast ingot and sheet silicon materials, and (2) development of large area amorphous silicon solar cells with acceptable efficiency (10 to 12%). An experimental automated solar panel production plant rated at 500 kW/yr is currently under construction for the Sunshine Project for completion in March 1983. Efficiencies demonstrated by experimental large are amorphous silicon solar cells are approaching 8%. Small area amorphous silicon solar cells are, however, currently being mass produced and marketed by several companies at an equivalent annual rate of 2 MW/yr for consumer electronic applications. There is no evidence of an immediate move by the Japanese PV industry to enter extensively into the photovoltaic power market, domestic or otherwise. However, the photovoltaic technology itself could become ready for such an entry in the very near future, especially by making use of advanced process automation technologies.

  10. An analysis of quantum coherent solar photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kirk, A. P.

    2012-02-01

    A new hypothesis (Scully et al., Proc. Natl. Acad. Sci. USA 108 (2011) 15097) suggests that it is possible to break the statistical physics-based detailed balance-limiting power conversion efficiency and increase the power output of a solar photovoltaic cell by using “noise-induced quantum coherence” to increase the current. The fundamental errors of this hypothesis are explained here. As part of this analysis, we show that the maximum photogenerated current density for a practical solar cell is a function of the incident spectrum, sunlight concentration factor, and solar cell energy bandgap and thus the presence of quantum coherence is irrelevant as it is unable to lead to increased current output from a solar cell.

  11. Materials interface engineering for solution-processed photovoltaics.

    PubMed

    Graetzel, Michael; Janssen, René A J; Mitzi, David B; Sargent, Edward H

    2012-08-16

    Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their solar-power conversion efficiencies. The nanometre (electron) and micrometre (photon) scale interfaces between the crystalline domains that make up solution-processed solar cells are crucial for efficient charge transport. These interfaces include large surface area junctions between photoelectron donors and acceptors, the intralayer grain boundaries within the absorber, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to efficiency.

  12. Modeling of four-terminal solar photovoltaic systems for field application

    NASA Astrophysics Data System (ADS)

    Vahanka, Harikrushna; Purohit, Zeel; Tripathi, Brijesh

    2018-05-01

    In this article a theoretical framework for mechanically stacked four-terminal solar photovoltaic (FTSPV) system has been proposed. In a mechanical stack arrangement, a semitransparent CdTe panel has been used as a top sub-module, whereas a μc-Si solar panel has been used as bottom sub-module. Theoretical modeling has been done to analyze the physical processes in the system and to estimate reliable prediction of the performance. To incorporate the effect of material, the band gap and the absorption coefficient data for CdTe and μc-Si panels have been considered. The electrical performance of the top and bottom panels operated in a mechanical stack has been obtained experimentally for various inter-panel separations in the range of 0-3 cm. Maximum output power density has been obtained for a separation of 0.75 cm. The mean value of output power density from CdTe (top panel) has been calculated as 32.3 Wm-2 and the mean value of output power density from μc-Si, the bottom panel of four-terminal photovoltaic system has been calculated as ˜3.5 Wm-2. Results reported in this study reveal the potential of mechanically stacked four-terminal tandem solar photovoltaic system towards an energy-efficient configuration.

  13. Performance characteristics of solar-photovoltaic flywheel-storage systems

    NASA Astrophysics Data System (ADS)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  14. Performance comparison investigation on solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Ying; Zhang, Yi-Chen; Xiao, Lan; Shen, Zu-Guo

    2018-07-01

    The performance of solar photovoltaic-thermoelectric generation hybrid system (PV-TGS) and solar photovoltaic-thermoelectric cooling hybrid system (PV-TCS) under different conditions were theoretically analysed and compared. To test the practicality of these two hybrid systems, the performance of stand-alone PV system was also studied. The results show that PV-TGS and PV-TCS in most cases will result in the system with a better performance than stand-alone PV system. The advantage of PV-TGS is emphasised in total output power and conversion efficiency which is even poorer in PV-TCS than that in stand-alone PV system at the ambient wind speed uw being below 3 m/s. However, PV-TCS has obvious advantage on lowering the temperature of PV cell. There is an obvious increase in tendency on the performance of PV-TGS and PV-TCS when the cooling capacity of two hybrid systems varies from around 0.06 to 0.3 W/K. And it is also proved that not just a-Si in PV-TGS can produce a better performance than the stand-alone PV system alone at most cases.

  15. A solar photovoltaic system with ideal efficiency close to the theoretical limit.

    PubMed

    Zhao, Yuan; Sheng, Ming-Yu; Zhou, Wei-Xi; Shen, Yan; Hu, Er-Tao; Chen, Jian-Bo; Xu, Min; Zheng, Yu-Xiang; Lee, Young-Pak; Lynch, David W; Chen, Liang-Yao

    2012-01-02

    In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.

  16. Current challenges in organic photovoltaic solar energy conversion.

    PubMed

    Schlenker, Cody W; Thompson, Mark E

    2012-01-01

    Over the last 10 years, significant interest in utilizing conjugated organic molecules for solid-state solar to electric conversion has produced rapid improvement in device efficiencies. Organic photovoltaic (OPV) devices are attractive for their compatibility with low-cost processing techniques and thin-film applicability to flexible and conformal applications. However, many of the processes that lead to power losses in these systems still remain poorly understood, posing a significant challenge for the future efficiency improvements required to make these devices an attractive solar technology. While semiconductor band models have been employed to describe OPV operation, a more appropriate molecular picture of the pertinent processes is beginning to emerge. This chapter presents mechanisms of OPV device operation, based on the bound molecular nature of the involved transient species. With the intention to underscore the importance of considering both thermodynamic and kinetic factors, recent progress in elucidating molecular characteristics that dictate photovoltage losses in heterojunction organic photovoltaics is also discussed.

  17. Photovoltaic Subcontract Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT)more » project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.« less

  18. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.

    PubMed

    Kim, Mee Rahn; Ma, Dongling

    2015-01-02

    Among next-generation photovoltaic systems requiring low cost and high efficiency, quantum dot (QD)-based solar cells stand out as a very promising candidate because of the unique and versatile characteristics of QDs. The past decade has already seen rapid conceptual and technological advances on various aspects of QD solar cells, and diverse opportunities, which QDs can offer, predict that there is still ample room for further development and breakthroughs. In this Perspective, we first review the attractive advantages of QDs, such as size-tunable band gaps and multiple exciton generation (MEG), beneficial to solar cell applications. We then analyze major strategies, which have been extensively explored and have largely contributed to the most recent and significant achievements in QD solar cells. Finally, their high potential and challenges are discussed. In particular, QD solar cells are considered to hold immense potential to overcome the theoretical efficiency limit of 31% for single-junction cells.

  19. Emergence of highly transparent photovoltaics for distributed applications

    NASA Astrophysics Data System (ADS)

    Traverse, Christopher J.; Pandey, Richa; Barr, Miles C.; Lunt, Richard R.

    2017-11-01

    Solar energy offers a viable solution to our growing energy need. While adoption of conventional photovoltaics on rooftops and in solar farms has grown rapidly in the last decade, there is still plenty of opportunity for expansion. See-through solar technologies with partial light transmission developed over the past 30 years have initiated methods of integration not possible with conventional modules. The large-scale deployment necessary to offset global energy consumption could be further accelerated by developing fully invisible solar cells that selectively absorb ultraviolet and near-infrared light, allowing many of the surfaces of our built environment to be turned into solar harvesting arrays without impacting the function or aesthetics. Here, we review recent advances in photovoltaics with varying degrees of visible light transparency. We discuss the figures of merit necessary to characterize transparent photovoltaics, and outline the requirements to enable their widespread adoption in buildings, windows, electronic device displays, and automobiles.

  20. Economics of adopting solar photovoltaic energy systems in irrigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlin, R.W.; Katzman, M.T.

    An economic analysis concerning the adoption of solar photovoltaic energy systems in irrigation has been made compared to conventional fossil fuel energy sources. The basis for this analysis is presented along with a discussion as to the time of initial profitability, the time of optimal investment, the effects of the tax system, the cost per acre that would make irrigation unviable, and possible governmental incentives that would promote the deployment of photovoltaic irrigation systems between the time of initial profitability and the time of optimal investment.

  1. Reduce on the Cost of Photovoltaic Power Generation for Polycrystalline Silicon Solar Cells by Double Printing of Ag/Cu Front Contact Layer

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Zhou; Chen, Jianlin; Liao, Lida; Chen, Jian; Li, Cong; Li, Wei

    2018-06-01

    With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.

  2. Photovoltaic solar energy conversion in the '80s

    NASA Astrophysics Data System (ADS)

    Chevalier, I.

    1981-04-01

    The potential for photovoltaic solar energy conversion in the generation of electricity to meet the needs of industrial and developing nations in the 1980s is discussed. The current technology of photovoltaic cells and modules, which are for the most part based on single crystal silicon and can deliver peak powers of 2 to 40 W at 6 to 12 V, is reviewed and prospects for cost reduction in the short- and medium-term by the development of new materials and production methods and increased cell efficiency and in the long term by the development of thin film cells, alternative compounds and mass production are indicated. Possible applications of photovoltaic-derived electricity are pointed out, including educational television receivers, rural telephones, refrigerators, water pumping and hospitals in developing nations and telecommunications, cathodic protection, signaling, telemetry and low-power pumping applications in industrial nations. Predictions of a photovoltaic peak Watt installed costing less than 10 francs by 1990 and a market above 100 MW in 1985 are pointed out.

  3. Photovoltaics Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials,more » processes, and device structure and characterization techniques.« less

  4. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  5. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  6. Solar photovoltaic charging of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  7. Glass for low-cost photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1980-01-01

    Various aspects of glass encapsulation that are important for the designer of photovoltaic systems are discussed. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the low-cost solar array project goals for arrays: (1) a low degradation rate, (2) high reliability, (3) an efficiency greater than 10 percent, (4) a total array price less than $500/kW, and (5) a production capacity of 500,000 kW/yr. The glass design areas discussed include the types of glass, sources and costs, physical properties, and glass modifications, such as antireflection coatings.

  8. Advanced Solar Cell Testing and Characterization

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Curtis, Henry; Piszczor, Michael

    2005-01-01

    The topic for this workshop stems from an ongoing effort by the photovoltaic community and U.S. government to address issues and recent problems associated with solar cells and arrays experienced by a number of different space systems. In April 2003, a workshop session was held at the Aerospace Space Power Workshop to discuss an effort by the Air Force to update and standardize solar cell and array qualification test procedures in an effort to ameliorate some of these problems. The organizers of that workshop session thought it was important to continue these discussions and present this information to the entire photovoltaic community. Thus, it was decided to include this topic as a workshop at the following SPRAT conference.

  9. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cellmore » is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.« less

  10. Study on the optimum tilted angle of solar panels in Hainan tropical photovoltaic facility agricultural system

    NASA Astrophysics Data System (ADS)

    Wang, Jingxuan; Ge, Zhiwu; Yang, Xiaoyan; Ye, Chunhua; Lin, Yanxia

    2017-04-01

    Photovoltaic facility agriculture system can effectively alleviate the contradiction between limited land and Photovoltaic power generation. It’s flexible to create suitable environment for crop growth, and generate electricity over the same land at the same time. It’s necessary to set appropriate solar panel angle to get more solar energy. Through detailed analysis and comparison, we chose the Hay’s model as solar radiation model. Based on the official meteorological data got from Haikou Meteorological Bureau, and by comparing the amount of radiation obtained at different tilted angles per month, the optimal placement angle of PV panels at different seasons in Haikou was obtained through calculation, and the optimal placement angle from April to October was also obtained. Through optimized angle and arrangement of solar photovoltaic panels, we can get greater power efficiency.

  11. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  12. Intelligent system for a remote diagnosis of a photovoltaic solar power plant

    NASA Astrophysics Data System (ADS)

    Sanz-Bobi, M. A.; Muñoz San Roque, A.; de Marcos, A.; Bada, M.

    2012-05-01

    Usually small and mid-sized photovoltaic solar power plants are located in rural areas and typically they operate unattended. Some technicians are in charge of the supervision of these plants and, if an alarm is automatically issued, they try to investigate the problem and correct it. Sometimes these anomalies are detected some hours or days after they begin. Also the analysis of the causes once the anomaly is detected can take some additional time. All these factors motivated the development of a methodology able to perform continuous and automatic monitoring of the basic parameters of a photovoltaic solar power plant in order to detect anomalies as soon as possible, to diagnose their causes, and to immediately inform the personnel in charge of the plant. The methodology proposed starts from the study of the most significant failure modes of a photovoltaic plant through a FMEA and using this information, its typical performance is characterized by the creation of its normal behaviour models. They are used to detect the presence of a failure in an incipient or current form. Once an anomaly is detected, an automatic and intelligent diagnosis process is started in order to investigate the possible causes. The paper will describe the main features of a software tool able to detect anomalies and to diagnose them in a photovoltaic solar power plant.

  13. Improving the photovoltaic performance of perovskite solar cells with acetate

    PubMed Central

    Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.

    2016-01-01

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924

  14. Improving the photovoltaic performance of perovskite solar cells with acetate.

    PubMed

    Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P

    2016-12-09

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

  15. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-06-14

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation.more » Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.« less

  16. The Redox Flow System for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  17. A novel photovoltaic power system which uses a large area concentrator mirror

    NASA Technical Reports Server (NTRS)

    Arrison, Anne; Fatemi, Navid

    1987-01-01

    A preliminary analysis has been made of a novel photovoltaic power system concept. The system is composed of a small area, dense photovoltaic array, a large area solar concentrator, and a battery system for energy storage. The feasibility of such a system is assessed for space power applications. The orbital efficiency, specific power, mass, and area of the system are calculated under various conditions and compared with those for the organic Rankine cycle solar dynamic system proposed for Space Station. Near term and advanced large area concentrator photovoltaic systems not only compare favorably to solar dynamic systems in terms of performance but offer other benefits as well.

  18. The electrodeposition of multilayers on a polymeric substrate in flexible organic photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Souza, Monica L.; Tartari, Simone; Cunha, Idaulo J.

    2015-09-01

    Flexible organic photovoltaic solar cells have drawn intense attention due to their advantages over competing solar cell technologies. The method utilized to deposit as well as to integrate solutions and processed materials, manufacturing organic solar cells by the Electrodeposition System, has been presented in this research. In addition, we have demonstrated a successful integration of a process for manufacturing the flexible organic solar cell prototype and we have discussed on the factors that make this process possible. The maximum process temperature was 120°C, which corresponds to the baking of the active polymeric layer. Moreover, the new process of the Electrodeposition of complementary active layer is based on the application of voltage versus time in order to obtain a homogeneous layer with thin film. This thin film was not only obtained by the electrodeposition of PANI-X1 on P3HT/PCBM Blend, but also prepared in perchloric acid solution. Furthermore, these flexible organic photovoltaic solar cells presented power conversion efficiency of 12% and the inclusion of the PANI-X1 layer reduced the effects of degradation on these organic photovoltaic panels induced by solar irradiation. Thus, in the Scanning Electron Microscopy (SEM), these studies have revealed that the surface of PANI-X1 layers is strongly conditioned by the dielectric surface morphology.

  19. Chapter 1: Reliably Measuring the Performance of Emerging Photovoltaic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumbles, Garry; Reese, Matthew O; Marshall, Ashley

    Determining the power conversion efficiency of photovoltaic solar cells, especially those from new, emerging areas of technology, is important if advances in performance are to be made. However, although precise measurements are important, it is the accuracy of these types of measurements that can cause issues. Accurate measurements not only promote the development of new technology platforms, but they also enable comparisons with established technologies and allow assessments of advancements within the same field. This chapter provides insights into how measurements can be made with reasonable accuracy using both the components of the measuring system and a good protocol tomore » acquire good data. The chapter discusses how to measure a calibrated lamp spectrum, determine a spectral mismatch factor, identify the correct reference cell and filter, define the illuminated active area, measure J-V curves to avoid any hysteresis effects, take note of sample degradation issues and avoid the temptation to artificially enhance efficiency data.« less

  20. Photovoltaic module and laminate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaicmore » solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.« less

  1. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    PubMed

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.

  2. Using Cryogenics to Improve the Efficiency of Photovoltaic Solar Cells

    NASA Astrophysics Data System (ADS)

    Somers, Hunter; Martinez, Estefano; Ganley, Grace; Rivera, Daniel; Hopp, Aric; Jakachira, Takunda; West, Andrea; Sapp, Whitley; Watson, Casey R.; Paulin, Pete

    Improving the reliability and profitability of green energy sources plays a crucial part in transitioning away from fossil fuels as an energy source. As a possible means of making solar energy production more efficient, we consider the effects of cryogenically treating photovoltaic (PV) solar panels at 300 Below, Inc. We report on the pre- and post-cryo performance of two different types of solar panels, when they are exposed to the same, artificial light source. Then, using NREL data, we project the financial benefits of adopting cryogenically treated solar panels throughout the United States over the next five years. 300 Below Inc.

  3. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    NASA Astrophysics Data System (ADS)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  4. Recent advancements in plasmon-enhanced promising third-generation solar cells

    NASA Astrophysics Data System (ADS)

    Thrithamarassery Gangadharan, Deepak; Xu, Zhenhe; Liu, Yanlong; Izquierdo, Ricardo; Ma, Dongling

    2017-01-01

    The unique optical properties possessed by plasmonic noble metal nanostructures in consequence of localized surface plasmon resonance (LSPR) are useful in diverse applications like photovoltaics, sensing, non-linear optics, hydrogen generation, and photocatalytic pollutant degradation. The incorporation of plasmonic metal nanostructures into solar cells provides enhancement in light absorption and scattering cross-section (via LSPR), tunability of light absorption profile especially in the visible region of the solar spectrum, and more efficient charge carrier separation, hence maximizing the photovoltaic efficiency. This review discusses about the recent development of different plasmonic metal nanostructures, mainly based on Au or Ag, and their applications in promising third-generation solar cells such as dye-sensitized solar cells, quantum dot-based solar cells, and perovskite solar cells.

  5. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruegg, Rosalie; Thomas, Patrick

    2011-04-01

    DOE's Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  6. Concentration of solar radiation by white backed photovoltaic panels.

    PubMed

    Smestad, G; Hamill, P

    1984-12-01

    In this paper, we present an analysis of the concentration achieved by white backed photovoltaic panels. Concentration is due to the trapping by light scattered in the refractive plate to which the solar cell is bonded. Using the reciprocity relation and assuming the ideal case of a Lambertian distribution, a detailed model is formulated that includes the effects of the thickness and walls of the concentrator. This model converges to the thermodynamic limit and is found to be consistent with experimental results for a wide range of cell sizes. Finally, the model is generalized to multiple-cell photovoltaic panels.

  7. Photovoltaic and thermal energy conversion for solar powered satellites

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  8. Solar simulator for concentrator photovoltaic systems.

    PubMed

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories.

  9. Recent results from advanced research on space solar cells at NASA

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  10. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  11. The Redox flow system for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.

    1976-01-01

    A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.

  12. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  13. Silicon Materials and Devices R&D | Photovoltaic Research | NREL

    Science.gov Websites

    " and "Si-based Tandem Solar Cells"), Next Generation Photovoltaics (NextGen PV III), and devices, especially for photovoltaic (PV) cell applications. PV Research Other Materials & Devices pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic PV Advanced PV

  14. A distributed big data storage and data mining framework for solar-generated electricity quantity forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia

    2012-02-01

    Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.

  15. The use of solar energy - photovoltaic - in hydrogen production and arid zones like Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Sayigh, A. A. M.

    This paper deals with the use of photovoltaic technology for the production of hydrogen from water by electrolysis. First of all the amount of electricity needed for this process was assessed, then various types of solar cell systems to generate the electricity needed were discussed and the best system was established. Some of the investigations involved testing of solar cells with concentrators and with fixed tilt or tracking devices. Several small panels of solar cells were used in testing the effect of local dust and sand as well as the fixed tilt in the area of Riyadh. The cost of producing hydrogen by electrolysis using electricity from a conventional grid was calculated. This cost was compared with the cost of production of hydrogen if a solar cell array was used. The paper outlines the continuous price increase of oil to produce electricity and the rapid decrease in price of solar cells. Both these advances will lead to a cheaper way of producing hydrogen by solar energy. In addition it is shown that technology is almost trouble free and requires very little know-how as far as operation is concerned.

  16. Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.; Almgren, D. W.

    1978-01-01

    In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.

  17. Solar Photovoltaic and Liquid Natural Gas Opportunities for Command Naval Region Hawaii

    DTIC Science & Technology

    2014-12-01

    Utilities Commission xii PV Photovoltaic Pwr Power RE Renewable Energy Re-gas Regasification RFP Request For Proposal RMI Rocky... forecasted LS diesel price and the forecasted LNG delivered-to-the- power -plant cost. The forecast for LS diesel by FGE from year 2020–2030 is seen...annual/html/epa_08_01.html Electric Power Research Institute. (July, 2010). Addressing solar photovoltaic operations and maintenance challenges: A

  18. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-10-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron-hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  19. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    PubMed

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A New Approach to Design of an optimized Grid Tied Smart Solar Photovoltaic (PV) System

    NASA Astrophysics Data System (ADS)

    Farhad, M. Mehedi; Ali, M. Mohammad; Iqbal, M. Asif; Islam, N. Nahar; Ashraf, N.

    2012-11-01

    Energy is the key element for the economical development of a country. With the increasing concern about the global demand for Renewable Energy (RE) energy, it is very much important to reduce the cost of the whole solar photovoltaic (PV) system. Still now most of the solar photovoltaic (PV) system is highly expensive. In this paper we have shown that grid tied solar system can be developed by omitting the energy storage device like large capacity battery bank. It will not only reduce the internallosses for charging and discharging of battery bank but also at the same time a large amount of cost of the battery will be reduced. So, the system maintenance cost will be reduced also. We have proposed a new approach to design a photovoltaic (PV) solar power system which can be operated by feeding the solar power to the national grid along with the residential load. Again if there is an extra power demand for residential load along with the solar power then this system can also provide an opportunity to consume the power from the national grid. The total system is controlled with the help of some the sensors and a microcontroller. As a whole a significant reduction in the system costs and efficient system performance can be realized.

  1. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  2. Catalyzing Mass Production of Solar Photovoltaic Cells Using University Driven Green Purchasing

    ERIC Educational Resources Information Center

    Pearce, Joshua M.

