Science.gov

Sample records for advanced physical chemistry

  1. Advanced physical chemistry of carbon nanotubes.

    PubMed

    Li, Jun; Pandey, Gaind P

    2015-04-01

    The past decade has seen a surge of exciting research and applications of carbon nanotubes (CNTs) stimulated by deeper understanding of their fundamental properties and increasing production capability. The intrinsic properties of various CNTs were found to strongly depend on their internal microstructures. This review summarizes the fundamental structure-property relations of seamless tube-like single- and multiwalled CNTs and conically stacked carbon nanofibers, as well as the organized architectures of these CNTs (including randomly stacked thin films, parallel aligned thin films, and vertically aligned arrays). It highlights the recent development of CNTs as key components in selected applications, including nanoelectronics, filtration membranes, transparent conductive electrodes, fuel cells, electrical energy storage devices, and solar cells. Particular emphasis is placed on the link between the basic physical chemical properties of CNTs and the organized CNT architectures with their functions and performance in each application. PMID:25580625

  2. Advanced Physical Chemistry of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jun; Pandey, Gaind P.

    2015-04-01

    The past decade has seen a surge of exciting research and applications of carbon nanotubes (CNTs) stimulated by deeper understanding of their fundamental properties and increasing production capability. The intrinsic properties of various CNTs were found to strongly depend on their internal microstructures. This review summarizes the fundamental structure-property relations of seamless tube-like single- and multiwalled CNTs and conically stacked carbon nanofibers, as well as the organized architectures of these CNTs (including randomly stacked thin films, parallel aligned thin films, and vertically aligned arrays). It highlights the recent development of CNTs as key components in selected applications, including nanoelectronics, filtration membranes, transparent conductive electrodes, fuel cells, electrical energy storage devices, and solar cells. Particular emphasis is placed on the link between the basic physical chemical properties of CNTs and the organized CNT architectures with their functions and performance in each application.

  3. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Dr. Qingmin; Hill, Dr. Jonathan P; Ariga, Katsuhiko

    2013-01-01

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as, assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments on nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this pespective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological technique, this perspective attempts to mirro this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  4. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications.

    PubMed

    Ramanathan, Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Qingmin; Hill, Jonathan P; Ariga, Katsuhiko

    2013-07-14

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments in nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this perspective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology and practical applications, latter of which are often accomplished by amphiphile-like polymers. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological techniques, this perspective attempts to mirror this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics. PMID:23639971

  5. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  6. An Advanced Chemistry Laboratory Program.

    ERIC Educational Resources Information Center

    Wise, John H.

    The Advanced Chemistry Laboratory Program is a project designed to devise experiments to coordinate the use of instruments in the laboratory programs of physical chemistry, instrumental analysis, and inorganic chemistry at the advanced undergraduate level. It is intended that such experiments would incorporate an introduction to the instrument…

  7. Insights into the physical chemistry of materials from advances in HAADF-STEM

    SciTech Connect

    Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; Pennycook, Stephen J.

    2014-11-13

    The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging for probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.

  8. Insights into the physical chemistry of materials from advances in HAADF-STEM

    DOE PAGESBeta

    Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; Pennycook, Stephen J.

    2014-11-13

    The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging formore » probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.« less

  9. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  10. Advanced Chemistry Basins Model

    SciTech Connect

    William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2002-11-10

    The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

  11. On the physics, chemistry and toxicology of ultrafine anthropogenic, atmospheric aerosols (UAAA): new advances.

    PubMed

    Spurny, K R

    1998-08-01

    The existing data about the epidemiology, toxicology, physics and chemistry of atmospheric particulate pollutants were recently essentially completed and extended. They do support the hypothesis that the fine and very fine dispersed fraction of the atmospheric anthropogenic aerosols (UAAA) are responsible for the aggravation of the health risk potential of the polluted atmosphere during the last decade. The recently published data dealing primarily with the physics, chemistry, sampling and analysis of these highly dispersed particulate air pollutants are reviewed, summarized and critically evaluated. PMID:9820675

  12. ADVANCED CHEMISTRY BASINS MODEL

    SciTech Connect

    William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2004-05-01

    The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

  13. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    ERIC Educational Resources Information Center

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  14. Advances in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  15. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  16. Advanced Chemistry Basins Model

    SciTech Connect

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  17. THE ADVANCED CHEMISTRY BASINS PROJECT

    SciTech Connect

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  18. Forster Resonance Energy Transfer and Conformational Stability of Proteins: An Advanced Biophysical Module for Physical Chemistry Students

    ERIC Educational Resources Information Center

    Sanchez, Katheryn M.; Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2008-01-01

    Protein folding is an exploding area of research in biophysics and physical chemistry. Here, we describe the integration of several techniques, including absorption spectroscopy, fluorescence spectroscopy, and Forster resonance energy transfer (FRET) measurements, to probe important topics in protein folding. Cytochrome c is used as a model…

  19. Advanced fuel chemistry for advanced engines.

    SciTech Connect

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  20. Physical chemistry and the environment

    SciTech Connect

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ``Physical Chemistry and the Environment`` was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community.

  1. Recent Advances in Azaborine Chemistry

    PubMed Central

    Campbell, Patrick G.; Marwitz, Adam J. V.

    2013-01-01

    The chemistry of organoboron compounds has been primarily dominated by their use as powerful reagents in synthetic organic chemistry. Recently, the incorporation of boron as part of a functional target structure has emerged as a useful way to generate diversity in organic compounds. A commonly applied strategy is the replacement of a CC unit with its isoelectronic BN unit. In particular, the BN/CC isosterism of the ubiquitous arene motif has undergone a renaissance in the past decade. The parent molecule of the 1,2-dihydro-1,2-azaborine family has now been isolated. New mono- and polycyclic BN heterocycles have been synthesized for potential use in biomedical and materials science applications. This review is a tribute to Dewar's first synthesis of a monocyclic 1,2-dihydro-1,2-azaborine 50 years ago and discusses recent advances in the synthesis and characterization of carbon(C)-boron(B)-nitrogen(N)-containing heterocycles. PMID:22644658

  2. Collaborative Physical Chemistry Projects Involving Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.

    2000-02-01

    The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.

  3. AEROSOL EXPOSURE, PHYSICS, AND CHEMISTRY

    EPA Science Inventory

    A brief review is given of the "Knowledge" and the "Gaps in Knowledge" of aerosol exposure, physics and chemistry relevant to health effects of aerosols, and presented or discussed in platform or poster presentations at the Symposium on Particulate Air Pollution - Associations wi...

  4. Advanced diagnostics for plasma chemistry

    SciTech Connect

    Kruger, C.H.

    1994-03-01

    Since July 15, 1992, the High Temperature Gasdynamics Laboratory in the Department of Mechanical Engineering at Stanford University has been engaged in a four-year research program on Advanced Diagnostics for Plasma Chemistry. The goal of this program is to develop state-of-the-art laser-based diagnostics of molecular species in harsh chemical environments, particularly those encountered in plasma synthesis of new materials. Emphasis has been placed on exploiting a new nonlinear spectroscopy, degenerate four wave mixing, as well as linear laser induced fluorescence to accomplish these goals. The present submittal is a proposal for the continuation funding for the third year of this program, from July 15, 1994, until July 14, 1995. Section 2 summarizes the research accomplished during the first eighteen months of the program. Section 3 discusses the plans for continuing research activities. Publications and presentations to date resulting from this program are listed in Section 4. The proposed budget for the third year is given in Section 5.

  5. Supplemental Instruction in Physical Chemistry I

    ERIC Educational Resources Information Center

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  6. Spreadsheets in Advanced Physical Chemistry.

    ERIC Educational Resources Information Center

    Kari, Roy

    1990-01-01

    Described are several spreadsheet templates which use the functions of iteration and logical look-up which allow students to calculate and graph quantum mechanical functions and to simulate rotational and vibrational energy level and spectra. The templates are listed in the appendix. (KR)

  7. Advanced Placement Chemistry: Project Advance and the Advanced Placement Program: A Comparison of Students' Performance on the AP Chemistry Examination.

    ERIC Educational Resources Information Center

    Mercurio, Joseph; And Others

    1984-01-01

    Compared performance of Syracuse University Project Advance (PA) chemistry students (N=35) with advanced placement (AP) candidates on the AP chemistry examination. PA students scored slightly above the national average on the examination, and students who performed well (B or better) in AP chemistry also did well on the examination. (JN)

  8. A phenomenological analysis of the essence of the science education experience as perceived by female high school physics and advanced chemistry students

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Michael

    The purpose of this phenomenological study was to describe the essential elements of the current science education experience as constructed by twelve female high school physics and advanced chemistry students. The expressed desired outcome was a description of the phenomenon from a participant point of view. Student recollections and interpretations of experiences were assessed for a twelve-week period. Data sources were student journals, autobiographies, interviews, focus group interviews and researcher observations. In addition, each participant completed the Test of Science Related Attitudes (Fraser, 1981) in order to create attitude profiles for triangulation with other data. While a wide range of aspects of the science education experience emerged, results showed that female students describe and interpret their science education experiences on the basis of actual interest in science, early science experiences, perception of ability, self-confidence, teacher attributes, parental and peer interaction, societal expectations, the nature of science, and gender. Of these factors, specifically, interest and curiosity, societal influence, the nature of science, lack of in-school experiences, the desire to help others, and general parent support were most impacting upon experience and the desire to continue science study. Moreover, the interaction of these factors is relevant. Very simply, early experiences are crucial to interest development. In general, parents can enhance this interest by providing science-related experiences. In the absence of early in-school experiences (i.e., which the participants reported), these out-of-school experiences become crucial. More importantly, quality instruction and parent and peer support are needed to foster science interest and to overcome the powerfully negative influence of society, the discriminatory nature of science, and the lack of experiences.

  9. Advancing manufacturing through computational chemistry

    SciTech Connect

    Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

    1995-12-31

    The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

  10. Photoelectron Spectroscopy in Advanced Placement Chemistry

    ERIC Educational Resources Information Center

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  11. Customized Laboratory Experience in Physical Chemistry

    ERIC Educational Resources Information Center

    Castle, Karen J.; Rink, Stephanie M.

    2010-01-01

    A new physical chemistry laboratory experience has been designed for upper-level undergraduate chemistry majors. Students customize the first 10 weeks of their laboratory experience by choosing their own set of experiments (from a manual of choices) and setting their own laboratory schedule. There are several topics presented in the accompanying…

  12. Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Guberman-Pfeffer, Matthew J.; Butrick, Elizabeth E.; Colangelo, Julie A.; Donaruma, Cristine E.

    2015-01-01

    In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry…

  13. Integrating Computational Chemistry into the Physical Chemistry Curriculum

    ERIC Educational Resources Information Center

    Johnson, Lewis E.; Engel, Thomas

    2011-01-01

    Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…

  14. Chemistry and physics of coal utilization - 1980

    SciTech Connect

    Cooper, B.R.; Petrakis, L.

    1981-01-01

    The Conference on the Chemistry and Physics of Coal Utilization was designed as an interdisciplinary conference centered on the physics and chemistry phenomena involved in coal utilization, including the chemistry and physics of coal itself. The Conference was designated as a Topical Conference of the American Physical Society, and was held on June 2-4, 1980, at the Lakeview Inn in Morgantown, West Virginia. It was primarily intended as a working conference for those already engaged in, or at least technically informed on, coal conversion and utilization research. The program consisted of lectures by 23 invited speakers and two panel discussions by invited experts. In addition there were two sessions at which a total of 49 poster contributions were presented. This volume contains the invited papers (with one exception), reports of the panel discussions, and abstracts for the poster contributions. The individual papers are entered individually into EDB from a tape prepared by the American Institute of Physics. (LTN)

  15. Radiation Chemistry of Advanced TALSPEAK Flowsheet

    SciTech Connect

    Mincher, Bruce; Peterman, Dean; Mcdowell, Rocklan; Olson, Lonnie; Lumetta, Gregg J.

    2013-08-28

    This report summarizes the results of initial experiments designed to understand the radiation chemistry of an Advanced TALSPEAK process for separating trivalent lanthanides form the actinides. Biphasic aerated samples were irradiated and then analyzed for post-irradiation constituent concentrations and solvent extraction distribution ratios. The effects of irradiation on the TALSPEAK and Advanced TALSPEAK solvents were similar, with very little degradation of the organic phase extractant. Decomposition products were detected, with a major product in common for both solvents. This product may be responsible for the slight increase in distribution ratios for Eu and Am with absorbed dose, however; separation factors were not greatly affected.

  16. Improving Advanced High School Physics

    NASA Astrophysics Data System (ADS)

    Spital, Robin David

    2003-04-01

    A National Research Council study committee recently commissioned a "Physics Panel" to evaluate and make recommendations for improving advanced physics education in American high schools [1]. The Physics Panel recommends the creation of a nationally standardized Newtonian Mechanics Unit that would form the foundation of all advanced physics programs. In a one-year program, the Panel recommends that advanced physics students study at most one other major area of physics, so that sufficient time is available to develop the deep conceptual understanding that is the primary goal of advanced study. The Panel emphasizes that final assessments must be improved to focus on depth of understanding, rather than technical problem-solving skill. The Physics Panel strongly endorses the inclusion of meaningful real-world experiences in advanced physics programs, but believes that traditional "cook-book" laboratory exercises are not worth the enormous amount of time and effort spent on them. The Physics Panel believes that the talent and preparation of teachers are the most important ingredients in effective physics instruction; it therefore calls for a concerted effort by all parts of the physics community to remedy the desperate shortage of highly qualified teachers. [1] Jerry P. Gollub and Robin Spital, "Advanced Physics in the High Schools", Physics Today, May 2002.

  17. Recent planetary physics and chemistry

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1980-01-01

    During the past few years considerable progress has been made in the knowledge and understanding of the origin of planets and of the structure of their interiors and atmospheres. Some of these advances, including Venera and Viking results, are reviewed for all the planets (except earth) with emphasis on those data that seem amenable to theoretical analysis. Results of the 1978-79 Mariner-Venus Orbiter, Pioneer 11, and Voyager 1 and 2 missions as well as other observations are briefly summarized.

  18. Advanced Chemistry Collection, 2nd Edition

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Software requirements are given in Table 3. Some programs have additional special requirements. Please see the individual program abstracts at JCE Online or the documentation included on the CD-ROM for more specific information. Table 3. General software requirements for the Advanced Chemistry Collection.

    ComputerSystemOther Software(Required by one or more programs)
    Mac OS compatibleSystem 7.6.1 or higherAcrobat Reader (included)Mathcad; Mathematica;MacMolecule2; QuickTime 4; HyperCard Player
    Windows CompatibleWindows 2000, 98, 95, NT 4Acrobat Reader (included)Mathcad; Mathematica;PCMolecule2; QuickTime 4;HyperChem; Excel

    Literature Cited

    1. General Chemistry Collection, 5th ed.; J. Chem. Educ. Software, 2001, SP16.
    2. Advanced Chemistry Collection; J. Chem. Educ. Software, 2001, SP28.

  19. Student Active Learning Methods in Physical Chemistry

    NASA Astrophysics Data System (ADS)

    Hinde, Robert J.; Kovac, Jeffrey

    2001-01-01

    We describe two strategies for implementing active learning in physical chemistry. One involves supplementing a traditional lecture course with heavily computer-based active-learning exercises carried out by cooperative groups in a department computer lab. The other uses cooperative learning almost exclusively, supplemented by occasional mini-lectures. Both approaches seemed to result in better student learning and a more positive attitude toward the subject. On the basis of our respective experiences using active learning techniques, we discuss some of the strengths of these techniques and some of the challenges we encountered using the active-learning approach in teaching physical chemistry.

  20. Recent advances in computational actinoid chemistry.

    PubMed

    Wang, Dongqi; van Gunsteren, Wilfred F; Chai, Zhifang

    2012-09-01

    We briefly review advances in computational actinoid (An) chemistry during the past ten years in regard to two issues: the geometrical and electronic structures, and reactions. The former addresses the An-O, An-C, and M-An (M is a metal atom including An) bonds in the actinoid molecular systems, including actinoid oxo and oxide species, actinoid-carbenoid, dinuclear and diatomic systems, and the latter the hydration and ligand exchange, the disproportionation, the oxidation, the reduction of uranyl, hydroamination, and the photolysis of uranium azide. Concerning their relevance to the electronic structures and reactions of actinoids and their importance in the development of an advanced nuclear fuel cycle, we also mentioned the work on actinoid carbides and nitrides, which have been proposed to be candidates of the next generation of nuclear fuel, and the oxidation of PuO(x), which is important to understand the speciation of actinoids in the environment, followed by a brief discussion on the urgent need for a heavier involvement of computational actinoid chemistry in developing advanced reprocessing protocols of spent nuclear fuel. The paper is concluded with an outlook. PMID:22777520

  1. Ionosphere: Physics, Plasma Physics, and Chemistry

    NASA Astrophysics Data System (ADS)

    Khazanov, George V.

    Good books on space physics are hard to find. Instructors teaching courses in this field often must pull material from many books, papers, and other resources to compile a useful set of lecture notes. There is also the task of developing homework sets and test questions. Developing appropriate problems for a graduate-level course is one of the most difficult tasks facing an instructor. Therefore, when a good, inclusive book comes along, it is a noteworthy occasion and should be celebrated by the community.

  2. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  3. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  4. PHYSICS AND CHEMISTRY FOR THE AUTOMOTIVE TRADES.

    ERIC Educational Resources Information Center

    WORTHING, ROBERT

    DESIGNED FOR STUDENT USE, THIS MANUAL PRESENTS RELATED INFORMATION AND LABORATORY EXPERIMENTS FOR A 1-YEAR COURSE IN APPLIED PHYSICS AND CHEMISTRY. IT WAS DEVELOPED BY ESSEX COUNTY AUTOMOTIVE TEACHERS. CONTENT HEADINGS ARE -- (1) MATTER AND ITS PROPERTIES (15 EXPERIMENTS), (2) MECHANICS (4 EXPERIMENTS), (3) HEAT (3 EXPERIMENTS), (4) ELECTRICITY (8…

  5. A Teaching Approach To Physical Chemistry

    ERIC Educational Resources Information Center

    Combs, Leon L.

    1976-01-01

    Presented are the results of an approach to teaching physical chemistry designed to increase student motivation. Student achievement in a course utilizing motivation variables such as self-pacing, no dropping of grades, no pop-tests, and taped lectures, indicated significant gains over a course taught by a traditional approach. (SL)

  6. Surfactant Adsorption: A Revised Physical Chemistry Lab

    ERIC Educational Resources Information Center

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  7. Playing with Liquid Foams: Learning Physical Chemistry

    ERIC Educational Resources Information Center

    Ritacco, Hernan

    2008-01-01

    Who has never played with soap bubbles? They are so beautiful and amazing, they have a perfect spherical shape and surprising tints. Foams are structures of bubbles of an incredible complexity and they are a perfect system to stimulate students' interest in the chemistry and physics of surface phenomena. In this article I propose a simple…

  8. Dilution physics modeling: Dissolution/precipitation chemistry

    SciTech Connect

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.

  9. Teaching Chemistry to Physically Handicapped Students.

    ERIC Educational Resources Information Center

    Reese, Kenneth M., Ed.

    The manual provides information on teaching techniques and services, materials, equipment, and publications for teaching chemistry to physically handicapped students. Section I addresses the classroom in terms of common needs, lecture/discussion techniques, and special arrangements. Section II covers the laboratory with general guidelines and…

  10. Integrating Advanced High School Chemistry Research with Organic Chemistry and Instrumental Methods of Analysis

    ERIC Educational Resources Information Center

    Kennedy, Brian J.

    2008-01-01

    This paper describes and discusses the unique chemistry course opportunities beyond the advanced placement-level available at a science and technology magnet high school. Students may select entry-level courses such as honors and advanced placement chemistry; they may also take electives in organic chemistry with instrumental methods of analysis;…

  11. Advances in antihydrogen physics.

    PubMed

    Charlton, Mike; Van der Werf, Dirk Peter

    2015-01-01

    The creation of cold antihydrogen atoms by the controlled combination of positrons and antiprotons has opened up a new window on fundamental physics. More recently, techniques have been developed that allow some antihydrogen atoms to be created at low enough kinetic energies that they can be held inside magnetic minimum neutral atom traps. With confinement times of many minutes possible, it has become feasible to perform experiments to probe the properties of the antiatom for the first time. We review the experimental progress in this area, outline some of the motivation for studying basic aspects of antimatter physics and provide an outlook of where we might expect this field to go in the coming years. PMID:25942774

  12. Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.

    2006-01-01

    A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…

  13. Life is physics and chemistry and communication.

    PubMed

    Witzany, Guenther

    2015-04-01

    Manfred Eigen extended Erwin Schroedinger's concept of "life is physics and chemistry" through the introduction of information theory and cybernetic systems theory into "life is physics and chemistry and information." Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life. PMID:25557438

  14. Nobel Awards--Physics and Chemistry.

    PubMed

    Pellam, J R; Harker, D

    1962-11-01

    The Swedish Academy of Sciences announced last week that Lev Davidovich Landau, a Soviet scientist, has been awarded the Nobel Prize in physics for his studies of the low-temperature characteristics of helium. It was simultaneously announced that the prize in chemistry has been awarded to two Britons, John Cowdery Kendrew and Max Ferdinand Perutz, of Cavendish Laboratory, Cambridge, for their studies of protein structure. PMID:17829701

  15. (The physics and chemistry of microalgal photosynthesis)

    SciTech Connect

    Greenbaum, E.

    1989-09-29

    The traveler was invited to present lectures on ORNL research in the physics and chemistry of photosynthesis and microalgal biotechnology at the First International Conference on Marine Biotechnology and the Second International Conference on Molecular Electronics and Biocomputers. In addition, professional colleagues in the Department of Bioengineering, Tokoyo Institute of Technology, and the Department of Molecular Biology and Biological Physics, Moscow State University, invited him to present research seminars at their respective institutes. One afternoon was spent in the Tokyo offices of Mitsubishi Heavy Industries discussing the greenhouse effect, carbon dioxide reduction, possible global warming and the production of nongreenhouse gas fuels.

  16. Physical Chemistry in Practice: Evaluation of DVD Modules

    ERIC Educational Resources Information Center

    Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.

    2007-01-01

    The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…

  17. Preface: Advances in solar physics

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.; Nakariakov, Valery M.

    2015-12-01

    The idea for this special issue of Advances in Space Research (ASR) was formulated during the 14th European Solar Physics Meeting (ESPM-14) that took place in Dublin, Ireland in September 2014. Since ASR does not publish conference proceedings, it was decided to extend a general call to the international solar-physics community for manuscripts pertinent to the following thematic areas: New and upcoming heliospheric observational and data assimilation facilities.

  18. Explosives detection: a challenge for physical chemistry.

    PubMed

    Steinfeld, J I; Wormhoudt, J

    1998-01-01

    The detection of explosives, energetic materials, and their associated compounds for security screening, demining, detection of unexploded ordnance, and pollution monitoring is an active area of research. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. This review focuses on techniques such as optical and mass spectrometry and chromatography for detection of trace amounts of explosives with short response times. We also review techniques for detecting the decomposition fragments of these materials. Molecular data for explosive compounds are reviewed where available. PMID:15012428

  19. Academic excellence workshops in chemistry and physics

    NASA Astrophysics Data System (ADS)

    Mills, Susan Rose

    In the mid-1970's, Uri Treisman, at the University of California, Berkeley, developed an academic excellence workshop program that had important successes in increasing minority student achievement and persistence in calculus. The present dissertation research is an in-depth study of chemistry and physics workshops at the California State Polytechnic University, Pomona. Data for the first, longitudinal component of this study were obtained by tracking to Spring 1998 all workshop minority students, i.e., Latino, African American, and Native American workshop students, a random sample of non-workshop minority students, and a random sample of non-targeted students, i.e., Anglo and Asian students, enrolled in first-quarter General Chemistry or Physics during specific quarters of 1992 or 1993. Data for the second component were obtained by administering questionnaires, conducting interviews, and observing science students during Fall, 1996. Workshop participation was a significant predictor of first-quarter course grade for minority students in both chemistry and physics, while verbal and mathematics Scholastic Aptitude Test (SAT) scores were not significant predictors of beginning course grade for minority science students. The lack of predictive ability of the SAT and the importance of workshop participation in minority students' beginning science course performance are results with important implications for educators and students. In comparing pre-college achievement measures for workshop and non-targeted students, non-targeted students' mathematics SAT scores were significantly higher than chemistry and physics workshop students' scores. Nonetheless, workshop participation "leveled the field" as workshop and non-targeted students performed similarly in beginning science courses. Positive impacts of workshop participation on achievement, persistence, efficiency, social integration, and self-confidence support the continued and expanded funding of workshop programs

  20. REFLECTIONS ON PHYSICAL CHEMISTRY: Science and Scientists

    NASA Astrophysics Data System (ADS)

    Jortner, Joshua

    2006-05-01

    This is the story of a young person who grew up in Tel-Aviv during the period of the establishment of the State of Israel and was inspired to become a physical chemist by the cultural environment, by the excellent high-school education, and by having been trained by some outstanding scientists at the Hebrew University of Jerusalem and, subsequently, by the intellectual environment and high-quality scientific endeavor at the University of Chicago. Since serving as the first chairman of the Chemistry Department of the newly formed Tel-Aviv University he has been immersed in research, in the training of young scientists, and in intensive and extensive international scientific collaboration. Together with the members of his "scientific family" he has explored the phenomena of energy acquisition, storage and disposal and structure-dynamics-function relations in large molecules, condensed phase, clusters and biomolecules, and is looking forward to many future adventures in physical chemistry. "What to leave out and what to put in? That's the problem." Hugh Lofting, Doctor Dolittle's Zoo, 1925

  1. Pre-Service Physics and Chemistry Teachers' Conceptual Integration of Physics and Chemistry Concepts

    ERIC Educational Resources Information Center

    Tuysuz, Mustafa; Bektas, Oktay; Geban, Omer; Ozturk, Gokhan; Yalvac, Bugrahan

    2016-01-01

    This study examines the pre-service teachers' opinions about conceptual integration (CI) and their understanding of it. A qualitative phenomenology design was used in the study. Data was collected through in-depth semi-structured interviews comprising ten guiding questions. Three pre-service physics and three pre-service chemistry teachers…

  2. Modern Physical Chemistry: A Molecular Approach by George H. Duffey

    NASA Astrophysics Data System (ADS)

    Ranck, John P.

    2001-08-01

    The text has been carefully edited; I found no mathematical or typographical errors.

    Literature Cited

    1. Duffey, G. H. Physical Chemistry; McGraw-Hill: New York, 1962.
    2. Barrow, G. M. Physical Chemistry; McGraw-Hill: New York, 1961.
    3. McQuarrie, D. A.; Simon, J. D. Physical Chemistry: A Molecular Approach; University Science Books: Sausalito, CA, 1997.

  3. The silica hypothesis for homeopathy: physical chemistry.

    PubMed

    Anick, David J; Ives, John A

    2007-07-01

    The 'silica hypothesis' is one of several frameworks that have been put forward to explain how homeopathic remedies, which often are diluted beyond the point where any of the original substance remains, might still be clinically effective. We describe here what the silica hypothesis says. From a physical chemistry viewpoint, we explore three challenges that the hypothesis would have to meet in order to explain homeopathy: thermodynamic stability of a large number of distinct structures, pattern initiation at low potencies, and pattern maintenance or gradual evolution at higher potencies. We juxtapose current knowledge about silicates with some of the conventional wisdom about homeopathic remedies, to see how well the latter might be a consequence of the former. We explore variants of the hypothesis including some speculations about mechanisms. We outline laboratory experiments that could help to decide it. PMID:17678816

  4. A Physical Chemist Looks at Organic Chemistry Lab.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1988-01-01

    Criticizes the way organic chemistry teaching laboratory experiments are approached from the viewpoint of physical chemistry. Compares these experiments to cooking. Stresses that what matters is not the practice of the finger skills of organic chemistry but practice in the style of thinking of organic chemists. (CW)

  5. A Course in Biophysics: An Integration of Physics, Chemistry, and Biology

    ERIC Educational Resources Information Center

    Giancoli, Douglas C.

    1971-01-01

    Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)

  6. Computing Advances in the Teaching of Chemistry.

    ERIC Educational Resources Information Center

    Baskett, W. P.; Matthews, G. P.

    1984-01-01

    Discusses three trends in computer-oriented chemistry instruction: (1) availability of interfaces to integrate computers with experiments; (2) impact of the development of higher resolution graphics and greater memory capacity; and (3) role of videodisc technology on computer assisted instruction. Includes program listings for auto-titration and…

  7. Nationwide Survey of the Undergraduate Physical Chemistry Course

    ERIC Educational Resources Information Center

    Fox, Laura J.; Roehrig, Gillian H.

    2015-01-01

    A nationwide survey of the undergraduate physical chemistry course was conducted to investigate the depth and breadth of content that is covered, how content is delivered, how student understanding is assessed, and the experiences and beliefs of instructors. The survey was administered to instructors of physical chemistry (N = 331) at American…

  8. The Halogens. Independent Learning Project for Advanced Chemistry (ILPAC). Unit I2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the elements and compounds of Group IV (halogens) of the periodic table. Level one deals with the physical and chemical properties of the individual elements. Level two considers…

  9. New results in atomic physics at the Advanced Light Source

    SciTech Connect

    Schlachter, A.S.

    1995-01-01

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

  10. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  11. A Perspective on Physical Organic Chemistry

    PubMed Central

    2015-01-01

    A perspective on the development of mechanistic carbene chemistry is presented. The author will point out questions that have been answered, and a next generation of questions will be proposed. PMID:24571434

  12. Using Physics Principles in the Teaching of Chemistry.

    ERIC Educational Resources Information Center

    Gulden, Warren

    1996-01-01

    Presents three examples that show how students can use traditional physics principles or laws for the purpose of understanding chemistry better. Examples include Coulomb's Law and melting points, the Faraday Constant, and the Rydberg Constant. Presents a list of some other traditional topics in a chemistry course that could be enhanced by the…

  13. Applications of physical chemistry to glass technology

    NASA Astrophysics Data System (ADS)

    Stewart, Ogie Gregory

    2001-07-01

    Industrial manufacturing of glass, called float glass, involves a process in which flat pieces of glass are produced by pouring molten glass on a bath of molten tin metal. The glass is then coated with thin film coatings for such applications as solar radiation control and "privacy" glass. In this thesis, principles of physical chemistry are applied to selected aspects of glass production and thin film coatings in an effort to better understand these processes with the hope of improving film and glass quality. The research described here consists of three major studies. Part 1 describes the production of thin films by Atmospheric Pressure Chemical Vapor Deposition (APCVD) and characterization of the films by various analytical techniques. Vanadium oxide films were produced from vanadium (IV) chloride and each of several alcohols to determine the feasibility of this method of deposition and to investigate its use in an electrochromic device. The focus here was to investigate the levels of carbon contamination in the films. It was found that the level of carbon present in the films depend on the type of amine used. Part 2 is an investigation of the flow dynamics that occur during the two thin film deposition processes. APCVD and Powder Spray Pyrolysis (PSP). Information regarding flow dynamics and particle distribution in the region above the films' substrates were obtained and related to film formation and quality. Part 3 is a kinetic study of the gas phase reactions that occur in the vapor region above the glass during float glass production. A kinetic model of the possible reactions was devised and integrated to predict the formation of these impurities with time. An experimental setup to test the model's predictions is also discussed. The research described in this thesis lays the groundwork for several possibilities for future work. Electrochromic films can be produced by APCVD to construct an all-solid-state device. Two dimensional imaging coupled with Laser

  14. The Determination of Partial Specific Volume: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Sun, S. F.; Serpentino, Peter M.

    1974-01-01

    Describes a method for the accurate determination of partial specific volume of a protein. Method is simple enough to include in the undergraduate physical chemistry laboratory but requires patience and careful handling which provide good training in laboratory techniques. (SLH)

  15. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  16. The Application of Physical Organic Chemistry to Biochemical Problems.

    ERIC Educational Resources Information Center

    Westheimer, Frank

    1986-01-01

    Presents the synthesis of the science of enzymology from application of the concepts of physical organic chemistry from a historical perspective. Summarizes enzyme and coenzyme mechanisms elucidated prior to 1963. (JM)

  17. Contrail: A Module from Physical Chemistry On-Line Project

    ERIC Educational Resources Information Center

    Chen, Franklin; Zielinski, Theresa Julia; Long, George

    2007-01-01

    The impact of contrails on Earth's climate is researched to understand the active area. It is suggested that the process of contrail formation involves combustion, cooling and ice formation, which are good comprehensive learning exercise for physical chemistry students.

  18. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  19. An Audio-Tutorial Approach to the Teaching of Physical Chemistry and Electrochemistry.

    ERIC Educational Resources Information Center

    Lower, Stephen K.

    1981-01-01

    Demonstrates how audiotutorial techniques can be applied to the teaching of more advanced subjects (physical chemistry and electrochemistry), and how this can have significant affect on the overall quality of instruction and the mechanics of teaching the course. Includes a general description of audiotutorial instruction. (SK)

  20. An Attenuated Total Reflectance Sensor for Copper: An Experiment for Analytical or Physical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Zudans, Imants; Seliskar, Carl J.; Heineman, William R.; Richardson, John N.

    2004-01-01

    A sensor experiment which can be applied to advanced undergraduate laboratory course in physical or analytical chemistry is described along with certain concepts like the demonstration of chemical sensing, preparation of thin films on a substrate, microtitration, optical determination of complex ion stoichiometry and isosbestic point. It is seen…

  1. Survival Guide for Physical Chemistry (by Michelle Francl)

    NASA Astrophysics Data System (ADS)

    Elrod, Matthew

    2002-09-01

    Overall, I would recommend that instructors of physical chemistry consider Francl's text as a supplementary text for their courses. However, instructors who use a main textbook like Donald McQuarrie and John Simon's Physical Chemistry: A Molecular Approach, which contains “math chapters” to deal with many of the same mathematical issues addressed by Francl, may find that this supplementary text is not complementary enough to justify recommending its purchase to students.

  2. What Makes Physical Chemistry Difficult? Perceptions of Turkish Chemistry Undergraduates and Lecturers

    ERIC Educational Resources Information Center

    Sozbilir, Mustafa

    2004-01-01

    The perceptions of the student and lecturer regarding students' learning difficulties in physical chemistry are described. The learning difficulties of students from Turkey are compared to the difficulties of students from other countries.

  3. Recent advances in the chemistry of spinosyns.

    PubMed

    Crouse, G D; Sparks, T C; Schoonover, J; Gifford, J; Dripps, J; Bruce, T; Larson, L L; Garlich, J; Hatton, C; Hill, R L; Worden, T V; Martynow, J G

    2001-02-01

    The spinosyns are a new class of fermentation-derived insect control agents that are effective against a variety of chewing insect pests. The successful introduction of spinosad into the agricultural marketplace represents an important milestone in the use of natural products for commercial pest control. The development of a natural product presents additional limitations relative to a synthetic material. While the latter affords some degree of control in building appropriate physical attributes such as photostability, a natural product, designed to function in a different environment, is often less suited for traditional spray applications. Despite its intrinsic photolability, spinosad is stable enough to perform under field conditions. In an effort to generate analogs with improved physical characteristics, we have developed a variety of conditions for selectively modifying different portions of the molecule, and we have discovered analogs with greater activity against a broader spectrum of pests. The inability to translate improved greenhouse activity to actual field conditions resulted in a detailed study of the effects of formulations and crystallinity on biological activity. Through this effort, measurably improved field performance of synthetic spinosyn analogs relative to the natural product have now been observed. PMID:11455648

  4. Recent advances in click chemistry applied to dendrimer synthesis.

    PubMed

    Arseneault, Mathieu; Wafer, Caroline; Morin, Jean-François

    2015-01-01

    Dendrimers are monodisperse polymers grown in a fractal manner from a central point. They are poised to become the cornerstone of nanoscale devices in several fields, ranging from biomedicine to light-harvesting. Technical difficulties in obtaining these molecules has slowed their transfer from academia to industry. In 2001, the arrival of the "click chemistry" concept gave the field a major boost. The flagship reaction, a modified Hüisgen cycloaddition, allowed researchers greater freedom in designing and building dendrimers. In the last five years, advances in click chemistry saw a wider use of other click reactions and a notable increase in the complexity of the reported structures. This review covers key developments in the click chemistry field applied to dendrimer synthesis from 2010 to 2015. Even though this is an expert review, basic notions and references have been included to help newcomers to the field. PMID:26007183

  5. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  6. Physical and Biological Modes of Thought in the Chemistry of Linus Pauling

    NASA Astrophysics Data System (ADS)

    Nye, Mary Jo

    No figure in modern chemistry better exemplifies than Linus Pauling (1901-1994) the intersections of the scientific disciplines of chemistry, physics, and biology nor the roles of physical and biological modes of thought in the 'central science' of chemistry.

  7. Research for the advancement of green chemistry practice: Studies in atmospheric and educational chemistry

    NASA Astrophysics Data System (ADS)

    Cullipher, Steven Gene

    Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.

  8. New physics and chemistry in high electrostatic fields

    NASA Astrophysics Data System (ADS)

    Karahka, M. L.; Kreuzer, H. J.

    2016-01-01

    Fields of the order of volts per meter exist along micron-sized tips. They are of the magnitude of fields inside atoms and molecules and can affect their electronic structure. This leads to a continuous periodic table resulting in new field-induced chemistry. We will present a tutorial treatment of this new physics and chemistry explaining such surprising phenomena like covalent bonding of helium to metal surfaces, metallization of semiconductors and insulators, and more.

  9. Interactive Digital Computing in Undergraduate Physical Chemistry

    ERIC Educational Resources Information Center

    Herber, R. H.; Hazony, Y.

    1974-01-01

    Presents the results of educational experiments aimed at incorporating APL programming techniques in an undergraduate physical-analytical laboratory course. Included are a list of first year experiments and some examples of operations. (CC)

  10. Physics and chemistry of small clusters

    SciTech Connect

    Jena, P.; Rao, B.K.; Khanna, S.N.

    1987-01-01

    This book contains papers on physical and chemical phenomena of solid clusters. The papers cover the atomic and electronic structure, dynamics, stability, fragmentation, optical properties, interaction with adsorbates, astrochemistry and van der Waals forces of clusters. (LSP)

  11. Physics and Its Interfaces with Medicinal Chemistry and Drug Design

    NASA Astrophysics Data System (ADS)

    Santos, Ricardo N.; Andricopulo, Adriano D.

    2013-08-01

    Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

  12. Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Fan, Qinbai; And Others

    1995-01-01

    Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)

  13. Ultrashort Laser Pulses in Physics and Chemistry

    SciTech Connect

    Naskrecki, Ryszard

    2007-11-26

    Study of physical and chemical events accompanying light-matter interaction in pico- and femtosecond time scale have become possible with the use of ultrashort laser pulses. With the progress in generation of ultrashort laser pulses, the ultrafast optical spectroscopy, as a tool for dynamic study, is still evolving rapidly.

  14. Advanced Physics Lab at TCU

    NASA Astrophysics Data System (ADS)

    Quarles, C. A.

    2009-04-01

    The one semester, one credit hour Modern Physics Lab is viewed as a transition between the structured Physics 1 and 2 labs and junior/senior research. The labs focus on a variety of experiments built around a multichannel analyzer, various alpha, beta and gamma ray detectors and weak radioactive sources. Experiments include radiation safety and detection with a Geiger counter and NaI detector, gamma ray spectroscopy with a germanium detector, beta spectrum, alpha energy loss, gamma ray absorption, Compton effect, nuclear and positron annihilation lifetime, speed of gamma rays. Other experiments include using the analog oscilloscope, x-ray diffraction of diamond and using an SEM/EDX. Error analysis is emphasized throughout. The semester ends with an individual project, often an extension of one of the earlier experiments, and students present their results as a paper and an APS style presentation to the department.

  15. Developments in physical chemistry and basic principles

    SciTech Connect

    Sohn, H.Y. )

    1992-04-01

    The metallurgical industry faces challenges in the development and production of new products in response to rapidly changing technologies that demand materials with widely different properties and increasingly stringent quality control. Such materials include semiconductors, ultrahigh-purity metals, chemical-vapor-deposited metallic films, high-performance intermetallics, metallic superconductors, and metal-based composites. In view of this, the author propounded the establishment of value-addition metallurgy as a subdiscipline of extractive and process metallurgy. Such a subdiscipline would cover the principles and practice involved in the production of these value-added advanced materials based on metals. In this respect, this annual review article now includes a section covering papers concerned with these topics.

  16. Advances in actinide solid-state and coordination chemistry

    SciTech Connect

    Burns, Peter C; Ikeda, Y.; Czerwinski, K.

    2011-01-31

    Actinide solid-state and coordination chemistry has advanced through unexpected results that have further revealed the complex nature of the 5f elements. Nanoscale control of actinide materials is emerging, as shown by the creation of a considerable range of cluster and tubular topologies. Departures from established structural trends for actinyl ions are provided by cation-cation interactions in which an O atom of one actinyl ion is an equatorial ligand of a bipyramid of another actinyl ion. The solid-state structural complexity of actinide materials has been further demonstrated by open framework materials with interesting properties. The U(VI) tetraoxide core has been added to this cation's repertoire of coordination possibilities. The emergence of pentavalent uranium solid-state and coordination chemistry has resulted from the prudent selection of ligands. Finally, analogues of the uranyl ion have challenged our understanding of this normally unreactive functional group.

  17. Advanced analysis methods in particle physics

    SciTech Connect

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  18. Exemplary Programs in Physics, Chemistry, Biology, and Earth Science.

    ERIC Educational Resources Information Center

    Yager, Robert E., Ed.

    The 1982 Search for Excellence in Science Education project has identified 50 exemplary programs in physics, chemistry, biology, and earth science. Descriptions of four of these programs and the criteria used in their selection are presented. The first section reviews the direction established by Project Synthesis in searching for exemplary…

  19. Polymer Principles in the Undergraduate Physical Chemistry Course. Part 2.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Part l (SE 538 305) covered application of classical thermodynamics, polymer crystallinity, and phase diagrams to teaching physical chemistry. This part covers statistical thermodynamics, conformation, molecular weights, rubber elasticity and viscoelasticity, and kinetics of polymerization. Eight polymer-oriented, multiple-choice test questions…

  20. Solar Energy Education. Renewable energy activities for chemistry and physics

    SciTech Connect

    Not Available

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  1. Empowering Girls with Chemistry, Exercise and Physical Activity

    ERIC Educational Resources Information Center

    Clapham, Emily D.; Ciccomascolo, Lori E.; Clapham, Andrew J.

    2015-01-01

    Research suggests that a girl's career interests in the areas of science, technology, engineering and mathematics (STEM) declines between grades 6 and 8. Similarly, in middle school, there is a decrease in physical activity among girls. Researchers at the University of Rhode Island (URI) conducted a chemistry-based science camp that took place…

  2. An Integrated, Statistical Molecular Approach to the Physical Chemistry Curriculum

    ERIC Educational Resources Information Center

    Cartier, Stephen F.

    2009-01-01

    As an alternative to the "thermodynamics first" or "quantum first" approaches to the physical chemistry curriculum, the statistical definition of entropy and the Boltzmann distribution are introduced in the first days of the course and the entire two-semester curriculum is then developed from these concepts. Once the tools of statistical mechanics…

  3. The Lebanese Brevet Chemistry and Physics Examinations: An Exploratory Study

    ERIC Educational Resources Information Center

    Vlaardingerbroek, Barend; Jaber, Lama Z.; Rizk, Nadya G.; Bayoud, Jana M.

    2009-01-01

    The high-stakes Lebanese Brevet examinations are undertaken by almost all school students at the end of year 9 and include papers in Chemistry and Physics. This research presents an analysis of the 2007 examinations in these two science subjects using official statistics and response patterns arising from samples of candidate scripts. The…

  4. Radical Recombination Kinetics: An Experiment in Physical Organic Chemistry.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1980-01-01

    Describes a student kinetic experiment involving second order kinetics as well as displaying photochromism using a wide variety of techniques from both physical and organic chemistry. Describes measurement of (1) the rate of the recombination reaction; (2) the extinction coefficient; and (3) the ESR spectrometer signal. (Author/JN)

  5. The Freezing Point Depression Law in Physical Chemistry.

    ERIC Educational Resources Information Center

    Franzen, Hugo F.

    1988-01-01

    Suggests a change in physical chemistry courses to use a slightly more complicated but significantly more useful generalization of the simple freezing point depression law. Lists reasons for the change and presents the treatment of solid-liquid equilibria where solid-solution is allowed. Provides a mathematical treatment. (MVL)

  6. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    ERIC Educational Resources Information Center

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  7. Student Use of Energy Concepts from Physics in Chemistry Courses

    ERIC Educational Resources Information Center

    Nagel, Megan L.; Lindsey, Beth A.

    2015-01-01

    This paper describes an interdisciplinary investigation of students' usage of ideas about energy from physics in the context of introductory chemistry. We focus on student understanding of the idea that potential energy is a function of distance between interacting objects, a concept relevant to understanding potential energy in both physical…

  8. Physical chemistry of highly concentrated emulsions.

    PubMed

    Foudazi, Reza; Qavi, Sahar; Masalova, Irina; Malkin, Alexander Ya

    2015-06-01

    This review explores the physics underlying the rheology of highly concentrated emulsions (HCEs) to determine the relationship between elasticity and HCE stability, and to consider whether it is possible to describe all physicochemical properties of HCEs on the basis of a unique physical approach. We define HCEs as emulsions with a volume fraction above the maximum closest packing fraction of monodisperse spheres, φm=0.74, even if droplets are not of polyhedron shape. The solid-like rheological behavior of HCEs is characterized by yield stress and elasticity, properties which depend on droplet polydispersity and which are affected by caging at volume fractions about the jamming concentration, φj. A bimodal size distribution in HCEs diminishes caging and facilitates droplet movement, resulting in HCEs with negligible yield stress and no plateau in storage modulus. Thermodynamic forces automatically move HCEs toward the lowest free energy state, but since interdroplet forces create local minimums - points beyond which free energy temporarily increases before it reaches the global minimum of the system - the free energy of HCEs will settle at a local minimum unless additional energy is added. Several attempts have been undertaken to predict the elasticity of HCEs. In many cases, the elastic modulus of HCEs is higher than the one predicted from classical models, which only take into account spatial repulsion (or simply interfacial energy). Improved models based on free energy calculation should be developed to consider the disjoining pressure and interfacial rheology in addition to spatial repulsion. The disjoining pressure and interfacial viscoelasticity, which result in the deviation of elasticity from the classical model, can be regarded as parameters for quantifying the stability of HCEs. PMID:25869114

  9. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    ERIC Educational Resources Information Center

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  10. The Chemistry and Physics of Molecular Surfaces

    NASA Astrophysics Data System (ADS)

    Kaldor, A.; Cox, D. M.; Trevor, D. J.; Zakin, M. R.

    1986-06-01

    This article reviews the results of several recent experiments performed in our laboratory designed to elucidate the fundamental chemical and physical properties of clusters of both transition metals and other refractory elements containing from one to several hundred atoms. The gas-phase reactivity of clusters towards a variety of reagents is explored using a fast-flow reactor system. Strong cluster size-dependent variations in reactivity are observed, especially for the case of hydrogen chemisorption. Measurement of cluster photoionization thresholds (IPs) provides a sensitive probe of the evolution of cluster electronic structure as a function of the number of constituent atoms. Cluster ionization potentials are observed to exhibit fluctuations about the smooth global falloff predicted by the classical drop model, indicating the non-bulk-like behavior of small clusters. Measurement of shifts in IP induced by chemisorption of different reagents provides insight into the nature of adsorbate-cluster bonding. The formation and properties of bare and metal-doped carbon clusters are explored, with particular emphasis on elucidating the photophysics and photochemistry of the postulated ultrastable larger clusters. The results suggest that further work is required to prove soccer ball-like structures for C50, C60, etc. Finally, infrared multiple-photon dissociation (IR-MPD) is demonstrated to be a viable technique for obtaining infrared spectra of absorbate-cluster complexes. This technique is an important new tool for obtaining information about the molecularity of gas-phase reactions beyond that currently available from mass spectrometric analysis. As an illustration of the method, IR-MPD spectra of methanol chemisorbed on small iron clusters are obtained.

  11. Enhancing Interdisciplinary, Mathematics, and Physical Science in an Undergraduate Life Science Program through Physical Chemistry

    PubMed Central

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect. PMID:19255133

  12. The Physics Teacher: Chemistry and Physics Teachers Have a Lot in Common

    ERIC Educational Resources Information Center

    Clark, Roy W.

    2004-01-01

    The similar problems faced by the physics and chemistry teachers are described. The issue of cheating on tests in the classroom can be addressed by the teachers by comparing methods for monitoring the classroom behavior.

  13. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  14. On the interrelation between the methodologies of chemistry and physics

    NASA Astrophysics Data System (ADS)

    Anan'eva, E. A.; Mesyats, E. A.; Nagovitsyna, O. A.; Sergievskii, V. V.

    2016-02-01

    Aspects of the methodology and language of chemistry and physics are discussed. Chemistry defines the chemical properties of any substance from the results of its interaction with other substances using the logic of relations. Therefore, describing the properties of substances means using sets of different ideas, including ones that are opposite in meaning. Consequently, depending on the nature of reagents with respect to which properties are established, substances show chemical dualism. This dualism was established in chemistry long before the discovery of wave-particle dualism, to understand which N. Bohr proposed the complementarity principle in 1927. The methodology of natural sciences corresponds to the principle of complementarity and the need to use it to understand the world and record the results in the linguistic reality of several languages.

  15. Physics challenges for advanced fuel cycle assessment

    SciTech Connect

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  16. Advanced Analysis Methods in High Energy Physics

    SciTech Connect

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  17. The physics and chemistry of the Schottky barrier height

    NASA Astrophysics Data System (ADS)

    Tung, Raymond T.

    2014-03-01

    The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface. Existing models of the SBH are too simple to realistically treat the chemistry exhibited at MS interfaces. This article points out, through examination of available experimental and theoretical results, that a comprehensive, quantum-mechanics-based picture of SBH formation can already be constructed, although no simple equations can emerge, which are applicable for all MS interfaces. Important concepts and principles in physics and chemistry that govern the formation of the SBH are described in detail, from which the experimental and theoretical results for individual MS interfaces can be understood. Strategies used and results obtained from recent investigations to systematically modify the SBH are also examined from the perspective of the physical and chemical principles of the MS interface.

  18. The physics and chemistry of the Schottky barrier height

    SciTech Connect

    Tung, Raymond T.

    2014-03-15

    The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface. Existing models of the SBH are too simple to realistically treat the chemistry exhibited at MS interfaces. This article points out, through examination of available experimental and theoretical results, that a comprehensive, quantum-mechanics-based picture of SBH formation can already be constructed, although no simple equations can emerge, which are applicable for all MS interfaces. Important concepts and principles in physics and chemistry that govern the formation of the SBH are described in detail, from which the experimental and theoretical results for individual MS interfaces can be understood. Strategies used and results obtained from recent investigations to systematically modify the SBH are also examined from the perspective of the physical and chemical principles of the MS interface.

  19. Physics and chemistry of MoS2 intercalation compounds

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Somoano, R. B.

    1977-01-01

    An investigation is made of the physics and chemistry of MoS2 intercalation compounds. These compounds may be separated into two groups according to their stoichiometry, structure and superconducting properties. The first group consists of Na, Ca, and Sr intercalates, and the second group consists of K, Rb, and Cs intercalates. Particular attention is given to the structure of the electronic energy band and to the normal state and superconducting properties of these compounds.