    2006-01-01

    Purpose: The purpose of this paper is to explore the use of the purchase power of the higher education system to catalyze the economy of scale necessary to ensure market competitiveness for solar photovoltaic electricity. Design/methodology/approach: The approach used here was to first determine the demand necessary to construct "Solar City…

  3. Evaluation of advanced R and D topics in photovoltaics

    NASA Technical Reports Server (NTRS)

    Surek, T.

    1982-01-01

    An evaluation of advanced research and development topics in photovoltaic that is summarized. The intent was to develop priorities in a list of advanced research and development activities. Thirty-five activities in 10 major categories were evaluated by their contributions to basic scientific advances, potential impact on further technology development by private industry, and priorities for federal advanced research and development funding.

  4. 75 FR 61509 - Notice of Issuance of Final Determination Concerning Solar Photovoltaic Panel Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... solar photovoltaic (``PV'') panel systems contain both U.S. and foreign-origin raw materials and... of origin of the solar PV panel system described above for the purposes of U.S. government... transformation has occurred; however, no one factor is determinative. In this case, the solar PV systems are...

  5. Solar Power Generation in Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Elliott, Frederick W.; Piszczor, Michael F.

    2016-01-01

    The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.

  6. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, M.; Gilbride, T.; Ruiz, K.

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  7. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  8. Hybrid photovoltaic and thermoelectric module for high concentration solar system

    NASA Astrophysics Data System (ADS)

    Tamaki, Ryo; Toyoda, Takeshi; Tamura, Yoichi; Matoba, Akinari; Minamikawa, Toshiharu; Tokuda, Masayuki; Masui, Megumi; Okada, Yoshitaka

    2017-09-01

    A photovoltaic (PV) and thermoelectric (TE) hybrid module was developed for application to high concentration solar systems. The waste heat from the solar cells under concentrated light illumination was utilized to generate additional electricity by assembling TE devices below the multi-junction solar cells (MJSCs). Considering the high operating temperature of the PV and TE hybrid module compared with conventional concentrator PV modules, the TE device could compensate a part of the MJSC efficiency degradation at high temperature. The performance investigation clarified the feasibility of the hybrid PV and TE module under highly concentrated sunlight illumination.

  9. Optical design of a solar flux homogenizer for concentrator photovoltaics.

    PubMed

    Kreske, Kathi

    2002-04-01

    An optical solution is described for the redistribution of the light reflected from a 400-m2 paraboloidal solar concentrating dish as uniformly as possible over an approximately 1-m2 plane. Concentrator photovoltaic cells will be mounted at this plane, and they require a uniform light distribution for high efficiency. It is proposed that the solar cells will be mounted at the output of a rectangular receiver box with reflective sidewalls (i.e., a kaleidoscope), which will redistribute the light. I discuss the receiver box properties that influence the light distribution reaching the solar cells.

  10. Intergration of LiDAR Data with Aerial Imagery for Estimating Rooftop Solar Photovoltaic Potentials in City of Cape Town

    NASA Astrophysics Data System (ADS)

    Adeleke, A. K.; Smit, J. L.

    2016-06-01

    Apart from the drive to reduce carbon dioxide emissions by carbon-intensive economies like South Africa, the recent spate of electricity load shedding across most part of the country, including Cape Town has left electricity consumers scampering for alternatives, so as to rely less on the national grid. Solar energy, which is adequately available in most part of Africa and regarded as a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, before time and financial resources are invested into rooftop solar photovoltaic systems in urban areas, it is important to evaluate the potential of the building rooftop, intended to be used in harvesting the solar energy. This paper presents methodologies making use of LiDAR data and other ancillary data, such as high-resolution aerial imagery, to automatically extract building rooftops in City of Cape Town and evaluate their potentials for solar photovoltaics systems. Two main processes were involved: (1) automatic extraction of building roofs using the integration of LiDAR data and aerial imagery in order to derive its' outline and areal coverage; and (2) estimating the global solar radiation incidence on each roof surface using an elevation model derived from the LiDAR data, in order to evaluate its solar photovoltaic potential. This resulted in a geodatabase, which can be queried to retrieve salient information about the viability of a particular building roof for solar photovoltaic installation.

  11. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    PubMed

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  12. Modeling and simulation of the solar concentrator in photovoltaic systems through the application of a new BRDF function model

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2016-04-01

    The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.

  13. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.

  14. A Study Examining Photovoltaic (PV) Solar Power as an Alternative for the Rebuilding of the Iraqi Electrical Power Generation Infrastructure

    DTIC Science & Technology

    2005-06-01

    Logistics, BA-5590, BB- 390, BB-2590, PVPC, Iraq, Power Grid, Infrastructure, Cost Estimate, Photovoltaic Power Conversion (PVPC), MPPT 16. PRICE...the cost and feasibility of using photovoltaic (PV) solar power to assist in the rebuilding of the Iraqi electrical infrastructure. This project...cost and feasibility of using photovoltaic (PV) solar power to assist in the rebuilding of the Iraqi infrastructure. The project examines available

  15. Photovoltaic Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey; Bailey, Sheila G.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    Recent advances in crystalline solar cell technology are reviewed. Dual-junction and triple-junction solar cells are presently available from several U. S. vendors. Commercially available triple-junction cells consisting of GaInP, GaAs, and Ge layers can produce up to 27% conversion efficiency in production lots. Technology status and performance figures of merit for currently available photovoltaic arrays are discussed. Three specific NASA mission applications are discussed in detail: Mars surface applications, high temperature solar cell applications, and integrated microelectronic power supplies for nanosatellites.

  16. Photovoltaic materials and devices 2016

    DOE PAGES

    Sopori, Bhushan; Basnyat, Prakash; Mehta, Vishal

    2016-01-01

    Photovoltaic energy continues to grow with about 59 GW of solar PV installed in 2015. While most of the PV production (about 93%) was Si wafer based, both CdTe and CI(G)S are growing in their shares. There is also continued progress at the laboratory scale in OPV and dye sensitized solar cells. As the market grows, emphasis on reducing the cost of modules and systems continues to grow. This is the fourth special issue of this journal that is dedicated to gathering selected papers on recent advances in materials, devices, and modules/PV systems. This issue contains sixteen papers on variousmore » aspects of photovoltaics. As a result, these fall in four broad categories of novel materials, device design and fabrication, modules, and systems.« less

  17. Photovoltaics | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Photovoltaics Photovoltaics Solar photovoltaics (PV) is a mature, commercially available technology arrays. Campus Solar Energy Options A PV system requires periodic maintenance, but upkeep averages two to undertaking a solar energy assessment or PV installation. Solar Energy Resources Solar energy production

  18. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications.

    PubMed

    Marín-Sáez, Julia; Atencia, Jesús; Chemisana, Daniel; Collados, María-Victoria

    2016-03-21

    Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range.

  19. A Space Testbed for Photovoltaics

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1998-01-01

    The Ohio Aerospace Institute and the NASA Lewis Research Center are designing and building a solar-cell calibration facility, the Photovoltaic Engineering Testbed (PET) to fly on the International Space Station to test advanced solar cell types in the space environment. A wide variety of advanced solar cell types have become available in the last decade. Some of these solar cells offer more than twice the power per unit area of the silicon cells used for the space station power system. They also offer the possibilities of lower cost, lighter weight, and longer lifetime. The purpose of the PET facility is to reduce the cost of validating new technologies and bringing them to spaceflight readiness. The facility will be used for three primary functions: calibration, measurement, and qualification. It is scheduled to be launched in June of 2002.

  20. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  1. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  2. Flexo-photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin

    2018-05-01

    It is highly desirable to discover photovoltaic mechanisms that enable enhanced efficiency of solar cells. Here we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We used either an atomic force microscope or a micrometer-scale indentation system to introduce strain gradients, thus creating very large photovoltaic currents from centrosymmetric single crystals of strontium titanate, titanium dioxide, and silicon. This strain gradient–induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p-n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors.

  3. Electric power - Photovoltaic or solar dynamic?

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.

    1985-01-01

    The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.

  4. A novel application for concentrator photovoltaic in the field of agriculture photovoltaics

    NASA Astrophysics Data System (ADS)

    Liu, Luqing; Guan, Chenggang; Zhang, Fangxin; Li, Ming; Lv, Hui; Liu, Yang; Yao, Peijun; Ingenhoff, Jan; Liu, Wen

    2017-09-01

    Agriculture photovoltaics is a trend setting area which has already led to a new industrial revolution. Shortage of land in some countries and desertification of land where regular solar panels are deployed are some of the major problems in the photovoltaic industry. Concentrator photovoltaics experienced a decline in applicability after the cost erosion of regular solar panels at the end of the last decade. We demonstrate a novel and unique application for concentrator photovoltaics tackling at a same time the issue of conventional photovoltaics preventing the land being used for agricultural purpose where ever solar panels are installed. We leverage the principle of diffractive and interference technology to split the sun light into transmitted wavelengths necessary for plant growth and reflected wavelengths useful for solar energy generation. The technology has been successfully implemented in field trials and sophisticated scientific studies have been undertaken to evaluate the suitability of this technology for competitive solar power generation and simultaneous high-quality plant growth. The average efficiency of the agriculture photovoltaic system has reached more than 8% and the average efficiency of the CPV system is 6.80%.

  5. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    PubMed

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  6. Photovoltaics and solar thermal conversion to electricity - Status and prospects

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1979-01-01

    Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.

  7. Solar Energy Prospecting in Remote Alaska: An Economic Analysis of Solar Photovoltaics in the Last Frontier State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwabe, Paul

    2016-02-11

    This report provides a high-level examination of the potential economics of solar energy in rural Alaska across a geographically diverse sample of remote Alaska Native villages throughout the state. It analyzes at a high level what combination of diesel fuel prices, solar resource quality, and photovoltaic (PV) system costs could lead to an economically competitive moderate-scale PV installation at a remote village. The goal of this analysis is to provide a baseline economic assessment to highlight the possible economic opportunities for solar PV in rural Alaska for both the public and private sectors.

  8. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  9. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    PubMed

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Systems and methods for advanced ultra-high-performance InP solar cells

    DOEpatents

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  11. A novel approach for evaluating the impact of fixed variables on photovoltaic (PV) solar installations using enhanced meta data analysis among higher education institutions in the United States

    NASA Astrophysics Data System (ADS)

    De Hoyos, Diane N.

    The global demand for electric energy has continuously increased over the last few decades. Some mature, alternative generation methods are wind, power, photovoltaic panels, biogas and fuel cells. In order to find alternative sources of energy to aid in the reduction of our nation's dependency on non-renewable fuels, energy sources include the use of solar energy panels. The intent of these initiatives is to provide substantial energy savings and reduce dependence on the electrical grid and net metering savings during the peak energy-use hours. The focus of this study explores and provides a clearer picture of the adoption of solar photovoltaic technology in institutions of higher education. It examines the impact of different variables associated with a photovoltaic installation in an institutions of higher education in the United States on the production generations for universities. Secondary data was used with permission from the Advancement of Suitability in Higher Education (AASHE). A multiple regression analysis was performed to determine the impact of different variables on the energy generation production. A Meta Data transformation analysis offered a deeper investigation into the impact of the variables on the photovoltaic installations. Although a review of a significant number of journal articles, dissertations and thesis in the area of photovoltaic solar installations are available, there were limited studies of actual institutions of higher education with the significant volume of institutions. However a study where the database included a significant number of data variables is unique and provides a researcher the opportunity to investigate different facets of a solar installation. The data of the installations ranges from 1993-2015. Included in this observation are the researcher's experience both in the procurement industry and as a team member of a solar institution of higher education in the southern portion of the United States.

  12. Low Earth orbit durability evaluation of protected silicone for advanced refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Mccollum, Timothy A.

    1994-01-01

    The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.

  13. $6 Million in Awards to Advance Solar Cell Research

    Science.gov Websites

    five companies for high tech research into non-conventional, photovoltaic technologies for creating can have significant cost advantages over conventional technologies. This non-conventional solar , Newbury Park, $498,000 (small business) Project Title: Non-Vacuum Processing of CIGS Solar Cells Project

  14. Comparison of photovoltaic energy systems for the solar village

    NASA Astrophysics Data System (ADS)

    Piercefrench, Eric C.

    1988-08-01

    Three different solar photovoltaic (PV) energy systems are compared to determine if the electrical needs of a solar village could be supplied more economically by electricity generated by the sun than by existing utility companies. The solar village, a one square mile community of 900 homes and 50 businesses, would be located in a semi-remote area of the Arizona desert. A load survey is conducted and information on the solar PV industry is reviewed for equipment specifications, availability, and cost. Three specific PV designs, designated as Stand-Alone, Stand-Alone with interconnection, and Central Solar Plant, were created and then economically compared through present worth analysis against utility supplied electrical costs. A variety of technical issues, such as array protection, system configuration and operation, and practicability, are discussed for each design. The present worth analysis conclusively shows none of the solar PV designs could supply electricity to the solar village for less cost than utility supplied electricity, all other factors being equal. No construction on a solar village should begin until the cost of solar generated electricity is more competitive with electricity generated by coal, oil, and nuclear energy. However, research on ways to reduce solar PV equipment costs and on ways to complement solar PV energy, such as the use of solar thermal ponds for heating and cooling, should continue.

  15. Turning the Moon into a Solar Photovoltaic Paradise

    NASA Technical Reports Server (NTRS)

    Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter

    2006-01-01

    Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.

  16. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.

    PubMed

    Wong, Wai-Yeung; Ho, Cheuk-Lam

    2010-09-21

    Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device

  17. Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    O'Gallagher, Joseph J.; Winston, Roland; Gee, Randy

    2001-11-01

    We report results of a study our group has undertaken to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators. We find that a variety of optical mixers, some incorporating a moderate level of concentration, can be quite effective in achieving near uniform irradiance.

  18. Photovoltaic Manufacturing Consortium (PVMC) – Enabling America’s Solar Revolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metacarpa, David

    The U.S. Photovoltaic Manufacturing Consortium (US-PVMC) is an industry-led consortium which was created with the mission to accelerate the research, development, manufacturing, field testing, commercialization, and deployment of next-generation solar photovoltaic technologies. Formed as part of the U.S. Department of Energy's (DOE) SunShot initiative, and headquartered in New York State, PVMC is managed by the State University of New York Polytechnic Institute (SUNY Poly) at the Colleges of Nanoscale Science and Engineering. PVMC is a hybrid of industry-led consortium and manufacturing development facility, with capabilities for collaborative and proprietary industry engagement. Through its technology development programs, advanced manufacturing development facilities,more » system demonstrations, and reliability and testing capabilities, PVMC has demonstrated itself to be a recognized proving ground for innovative solar technologies and system designs. PVMC comprises multiple locations, with the core manufacturing and deployment support activities conducted at the Solar Energy Development Center (SEDC), and the core Si wafering and metrology technologies being headed out of the University of Central Florida. The SEDC provides a pilot line for proof-of-concept prototyping, offering critical opportunities to demonstrate emerging concepts in PV manufacturing, such as evaluations of innovative materials, system components, and PV system designs. The facility, located in Halfmoon NY, encompasses 40,000 square feet of dedicated PV development space. The infrastructure and capabilities housed at PVMC includes PV system level testing at the Prototype Demonstration Facility (PDF), manufacturing scale cell & module fabrication at the Manufacturing Development Facility (MDF), cell and module testing, reliability equipment on its PV pilot line, all integrated with a PV performance database and analytical characterizations for PVMC and its partners test and commercial

  19. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of productionmore » builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.« less

  20. Fabrication and Characterization of Organic Photovoltaic Cell using Keithley 2400 SMU for efficient solar cell

    NASA Astrophysics Data System (ADS)

    Hafeez, Hafeez Y.; Iro, Zaharaddeen S.; Adam, Bala I.; Mohammed, J.

    2018-04-01

    An organic solar cell device or organic photovoltaic cell (OPV) is a class of solar cell that uses conductive organic polymers or small organic molecules for light absorption and charge transport. In this study, we fabricate and characterize an organic photovoltaic cell device and estimated important parameters of the device such as Open Circuit Voltage Voc of 0.28V, Short-Circuit Current Isc of 4.0 × 10-5 A, Maximum Power Pmax of 2.4 × 10-6 W, Fill Factor of 0.214 and the energy conversion efficiency of η=0.00239% were tested using Keithley 2400,source meter under A.M 1.5 (1000/m2) illumination from a Newport Class A solar simulator. Also the I-V characteristics for OPV were drawn.

  1. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    PubMed Central

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-01-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+−n homojunction through the formation of re-grown crystalline silicon layer (~5–10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method. PMID:26632759

  2. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.

    PubMed

    Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung

    2017-01-24

    Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm 2 ) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (<3% relative) of photovoltaic performance and contact properties owing to the suppressed diffusion of p-type dopant as well as substantially reduced time of epitaxial growth associated with ultrathin device configuration. Bifacial photon management employing hexagonally periodic TiO 2 nanoposts and a vertical p-type metal contact serving as a metallic back-surface reflector together with specialized epitaxial design to minimize parasitic optical losses for efficient light trapping synergistically enable significantly enhanced photovoltaic performance of such ultrathin absorbers, where ∼17.2% solar-to-electric power conversion efficiency under simulated AM1.5G illumination is demonstrated from 420-nm-thick single-junction GaAs solar cells grown in triple-stack epitaxial assemblies.

  3. Photovoltaic Engineering

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Ohio Aerospace Institute through David Scheiman and Phillip Jenkins provided the Photovoltaics Branch at the NASA Glenn Research Center (GRC) with expertise in photovoltaic (PV) research, flight experiments and solar cell calibration. NASA GRC maintains the only world-class solar cell calibration and measurement facility within NASA. GRC also has a leadership role within the solar cell calibration community, and is leading the effort to develop ISO standards for solar cell calibration. OAI scientists working under this grant provided much of the expertise and leadership in this area.

  4. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    PubMed

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  5. Utilizing Maximum Power Point Trackers in Parallel to Maximize the Power Output of a Solar (Photovoltaic) Array

    DTIC Science & Technology

    2012-12-01

    photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase... photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase the power output of the solar array. Currently, most military... MPPT ) is an optimizing circuit that is used in conjunction with photovoltaic (PV) arrays to achieve the maximum delivery of power from the array

  6. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    PubMed

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.

  7. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells

    PubMed Central

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials’ bandgap. PMID:28345043

  8. Perovskite and Organic Photovoltaics | Photovoltaic Research | NREL

    Science.gov Websites

    Perovskite and Organic Photovoltaics Perovskite and Organic Photovoltaics Scientist holds several solar cells; 2) electronic energy level alignment at the carbon nanotube/organic metal halide perovskite Hest in the PDIL in the S and TF at NREL. Organic Photovoltaics (OPV) We develop and apply new absorber

  9. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    NASA Astrophysics Data System (ADS)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  10. Energy comparison between solar thermal power plant and photovoltaic power plant

    NASA Astrophysics Data System (ADS)

    Novosel, Urška; Avsec, Jurij

    2017-07-01

    The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.

  11. Photovoltaic Subcontract Program. Annual report, FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project,more » PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.« less

  12. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov Websites

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the National Laboratory developed low-cost transparent encapsulation schemes for CIGS cells that reduced power

  13. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics

    NASA Astrophysics Data System (ADS)

    Morfa, Anthony J.; Rowlen, Kathy L.; Reilly, Thomas H.; Romero, Manuel J.; van de Lagemaat, Jao

    2008-01-01

    Plasmon-active silver nanoparticle layers were included in solution-processed bulk-heterojunction solar cells. Nanoparticle layers were fabricated using vapor-phase deposition on indium tin oxide electrodes. Owing to the increase in optical electrical field inside the photoactive layer, the inclusion of such particle films lead to increased optical absorption and consequently increased photoconversion at solar-conversion relevant wavelengths. The resulting solar energy conversion efficiency for a bulk heterojunction photovoltaic device of poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester was found to increase from 1.3%±0.2% to 2.2%±0.1% for devices employing thin plasmon-active layers. Based on six measurements, the improvement factor of 1.7 was demonstrated to be statistically significant.

  14. A solar photovoltaic power system for use in Antarctica

    NASA Astrophysics Data System (ADS)

    Kohout, Lisa L.; Colozza, A. J.; Merolla, A.

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys and provided a six-person field team with the power to run personal computers and printers, lab equipment, lightning, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering 1.5 kW peak power, three lead-acid gel battery modules supplying 2.4 kWh, and electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for each of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both and environmental and cost standpoint is interested in the use of alternate forms of energy, such as solar power. Such a power system will also provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  15. A solar photovoltaic power system for use in Antarctica

    NASA Astrophysics Data System (ADS)

    Kohout, Lisa L.; Merolla, Anthony; Colozza, Anthony

    1993-12-01

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys, and provided a six-person field team with electrical power for personal computers and printers, lab equipment, lighting, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for ease of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both an environmental and cost standpoint, is interested in the use of alternate forms of energy, such as solar power. Such a power system also will provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  16. A solar photovoltaic power system for use in Antarctica

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Merolla, Anthony; Colozza, Anthony

    1993-01-01

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys, and provided a six-person field team with electrical power for personal computers and printers, lab equipment, lighting, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for ease of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both an environmental and cost standpoint, is interested in the use of alternate forms of energy, such as solar power. Such a power system also will provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  17. A solar photovoltaic power system for use in Antarctica

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Colozza, A. J.; Merolla, A.

    1994-01-01

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys and provided a six-person field team with the power to run personal computers and printers, lab equipment, lightning, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering 1.5 kW peak power, three lead-acid gel battery modules supplying 2.4 kWh, and electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for each of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both and environmental and cost standpoint is interested in the use of alternate forms of energy, such as solar power. Such a power system will also provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  18. The high intensity solar cell: Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  19. Interfacial charge separation and photovoltaic efficiency in Fe(ii)-carbene sensitized solar cells.

    PubMed

    Pastore, Mariachiara; Duchanois, Thibaut; Liu, Li; Monari, Antonio; Assfeld, Xavier; Haacke, Stefan; Gros, Philippe C

    2016-10-12

    The first combined theoretical and photovoltaic characterization of both homoleptic and heteroleptic Fe(ii)-carbene sensitized photoanodes in working dye sensitized solar cells (DSSCs) has been performed. Three new heteroleptic Fe(ii)-NHC dye sensitizers have been synthesized, characterized and tested. Despite an improved interfacial charge separation in comparison to the homoleptic compounds, the heteroleptic complexes did not show boosted photovoltaic performances. The ab initio quantitative analysis of the interfacial electron and hole transfers and the measured photovoltaic data clearly evidenced fast recombination reactions for heteroleptics, even associated with un unfavorable directional electron flow, and hence slower injection rates, in the case of homoleptics. Notably, quantum mechanics calculations revealed that deprotonation of the not anchored carboxylic function in the homoleptic complex can effectively accelerate the electron injection rate and completely suppress the electron recombination to the oxidized dye. This result suggests that introduction of strong electron-donating substituents on the not-anchored carbene ligand in heteroleptic complexes, in such a way of mimicking the electronic effects of the carboxylate functionality, should yield markedly improved interfacial charge generation properties. The present results, providing for the first time a detailed understanding of the interfacial electron transfers and photovoltaic characterization in Fe(ii)-carbene sensitized solar cells, open the way to a rational molecular engineering of efficient iron-based dyes for photoelectrochemical applications.

  20. Company Partners in Photovoltaic Manufacturing R&D | Photovoltaic Research

    Science.gov Websites

    | NREL Company Partners in Photovoltaic Manufacturing R&D Company Partners in Photovoltaic Manufacturing R&D More than 40 private-sector companies partnered with NREL on successful Global Photovoltaic Specialists Global Solar Energy Golden Photon Iowa Thin Film Technologies ITN Energy

  1. Exploring the Effects of the Pb2+ Substitution in MAPbI3 on the Photovoltaic Performance of the Hybrid Perovskite Solar Cells.

    PubMed

    Frolova, Lyubov A; Anokhin, Denis V; Gerasimov, Kirill L; Dremova, Nadezhda N; Troshin, Pavel A

    2016-11-03

    Here we report a systematic study of the Pb 2+ substitution in the hybrid iodoplumbate MAPbI 3 with a series of elements affecting optoelectronic, structural, and morphological properties of the system. It has been shown that even partial replacement of lead with Cd 2+ , Zn 2+ , Fe 2+ , Ni 2+ , Co 2+ , In 3+ , Bi 3+ , Sn 4+ , and Ti 4+ results in a significant deterioration of the photovoltaic characteristics. On the contrary, Hg-containing hybrid MAPb 1-x Hg x I 3 salts demonstrated a considerably improved solar cell performance at optimal mercury loading. This result opens up additional dimension in the compositional engineering of the complex lead halides for designing novel photoactive materials with advanced optoelectronic and photovoltaic properties.

  2. Advances in Perovskite Solar Cells

    PubMed Central

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475

  3. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing.

    PubMed

    Liu, Zhike; Lau, Shu Ping; Yan, Feng

    2015-08-07

    Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.

  4. Multiple Solutions for Reconfiguration to Address Partial Shading Losses in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Sharma, Nikesh; Pareek, Smita; Chaturvedi, Nitin; Dahiya, Ratna

    2018-03-01

    Solar photovoltaic (SPV) systems are steadily rising and considered as the best alternatives to meet the rising demand of energy. In developing countries like India, SPV’s contribution being a clean energy is the most favourable. However, experiences have shown that produced power of these systems is usually affected due to day, night, seasonal variations, insolation, partial shading conditions etc. Among these parameters, partial shading causes a huge reduction in output power of PV systems. This results in lack of confidence for this technology among users. Thus, it is important and a major challenge in PV systems to minimize the effect of partial shading on their energy production. The work in this paper aims to propose solutions for reconfiguration of solar photovoltaic arrays in order to reduce partial shading losses and thus to enhance power generation.

  5. Probing Phase Transformations and Microstructural Evolutions at the Small Scales: Synchrotron X-ray Microdiffraction for Advanced Applications in [Phase 3 Memory,] 3D IC (Integrated Circuits) and Solar PV (Photovoltaic) Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radchenko, I.; Tippabhotla, S. K.; Tamura, N.

    2016-10-21

    Synchrotron x-ray microdiffraction (μXRD) allows characterization of a crystalline material in small, localized volumes. Phase composition, crystal orientation and strain can all be probed in few-second time scales. Crystalline changes over a large areas can be also probed in a reasonable amount of time with submicron spatial resolution. However, despite all the listed capabilities, μXRD is mostly used to study pure materials but its application in actual device characterization is rather limited. This article will explore the recent developments of the μXRD technique illustrated with its advanced applications in microelectronic devices and solar photovoltaic systems. Application of μXRD in microelectronicsmore » will be illustrated by studying stress and microstructure evolution in Cu TSV (through silicon via) during and after annealing. Here, the approach allowing study of the microstructural evolution in the solder joint of crystalline Si solar cells due to thermal cycling will be also demonstrated.« less

  6. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  7. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  8. The Advanced Photovoltaic Solar Array Program Update

    NASA Technical Reports Server (NTRS)

    Kurland, R. M.; Stella, P. M.

    1993-01-01

    The paper continues the status reporting of the development of an ultraweight flexible blanket, flatlpack, fouldout solar array testbed wing that was presented at the First and Second European Space Power Conferences. To date a testbed wing has been built and subjected to a variety of critical functional tests before and after exposrue to simulated launch environments.

  9. Solar photovoltaics for development applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepperd, L.W.; Richards, E.H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  10. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  11. Considerations with respect to the design of solar photovoltaic power systems for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    The various factors involved in the development of solar photovoltaic power systems for terrestrial application are discussed. The discussion covers the tradeoffs, compromises, and optimization studies which must be performed in order to develop a viable terrestrial solar array system. It is concluded that the technology now exists for the fabrication of terrestrial solar arrays but that the economics are prohibitive. Various approaches to cost reduction are presented, and the general requirements for materials and processes to be used are delineated.

  12. Photovoltaic Engineering Testbed Designed for Calibrating Photovoltaic Devices in Space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Accurate prediction of the performance of solar arrays in space requires that the cells be tested in comparison with a space-flown standard. Recognizing that improvements in future solar cell technology will require an ever-increasing fidelity of standards, the Photovoltaics and Space Environment Branch at the NASA Glenn Research Center, in collaboration with the Ohio Aerospace Institute, designed a prototype facility to allow routine calibration, measurement, and qualification of solar cells on the International Space Station, and then the return of the cells to Earth for laboratory use. For solar cell testing, the Photovoltaic Engineering Testbed (PET) site provides a true air-mass-zero (AM0) solar spectrum. This allows solar cells to be accurately calibrated using the full spectrum of the Sun.

  13. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 1: Working group and panel reports

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technological aspects of solar energy conversion by photovoltaic cells are considered. The advantage of the single crystal silicon solar cell approach is developed through comparisons with polycrystalline silicon, cadmium sulfide/copper sulfide thin film cells, and other materials and devices.

  14. Development testing of the advanced photovoltaic solar array

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Kurland, R. M.

    1991-01-01

    The latest design, fabrication and testing details of a prototype wing are discussed. Estimates of array-level performance are presented as a function of power level and solar cell technology for geosynchronous orbit (GEO) missions and solar electric propulsion missions through the Van Allen radiation belts. Design concepts are discussed that would allow the wing to be self-retractable and restowable. To date all testing has verified the feasibility and mechanical/electrical integrity of the baseline design. The beginning-of-life (BOL) specific power estimate for a nominal 10-kW (BOL) array is about 138 W/kg, with corresponding end-of-life (EOL) performance of about 93 W/kg for a 10-year GEO mission.

  15. Forecasting residential solar photovoltaic deployment in California

    DOE PAGES

    Dong, Changgui; Sigrin, Benjamin; Brinkman, Gregory

    2016-12-06

    Residential distributed photovoltaic (PV) deployment in the United States has experienced robust growth, and policy changes impacting the value of solar are likely to occur at the federal and state levels. To establish a credible baseline and evaluate impacts of potential new policies, this analysis employs multiple methods to forecast residential PV deployment in California, including a time-series forecasting model, a threshold heterogeneity diffusion model, a Bass diffusion model, and National Renewable Energy Laboratory's dSolar model. As a baseline, the residential PV market in California is modeled to peak in the early 2020s, with a peak annual installation of 1.5-2more » GW across models. We then use the baseline results from the dSolar model and the threshold model to gauge the impact of the recent federal investment tax credit (ITC) extension, the newly approved California net energy metering (NEM) policy, and a hypothetical value-of-solar (VOS) compensation scheme. We find that the recent ITC extension may increase annual PV installations by 12%-18% (roughly 500 MW, MW) for the California residential sector in 2019-2020. The new NEM policy only has a negligible effect in California due to the relatively small new charges (< 100 MW in 2019-2020). Moreover, impacts of the VOS compensation scheme (0.12 cents per kilowatt-hour) are larger, reducing annual PV adoption by 32% (or 900-1300 MW) in 2019-2020.« less

  16. Forecasting residential solar photovoltaic deployment in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Changgui; Sigrin, Benjamin; Brinkman, Gregory

    Residential distributed photovoltaic (PV) deployment in the United States has experienced robust growth, and policy changes impacting the value of solar are likely to occur at the federal and state levels. To establish a credible baseline and evaluate impacts of potential new policies, this analysis employs multiple methods to forecast residential PV deployment in California, including a time-series forecasting model, a threshold heterogeneity diffusion model, a Bass diffusion model, and National Renewable Energy Laboratory's dSolar model. As a baseline, the residential PV market in California is modeled to peak in the early 2020s, with a peak annual installation of 1.5-2more » GW across models. We then use the baseline results from the dSolar model and the threshold model to gauge the impact of the recent federal investment tax credit (ITC) extension, the newly approved California net energy metering (NEM) policy, and a hypothetical value-of-solar (VOS) compensation scheme. We find that the recent ITC extension may increase annual PV installations by 12%-18% (roughly 500 MW, MW) for the California residential sector in 2019-2020. The new NEM policy only has a negligible effect in California due to the relatively small new charges (< 100 MW in 2019-2020). Moreover, impacts of the VOS compensation scheme (0.12 cents per kilowatt-hour) are larger, reducing annual PV adoption by 32% (or 900-1300 MW) in 2019-2020.« less

  17. Solar synthesis of advanced materials: A solar industrial program initiative

    NASA Astrophysics Data System (ADS)

    Lewandowski, A.

    1992-06-01

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  18. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, B.; Hummon, M.; Cochran, J.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minutemore » irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.« less

  19. Space Photovoltaic Concentrator Using Robust Fresnel Lenses, 4-Junction Cells, Graphene Radiators, and Articulating Receivers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt

    2016-01-01

    At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.

  20. Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells.

    PubMed

    Tan, Shuxin; Zhai, Jin; Xue, Bofei; Wan, Meixiang; Meng, Qingbo; Li, Yuliang; Jiang, Lei; Zhu, Daoben

    2004-03-30

    The influence of polyanilines (PANIs) as hole conductors on the photovoltaic behaviors of dye-sensitized solar cells is studied. The current-voltage (I-V) characteristics and the incident photon to current conversion efficiency (IPCE) curves of the devices are determined as the function of different conductivities and morphologies of PANIs. The results show that the conductivity of PANIs affects the performance of the devices greatly, and PANI with the intermediate conductivity value (3.5 S/cm) is optimum. In addition, the effects of both the film formation property and the cluster size of polyanilines on the photovoltaic behaviors of the devices are also discussed.

  1. Exciton Energy Transfer from Halide Terminated Nanocrystals to Graphene in Solar Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso; Abramson, Justin; Anderson, Nicholas; Owen, Jonathan; Zhao, Yue; Kim, Phillip; Gesuele, Felice; Wong, Chee Wei

    2011-03-01

    Graphene, a zero-gap semiconductor, has been identified as an ideal electrode for nanocrystal solar cell photovoltaic applications due to its high carrier mobility. Further advances in efficient current extraction are required towards this end. We investigate the resonant energy transfer dynamics between photoexcited nanocrystals and graphene, where the energy transfer rate is characterized by the fluorescent quenching of the quantum dots in the presence of graphene. Energy transfer has been shown to have a d -4 dependence on the nanocrystal distance from the graphene surface, with a correction due to blinking statistics. We investigate this relationship with single and few layer graphene. We study halide-terminated CdSe quantum dots; where the absence of the insulating outershell improves the electronic coupling of the donor-acceptor system leads to improved electron transfer. We observe quenching of the halide terminated nanocrystals on graphene, with the quenching factor ρ defined as IQ /IG (the relative intensities on quartz and graphene).

  2. Photovoltaic system criteria documents. Volume 5: Safety criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Methodology is described for determining potential safety hazards involved in the construction and operation of photovoltaic power systems and provides guidelines for the implementation of safety considerations in the specification, design and operation of photovoltaic systems. Safety verification procedures for use in solar photovoltaic systems are established.

  3. Performance evaluation of solar photovoltaic panel driven refrigeration system

    NASA Astrophysics Data System (ADS)

    Rajoria, C. S.; Singh, Dharmendra; Gupta, Pankaj Kumar

    2018-03-01

    The solar photovoltaic (PV) panel driven refrigeration system employs solar PV panel and play a vital role when combined with storage batteries. The variation in performance of solar PV panel driven refrigeration system has been experimentally investigated in this paper. The change in battery voltage is analyzed with respect to panel size. Different series and parallel combinations have been applied on four solar PV panels of 35W each to get 24V. With the above combination a current in the range of 3-5 ampere has been obtained depending upon the solar intensity. A refrigerator of 110 W and 50 liters is used in the present investigation which requires 0.80 ampere AC at 230 V. The required current and voltage has been obtained from an inverter which draws about 7 ampere DC from the battery bank at 24V. The compressor of the refrigerator consumed 110W which required a PV panel size of 176 W approximately. It is important to note that the compressor consumed about 300W for first 50 milliseconds, 130 W for next five seconds and gradually comes to 110 W in 65 seconds. Thus panel size should be such that it may compensate for the initial load requirement.

  4. Experiments on solar photovoltaic power generation using concentrator and liquid cooling

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Hansen, C. F.

    1975-01-01

    Calculations and experimental data are presented leading to the development of a practical, economical solar photovoltaic power supply. The concept involves concentration of sunlight up to about 100 times normal solar intensity in a solar tracking collector and directing this to an array of solar cells. The cells are immersed in water circulated from a thermal reservoir which limits cell temperature rise to about 20 C above ambient during the day and which cools to ambient temperature during the night. Experiments were conducted on solar cells using a Fresnel lens for magnification, a telescope equatorial mount with clock drive, and tap water circulated through the solar cell holder cavity. Test results show that cells operate satisfactorily under these conditions. Power outputs achieved experimentally with cell optimized for 25 suns were linear with concentration to about 15 suns. Cells optimized for 100 suns were not available, but a corresponding linear relation of power output with concentration is anticipated. Test results have been used in a design analysis of the cost of systems utilizing this technique.

  5. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  6. Role of bromine doping on the photovoltaic properties and microstructures of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Atsushi; Okada, Hiroshi; Oku, Takeo

    Organic-inorganic hybrid heterojunction solar cells containing CH{sub 3}NH{sub 3}PbI{sub 3} perovskite compound were fabricated using mesoporous TiO{sub 2} as the electronic transporting layer and spirobifluorence as the hole-transporting layer. The purpose of the present study is to investigate role of bromine (Br) doping on the photovoltaic properties and microstructure of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells. Photovoltaic, optical properties and microstructures of perovskite-based solar cells were investigated. The X-ray diffraction identified crystal structure of the perovskite layer doped with Br in the solar cell. Scanning electron microscopy observation showed a different behavior of surface morphology and the perovskite crystalmore » structure on the TiO{sub 2} mesoporous structure depending on extent amount of hydrogen doping of Br. The role of bromide halogen doping on the perovskite crystal structure and photovoltaic properties was due to improvement of carrier mobility, optimization of electron structure, band gap related with the photovoltaic parameters of V{sub oc}, J{sub sc} and η. Energy diagram and photovoltaic mechanism of the perovskite solar cells varied with halogen doping was discussed by experimental results.« less

  7. Solar photovoltaic powered refrigerators/freezers for medical use in remote geographic locations

    NASA Technical Reports Server (NTRS)

    Darkazalli, G.; Hein, G. F.

    1983-01-01

    One of the obstacles preventing widespread immunication against disease is the virtual absence of reliable, low maintenance refrigeration systems for storage of vaccines in remote geographic locations. A system which consists of a solar photovoltaic cell array and an integrated refrigerator/freezer-energy storage unit is discussed herein. The array converts solar radiation into direct current (DC) electricity with no moving parts and no intermediate steps. A detailed description of the refrigeration system, its design and an analysis thereof, performance test procedures, and test results are presented. A system schematic is also provided.

  8. A sunny future: expert elicitation of China's solar photovoltaic technologies

    NASA Astrophysics Data System (ADS)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.

    2018-03-01

    China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.

  9. Glass needs for a growing photovoltaics industry

    DOE PAGES

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantialmore » investments.« less

  10. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  11. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    NASA Technical Reports Server (NTRS)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  12. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  13. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 2: Invited papers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A photovoltaic device development plan is reported that considers technological as well as economical aspects of single crystal silicon, polycrystal silicon, cadmium sulfide/copper sulfide thin films, as well as other materials and devices for solar cell energy conversion systems.

  14. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  15. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    NASA Astrophysics Data System (ADS)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  16. Solar sail science mission applications and advancement

    NASA Astrophysics Data System (ADS)

    Macdonald, Malcolm; McInnes, Colin

    2011-12-01

    Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next. Having identified and developed a solar sail application-pull technology development roadmap, this is incorporated into a new vision for solar sailing. The development of new technologies, especially for space applications, is high-risk. The advancement difficulty of low technology readiness level research is typically underestimated due to a lack of recognition of the advancement degree of difficulty scale. Recognising the currently low technology readiness level of traditional solar sailing concepts, along with their high advancement degree of difficulty and a lack of near-term applications a new vision for solar sailing is presented which increases the technology readiness level and reduces the advancement degree of difficulty of solar sailing. Just as the basic principles of solar sailing are not new, they have also been long proven and utilised in spacecraft as a low-risk, high-return limited-capability propulsion system. It is therefore proposed that this significant heritage be used to enable rapid, near-term solar sail future advancement through coupling currently mature solar sail, and other, technologies with current solar sail technology developments. As such the near-term technology readiness level of traditional solar sailing is increased, while simultaneously reducing the advancement degree of difficulty

  17. [The property and applications of the photovoltaic solar panel in the region of diagnostic X-ray].

    PubMed

    Hirota, Jun'ichi; Tarusawa, Kohetsu; Kudo, Kohsei

    2010-10-20

    In this study, the sensitivity in the diagnostic X-ray region of the single crystalline Si photovoltaic solar panel, which is expected to grow further, was measured by using an X-ray tube. The output voltage of the solar panel was clearly proportional to the tube voltage and a good time response in the irradiation time setting of the tube was measured. The factor which converts measured voltage to irradiation dose was extracted experimentally using a correction filter to investigate the ability of the solar panel as a dose monitor. The obtained conversion factors were N(S) = 13 ± 1[µV/µSv/s] for the serial and N(P) = 58 ± 2[µV/µSv/s] for the parallel connected solar panels, both with the Al 1 mm + Cu 0.1 mm correction filter, respectively. Therefore, a good dose dependence of the conversion factor was confirmed by varying the distance between the X-ray tube and the solar panel with that filter. In conclusion, a simple extension of our results pointed out the potential of a new concept of measurements using, for example, the photovoltaic solar panel, the direct dose measurement from X-ray tube and real time estimation of the exposed dose in IVR.

  18. Solar concentrator with diffuser segments

    NASA Astrophysics Data System (ADS)

    Esparza, Diego; Moreno, Ivan

    2011-08-01

    Solar energy systems use concentrating optics with photovoltaic cells for optimizing the performance. Advanced concentrators are designed to maximize both the light collection and the spatial uniformity of radiation. This is important because irradiance uniformity is critical for all types of photovoltaic cells. This is difficult to achieve with traditional concentrators, which are built with polished optical surfaces. In this work we propose a new concept of solar concentrator which uses small diffuser segments in key points to increase the irradiation uniformity. We experimentally demonstrate this new concept by analyzing the effects on both efficiency and irradiance uniformity due to the incorporation of scattering ribbons in a compound parabolic concentrator.

  19. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    This paper discusses both state-of-the-art and advanced development cell and array technology. Present technology includes rigid, roll-out, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is discussed based on both DOD efforts and NASA work. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency thin radiation resistant cells is examined. This includes gallium arsenide/germanium, indium phosphide, and thin film devices such as copper indium disclenide.

  20. Photovoltaic power generation system free of bypass diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The stringsmore » of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.« less

  1. Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, A.

    2011-01-01

    The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity, DOE provides technical assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay Area was selected for a 2009 DOE Solar America Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted frommore » this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar photovoltaics (PV) projects in school districts across the country.« less

  2. Photovoltaic performance of textured silicon solar cells with MAPbBr3 perovskite nanophosphors to induce luminescent down-shifting

    NASA Astrophysics Data System (ADS)

    Ho, Wen-Jeng; Li, Guan-Yi; Liu, Jheng-Jie; Lin, Zong-Xian; You, Bang-Jin; Ho, Chun-Hung

    2018-04-01

    This study employed a two-step multi-cycle spin-coating method for the application of MAPbBr3 perovskite nanophosphors on textured silicon solar cells with the aim of enhancing photovoltaic performance through luminescent down-shifting (LDS). The surface morphology and dimensions of the MAPbBr3 perovskite nanophosphors were examined using scanning electron microscopy in conjunction with ImageJ software. The LDS effects of the nanophosphors were revealed by measuring photo-luminance, optical reflectance, and external quantum efficiency. The photovoltaic performance of cells with and without MAPbBr3 perovskite nanophosphors was evaluated according to photovoltaic current density-voltage (J-V) under AM 1.5 G solar illumination. Compared to uncoated cells, two-layer and one-layer coatings of MAPbBr3 perovskite nanophosphors were shown to enhance conversion efficiency by 4.56% and 3.38%, respectively.