  20. The Physics and Physical Chemistry of Molecular Machines.

    PubMed

    Astumian, R Dean; Mukherjee, Shayantani; Warshel, Arieh

    2016-06-17

    The concept of a "power stroke"-a free-energy releasing conformational change-appears in almost every textbook that deals with the molecular details of muscle, the flagellar rotor, and many other biomolecular machines. Here, it is shown by using the constraints of microscopic reversibility that the power stroke model is incorrect as an explanation of how chemical energy is used by a molecular machine to do mechanical work. Instead, chemically driven molecular machines operating under thermodynamic constraints imposed by the reactant and product concentrations in the bulk function as information ratchets in which the directionality and stopping torque or stopping force are controlled entirely by the gating of the chemical reaction that provides the fuel for the machine. The gating of the chemical free energy occurs through chemical state dependent conformational changes of the molecular machine that, in turn, are capable of generating directional mechanical motions. In strong contrast to this general conclusion for molecular machines driven by catalysis of a chemical reaction, a power stroke may be (and often is) an essential component for a molecular machine driven by external modulation of pH or redox potential or by light. This difference between optical and chemical driving properties arises from the fundamental symmetry difference between the physics of optical processes, governed by the Bose-Einstein relations, and the constraints of microscopic reversibility for thermally activated processes. PMID:27149926

  1. Blurring Boundaries among Physics, Chemistry, & Astronomy: The Mosely Centenary

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia

    2013-04-01

    Scientists are territorial animals, not just about our parking spaces & seats in the colloquium room, but also about our scientific territories, from the narrowest thesis topic (``Who's been working on my Nebula and left it covered with dust?'') to the whole of physics, chemistry, or astronomy. Many 19th century astronomers resented spectroscopes invading their observatories; chemists objected to Moseley's use of X-rays outgaming their retorts and test tubes in 1913; and chemists & physicists typically disbelieve astronomers suggesting new science on the basis of astronomical data (3 other combinations are possible). The talk will explore some of these transgressions, successes and failures. Moseley's own contributions included sorting out the rare earths, putting paid to nebulium, coronium, etc, and putting Prout's hypothesis on a firm foundation ready for the structure Cameron and B2FH would eventually erect there. Back in 1935 Gamow asked whether a new discipline should be called nuclear physics or nuclear chemistry (both now exist within APS and ACS), and 30+ years later, chemist L.S. Trimble was still complaining that physicists had grabbed the territory of atomic and nuclear composition away from chemistry. Some historians agree.

  2. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    SciTech Connect

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecular processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.

  3. Sol-Gel Application for Consolidating Stone: An Example of Project-Based Learning in a Physical Chemistry Lab

    ERIC Educational Resources Information Center

    de los Santos, Desiree´ M.; Montes, Antonio; Sa´nchez-Coronilla, Antonio; Navas, Javier

    2014-01-01

    A Project Based Learning (PBL) methodology was used in the practical laboratories of the Advanced Physical Chemistry department. The project type proposed simulates "real research" focusing on sol-gel synthesis and the application of the obtained sol as a stone consolidant. Students were divided into small groups (2 to 3 students) to…

  4. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  5. An Aerosol Physical Chemistry Model for the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are listed with a brief comment as to the research performed. The publications titles are: The effects of particle size and nitric acid uptake on the homogenous freezing of sulfate aerosols; Parameterization of an aerosol physical chemistry model (APCM) for the NH3/H2SO4/HNO3/H2O system at cold temperatures; and The onset, extent and duration of dehydration in the Southern Hemisphere polar vortex.

  6. An EPR Experiment for the Undergraduate Physical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Butera, R. A.; Waldeck, D. H.

    2000-11-01

    An experiment that illustrates the principles of electron paramagnetic resonance spectroscopy in the undergraduate physical chemistry laboratory is described. Students measure the value of g for DPPH and use it to determine the value of g for two inorganic complexes, Cu(acac)2 and VO(acac)2. The students use two instruments: an instructional device that illustrates the principles of EPR and a commercial Varian E4 spectrometer. This approach allows an elucidation of the principles of the method and provides experience with a more sophisticated research-grade instrument.

  7. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  8. Physics and chemistry of UV illuminated gas: the Horsehead case

    NASA Astrophysics Data System (ADS)

    Guzmán, V.; Pety, J.; Gratier, P.; Goicoechea, J. R.; Gerin, M.; Roueff, E.; Teyssier, D.

    2015-03-01

    Molecular lines are used to trace the physical conditions of the gas in different environments, from high-z galaxies to proto-planetary disks. To fully benefit from the diagnostic power of the molecular lines, the formation and destruction paths of the molecules must be quantitatively understood. This is challenging because the physical conditions are extreme and the dynamic plays an important role. In this context the PDR of the Horsehead mane is a particularly interesting case because the geometry is simple (almost 1D, viewed edge-on; Abergel et al. 2003), the density profile is well constrained and we are making several efforts to constrain the thermal profile. The combination of small distance to Earth (at 400 pc, 1'' corresponds to 0.002 pc), low illumination (χ = 60) and high density (n H ~ 105 cm-3) implies that all the interesting physical and chemical processes can be probed in a field-of-view of less than 50'' (with typical spatial scales ranging between 1'' and 10''). Hence, the Horsehead PDR is a good source to benchmark the physics and chemistry of UV illuminated neutral gas. In our recent work on the ISM physics and chemistry in the Horsehead we have shown the importance of the interplay between the solid and gas phase chemistry in the formation of (complex) organic molecules, like H2CO, CH3OH and CH3CN, which reveal that photo-desorption of ices is an efficient mechanism to release molecules into the gas phase (Guzmán et al. 2011, Gratier et al. in prep, Guzman et al. in prep)}. We have also provided new diagnostics of the UV illuminated matter. For example, we detected CF+ and resolved its hyperfine structure (Guzman et al. 2012b). We propose that CF+, which is observable from the ground, can be used as a proxy of C+ (Guzman et al. 2012). Finally, we reported the first detection of the small hydrocarbon C3H+, which sheds light on the formation pathways of other observed small hydrocarbons, like C3H and C3H2 ((Pety et al. 2012). Part of these

  9. Modern advances in heterocyclic chemistry in drug discovery.

    PubMed

    Taylor, Alexandria P; Robinson, Ralph P; Fobian, Yvette M; Blakemore, David C; Jones, Lyn H; Fadeyi, Olugbeminiyi

    2016-07-12

    New advances in synthetic methodologies that allow rapid access to a wide variety of functionalized heterocyclic compounds are of critical importance to the medicinal chemist as it provides the ability to expand the available drug-like chemical space and drive more efficient delivery of drug discovery programs. Furthermore, the development of robust synthetic routes that can readily generate bulk quantities of a desired compound help to accelerate the drug development process. While established synthetic methodologies are commonly utilized during the course of a drug discovery program, the development of innovative heterocyclic syntheses that allow for different bond forming strategies are having a significant impact in the pharmaceutical industry. This review will focus on recent applications of new methodologies in C-H activation, photoredox chemistry, borrowing hydrogen catalysis, multicomponent reactions, regio- and stereoselective syntheses, as well as other new, innovative general syntheses for the formation and functionalization of heterocycles that have helped drive project delivery. Additionally, the importance and value of collaborations between industry and academia in shaping the development of innovative synthetic approaches to functionalized heterocycles that are of greatest interest to the pharmaceutical industry will be highlighted. PMID:27282396

  10. Lithography of Polymer Nanostructures on Glass for Teaching Polymer Chemistry and Physics.

    PubMed

    Sahar-Halbany, Adi; Vance, Jennifer M; Drain, Charles Michael

    2011-05-01

    As nanolithography becomes increasingly important in technology and daily life, a variety of inexpensive and creative methods toward communicating the concepts underpinning these processes in the classroom are necessary. An experiment is described that uses simple CD-Rs, C-clamps, an oven, and a freezer to provide concrete examples and insights into the chemistry and principles of nanolithography. The experiment also has flexibility, making it suitable for a range of classroom levels from high school to more advanced labs in college. Because CD-Rs are composed of grooves of polycarbonate, the experiment provides a basis for discussions and exploration into the chemistry and physics of polymers on the nanoscale. PMID:21686088

  11. Physics and Advanced Technologies 2001 Annual Report

    SciTech Connect

    Jacobs, R

    2002-05-09

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  12. Physics and chemistry in glow dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Massines, Françoise

    2001-10-01

    Atmospheric pressure glow discharge (APGD) are of great interest for application in gas chemistry, sterilization, surface activation or thin film deposition. But the development of a new process based on this discharge needs a clear understanding of the discharge physics and chemistry. The aim of this work is to contribute to that goal. One difficulty is the large variety of discharges called APGD. Then the first point of this talk will consist on a quick description of the different APGD families. This overview will be limited to dielectric barrier glow discharges. Then, we will focussed on those due to a Townsend breakdown. The analysis of their working domain in helium and in nitrogen shows that a lot of seed electrons are necessary to turn on the discharge through a Townsend breakdown. The main mechanism leading to these seed electrons depends (i) on the life time of the gas metastables compared to the delay between two consecutive discharges (ii) on the maximum ionisation level which can be reached without transition to FD. In helium, the origin of the seed electrons is mainly the electrons created by direct ionisation and Penning ionisation during a discharge or at the end of it, trapped in the positive column and still present in the gas when the following discharge is turned on. In nitrogen, the seed electrons are created by Penning ionisation just before the breakdown. Then in helium, the time between two discharges has to be short enough and a positive column is necessary as well as the presence of helium metastables. In N2, metastable density just before the breakdown is a dominant parameter. Moreover, the density of N2 molecules and then the gas temperature, is also important in order to maintain a large contribution of Penning ionisation compared to direct electronic ionisation. In all the gases, the metastables control the discharge development and then play an important role in the gas chemistry.

  13. Molecular Signposts of the Physics and Chemistry of Planet Formation

    NASA Astrophysics Data System (ADS)

    Cleeves, Lauren Ilsedore

    Observations of molecules in planet-forming circumstellar disks are powerful diagnostic tools, enabling characterization of both gas composition and underlying physical conditions using molecular excitation. My thesis has primarily focused on the role of disk structure and ionization for the chemistry of disks and the corresponding submillimeter emission. Changes in the overall morphology of disks, including inner holes or gaps, significantly alters the stellar irradiation of the disk, which will affect the disk heating, especially at the walls of an inner hole (Chapter 2). I have modeled the 3D chemistry of gapped disks, carved out by planets, including for the first time heating by a luminous protoplanet. The planet sublimates ices beyond expected disk "snow-lines" leading to observable signatures detectable with ALMA (Chapter 3). Regarding ionization, I have studied disk ionization by cosmic rays (Chapter 4), short-lived radionuclides (Chapter 5), and X-rays from the central star (Chapter 6). In Chapter 6, I investigated the molecular dependence on each of these processes and made testable predictions for sensitive submillimeter observations to map out disk ionization, which I applied to the TW Hya disk, finding a substantially lower than interstellar cosmic ray rate (Chapter 7). One of the major implications of this work is related to the formation chemistry of water, which requires ionization to proceed. In the absence of water-formation in the solar nebula protoplanetary disk, this work demonstrates that there must be a substantial inheritance of water from earlier evolutionary stages, pre-dating the Sun's formation (Chapter 8). Together, these projects have also enabled the development of a comprehensive 2D and 3D disk modeling framework, useful for parameter space studies and source-targeted modeling.

  14. Insights from a Subject Knowledge Enhancement Course for Preparing New Chemistry and Physics Teachers

    ERIC Educational Resources Information Center

    Inglis, Michael; Mallaburn, Andrea; Tynan, Richard; Clays, Ken; Jones, Robert Bryn

    2013-01-01

    A recent Government response to shortages of new physics and chemistry teachers is the extended subject knowledge enhancement (SKE) course. Graduates without a physics or chemistry bachelor degree are prepared by an SKE course to enter a Postgraduate Certificate in Education (PGCE) programme to become science teachers with a physics or chemistry…

  15. Nanomaterial surface chemistry design for advancements in capillary electrophoresis modes.

    PubMed

    Ivanov, Michael R; Haes, Amanda J

    2011-01-01

    Tailored surface chemistry impacts nanomaterial function and stability in applications including in various capillary electrophoresis (CE) modes. Although colloidal nanoparticles were first integrated as colouring agents in artwork and pottery over 2000 years ago, recent developments in nanoparticle synthesis and surface modification increased their usefulness and incorporation in separation science. For instance, precise control of surface chemistry is critically important in modulating nanoparticle functionality and stability in dynamic environments. Herein, recent developments in nanomaterial pseudostationary and stationary phases will be summarized. First, nanomaterial core and surface chemistry compositions will be classified. Next, characterization methods will be described and related to nanomaterial function in various CE modes. Third, methods and implications of nanomaterial incorporation into CE will be discussed. Finally, nanoparticle-specific mechanisms likely involved in CE will be related to nanomaterial surface chemistry. Better understanding of surface chemistry will improve nanoparticle design for the integration into separation techniques. PMID:20967383

  16. Physical chemistry of carbothermic reduction of aluminum: Final report

    SciTech Connect

    Elliott, J.F.

    1989-06-16

    A program of study of carbothermic reduction of aluminum was undertaken to investigate the underlying physical chemistry of reactions and processes. The primary goal of the research was to establish the physicochemical basis by the use of which it may be possible to develop schemes for the production of aluminum by direct carbothermic reduction, thus avoiding the use of electrochemical means such as is exemplified by the Hall-Heroult process. One task of the program was to propose one or more possible schemes, and a specific challenge in the investigation was to determine whether or not a process based on the counter-current shaft furnace could possibly be practical for the production of aluminum. In such a furnace, combustion of a carbonaceous fuel would provide heat required in the process, and carbon would also serve as the reducing agent as is the case for the production of crude iron in the iron blast furnace. 15 refs., 22 figs., 24 tabs.

  17. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    PubMed

    Offroy, Marc; Duponchel, Ludovic

    2016-03-01

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). PMID:26873463

  18. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  19. Physics and Chemistry in UV Illuminated Regions: the Horsehead Case

    NASA Astrophysics Data System (ADS)

    Guzman, Viviana V.; Pety, Jérôme; Gratier, Pierre; Goicoechea, Javier; Gerin, Maryvonne; Roueff, Evelyne

    2014-06-01

    Molecular lines are used to trace the structure of the interstellar medium and the physical conditions of the gas in different environments, from protoplanetary disks to high-z galaxies. To fully benefit from the diagnostic power of molecular lines, the formation and destruction paths of the molecules, including the interplay between gas-phase and grain surface chemistry, must be quantitatively understood. Well-defined sets of observations of simple template sources are key to benchmark the theoretical models. In this context the PDR of the Horsehead mane is a particularly interesting case because it has a simple geometry (almost 1D, viewed edge-on) and the density profile across the PDR is well constrained. In this talk, I will summarize our recent results on the ISM physics and chemistry in the Horsehead, from a complete and unbiased line survey at 1, 2 and 3mm performed with the IRAM-30m telescope, where approximately 30 species (plus their isotopologues) are detected with up to 7 atoms. I will show the importance of the interplay between the solid and gas phase chemistry in the formation of (complex) organic molecules, like H_2CO, CH_3OH, and CH_3CN, which reveal that photo-desorption of ices is an efficient mechanism to release molecules into the gas phase. The case of CH_3CN is especially surprising, as it is 40 times more abundant in the warm (Tkin˜60 K) UV-illuminated edge of the nebula, than in the shielded and colder (Tkin˜20 K) inner layers. I will show that complex molecules, such as HCOOH, CH_2CO, CH_3CHO, and CH_3CCH are easily detected in the PDR. I will also discuss new diagnostics of the UV-illuminated gas, like CF^+ (for which we recently resolved its hyperfine structure for the first time), which is observable from the ground, and we propose it can be used as a proxy of C^+. I will finish by reporting the first detection of a new molecule, recently confirmed to be the small hydrocarbon C_3H^+, which shows that photo-erosion of PAHs is needed to

  20. PREFACE: XV International Seminar on Physics and Chemistry of Solids

    NASA Astrophysics Data System (ADS)

    Kotur, Bogdan; Brągiel, Piotr

    2011-03-01

                      Logo     Logo The XV International Seminar on Physics and Chemistry of Solids (ISPCS15) was held from 7-10 June 2009 in Szklarska Poręba. Over eighty participants joined together in this mountain resort, at the foot of Szrenica peak, in the Polish part of the Sudety range. The majority or participants, in accordance with Seminar tradition, were from Ukraine and Poland. The pleasant and warm atmosphere created by the organizers was conducive to fruitful discussions, making new contacts and to joyful gatherings with friends. Even the rainy weather could not change that. Lectures and communications mainly covered the fields of solid state physics and chemistry, and possible applications. This time, however, a new section was introduced - one devoted to modern topics in liquid chemistry. Sometimes such a look over the borders of scientific specialties leads to interesting insights and original research solutions. Some of the papers presented during ISPCS15 are collected in this volume. Their diversity is representative of both the scope and character of this Seminar. The majority of the papers are research reports, but a review article and a paper focussed on problems connected with environmental protection are also included. This Conference has functioned for over a decade due to the permanent support of the rectors of both co-organizing universities: Professor Ivan Vakarchuk from Ivan Franko National University of Lviv and Professor Zygmunt Bąk from Jan Dlugosz University in Częstochowa. It is our pleasure, on behalf of the all participants of the past Seminars, to express our gratitude for this assistance. We would also like to thank all the invited speakers who kindly accepted our invitation, namely Professors Roman Gladyshevskii (Ivan Franko National University, Lviv, Ukraine), Mihaela Gulea (Laboratoire de Chimie Moleculare et Thioorganique, CAEN, France), Osama I Abd El-Salam (National Research

  1. Independent Learning Project for Advanced Chemistry (ILPAC). Teachers' and Technicians' Notes for First Year Units.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    The Independent Learning Project for Advanced Chemistry (ILPAC) has produced units of study for students in A-level chemistry. Students completing ILPAC units assume a greater responsibility for their own learning and can work, to some extent, at their own pace. By providing guidance, and detailed solutions to exercises in the units, supported by…

  2. What Does a Student Know Who Earns a Top Score on the Advanced Placement Chemistry Exam?

    ERIC Educational Resources Information Center

    Claesgens, Jennifer; Daubenmire, Paul L.; Scalise, Kathleen M.; Balicki, Scott; Gochyyev, Perman; Stacy, Angelica M.

    2014-01-01

    This paper compares the performance of students at a high-performing U.S. public school (n = 64) on the advanced placement (AP) chemistry exam to their performance on the ChemQuery assessment system. The AP chemistry exam was chosen because, as the National Research Council acknowledges, it is the "perceived standard of excellence and school…

  3. Development of an Advanced Training Course for Teachers and Researchers in Chemistry

    ERIC Educational Resources Information Center

    Dragisich, Vera; Keller, Valerie; Black, Rebecca; Heaps, Charles W.; Kamm, Judith M.; Olechnowicz, Frank; Raybin, Jonathan; Rombola, Michael; Zhao, Meishan

    2016-01-01

    Based on our long-standing Intensive Training Program for Effective Teaching Assistants in Chemistry, we have developed an Advanced Training Course for Teachers and Researchers in Chemistry at The University of Chicago. The topics in this course are designed to train graduate teaching assistants (GTAs) to become effective teachers and well-rounded…

  4. ADVANCES IN GREEN CHEMISTRY: CHEMICAL SYNTHESES USING MICROWAVE IRRADIATION, ISBN 81-901238-5-8

    EPA Science Inventory

    16. Abstract Advances in Green Chemistry: Chemical Syntheses Using Microwave Irradiation
    Microwave-accelerated chemical syntheses in solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predomi...

  5. Surface chemistry: Key to control and advance myriad technologies

    PubMed Central

    Yates, John T.; Campbell, Charles T.

    2011-01-01

    This special issue on surface chemistry is introduced with a brief history of the field, a summary of the importance of surface chemistry in technological applications, a brief overview of some of the most important recent developments in this field, and a look forward to some of its most exciting future directions. This collection of invited articles is intended to provide a snapshot of current developments in the field, exemplify the state of the art in fundamental research in surface chemistry, and highlight some possibilities in the future. Here, we show how those articles fit together in the bigger picture of this field. PMID:21245359

  6. Molecular Rotation Signals: Molecule Chemistry and Particle Physics

    NASA Astrophysics Data System (ADS)

    Grabow, Jens-Uwe

    2015-06-01

    Molecules - large or small - are attractive academic resources, with numerous questions on their chemical behaviour as well as problems in fundamental physics now (or still) waiting to be answered: Targeted by high-resolution spectroscopy, a rotating molecular top can turn into a laboratory for molecule chemistry or a laboratory for particle physics. Once successfully entrained (many species - depending on size and chemical composition - have insufficient vapour pressures or are of transient nature, such that specifically designed pulsed-jet sources are required for their transfer into the gas phase or in-situ generation) into the collision-free environment of a supersonic-jet expansion, each molecular top comes with its own set of challenges, theoretically and experimentally: Multiple internal interactions are causing complicated energy level schemes and the resulting spectra will be rather difficult to predict theoretically. Experimentally, these spectra are difficult to assess and assign. With today's broad-banded chirp microwave techniques, finding and identifying such spectral features have lost their major drawback of being very time consuming for many molecules. For other molecules, the unrivalled resolution and sensitivity of the narrow-banded impulse microwave techniques provide a window to tackle - at the highest precision available to date - fundamental questions in physics, even particle physics - potentially beyond the standard model. Molecular charge distribution, properties of the chemical bond, details on internal dynamics and intermolecular interaction, the (stereo-chemical) molecular structure (including the possibility of their spatial separation) as well as potential evidence for tiny yet significant interactions encode their signature in pure molecular rotation subjected to time-domain microwave spectroscopic techniques. Ongoing exciting technical developments promise rapid progress. We present recent examples from Hannover, new directions, and

  7. Learning Through Doing: Teaching Advanced Physics Concepts Through Freshmen Research Immersion

    NASA Astrophysics Data System (ADS)

    Wahila, Matthew; Piper, Louis; Amey, Jennifer; Jones, Wayne; Fegley, Megan; Stamp, Nancy

    Often undergraduates have difficulty grasping advanced concepts in physics due to the seemingly abstract and foreign nature of the time and length scales involved. The ``Smart Energy'' Freshmen Research Immersion (FRI) program at Binghamton University was created as a way to address this issue and, in turn, improve undergraduate performance and retention in physics and chemistry. Using real-world research problems as a wider context to frame their understanding, we have developed a course sequence providing a more intuitive and comprehensive understanding of core physics and chemistry concepts over the course of the program. Advanced condensed matter topics, such as optical band gaps, crystal and electronic structure, and electron/hole conduction are introduced to students through hands-on, authentic research activities incorporating materials for real-world device applications. I will discuss how employing p-n junctions as a model device can allow for a natural and intuitive progression from basic to advanced physics and chemistry concepts. This approach illustrates how shifting exotic concepts into a more relatable form through the use of analogy is important for fostering a more intuitive understanding of physical phenomena.

  8. Physical chemistry of supersaturated solutions and implications for oral absorption.

    PubMed

    Taylor, Lynne S; Zhang, Geoff G Z

    2016-06-01

    Amorphous solid dispersion (ASD) formulations are widely used for delivery of poorly soluble drugs for dissolution enhancement and bioavailability improvement. When administered, ASDs often exhibit fast dissolution to yield supersaturated solutions. The physical chemistry of these supersaturated solutions is not well understood. This review will discuss the concepts of solubility, supersaturation, and the connection to membrane transport rate. Liquid-liquid phase separation (LLPS), which occurs when the amorphous solubility is exceeded, leading to solutions with interesting properties is extensively discussed as a phenomenon that is relevant to all enabling formulations. The multiple physical processes occurring during dissolution of the ASD and during oral absorption are analyzed. The beneficial reservoir effect of a system that has undergone LLPS is demonstrated, both experimentally and conceptually. It is believed that formulations that rapidly supersaturate and subsequently undergo LLPS, with maintenance of the supersaturation at this maximum value throughout the absorption process, i.e. those that exhibit "spring and plateau" behavior, will give superior performance in terms of absorption. PMID:27013254

  9. Integrating Computational Chemistry into the Physical Chemistry Laboratory Curriculum: A Wet Lab/Dry Lab Approach

    ERIC Educational Resources Information Center

    Karpen, Mary E.; Henderleiter, Julie; Schaertel, Stephanie A.

    2004-01-01

    The usage of computational chemistry in a pedagogically effective manner in the undergraduate chemistry curriculum is described. The changes instituted for an effective course structure and the assessment of the course efficacy are discussed.

  10. Exploring the Random Phase Approximately for materials chemistry and physics

    SciTech Connect

    Ruzsinsky, Adrienn

    2015-03-23

    This proposal focuses on improved accuracy for the delicate energy differences of interest in materials chemistry with the fully nonlocal random phase approximation (RPA) in a density functional context. Could RPA or RPA-like approaches become standard methods of first-principles electronic-structure calculation for atoms, molecules, solids, surfaces, and nano-structures? Direct RPA includes the full exact exchange energy and a nonlocal correlation energy from the occupied and unoccupied Kohn-Sham orbitals and orbital energies, with an approximate but universal description of long-range van der Waals attraction. RPA also improves upon simple pair-wise interaction potentials or vdW density functional theory. This improvement is essential to capture accurate energy differences in metals and different phases of semiconductors. The applications in this proposal are challenges for the simpler approximations of Kohn-Sham density functional theory, which are part of the current “standard model” for quantum chemistry and condensed matter physics. Within this project we already applied RPA on different structural phase transitions on semiconductors, metals and molecules. Although RPA predicts accurate structural parameters, RPA has proven not equally accurate in all kinds of structural phase transitions. Therefore a correction to RPA can be necessary in many cases. We are currently implementing and testing a nonempirical, spatially nonlocal, frequency-dependent model for the exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation context. This kernel predicts a nearly-exact correlation energy for the electron gas of uniform density. If RPA or RPA-like approaches prove to be reliably accurate, then expected increases in computer power may make them standard in the electronic-structure calculations of the future.