  3. Optical design considerations for high-concentration photovoltaics

    NASA Astrophysics Data System (ADS)

    Garboushian, Vahan; Gordon, Robert

    2006-08-01

    Over the past 15 years, major advances in Concentrating Photovoltaics (CPV) have been achieved. Ultra-efficient Si solar cells have produced commercial concentration systems which are being fielded today and are competitively priced. Advanced research has primarily focused on significantly more efficient multi-junction solar cells for tomorrow's systems. This effort has produced sophisticated solar cells that significantly improve power production. Additional performance and cost improvements, especially in the optical system area and system integration, must be made before CPV can realize its ultimate commercial potential. Structural integrity and reliability are vital for commercial success. As incremental technical improvements are made in solar cell technologies, evaluation and 'fine-tuning' of optical systems properly matched to the solar cell are becoming increasingly necessary. As we move forward, it is increasingly important to optimize all of the interrelated elements of a CPV system for high performance without sacrificing the marketable cost and structural requirements of the system. Areas such as wavelength absorption of refractive optics need to be carefully matched to the solar cell technology employed. Reflective optics require advanced engineering models to insure uniform flux distribution without excessive losses. In Situ measurement of the 'fine-grain' improvements are difficult as multiple variables such as solar insolation, temperature, wind, altitude, etc. infringe on analytical data. This paper discusses design considerations based on 10 years of field trials of high concentration systems and their relevance for tomorrow's advanced CPV systems.

  4. The Solar Array Photovoltaic Assembly for the INSAT 4CR Spacecraft Design, Development and In-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Thomas, Joseph; Sudhakar, M.; Agarwal, Anil; Sankaran, M.; Mudramachary, P.

    2008-09-01

    The INSAT 4CR spacecraft, the third in the INSAT 4 series of Indian Space Research Organization (ISRO)'s Communication satellite program, is a high power communication satellite in Geo- stationary Earth Orbit (GEO), configured using the ISRO I2K bus. The primary power is provided by two-wing sun tracking, deployable solar array and the eclipse load requirement is supported by two 70 Ah nickel hydrogen batteries. The power output of the solar array is regulated by Sequential Switching Shunt Regulators to 42V±0.5V. The salient feature of the solar array design is that it uses the new generation multi junction solar cells for all the four panels of size 2.54m x 1.525m to meet the higher power requirement with the available array area. The solar panel fabrication process with the Advanced Triple Junction (ATJ) solar cells from M/s. EMCORE, USA, has been demonstrated for the GEO life cycle through qualification coupon fabrication and testing.This paper describes the INSAT 4CR solar array photovoltaic assemblies design, layout optimization and realization of the Flight Model (FM) panels. It focuses on the power generation prediction, electrical performance measurement under Large Area Pulsed Sun Simulator (LAPSS) and verification of the ground level test results. The indigenously built Geostationary Launch Vehicle (GSLV F04) has successfully launched the INSAT 4CR spacecraft into the orbit on September 2nd, 2007. This paper also presents the analysis of telemetry data to validate the initial phase in-orbit performance of the solar array with prediction.

  5. High-Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  6. Monitoring a photovoltaic system during the partial solar eclipse of August 2017

    NASA Astrophysics Data System (ADS)

    Kurinec, Santosh K.; Kucer, Michal; Schlein, Bill

    2018-05-01

    The power output of a 4.85 kW residential photovoltaic (PV) system located in Rochester, NY is monitored during the partial solar eclipse of August 21, 2017. The data is compared with the data on a day before and on the same day, a year ago. The area of exposed solar disk is measured using astrophotography every 16 s of the eclipse. Global solar irradiance is estimated using the eclipse shading, time of the day, location coordinates, atmospheric conditions and panel orientation. A sharp decline, as expected in the energy produced is observed at the time of the peak of the eclipse. The observed data of the PV energy produced is related with the model calculations taking into account solar eclipse coverage and cloudiness conditions. The paper provides a cohesive approach of irradiance calculations and obtaining anticipated PV performance.

  7. Photovoltaic characteristics of diffused P/+N bulk GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Keeney, R. P.; Bhat, I. B.; Bhat, K. N.; Sundaram, L. G.; Ghandhi, S. K.

    1982-01-01

    The photovoltaic characteristics of P(+)N junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are described in this paper.Spectral response measurements were analyzed in detail and compared to a computer simulation in order to determine important material parameters. It is projected that proper optimization of the cell parameters can increase the efficiency of the cells from 12.2 percent to close to 20 percent.

  8. Titanium-containing zeolites and microporous molecular sieves as photovoltaic solar cells.

    PubMed

    Atienzar, Pedro; Valencia, Susana; Corma, Avelino; García, Hermenegildo

    2007-05-14

    Four titanium-containing zeolites and microporous molecular sieves differing on the crystal structure and particle size (Ti/Beta, Ti/Beta-60, TS-1 and ETS-10) are prepared, and their activity for solar cells after incorporating N3 (a commercially available ruthenium polypyridyl dye) is tested. All the zeolites exhibit photovoltaic activity, and the photoresponse is quite independent of the zeolite pore dimensions or particle size. The photoresponse increases with titanium content in the range 1-7% wt. In this way, cells are obtained that have open-circuit voltage Voc=560 mV and maximum short-circuit photocurrent density Isc=100 microA, measured for 1x1 cm2 surfaces with a solar simulator at 1000 W through and AM 1.5 filter. These values are promising and comparable to those obtained for current dye-sensitized titania solar cells.

  9. Photovoltaic roofing tile systems

    NASA Astrophysics Data System (ADS)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  10. Solar Photovoltaic Technology Assessment for Soldier-Portable and Mobile Power

    DTIC Science & Technology

    2010-06-16

    S ol di er -P or ta bl e an d M ob ile P ow er Solar Photovoltaic Technology Assessment for Soldier-Portable and Mobile Power Cao Chung, US...21005 DESTRUCTION NOTICE- Destroy by any method that will prevent disclosure of contents or reconstruction of the document. PTAE - TR – 10 – 01...NUMBER 6. AUTHOR( S ) Cao Chung 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S

  11. Improving photovoltaic performance of silicon solar cells using a combination of plasmonic and luminescent downshifting effects

    NASA Astrophysics Data System (ADS)

    Ho, Wen-Jeng; Feng, Sheng-Kai; Liu, Jheng-Jie; Yang, Yun-Chie; Ho, Chun-Hung

    2018-05-01

    This paper reports on efforts to improve the photovoltaic performance of crystalline silicon solar cells by combining the plasmonic scattering of silver nanoparticles (Ag NPs) with the luminescent downshifting (LDS) effects of Eu-doped phosphors. The surface morphology was examined using a scanning electron microscope in conjunction with ImageJ software. Raman scattering and absorbance measurements were used to examine the surface plasmon resonance of Ag NPs of various dimensions in various dielectric environments. The fluorescence emission of the Eu-doped phosphors was characterized via photoluminescence measurements at room temperature. We examined the combination of plasmonic and LDS effects by measuring the optical reflectance and external quantum efficiency. Improvements in the photovoltaic performance of the solar cells were determined by photovoltaic current density-voltage under AM 1.5G illumination. A combination of plasmonic and LDS effects led to an impressive 26.17% improvement in efficiency, whereas plasmonic effects resulted in a 22.63% improvement compared to the cell with a SiO2 ARC of 17.33%.

  12. Customized color patterning of photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  13. US Naval Research Laboratory's Current Space Photovoltaic Experiemtns

    NASA Astrophysics Data System (ADS)

    Jenkins, Phillip; Walters, Robert; Messenger, Scott; Krasowski, Michael

    2008-09-01

    The US Naval Research Laboratory (NRL) has a rich history conducting space photovoltaic (PV) experiments starting with Vanguard I, the first solar powered satellite in 1958. Today, NRL in collaboration with the NASA Glenn Research Center, is engaged in three flight experiments demonstrating a wide range of PV technologies in both LEO and HEO orbits. The Forward Technology Solar Cell Experiment (FTSCE)[1], part of the 5th Materials on the International Space Station Experiment (MISSE-5), flew for 13 months on the International Space Station in 2005-2006. The FTSCE provided in-situ I-V monitoring of advanced III-V multi-junction cells and laboratory prototypes of thin film and other next generation technologies. Two experiments under development will provide more opportunities to demonstrate advanced solar cells and characterization electronics that are easily integrated on a wide variety of spacecraft bus architectures.

  14. Solar breeder: Energy payback time for silicon photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  15. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    PubMed Central

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology. PMID:24067664

  16. Residential grid-connected photovoltaics adoption in north central Texas: Lessons from the Solarize Plano project

    NASA Astrophysics Data System (ADS)

    Jack, Katherine G.

    Residential Grid-Connected Photovoltaics (GPV) systems hold remarkable promise in their potential to reduce energy use, air pollution, greenhouse gas emissions, and energy costs to consumers, while also providing grid efficiency and demand-side management benefits to utilities. Broader adoption of customer-sited GPV also has the potential to transform the traditional model of electricity generation and delivery. Interest and activity has grown in recent years to promote GPV in north central Texas. This study employs a mixed methods design to better understand the status of residential GPV adoption in the DFW area, and those factors influencing a homeowner's decision of whether or not to install a system. Basic metrics are summarized, including installation numbers, distribution and socio-demographic information for the case study city of Plano, the DFW region, Texas, and the United States. Qualitative interview methods are used to gain an in-depth understanding of the factors influencing adoption for the Solarize Plano case study participants; to evaluate the effectiveness of the Solarize Plano program; and to identify concepts that may be regionally relevant. Recommendations are presented for additional research that may advance GPV adoption in north central Texas.

  17. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.

  18. Advanced methods for light trapping in optically thin silicon solar cells

    NASA Astrophysics Data System (ADS)

    Nagel, James Richard

    2011-12-01

    The field of light trapping is the study of how best to absorb light in a thin film of material when most light either reflects away at the surface or transmits straight through to the other side. This has tremendous application to the field of photovoltaics where thin silicon films can be manufactured cheaply, but also fail to capture all of the available photons in the solar spectrum. Advancements in light trapping therefore bring us closer to the day when photovoltaic devices may reach grid parity with traditional fossil fuels on the electrical energy market. This dissertation advances our understanding of light trapping by first modeling the effects of loss in planar dielectric waveguides. The mathematical framework developed here can be used to model any arbitrary three-layer structure with mixed gain or loss and then extract the total field solution for the guided modes. It is found that lossy waveguides possess a greater number of eigenmodes than their lossless counterparts, and that these "loss guided" modes attenuate much more rapidly than conventional modes. Another contribution from this dissertation is the exploration of light trapping through the use of dielectric nanospheres embedded directly within the active layer of a thin silicon film. The primary benefit to this approach is that the device can utilize a surface nitride layer serving as an antireflective coating while still retaining the benefits of light trapping within the film. The end result is that light trapping and light injection are effectively decoupled from each other and may be independently optimized within a single photovoltaic device. The final contribution from this work is a direct numerical comparison between multiple light trapping schemes. This allows us to quantify the relative performances of various design techniques against one another and objectively determine which ideas tend to capture the most light. Using numerical simulation, this work directly compares the absorption

  19. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  20. Data on photovoltaic system using different perturb and observe methods under fast multi-changing solar irradiances.

    PubMed

    Peng, Lele; Zheng, Shubin; Xu, Wei; Xin, Li

    2018-04-01

    This article presents the data on photovoltaic (PV) system used different perturb and observe (P&O) methods under fast multi-changing solar irradiances. The mathematical modeling of the PV system and tangent error P&O method was discussed in our previous study entitled "A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances" by Peng et al. (2018) [1]. The data provided in this paper can be used directly without having to spend weeks to simulate the output performance. In addition, it is easy to apply the results for comparison with other algorithms (Kollimalla et al., 2014; Belkaid et al., 2016; Chenchen et al., 2015; Jubaer and Zainal, 2015) [2,3,4,5], and develop a new method for practical application.

  1. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  2. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-01

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  3. Rooftop solar photovoltaic potential in cities: how scalable are assessment approaches?

    NASA Astrophysics Data System (ADS)

    Castellanos, Sergio; Sunter, Deborah A.; Kammen, Daniel M.

    2017-12-01

    Distributed photovoltaics (PV) have played a critical role in the deployment of solar energy, currently making up roughly half of the global PV installed capacity. However, there remains significant unused economically beneficial potential. Estimates of the total technical potential for rooftop PV systems in the United States calculate a generation comparable to approximately 40% of the 2016 total national electric-sector sales. To best take advantage of the rooftop PV potential, effective analytic tools that support deployment strategies and aggressive local, state, and national policies to reduce the soft cost of solar energy are vital. A key step is the low-cost automation of data analysis and business case presentation for structure-integrated solar energy. In this paper, the scalability and resolution of various methods to assess the urban rooftop PV potential are compared, concluding with suggestions for future work in bridging methodologies to better assist policy makers.

  4. Solar photovoltaics: Stand alone applications

    NASA Astrophysics Data System (ADS)

    Deyo, J. N.

    1980-11-01

    The Lewis Research Center involvement in space photovoltaic research and development and in using photovoltaics for terrestrial applications is described with emphasis on applications in which the normal source of power may be a diesel generator, batteries, or other types of power not connected to a utility grid. Once an application is processed, technology is developed and demonstrated with a user who participates in the cost and furnishes the site. Projects completed related to instruments, communication, refrigeration, and highways, are described as well as warning systems, weather stations, fire lookouts, and village power systems. A commercially available photovoltaic powered electric fence charger is the result of Lewis research and development.

  5. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.

    PubMed

    Highfield, James

    2015-04-15

    In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic) primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (CO2 reduction). Attainment of the efficiency (>10%) mandated for viable techno-economics (USD 2.00-4.00 per kg H2) and implementation on a global scale hinges on the development of photo(electro)catalysts and co-catalysts composed of earth-abundant elements offering visible-light-driven charge separation and surface redox chemistry in high quantum yield, while retaining the chemical and photo-stability typical of titanium dioxide, a ubiquitous oxide semiconductor and performance "benchmark". The dye-sensitized TiO2 solar cell and multi-junction Si are key "voltage-biasing" components in hybrid photovoltaic/photoelectrochemical (PV/PEC) devices that currently lead the field in performance. Prospects and limitations of visible-absorbing particulates, e.g., nanotextured crystalline α-Fe2O3, g-C3N4, and TiO2 sensitized by C/N-based dopants, multilayer composites, and plasmonic metals, are also considered. An interesting trend in water splitting is towards hydrogen peroxide as a solar fuel and value-added green reagent. Fundamental and technical hurdles impeding the advance towards pre-commercial solar fuels demonstration units are considered.

  6. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials.

    PubMed

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu; Zhang, Yi

    2018-04-01

    As a promising candidate for low-cost and environmentally friendly thin-film photovoltaics, the emerging kesterite-based Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se 2 (CIGS) and CdTe thin-film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open-circuit voltage ( V OC ) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth-abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe-based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending.

  7. Cation Substitution in Earth‐Abundant Kesterite Photovoltaic Materials

    PubMed Central

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu

    2018-01-01

    Abstract As a promising candidate for low‐cost and environmentally friendly thin‐film photovoltaics, the emerging kesterite‐based Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se2 (CIGS) and CdTe thin‐film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open‐circuit voltage (V OC) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth‐abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe‐based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending. PMID:29721421

  8. Space solar cell research: Problems and potential

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    The value of a passive, maintenance-free, renewable energy source was apparent in the early days of the space program, and the silicon solar cell was pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved through improvements in silicon single crystal material, better device designs, and a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. A brief overview of some of the opportunities and challenges for space photovoltaic applications is given, and some of the current research directed at achieving high efficiency and controlling radiation damage in space solar cells is discussed.

  9. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation

  10. The impact of retail electricity tariff evolution on solar photovoltaic deployment

    DOE PAGES

    Gagnon, Pieter; Cole, Wesley J.; Frew, Bethany; ...

    2017-11-10

    Here, this analysis explores the impact that the evolution of retail electricity tariffs can have on the deployment of solar photovoltaics. It suggests that ignoring the evolution of tariffs resulted in up to a 36% higher prediction of the capacity of distributed PV in 2050, compared to scenarios that represented tariff evolution. Critically, the evolution of tariffs had a negligible impact on the total generation from PV $-$ both utility-scale and distributed $-$ in the scenarios that were examined.

  11. The impact of retail electricity tariff evolution on solar photovoltaic deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Cole, Wesley J.; Frew, Bethany

    Here, this analysis explores the impact that the evolution of retail electricity tariffs can have on the deployment of solar photovoltaics. It suggests that ignoring the evolution of tariffs resulted in up to a 36% higher prediction of the capacity of distributed PV in 2050, compared to scenarios that represented tariff evolution. Critically, the evolution of tariffs had a negligible impact on the total generation from PV $-$ both utility-scale and distributed $-$ in the scenarios that were examined.

  12. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells

    NASA Astrophysics Data System (ADS)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-01

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined 3.0 nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as 2.1 eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0 wt%, 0.1 wt%, 0.5 wt%, 1 wt% and 2 wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1 wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced 20% by incorporating CdSe NCs with 0.1 wt% with respect to those without CdSe NCs.

  13. The Effectiveness of Warranties in the Solar Photovoltaic and Automobile Industries

    NASA Astrophysics Data System (ADS)

    Formica, Tyler J.

    A warranty is an agreement outlined by a manufacturer to a customer that defines performance requirements for a product or service. Although long warranty periods are a useful marketing tool, in 2011 the warranty claims expense was 2.6% of total sales for computer original equipment manufacturers (OEMs) and is over 2% of total sales in many other industries today. Solar PV systems offer inverters with 5-15 year warranties and PV modules with 25-year performance warranties. This is problematic for the return on investment (ROI) of solar PV systems when the modules are still productive and covered under warranty but inverter failures occur due to degradation of electronic components after their warranty has expired. Out-of-warranty inverter failures during the lifetime of solar panels decrease the ROI of solar PV systems significantly and can cause the annual ROI to actually be negative 15-25 years into the lifetime of the system. This thesis analyzes the factors that contribute to designing an optimal warranty period and the relationship between reliability and warranty periods using General Motors (GM) and the solar PV industry as case studies. A return on investment of a solar photovoltaic system is also conducted and the effect of reliability, changing tax credit structures, and failure areas of solar PV systems are analyzed.

  14. Photovoltaic: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    This instructional manual contains 11 learning activity packets for use in a workshop on photovoltaic converters. The lessons cover the following topics: introduction; solar radiation--input for photovoltaic converters; photovoltaic cells; solar electric generator systems; characteristics of silicon cells; photovoltaic module source resistance;…

  15. Terrestrial Photovoltaic System Analysis.

    DTIC Science & Technology

    1980-07-01

    the photovoltaic arrays was detertttined to be the roof on the building adjacent to the plating facilit.. Sult ficitut roof area is available to...indicated here: Component 50 kW System 300 kW System Solar Array $10/W $"’/W Inverter $38/W $I/W (dlitereut supplier) The life-cycle cost analysis...27 15. Various solar energy concem t rating systems .......... 3 I. Varionts photovoltaic concentrators developed under PRDA- 15

  16. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  17. Luminescent solar concentrators for building-integrated photovoltaics

    NASA Astrophysics Data System (ADS)

    Meinardi, Francesco; Bruni, Francesco; Brovelli, Sergio

    2017-12-01

    The transition to fully energetically sustainable architecture through the realization of so-called net zero-energy buildings is currently in progress in areas with low population density. However, this is not yet true in cities, where the cost of land for the installation of ground photovoltaic (PV) is prohibitively high and the rooftop space is too scarce to accommodate the PV modules necessary for sustaining the electrical requirements of tall buildings. Thus, new technologies are being investigated to integrate solar-harvesting devices into building façades in the form of PV windows or envelope elements. Luminescent solar concentrators (LSCs) are the most promising technology for semi-transparent, electrodeless PV glazing systems that can be integrated 'invisibly' into the built environment without detrimental effects to the aesthetics of the building or the quality of life of the inhabitants. After 40 years of research, recent breakthroughs in the realization of reabsorption-free emitters with broadband absorption have boosted the performance of LSCs to such a degree that they might be commercialized in the near future. In this Perspective, we explore the successful strategies that have allowed this change of pace, examining and comparing the different types of chromophores and waveguide materials, and discuss the issues that remain to be investigated for further progress.

  18. Growth and Defect Characterization of Quantum Dot-Embedded III-V Semiconductors for Advanced Space Photovoltaics

    DTIC Science & Technology

    2014-05-15

    important performance degradation mechanism, and provides a target for future comparisons with MBE-grown QD/host systems . 15. SUBJECT TERMS solar ...challenge for every photovoltaics ( PV ) technology. For space solar cell technologies, the III-V multijunction (MJ) concept has been the leading approach to...gap composition, without the need for high Al concentrations, is nonetheless available in the GaAsP alloy system at GaAs0.52P0.48, which is

  19. Measurement of high-voltage and radiation-damage limitations to advanced solar array performance

    NASA Technical Reports Server (NTRS)

    Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.

    1991-01-01

    A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.

  20. Predictability of Solar Radiation for Photovoltaics systems over Europe: from short-term to seasonal time-scales

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Petitta, Marcello; Ruti, Paolo

    2014-05-01

    Photovoltaic diffusion is steadily growing on Europe, passing from a capacity of almost 14 GWp in 2011 to 21.5 GWp in 2012 [1]. Having accurate forecast is needed for planning and operational purposes, with the possibility to model and predict solar variability at different time-scales. This study examines the predictability of daily surface solar radiation comparing ECMWF operational forecasts with CM-SAF satellite measurements on the Meteosat (MSG) full disk domain. Operational forecasts used are the IFS system up to 10 days and the System4 seasonal forecast up to three months. Forecast are analysed considering average and variance of errors, showing error maps and average on specific domains with respect to prediction lead times. In all the cases, forecasts are compared with predictions obtained using persistence and state-of-art time-series models. We can observe a wide range of errors, with the performance of forecasts dramatically affected by orography and season. Lower errors are on southern Italy and Spain, with errors on some areas consistently under 10% up to ten days during summer (JJA). Finally, we conclude the study with some insight on how to "translate" the error on solar radiation to error on solar power production using available production data from solar power plants. [1] EurObserver, "Baromètre Photovoltaïque, Le journal des énergies renouvables, April 2012."

  1. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  2. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    da Silva, R.M.; Fernandes, J.L.M.

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recentlymore » it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other

  3. Photovoltaic solar panels of crystalline silicon: Characterization and separation.

    PubMed

    Dias, Pablo Ribeiro; Benevit, Mariana Gonçalves; Veit, Hugo Marcelo

    2016-03-01

    Photovoltaic panels have a limited lifespan and estimates show large amounts of solar modules will be discarded as electronic waste in a near future. In order to retrieve important raw materials, reduce production costs and environmental impacts, recycling such devices is important. Initially, this article investigates which silicon photovoltaic module's components are recyclable through their characterization using X-ray fluorescence, X-ray diffraction, energy dispersion spectroscopy and atomic absorption spectroscopy. Next, different separation methods are tested to favour further recycling processes. The glass was identified as soda-lime glass, the metallic filaments were identified as tin-lead coated copper, the panel cells were made of silicon and had silver filaments attached to it and the modules' frames were identified as aluminium, all of which are recyclable. Moreover, three different components segregation methods have been studied. Mechanical milling followed by sieving was able to separate silver from copper while chemical separation using sulphuric acid was able to detach the semiconductor material. A thermo gravimetric analysis was performed to evaluate the use of a pyrolysis step prior to the component's removal. The analysis showed all polymeric fractions present degrade at 500 °C. © The Author(s) 2016.

  4. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Loik, Michael E.; Carter, Sue A.; Alers, Glenn; Wade, Catherine E.; Shugar, David; Corrado, Carley; Jokerst, Devin; Kitayama, Carol

    2017-10-01

    Global renewable electricity generation capacity has rapidly increased in the past decade. Increasing the sustainability of electricity generation and the market share of solar photovoltaics (PV) will require continued cost reductions or higher efficiencies. Wavelength-Selective Photovoltaic Systems (WSPVs) combine luminescent solar cell technology with conventional silicon-based PV, thereby increasing efficiency and lowering the cost of electricity generation. WSPVs absorb some of the blue and green wavelengths of the solar spectrum but transmit the remaining wavelengths that can be utilized by photosynthesis for plants growing below. WSPVs are ideal for integrating electricity generation with glasshouse production, but it is not clear how they may affect plant development and physiological processes. The effects of tomato photosynthesis under WSPVs showed a small decrease in water use, whereas there were minimal effects on the number and fresh weight of fruit for a number of commercial species. Although more research is required on the impacts of WSPVs, they are a promising technology for greater integration of distributed electricity generation with food production operations, for reducing water loss in crops grown in controlled environments, as building-integrated solar facilities, or as alternatives to high-impact PV for energy generation over agricultural or natural ecosystems.

  5. Simulation of Hawaiian Electric Companies Feeder Operations with Advanced Inverters and Analysis of Annual Photovoltaic Energy Curtailment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraldez Miner, Julieta I.; Nagarajan, Adarsh; Gotseff, Peter

    The Hawaiian Electric Companies achieved a consolidated Renewable Portfolio Standard (RPS) of approximately 26% at the end of 2016. This significant RPS performance was achieved using various renewable energy sources - biomass, geothermal, solar photovoltaic (PV) systems, hydro, wind, and biofuels - and customer-sited, grid-connected technologies (primarily private rooftop solar PV systems). The Hawaiian Electric Companies are preparing grid-modernization plans for the island grids. The plans outline specific near-term actions to accelerate the achievement of Hawai'i's 100% RPS by 2045. A key element of the Companies' grid-modernization strategy is to utilize new technologies - including storage and PV systems withmore » grid-supportive inverters - that will help to more than triple the amount of private rooftop solar PV systems. The Hawaiian Electric Companies collaborated with the Smart Inverter Technical Working Group Hawai'i (SITWG) to partner with the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to research the implementation of advanced inverter grid support functions (GSF). Together with the technical guidance from the Companies's planning engineers and stakeholder input from the SITWG members, NREL proposed a scope of work that explored different modes of voltage-regulation GSF to better understand the trade-offs of the grid benefits and curtailment impacts from the activation of selected advanced inverter grid support functions. The simulation results presented in this report examine the effectiveness in regulating voltage as well as the impact to the utility and the customers of various inverter-based grid support functions on two Hawaiian Electric distribution substations.« less

  6. Photovoltaic test and demonstration project for the National Photovoltaic Conversion program

    NASA Technical Reports Server (NTRS)

    Deyo, J. N.

    1975-01-01

    Proposed are photovoltaic system tests and demonstrations covering a wide range of applications in order to develop low cost photovoltaic cells suitable for terrestrial applications. Program objectives are: (1) tests and model system demonstrations; (2) device performance and diagnostics; and (3) endurance of solar cell modules and arrays.

  7. Emerging Semitransparent Solar Cells: Materials and Device Design.

    PubMed

    Tai, Qidong; Yan, Feng

    2017-09-01

    Semitransparent solar cells can provide not only efficient power-generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorporating transparent electrodes in new generation low-cost solar cells, including organic solar cells (OSCs), dye-sensitized solar cells (DSCs) and organometal halide perovskite solar cells (PSCs). In this review, the advances in the preparation of semitransparent OSCs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices. Techniques for optimizing the efficiency, color and transparency of the devices are addressed in detail. Finally, a summary of the research field and an outlook into the future development in this area are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Designing of new structure PID controller of boost converter for solar photovoltaic stability

    NASA Astrophysics Data System (ADS)

    Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi

    2017-03-01

    Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.

  9. Roadmap to Guide U.S. Photovoltaics Industry in 21st Century

    Science.gov Websites

    industry wants them to have it. Solar-cell manufacturers and suppliers see photovoltaics (PV) producing at Roadmap to Guide U.S. Photovoltaics Industry in 21st Century Solar energy will provide emergency Douglas Golden, Colo., Jan. 20, 2000 - Americans want clean solar electricity. The U.S. photovoltaics

  10. Photovoltaic Manufacturing R&D Project | Photovoltaic Research | NREL

    Science.gov Websites

    Photovoltaic (PV) Manufacturing Research and Development (R&D) Project was a cost-shared partnership between NREL and a number of private-sector solar companies. The primary project goals were to reduce costs for consumers and solar companies by improving products and manufacturing processes and ensure the

  11. Advanced Thin Film Solar Arrays for Space: The Terrestrial Legacy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Hepp, Aloysius; Raffaelle, Ryne; Flood, Dennis

    2001-01-01

    As in the case for single crystal solar cells, the first serious thin film solar cells were developed for space applications with the promise of better power to weight ratios and lower cost. Future science, military, and commercial space missions are incredibly diverse. Military and commercial missions encompass both hundreds of kilowatt arrays to tens of watt arrays in various earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near sun missions and planetary exploration including orbiters, landers, and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. High power missions are particularly attractive for thin film utilization. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the Moon or Mars, space based lasers or radar, or large Earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or potentially beaming power to the Earth itself. This paper will discuss the current state of the art of thin film solar cells and the synergy with terrestrial thin film photovoltaic evolution. It will also address some of the technology development issues required to make thin film photovoltaics a viable choice for future space power systems.

  12. Substantial bulk photovoltaic effect enhancement via nanolayering

    DOE PAGES

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; ...

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials’ responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO 3 with nickel ions and oxygen vacancies ((PbNiO 2) x(PbTiO 3) 1–x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be asmore » high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. Lastly, this opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.« less

  13. Analysis of integrated photovoltaic-thermal systems using solar concentrators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, M.B.

    1983-01-01

    An integrated photovoltaic-thermal system using solar concentrators utilizes the solar radiation spectrum in the production of electrical and thermal energy. The electrical conversion efficiency of this system decreases with increasing solar cell temperature. Since a high operating temperature is desirable to maximize the quality of thermal output of the planned integrated system, a proper choice of the operating temperature for the unit cell is of vital importance. The analysis predicts performance characteristics of the unit cell by considering the dependence of the heat generation, the heat absorption and the heat transmission on the material properties of the unit cell structure.more » An analytical model has been developed to describe the heat transport phenomena occurring in the unit cell structure. The range of applicability of the one-dimensional and the two-dimensional models, which have closed-form solutions, has been demonstrated. Parametric and design studies point out the requirements for necessary good electrical and thermal performance. A procedure utilizing functional forms of component characteristics in the form of partial coefficients of the dependent variable has been developed to design and operate the integrated system to have a desirable value of the thermal to electrical output ratio both at design and operating modes.« less

  14. Space power technology 21: Photovoltaics

    NASA Astrophysics Data System (ADS)

    Wise, Joseph

    1989-04-01

    The Space Power needs for the 21st Century and the program in photovoltaics needed to achieve it are discussed. Workshops were conducted in eight different power disciplines involving industry and other government agencies. The Photovoltaics Workshop was conducted at Aerospace Corporation in June 1987. The major findings and recommended program from this workshop are discussed. The major finding is that a survivable solar power capability is needed in photovoltaics for critical Department of Defense missions including Air Force and Strategic Defense Initiative. The tasks needed to realize this capability are described in technical, not financial, terms. The second finding is the need for lightweight, moderately survivable planar solar arrays. High efficiency thin III-V solar cells can meet some of these requirements. Higher efficiency, longer life solar cells are needed for application to both future planar and concentrator arrays with usable life up to 10 years. Increasing threats are also anticipated and means for avoiding prolonged exposure, retraction, maneuvering and autonomous operation are discussed.

  15. A Wearable All-Solid Photovoltaic Textile.

    PubMed

    Zhang, Nannan; Chen, Jun; Huang, Yi; Guo, Wanwan; Yang, Jin; Du, Jun; Fan, Xing; Tao, Changyuan

    2016-01-13

    A solution is developed to power portable electronics in a wearable manner by fabricating an all-solid photovoltaic textile. In a similar way to plants absorbing solar energy for photosynthesis, humans can wear the as-fabricated photovoltaic textile to harness solar energy for powering small electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Basics of the dimensioning and operations of photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Karl, H.

    1984-06-01

    Experiments and results in solar energy research are discussed. The characteristics of solar cells and photovoltaic generators are examined, and long-term experimental results on solar generators and hybrid collectors are reported. Photovoltaic systems are discussed, including battery systems, water pump systems, and hydrogen production by electrolysis.

  17. High-efficiency photovoltaic technology including thermoelectric generation

    NASA Astrophysics Data System (ADS)

    Fisac, Miguel; Villasevil, Francesc X.; López, Antonio M.

    2014-04-01

    Nowadays, photovoltaic solar energy is a clean and reliable source for producing electric power. Most photovoltaic systems have been designed and built up for use in applications with low power requirements. The efficiency of solar cells is quite low, obtaining best results in monocrystalline silicon structures, with an efficiency of about 18%. When temperature rises, photovoltaic cell efficiency decreases, given that the short-circuit current is slightly increased, and the open-circuit voltage, fill factor and power output are reduced. To ensure that this does not affect performance, this paper describes how to interconnect photovoltaic and thermoelectric technology into a single structure. The temperature gradient in the solar panel is used to supply thermoelectric cells, which generate electricity, achieving a positive contribution to the total balance of the complete system.

  18. Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties.

    PubMed

    Shen, Deli; Pang, Aiying; Li, Yafeng; Dou, Jie; Wei, Mingdeng

    2018-01-31

    In this study, metal-organic frameworks, as an interfacial layer, were introduced into perovskite solar cells (PSCs) for the first time. An interface modified with the metal-organic framework ZIF-8 efficiently enhanced perovskite crystallinity and grain sizes, and the photovoltaic performance of the PSCs was significantly improved, resulting in a maximum PCE of 16.99%.

  19. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells.

    PubMed

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-05

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined ~3.0nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as ~2.1eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0wt%, 0.1wt%, 0.5wt%, 1wt% and 2wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced ~20% by incorporating CdSe NCs with 0.1wt% with respect to those without CdSe NCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Space solar cell research - Problems and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1986-01-01

    The value of a passive, maintenance-free, renewable energy source was immediately recognized in the early days of the space program, and the silicon solar cell, despite its infancy, was quickly pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved because of a variety of factors, ranging from improvements in silicon single crystal material, to better device designs, to a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. This paper will give a brief overview of some of the opportunities and challenges for space photovoltaic applications, and will discuss some of the current reseach directed at achieving high efficiency and controlling the effects of radiation damage in space solar cells.

  1. Solar Highway Program : from concept to reality : a guidebook for Departments of Transportation to develop solar photovoltaic systems in the highway right-of-way.

    DOT National Transportation Integrated Search

    2016-11-01

    This guidebook is intended to provide an overview for state Departments of Transportation (DOTs) of the process for developing solar photovoltaic (PV) projects in the highway right-of-way. The goal is to help others navigate the process towards a suc...

  2. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return onmore » investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.« less

  3. Monitoring of concentrated radiation beam for photovoltaic and thermal solar energy conversion applications.

    PubMed

    Parretta, Antonio; Privato, Carlo; Nenna, Giuseppe; Antonini, Andrea; Stefancich, Marco

    2006-10-20

    Methods for evaluating the light intensity distribution on receivers of concentrated solar radiation systems are described. They are based on the use of Lambertian diffusers in place of the illuminated receiver and on the acquisition of the scattered light, in reflection or transmission mode, by a CCD camera. The spatial distribution of intensity radiation is then numerically derived from the recorded images via a proprietary code. The details of the method are presented and a short survey of the main applications of the method in the photovoltaic and thermal solar energy conversion field is proposed. Methods for investigating the Lambertian character of commercial diffusers are also discussed.

  4. Coating Processes Boost Performance of Solar Cells

    NASA Technical Reports Server (NTRS)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  5. NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric

    Science.gov Websites

    Companies | Energy Systems Integration Facility | NREL NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric Companies NREL Evaluates Advanced Solar Inverter Performance for Hawaiian performance and impacts of today's advanced solar inverters, as well as proprietary feedback to the inverter

  6. US photovoltaic patents, 1951--1987

    NASA Astrophysics Data System (ADS)

    1988-09-01

    This document contains 2195 U.S. patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1951 through 1987; no patents were found in 1950. The entries were located by searching USPA, the data base of the U.S. Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric, and the subclasses Photoelectric, Testing, and Applications. The search also located patents that contained the words photovoltaic(s) or solar cell(s) and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrwstrial PV power technologies.

  7. On the Path to SunShot. The Role of Advancements in Solar Photovoltaic Efficiency, Reliability, and Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodhouse, Michael; Jones-Albertus, Rebecca; Feldman, David

    2016-05-01

    This report examines the remaining challenges to achieving the competitive photovoltaic (PV) costs and large-scale deployment envisioned under the U.S. Department of Energy's SunShot Initiative. Solar-energy cost reductions can be realized through lower PV module and balance-of-system (BOS) costs as well as improved system efficiency and reliability. Numerous combinations of PV improvements could help achieve the levelized cost of electricity (LCOE) goals because of the tradeoffs among key metrics like module price, efficiency, and degradation rate as well as system price and lifetime. Using LCOE modeling based on bottom-up cost analysis, two specific pathways are mapped to exemplify the manymore » possible approaches to module cost reductions of 29%-38% between 2015 and 2020. BOS hardware and soft cost reductions, ranging from 54%-77% of total cost reductions, are also modeled. The residential sector's high supply-chain costs, labor requirements, and customer-acquisition costs give it the greatest BOS cost-reduction opportunities, followed by the commercial sector, although opportunities are available to the utility-scale sector as well. Finally, a future scenario is considered in which very high PV penetration requires additional costs to facilitate grid integration and increased power-system flexibility--which might necessitate even lower solar LCOEs. The analysis of a pathway to 3-5 cents/kWh PV systems underscores the importance of combining robust improvements in PV module and BOS costs as well as PV system efficiency and reliability if such aggressive long-term targets are to be achieved.« less

  8. Holographic spectrum-splitting optical systems for solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  9. Future mission opportunities and requirements for advanced space photovoltaic energy conversion technology

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The variety of potential future missions under consideration by NASA will impose a broad range of requirements on space solar arrays, and mandates the development of new solar cells which can offer a wide range of capabilities to mission planners. Major advances in performance have recently been achieved at several laboratories in a variety of solar cell types. Many of those recent advances are reviewed, the areas are examined where possible improvements are yet to be made, and the requirements are discussed that must be met by advanced solar cell if they are to be used in space. The solar cells of interest include single and multiple junction cells which are fabricated from single crystal, polycrystalline and amorphous materials. Single crystal cells on foreign substrates, thin film single crystal cells on superstrates, and multiple junction cells which are either mechanically stacked, monolithically grown, or hybrid structures incorporating both techniques are discussed. Advanced concentrator array technology for space applications is described, and the status of thin film, flexible solar array blanket technology is reported.

  10. Advances in Single and Multijunction III-V Photovoltaics on Silicon for Space Power

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fitzgerald, Eugene A.; Ringel, Steven A.

    2005-01-01

    A collaborative research effort at MIT, Ohio State University and NASA has resulted in the demonstration of record quality gallium arsenide (GaAs) based single junction photovoltaic devices on silicon (Si) substrates. The ability to integrate highly efficient, radiation hard III-V based devices on silicon offers the potential for dramatic reductions in cell mass (approx.2x) and increases in cell area. Both of these improvements offer the potential for dramatic reductions in the cost of on-orbit electrical power. Recently, lattice matched InGaP/GaAs and metamorphic InGaP/InGaAs dual junction solar cells were demonstrated by MBE and OMVPE, respectively. Single junction GaAs on Si devices have been integrated into a space flight experiment (MISSES), scheduled to be launched to the International Space Station in March of 2005. I-V performance data from the GaAs/Si will be collected on-orbit and telemetered to ground stations daily. Microcracks in the GaAs epitaxial material, generated because of differences in the thermal expansion coefficient between GaAs and Si, are of concern in the widely varying thermal environment encountered in low Earth orbit. Ground based thermal life cycling (-80 C to + 80 C) equivalent to 1 year in LEO has been conducted on GaAs/Si devices with no discernable degradation in device performance, suggesting that microcracks may not limit the ability to field GaAs/Si in harsh thermal environments. Recent advances in the development and testing of III-V photovoltaic devices on Si will be presented.

  11. Comparing capacity value estimation techniques for photovoltaic solar power

    DOE PAGES

    Madaeni, Seyed Hossein; Sioshansi, Ramteen; Denholm, Paul

    2012-09-28

    In this paper, we estimate the capacity value of photovoltaic (PV) solar plants in the western U.S. Our results show that PV plants have capacity values that range between 52% and 93%, depending on location and sun-tracking capability. We further compare more robust but data- and computationally-intense reliability-based estimation techniques with simpler approximation methods. We show that if implemented properly, these techniques provide accurate approximations of reliability-based methods. Overall, methods that are based on the weighted capacity factor of the plant provide the most accurate estimate. As a result, we also examine the sensitivity of PV capacity value to themore » inclusion of sun-tracking systems.« less

  12. Generic solar photovoltaic system dynamic simulation model specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intendedmore » to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.« less

  13. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    PubMed

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-04

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  14. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2018-06-07

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  15. Photovoltaic power system for a lunar base

    NASA Astrophysics Data System (ADS)

    Karia, Kris

    An assessment is provided of the viability of using photovoltaic power technology for lunar base application during the initial phase of the mission. The initial user power demands were assumed to be 25 kW (daytime) and 12.5 kW (night time). The effect of lunar adverse environmental conditions were also considered in deriving the photovoltaic power system concept. The solar cell array was found to impose no more design constraints than those solar arrays currently being designed for spacecraft and the Space Station Freedom. The long lunar night and the need to store sufficient energy to sustain a lunar facility during this period was found to be a major design driver. A photovoltaic power system concept was derived using high efficiency thin GaAs solar cells on a deployable flexible Kapton blanket. The solar array design was sized to generate sufficient power for daytime use and for a regenerative fuel cell (RFC) energy storage system to provide power during the night. Solar array sun-tracking is also proposed to maximize the array power output capability. The system launch mass was estimated to be approximately 10 metric tons. For mission application of photovoltaic technology other issues have to be addressed including the constraints imposed by launch vehicle, safety, and cost. For the initial phase of the mission a photovoltaic power system offers a safe option.

  16. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    PubMed Central

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-01-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment. PMID:27922592

  17. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification.

    PubMed

    Bradbury, Kyle; Saboo, Raghav; L Johnson, Timothy; Malof, Jordan M; Devarajan, Arjun; Zhang, Wuming; M Collins, Leslie; G Newell, Richard

    2016-12-06

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  18. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    NASA Astrophysics Data System (ADS)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-12-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  19. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    NASA Astrophysics Data System (ADS)

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  20. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xianghua; Korolkov, Ilia; Fan, Bo; Cathelinaud, Michel; Ma, Hongli; Adam, Jean-Luc; Merdrignac, Odile; Calvez, Laurent; Lhermite, Hervé; Brizoual, Laurent Le; Pasquinelli, Marcel; Simon, Jean-Jacques

    2018-03-01

    In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2-Sb2Se3-CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  1. Understanding the physical properties of hybrid perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Huang, Jinsong; Yuan, Yongbo; Shao, Yuchuan; Yan, Yanfa

    2017-07-01

    New photovoltaic materials have been searched for in the past decades for clean and renewable solar energy conversion with an objective of reducing the levelized cost of electricity (that is, the unit price of electricity over the course of the device lifetime). An emerging family of semiconductor materials — organic-inorganic halide perovskites (OIHPs) — are the focus of the photovoltaic research community owing to their use of low cost, nature-abundant raw materials, low-temperature and scalable solution fabrication processes, and, in particular, the very high power conversion efficiencies that have been achieved within the short time of their development. In this Review, we summarize and critically assess the most recent advances in understanding the physical properties of both 3D and low-dimensional OIHPs that favour a small open-circuit voltage deficit and high power conversion efficiency. Several prominent topics in this field on the unique properties of OIHPs are surveyed, including defect physics, ferroelectricity, exciton dissociation processes, carrier recombination lifetime and photon recycling. The impact of ion migration on solar cell efficiency and stability are also critically analysed. Finally, we discuss the remaining challenges in the commercialization of OIHP photovoltaics.

  2. Photovoltaic fabrics

    DTIC Science & Technology

    2015-04-22

    CLADDING SOLAR CELLS PV (PHOTOVOLTAIC) University of Massachusetts – Dartmouth 285 Old Westport Road Dartmouth, MA 02747...Lowell, MA 01852 14. ABSTRACT This report describes a project to improve photovoltaic fabrics. It had four objectives: 1) Efficiency – make PV wires on...direct sunlight (AM1.5). Over the duration of the project we demonstrated PV efficiency ranging from 5.04% (wire on a black background) to >8

  3. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    NASA Astrophysics Data System (ADS)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  4. Advanced Photovoltaic Inverter Control Development and Validation in a Controller-Hardware-in-the-Loop Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabakar, Kumaraguru; Shirazi, Mariko; Singh, Akanksha

    Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the differentmore » control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.« less

  5. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  6. Solar electricity and solar fuels

    NASA Astrophysics Data System (ADS)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  7. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  8. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    PubMed Central

    Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers. PMID:28883360

  9. Lead-acid batteries in solar photovoltaic power systems for marine aids to navigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trenchard, S.E.