  11. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    ERIC Educational Resources Information Center

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  12. Students' Understanding of Mathematical Expressions in Physical Chemistry Contexts: An Analysis Using Sherin's Symbolic Forms

    ERIC Educational Resources Information Center

    Becker, Nicole; Towns, Marcy

    2012-01-01

    Undergraduate physical chemistry courses require students to be proficient in calculus in order to develop an understanding of thermodynamics concepts. Here we present the findings of a study that examines student understanding of mathematical expressions, including partial derivative expressions, in two undergraduate physical chemistry courses.…

  13. Subject Knowledge Enhancement (SKE) Courses for Creating New Chemistry and Physics Teachers: Do They Work?

    ERIC Educational Resources Information Center

    Tynan, Richard; Mallaburn, Andrea; Jones, Robert Bryn; Clays, Ken

    2014-01-01

    During extended subject knowledge enhancement (SKE) courses, graduates without chemistry or physics bachelor degrees prepared to enter a Postgraduate Certificate in Education (PGCE) programme to become chemistry or physics teachers. Data were gathered from the exit survey returned by Liverpool John Moores University SKE students about to start…

  14. Analysis of High School Physics, Chemistry and Biology Curriculums in Terms of Scientific Literacy Themes

    ERIC Educational Resources Information Center

    Erdogan, Melek Nur; Koseoglu, Fitnat

    2012-01-01

    The purpose of this study is to analyze 9th grade physics, chemistry and biology curriculums, which were implemented by the Ministry of Education since the academic year 2008-2009, in terms of scientific literacy themes and the balance of these themes and also to examine the quality of statements about objectives. Physics, chemistry, and biology…

  15. Terra Firma: "Physics First" for Teaching Chemistry to Pre-Service Elementary School Teachers

    ERIC Educational Resources Information Center

    More, Michelle B.

    2007-01-01

    A pre-service elementary school teacher chemistry class that incorporates the physics first idea is described. This class is taught basic physics followed by introductory chemistry and the students' response indicates that both science literacy and science interest increase using this method.

  16. Assessing Advanced High School and Undergraduate Students' Thinking Skills: The Chemistry--From the Nanoscale to Microelectronics Module

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Dangur, Vered; Avargil, Shirly; Peskin, Uri

    2014-01-01

    Chemistry students in Israel have two options for studying chemistry: basic or honors (advanced placement). For instruction in high school honors chemistry courses, we developed a module focusing on abstract topics in quantum mechanics: Chemistry--From the Nanoscale to Microelectronics. The module adopts a visual-conceptual approach, which…

  17. An Assessment of a Physical Chemistry Online Activity

    NASA Astrophysics Data System (ADS)

    Hamby Towns, Marcy; Kreke, Kelley; Sauder, Deborah; Stout, Roland; Long, George; Zielinski, Theresa Julia

    1998-12-01

    A questionnaire and list server archive were used to investigate the perception of students and faculty who took part in a physical chemistry online project. Students at four universities worked cooperatively in their own classrooms and collaborated as a larger team on the Internet via a list server to determine the best mathematical model to describe the PV behavior of a gas at a specified temperature. The strengths of the project were the interaction among students, the use of Mathcad and modern technology, and the experience of authentic problem-solving. The weaknesses were the problems with the technology, the facilitation of interaction, and the student's ability to ask questions to solve an ill-defined problem. The suggestions for improvements focused on facilitating interuniversity interaction between students, clarifying tasks and goals, and implementation of the online activities. We discuss how our evaluation of the project guided and informed the design of a subsequent online project, and our planning for future projects. In addition, we describe the professional learning community that evolved among faculty who participated in this project.

  18. The nitrate radical: Physics, chemistry, and the atmosphere

    NASA Astrophysics Data System (ADS)

    Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P.; Canosa-Mas, C. E.; Hjorth, J.; Le Bras, G.; Moortgat, G. K.; Perner, D.; Poulet, G.; Restelli, G.; Sidebottom, H.

    This review surveys the present state of knowledge of the nitrate (NO 3 radical. Laboratory data on the physics and chemistry of the radical and atmospheric determination of the concentrations of the radical are both considered. One aim of the review is to highlight the relationship between the laboratory and the atmospheric studies. Although the emphasis of the review is on gas-phase processes, relevant studies conducted in condensed phases are mentioned because of their potential importance in the interpretation of cloud and aerosol chemistry. The spectroscopy, structure, and photochemistry of the radical are examined. Here, the object is to establich the spectroscopic basis for detection of the radical and measurement of its concentration in the laboratory and in the atmosphere. Infrared, visible, and paramagnetic resonance spectra are considered. An important quantity discussed is the absorption cross section in the visible region, which is required for quantitative measurements. Interpretation of the spectroscopic features requires an understanding of the geometrical and electronic structure of the radical in its ground and excited states; there is still some controversy about the groundstate geometry, but the most recent experimental evidence 9eg from laser induced fluorescence) and theoretical calculations suggest that the radical has D3h symmetry. Photodissociation of the radical is important in the atmosphere, and the product channels, quantum yields, and dissociation dynamics are discussed. A short examination of the thermodynamics (heat and entropy of formation) of the radical is presented. The main exposition of laboratory studies of the chemistry of the nitrate radical is preceded by a consideration of the techniques used for kinetic and mechanistic studies. Methods for the generation and detection of the radical and the kinetic tools employed are all presented. The exact nature of the technique used in individual studies has some relevance to the way

  19. Role of Water in Electron-Initiated Processes and Radical Chemistry: Issues and Scientific Advances

    SciTech Connect

    Garrett, Bruce C.; Dixon, David A.; Camaioni, Donald M.; Chipman, Daniel M.; Johnson, Mark A.; Jonah, Charles D.; Kimmel, Greg A.; Miller, John H.; Rescigno, Tom; Rossky, Peter J.; Xantheas, Sotiris S.; Colson, Steve D.; Laufer, Allan H.; Ray, Douglas; Barbara, Paul F.; Bartels, David M.; Bowen, Kit H.; Becker, Kurt H.; Bradforth, Stephen E.; Carmichael, Ian; Coe, James V.; Corrales, L. Rene; Cowin, James P.; Dupuis, Michel; Eisenthal, Kenneth B.; Franz, James A.; Gutowski, Maciej S.; Jordon, Kenneth D.; Kay, Bruce D.; La Verne, Jay A.; Lymar, Sergei V.; Madey, Theodore E.; Mccurdy, C. W.; Meisel, Dan; Mukamel, Shaul; Nilsson, Anders R.; Orlando, Thomas M.; Petrik, Nikolay G.; Pimblott, Simon M.; Rustad, James R.; Schenter, Gregory K.; Singer, Sherwin J.; Tokmakoff, Andrei; Wang, Lai-Sheng; Wittig, Curt; Zwier, Timothy S.

    2005-01-12

    An understanding of electron-initiated processes in aqueous systems and the subsequent radical chemistry these processes induce is significant in such diverse fields as waste remediation and environmental cleanup, radiation processing, nuclear reactors, and medical diagnosis and therapy. We review the state of the art in the physical chemistry and chemical physics of electron-initiated processes in aqueous systems and raise critical research issues and fundamental questions that remain unanswered.

  20. Physical conditions and chemistry of molecular gas in galactic centers

    NASA Astrophysics Data System (ADS)

    Aalto, Susanne

    2014-05-01

    Studying the molecular phase of the interstellar medium in galaxy nuclei is fundamental for the understanding of the onset and evolution of star formation and the growth of supermassive black holes. We can use molecules as observational tools exploiting them as tracers of chemical, physical and dynamical conditions. The molecular physical conditions in galaxy centers show large variety among galaxies, but in general the average gas densities (traced by e.g. HCN) and temperatures (probed by e.g. H2CO, NH3) are greater than in their disks. Molecular gas and dust is being funneled to the centers of galaxies by spiral arms, bars, and interactions - and one example of this is the minor merger NGC1614. Gas surface densities are also greater in galaxy nuclei and in extreme cases they become orders of magnitudes larger than what we find in the center of our own Milky Way. We can use IR excited molecular emission to probe the very inner regions of galaxies with deeply obscured nuclei where N(H2)>1024 cm-2 - for example the luminous infrared galaxy (LIRG) NGC4418. Abundances of key molecules such as HCN, HCO+, HNC, HC3N, CN, H3O+ are important tools in identifying the nature of buried activity and its evolution. Standard astrochemical scenarios (including X-ray Dominated regions (XDRs) and Photon Dominated Regions (PDRs)) are briefly discussed in this review and how we can use molecules to distinguish between them. High resolution studies are often necessary to separate effects of excitation and radiative transfer from those of chemistry - one example is absorption and effects of stimulated emission in the ULIRG Arp220. The nuclear activity in luminous galaxies often drives outflows and winds and in some cases molecular gas is being entrained in the outflows. Sometimes the molecular gas is carrying the bulk of the momentum. We can study the structure and physical conditions of the molecular gas to constrain the mass outflow rates and the evolution and nature of the driving

  1. Advances in atmospheric chemistry modeling: the LLNL impact tropospheric/stratospheric chemistry model

    SciTech Connect

    Rotman, D A; Atherton, C

    1999-10-07

    We present a unique modeling capability to understand the global distribution of trace gases and aerosols throughout both the troposphere and stratosphere. It includes the ability to simulate tropospheric chemistry that occurs both in the gas phase as well as on the surfaces of solid particles. We have used this capability to analyze observations from particular flight campaigns as well as averaged observed data. Results show the model to accurately simulate the complex chemistry occurring near the tropopause and throughout the troposphere and stratosphere.

  2. A Selection of Recent Advances in C1 Chemistry.

    PubMed

    Mesters, Carl

    2016-06-01

    This review presents a selection of recent publications related to the chemistry and catalysis of C1 molecules, including methane, methanol, carbon monoxide, and carbon dioxide. These molecules play an important role in the current supply of energy and chemicals and will likely become even more relevant because of the need to decarbonize fuels (shift from coal to natural gas) in line with CO2 capture and use to mitigate global warming, as well as a gradual shift on the supply side from crude oil to natural gas. This review includes both recent industrial developments, such as the huge increase in methanol-to-olefins-capacity build in China and the demonstration of oxidative coupling of methane, and scientific developments in these chemistries facilitated by improved capabilities in, for example, analytical tools and computational modeling. PMID:27276549

  3. Advanced Dark Energy Physics Telescope (ADEPT)

    SciTech Connect

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan

  4. Physics and Advanced Technologies 2003 Annual Report

    SciTech Connect

    Hazi, A; Sketchley, J

    2005-01-20

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the best science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004 as

  5. Continuous Symmetry and Chemistry Teachers: Learning Advanced Chemistry Content through Novel Visualization Tools

    ERIC Educational Resources Information Center

    Tuvi-Arad, Inbal; Blonder, Ron

    2010-01-01

    In this paper we describe the learning process of a group of experienced chemistry teachers in a specially designed workshop on molecular symmetry and continuous symmetry. The workshop was based on interactive visualization tools that allow molecules and their symmetry elements to be rotated in three dimensions. The topic of continuous symmetry is…

  6. The Electronic Absorption Spectrum of Molecular Iodine: A New Fitting Procedure for the Physical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Pursell, Christopher J.; Doezema, Lambert

    1999-06-01

    This paper presents a different approach to the data treatment for the electronic absorption spectrum of molecular iodine, a standard experiment in the undergraduate physical chemistry laboratory. Traditionally, students analyze the transitions originating from the u'' = 0 level using a Birge-Sponer plot and thereby determine the various molecular constants and energies. Our treatment involves simply fitting the transition frequencies to a second-order polynomial. This fit then yields a direct determination of the important molecular constants along with the various energy terms. With the availability of common graphing programs such as Excel, Kaleidagraph, and SigmaPlot, students can take advantage of more advanced fitting techniques and no longer have to rely on simple linear plots. Additionally, students find this new approach more satisfying and we believe it has pedagogical advantages over the Birge-Sponer treatment.

  7. Physical chemistry of nanomedicine: understanding the complex behaviors of nanoparticles in vivo.

    PubMed

    Lane, Lucas A; Qian, Ximei; Smith, Andrew M; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery. PMID:25622189

  8. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo

    NASA Astrophysics Data System (ADS)

    Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.

  9. Biomaterials — where biology, physics, chemistry, engineering and medicine meet

    NASA Astrophysics Data System (ADS)

    Hing, K. A.

    2008-03-01

    The success or failure of an implant material in the body depends on a complex interaction between a synthetic 'foreign body' and the 'host tissue'. These interactions occur at many levels from the sub-microscopic level, where subtle changes in the surface physio-chemistry can substantially alter the nature of the biomaterial-host tissue interface, through the microscopical level (e.g. sensitivity to surface topography) to the macrostructural level (e.g. dependence on scaffold porosity). Thus the factors that control these responses are not only biologically determined but also mechanically, physically and chemically mediated, although identifying where one starts and the other finishes can be difficult. Design of a successful medical device has therefore to call on expertise within a wide range of disciplines. In terms of both investigating the basic science behind the factors which orchestrate a biological response and developing research tools that enable study of these responses. However, a medical device must also meet the economic and practical demands of health care professionals who will ultimately be using it in the clinic. Bone graft substitute materials are used in orthopaedics as an alternative or adjunct to autografting, a practice where the patient 'donates' bone from a healthy site to aid bone repair at a damaged or diseased site. These materials are used in a wide range of procedures from total hip revision to spinal fusion and their evolution over the last 10 years illustrates how an interdisciplinary approach has benefited their development and may lead to further innovation in the future.

  10. The chemistry and physics of zinc oxide surfaces

    NASA Astrophysics Data System (ADS)

    Wöll, Christof

    Metal oxides are virtually everywhere - only gold has the property not to form an oxide on its surface when exposed to the ambient. As a result, understanding the physics and chemistry of oxide surfaces is a topic of pronounced general interest and, of course, also a necessary prerequisite for many technical applications. The most important of these is certainly heterogeneous catalysis, but one has to realize that - under ambient conditions - virtually all phenomena occurring at liquid/metal and gas/metal interfaces are determined by the corresponding oxide. This applies in particular to friction phenomena, adhesion and corrosion. A necessary - but not necessarily sufficient - condition for unravelling the fundamentals governing this complex field is to analyze in some detail elementary chemical and physical processes at oxide surfaces. Although the Surface Science of metal surfaces has seen a major progress in the past decades, for oxides detailed experimental investigations for well-defined single crystal surfaces still represent a formidable challenge - mostly because of technical difficulties (charging), but to some extent also due to fundamental problems related to the stabilization of polar surfaces. As a result, the amount of information available for this class of materials is - compared to that at hand for metals - clearly not satisfactory. A particular disturbing lack of information is that about the presence of hydrogen at oxide surfaces - either as hydroxy-species or in form of metal hydrides. In the present review we will summarize recent experimental and theoretical information which has become available from single crystal studies on ZnO surfaces. While the number of papers dealing with another oxide, rutile TiO 2, is significantly larger (although titania does not exhibit a polar surface), also for zinc oxide a basis of experimental and theoretical knowledge as been accumulated, which - at least for the non-polar surfaces - allows to understand

  11. Advances in Chemistry and Bioactivity of the Genus Chisocheton Blume.

    PubMed

    Shilpi, Jamil A; Saha, Sanjib; Chong, Soon-Lim; Nahar, Lutfun; Sarker, Satyajit D; Awang, Khalijah

    2016-05-01

    Chisocheton is one of the genera of the family Meliaceae and consists of ca. 53 species; the distribution of most of those are confined to the Indo-Malay region. Species of broader geographic distribution have undergone extensive phytochemical investigations. Previous phytochemical investigations of this genus resulted in the isolation of mainly limonoids, apotirucallane, tirucallane, and dammarane triterpenes. Reported bioactivities of the isolated compounds include cytotoxic, anti-inflammatory, antifungal, antimalarial, antimycobacterial, antifeedant, and lipid droplet inhibitory activities. Aside from chemistry and biological activities, this review also deals briefly with botany, distribution, and uses of various species of this genus. PMID:26970405

  12. Advances in solid-phase extraction disks for environmental chemistry

    USGS Publications Warehouse

    Thurman, E.M.; Snavely, K.

    2000-01-01

    The development of solid-phase extraction (SPE) for environmental chemistry has progressed significantly over the last decade to include a number of new sorbents and new approaches to SPE. One SPE approach in particular, the SPE disk, has greatly reduced or eliminated the use of chlorinated solvents for the analysis of trace organic compounds. This article discusses the use and applicability of various SPE disks, including micro-sized disks, prior to gas chromatography-mass spectrometry for the analysis of trace organic compounds in water. Copyright (C) 2000 Elsevier Science B.V.

  13. Does Taking Physics Pay Off Later in Chemistry and Biology Courses?

    NASA Astrophysics Data System (ADS)

    Sadler, Philip M.; Tai, R. H.

    2006-12-01

    The relationship between performance of 8474 students enrolled in introductory college biology, chemistry, or physics courses and their prior high school course-taking in physics is investigated in 122 randomly-selected undergraduate classrooms. Employing multiple linear regression, models are constructed that control for variation in student background, socio-economic status, and students' prior achievement in mathematics and English. A small effect size (ES = 0.13 SD, p = 0.01) is found for each year of school coursework in the same subject as a college course in biology, chemistry, or physics. No statistically significant relationship is found (p = 0.05) for any cross-disciplinary preparation, including that of differing amounts of high school physics preparation on college chemistry or biology performance. Our findings do not provide support for the view that students will be better prepared for taking high school chemistry and biology by taking physics in ninth grade.

  14. Incorporating Climate Change Lessons Into the Biology, Chemistry and Physics Classrooms

    NASA Astrophysics Data System (ADS)

    Nadeau, J. M.

    2013-12-01

    In this session, several climate change related activities will be demonstrated, that can be used in the Biology, Chemistry and Physics Classrooms. Ms. Nadeau's book "Climate Change at Earth's Poles: 50 Research-Based Lessons for Biology, Chemistry and Physics", will be available for purchase. This publication was inspired after the IPY Oslo Science Conference in 2010, and was presented at the IPY 2012 Science Conference in Montreal, and at the Science Teachers' Conference in Coimbra, Portugal in 2013. Ms. Nadeau is a Biology, Chemistry, and Physics teacher at Gloucester High School in Ottawa, Canada. Resource Book for Teachers

  15. Integrative Chemistry: Advanced functional cellular materials bearing multiscale porosity

    NASA Astrophysics Data System (ADS)

    Depardieu, M.; Kinadjian, N.; Backov, R.

    2015-07-01

    With this mini review we show through the sol-gel and emulsion-based Integrative Chemistry how it is possible to trigger materials dimensionality and beyond their functionalities when reaching enhanced applications. In here we focus on 3D macrocellular monolithic foams bearing hierarchical porosities and applications thereof. We first depict the general background of emulsions focusing on concentrated ones, acting as soft templates for the design of PolyHIPE foams, HIPE being the acronym of High Internal Phase Emulsions while encompassing both sol-gel and polymer chemistry. Secondly we extend this approach toward the design of hybrid organic-inorganic foams, labeled Organo-Si(HIPE), where photonics and heterogeneous catalysis applications are addressed. In a third section we show how inorganic Si(HIPE) matrices can be employed as sacrificial hard templates for the generation carbonaceous foams, labeled Carbon(HIPE). These foams being conductive we show applications when employed as electrodes for Li-S battery and as hosts for Li(BH4)-based hydrogen storage.

  16. A Simultaneous Analysis Problem for Advanced General Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Leary, J. J.; Gallaher, T. N.

    1983-01-01

    Oxidation of magnesium metal in air has been used as an introductory experiment for determining the formula of a compound. The experiment described employs essentially the same laboratory procedure but is significantly more advanced in terms of information sought. Procedures and sample calculations/results are provided. (JN)

  17. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    ERIC Educational Resources Information Center

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-01-01

    In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…

  18. An Investigation into the Effectiveness of Problem-Based Learning in a Physical Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Gurses, Ahmet; Acikyildiz, Metin; Dogar, Cetin; Sozbilir, Mustafa

    2007-01-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students' attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group…

  19. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    PubMed Central

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  20. Physical chemistry and membrane properties of two phosphatidylinositol bisphosphate isomers†

    PubMed Central

    Wang, Yu-Hsiu; Radhakrishnan, Ravi; Janmey, Paul A.

    2015-01-01

    The most highly charged phospholipids, polyphosphoinositides, are often involved in signaling pathways that originate at cell-cell and cell-matrix contacts, and different isomers of polyphosphoinositides have distinct biological functions that cannot be explained by separate highly specific protein ligand binding sites [Lemmon, Nature Reviews Molecular and Cell Biology, 2008, 9 99–111]. PtdIns(3,5)P2 is a low abundance phosphoinositide localized to cytoplasmic-facing membrane surfaces, with relatively few known ligands, yet PtdIns(3,5)P2 plays a key role in controlling membrane trafficking events and cellular stress responses that cannot be duplicated by other phosphoinositides [Dove et al., Nature, 1997, 390, 187–192; Michell, FEBS Journal, 2013, 280, 6281–6294]. Here we show that PtdIns(3,5)P2 is structurally distinct from PtdIns(4,5)P2 and other more common phospholipids, with unique physical chemistry. Using multiscale molecular dynamics techniques on the quantum level, single molecule, and in bilayer settings, we found that the negative charge of PtdIns(3,5)P2 is spread over a larger area, compared to PtdIns(4,5)P2, leading to a decreased ability to bind divalent ions. Additionally, our results match well with experimental data characterizing the cluster forming potential of these isomers in the presence of Ca2+ [Wang et al., Journal of the American Chemical Society, 2012, 134, 3387–3395; van den Bogaart et al., Nature, 2011, 479, 552–555]. Our results demonstrate that the different cellular roles of PtdIns(4,5)P2 and PtdIns(3,5)P2 in vivo are not simply determined by their localization by enzymes that produce or degrade them, but also by their molecular size, ability to chelate ions, and the partial dehydration of those ions, which might affect the ability of PtdIns(3,5)P2 and PtdIns(4,5)P2 to form phosphoinositide-rich clusters in vitro and in vivo. PMID:25901568

  1. Physical chemistry and membrane properties of two phosphatidylinositol bisphosphate isomers.

    PubMed

    Slochower, David R; Wang, Yu-Hsiu; Radhakrishnan, Ravi; Janmey, Paul A

    2015-05-21

    The most highly charged phospholipids, polyphosphoinositides, are often involved in signaling pathways that originate at cell-cell and cell-matrix contacts, and different isomers of polyphosphoinositides have distinct biological functions that cannot be explained by separate highly specific protein ligand binding sites [Lemmon, Nat. Rev. Mol. Cell Biol., 2008, 9, 99-111]. PtdIns(3,5)P2 is a low abundance phosphoinositide localized to cytoplasmic-facing membrane surfaces, with relatively few known ligands, yet PtdIns(3,5)P2 plays a key role in controlling membrane trafficking events and cellular stress responses that cannot be duplicated by other phosphoinositides [Dove et al., Nature, 1997, 390, 187-192; Michell, FEBS J., 2013, 280, 6281-6294]. Here we show that PtdIns(3,5)P2 is structurally distinct from PtdIns(4,5)P2 and other more common phospholipids, with unique physical chemistry. Using multiscale molecular dynamics techniques on the quantum level, single molecule, and in bilayer settings, we found that the negative charge of PtdIns(3,5)P2 is spread over a larger area, compared to PtdIns(4,5)P2, leading to a decreased ability to bind divalent ions. Additionally, our results match well with experimental data characterizing the cluster forming potential of these isomers in the presence of Ca(2+) [Wang et al., J. Am. Chem. Soc., 2012, 134, 3387-3395; van den Bogaart et al., Nature, 2011, 479, 552-555]. Our results demonstrate that the different cellular roles of PtdIns(4,5)P2 and PtdIns(3,5)P2in vivo are not simply determined by their localization by enzymes that produce or degrade them, but also by their molecular size, ability to chelate ions, and the partial dehydration of those ions, which might affect the ability of PtdIns(3,5)P2 and PtdIns(4,5)P2 to form phosphoinositide-rich clusters in vitro and in vivo. PMID:25901568

  2. The physics and chemistry of terrestrial planet and satellite accretion

    NASA Astrophysics Data System (ADS)

    Wasem, Christina A. Dwyer

    This dissertation examines the influence which a geophysical process (giant impacts) has on a geochemical marker (composition) during terrestrial planet formation. Simultaneously studying all planets maximizes the available constraints and permits examination of controls on the overall composition of the Earth. I also examine the Galilean satellite system to determine the universality of the terrestrial conclusions. The late stages of planetary accretion involve stochastic, large collisions. Impact-related erosion and fragmentation can have profound consequences for the rate and style of accretion and the bulk chemistries of terrestrial planets. However, the previous predominate assumption in computer models of accretion was that all collisions resulted in perfect merging despite the likelihood of these collisions producing a range of outcomes (e.g., hit-and-run, removal of material from target, or production of several post-collision bodies). In this work, I investigate the effects of late-stage accretion with multiple collision types and the consequences on the bulk (mantle/core) and isotopic (Hf--W) composition. My model is composed of two parts: (1) N-body accretion code tracks orbital and collisional evolution of the bodies and (2) geochemical post-processing evolves composition in light of impact-related mixing, partial equilibration and radioactive decay. For terrestrial planets, Part (1) is Chambers (2013, Icarus) and incorporates multiple collisional outcomes. For Galilean satellites, Part (1) is Ogihara & Ida (2012, Icarus) and assumes perfect merging for all collisions thus the model is not self-consistent (it likely overestimates compositional changes). For the terrestrial planets, the results are consistent with observed mantle/core ratios and tungsten isotopic anomalies. A moderate (approx. 0.4) core equilibration factor is preferred due to protracted accretion time. It is important to include multi-modal collisions when modeling planet formation if

  3. The Physics and Chemistry of Color: The Fifteen Causes of Color, 2nd Edition

    NASA Astrophysics Data System (ADS)

    Nassau, Kurt

    2001-07-01

    An updated and revised second edition of the acclaimed classic Have you ever wondered why the sky is blue, or a ruby red? This classic volume studies the physical and chemical origins of color by exploring fifteen separate causes of color and their varied and often subtle occurrences in biology, geology, mineralogy, the atmosphere, technology, and the visual arts. It covers all of the fundamental concepts at work and requires no specialized knowledge. Author Kurt Nassau includes hundreds of illustrations, tables, and photographs-as well as end-of-chapter problems-that aid in visualizing the concepts discussed. An updated bibliography permits readers to pursue their own particular interests and an expanded series of appendices cover advanced topics. The Physics and Chemistry of Color, Second Edition is a one-of-a-kind treatment of color that provides both detailed physical and chemical properties of color and a more general overview of the subject. It will prove highly useful to specialists and non-specialists alike-and fascinate those with varied interests from optics to art history.

  4. Semibullvalene and diazasemibullvalene: recent advances in the synthesis, reaction chemistry, and synthetic applications.

    PubMed

    Zhang, Shaoguang; Zhang, Wen-Xiong; Xi, Zhenfeng

    2015-07-21

    applications of NSBV. Several novel reaction patterns have been explored, including thermolysis, C-N bond insertion, rearrangement-cycloaddition, oxidation, and nucleophilic ring-opening reactions. Diverse and interesting N-containing polycyclic skeletons can be constructed, such as nickelaazetidine, 1,5-diazatriquinacenes, and triazabrexadienes, which are not available by other means. Our results show that NSBV not only features a rapid aza-Cope rearrangement with a low activation barrier but also acts as unique synthetic reagent that is significantly different from aziridine. The strained rigid ring systems as a whole can be involved in the reactions. Our achievements highlight two significant advances: (i) the well-established efficient synthesis and isolation of NSBV has greatly accelerated the development of NSBV chemistry, and (ii) the previously unattainable molecules have become "normal" and routine starting materials for the synthesis of otherwise unavailable but interesting structures. We expect that our pursuits will inspire and help direct future chemical and physical research on NSBV. PMID:26061608

  5. Radiological and Environmental Research Division annual report, October 1979-September 1980: fundamental molecular physics and chemistry

    SciTech Connect

    Inokuti, Mitio; Dehmer, P. M.; Pratt, S. T.; Poliakoff, E. D.; Dehmer, J. L.; Stockbauer, Roger; Dill, Dan; Parr, A. C.; Jackson, K. H.; Zare, R. N.; Person, J. C.; Nicole, P. P.; Fowler, D. E.; Codling, K.; West, J. B.; Ederer, D. L.; Cole, B. E.; Loomba, D.; Wallace, Scott; Swanson, J. R.; Poliakoff, E. D.; Spence, David; Chupka, W. A.; Stevens, C. M.; Shyn, W. T.; Sharp, W. E.; Kim, Y. K.; Eggarter, E.; Baer, T.; Hanson, J. D.; Shimamura, Isao; Dillon, Michael A.

    1981-09-01

    Research is reported on the physics and chemistry of atoms, ions, and molecules, especially their interactions with external agents such as photons and electrons. Individual items from the report were prepared separately for the data base. (GHT)

  6. The Heat of Protonation of Pyridine and Chloro Substituted Pyridines: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; Pinnick, H. R., Jr.

    1980-01-01

    Describes a physical chemistry laboratory experiment that illustrates the concepts of inductive and resonance effects by the calorimetric determination of the heats of protonation of pyridine, 2-chloropyridine, and 3-chloropyridine. (CS)

  7. Infrared Spectroscopy of Spherical Top (Td) Molecules: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    DeVore, Thomas C.; Gallaher, Thomas N.

    1983-01-01

    Describes a physical chemistry experiment which uses group theory to help interpret the infrared spectrum of a polyatomic molecule with Td symmetry (spherical tops). Topics covered in the experiment: background information and theory, experimental procedures, and typical student results. (JN)

  8. The Kinetics and Thermodynamics of the Phenol from Cumene Process: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Chen, Edward C. M.; Sjoberg, Stephen L.

    1980-01-01

    Presents a physical chemistry experiment demonstrating the differences between thermodynamics and kinetics. The experiment used the formation of phenol and acetone from cumene hydroperoxide, also providing an example of an industrially significant process. (CS)

  9. Advanced Level Physics Students' Conceptions of Quantum Physics.

    ERIC Educational Resources Information Center

    Mashhadi, Azam

    This study addresses questions about particle physics that focus on the nature of electrons. Speculations as to whether they are more like particles or waves or like neither illustrate the difficulties with which students are confronted when trying to incorporate the concepts of quantum physics into their overall conceptual framework. Such…

  10. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    NASA Astrophysics Data System (ADS)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  11. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2009-09-01

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  12. Educating Scientifically - Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  13. Educating Scientifically: Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  14. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  15. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1998-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a detailed comparative analysis of the suite of spectral editing results obtained on the Argonne coals. We have extended our fitting procedure to include carbons of all types in the analysis.

  16. s-Block Elements. Independent Learning Project for Advanced Chemistry (ILPAC). Unit I1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two sections and an appendix, focuses on the elements and compounds of Groups I and II (the s-block) of the periodic table. The groups are treated concurrently to note comparisons between groups and to…

  17. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  18. Equilibrium I: Principles. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the principles of equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. After a treatment of non-mathematical aspects in level one (the idea of a reversible reaction, characteristics of an equilibrium state, the Le Chatelier's principle),…

  19. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  20. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    ERIC Educational Resources Information Center

    Draper, Alison J.

    2004-01-01

    An active service-learning research work is conducted in the field of advanced environmental chemistry. Multiple projects are assigned to students, which promote individual learning skills, self-confidence as scientists, and a deep understanding of the environmental chemist's profession.

  1. Atomic Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on atomic structure is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one focuses on the atomic nucleus. Level two focuses on the arrangement of extranuclear electrons, approaching atomic orbitals through both electron bombardment and spectra.…

  2. The Mole. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the mole is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, designed to help students consolidate some of the ideas about the mole learned in previous courses, consists of two levels. The first level focuses on: (1) relative mass; (2) the concept of the mole as the unit…

  3. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  4. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Bennett, William R.

    2010-01-01

    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.

  5. Chemical Energetics. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on chemical energetics is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, provides a clear yet detailed and thorough introduction to the topic. Level one extends ideas from previous courses, introduces and emphasizes the importance of Hess'…

  6. The Gaseous State. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the gaseous state is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one deals with the distinctive characteristics of gases, then considers the gas laws, in particular the ideal gas equation and its applications. Level two concentrates on…

  7. Bonding and Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S4.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on chemical bonding is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, provides an introduction to the main types of chemical bonding and important aspects of structure. The main emphasis is placed on such topics as ionic and covalent bonding,…

  8. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  9. Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)

    NASA Astrophysics Data System (ADS)

    Pounds, Andrew

    2001-05-01

    This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.

  10. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    NASA Astrophysics Data System (ADS)

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2014-08-01

    In this study, secondary school students' (N = 617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and physics-related or general understanding of models and modeling. A subpopulation (N = 115; one class per grade) was subsequently asked which models they had in mind when answering the tasks referring to biology, chemistry, and physics (open-ended questions). The findings show significant differences between students' biology-, chemistry-, and physics-related understandings of models and modeling. Based on a theoretical framework, the biology-related understanding can be seen as less elaborated than the physics- and chemistry-related understandings. The students' general understanding of models and modeling is located between the biology- and the physics-related understandings. Answers to the open-ended questions indicate that students primarily think about scale and functional models in the context of biology tasks. In contrast, more abstract models (e.g., analogical models, diagrams) were mentioned in relation to chemistry and physics tasks. In sum, the findings suggest that models may be used in a rather descriptive way in biology classes but in a predictive way in chemistry and physics classes. This may explain discipline-specific understandings of models and modeling. Only small differences were found in students' understanding of models and modeling between the different grade levels 7/8 and 9/10.

  11. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    NASA Astrophysics Data System (ADS)

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-06-01

    In this study, secondary school students' ( N = 617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and physics-related or general understanding of models and modeling. A subpopulation ( N = 115; one class per grade) was subsequently asked which models they had in mind when answering the tasks referring to biology, chemistry, and physics (open-ended questions). The findings show significant differences between students' biology-, chemistry-, and physics-related understandings of models and modeling. Based on a theoretical framework, the biology-related understanding can be seen as less elaborated than the physics- and chemistry-related understandings. The students' general understanding of models and modeling is located between the biology- and the physics-related understandings. Answers to the open-ended questions indicate that students primarily think about scale and functional models in the context of biology tasks. In contrast, more abstract models (e.g., analogical models, diagrams) were mentioned in relation to chemistry and physics tasks. In sum, the findings suggest that models may be used in a rather descriptive way in biology classes but in a predictive way in chemistry and physics classes. This may explain discipline-specific understandings of models and modeling. Only small differences were found in students' understanding of models and modeling between the different grade levels 7/8 and 9/10.

  12. Density functional theory across chemistry, physics and biology

    PubMed Central

    van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre

    2014-01-01

    The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg–Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT. PMID:24516181

  13. Density functional theory across chemistry, physics and biology.

    PubMed

    van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre

    2014-03-13

    The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT. PMID:24516181

  14. An Aerosol Physical Chemistry Model for the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are: (1) Development of an aerosol chemistry model; (2) Utilization of satellite measurements of trace gases along with analysis of temperatures and dynamic conditions to understand ice cloud formation, dehydration and sedimentation in the winter polar regions; (3) Comparison of the HALOE and SAGE II time dependencies of the Pinatubo aerosol decay. The publications are attached.

  15. Advances in Measurement Technology at NIST's Physical Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dehmer, Joseph

    2014-03-01

    The NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology. The Physical Measurement Laboratory (PML) has responsibility for maintaining national standards for two dozen physical quantities needed for international trade; and, importantly, it carries out advanced research at the frontiers of measurement science to enable extending innovation into new realms and new markets. This talk will highlight advances being made across several sectors of technology; and it will describe how PML interacts with its many collaborators and clients in industry, government, and academe.

  16. Advanced in turbulence physics and modeling by direct numerical simulations

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C.

    1987-01-01

    The advent of direct numerical simulations of turbulence has opened avenues for research on turbulence physics and turbulence modeling. Direct numerical simulation provides values for anything that the scientist or modeler would like to know about the flow. An overview of some recent advances in the physical understanding of turbulence and in turbulence modeling obtained through such simulations is presented.

  17. Advanced Computing Tools and Models for Accelerator Physics

    SciTech Connect

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  18. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methane groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples. In this report period we have focused our work on 1 segment of the program. Our last report outlined progress in using our NMR editing methods with higher field operation where higher magic angle spinning rates are required. Significant difficulties were identified, and these have been the main subject of study during the most recent granting period.

  19. Lipid membranes and single ion channel recording for the advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Klapper, Yvonne; Nienhaus, Karin; Röcker, Carlheinz; Ulrich Nienhaus, G.

    2014-05-01

    We present an easy-to-handle, low-cost, and reliable setup to study various physical phenomena on a nanometer-thin lipid bilayer using the so-called black lipid membrane technique. The apparatus allows us to precisely measure optical and electrical properties of free-standing lipid membranes, to study the formation of single ion channels, and to gain detailed information on the ion conduction properties of these channels using statistical physics and autocorrelation analysis. The experiments are well suited as part of an advanced physics or biophysics laboratory course; they interconnect physics, chemistry, and biology and will be appealing to students of the natural sciences who are interested in quantitative experimentation.

  20. Physical Chemistry: A Molecular Approach (by Donald A. McQuarrie and John D. Simon)

    NASA Astrophysics Data System (ADS)

    Kovac, Jeffrey D.

    1998-05-01

    University Science Books: Sausalito, CA, 1997. xxiii + 1270 pp. Figs and tables. 10.28 x 7.27 x 2.34 in. ISBN 0-935702-99-7. $80.00. This book will not appeal to traditionalists. Those willing to take a fresh look at the subject, however, will find this well-executed text an attractive alternative. Most undergraduate physical chemistry textbooks begin with thermodynamics, then proceed to quantum chemistry and finally to statistical thermodynamics and kinetics. This structure derives from the classic textbooks such as Physical Chemistry by Alberty and Silbey, which traces its origin to the Outline of Theoretical Chemistry written by Herbert Getman in 1913 when thermodynamics was the core of physical chemistry and quantum mechanics was in its infancy. Occasional authors have tried to deviate from this orthodoxy. I learned my undergraduate physical chemistry from the solid textbook written in 1964 by a University of Washington team: Eggers, Gregory, Halsey, and Rabinovitch. That text opens with quantum mechanics, as does the elegant and sophisticated book by Berry, Rice, and Ross. None of these books has been very successful, however, partly because they challenge tradition in a pedagogically conservative profession.

  1. Pre-Service Science Teachers' Pedagogical Content Knowledge in the Physics, Chemistry, and Biology Topics

    ERIC Educational Resources Information Center

    Bektas, Oktay

    2015-01-01

    This study investigated pre-service science teachers' pedagogical content knowledge in the physics, chemistry, and biology topics. These topics were the light and sound, the physical and chemical changes, and reproduction, growth, and evolution. Qualitative research design was utilized. Data were collected from 33 pre-service science teachers…

  2. 2012 CHEMISTRY & PHYSICS OF GRAPHITIC CARBON MATERIALS GORDON RESEARCH CONFERENCE, JUNE 17-22, 2012

    SciTech Connect

    Fertig, Herbert

    2012-06-22

    This conference will highlight the urgency for research on graphitic carbon materials and gather scientists in physics, chemistry, and engineering to tackle the challenges in this field. The conference will focus on scalable synthesis, characterization, novel physical and electronic properties, structure-properties relationship studies, and new applications of the carbon materials. Contributors

  3. Biology-Chemistry-Physics, Teachers' Guide, a Three-Year Sequence, Parts I and II.

    ERIC Educational Resources Information Center

    Scott, Arthur; And Others

    This is one of two teacher's guides for a three-year integrated biology, chemistry, and physics course being prepared by the Portland Project Committee. This committee reviewed and selected material developed by the national course improvement groups--Physical Science Study Committee, Chemical Bond Approach, Chemical Education Materials Study,…

  4. Mental Rolodexing: Senior Chemistry Majors' Understanding of Chemical and Physical Properties

    ERIC Educational Resources Information Center

    DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam

    2015-01-01

    Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…

  5. From Foam Rubber to Volcanoes: The Physical Chemistry of Foam Formation

    NASA Astrophysics Data System (ADS)

    Hansen, Lee D.; McCarlie, V. Wallace

    2004-11-01

    Principles of physical chemistry and physical properties are used to describe foam formation. Foams are common in nature and in consumer products. The process of foam formation can be used to understand a wide variety of phenomena from exploding volcanoes to popping popcorn and making shoe soles.

  6. Project for the Institution of an Advanced Course in Physics

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    2006-06-01

    A project for an advanced course in physics at the master level, is presented in great detail. The goal of this project is to create a specific and rigorous training for those who want to carry out experimental and theoretical research on "anomalies" in physical science, especially from the point of view of atmospheric physics, plasma physics, photonic physics, biophysics, astronomy and astrophysics. A specific training in powering mental skills is planned as well. The planned teaching program is presented as a two-year course where the following subjects are intended to be taught: cognitive techniques (I and II), radiation physics (I and II), biophysics (I and II), bioastronomy (I and II), history of physics (I and II), didactics of physics, physics of atmospheric plasmas, physics of non-stationary photonic events, physics of non-linear processes, complements of quantum mechanics, quantum informatics, research methodology in physics and astronomy, computer science methods in physics and astronomy, optoelectronics, radioelectronics. Detailed teaching programs, didactics methods, and performance evaluation, are presented for each subject. The technical content of this project is preceded by an ample introduction that shows all the reasons of this kind of physics course, particularly aimed at innovation in physical science.

  7. Technical liaison with the Institute of Physical Chemistry (Russian Academy of Science)

    SciTech Connect

    Delegard, C.

    1996-10-01

    DOE has engaged the Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) to conduct studies of the fundamental and applied chemistry of the transuranium elements (TRU, primarily neptunium, plutonium, and americium) and technetium in alkaline media. This work is supported by DOE because the radioactive wastes stored in underground tanks at DOE sites (Hanford, Savannah River, and Oak Ridge) contain TRU and technetium, are alkaline, and the chemistries of TRU and technetium are not well developed in this system. Previous studies at the IPC/RAS centered on the fundamental chemistry and on coprecipitation. In FY 1996, the work will focus more on the applied chemistry of TR and technetium in alkaline media and work will continue on the coprecipitation task.

  8. Liaison activities with the Institute of Physical Chemistry, Russian Academy of Sciences: FY 1997

    SciTech Connect

    Delegard, C.H.; Elovich, R.J.

    1997-09-01

    The Institute of Physical Chemistry of the Russian Academy of Sciences is conducting a program of fundamental and applied research into the chemistry of the actinides and technetium in alkaline media such as are present in the Hanford Site underground waste storage tanks. This work is being coordinated and the results disseminated through a technical liaison maintained at the Pacific Northwest National Laboratory. The technical liaison is performing laboratory studies on plutonium chemistry in alkaline media. The activities at the Institute of Physical Chemistry and through the liaison are pursued to improve understanding of the chemical behavior of key long-lived radioactive elements under current operating and proposed tank waste processing conditions. Both activities are supported by the Efficient Separations and Processing Crosscutting Program under the Office of Science and Technology of the U.S. Department of Energy.

  9. Safety Considerations for Physically Handicapped Individuals in the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Swanson, Anne Barrett; Steere, Norman V.

    1981-01-01

    Reviews safety records of physically handicapped individuals, relating safety for all individuals in the laboratory to special concerns for the mobility handicapped, visually handicapped, and hearing impaired individuals. Discusses legal responsibilities and liability. (CS)

  10. Chapter 1: Recent Advances in Solar Physics

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2008-10-01

    For millennia, the Sun (and the universe) has been viewed in the visual light. As the bestower of light and life, the ancients made God out of the Sun. With the Babylonians, or with the multiple origins with the Chinese, Egyptians and Indians, quoting the Rig Veda:"All that exists was born from Sūrya, the God of gods.", we have come a long way to understanding the Sun. In the early seventeenth century, however, Galileo showed that the Sun was not an immaculate object. Thus began our scientific interests in our nearest stellar neighbour, the Sun (cf., Figure 1.1.), with its sunspots and the related solar activity. The observations of the Sun and their interpretations are of universal importance for at least two reasons: First, the Sun is the source of energy for the entire planetary system and all aspects of our life have direct impact on what happens on the Sun; and second, the Sun's proximity makes it unique among the billions of stars in the sky of which we can resolve its surface features and study physical processes at work...

  11. Recent Advances in Plasma Edge Physics Theory

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2015-11-01

    This presentation summarizes recent theory developments for interpreting plasma edge physics experiments in DIII-D. i) Radial and poloidal moment balance require that the radial particle flux be of a pinch-diffusive nature with the pinch representing the electromagnetic forces and external momentum input. Ion radial particle fluxes in experiment are found to be a smaller difference between large outward diffusion fluxes and inward pinch fluxes. When the pinch-diffusion relation is used in the continuity equation a new diffusion theory that preserves momentum balance is obtained. ii) The majority of thermalized ions and their energy cross the LCFS on ion loss orbits and are deposited in the SOL near the outboard midplane. The lost ions are predominantly ctr-current, producing a co-current intrinsic rotation of the remaining ions in the edge plasma. iii) While the contribution of the leading order parallel viscosity to toroidal momentum damping vanishes identically in axisymmetric plasmas, non-axisymmetric radial B-fields in the edge plasma enable parallel viscosity to enhance the damping of toroidal rotation. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.

  12. Atomic physics at the advanced photon source

    SciTech Connect

    Berry, H.G.; Cowan, P.L.; Gemmell, D.S.

    1995-08-01

    Argonne`s 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons.

  13. The Advanced Light Source: A new tool for research in atomic and molecular physics

    SciTech Connect

    Schlachter, F.; Robinson, A.

    1991-04-01

    The Advanced Light Source at the Lawrence Berkeley Laboratory will be the world's brightest synchrotron radiation source in the extreme ultraviolet and soft x-ray regions of the spectrum when it begins operation in 1993. It will be available as a national user facility to researchers in a broad range of disciplines, including materials science, atomic and molecular physics, chemistry, biology, imaging, and technology. The high brightness of the ALS will be particularly well suited to high-resolution studies of tenuous targets, such as excited atoms, ions, and clusters. 13 figs., 4 tabs.

  14. New Developments in the Physical Chemistry of Shock Compression

    NASA Astrophysics Data System (ADS)

    Dlott, Dana D.

    2011-05-01

    This review discusses new developments in shock compression science with a focus on molecular media. Some basic features of shock and detonation waves, nonlinear excitations that can produce extreme states of high temperature and high pressure, are described. Methods of generating and detecting shock waves are reviewed, especially those using tabletop lasers that can be interfaced with advanced molecular diagnostics. Newer compression methods such as shockless compression and precompression shock that generate states of cold dense molecular matter are discussed. Shock compression creates a metallic form of hydrogen, melts diamond, and makes water a superionic liquid with unique catalytic properties. Our understanding of detonations at the molecular level has improved a great deal as a result of advanced nonequilibrium molecular simulations. Experimental measurements of detailed molecular behavior behind a detonation front might be available soon using femtosecond lasers to produce nanoscale simulated detonation fronts.

  15. BOOK REVIEW: Astrophysics (Advanced Physics Readers)

    NASA Astrophysics Data System (ADS)

    Kibble, Bob

    2000-07-01

    Here is a handy and attractive reader to support students on post-16 courses. It covers the astrophysics, astronomy and cosmology that are demanded at A-level and offers anyone interested in these fields an interesting and engaging reference book. The author and the production team deserve credit for producing such an attractive book. The content, in ten chapters, covers what one would expect at this level but it is how it is presented that struck me as the book's most powerful asset. Each chapter ends with a summary of key ideas. Line drawings are clear and convey enough information to make them more than illustrations - they are as valuable as the text in conveying information. Full colour is used throughout to enhance illustrations and tables and to lift key sections of the text. A number of colour photographs complement the material and serve to maintain interest and remind readers that astrophysics is about real observable phenomena. Included towards the end is a set of tables offering information on physical and astronomical data, mathematical techniques and constellation names and abbreviations. This last table puzzled me as to its value. There is a helpful bibliography which includes society contacts and a website related to the text. Perhaps my one regret is that there is no section where students are encouraged to actually do some real astronomy. Astrophysics is in danger of becoming an armchair and calculator interest. There are practical projects that students could undertake either for school assessment or for personal interest. Simple astrophotography to capture star trails, observe star colours and estimate apparent magnitudes is an example, as is a simple double-star search. There are dozens more. However, the author's style is friendly and collaborative. He befriends the reader as they journey together through the ideas. There are progress questions at the end of each chapter. Their style tends to be rather closed and they emphasize factual recall

  16. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    ERIC Educational Resources Information Center

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  17. Workshop on the interface between radiation chemistry and radiation physics

    SciTech Connect

    Not Available

    1983-03-01

    Twenty-four papers are grouped under the session headings: measurements of physical and chemical properties, track structure modeling, spurs and track structure, and the 10/sup -16/ to 10/sup -12/ second region. Separate abstracts were prepared for 12 of the papers; four of the remaining papers had previously been abstracted. (DLC)

  18. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  19. A Course on the Physics and Chemistry of Pollution

    ERIC Educational Resources Information Center

    Hodges, Laurent

    1971-01-01

    Describes a course on environmental pollution which stresses physical and chemical principles. Course presents a unified discussion of air and water pollution and solid waste with special treatment of pesticides, thermal pollution, radioactivity, and electric power generation. Uses historical and current statistics extensively to set pollution…

  20. Linking Physics, Chemistry, and Math for Sustained Reform in Teacher Education

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Mary; Lewis, W. James; Vokos, Stamatis; Plisch, Monica

    2012-02-01

    Physics, chemistry and math consistently rank as the highest need disciplines for qualified teachers. There are many common challenges faced by teacher educators in these disciplines, as well as some key differences. The panel will discuss these similarities and differences, and explore possible links between disciplinary efforts to promote sustained reform. The discussion will build on the work of the Task Force on Teacher Education in Physics, the ACS effort to launch the Chemistry Teacher Education Coalition, and the Conference Board of Mathematical Sciences report on the Mathematical Education of Teachers.

  1. The physical chemistry of mass-independent isotope effects and their observation in nature.

    PubMed

    Thiemens, Mark H; Chakraborty, Subrata; Dominguez, Gerardo

    2012-01-01

    Historically, the physical chemistry of isotope effects and precise measurements in samples from nature have provided information on processes that could not have been obtained otherwise. With the discovery of a mass-independent isotopic fractionation during the formation of ozone, a new physical chemical basis for isotope effects required development. Combined theoretical and experimental developments have broadened this understanding and extended the range of chemical systems where these unique effects occur. Simultaneously, the application of mass-independent isotopic measurements to an extensive range of both terrestrial and extraterrestrial systems has furthered the understanding of events such as solar system origin and evolution and planetary atmospheric chemistry, present and past. PMID:22475336

  2. Surface chemistry and physics of deuterium retention in lithiated graphite

    SciTech Connect

    Taylor, C. N.; Krstic, Predrag S; Allain, J. P.; Heim, B.; Skinner, C. H.; Kugel, H.