    1981-10-01

    Since 1974, the U.S. Coast Guard has been testing lead-acid batteries in solar photovoltaic-powered systems for aids to navigation. Three types of lead-acid batteries, distinguished by the composition of their grid material, have been tested: lead-antimony grid, lead-calcium grid, and pure-lead grid. This report contains a comparison of the charging characteristics and the charge-discharge cycling behavior of each grid type. All types were remarkably similar qualitatively in their daily as well as annual cycling behavior but the significance of the quantitative differences offer distinctive tradeoffs. This report presents models for water usage, depth-of-discharge, and post-cycle capacity for various levels ofmore » voltage regulation. Based on the post-cycle capacity tests, the effect of grid strength, grid thickness, and operating conditions on life expectancy are presented. A final discussion presents the results of a field deployment of solar photovoltaic-powered aids to navigation in the Miami, Florida area. Potential solutions to the battery terminal corrosion and bird guano problems observed are discussed.« less

  10. PV Reliability Workshop | Photovoltaic Research | NREL

    Science.gov Websites

    Laboratory. NREL hosts an annual Photovoltaic Reliability Workshop (PVRW) so that solar technology experts Photovoltaic Reliability Workshop (PVRW) will be held Tuesday, February 27, to Thursday, March 1, at the workshop. 2017 Workshop The 2017 Photovoltaic Reliability Workshop (PVRW) was Tuesday, February 28, to

  11. Advanced Solar Panel Designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E. B.

    1995-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 sq cm coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual-junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 sq cm coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg.

  12. 48 CFR 252.225-7018 - Photovoltaic Devices-Certificate.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that such photovoltaic device (e.g., solar panel) is a designated country photovoltaic device shall be... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Photovoltaic Devices... of Provisions And Clauses 252.225-7018 Photovoltaic Devices—Certificate. As prescribed in 225.7017-4...

  13. 48 CFR 252.225-7018 - Photovoltaic Devices-Certificate.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... that such photovoltaic device (e.g., solar panel) is a designated country photovoltaic device shall be... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Photovoltaic Devices... of Provisions And Clauses 252.225-7018 Photovoltaic Devices—Certificate. As prescribed in 225.7017-4...

  14. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled

  15. Feasibility of solar power for Mars

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    NASA, through Project Pathfinder, has put in place an advanced technology program to address future needs of manned space exploration. Included in the missions under study is the establishment of outposts on the surface of Mars. The Surface Power program in Pathfinder is aimed at providing photovoltaic array technology for such an application (as well as for the lunar surface). Another important application is for unmanned precursor missions, such as the photovoltaic-power aircraft, which will scout landing sites and investigate Mars geology for a 1 to 2 year mission without landing on the surface. Effective design and utilization of solar energy depend to a large extent on adequate knowledge of solar radiation characteristics in the region of solar energy system operation. The two major climatic components needed for photovoltaic system designs are the distributions of solar insolation and ambient temperature. These distributions for the Martian climate are given at the two Viking lander locations but can also be used, to the first approximation, for other latitudes. One of the most important results is that there is a large diffuse component of the insolation, even at high optical depth, so that solar energy system operation is still possible. If the power system is to continue to generate power even on high optical opacity days, it is thus important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. In absence of long term insolation and temperature data for Mars, the data presented can be used until updated data are available. The ambient temperature data are given as measured directly by the temperature sensor; the insolation data are calculated from optical depth measurements of the atmosphere.

  16. The Influence of Substituent Orientation on the Photovoltaic Performance of Phthalocyanine-Sensitized Solar Cells.

    PubMed

    Tejerina, Lara; Martínez-Díaz, M Victoria; Nazeeruddin, Mohammad Khaja; Torres, Tomas

    2016-03-18

    Phthalocyanines (Pcs) are used as sensitizers in dye-sensitized solar cells (DSSCs) because of their stability and intense absorption in the red and near-IR regions. Impressive progress has been made in photovoltaic efficiencies by introduction of bulky peripheral substituents to help suppress macrocycle aggregation. To reach benchmark efficiencies reported for other related dyes, new designs need to be explored. Single carboxy-ZnPc regioisomers substituted at the non-peripheral positions by rigid aryl groups have now been studied, which has shed light on the influence of steric hindrance and/or orientation of the substituent around the anchoring group on the photovoltaic response. The regioisomer bearing the aryl group far away from the anchoring group produces a more effective sensitization of the TiO2 films and higher short-circuit photocurrent density (Jsc). Taking advantage of the good photovoltaic performance in the near-IR region of this ZnPc, it was combined with another appropriate dye for panchromatic sensitization of the mesoporous photoelectrode and an increase of the overall device efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Frequently Asked Questions | Photovoltaic Research | NREL

    Science.gov Websites

    Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data ERDA/NASA TM 73702: Terrestrial Photovoltaic Measurement Procedures, ERDA / NASA / 1022-77 / 16, June 1977. K.A

  18. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    PubMed Central

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-01-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. PMID:27930331

  19. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    DOE PAGES

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; ...

    2016-12-05

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PVmore » conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.« less

  20. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  1. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation.

    PubMed

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A

    2016-12-20

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  2. Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin

    The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less

  3. A novel strategy to increase separated electron-hole dipoles in commercial Si based solar panel to assist photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; He, Cheng-En; Xu, Zhichao; Hu, Jianbing; Peng, Cheng

    2018-01-01

    Interface induced polarization has been found to have a significant impact on dielectric properties of 2-2 type polymer composites bearing Si based semi-conducting ceramic sheets. Inherent overall polarity of polymer layers in 2-2 composites has been verified to be closely connected with interface effect and achieved permittivity in composites. In present work, conducting performances of monocrystalline Si sheets coated by varied high polarity material layers were deeply researched. The positive results inspired us to propose a novel strategy to improve separated electron-hole dipoles in commercial Si based solar cell panel for assisting photovoltaic effect, based on strong interface induced polarization. Conducting features of solar panels coated by two different high polarity polymer layers were detected to be greatly elevated compared with solar panel standalone, thanks to interface induced polarization between panel and polymer. Polymer coating with higher polarity would lead to more separated electron-hole dipole pairs in solar panel contributing to higher conductivity of panel. Valid synergy of interface effect and photovoltaic effect was based on their unidirectional traits of electron transfer. Dielectric properties of solar panels in composites further confirmed that strategy. This work might provide a facile route to prepare promising Si based solar panels with higher photoelectric conversion efficiency by enhancing interface induced polarization between panel and polymer coating.

  4. Intermediate-band dynamics of quantum dots solar cell in concentrator photovoltaic modules

    PubMed Central

    Sogabe, Tomah; Shoji, Yasushi; Ohba, Mitsuyoshi; Yoshida, Katsuhisa; Tamaki, Ryo; Hong, Hwen-Fen; Wu, Chih-Hung; Kuo, Cherng-Tsong; Tomić, Stanko; Okada, Yoshitaka

    2014-01-01

    We report for the first time a successful fabrication and operation of an InAs/GaAs quantum dot based intermediate band solar cell concentrator photovoltaic (QD-IBSC-CPV) module to the IEC62108 standard with recorded power conversion efficiency of 15.3%. Combining the measured experimental results at Underwriters Laboratory (UL®) licensed testing laboratory with theoretical simulations, we confirmed that the operational characteristics of the QD-IBSC-CPV module are a consequence of the carrier dynamics via the intermediate-band at room temperature. PMID:24762433

  5. Photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Groth, H.

    1982-11-01

    The utilization of photovoltaic generators in measuring and signalling installations, communication systems, water pumping, and electric power plants is discussed. The advantages of solar generators over conventional power supply equipment are outlined.

  6. Issues and opportunities in space photovoltaics

    NASA Technical Reports Server (NTRS)

    Francis, Robert W.; Somerville, W. A.; Flood, Dennis J.

    1988-01-01

    Space power sources are becoming a central focus for determining man's potential and schedule for exploring and utilizing the benefits of space. The ability to search, probe, survey, and communicate throughout the universe will depend on providing adequate power to the instruments to do these jobs. Power requirements for space platforms are increasing and will continue to increase into the 21st century. Photovoltaics have been a dependable power source for space for the last 30 years and have served as the primary source of power on virtually all DOD and NASA satellites. The performance of silicon (Si) solar cells has increased from 10 percent air mass zero (AM0) solar energy conversion efficiency in the early 60's to almost 15 percent on today's spacecraft. Some technologists even think that the potential for solar photovoltaics has reached a plateau. However, present and near-future Air Force and NASA requirements show needs that, if the problems are looked upon as opportunities, can elevate the photovoltaic power source scientist and array structure engineer into the next technological photovoltaic growth curve.

  7. Advanced Nanomaterials for High-Efficiency Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Junhong

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enoughmore » to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  8. Evaluation of the performance of a meso-scale NWP model to forecast solar irradiance on Reunion Island for photovoltaic power applications

    NASA Astrophysics Data System (ADS)

    Kalecinski, Natacha; Haeffelin, Martial; Badosa, Jordi; Periard, Christophe

    2013-04-01

    Solar photovoltaic power is a predominant source of electrical power on Reunion Island, regularly providing near 30% of electrical power demand for a few hours per day. However solar power on Reunion Island is strongly modulated by clouds in small temporal and spatial scales. Today regional regulations require that new solar photovoltaic plants be combined with storage systems to reduce electrical power fluctuations on the grid. Hence cloud and solar irradiance forecasting becomes an important tool to help optimize the operation of new solar photovoltaic plants on Reunion Island. Reunion Island, located in the South West of the Indian Ocean, is exposed to persistent trade winds, most of all in winter. In summer, the southward motion of the ITCZ brings atmospheric instabilities on the island and weakens trade winds. This context together with the complex topography of Reunion Island, which is about 60 km wide, with two high summits (3070 and 2512 m) connected by a 1500 m plateau, makes cloudiness very heterogeneous. High cloudiness variability is found between mountain and coastal areas and between the windward, leeward and lateral regions defined with respect to the synoptic wind direction. A detailed study of local dynamics variability is necessary to better understand cloud life cycles around the island. In the presented work, our approach to explore the short-term solar irradiance forecast at local scales is to use the deterministic output from a meso-scale numerical weather prediction (NWP) model, AROME, developed by Meteo France. To start we evaluate the performance of the deterministic forecast from AROME by using meteorological measurements from 21 meteorological ground stations widely spread around the island (and with altitudes from 8 to 2245 m). Ground measurements include solar irradiation, wind speed and direction, relative humidity, air temperature, precipitation and pressure. Secondly we study in the model the local dynamics and thermodynamics that

  9. Realization of compact, passively-cooled, high-flux photovoltaic prototypes

    NASA Astrophysics Data System (ADS)

    Feuermann, Daniel; Gordon, Jeffrey M.; Horne, Steve; Conley, Gary; Winston, Roland

    2005-08-01

    The materialization of a recent conceptual advance in high-flux photovoltaic concentrators into first-generation prototypes is reported. Our design strategy includes a tailored imaging dual-mirror (aplanatic) system, with a tapered glass rod that enhances concentration and accommodates larger optical errors. Designs were severely constrained by the need for ultra-compact (minimal aspect ratio) modules, simple passive heat rejection, liberal optical tolerances, incorporating off-the-shelf commercial solar cells, and pragmatic considerations of affordable fabrication technologies. Each unit has a geometric concentration of 625 and irradiates a single square 100 mm2 triple-junction high-efficiency solar cell at a net flux concentration of 500.

  10. Understanding the Photovoltaic Performance of Perovskite-Spirobifluorene Solar Cells.

    PubMed

    Song, Zhen; Liu, Jiang; Wang, Gang; Zuo, Wentao; Liao, Cheng; Mei, Jun

    2017-11-03

    Lead halide perovskite solar cells with remarkable power conversion efficiency have attracted much attention in recent years. However, there still exist many problems with their use that are not completely understood, and further studies are needed. Herein, the hole-transport layer dependence of the photovoltaic performance of perovskite solar cells is investigated in detail. It is found that devices freshly prepared using pristine 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) and Li-doped spiro-OMeTAD as hole-transport layers exhibit S-shaped current density-voltage curves with poor fill factors. The devices show progressively improved fill factors and efficiencies upon exposure to air, which is attributed to air-induced conductivity improvement in the spiro-OMeTAD layer. After introducing a cobalt salt dopant (FK209) into the spiro-OMeTAD layer, the corresponding devices show remarkable performance without the need of air exposure. These results confirm that the dopant not only increases the conductivity of spiro-OMeTAD layer, but also tunes the surface potential, which helps to improve charge transport and reduce the recombination loss. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Techno-Economic analysis of solar photovoltaic power plant for small scale fish processing in Kota Langsa - a case study

    NASA Astrophysics Data System (ADS)

    Widodo, S. B.; Hamdani; Rizal, T. A.; Pambudi, N. A.

    2018-02-01

    In Langsa, fisheries are the sector leaders by fulfilling a capacity of about 6,050 tons per year and on the other hand, fish-aquaculture reaches 1,200 tons per year on average. The fish processing is conducted through catches and aquaculture. The facilities on which this processing takes place are divided into an ice factory unit, a gutting and cutting unit, a drying unit and a curing unit. However, the energy and electricity costs during the production process has become major constraint because of the increase in the fishermen’s production and income. In this study, the potential and cost-effectiveness of photovoltaic solar power plant to meet the energy demands of fish processing units have been analysed. The energy requirements of fish processing units have reached an estimate of 130 kW, while the proposed design of solar photovoltaic electricity generation is of 200 kW in an area of 0,75 hectares. In this analysis, given the closeness between the location of the processing units and the fish supply auctions, the assumption is made that the photovoltaic plants (OTR) were installed on the roof of the building as compared to the solar power plants (OTL) installed on the outside of the location. The results shows that the levelized cost of OTR instalation is IDR 1.115 per kWh, considering 25 years of plant life-span at 10% of discount rate, with a simple payback period of 13.2 years. OTL levelized energy, on the other hand, is at IDR 997.5 per kWh with a simple payback period of 9.6 years. Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used

  12. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  13. Brief review of emerging photovoltaic absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakutayev, Andriy

    Photovoltaic solar cells have recently made significant commercial progress and are on track toward meeting more than 1% of global energy demand. However, further research is needed on photovoltaic technologies that face no scalability constraints in generating more than 10% of the world's electricity. This 2017 article briefly reviews emerging photovoltaic absorber materials, focusing on research progress over the past 2-3 years. Particular emphasis is given to emerging solar cell absorbers -- for example, SnS, Sb 2Se 3, Cu 2SnS 3, and CuSbSe 2 -- related to established solar cell technologies such as CdTe, Cu(In,Ga)Se 2, and CH 3NH 3PbImore » 3. Lastly, the general publication and performance trends are discussed, and the promising future research directions are pointed out.« less

  14. Brief review of emerging photovoltaic absorbers

    DOE PAGES

    Zakutayev, Andriy

    2017-02-08

    Photovoltaic solar cells have recently made significant commercial progress and are on track toward meeting more than 1% of global energy demand. However, further research is needed on photovoltaic technologies that face no scalability constraints in generating more than 10% of the world's electricity. This 2017 article briefly reviews emerging photovoltaic absorber materials, focusing on research progress over the past 2-3 years. Particular emphasis is given to emerging solar cell absorbers -- for example, SnS, Sb 2Se 3, Cu 2SnS 3, and CuSbSe 2 -- related to established solar cell technologies such as CdTe, Cu(In,Ga)Se 2, and CH 3NH 3PbImore » 3. Lastly, the general publication and performance trends are discussed, and the promising future research directions are pointed out.« less

  15. Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells.

    PubMed

    Zhang, Jicheng; Xie, SuFei; Lu, Zhen; Wu, Yang; Xiao, Hongmei; Zhang, Xuejuan; Li, Guangwu; Li, Cuihong; Chen, Xuebo; Ma, Wei; Bo, Zhishan

    2017-10-01

    This data contains additional data related to the article "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" (Jicheng Zhang et al., In press) [1]. Data include measurement and characterization instruments and condition, detail condition to fabricate norfullerene solar cell devices, hole-only and electron-only devices. Detail condition about how to control the film morphology of devices via tuning the temperature of substrates was also displayed. More information and more convincing data about the change of film morphology for active layers fabricated from different temperature, which is attached to the research article of "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" was given.

  16. Semiconductor solar cells: Recent progress in terrestrial applications

    NASA Astrophysics Data System (ADS)

    Avrutin, V.; Izyumskaya, N.; Morkoç, H.

    2011-04-01

    In the last decade, the photovoltaic industry grew at a rate exceeding 30% per year. Currently, solar-cell modules based on single-crystal and large-grain polycrystalline silicon wafers comprise more than 80% of the market. Bulk Si photovoltaics, which benefit from the highly advanced growth and fabrication processes developed for microelectronics industry, is a mature technology. The light-to-electric power conversion efficiency of the best modules offered on the market is over 20%. While there is still room for improvement, the device performance is approaching the thermodynamic limit of ˜28% for single-junction Si solar cells. The major challenge that the bulk Si solar cells face is, however, the cost reduction. The potential for price reduction of electrical power generated by wafer-based Si modules is limited by the cost of bulk Si wafers, making the electrical power cost substantially higher than that generated by combustion of fossil fuels. One major strategy to bring down the cost of electricity generated by photovoltaic modules is thin-film solar cells, whose production does not require expensive semiconductor substrates and very high temperatures and thus allows decreasing the cost per unit area while retaining a reasonable efficiency. Thin-film solar cells based on amorphous, microcrystalline, and polycrystalline Si as well as cadmium telluride and copper indium diselenide compound semiconductors have already proved their commercial viability and their market share is increasing rapidly. Another avenue to reduce the cost of photovoltaic electricity is to increase the cell efficiency beyond the Shockley-Queisser limit. A variety of concepts proposed along this avenue forms the basis of the so-called third generation photovoltaics technologies. Among these approaches, high-efficiency multi-junction solar cells based on III-V compound semiconductors, which initially found uses in space applications, are now being developed for terrestrial applications. In

  17. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: Energy transfer vs. optical coupling effects

    DOE PAGES

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D.; ...

    2015-12-07

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from themore » OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. Lastly, these results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.« less

  18. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects.

    PubMed

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-21

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.

  19. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Khalid; Pervez, M. Firoz; Mia, M. N. H.; Mortuza, A. A.; Rahaman, M. S.; Karim, M. R.; Islam, Jahid M. M.; Ahmed, Farid; Khan, Mubarak A.

    In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric) sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV-Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell's (DSSC) photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric.

  20. The development and utilization of solar photovoltaic cells: An assessment of the potential for a new energy technology

    NASA Technical Reports Server (NTRS)

    Cyr, K. J.

    1981-01-01

    The Government set the goal of accelerating the adaptation of photovoltaics by reducing system costs to a competitive level and overcoming the technical, institutional, legal, environmental, and social barriers impeding the diffusion of photovoltaic technology. The technology of silicon solar arrays was examined and the status of development efforts are reviewed. The political, legal, economic, social, and environmental issues are discussed, and several methods for selecting development projects are described. A number of market forecasting techniques, including time trend, judgemental, and econometric methods, were reviewed, and the results of these models are presented.

  1. Candidate materials for advanced fire-resistant photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.; Arnett, J. C.; Samuelson, G.

    1985-01-01

    A cooperative, cost-sharing research effort to develop a technology base required to construct fire-ratable photovoltaic modules has resulted in the identification of several high-temperature, back-surface candidate materials capable of raising the fire-resistance of modules using hydrocarbon encapsulants to Class A and B levels. Advanced experimental module configurations have been developed using back surfaces consisting of Kapton, Tedlar laminates, metal-foils, and fiberglass materials with high-temperature coatings. Test results (October 1984; March 1985; May 1985; and October 1985) indicate that several of these advanced module configurations are capable of achieving Class B fire-resistance levels, while a few configurations can achieve Class A levels. The paper summarizes activities to date, discussing flammability failure mechanisms, time-temperature profiles, and results of Block V environmental exposure tests of a candidate material suitable for both Class B and Class A fire-resistance levels.

  2. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities.

    PubMed

    Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R

    2015-01-01

    The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).

  3. Planetary and deep space requirements for photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-01-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100

  4. Facilities | Photovoltaic Research | NREL

    Science.gov Websites

    Centers (RTCs) The Department of Energy Regional Test Centers for solar technologies serve to validate PV development to provide foundational support for the photovoltaic (PV) industry and PV users. Photo of the Solar Research Energy Facility. Solar Energy Research Facility (SERF) The SERF houses various

  5. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  6. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  7. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Astrophysics Data System (ADS)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  8. Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi

    In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.

  9. Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells

    PubMed Central

    Wu, Jihuai; Wang, Jiangli; Lin, Jianming; Xiao, Yaoming; Yue, Gentian; Huang, Miaoliang; Lan, Zhang; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu3+) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu3+ transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu3+ elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu3+/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu3+ doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23792787

  10. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  11. Theoretical Analysis of Two Novel Hybrid Thermoelectric-Photovoltaic Systems Based on Cu₂ZnSnS₄ Solar Cells.

    PubMed

    Lorenzi, Bruno; Contento, Gaetano; Sabatelli, Vincenzo; Rizzo, Antonella; Narducci, Dario

    2017-03-01

    The development and commercialization of Photovoltaic (PV) cells with good cost-efficiency trade-off not using critical raw materials (CRMs) is one of the strategies chosen by the European Community (EC) to address the Energy Roadmap 2050. In this context Cu2ZnSnS4 (CZTS) solar cells are attracting a major interest since they have the potential to combine low price with relatively high conversion efficiencies. Although a ≈9% lab scale efficiency has already been reported for CZTS this technology is still far from being competitive in terms of cost per peak-power (€/Wp) with other common materials. One possible near-future solution to increase the CZTS competiveness comes from thermoelectrics. Actually it has already been shown that Hybrid Thermoelectric-Photovoltaic Systems (HTEPVs) based on CIGS, another kesterite very similar to CZTS, can lead to a significant efficiency improvement. However it has been also clarified how the optimal hybridization strategy cannot come from the simple coupling of solar cells with commercial TEGs, but special layouts have to be implemented. Furthermore, since solar cell performances are well known to decrease with temperature, thermal decoupling strategies of the PV and TEG sections have to be taken. To address these issues, we developed a model for two different HTEPV solutions, both coupled with CZTS solar cells. In the first case we considered a Thermally-Coupled HTEPV device (TC-HTEPV) in which the TEG is placed underneath the solar cell and in thermal contact with it. The second system consists instead of an Optically-Coupled but thermally decoupled device (OC-HTEPV) in which part of the solar spectrum is focused by a non-imaging optical concentrator on the TEG hot side. For both solutions the model returns conversion efficiencies higher than that of the CZTS solar cell alone. Specifically, increases of ≈30% are predicted for both kind of systems considered.