    2011-01-01

    Lithium wall conditioning in TFTR, CDX-U, T-11M, TJ-II and NSTX is found to yield enhanced plasma performance manifest, in part, through improved deuterium particle control. X-ray photoelectron spectroscopy (XPS) experiments examine the affect of D irradiation on lithiated graphite and show that the surface chemistry of lithiated graphite after D ion bombardment (500 eV/amu) is fundamentally different from that of non-Li conditioned graphite. Instead of simple LiD bonding seen in pure liquid Li, graphite introduces additional complexities. XPS spectra show that Li-O-D (533.0 {+-} 0.6 eV) and Li-C-D (291.4 {+-} 0.6 eV) bonds, for a nominal Li dose of 2 {micro}m, become 'saturated' with D at fluences between 3.8 and 5.2 x 10{sup 17} cm{sup -2}. Atomistic modeling indicate that Li-O-D-C interactions may be a result of multibody effects as opposed to molecular bonding.

  3. Emergence of life: Physical chemistry changes the paradigm.

    PubMed

    Spitzer, Jan; Pielak, Gary J; Poolman, Bert

    2015-01-01

    Origin of life research has been slow to advance not only because of its complex evolutionary nature (Franklin Harold: In Search of Cell History, 2014) but also because of the lack of agreement on fundamental concepts, including the question of 'what is life?'. To re-energize the research and define a new experimental paradigm, we advance four premises to better understand the physicochemical complexities of life's emergence: (1) Chemical and Darwinian (biological) evolutions are distinct, but become continuous with the appearance of heredity. (2) Earth's chemical evolution is driven by energies of cycling (diurnal) disequilibria and by energies of hydrothermal vents. (3) Earth's overall chemical complexity must be high at the origin of life for a subset of (complex) chemicals to phase separate and evolve into living states. (4) Macromolecular crowding in aqueous electrolytes under confined conditions enables evolution of molecular recognition and cellular self-organization. We discuss these premises in relation to current 'constructive' (non-evolutionary) paradigm of origins research - the process of complexification of chemical matter 'from the simple to the complex'. This paradigm artificially avoids planetary chemical complexity and the natural tendency of molecular compositions toward maximum disorder embodied in the second law of thermodynamics. Our four premises suggest an empirical program of experiments involving complex chemical compositions under cycling gradients of temperature, water activity and electromagnetic radiation. PMID:26059688

  4. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    NASA Astrophysics Data System (ADS)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  5. Introduction to Homogenous Catalysis with Ruthenium-Catalyzed Oxidation of Alcohols: An Experiment for Undergraduate Advanced Inorganic Chemistry Students

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Caradonna, John P.; Foley, Kathleen M.; Kwiecien, Daniel J.; Lisi, George P.; Martinez, Anthony M.

    2011-01-01

    A three-week laboratory experiment, which introduces students in an advanced inorganic chemistry course to air-sensitive chemistry and catalysis, is described. During the first week, the students synthesize RuCl[subscript 2](PPh[subscript 3])[subscript 3]. During the second and third weeks, the students characterize the formed coordination…

  6. 2004 Physics and Advanced Technologies In the News

    SciTech Connect

    Hazi, A

    2005-11-01

    Several outstanding research activities in the Physics and Advanced Technology Directorate in 2004 were featured in ''Science & Technology Review'', the monthly publication of the Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2004.

  7. Teaching Physics at Advanced Level: A Question of Style.

    ERIC Educational Resources Information Center

    Newton, Leonard; Rogers, Laurence

    1996-01-01

    Questions whether didactic methods employed for teaching physics at the advanced level can adequately match the variety of needs of students in the contemporary context. Offers a framework for promoting a style of teaching that is responsive and versatile. Contains 14 references. (Author/JRH)

  8. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 6, Physical testing

    SciTech Connect

    Not Available

    1993-08-01

    This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules.

  9. 2005 Physics and Advanced Technologies in the News

    SciTech Connect

    Hazi, A U

    2006-12-19

    Several outstanding research activities in the Physics and Advanced Technologies Directorate in 2005 were featured in ''Science and Technology Review'', the monthly publication of Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2005. As part of the World Year of Physics commemorating the 100th anniversary of Einstein's ''miraculous year'', we also highlight ongoing physics research that would not be possible without Einstein's pioneering accomplishments.

  10. Interface chemistry between complex oxides and semiconductors: where chemistry and physics meet

    NASA Astrophysics Data System (ADS)

    Marchiori, Chiara

    2010-03-01

    Even though heavily based on semiconductors, microelectronics CMOS technology would not exist without the integration of thin oxide films which enable the exploitation of the semiconductor properties. Indeed, working principle of the metal-oxide-semiconductor field-effect transistor, the main building block of such a technology, is the modulation of charges at the oxide/semiconductor interface. The quality of this interface is of fundamental importance for device performance. For over four decades, SiO2 was the gate dielectric of choice and device scaling meant improving performance while lowering production costs. However, as scaling is approaching fundamental limits, direct tunneling across the dielectric becomes unacceptable. At this point, the integration of more complex and higher dielectric constant oxides - ``high-K dielectrics''- with Si or even more complex semiconductors (Ge, III-V) is the key enabler of performance gain. I will review critical issues related to the oxide/semiconductor interfaces, starting with SiO2/Si. Then, I will discuss how the level of complexity increases with the introduction of high-K dielectrics and other semiconductors in the stack. Among the issues to be addressed to fabricate high-performance devices, I will discuss the role played by: 1) interfacial chemistry and thermodynamical stability, 2) band alignment and surface band bending, 3) presence of defects at the interface and in the oxide bulk, 4) evolution of the gate stack properties upon post-deposition treatments. The impact of these parameters on electrical performance of devices will be discussed in detail. Finally, epitaxial oxide on Si will be explored as a promising approach for ultimate EOT scaling and the parameters governing the epitaxial growth of complex crystalline oxides on Si will be addressed. I will show that the development performed in this area might enable the integration of epitaxial oxides for monolithic integration, paving the way to technological

  11. Advancing Chemistry with the Lanthanide and Actinide Elements Final Report, September 2013

    SciTech Connect

    Evans, William John

    2013-09-11

    The objective of this research is to use the unique chemistry available from complexes of the lanthanides and actinides, as well as related heavy metals such as scandium, yttrium, and bismuth to advance chemistry in energy-related areas. The lanthanides and actinides have a combination of properties in terms of size, charge, electropositive character, and f valence orbitals that provides special opportunities to probe reactivity and catalysis in ways not possible with the other metals in the periodic table. We seek to discover reaction pathways and structural types that reveal new options in reaction chemistry related to energy. Identification of new paradigms in structure and reactivity should stimulate efforts to develop new types of catalytic processes that at present are not under consideration because either the transformation or the necessary intermediates are unknown. This project is one half of my laboratory’s DOE research which was split 50:50 between Catalysis and Heavy Element Chemistry programs in 2010. Hence, this report is for a half-project.

  12. Almandine: Crystal Chemistry, Defects, Inclusions and Physical Properties

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Brearley, A. J.; Dachs, E.; Tippelt, G.

    2013-12-01

    Almandine-rich garnet is important in various metamorphic rocks of Earth's crust and garnet in the upper mantle contains a substantial almandine component (Fe3Al2Si3O12). In order to better understand almandine's chemical and physical properties, crystals were synthesized at high pressures and temperatures under different fO2 conditions with different starting materials. The synthetic products were carefully characterized and the role of defects and solid inclusions were given special attention. Almandine in both polycrystalline and in single-crystal form was obtained in the synthesis experiments. Hydrothermal experiments yielded almandine single crystals from roughly 5 microns in size up to approximately one millimeter and show varying physical properties. Fine-grained polycrystalline almandine in the form of compact pellets was obtained from water-free syntheses made in graphite capsules. The crystals were investigated using X-ray powder diffraction, electron microprobe and TEM analysis, and using 57Fe Mössbauer and IR single-crystal spectroscopy. BSE photos on different polycrystalline almandines, synthesized without water, show a variety of fine inclusions and unreacted starting material. TEM results show certain nanosized, 100 nm to less then 10 nm, magnetite inclusions in some synthetic almandines, similar to those observed in natural garnet crystals. A room temperature FTIR single-crystal spectrum of a hydrothermally grown almandine shows two broad OH stretching bands at 3613 cm-1 and approximately 3490 cm-1, both of which split into more bands at 77 K. 57Fe Mössbauer measurements show small but various amounts of Fe3+ in octahedral coordination for many synthetic almandines and whose concentration depends on the synthesis experiment. Various possible local defects in almandine are analyzed using Kröger-Vink notation. The origin of tiny, minor included phases that have been observed in synthetic as well as in natural crystals may be related to defect

  13. For the Love of Learning Science: Connecting Learning Orientation and Career Productivity in Physics and Chemistry

    ERIC Educational Resources Information Center

    Hazari, Zahra; Potvin, Geoff; Tai, Robert H.; Almarode, John

    2010-01-01

    An individual's motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this…

  14. Scaffolded Problem-Solving in the Physics and Chemistry Laboratory: Difficulties Hindering Students' Assumption of Responsibility

    ERIC Educational Resources Information Center

    Reigosa, Carlos; Jimenez-Aleixandre, Maria-Pilar

    2007-01-01

    This case study examines the performances of 18 10th-grade students (age 15-16 years) in the process of performing problem-solving tasks in the physics and chemistry laboratory. The study focuses on different types of problems arising in the process of transferring responsibility to students in a context of teacher assistance to autonomous…

  15. Some Aspects of Rubberlike Elasticity Useful in Teaching Basic Concepts in Physical Chemistry.

    ERIC Educational Resources Information Center

    Mark, J. E.

    2002-01-01

    Explains the benefits of including polymer topics in both graduate and undergraduate physical chemistry courses. Provides examples of how to use rubberlike elasticity to demonstrate some of the general and thermodynamic concepts including equations of state, Carnot cycles and mechanochemistry, gel collapse, energy storage and hysteresis, and…

  16. Retention of Differential and Integral Calculus: A Case Study of a University Student in Physical Chemistry

    ERIC Educational Resources Information Center

    Jukic Matic, Ljerka; Dahl, Bettina

    2014-01-01

    This paper reports a study on retention of differential and integral calculus concepts of a second-year student of physical chemistry at a Danish university. The focus was on what knowledge the student retained 14 months after the course and on what effect beliefs about mathematics had on the retention. We argue that if a student can quickly…

  17. Addition of a Project-Based Component to a Conventional Expository Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Gorezi, Marianna

    2007-01-01

    Students should enjoy their laboratory classes and for this purpose a project-based activity is added to a conventional physical chemistry laboratory. Students were given project work instead of conventional experiment and then they had to make progress in the project according to instructions and then carry out experiments related to the project.

  18. Job Satisfaction Levels of Secondary School Physics, Chemistry and Biology Teachers

    ERIC Educational Resources Information Center

    Maskan, A. Kadir

    2014-01-01

    The purpose of this study is to determine the job satisfaction levels of the teachers participating in the study and to investigate whether their job satisfaction levels differ with respect to certain variables. The participants of the study were 297 science teachers (physics: 104, chemistry: 105, biology: 87 and 1 N/A) from secondary schools in…

  19. Preservice Teachers' Epistemological Beliefs in Physics, Chemistry, and Biology: A Mixed Study

    ERIC Educational Resources Information Center

    Topcu, Mustafa Sami

    2013-01-01

    The purposes of the study were to assess preservice teachers' domain-specific epistemological beliefs and to investigate whether preservice teachers distinguish disciplinary differences (physics, chemistry, and biology) in domain-specific epistemological beliefs. Mixed-method research design guided the present research. The researcher explored…

  20. Teaching about Ethics through Socioscientific Issues in Physics and Chemistry: Teacher Candidates' Beliefs

    ERIC Educational Resources Information Center

    Barrett, Sarah Elizabeth; Nieswandt, Martina

    2010-01-01

    The purpose of this qualitative study was to identify and explain the origins of physics and chemistry teacher candidates' beliefs about teaching about ethics through socioscientific issues (SSI). This study utilized a series of in-depth interviews, while the participants (n = 12) were enrolled in a 9-month teacher education program at an urban…

  1. Faculty Beliefs about the Purposes for Teaching Undergraduate Physical Chemistry Courses

    ERIC Educational Resources Information Center

    Mack, Michael R.; Towns, Marcy H.

    2016-01-01

    We report the results of a phenomenographic analysis of faculty beliefs about the purposes for teaching upper-division physical chemistry courses in the undergraduate curriculum. A purposeful sampling strategy was used to recruit a diverse group of faculty for interviews. Collectively, the participating faculty regularly teach or have taught…

  2. Metacognition in Physics/Chemistry Teacher Education--A Danish Project.

    ERIC Educational Resources Information Center

    Henriksen, Leif; And Others

    1996-01-01

    A preservice physics/chemistry course was created that was inspired by constructivist thinking, that emphasized metacognition, and that integrated concepts of pedagogical and scientific topics by developing a teaching/learning cycle. Denmark's educational system and the implementation of the course are described. Preliminary evaluations suggest…

  3. Investigating Intermolecular Interactions via Scanning Tunneling Microscopy: An Experiment for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pullman, David; Peterson, Karen I.

    2004-01-01

    A scanning tunneling microscope (STM) project designed as a module for the undergraduate physical chemistry laboratory is described. The effects of van der Waals interactions on the condensed-phase structure are examined by the analysis of the pattern of the monolayer structures.

  4. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    ERIC Educational Resources Information Center

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  5. Using Technology in Science Education: Case Studies from Chemistry and Physics.

    ERIC Educational Resources Information Center

    Bacon, Richard; Drury, T. Adam

    1998-01-01

    Describes experiences of the Computers in Teaching Initiatives (CTI) centers for chemistry and physics which provide support to academic staff in universities in the United Kingdom who are using communications and information technology. Topics include funding by the Teaching and Learning Technology Programme (TLTP); courseware development; and…

  6. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  7. Linear Dichroism of Cyanine Dyes in Stretched Polyvinyl Alcohol Films: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Natarajan, L. V.; And Others

    1983-01-01

    Provides background information, procedures, and results of an undergraduate physical chemistry experiment on the polarization of absorption spectra of cyanine dyes in stretched polyvinyl alcohol films. The experiment gives a simple demonstration of the concept of linear dichromism and the validity of the TEM method used in the analyses. (JN)

  8. A Writing and Ethics Component for a Quantum Mechanics, Physical Chemistry Course

    ERIC Educational Resources Information Center

    Reilly, John T.; Strickland, Michael

    2010-01-01

    A writing-across-the-curriculum and ethics component is presented for a second-semester, physical chemistry course. The activity involves introducing ethical issues pertinent to scientists. Students are asked to read additional material, participate in discussions, and write essays and a paper on an ethical issue. The writing and discussion…

  9. Minimum Learning Essentials: Science. Chemistry, Earth Science, Biology, Physics, General Science. Experimental Edition 0/4.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This guide presents the "minimum teaching essentials" published by the New York City Board of Education, for science education in grades 9-12. Covered are: biology, physics, earth science, and chemistry. Work study skills for all subjects are given with content areas, performance objectives, and suggested classroom activities. (APM)

  10. Inquiry-Based Course in Physics and Chemistry for Preservice K-8 Teachers

    ERIC Educational Resources Information Center

    Loverude, Michael E.; Gonzalez, Barbara L.; Nanes, Roger

    2011-01-01

    We describe an inquiry-based course in physics and chemistry for preservice K-8 teachers developed at California State University Fullerton. The course is one of three developed primarily to enhance the science content understanding of prospective teachers. The course incorporates a number of innovative instructional strategies and is somewhat…

  11. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    ERIC Educational Resources Information Center

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  12. Framing a Program Designed to Train New Chemistry/Physics Teachers for California Outlying Regions

    ERIC Educational Resources Information Center

    Bodily, Gerald P., Jr.

    2010-01-01

    The purpose of this study was to develop guidelines for a new high school chemistry and physics teacher training program. Eleven participants were interviewed who attended daylong workshops, every other Saturday, for 10 months. The instructors used Modeling Instruction pedagogy and curriculum. All the instructors had high school teaching…

  13. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  14. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  15. Integrating a Single Tablet PC in Chemistry, Engineering, and Physics Courses

    ERIC Educational Resources Information Center

    Rogers, James W.; Cox, James R.

    2008-01-01

    A tablet PC is a versatile computer that combines the computing power of a notebook with the pen functionality of a PDA (Cox and Rogers 2005b). The authors adopted tablet PC technology in order to improve the process and product of the lecture format in their chemistry, engineering, and physics courses. In this high-tech model, a single tablet PC…

  16. Resource Letter TTSM-1: Teaching Thermodynamics and Statistical Mechanics in Introductory Physics, Chemistry, and Biology

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Geller, Benjamin D.; Meltzer, David E.; Sawtelle, Vashti

    2015-01-01

    This Resource Letter draws on discipline-based education research from physics, chemistry, and biology to collect literature on the teaching of thermodynamics and statistical mechanics in the three disciplines. While the overlap among the disciplinary literatures is limited at present, we hope this Resource Letter will spark more interdisciplinary interaction.

  17. The Nature of Students' Chemical Reasoning Employed in Scientific Argumentation in Physical Chemistry

    ERIC Educational Resources Information Center

    Moon, A.; Stanford, C.; Cole, R.; Towns, M.

    2016-01-01

    Recent science education reform efforts have emphasized scientific practices in addition to scientific knowledge. Less work has been done at the tertiary level to consider students' engagement in scientific practices. In this work, we consider physical chemistry students' engagement in argumentation and construction of causal explanations.…

  18. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  19. A Practical and Convenient Diffusion Apparatus: An Undergraduate Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Clifford, Ben; Ochiai, E. I.

    1980-01-01

    Described is a diffusion apparatus to be used in an undergraduate physical chemistry laboratory experiment to determine the diffusion coefficients of aqueous solutions of sucrose and potassium dichromate. Included is the principle of the method, apparatus design and description, and experimental procedure. (Author/DS)

  20. A Game-Based Approach to an Entire Physical Chemistry Course

    ERIC Educational Resources Information Center

    Daubenfeld, Thorsten; Zenker, Dietmar

    2015-01-01

    We designed, implemented, and evaluated a game-based learning approach to increase student motivation and achievement for an undergraduate physical chemistry course. By focusing only on the most important game aspects, the implementation was realized with a production ratio of 1:8 (study load in hours divided by production effort in hours).…

  1. The James Webb Space Telescope: Inspiration and Context for Physics and Chemistry Teaching

    ERIC Educational Resources Information Center

    Hillier, Dan; Johnston, Tania; Davies, John

    2012-01-01

    This article describes the design, delivery, evaluation and impact of a CPD course for physics and chemistry teachers. A key aim of the course was to use the context of the James Webb Space Telescope project to inspire teachers and lead to enriched teaching of STEM subjects. (Contains 1 box and 3 figures.)

  2. Accelerated Integrated Science Sequence (AISS): An Introductory Biology, Chemistry, and Physics Course

    ERIC Educational Resources Information Center

    Purvis-Roberts, Kathleen L.; Edwalds-Gilbert, Gretchen; Landsberg, Adam S.; Copp, Newton; Ulsh, Lisa; Drew, David E.

    2009-01-01

    A new interdisciplinary, introductory science course was offered for the first time during the 2007-2008 school year. The purpose of the course is to introduce students to the idea of working at the intersections of biology, chemistry, and physics and to recognize interconnections between the disciplines. Interdisciplinary laboratories are a key…

  3. Iron(III) Thiocyanate Revisited: A Physical Chemistry Equilibrium Lab Incorporating Ionic Strength Effects

    NASA Astrophysics Data System (ADS)

    Cobb, Cathy L.; Love, G. A.

    1998-01-01

    A physical chemistry laboratory exercise is presented in which the thermodynamic equilibrium constant for Fe3+ + SCN- <--> Fe(SCN)2+ in 0.5 M acid is calculated from the experimentally observed equilibrium constant and activity coefficients generated by the Davies extension of the Debye-Hückel theory.

  4. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  5. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  6. Using Metaphor Theory to Examine Conceptions of Energy in Biology, Chemistry, and Physics

    ERIC Educational Resources Information Center

    Lancor, Rachael

    2014-01-01

    Energy is one of the most important unifying themes in science. Yet the way energy is conceptualized varies depending on context. In this paper, the discourse used to explain the role of energy in systems from biology, chemistry, and physics is examined from the perspective of metaphor theory. Six substance metaphors for energy are identified in…

  7. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    ERIC Educational Resources Information Center

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  8. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrorm, EL; Llordes, A; Milliron, DJ

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  9. Recent Advances in the Chemistry and Biology of Naturally Occurring Antibiotics

    PubMed Central

    Chen, Jason S.; Edmonds, David J.; Estrada, Anthony A.

    2009-01-01

    Lead-in Ever since the world-shaping discovery of penicillin, nature’s molecular diversity has been extensively screened for new medications and lead compounds in drug discovery. The search for anti-infective agents intended to combat infectious diseases has been of particular interest and has enjoyed a high degree of success. Indeed, the history of antibiotics is marked with impressive discoveries and drug development stories, the overwhelming majority of which have their origins in nature. Chemistry, and in particular chemical synthesis, has played a major role in bringing naturally occurring antibiotics and their derivatives to the clinic, and no doubt these disciplines will continue to be key enabling technologies for future developments in the field. In this review article, we highlight a number of recent discoveries and advances in the chemistry, biology, and medicine of naturally occurring antibiotics, with particular emphasis on the total synthesis, analog design, and biological evaluation of molecules with novel mechanisms of action. PMID:19130444

  10. Biomarkers and imaging: physics and chemistry for noninvasive analyses.

    PubMed

    Moyer, Brian R; Barrett, John A

    2009-05-01

    The era of 'modern medicine' has changed its name to 'molecular medicine', and reflects a new age based on personalized medicine utilizing molecular biomarkers in the diagnosis, staging and monitoring of therapy. Alzheimer's disease has a classical biomarker determined at autopsy with the histologic staining of amyloid accumulation in the brain. Today we can diagnose Alzheimer's disease using the same classical pathologic biomarker, but now using a noninvasive imaging probe to image the amyloid deposition in a patient and potentially provide treatment strategies and measure their effectiveness. Molecular medicine is the exploitation of biomarkers to detect disease before overt expression of pathology. Physicians can now find, fight and follow disease using imaging, and the need for other disease biomarkers is in high demand. This review will discuss the innovative physical and molecular biomarker probes now being developed for imaging systems and we will introduce the concepts needed for validation and regulatory acceptance of surrogate biomarkers in the detection and treatment of disease. PMID:21083171

  11. Student Perception of the Classroom Learning Environment in Biology, Chemistry, and Physics Courses. Research Paper No. 12.

    ERIC Educational Resources Information Center

    Lawrenz, Frances

    This research study investigated student perception of the social learning environment in biology, chemistry and physics courses. A stratified random sample of secondary schools from three regions was selected. The principal of each sampled school randomly selected a biology, chemistry or physics teacher who, in turn, randomly selected one of his…

  12. The Relationship Between Responses to Science Concepts on a Semantic Differential Instrument and Achievement in Freshman Physics and Chemistry.

    ERIC Educational Resources Information Center

    Rothman, Arthur Israel

    Students taking freshman physics and freshman chemistry at The State University of New York at Buffalo (SUNYAB) were administered a science-related semantic differential instrument. This same test was administered to physics and chemistry graduate students from SUNYAB and the University of Rochester. A scoring procedure was developed which…

  13. Report of the Polymer Core Course Committee: Polymer Principles in the Undergraduate Physical Chemistry Course, Part 1.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Demonstrates, with a set of definitive examples, how polymer principles can be introduced into the first undergraduate physical chemistry course in a very natural way. The intent is to encourage introduction of polymer-related material into conventional physical chemistry courses without sacrificing any rigor associated with such courses. (JN)

  14. A study of the physics and chemistry of TMC-1

    NASA Technical Reports Server (NTRS)

    Pratap, P.; Dickens, J. E.; Snell, R. L.; Miralles, M. P.; Bergin, E. A.; Irvine, W. M.; Schloerb, F. P.

    1997-01-01

    We present a comprehensive study of the physical and chemical conditions along the TMC-1 ridge. Temperatures were estimated from observations of CH3CCH, NH3, and CO. Densities were obtained from a multitransition study of HC3N. The values of the density and temperature allow column densities for 13 molecular species to be estimated from statistical equilibrium calculations, using observations of rarer isotopomers where possible, to minimize opacity effects. The most striking abundance variations relative to HCO+ along the ridge were seen for HC3N, CH3CCH, and SO, while smaller variations were seen in CS, C2H, and HCN. On the other hand, the NH3, HNC, and N2H+ abundances relative to HCO+ were determined to be constant, indicating that the so-called NH3 peak in TMC-1 is probably a peak in the ammonia column density rather than a relative abundance peak. In contrast, the well-studied cyanopolyyne peak is most likely due to an enhancement in the abundance of long-chain carbon species. Comparisons of the derived abundances to the results of time-dependent chemical models show good overall agreement for chemical timescales around 10(5) yr. We find that the observed abundance gradients can be explained either by a small variation in the chemical timescale from 1.2 x 10(5) to 1.8 x 10(5) yr or by a factor of 2 change in the density along the ridge. Alternatively, a variation in the C/O ratio from 0.4 to 0.5 along the ridge produces an abundance gradient similar to that observed.

  15. A study of the physics and chemistry of TMC-1.

    PubMed

    Pratap, P; Dickens, J E; Snell, R L; Miralles, M P; Bergin, E A; Irvine, W M; Schloerb, F P

    1997-09-10

    We present a comprehensive study of the physical and chemical conditions along the TMC-1 ridge. Temperatures were estimated from observations of CH3CCH, NH3, and CO. Densities were obtained from a multitransition study of HC3N. The values of the density and temperature allow column densities for 13 molecular species to be estimated from statistical equilibrium calculations, using observations of rarer isotopomers where possible, to minimize opacity effects. The most striking abundance variations relative to HCO+ along the ridge were seen for HC3N, CH3CCH, and SO, while smaller variations were seen in CS, C2H, and HCN. On the other hand, the NH3, HNC, and N2H+ abundances relative to HCO+ were determined to be constant, indicating that the so-called NH3 peak in TMC-1 is probably a peak in the ammonia column density rather than a relative abundance peak. In contrast, the well-studied cyanopolyyne peak is most likely due to an enhancement in the abundance of long-chain carbon species. Comparisons of the derived abundances to the results of time-dependent chemical models show good overall agreement for chemical timescales around 10(5) yr. We find that the observed abundance gradients can be explained either by a small variation in the chemical timescale from 1.2 x 10(5) to 1.8 x 10(5) yr or by a factor of 2 change in the density along the ridge. Alternatively, a variation in the C/O ratio from 0.4 to 0.5 along the ridge produces an abundance gradient similar to that observed. PMID:11540493

  16. Deciphering the physics and chemistry of perovskites with transmission electron microscopy.

    PubMed

    Polking, Mark J

    2016-03-17

    Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials. PMID:26762871

  17. Ethnic Differences in Physical Fitness, Blood Pressure and Blood Chemistry in Women (AGES 20-63)

    NASA Technical Reports Server (NTRS)

    Ayers, G. W.; Wier, L. T.; Jackson, A. S.; Stuteville, J. E.; Keptra, Sean (Technical Monitor)

    1999-01-01

    This study examined the role of ethnicity on the aerobic fitness, blood pressure, and selected blood chemistry values of women. One hundred twenty-four females (mean age 41.37 +/- 9.0) were medically Examined at the NASA/Johnson Space Center occupational health clinic. Ethnic groups consisted of 23 Black (B), 18 Hispanic (H) and 83 Non-minority (NM). Each woman had a maximum Bruce treadmill stress test (RER greater than or = 1.1) and a negative ECG. Indirect calorimetry, skinfolds, self-report physical activity (NASA activity scale), seated blood pressure, and blood chemistry panel determined VO2max, percent fat, level of physical activity, blood pressure and blood chemistry values. ANOVA revealed that the groups did not differ (p greater than 0.05) in age, VO2 max, weight, percent fat, level of physical activity, total cholesterol, or HDL-C. However, significant differences (p greater than 0.05) were noted in BMI, diastolic blood pressure, and blood chemistries. BMI was 3.17 higher in H than in NM; resting diastolic pressures were 5.69 and 8.05 mmHg. lower in NM and H than in B; triglycerides were 48.07 and 37.21 mg/dl higher in H than in B and NM; hemoglobin was .814 gm/dl higher in NM than B; fasting blood sugar was 15.41 mg/dl higher in H than NM; The results of this study showed that ethnic groups differed in blood pressure and blood chemistry values but not aerobic fitness or physical activity. There was an ethnic difference in BMI but not percent fat.

  18. Problems with the rush toward advanced physics in high schools

    NASA Astrophysics Data System (ADS)

    Gollub, Jerry

    2003-04-01

    The Advanced Placement (AP) Program has a major impact on the physics experience of many high school students. It affects admission to college, course choices and performance in college, and subsequent career decisions. A study committee of the National Research Council published a review of these programs in 2002, and concluded that while the program has many positive features, important problems need to be addressed. [1] The programs are not currently consistent with what we have learned about student learning from cognitive research. Students are often poorly prepared for AP courses, because of lack of coordination within schools. The Physics AP-B (non-calculus) program is too broad to allow most high school students to achieve an adequate level of conceptual understanding. Participation by minority students in these programs is far below that of other students. The AP exams need to be re-evaluated to insure that they actually measure conceptual understanding and complex reasoning. The AP exams are sometimes used inappropriately to rate teachers or schools. College and high school courses are poorly coordinated, with the result that students often take an introductory physics survey as many as three times. Policies on college credit for AP courses differ widely. These problems cannot be fixed by the College Board alone. [1] Jerry P. Gollub and Robin Spital, "Advanced Physics in the High Schools", Physics Today, May 2002.

  19. Advances in methods and algorithms in a modern quantum chemistry program package.

    PubMed

    Shao, Yihan; Molnar, Laszlo Fusti; Jung, Yousung; Kussmann, Jörg; Ochsenfeld, Christian; Brown, Shawn T; Gilbert, Andrew T B; Slipchenko, Lyudmila V; Levchenko, Sergey V; O'Neill, Darragh P; DiStasio, Robert A; Lochan, Rohini C; Wang, Tao; Beran, Gregory J O; Besley, Nicholas A; Herbert, John M; Lin, Ching Yeh; Van Voorhis, Troy; Chien, Siu Hung; Sodt, Alex; Steele, Ryan P; Rassolov, Vitaly A; Maslen, Paul E; Korambath, Prakashan P; Adamson, Ross D; Austin, Brian; Baker, Jon; Byrd, Edward F C; Dachsel, Holger; Doerksen, Robert J; Dreuw, Andreas; Dunietz, Barry D; Dutoi, Anthony D; Furlani, Thomas R; Gwaltney, Steven R; Heyden, Andreas; Hirata, So; Hsu, Chao-Ping; Kedziora, Gary; Khalliulin, Rustam Z; Klunzinger, Phil; Lee, Aaron M; Lee, Michael S; Liang, Wanzhen; Lotan, Itay; Nair, Nikhil; Peters, Baron; Proynov, Emil I; Pieniazek, Piotr A; Rhee, Young Min; Ritchie, Jim; Rosta, Edina; Sherrill, C David; Simmonett, Andrew C; Subotnik, Joseph E; Woodcock, H Lee; Zhang, Weimin; Bell, Alexis T; Chakraborty, Arup K; Chipman, Daniel M; Keil, Frerich J; Warshel, Arieh; Hehre, Warren J; Schaefer, Henry F; Kong, Jing; Krylov, Anna I; Gill, Peter M W; Head-Gordon, Martin

    2006-07-21

    Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces. PMID:16902710

  20. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established

  1. A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics

    NASA Astrophysics Data System (ADS)

    Ochi, Nobuaki

    A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.

  2. Expanded Choices for Vibration-Rotation Spectroscopy in the Physical Chemistry Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Schmitz, Joel R.; Dolson, David A.

    2015-06-01

    Many third-year physical chemistry laboratory students in the US analyze the vibration-rotation spectrum of HCl in support of lecture concepts in quantum theory and molecular spectroscopy. Contemporary students in physical chemistry teaching laboratories increasingly have access to FTIR spectrometers with 1/8th wn resolution, which allows for expanded choices of molecules for vibration-rotation spectroscopy. Here we present the case for choosing HBr/DBr for such a study, where the 1/8th wn resolution enables the bromine isotopic lines to be resolved. Vibration-rotation lines from the fundamental and first-overtone bands of four hydrogen bromide isotopomers are combined in a global analysis to determine molecular spectroscopic constants. Sample production, spectral appearance, analysis and results will be presented for various resolutions commonly available in teaching laboratories.

  3. Advances in beam physics and technology: Colliders of the future

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Swapan

    1996-02-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (i.e. photons). Often, they are brought into interaction with each other (e.g. in high energy colliders) or with other forms of matter (e.g. in fixed target physics, synchrotron radiation sciences, neutron scattering experiments, laser chemistry and physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams—always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades—nonlinear dynamics, superconducting magnets and radio frequency cavities, beam instrumentation and control, novel concepts and collider paradigms, to name a few. We will illustrate this progress via a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use—the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We will close with an outline of future opportunities and outlook.

  4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012)

    NASA Astrophysics Data System (ADS)

    Foffi, G.; Pastore, A.; Piazza, F.; Temussi, P. A.

    2013-08-01

    held in Ascona from 10 to 14 June 2012. In the unique scenario of the Maggiore lake and absorbed in the magic atmosphere of the Centro Stefano Franscini (CSF) at Monte Verità, we enjoyed three-and-a-half days of intense and inspiring activity, where not only many of the most prominent scientists working on macromolecular crowding, but also experts in closely related fields such as colloids and soft matter presented their work. The meeting was intended and has been organized to bring theoreticians and experimentalists together in the attempt to promote an active dialogue. Moreover, we wanted different disciplines to be represented, notably physics and chemistry, besides biology, as cross-fertilization is proving an increasingly fundamental source of inspiration and advancement. This issue of Physical Biology (PB) features a selection of the oral contributions presented at the conference, expanded in the form of research or review articles. PB, one of the scientific journals of the Institute of Physics (IOP), is one of the most dynamic and lively forums active at the interface between biology on one side, and physics and mathematics on the other. As its mission is stated by IOP, PB 'focuses on research in which physics-based approaches lead to new insights into biological systems at all scales of space and time, and all levels of complexity'. For these reasons, and also in view of its high reputation and broad readership, PB appears to be the ideal place for disseminating the thriving pieces of research presented at the conference. We are extremely grateful to PB and its kind and efficient editorial staff who helped make this issue a great scientific follow-up to the conference. The opening lecture of the conference, the first of four day-opening keynote lectures, was given by Allen P Minton from NIH (USA), possibly the most influential among the pioneers in the field. He provided a lucid and well-thought-out overview of the concept of macromolecular crowding through an

  5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

    PubMed

    Foffi, G; Pastore, A; Piazza, F; Temussi, P A

    2013-08-01

    conference held in Ascona from 10 to 14 June 2012. In the unique scenario of the Maggiore lake and absorbed in the magic atmosphere of the Centro Stefano Franscini (CSF) at Monte Verità, we enjoyed three-and-a-half days of intense and inspiring activity, where not only many of the most prominent scientists working on macromolecular crowding, but also experts in closely related fields such as colloids and soft matter presented their work. The meeting was intended and has been organized to bring theoreticians and experimentalists together in the attempt to promote an active dialogue. Moreover, we wanted different disciplines to be represented, notably physics and chemistry, besides biology, as cross-fertilization is proving an increasingly fundamental source of inspiration and advancement. This issue of Physical Biology (PB) features a selection of the oral contributions presented at the conference, expanded in the form of research or review articles. PB, one of the scientific journals of the Institute of Physics (IOP), is one of the most dynamic and lively forums active at the interface between biology on one side, and physics and mathematics on the other. As its mission is stated by IOP, PB 'focuses on research in which physics-based approaches lead to new insights into biological systems at all scales of space and time, and all levels of complexity'. For these reasons, and also in view of its high reputation and broad readership, PB appears to be the ideal place for disseminating the thriving pieces of research presented at the conference. We are extremely grateful to PB and its kind and efficient editorial staff who helped make this issue a great scientific follow-up to the conference. The opening lecture of the conference, the first of four day-opening keynote lectures, was given by Allen P Minton from NIH (USA), possibly the most influential among the pioneers in the field. He provided a lucid and well-thought-out overview of the concept of macromolecular crowding

  6. Framing a program designed to train new chemistry/physics teachers for California outlying regions

    NASA Astrophysics Data System (ADS)

    Bodily, Gerald P., Jr.

    The purpose of this study was to develop guidelines for a new high school chemistry and physics teacher training program. Eleven participants were interviewed who attended daylong workshops, every other Saturday, for 10 months. The instructors used Modeling Instruction pedagogy and curriculum. All the instructors had high school teaching experience, but only one possessed a doctorate degree. The interview questions focused on four themes: motivation, epistemology, meta-cognition, and self-regulation; and the resulting transcripts were analyzed using a methodology called Interpretive Phenomenological Analysis. The cases expressed a strong preference for the program's instruction program over learning subject matter knowledge in university classrooms. The data indicated that the cases, as a group, were disciplined scholars seeking a deep understanding of the subject matter knowledge needed to teach high school chemistry and physics. Based on these results a new approach to training teachers was proposed, an approach that offers novel answers to the questions of how and who to train as science teachers. The how part of the training involves using a program called Modeling Instruction. Modeling instruction is currently used to upgrade experienced science teachers and, in the new approach, replaces the training traditionally administered by professional scientists in university science departments. The who aspect proposes that the participants be college graduates, selected not for university science training, but for their high school math and science background. It is further proposed that only 10 months of daily, face-to-face instruction is required to move the learner to a deep understanding of subject matter knowledge required to teach high school chemistry and physics. Two outcomes are sought by employing this new training paradigm, outcomes that have been unachievable by current educational practices. First, it is hoped that new chemistry and physics teachers can

  7. Incorporation of Advanced Laboratory Equipment into Introductory Physics Labs

    NASA Astrophysics Data System (ADS)

    Gilbert, John; Bellis, Matt; Cummings, John

    2015-04-01

    Siena College recently completed construction of the Stewart's Advanced Instrumentation and Technology Center (SAInt Center) which includes both a scanning electron microscope (SEM) and an atomic force microscope (AFM). The goal of this project is to design laboratory exercises for introductory physics courses that make use of this equipment. Early involvement with the SAInt center aims to increase undergraduate lab skills and expand research possibilities. These lab exercises are tested on select students and evaluated as to their effectiveness in contributing to the learning goals.The current status of this work is presented here.

  8. A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography.

    PubMed

    Hacking, S A; Zuraw, M; Harvey, E J; Tanzer, M; Krygier, J J; Bobyn, J D

    2007-07-01

    The purpose of this study was to characterize a technique to effectively mask surface chemistry without modifying surface topography. A thin layer of titanium was deposited by physical vapor deposition (PVD) onto different biomaterial surfaces. Commercially pure titanium disks were equally divided into three groups. Disks were either polished to a mirror finish, grit blasted with alumina particles, or grit blasted and subsequently plasma sprayed with a commercial grade of hydroxyapatite (HA). A subgroup of each of these treatment types was further treated by masking the entire disk surface with a thin layer of commercially pure titanium deposited by PVD. A comparison of surface topography and chemical composition was carried out between disks within each treatment group. Canine marrow cells were seeded on all disk surfaces to determine the stability of the PVD Ti mask under culture conditions. The PVD process did not significantly alter the surface topography of any samples. The thin titanium layer completely masked the underlying chemistry of the plasma sprayed HA surface and the chemistry of the plasma vapor deposited titanium layer did not differ from that of the commercially pure titanium disks. Aliquots obtained from the media during culture did not indicate any significant differences in Ti concentration amongst the Ti and Ti-masked surfaces. The PVD application of a Ti layer on HA coatings formed a stable, durable, and homogenous layer that effectively masked the underlying surface chemistry without altering the surface topography. PMID:17269149

  9. Advances in beam physics and technology: Colliders of the future

    SciTech Connect

    Chattopadhyay, S.

    1994-11-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (ie, photons). Often, they interact with each other (eg, in high energy colliders) or with other forms of matter (eg, in fixed targets, sychrotron radiation, neutron scattering, laser chemistry/physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams -- always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades -- nonlinear dynamics, superconducting magnets and rf cavities, beam instrumentation and control, novel concepts and collider praradigms, to name a few. We illustrate this progress with a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use -- the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We close with an outline of future oppotunities and outlook.

  10. Blurring the Boundaries Among Astronomy, Physics, and Chemistry: The Moseley Centenary

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2013-01-01

    Scientists, like other human beings, are territorial animals, not just about our parking spaces and seats in the colloquium room, but also about our scientific territories, from the narrowest thesis topic ("Who's been working on my Nebula and left it covered with dust?") to the whole of physics, or chemistry, or astronomy. Many 19th century astronomers resented spectroscopes invading their observatories; chemists objected to Moseley's use of X-ray outgaming their retorts and test tubes in 1913; and chemists and physicists typically disbelieve astronomers suggesting new science on the basis of astronomical data (three other combinations are also possible). The talk will explore some of these transgressions, both a few spectacular successes and rather more awkward failures. Moseley's own contributions included sorting out the rare earths, putting paid to nebulium and coronium as elements between H and He, many years before improved understanding of atomic structure led to correct identifications of the ionization states and transitions actually responsible for the lines credited to them, and putting Prout's hypothesis on a firm foundation ready for the structure Cameron and B2FH would eventually erect there. Back in 1935, Gamow asked whether a new discipline should be called nuclear physics or nuclear chemistry (both now exist, within APS and ACS respectively), and 30+ years later, chemist L.S. Trimble was still complaining that the physicists had grabbed away the territory of atomic and nuclear composition, which should have been part of chemistry!

  11. The BZ Reaction: Experimental and Model Studies in the Physical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Benini, Omar; Cervellati, Rinaldo; Fetto, Pasquale

    1996-09-01

    The paper illustrates integrated physical chemistry-computational lab experiments at the tertiary level on the "classic" Belousov-Zhabotinsky (BZ) oscillating reaction. The complete work was designed for studying the behavior of the Ce4+/Ce3+- and Fe(phen)32+/Fe(phen)33+-catalyzed BZ systems and developing a kinetic model to interpret the experimental data. The students prepared the appropriate reactant mixtures and followed spectrophotometrically the absorbance of Ce4+ and Fe(phen)32+ ions. Then they plot the period of oscillation as a function of the initial concentration of any one of the mixture components observing in particular the difference in the dependence of the oscillation period on the [Ce4+]o and [Fe(phen)32+]o respectively. These differences suggest that the two redox couples catalyze the BZ reaction by different mechanisms. A kinetic mathematical model based on the FKN mechanism for the cerium-catalyzed reaction is presented and discussed. The numerical intergration solutions of the resulting rate equations show that the model accounts satsfactorily for the oscillations of the Ce4+/Ce3+-catalyzed system but fails to reproduce the experimental behavior of the system catalyzed by the couple Fe(phen)32+/Fe(phen)33+. It has been proved that these integrated chemistry-computational lab experiments are a powerful tool in stimulating student interest in physical chemistry and in showing the importance of chemical kinetics in the elucidation of reaction mechanism.

  12. FOREWORD: Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology and Mathematics

    NASA Astrophysics Data System (ADS)

    Kaski, K.; Salomaa, M.

    1990-01-01

    These are Proceedings of the Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology, and Mathematics, held August 25-26, 1989, at Lahti (Finland). The Symposium belongs to an annual series of Meetings, the first one of which was arranged in 1987 at Lund (Sweden) and the second one in 1988 at Kolle-Kolle near Copenhagen (Denmark). Although these Symposia have thus far been essentially Nordic events, their international character has increased significantly; the trend is vividly reflected through contributions in the present Topical Issue. The interdisciplinary nature of Computational Science is central to the activity; this fundamental aspect is also responsible, in an essential way, for its rapidly increasing impact. Crucially important to a wide spectrum of superficially disparate fields is the common need for extensive - and often quite demanding - computational modelling. For such theoretical models, no closed-form (analytical) solutions are available or they would be extremely difficult to find; hence one must rather resort to the Art of performing computational investigations. Among the unifying features in the computational research are the methods of simulation employed; methods which frequently are quite closely related with each other even for faculties of science that are quite unrelated. Computer simulation in Natural Sciences is presently apprehended as a discipline on its own right, occupying a broad region somewhere between the experimental and theoretical methods, but also partially overlapping with and complementing them. - Whichever its proper definition may be, the computational approach serves as a novel and an extremely versatile tool with which one can equally well perform "pure" experimental modelling and conduct "computational theory". Computational studies that have earlier been made possible only through supercomputers have opened unexpected, as well as exciting, novel frontiers equally in mathematics (e.g., fractals

  13. A Transition from a Traditional to a Project-Like Physical Chemistry Laboratory via a Heterogeneous Catalysis Study.

    ERIC Educational Resources Information Center

    Goldwasser, M. R.; Leal, O.

    1979-01-01

    Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)

  14. Measurement of the Order Parameter in a Room Temperature Liquid Crystal: An Experiment for the Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    DuPre, Donald B.; Chapoy, L. Lawrence

    1979-01-01

    Presented here is a laboratory experiment for a course in physical chemistry. Students are requested to directly measure the degree of orientational order in a liquid crystal at room temperature. A minimum amount of equipment is necessary. (Author/SA)

  15. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  16. Principles of Technology Student Achievement in Advanced Physics Measured by a Normed Physics Test.

    NASA Astrophysics Data System (ADS)

    Nicholson, James Alan

    1991-02-01

    The Principles of Technology (PT) curriculum, now in approximately 1,200 schools, has produced a profound change in the delivery of applied physics. If high school PT programs and traditional physics courses deliver comparable student outcomes, as some research suggests, the PT curriculum may find wider acceptance in vocational programs and postsecondary schools may have rationale for accepting PT as physics. This study measured PT student performance on an advanced physics test, after they have had one year (7 units) of PT. The 1988R version of the National Association of Physics Teachers and National Science Teachers Association physics test, with more than 7500 copies sold, was selected as the research instrument. This test covers advanced aspects of traditional high school physics. A secondary enquiry included an attempt to link PT teacher preparation and credentialing and/or PT site demographics to variation in PT student scores on the 1988R test. The 10 PT sites in this study were self-selected from the 29 PT field study schools, the most mature PT sites. The researcher determined, that the 1988R physics test lacked content validity for the PT students tested. The PT students tested had a composite mean score of 17.67 questions correct out of 80, (below the second percentile), not statistically different than a chance score. No differences were found between site mean scores. Interpretation of the results regarding the effect of teachers, or demographics was not justified. The value of PT to the vocational-technical programs that it was designed for was not measured, nor was the awarding of general science credit for PT completion. One year of the PT curriculum, at the sampled schools, has not prepared students in the advanced scientific aspects of traditional physics found on the 1988R examination. The primary implication is that educators should not expect year one PT to prepare students for classes or curricula that include traditional physics as a

  17. [Commentary on the Nobel Prize that has been granted in Medicine-Physiology, Chemistry and Physics to noteable investigators].

    PubMed

    Zárate, Arturo; Apolinar, Leticia Manuel; Saucedo, Renata; Basurto, Lourdes

    2015-01-01

    The Nobel Prize was established by Alfred Nobel in 1901 to award people who have made outstanding achievements in physics, chemistry and medicine. So far, from 852 laureates, 45 have been female. Marie Curie was the first woman to receive the Nobel Prize in 1903 for physics and eight years later also for chemistry It is remarkable that her daughter Irene and her husband also received the Nobel Prize for chemistry in 1935. Other two married couples, Cori and Moser, have also been awarded the Nobel Prize. The present commentary attempts to show the female participation in the progress of scientific activities. PMID:25946543

  18. The evolution of pedagogical content knowledge in chemistry and physics prospective secondary teachers

    NASA Astrophysics Data System (ADS)

    Veal, William Richard

    1997-09-01

    The purpose of this study was to describe the evolution of pedagogical content knowledge in prospective secondary chemistry and physics teachers. A new paradigmatic framework was developed to guide the research. Craft knowledge and pedagogical content knowledge were compared and combined forming a new perspective from which to view secondary chemistry and physics teachers' "learning to teach." A second purpose of this study was to develop philosophically-derived, domain-specific, pedagogical content knowledge taxonomies. Four taxonomies were developed in all; two general and two domain-specific. The general taxonomies describe types of pedagogical content knowledge and attributes of pedagogical content knowledge. The two domain-specific taxonomies describe topics common to both physics and chemistry and outline domain-specific laboratories for the differentiation between heat and temperature. A methodological theoretical framework, synthesized from radical and social constructivism, was developed to guide the researcher in data collection, analysis, and interpretation. The researcher used four cases, two prospective chemistry teachers and two prospective physics teachers, and followed their development through the science curriculum class and student teaching field experience of their teacher preparation program. Content-specific, situational vignettes were created as a tool to monitor the participants' development of pedagogical content knowledge. The vignettes were administered using a modified microgenetic method. The modified microgenetic procedure involved the repeated administration of a task (vignette) over a period of time to monitor cognitive change. Data were collected through several methods: participant responses to the vignettes, field notes taken during the science curriculum class and student teaching field experience, interviews, artifact collection, and journals. Data were analyzed using qualitative content analysis. The results of this study

  19. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  20. Climate Solutions based on advanced scientific discoveries of Allatra physics

    NASA Astrophysics Data System (ADS)

    Vershigora, Valery

    2016-05-01

    Global climate change is one of the most important international problems of the 21st century. The overall rapid increase in the dynamics of cataclysms, which have been observed in recent decades, is particularly alarming. Howdo modern scientists predict the occurrence of certain events? In meteorology, unusually powerful cumulonimbus clouds are one of the main conditions for the emergence of a tornado. The former, in their turn, are formed during the invasion of cold air on the overheated land surface. The satellite captures the cloud front, and, based on these pictures, scientists make assumptions about the possibility of occurrence of the respective natural phenomena. In fact, mankind visually observes and draws conclusions about the consequences of the physical phenomena which have already taken place in the invisible world, so the conclusions of scientists are assumptions by their nature, rather than precise knowledge of the causes of theorigin of these phenomena in the physics of microcosm. The latest research in the field of the particle physics and neutrino astrophysics, which was conducted by a working team of scientists of ALLATRA International Public Movement (hereinafter ALLATRA SCIENCE group)allatra-science.org, last accessed 10 April 2016. , offers increased opportunities for advanced fundamental and applied research in climatic engineering.

  1. New Mass Spectrometry Techniques for Studying Physical Chemistry of Atmospheric Heterogeneous Processes

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2013-03-01

    Ambient particles and droplets have a significant effect on climate, visibility, and human health. Once formed, they undergo continuous transformations through condensation and evaporation of water, uptake of low-volatility organic molecules, and photochemical reactions involving various gaseous and condensed-phase species in the atmosphere. These transformations determine the physical and chemical properties of airborne particles, such as their ability to absorb and scatter solar radiation and nucleate cloud droplets. The complexity, heterogeneity, and size of ambient particles make it challenging to understand the kinetics and mechanisms of their formation and chemical transformations. Mass spectrometry (MS) is a powerful analytical technique that enables detailed chemical characterization of both small and large molecules in complex matrices. We present an overview of new and emerging experimental MS-based approaches for understanding physical chemistry of environmental particles, droplets, and surfaces. In addition, we emphasize the role of fundamental physical chemistry studies in the development of new methods for chemical analysis of ambient particles and droplets.