  12. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  13. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  14. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-01

    InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  15. Recyclable organic solar cells on cellulose nanocrystal substrates

    Treesearch

    Yinhua Zhou; Canek Fuentes-Hernandez; Talha M. Khan; Jen-Chieh Liu; James Hsu; Jae Won Shim; Amir Dindar; Jeffrey P. Youngblood; Robert J. Moon; Bernard Kippelen

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant,...

  16. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  17. Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhaoying; Zheng, Xiantong; Li, Zhilong

    2016-08-08

    We report a 23.4% improvement of conversion efficiency in solar cells based on InGaN/GaN multiple quantum wells by using a patterned sapphire substrate in the fabrication process. The efficiency enhancement is due to the improvement of the crystalline quality, as proven by the reduction of the threading dislocation density. More importantly, the better crystalline quality leads to a positive photovoltaic efficiency temperature coefficient up to 423 K, which shows the property and advantage of wide gap semiconductors like InGaN, signifying the potential of III-nitride based solar cells for high temperature and concentrating solar power applications.

  18. The chemical deposition of semiconductor thin-films for photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Breen, Marc Louis

    chemistry was carefully controlled by the adjustment of pH to slow hydrolysis and with chelating agents to sequester the cadmium ions. Triethanolamine and ethylenediamine were both effective chelators with the latter producing thicker, clearer films. Finally, US films were grown over electrodeposited CuInSe2 to form working photovoltaic devices. In summary, contributions were made which (a) advance current methods for manufacturing photovoltaic semiconductors and (b) offer an alternative route to producing new forms of thin-film solar cell devices.

  19. Evaluation of solar cells and arrays for potential solar power satellite applications

    NASA Technical Reports Server (NTRS)

    Almgren, D. W.; Csigi, K.; Gaudet, A. D.

    1978-01-01

    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.

  20. Radiation Effects in Dual Heat Sinks for Cooling of Concentrated Photovoltaics

    DTIC Science & Technology

    2016-06-01

    Schematic of a Concentrated Photovoltaic System . Source: [4]..................2 Figure 2. Temperature-Efficiency Curves of Select Solar Cells. Adapted from...in contrast to conventional systems . Conventional photovoltaics simply have incident solar radiation impinge on a semiconductor, CPV uses magnifying...reduce system cost. Figure 1 shows a concept schematic of a basic CPV system . Figure 1. Schematic of a Concentrated Photovoltaic System . Source

  1. Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.

    2001-01-01

    The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.

  2. Flat-plate solar array project of the US Department of Energy's National Photovoltaics Program: Ten years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaics project, was initiated in January 1975 (previously named the Low-Cost Silicon Solar Array Project) to stimulate the development of PV systems for widespread use. Its goal then was to develop PV modules with 10% efficiency, a 20-year lifetime, and a selling price of $0.50 per peak watt of generating capacity (1975 dollars). It was recognized that cost reduction of PV solar-cell and module manufacturing was the key achievement needed if PV power systems were to be economically competitive for large-scale terrestrial use.

  3. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  4. Development of an Ultraflex-Based Thin Film Solar Array for Space Applications

    NASA Technical Reports Server (NTRS)

    White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.

    2003-01-01

    As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.

  5. Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione-based Photovoltaic Polymer by Grafting Alkylthio Functional Groups.

    PubMed

    Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui

    2016-10-06

    Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (J sc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  7. Passive Solar still: Recent advancement in design and related Performance.

    PubMed

    Awasthi, Anuradha; Kumari, Kanchan; Panchal, Hitesh; Sathyamurthy, Ravishankar

    2018-05-31

    Present review paper mainly focuses on different varieties of solar stills and highlights mostly the passive solar still with advanced modifications in the design and development of material, single and multi-effect solar still with augmentation of different materials, energy absorbing, insulators, mechanisms of heat and mass transfer to improve the loss of heat and enhance the productivity of solar still. The cost-benefit analysis along with the progressive advancement for solar stills is the major highlights of this review. To increase the output of solar still nowadays, applications of advance modifications is one of the promising tools, and it is anticipated that shortly more vigor will be added in this area with the modifications in designs of solar stills.

  8. NASA-OAST photovoltaic energy conversion program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  9. Mobil Solar Energy Corporation thin EFG octagons

    NASA Astrophysics Data System (ADS)

    Kalejs, J. P.

    1994-06-01

    Mobil Solar Energy Corporation manufactures photovoltaic modules based on its unique Edge-defined Film-fed Growth (EFG) process for producing octagon-shaped hollow polycrystalline silicon tubes. The octagons are cut by lasers into 100 mm x 100 mm wafers which are suitable for solar cell processing. This process avoids slicing, grinding and polishing operations which are wasteful of material and are typical of most other wafer production methods. EFG wafers are fabricated into solar cells and modules using processes that have been specially developed to allow scaling up to high throughput rates. The goals of the Photovoltaic Manufacturing Technology Initiative (PVMaT) program at Mobil Solar were to improve the EFG manufacturing line through technology advances that accelerate cost reduction in production and stimulate market growth for its product. The program was structured into three main tasks: to decrease silicon utilization by lowering wafer thickness from 400 to 200 (mu)m; to enhance laser cutting yields and throughput while improving the wafer strength; and to raise crystal growth productivity and yield. The technical problems faced and the advances made in the Mobil Solar PVMaT program are described. The author concludes with a presentation of the results of a detailed cost model for EFT module production. This model describes the accelerated reductions in manufacturing costs which are already in place and the future benefits anticipated to result from the technical achievements of the PVMaT program.

  10. Advanced In-Space Propulsion: "Exploring the Solar System"

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2003-01-01

    This viewgraph presentation reviews a number of advanced propulsion technologies for interplanetary spacecraft. The objective of the In Space Propulsion Technology Projects Office is to develop in-space propulsion technologies that can enable and/or benefit near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. The technologies profiled are divided into several categories: High Priority (aerocapture, next generation ion propulsion, solar sails); Medium Priority (advanced chemical propulsion, solar electric propulsion, Hall thrusters); Low Priority (solar thermal propulsion); and High Payoff/High Risk (1 g/sq m solar sails, momentum exchange tethers, and plasma sails).

  11. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    NASA Astrophysics Data System (ADS)

    Mariani, Giacomo

    The sun delivers an amount of energy equivalent to ninety billion hydrogen bombs detonating each second. Despite the fact that only one billionth of that energy falls onto the surface of the Earth, one day of sunlight would be sufficient to power the whole human race energy needs for over half a century. Solar electricity represents an environmentally-benign source of power. However, such technology is still more than twice as expensive as natural gas-fired generators. III-V semiconductor nanopillars are defined as vertically aligned arrays of nanostructures that hold the promise to aggressively diminish the cost of the active photovoltaic cell by exploiting a fraction of material utilized in conventional planar schemes. In this dissertation, we assess the viability of two classes of high-performance nanopillar-based solar cells. We begin with the incorporation of dedicated conjugated polymers to achieve a hybrid organic/inorganic heterojunction. Such configuration introduces a high optical absorption arising from the polymeric layer in conjunction with an efficient carrier transport resulting from the semiconductor nanopillar array. We extend the controllability of the heterojunction properties by replacing traditional spin-casting methods with an electrodeposition technique where the polymer is formed and doped in-situ directly onto the nanopillar facets. The rational tuning of the electrical conductivity and energy level of the polymer translates into an enhanced photocurrent and open-circuit voltage, achieving 4.11% solar power conversion efficiency. We then turn our attention to all-semiconductor radial p-n homojunctions embedded in the nanopillars. The first architecture focuses on ex-situ ammonium-sulfide passivation and correlates the optoelectronic properties of the solar cell once two different types of transparent conducting oxides are adopted. The barrier formed at the contact/semiconductor interface greatly depends on the Hall polarity of the

  12. Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…

  13. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.

    PubMed

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-10-18

    In this work Nb-doped anatase TiO2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell.

  14. LSA Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  15. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules

    PubMed Central

    Paggi, Marco; Berardone, Irene; Infuso, Andrea; Corrado, Mauro

    2014-01-01

    Cracking in Silicon solar cells is an important factor for the electrical power-loss of photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas depending on the position of cracks with respect to the main electric conductors have been proposed in the literature to predict worst case scenarios. Here we present an experimental study based on the electroluminescence (EL) technique showing that crack propagation in monocrystalline Silicon cells embedded in photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, cracked regions can recover the electric conductivity during mechanical unloading due to crack closure. During cyclic bending, fatigue degradation is reported. This pinpoints the importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order to limit the effect of cracking in Silicon cells. PMID:24675974

  16. Current Results From The Advanced Photovoltaic Solar Array (APSA) Program

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul M.

    1993-01-01

    The paper continues the status reporting of the ultralightweight flexible blanket, flatpack, foldout solar array testbed wing that was presented at the previous Meeting. The test bed wing has been built and subjected to a variety of critical functional tests after exposure to simulated launch environments.

  17. Comparing energy payback and simple payback period for solar photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kessler, Will

    2017-11-01

    Installing a solar photovoltaic (PV) array is both an environmental and a financial decision. The financial arguments often take priority over the environmental because installing solar is capital-intensive. The Simple Payback period (SPB) is often assessed prior to the adoption of solar PV at a residence or a business. Although it better describes the value of solar PV electricity in terms of sustainability, the Energy Payback period (EPB) is seldom used to gauge the merits of an installation. Using published estimates of embodied energies, EPB was calculated for four solar PV plants utilizing crystalline-Si technology: three being actual commercial installations located in the northeastern U.S., and a fourth installation based on a simulated 20-kilowatt roof-mounted system, in Wrocław, Poland. Simple Payback was calculated based on initial capital cost, and on the availability of avoided electricity costs based on net-metering tariffs, which at present in the U.S. are 1:1 credit ratio, and in Poland is 1:0.7 credit ratio. For all projects, the EPB time was estimated at between 1.9 and 2.6 years. In contrast, the SPB for installed systems in the northeastern U.S. ranged from 13.3 to 14.6 years, and was estimated at 13.5 years for the example system in Lower Silesia, Poland. The comparison between SPB and EPB shows a disparity between motivational time frames, in which the wait for financial return is considerably longer than the wait for net energy harvest and the start of sustainable power production.

  18. Keeping Cool With Solar-Powered Refrigeration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  19. Feasibility Study of Economics and Performance of Solar Photovoltaics in Nitro, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisell, L.; Mosey, G.

    2010-08-01

    The study described in this report assessed brownfield sites designated by the City of Nitro, West Virginia for solar photovoltaic (PV) installations. The study analyzed three different types of PV systems for eight sites. The report estimates the cost, performance, and site impacts of thin film technology and crystalline silicon panels (both fixed-axis tracking and single-axis tracking systems). Potential job creation and electrical rate increases were also considered, and the report recommends financing options that could assist in the implementation of a system.

  20. Hybrid solar collector using nonimaging optics and photovoltaic components

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  1. Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects.

    PubMed

    Kouhnavard, Mojgan; Ludin, Norasikin Ahmad; Ghaffari, Babak V; Sopian, Kamarozzaman; Ikeda, Shoichiro

    2015-05-11

    Dye-sensitized solar cells (DSSCs) serve as low-costing alternatives to silicon solar cells because of their low material and fabrication costs. Usually, they utilize Pt as the counter electrode (CE) to catalyze the iodine redox couple and to complete the electric circuit. Given that Pt is a rare and expensive metal, various carbon materials have been intensively investigated because of their low costs, high surface areas, excellent electrochemical stabilities, reasonable electrochemical activities, and high corrosion resistances. In this feature article, we provide an overview of recent studies on the electrochemical properties and photovoltaic performances of carbon-based CEs (e.g., activated carbon, nanosized carbon, carbon black, graphene, graphite, carbon nanotubes, and composite carbon). We focus on scientific challenges associated with each material and highlight recent advances achieved in overcoming these obstacles. Finally, we discuss possible future directions for this field of research aimed at obtaining highly efficient DSSCs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Organic Semiconductor Photovoltaics

    NASA Astrophysics Data System (ADS)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  3. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices.

    PubMed

    McKenna, Barry; Evans, Rachel C

    2017-07-01

    Single-junction photovoltaic devices exhibit a bottleneck in their efficiency due to incomplete or inefficient harvesting of photons in the low- or high-energy regions of the solar spectrum. Spectral converters can be used to convert solar photons into energies that are more effectively captured by the photovoltaic device through a photoluminescence process. Here, recent advances in the fields of luminescent solar concentration, luminescent downshifting, and upconversion are discussed. The focus is specifically on the role that materials science has to play in overcoming barriers in the optical performance in all spectral converters and on their successful integration with both established (e.g., c-Si, GaAs) and emerging (perovskite, organic, dye-sensitized) cell types. Current challenges and emerging research directions, which need to be addressed for the development of next-generation luminescent solar devices, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei

    2017-08-01

    Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.

  5. A transient plasticity study and low cycle fatigue analysis of the Space Station Freedom photovoltaic solar array blanket

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.; Liao, Mei-Hwa; Morris, Ronald W.

    1990-01-01

    The Space Station Freedom photovoltaic solar array blanket assembly is comprised of several layers of materials having dissimilar elastic, thermal, and mechanical properties. The operating temperature of the solar array, which ranges from -75 to +60 C, along with the material incompatibility of the blanket assembly components combine to cause an elastic-plastic stress in the weld points of the assembly. The weld points are secondary structures in nature, merely serving as electrical junctions for gathering the current. The thermal mechanical loading of the blanket assembly operating in low earth orbit continually changes throughout each 90 min orbit, which raises the possibility of fatigue induced failure. A series of structural analyses were performed in an attempt to predict the fatigue life of the solar cell in the Space Station Freedom photovoltaic array blanket. A nonlinear elastic-plastic MSC/NASTRAN analysis followed by a fatigue calculation indicated a fatigue life of 92,000 to 160,000 cycles for the solar cell weld tabs. Additional analyses predict a permanent buckling phenomenon in the copper interconnect after the first loading cycle. This should reduce or eliminate the pulling of the copper interconnect on the joint where it is welded to the silicon solar cell. It is concluded that the actual fatigue life of the solar array blanket assembly should be significantly higher than the calculated 92,000 cycles, and thus the program requirement of 87,500 cycles (orbits) will be met. Another important conclusion that can be drawn from the overall analysis is that, the strain results obtained from the MSC/NASTRAN nonlinear module are accurate to use for low-cycle fatigue analysis, since both thermal cycle testing of solar cells and analysis have shown higher fatigue life than the minimum program requirement of 87,500 cycles.

  6. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell.

    PubMed

    Tulsani, Srikanth Reddy; Rath, Arup Kumar

    2018-07-15

    The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Photovoltaic at Hollywood and Desert Breeze Recreational Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammerman, Shane

    its own energy reduction goals created by the energy management agenda (Resolution to Encourage Sustainability) and the County’s Eco-initiative. Each site has installed photovoltaic panels on the existing roof structures that exhibit suitable solar exposure. The generation systems utilize solar energy creating electricity used for the facility’s lighting system and other electrical requirements. Unused electricity is sent to the electric utility grid, often at peak demand times. Educational signage, kiosks and information have been included to inform and expand the public’s understanding of solar energy technology. The Solar Green Boxes were created for further hands on classroom education of solar power. In addition, data is sent by a Long Term PV performance monitoring system, complete with data transmission to NREL (National Renewable Energy Laboratory), located in Golden, CO. This system correlates local solar irradiance and weather with power production. The expected outcomes of this Solar Project are as follows: (1) Successful photovoltaic electricity generation technologies to capture solar energy in a useful form of electrical energy. (2) Reduction of greenhouse gas emissions and environmental degradation resulting from reduced energy demand from traditional electricity sources such as fossil fuel fired and nuclear power plants. (3) Advance the research and development of solar electricity generation. (4) The education of the general public in regards to the benefits of environmentally friendly electricity generation and Clark County’s efforts to encourage sustainable living practices. (5) To provide momentum for the nexus for future solar generation facilities in Clark County facilities and buildings and further the County’s energy reduction goals. (6) To ultimately contribute to the reduction of dependence on foreign oil and other unsustainable sources of energy. This Solar Project addresses several objectives and goals of the U.S. Department of

  8. Time-asymmetric photovoltaics.

    PubMed

    Green, Martin A

    2012-11-14

    Limits upon photovoltaic energy conversion efficiency generally are formulated using the detailed balance approach of Shockley and Queisser. One key underlying assumption is invariance upon time reversal, underpinning detailed balance itself. Recent proposals for compact, layered, time-asymmetrical, magneto-optical devices make their routine implementation likely. It is shown that such time-asymmetry can alter the relationship between solar cell emission and absorption assumed in the Shockley-Queisser approach, allowing generally accepted photovoltaic performance limits to be exceeded.

  9. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, John; Butherus, Michael; Barr, Deborah L.

    2013-07-01

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result ofmore » the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether

  10. Design of a photovoltaic system for a southwest all-electric residence

    NASA Astrophysics Data System (ADS)

    Mehalick, E. M.; Obrien, G.; Tully, G. F.; Johnson, J.; Parker, J.

    1980-04-01

    The grid connected residential photovoltaic system for the Southwest is designed to meet both space conditioning requirements and all conventional electrical load requirements for an all-electric residence. The system is comprised of two major subsystems, the solar array and the power conditioning subsystem (PCS). An 8 kW peak photovoltaic array been designed for the house. The 93 square meters solar array uses a shingle solar cell module in a highly redundant series/parallel matrix. The photovoltaic generated power is supplied to a 10kVA power conversion subsystem which is controlled to track the solar array maximum power operating point and feed the 240 Vac output power directly to the house loads or back to the utility when excess power is generated. The photovoltaic power is isolated from the utility by a 15 kVA transformer. The house design and subsystem specifications are given in detail.

  11. Photovoltaic Power Station with Ultracapacitors for Storage

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Soltis, Richard F.; Tavernelli, Paul F.

    2003-01-01

    A solar photovoltaic power station in which ultracapacitors, rather than batteries, are used to store energy is discussed. Developments in the semiconductor industry have reduced the cost and increased the attainable efficiency of commercially available photovoltaic panels; as a result, photovoltaic generation of power for diverse applications has become practical. Photovoltaic generation can provide electric power in remote locations where electric power would otherwise not be available. Photovoltaic generation can also afford independence from utility systems. Applications include supplying power to scientific instruments and medical equipment in isolated geographical regions.

  12. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    PubMed

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-08

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  13. Applying photovoltaics to disaster relief

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, W. Jr.

    1996-11-01

    Hurricanes, floods, tornados, earthquakes and other disasters can happen at any time, often with little or no advance warning. They can be as destructive as Hurricane Andrew leaving several hundred-thousand people homeless or as minor as an afternoon thunderstorm knocking down local power lines to your home. Major disasters leave many people without adequate medical services, potable water, electrical service and communications. In response to a natural disaster, photovoltaic (solar electric) modules offer a source of quiet, safe, pollution-free electrical power. Photovoltaic (PV) power systems are capable of providing the electrical needs for vaccine refrigerators, microscopes, medical equipment, lighting, radios,more » fans, communications, traffic devices and other general electrical needs. Stand alone PV systems do not require refueling and operate for long period of time from the endless energy supplied by the sun, making them beneficial during recovery efforts. This report discusses the need for electrical power during a disaster, and the capability of PV to fill that need. Applications of PV power used during previous disaster relief efforts are also presented.« less

  14. Photovoltaic characteristics of natural light harvesting dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hafez, H. S.; Shenouda, S. S.; Fadel, M.

    2018-03-01

    In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO2 nanoparticles with an average particle size (10-40 nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100 mW.cm- 2. The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R = 15.6-23.8 mA.W- 1 and η = 0.13-0.25) at AM = 1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology.

  15. Photovoltaic characteristics of natural light harvesting dye sensitized solar cells.

    PubMed

    Hafez, H S; Shenouda, S S; Fadel, M

    2018-03-05

    In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO 2 nanoparticles with an average particle size (10-40nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO 2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100mW.cm -2 . The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R=15.6-23.8mA.W -1 and η=0.13-0.25) at AM=1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Temperature and color management of silicon solar cells for building integrated photovoltaic

    NASA Astrophysics Data System (ADS)

    Amara, Mohamed; Mandorlo, Fabien; Couderc, Romain; Gerenton, Félix; Lemiti, Mustapha

    2018-01-01

    Color management of integrated photovoltaics must meet two criteria of performance: provide maximum conversion efficiency and allow getting the chosen colors with an appropriate brightness, more particularly when using side by side solar cells of different colors. As the cooling conditions are not necessarily optimal, we need to take into account the influence of the heat transfer and temperature. In this article, we focus on the color space and brightness achieved by varying the antireflective properties of flat silicon solar cells. We demonstrate that taking into account the thermal effects allows freely choosing the color and adapting the brightness with a small impact on the conversion efficiency, except for dark blue solar cells. This behavior is especially true when heat exchange by convection is low. Our optical simulations show that the perceived color, for single layer ARC, is not varying with the position of the observer, whatever the chosen color. The use of a double layer ARC adds flexibility to tune the wanted color since the color space is greatly increased in the green and yellow directions. Last, choosing the accurate material allows both bright colors and high conversion efficiency at the same time.

  17. Industrialization study, phase 2. [assessment of advanced photovoltaic technologies for commerical development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The potentials and requirements of advanced photovoltaic technologies still in their early developmental stages were evaluated and compared to the present day single crystal silicon wafer technology and to each other. The major areas of consideration include polycrystalline and amorphous silicon, single crystal and polycrystalline gallium arsenide, and single crystal and polycrystalline cadmium sulfide. A rank ordering of the advanced technologies is provided. The various ranking schemes were based upon present-day efficiency levels, their stability and long-term reliability prospects, material availability, capital investments both at the laboratory and production level, and associated variable costs. An estimate of the timing of the possible readiness of these advanced technologies for technology development programs and industrialization is presented along with a set of recommended government actions concerning the various advanced technologies.

  18. Monthly Solar Photovoltaic Module Shipments Report

    EIA Publications

    2017-01-01

    This report contains newly collected monthly summary data beginning in January 2017, for the photovoltaic industry in the United States. The subset of respondents who now must report monthly represents approximately 90% of photovoltaic (PV) activity in the United States, based on prior year’s data. Data include manufacturing, imports, and exports of modules in the United States and its territories. Summary data include volumes in peak kilowatts and average prices. Where possible, imports and exports are listed by country, and shipments to the United States are listed by state.

  19. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Osullivan, G.; Merrill, W. C.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. Optimization of the inverter/controller design is discussed as part of an overall photovoltaic power system designed for maximum energy extraction from the solar array. The special design requirements for the inverter/ controller include: a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy.

  20. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  1. Sunlight-thin nanophotonic monocrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Depauw, Valérie; Trompoukis, Christos; Massiot, Inès; Chen, Wanghua; Dmitriev, Alexandre; Cabarrocas, Pere Roca i.; Gordon, Ivan; Poortmans, Jef

    2017-09-01

    Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from the micro- to the nanoscale, allowing to further boost the photon absorption while reducing silicon material loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivity to the surface recombination is dramatically increased. Here we realize a light-wavelength-scale nanotextured monocrystalline silicon cell with the confirmed efficiency of 8.6% and an effective thickness of only 830 nm. For this we adopt a self-assembled large-area and industry-compatible amorphous ordered nanopatterning, combined with an advanced surface passivation, earning strongly enhanced solar light absorption while retaining efficient electron collection. This prompts the development of highly efficient flexible and semitransparent photovoltaics, based on the industrially mature monocrystalline silicon technology.

  2. Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels

    NASA Astrophysics Data System (ADS)

    Houhou, H.; Yuan, W.; Wang, G.

    2017-05-01

    This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.

  3. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    NASA Astrophysics Data System (ADS)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal

  4. Space Photovoltaic Research and Technology 1995

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  5. Space Photovoltaic Research and Technology 1995

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey (Compiler)

    1996-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  6. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Carolyn; Gagnon, Pieter; Denholm, Paul

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation inmore » retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.« less

  7. Effects of thermochemical treatment on CuSbS 2 photovoltaic absorber quality and solar cell reproducibility

    DOE PAGES

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; ...

    2016-08-01

    CuSbS 2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu 2ZnSnS 4. However, CuSbS 2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS 2 thin films, which consists of annealing in Sb 2S 3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS 2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime.more » These improvements also lead to more reproducible CuSbS 2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Altogether, these results point to the potential avenues to further increase the performance of CuSbS 2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.« less

  8. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Shufang; Liu, Qingwei; Zheng, Ya; Li, Renjie; Peng, Tianyou

    2017-08-01

    Solution processable planar heterojunction perovskite solar cell has drawn much attention as a promising low-cost photovoltaic device, and much effort has been made to improve its power conversion efficiency by choosing appropriate additives for the perovskite precursor solution. Different to those additives reported, a soluble and thermal stable tert-butyl substituted copper phthalocyanine (CuPc(tBu)4) as additive is first introduced into the perovskite precursor solution of a planar perovskite solar cell that is fabricated via the one-step solution process. It is found that the pristine device without CuPc(tBu)4 additive exhibits a power conversion efficiency of 15.3%, while an extremely low concentration (4.4 × 10-3 mM) of CuPc(tBu)4 in the precursor solution leads to the corresponding device achieving an enhanced power conversion efficiency of 17.3%. CuPc(tBu)4 as an additive can improve the quality of perovskite layer with higher crystallinity and surface coverage, then resulting in enhanced light absorption and reduced charge recombination, and thus the better power conversion efficiency. The finding presented here provides a new choice for improving the quality of perovskite layer and the photovoltaic performance of the planar heterojunction perovskite solar cells.

  9. Solar Access to Public Capital (SAPC) Working Group: Best Practices in Commercial and Industrial (C&I) Solar Photovoltaic System Installation; Period of Performance: November 28, 2014-September 1, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Chris; Loomans, Len; Truitt, Andrew

    2015-12-29

    This Best Practices in Commercial and Industrial Solar Photovoltaic System Installation Guide is the second of a series of guides designed to standardize and improve solar asset transparency for investors and rating agencies, provide an industry framework for quality management, and reduce transaction costs in the solar asset securitization process. The Best Practices in C&I PV System Installation Guide is intended to outline the minimum requirements for commercial and industrial solar project developments. Adherence to the guide is voluntary. Providers that adhere to the guide are responsible for self-certifying that they have fulfilled the guide requirements. Investors and rating agenciesmore » should verify compliance.« less

  10. US photovoltaic patents: 1991-1993

    NASA Astrophysics Data System (ADS)

    Pohle, L.

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class 'Batteries, Thermoelectric and Photoelectric' and the subclasses 'Photoelectric,' 'Testing,' and 'Applications.' The search also located patents that contained the words 'photovoltaic(s)' or 'solar cell(s)' and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  11. The value of price transparency in residential solar photovoltaic markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Margolis, Robert

    Installed prices for residential solar photovoltaic (PV) systems have declined significantly in recent years. However price dispersion and limited customer access to PV quotes prevents some prospective customers from obtaining low price offers. This study shows that improved customer access to prices - also known as price transparency - is a potential policy lever for further PV price reductions. We use customer search and strategic pricing theory to show that PV installation companies face incentives to offer lower prices in markets with more price transparency. We test this theoretical framework using a unique residential PV quote dataset. Our results showmore » that installers offer lower prices to customers that are expected to receive more quotes. Our study provides a rationale for policies to improve price transparency in residential PV markets.« less

  12. The value of price transparency in residential solar photovoltaic markets

    DOE PAGES

    O'Shaughnessy, Eric; Margolis, Robert

    2018-04-05

    Installed prices for residential solar photovoltaic (PV) systems have declined significantly in recent years. However price dispersion and limited customer access to PV quotes prevents some prospective customers from obtaining low price offers. This study shows that improved customer access to prices - also known as price transparency - is a potential policy lever for further PV price reductions. We use customer search and strategic pricing theory to show that PV installation companies face incentives to offer lower prices in markets with more price transparency. We test this theoretical framework using a unique residential PV quote dataset. Our results showmore » that installers offer lower prices to customers that are expected to receive more quotes. Our study provides a rationale for policies to improve price transparency in residential PV markets.« less

  13. Recent Advances in Morphology Optimization for Organic Photovoltaics.

    PubMed

    Lee, Hansol; Park, Chaneui; Sin, Dong Hun; Park, Jong Hwan; Cho, Kilwon

    2018-06-19

    Organic photovoltaics are an important part of a next-generation energy-harvesting technology that uses a practically infinite pollutant-free energy source. They have the advantages of light weight, solution processability, cheap materials, low production cost, and deformability. However, to date, the moderate photovoltaic efficiencies and poor stabilities of organic photovoltaics impede their use as replacements for inorganic photovoltaics. Recent developments in bulk-heterojunction organic photovoltaics mean that they have almost reached the lower efficiency limit for feasible commercialization. In this review article, the recent understanding of the ideal bulk-heterojunction morphology of the photoactive layer for efficient exciton dissociation and charge transport is described, and recent attempts as well as early-stage trials to realize this ideal morphology are discussed systematically from a morphological viewpoint. The various approaches to optimizing morphologies consisting of an interpenetrating bicontinuous network with appropriate domain sizes and mixed regions are categorized, and in each category, the recent trends in the morphology control on the multilength scale are highlighted and discussed in detail. This review article concludes by identifying the remaining challenges for the control of active layer morphologies and by providing perspectives toward real application and commercialization of organic photovoltaics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction

    PubMed Central

    2014-01-01

    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two-dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type-II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable, and under appropriate gate bias an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology. PMID:25057817

  15. Systems Engineering | Photovoltaic Research | NREL

    Science.gov Websites

    Research Other Reliability & Engineering pages: Real-Time PV & Solar Resource Testing Accelerated community toward developing comprehensive PV standards. Each year, NREL researchers, along with solar Engineering Systems Engineering We provide engineering testing and evaluation of photovoltaic (PV

  16. Progress in passive solar energy systems. Volume 8. Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaicmore » system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.« less

  17. Utility-Scale Photovoltaic Deployment Scenarios of the Western United States: Implications for Solar Energy Zones in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frew, Bethany; Mai, Trieu; Krishnan, Venkat

    2016-12-01

    In this study, we use the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) capacity expansion model to estimate utility-scale photovoltaic (UPV) deployment trends from present day through 2030. The analysis seeks to inform the U.S. Bureau of Land Management's (BLM's) planning activities related to UPV development on federal lands in Nevada as part of the Resource Management Plan (RMP) revision for the Las Vegas and Pahrump field offices. These planning activities include assessing the demand for new or expanded additional Solar Energy Zones (SEZ), per the process outlined in BLM's Western Solar Plan process.

  18. Redox storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1980-01-01

    The NASA Redox energy storage system is described. The system is based on soluble aqueous iron and chromium chloride redox couples. The needed technology advances in the two elements (electrodes and membranes) that are key to its technological feasibility have been achieved and system development has begun. The design, construction, and test of a 1 kilowatt system integrated with a solar photovoltaic array is discussed.

  19. High-throughput manufacturing of thin-film CdS/CdTe photovoltaic modules. Annual subcontract report, 16 November 1994--15 November 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandwisch, D.W.

    1997-02-01

    The objectives of this subcontract are to advance Solar Cells, Inc.`s (SCI`s) photovoltaic manufacturing technologies, reduce module production costs, increase module performance, and provide the groundwork for SCI to expand its commercial production capacities. Activities during the second year of the program concentrated on process development, equipment design and testing, quality assurance, and ES and H programs. These efforts broadly addressed the issues of the manufacturing process for producing thin-film monolithic CdS/CdTe photovoltaic modules.

  20. Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells.

    PubMed

    Di, Dawei; Perez-Wurfl, Ivan; Gentle, Angus; Kim, Dong-Ho; Hao, Xiaojing; Shi, Lei; Conibeer, Gavin; Green, Martin A

    2010-08-01

    As an important step towards the realisation of silicon-based tandem solar cells using silicon quantum dots embedded in a silicon dioxide (SiO(2)) matrix, single-junction silicon quantum dot (Si QD) solar cells on quartz substrates have been fabricated. The total thickness of the solar cell material is 420 nm. The cells contain 4 nm diameter Si quantum dots. The impacts of post-metallisation treatments such as phosphoric acid (H(3)PO(4)) etching, nitrogen (N(2)) gas anneal and forming gas (Ar: H(2)) anneal on the cells' electrical and photovoltaic properties are investigated. The Si QD solar cells studied in this work have achieved an open circuit voltage of 410 mV after various processes. Parameters extracted from dark I-V, light I-V and circular transfer length measurement (CTLM) suggest limiting mechanism in the Si QD solar cell operation and possible approaches for further improvement.

  1. Perovskite solar cells: must lead be replaced – and can it be done?

    PubMed Central

    Li, Jianbao; Zhou, Yangying; Wei, Yaxuan; Lin, Hong

    2018-01-01

    Abstract Perovskite solar cells have recently drawn significant attention for photovoltaic applications with a certified power conversion efficiency of more than 22%. Unfortunately, the toxicity of the dissolvable lead content in these materials presents a critical concern for future commercial development. This review outlines some criteria for the possible replacement of lead by less toxic elements, and highlights current research progress in the application of low-lead halide perovskites as optically active materials in solar cells. These criteria are discussed with the aim of developing a better understanding of the physio-chemical properties of perovskites and of realizing similar photovoltaic performance in perovskite materials either with or without lead. Some open questions and future development prospects are outlined for further advancing perovskite solar cells toward both low toxicity and high efficiency. PMID:29868147

  2. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  3. Space and Terrestrial Photovoltaics: Synergy and Diversity

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila; Raffaelle, Ryne; Emery, Keith

    2002-10-01

    A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the '70s and '80s and the '90s and beyond. The synergy of both communities in the beginning and once again in the present and hopefully future are highlighted, with examples of the important features in each program. The space community which was impressed by the light-weight and reliability of photovoltaics drove much of the early development. Even up to today, nearly every satellites and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems were only a small fraction of the satellite and launch cost, the use of much of this technology for the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advancements, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost non-existent. Recent work by both communities have focused on the development thin film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and

  4. Space and Terrestrial Photovoltaics: Synergy and Diversity

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Emery, Keith

    2002-01-01

    A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the '70s and '80s and the '90s and beyond. The synergy of both communities in the beginning and once again in the present and hopefully future are highlighted, with examples of the important features in each program. The space community which was impressed by the light-weight and reliability of photovoltaics drove much of the early development. Even up to today, nearly every satellites and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems were only a small fraction of the satellite and launch cost, the use of much of this technology for the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advancements, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost non-existent. Recent work by both communities have focused on the development thin film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and

  5. Proceedings of the 15th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila (Compiler)

    2004-01-01

    Reports from the 15th Space Photovoltaic Research and Technology Conference included topics on space solar cell research, space photovoltaics, multibandgap cells,thermophotovoltaics,flight experiments, environmental effects; calibration and characterization; and photovoltaics for planetary surfaces.

  6. Work with Us | Photovoltaic Research | NREL

    Science.gov Websites

    Research Facility (SERF) Science and Technology Facility (S&TF) Outdoor Test Facility (OTF) Energy the Hands On Photovoltaic Experience (HOPE). Photo of a researcher in a lab Photovoltaic research and related activities occur in various locations across the NREL campus, including the Solar Energy Research

  7. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  8. Solar Plus: A Holistic Approach to Distributed Solar PV | Solar Research |

    Science.gov Websites

    NREL Plus: A Holistic Approach to Distributed Solar PV Solar Plus: A Holistic Approach to Distributed Solar PV A new NREL report analyzes "solar plus," an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize

  9. EDITORIAL Solar harvest Solar harvest

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-12-01

    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  10. Potential of Solar Energy in Kota Kinabalu, Sabah: An Estimate Using a Photovoltaic System Model

    NASA Astrophysics Data System (ADS)

    Markos, F. M.; Sentian, J.

    2016-04-01

    Solar energy is becoming popular as an alternative renewable energy to conventional energy source, particularly in the tropics, where duration and intensity of solar radiation are longer. This study is to assess the potential of solar energy generated from solar for Kota Kinabalu, a rapidly developing city in the State of Sabah, Malaysia. A year data of solar radiation was obtained using pyranometer, which was located at Universiti Malaysia Sabah (6.0367° N, 116.1186° E). It was concluded that the annual average solar radiation received in Kota Kinabalu was 182 W/m2. In estimating the potential energy generated from solar for Kota Kinabalu city area, a photovoltaic (PV) system model was used. The results showed that, Kota Kinabalu is estimated to produce 29,794 kWh/m2 of electricity from the solar radiation received in a year. This is equivalent to 0.014 MW of electricity produced just by using one solar panel. Considering the power demand in Sabah by 2020 is 1,331 MW, this model showed that the solar energy can contribute around 4% of energy for power demand, with 1 MW capacity of the PV system. 1 MW of PV system installation will require about 0.0328% from total area of the city. This assessment could suggest that, exploration for solar power energy as an alternative source of renewable energy in the city can be optimised and designed to attain significant higher percentage of contribution to the energy demand in the state.

  11. Advanced Grid-Friendly Controls Demonstration for Utility-Scale

    Science.gov Websites

    PV power plant in CAISO's footprint. NREL, CAISO, and First Solar conducted demonstration tests that vendors, integrators, and utilities to develop and evaluate photovoltaic (PV) power plants with advanced grid-friendly capabilities. Graph of power over time that shows a PV plant varying output to follow an

  12. US photovoltaic patents: 1991--1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects weremore » excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.« less

  13. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  14. Recent advances of flexible hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Heo, Jin Hyuck; Im, Sang Hyuk

    2017-11-01

    Recently, hybrid perovskite solar cells have attracted great interest because they can be fabricated to low cost, flexible, and highly efficient solar cells. Here, we introduced recent advances of flexible hybrid perovskite solar cells. We introduced research background of flexible perovskite solar cells in introduction part. Then we composed the main body to i) structure and properties of hybrid perovskite solar cells, ii) why flexible hybrid perovskite solar cells are important?, iii) transparent conducting oxide (TCO) based flexible hybrid perovskite solar cells, and iv) TCO-free transparent conducting electrode (TCE) based flexible hybrid perovskite solar cells. Finally, we summarized research outlook of flexible hybrid perovskite solar cells.

  15. NREL Projects Awarded More Than $3 Million to Advance Novel Solar

    Science.gov Websites

    in Grid Operations," evaluating a research solution to better integrate solar power generation funding program, which advances state-of-the-art techniques for predicting solar power generation to Office to advance predictive modeling of solar power as part of its Solar Forecasting 2 funding program

  16. A stochastic method for stand-alone photovoltaic system sizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabral, Claudia Valeria Tavora; Filho, Delly Oliveira; Martins, Jose Helvecio

    Photovoltaic systems utilize solar energy to generate electrical energy to meet load demands. Optimal sizing of these systems includes the characterization of solar radiation. Solar radiation at the Earth's surface has random characteristics and has been the focus of various academic studies. The objective of this study was to stochastically analyze parameters involved in the sizing of photovoltaic generators and develop a methodology for sizing of stand-alone photovoltaic systems. Energy storage for isolated systems and solar radiation were analyzed stochastically due to their random behavior. For the development of the methodology proposed stochastic analysis were studied including the Markov chainmore » and beta probability density function. The obtained results were compared with those for sizing of stand-alone using from the Sandia method (deterministic), in which the stochastic model presented more reliable values. Both models present advantages and disadvantages; however, the stochastic one is more complex and provides more reliable and realistic results. (author)« less

  17. Solar cell design for avoiding LILT degradation. [low intensity, low temperature

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Ctorry, G. T.

    1987-01-01

    Growing concerns about radioisotope thermoelectric generator (RTG) performance potential, cost, safety, and availability have renewed interest in utilizing photovoltaic energy conversion for future JPL interplanetary missions such as the Mariner Mark II set. Although lightweight solar array technology has advanced to the point where it would appear to provide an alternative power source, anomalous silicon cell curve shape degradation at conditions of low intensity and low temperature (LILT) severely restricts photovoltaic applications for missions beyond 3 AU solar distance. In order to extend photovoltaic applications to distances of 5 AU, ways to minimize the deleterious impact of LILT cell degradation were investigated. These investigations have ranged from consideration of individual cell selection for LILT behavior to the examination of methods for reducing or eliminating cell LILT degradation by modifying the cell processing. Use of a partial oxide barrier between the cell n+ contacts and the silicon has been shown to reduce significantly both the occurrence and magnitude of the LILT degradation.

  18. Photovoltaic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, C.; Angelini, J.; Armstrong, B.

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication ofmore » high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational

  19. Application of compound parabolic concentrators to solar photovoltaic conversion. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, R.L.; Gorski, A.J.; Graven, R.M.

    1977-02-01

    The final results of an analytical and experimental study of the application of nonimaging concentrators to solar photovoltaic conversion are presented. Two versions of the Compound Parabolic Concentrator (CPC) were considered, the Dielectric Compound Parabolic Concentrator (DCPC) in which the concentrator is filled with a dielectric material that satisfies requirements for Total Internal Reflection (TIR), and a conventional CPC in which metallic reflection is used for the mirror surfaces. Two working prototype panels were constructed and tested during the course of the program. The first was a 1.22 m by 1.22 m DCPC panel that requires only ten adjustments/year, hasmore » a panel utilization factor (packing factor) of 96%, and delivered the equivalent of 138 W (peak) under 1 kW/m/sup 2/ direct insolation. The net energy conversion efficiency was 10.3% over the entire panel area. The second panel was a conventional CPC panel measuring 1.22 m by 1.22 m. This panel requires thirty-six adjustments per year, and delivers the equivalent of 97 W when under 1 kW/m/sup 2/ direct insolation. The results of a cost-effectiveness analysis of the concept of using nonimaging concentrators for photovoltaic conversion are also presented. The concentrator panels showed a decided savings in comparison to the cost of flat plate photovoltaic panels, both at present-day silicon costs ($2000/m/sup 2/) and projected lower silicon costs ($200/m/sup 2/). At a silicon cost of $200/m/sup 2/, a two-dimensional (cone) version of the collector has the potential for achieving from $0.60-2.00 per average watt (about $0.15-0.50 per peak watt) while requiring only crude (+-4.5/sup 0/) tracking.« less

  20. Influences of device structures on microstructure-correlated photovoltaic characteristics of organic solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Fu-Chiao; Yang, Cheng-Chi; Tseng, Po-Tsung; Chou, Wei-Yang; Cheng, Horng-Long

    2017-02-01

    Photovoltaic characteristics of organic solar cells (OSCs) are correlated with microstructural qualities of active layers (ALs). Numerous efforts focused on improving process conditions of ALs to attain effective microstructures to achieve high-efficiency OSCs. Aside from AL process conditions, layer properties under AL can also influence microstructural qualities of AL. In this study, we adopted poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61-butyric acid methyl ester (PCBM) mixture as AL, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as hole extraction layer, and branched polyethyleneimine (BPEI) as electron extraction layer to prepare OSCs with different device structures, that is, normal type (PEDOT:PSS/P3HT:PCBM/BPEI) and inverted type (BPEI/P3HT:PCBM/PEDOT:PSS) structures. We discovered that although devices have similar layer components, they have different photovoltaic characteristics. Inverted devices demonstrated higher power conversion efficiency than normal devices. Various methods, including absorption spectroscopy and microscopy, were used to study AL microstructures of different devices. We observed that P3HT crystallites grown on BPEI had longer vertical size and shorter horizontal size compared with those grown on PEDOT:PSS; these properties could result from larger interfacial tension of P3HT with BPEI than with PEDOT:PSS. Observed shape of P3HT crystallites in inverted devices facilitated efficient charge transport to electrodes and suppressed current leakage. As a result, inverted devices generated improved photovoltaic performance.