  2. 2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014)

    NASA Astrophysics Data System (ADS)

    2014-04-01

    2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014), was held at the Media Hotel, Jakarta, Indonesia, on 13-14 January 2014. The ScieTech 2014 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. ScieTech 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Mathematics, Chemistry and Physics. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 187 papers and after rigorous review, 50 papers were accepted. The participants come from 16 countries. There are 5 (Five) Paralell Sessions and Four Keynote Speakers. It is an honour to present this volume of Journal of Physics: Conference Series (JPCS) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of ScieTech 2014. The Editors of the Scietech 2014 Proceedings: Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. P.N. Gajjar

  3. ENVIRONMENTAL CHEMISTRY

    EPA Science Inventory

    Environmental chemistry is applied to estimating the exposure of ecosystems and humans to various chemical environmental stressors. Among the stressors of concern are mercury, pesticides, and arsenic. Advanced analytical chemistry techniques are used to measure these stressors ...

  4. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  5. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    SciTech Connect

    Lian, Tianquan

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  6. Reflection on problem solving in introductory and advanced physics

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.

    Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was

  7. Precision atomic mass spectrometry with applications to fundamental constants, neutrino physics, and physical chemistry

    NASA Astrophysics Data System (ADS)

    Mount, Brianna J.; Redshaw, Matthew; Myers, Edmund G.

    2011-07-01

    We present a summary of precision atomic mass measurements of stable isotopes carried out at Florida State University. These include the alkalis 6Li, 23Na, 39,41K, 85,87Rb, 133Cs; the rare gas isotopes 84,86Kr and 129,130,132,136Xe; 17,18O, 19F, 28Si, 31P, 32S; and various isotope pairs of importance to neutrino physics, namely 74,76Se/74,76Ge, 130Xe/130Te, and 115In/115Sn. We also summarize our Penning trap measurements of the dipole moments of PH + and HCO + .

  8. The Logical and Psychological Structure of Physical Chemistry and Its Relevance to Graduate Students' Opinions about the Difficulties of the Major Areas of the Subject

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios

    2016-01-01

    In a previous publication, Jensen's scheme for the logical structure of chemistry was employed to identify a logical structure for physical chemistry, which was further used as a tool for analyzing the organization of twenty physical chemistry textbooks. In addition, science education research was considered for the study of the psychological…

  9. How Did the Tree of Knowledge Get Its Blossom? The Rise of Physical and Theoretical Chemistry, with an Eye on Berlin and Leipzig.

    PubMed

    Friedrich, Bretislav

    2016-04-25

    "Physical chemistry is not just a branch on but the blossom of the tree of knowledge," declared Ostwald, a most vocal advocate of his field, conceived as the basis for all of chemistry. This Essay describes the historical development of physical and theoretical chemistry with a focus on Berlin and Leipzig, its foremost centers in Germany. PMID:27010426

  10. Support for chemistry symposia at the 2011 American Association for the Advancement of Science meeting, February 17-21 2011

    SciTech Connect

    Charles Casey

    2011-08-20

    This proposal supported Chemistry Symposia at the 2011 American Association for the Advancement of Science (AAAS) Meeting in Washington, DC February 17-21, 2011. The Chemistry Section of AAAS presented an unusually strong set of symposia for the 2011 AAAS meeting to help celebrate the 2011 International Year of Chemistry. The AAAS meeting provided an unusual opportunity to convey the excitement and importance of chemistry to a very broad audience and allowed access to a large contingent of the scientific press. Excellent suggestions for symposia were received from AAAS Chemistry Fellows and from the chairs of the American Chemical Society Technical Divisions. The AAAS Chemistry executive committee selected topics that would have wide appeal to scientists, the public, and the press for formal proposals of symposia. The symposia proposals were peer reviewed by AAAS. The Chemistry Section made a strong case to the program selection committee for approval of the chemistry symposia and 6 were approved for the 2011 annual meeting. The titles of the approved symposia were: (1) Powering the Planet: Generation of Clean Fuels from Sunlight and Water, (2) Biological Role and Consequences of Intrinsic Protein Disorder, (3) Chemically Speaking: How Organisms Talk to Each Other, (4) Molecular Self-Assembly and Artificial Molecular Machines, (5) Frontiers in Organic Materials for Information Processing, Energy and Sensors, and (6) Celebrating Marie Curie's 100th Anniversary of Her Nobel Prize in Chemistry. The Chemistry Section of AAAS is provided with funds to support only 1-2 symposia a year. Because of the much greater number of symposia approved in conjunction with observance of the 2011 International Year of Chemistry, additional support was sought from DOE to help support the 30 invited speakers and 8 symposia moderators/organizers. Support for the symposia provided the opportunity to highlight the excitement of current chemical research, to educate the public about the

  11. SUPPORT FOR CHEMISTRY SYMPOSIA AT THE 2011 AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE MEETING FEBRUARY 17-21, 2011

    SciTech Connect

    Prof. Charles Casey, University of Wisconsin-Madison

    2011-08-20

    This proposal supported Chemistry Symposia at the 2011 American Association for the Advancement of Science (AAAS) Meeting in Washington, DC February 17-21, 2011. The Chemistry Section of AAAS presented an unusually strong set of symposia for the 2011 AAAS meeting to help celebrate the 2011 International Year of Chemistry. The AAAS meeting provided an unusual opportunity to convey the excitement and importance of chemistry to a very broad audience and allowed access to a large contingent of the scientific press. Excellent suggestions for symposia were received from AAAS Chemistry Fellows and from the chairs of the American Chemical Society Technical Divisions. The AAAS Chemistry executive committee selected topics that would have wide appeal to scientists, the public, and the press for formal proposals of symposia. The symposia proposals were peer reviewed by AAAS. The Chemistry Section made a strong case to the program selection committee for approval of the chemistry symposia and 6 were approved for the 2011 annual meeting. The titles of the approved symposia were: (1) Powering the Planet: Generation of Clean Fuels from Sunlight and Water, (2) Biological Role and Consequences of Intrinsic Protein Disorder, (3) Chemically Speaking: How Organisms Talk to Each Other, (4) Molecular Self-Assembly and Artificial Molecular Machines, (5) Frontiers in Organic Materials for Information Processing, Energy and Sensors, and (6) Celebrating Marie Curie's 100th Anniversary of Her Nobel Prize in Chemistry. The Chemistry Section of AAAS is provided with funds to support only 1-2 symposia a year. Because of the much greater number of symposia approved in conjunction with observance of the 2011 International Year of Chemistry, additional support was sought from DOE to help support the 30 invited speakers and 8 symposia moderators/organizers. Support for the symposia provided the opportunity to highlight the excitement of current chemical research, to educate the public about the

  12. Magick, Mayhem, and Mavericks: The Spirited History of Physical Chemistry (Cathy Cobb)

    NASA Astrophysics Data System (ADS)

    Truman Schwartz, A.

    2003-07-01

    To be sure, errors such as these will not interfere with the ability of a non-expert reader to form a generally accurate picture of the development of physical chemistry. However, it is unfortunate to allow such carelessness to compromise an otherwise interesting and well-intentioned book. It is nicely illustrated with photographs and reproductions of engravings by Albrecht Dürer and others, and each of the 31 brief chapters is introduced by an epigraph. The illustrations and epigraphs are not all equally apt, but they dress up the book. All in all, this is a near miss. It will annoy many physical chemists, but that fact might recommend it to other readers.

  13. Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy.

    PubMed

    Swart, Ingmar; Gross, Leo; Liljeroth, Peter

    2011-08-28

    It is well known that scanning probe techniques such as scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) routinely offer atomic scale information on the geometric and the electronic structure of solids. Recent developments in STM and especially in non-contact AFM have allowed imaging and spectroscopy of individual molecules on surfaces with unprecedented spatial resolution, which makes it possible to study chemistry and physics at the single molecule level. In this feature article, we first review the physical concepts underlying image contrast in STM and AFM. We then focus on the key experimental considerations and use selected examples to demonstrate the capabilities of modern day low-temperature scanning probe microscopy in providing chemical insight at the single molecule level. PMID:21584325

  14. Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics.

    PubMed

    Womack, Ryan P

    2015-01-01

    This study takes a stratified random sample of articles published in 2014 from the top 10 journals in the disciplines of biology, chemistry, mathematics, and physics, as ranked by impact factor. Sampled articles were examined for their reporting of original data or reuse of prior data, and were coded for whether the data was publicly shared or otherwise made available to readers. Other characteristics such as the sharing of software code used for analysis and use of data citation and DOIs for data were examined. The study finds that data sharing practices are still relatively rare in these disciplines' top journals, but that the disciplines have markedly different practices. Biology top journals share original data at the highest rate, and physics top journals share at the lowest rate. Overall, the study finds that within the top journals, only 13% of articles with original data published in 2014 make the data available to others. PMID:26636676

  15. Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics

    PubMed Central

    Womack, Ryan P.

    2015-01-01

    This study takes a stratified random sample of articles published in 2014 from the top 10 journals in the disciplines of biology, chemistry, mathematics, and physics, as ranked by impact factor. Sampled articles were examined for their reporting of original data or reuse of prior data, and were coded for whether the data was publicly shared or otherwise made available to readers. Other characteristics such as the sharing of software code used for analysis and use of data citation and DOIs for data were examined. The study finds that data sharing practices are still relatively rare in these disciplines’ top journals, but that the disciplines have markedly different practices. Biology top journals share original data at the highest rate, and physics top journals share at the lowest rate. Overall, the study finds that within the top journals, only 13% of articles with original data published in 2014 make the data available to others. PMID:26636676

  16. Experimental determination of the Boltzmann constant: An undergraduate laboratory exercise for molecular physics or physical chemistry

    NASA Astrophysics Data System (ADS)

    Campbell, H. M.; Boardman, B. M.; DeVore, T. C.; Havey, D. K.

    2012-12-01

    This article describes an undergraduate laboratory exercise that uses optical spectroscopy to determine the magnitude and the uncertainty of the Boltzmann constant kb. The more accurate approach uses photoacoustic spectroscopy to measure the Doppler-broadened line profile of individual spectral lines of N2O to extract kb. Measurements and estimates of the uncertainties in the quantities needed to calculate kb from the line profiles are then used to estimate the uncertainty in kb. This experiment is unusual in that it uses advanced laser-based spectroscopy techniques to emphasize standard practices of uncertainty analysis. The core instrumentation is modular and relatively affordable; it requires a tunable single-mode laser, photoreceiver, optical cell, and vacuum pump. If this instrumentation is not available, an alternate approach can be performed which uses the intensity of each rotational transition of an infrared band to measure kb. Although there is more uncertainty using the alternate approach, low concentrations of CO2, DCl, or N2O give reasonable results for the magnitude of kb. Student assessment results indicate retention and mastery of the concept of combined measurement uncertainty.

  17. Advanced Silicon Solar Cell Device Physics and Design

    NASA Astrophysics Data System (ADS)

    Deceglie, Michael Gardner

    A fundamental challenge in the development and deployment of solar photovoltaic technology is a reduction in cost enabling direct competition with fossil-fuel-based energy sources. A key driver in this cost reduction is optimized device efficiency, because increased energy output leverages all photovoltaic system costs, from raw materials and module manufacturing to installation and maintenance. To continue progress toward higher conversion efficiencies, solar cells are being fabricated with increasingly complex designs, including engineered nanostructures, heterojunctions, and novel contacting and passivation schemes. Such advanced designs require a comprehensive and unified understanding of the optical and electrical device physics at the microscopic scale. This thesis focuses on a microscopic understanding of solar cell optoelectronic performance and its impact on cell optimization. We consider this in three solar cell platforms: thin-film crystalline silicon, amorphous/crystalline silicon heterojunctions, and thin-film cells with nanophotonic light trapping. The work described in this thesis represents a powerful design paradigm, based on a detailed physical understanding of the mechanisms governing solar cell performance. Furthermore, we demonstrate the importance of understanding not just the individual mechanisms, but also their interactions. Such an approach to device optimization is critical for the efficiency and competitiveness of future generations of solar cells.

  18. Blurring the boundaries among astronomy, chemistry, and physics: the Moseley centenary

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia

    2012-12-01

    The year 2012 marks the 100th anniversary of the first of two brief papers by Henry Moseley (1889-1915) in which he provided laboratory evidence that atomic number (Z, the charge on a nucleus) was more fundamental than atomic weight (the total number of particles, A, in a nucleus). He had been trained as a physicist; the most immediate impact was on chemistry (though physics eventually took over much of the territory); and the sorting out of the two concepts provided the foundation on which the modern understanding of nucleosynthesis in stars could be built. This discussion is a very preliminary one, drawing items from a disparate collection of secondary and tertiary sources. Additions, subtractions, and corrections from readers would be most welcome. The sections that follow provide ``snapshots'' of the status of astronomy, chemistry, and physics in 1863, 1913, 1963, and 2013, with sporadic mentions of one field contributing to another, invading another, or taking over parts of another. The last section focuses on more of the overlaps. If there is a lesson, it is that the fraternizers are more likely to be remembered than the isolationists, though this is at least partly a ``history is written by the winners'' effect.

  19. What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael

    2011-01-01

    Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)

  20. Deuterated formaldehyde in HH212: physics and chemistry of a typical protostar

    NASA Astrophysics Data System (ADS)

    Sahu, Dipen; Chakrabarti, Sandip Kumar; Minh, Young Chol

    2016-07-01

    HH212 is a nearby (400 pc) source in Orion. Recent observation (Codella et al., 2014) with ALMA using 24 no. of 12 m antenna revealed the source with high angular resolution and sensitivity (HPBW=0.65arc × 0.47 arc, σ - 3 to 4 mJy/beam/0.43 km s^-1) than previous SMA observation (Lee et al., 2007). This allows observations of several molecular lines e.g., SO, SO^2, C^{17}O, CO, and SiO. Emissions from these species probe different regions of this young stellar object, e.g., the outflow, the molecular jet, the envelop and the disk. The source might be the Class 0 protostellar system with a Keplerian disc and collimated bipolar SiO jets. Physics and chemistry of this region are very interesting. No deuterated molecule has been reported in this source except the recent report of deuterated water, HDO (Codella et al., 2016). Here, we report the HDCO (deuterated formaldehyde) line observation from ALMA data to probe the inner region of HH212. We compare HDCO line with other molecular lines to explain the possible chemistry and physics of the source, and also discussed the deuterium enrichment of molecular species.

  1. Development of new methods and polyphosphazene chemistries for advanced materials applications

    NASA Astrophysics Data System (ADS)

    Hindenlang, Mark D.

    The work described within this thesis focuses on the design, synthesis, and characterization of new phosphazenes with potential in advanced materials applications. Additionally, these unique polymers required the development of novel reaction methods or the investigation of new phosphazene chemistry to achieve their synthesis. Chapter 1 lays out some of the basic principles and fundamentals of polymer chemistry. Chapter 2 investigates the use of iodinated polyphosphazenes as x-ray opaque materials. Single-substituent polymers with 4-iodophenoxy or 4-iodophenylanaline ethyl ester units as the only side groups were prepared. Although a single-substitutent polymer with 3,5-diiodotyrosine ethyl ester groups was difficult to synthesize, probably because of steric hindrance, mixed-substituent polymers that contained the non-iodinated ethyl esters of glycyine, alanine, or phenylalanine plus a corresponding iodinated substituent, could be synthesized. Multinuclear NMR spectroscopy was used to follow the substitution of side groups onto the phosphazene back bone and judge the ratio of substituents. Chapter 3 details the initial investigation into 3,4-dihydroxy-L-phenylalanine ethyl ester and dopamine substituted polyphosphazenes that could be applied to a number of applications. L-DOPAEE was acetonide protected to prevent crosslinking reactions by the catechole functionality. Cyclic small molecule studies and macromolecular substitution reactions on the linear high polymer were conducted with the protected L-DOPA. Continuing studies into protection of the dopamine catechol have elucidated a viable method for the synthesis of amino-linked dopamine polymers. Chapter 4 describes a method for the synthesis of phosphazenes with quaternary amine complexes as potential antibacterial agents. Replacement reactions of pyridine alkoxides and chlorophosphazenes were first attempted at the small molecule level to study the reactivities of pyridine alkoxides. The formation of an

  2. Use of Protecting Groups in Carbohydrate Chemistry: An Advanced Organic Synthesis Experiment

    NASA Astrophysics Data System (ADS)

    Cunha, Anna C.; Pereira, Leticia O. R.; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.

    1999-01-01

    A simple and inexpensive three-step reaction sequence for advanced experimental organic chemistry using D-glucosamine hydrochloride as starting material for the synthesis of 2-amino-2-deoxy-1,3,4,6-tetra-O-acetyl-b-D-glucopyranose hydrochloride is described. D-Glucosamine hydrochloride is a carbohydrate derivative isolated from crab shells. It is inexpensive and readily available from most chemical companies. This reaction sequence is appropriate for teaching undergraduate students the correct use of protecting groups. This is a major concept in organic synthesis and one of the determinant factors in the successful realization of multiple-step synthetic projects. The aim of the experiment is to protect the hydroxyl groups of D-glucosamine leaving its amino group as hydrochloride salt. The experiment deals only with protection and deprotection reactions. All products are crystalline substances. The amino group of d-glucosamine hydrochloride is protected by a condensation reaction with p-methoxybenzaldehyde to produce the Schiff's base as a mixture of a- and b-anomers. The second step involves the protection of all hydroxyl groups by esterification reaction using acetic anhydride, forming the imino-tetraacetate derivative as the b-anomer. The stereospecificity of this reaction at the anomeric center is due to the voluminous imino group at C-2. Removal of the amino protection group of this derivative is the final step, which can be accomplished by a selective acid hydrolysis affording the desired peracylated D-glucosamine hydrochloride.

  3. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    NASA Astrophysics Data System (ADS)

    Draper, Alison J.

    2004-02-01

    In an advanced environmental chemistry course, the inclusion of semester-long scientific service projects successfully integrated the research process with course content. Each project involved a unique community-based environmental analysis in which students assessed an aspect of environmental health. The projects were due in small pieces at even intervals, and students worked independently or in pairs. Initially, students wrote a project proposal in which they chose and justified a project. Following a literature review of their topic, they drafted sampling and analysis plans using methods in the literature. Samples were collected and analyzed, and all students assembled scientific posters describing the results of their study. In the last week of the semester, the class traveled to a regional professional meeting to present the posters. In all, students found the experience valuable. They learned to be professional environmental chemists and learned the value of the discipline to community health. Students not only learned about their own project in depth, but they were inspired to learn textbook material, not for an exam, but because it helped them understand their own project. Finally, having a community to answer to at the end of the project motivated students to do careful work.

  4. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

    NASA Astrophysics Data System (ADS)

    Shao, Yihan; Gan, Zhengting; Epifanovsky, Evgeny; Gilbert, Andrew T. B.; Wormit, Michael; Kussmann, Joerg; Lange, Adrian W.; Behn, Andrew; Deng, Jia; Feng, Xintian; Ghosh, Debashree; Goldey, Matthew; Horn, Paul R.; Jacobson, Leif D.; Kaliman, Ilya; Khaliullin, Rustam Z.; Kuś, Tomasz; Landau, Arie; Liu, Jie; Proynov, Emil I.; Rhee, Young Min; Richard, Ryan M.; Rohrdanz, Mary A.; Steele, Ryan P.; Sundstrom, Eric J.; Woodcock, H. Lee, III; Zimmerman, Paul M.; Zuev, Dmitry; Albrecht, Ben; Alguire, Ethan; Austin, Brian; Beran, Gregory J. O.; Bernard, Yves A.; Berquist, Eric; Brandhorst, Kai; Bravaya, Ksenia B.; Brown, Shawn T.; Casanova, David; Chang, Chun-Min; Chen, Yunqing; Chien, Siu Hung; Closser, Kristina D.; Crittenden, Deborah L.; Diedenhofen, Michael; DiStasio, Robert A., Jr.; Do, Hainam; Dutoi, Anthony D.; Edgar, Richard G.; Fatehi, Shervin; Fusti-Molnar, Laszlo; Ghysels, An; Golubeva-Zadorozhnaya, Anna; Gomes, Joseph; Hanson-Heine, Magnus W. D.; Harbach, Philipp H. P.; Hauser, Andreas W.; Hohenstein, Edward G.; Holden, Zachary C.; Jagau, Thomas-C.; Ji, Hyunjun; Kaduk, Benjamin; Khistyaev, Kirill; Kim, Jaehoon; Kim, Jihan; King, Rollin A.; Klunzinger, Phil; Kosenkov, Dmytro; Kowalczyk, Tim; Krauter, Caroline M.; Lao, Ka Un; Laurent, Adèle D.; Lawler, Keith V.; Levchenko, Sergey V.; Lin, Ching Yeh; Liu, Fenglai; Livshits, Ester; Lochan, Rohini C.; Luenser, Arne; Manohar, Prashant; Manzer, Samuel F.; Mao, Shan-Ping; Mardirossian, Narbe; Marenich, Aleksandr V.; Maurer, Simon A.; Mayhall, Nicholas J.; Neuscamman, Eric; Oana, C. Melania; Olivares-Amaya, Roberto; O'Neill, Darragh P.; Parkhill, John A.; Perrine, Trilisa M.; Peverati, Roberto; Prociuk, Alexander; Rehn, Dirk R.; Rosta, Edina; Russ, Nicholas J.; Sharada, Shaama M.; Sharma, Sandeep; Small, David W.; Sodt, Alexander; Stein, Tamar; Stück, David; Su, Yu-Chuan; Thom, Alex J. W.; Tsuchimochi, Takashi; Vanovschi, Vitalii; Vogt, Leslie; Vydrov, Oleg; Wang, Tao; Watson, Mark A.; Wenzel, Jan; White, Alec; Williams, Christopher F.; Yang, Jun; Yeganeh, Sina; Yost, Shane R.; You, Zhi-Qiang; Zhang, Igor Ying; Zhang, Xing; Zhao, Yan; Brooks, Bernard R.; Chan, Garnet K. L.; Chipman, Daniel M.; Cramer, Christopher J.; Goddard, William A., III; Gordon, Mark S.; Hehre, Warren J.; Klamt, Andreas; Schaefer, Henry F., III; Schmidt, Michael W.; Sherrill, C. David; Truhlar, Donald G.; Warshel, Arieh; Xu, Xin; Aspuru-Guzik, Alán; Baer, Roi; Bell, Alexis T.; Besley, Nicholas A.; Chai, Jeng-Da; Dreuw, Andreas; Dunietz, Barry D.; Furlani, Thomas R.; Gwaltney, Steven R.; Hsu, Chao-Ping; Jung, Yousung; Kong, Jing; Lambrecht, Daniel S.; Liang, WanZhen; Ochsenfeld, Christian; Rassolov, Vitaly A.; Slipchenko, Lyudmila V.; Subotnik, Joseph E.; Van Voorhis, Troy; Herbert, John M.; Krylov, Anna I.; Gill, Peter M. W.; Head-Gordon, Martin

    2015-01-01

    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

  5. Some physics and chemistry of Coblation® electrosurgical plasma devices

    NASA Astrophysics Data System (ADS)

    Stalder, Kenneth R.; Ryan, Thomas P.; Woloszko, Jean

    2013-02-01

    Electrosurgical devices employing plasmas to ablate, cut and otherwise treat tissues have been in widespread use for decades. Following d'Arsonval's 19th century work on the neuromuscular response from high-frequency excitation of tissue, Doyen treated skin blemishes with a spark-gap generator in 1909. In the late 1920's, physician Harvey Cushing and Harvard physicist William Bovie developed an electrosurgical device and power source that eventually became a standard of care for cutting, coagulating, desiccating, or fulgurating tissue. Beginning in the 1990's a new class of low-voltage electrosurgical devices employing electricallyconducting saline fluids were developed by ArthroCare Corp. These modern Coblation® devices are now widely used in many different surgical procedures, including those in arthroscopic surgery, otorhinolaryngology, spine surgery, urology, gynecological surgery, and others. This paper summarizes some of the research we have been doing over the last decade to elucidate the physics and chemistry underlying Coblation® electrosurgical devices. Electrical-, thermal-, fluid-, chemicaland plasma-physics all play important roles in these devices and give rise to a rich variety of observations. Experimental techniques employed include optical and mass spectroscopy, fast optical imaging, and electrical voltage and current measurements. Many of the features occur on fast time scales and small spatial scales, making laboratory measurements difficult, so coupled-physics, finite-element-modeling can also be employed to glean more information than has been acquired thus far through physical observation.

  6. PREFACE: 2013 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2013)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford

    2013-03-01

    The 2013 International Conference on Science and Engineering in Mathematics, Chemistry and Physics (ScieTech 2013), was held at the Aston Rasuna Hotel, Jakarta, Indonesia, on 24-25 January 2013. The ScieTech 2013 conference aims to bring together scholars, leading researchers and experts from diverse backgrounds and applications areas. Special emphasis is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics, all areas of sciences and applied mathematics. We would like to thank the invited and plenary speakers as well as all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program. This year, we received 197 papers and, after rigorous review, 67 papers were accepted. The participants come from 21 countries. There are 6 (six) Plenary and Invited Speakers. It is an honour to present this volume of Journal of Physics: Conference Series and we thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed ScieTech 2013 be be sucyh a success. The Editors of the ScieTech 2013 Proceedings Dr Ford Lumban Gaol Dr Hoga Saragih Tumpal Pandiangan Dr Mohamed Bououdina The PDF also contains the abstracts of the Invited and Plenary talks, and some photographs taken during the conference.

  7. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  8. The effect of teacher quality on the achievement of students in Integrated Physics and Chemistry

    NASA Astrophysics Data System (ADS)

    Alexander, Rima

    For many years, researchers, policy makers, and the education community have explored various school variables and their impact on student achievement (Darling-Hammond, 2000; Ferguson and Womack 1993; Ferguson and Ladd 1996; Rice, 2003; Rockoff, 2003; Rowan, Chiang, and Miller 1997; Sanders and Horn, 1996; Wright Horn and Sanders, 1997). Invariably, the issue of teacher quality arises. Teacher quality is the single most influential factor under school control that affects student achievement (Darling-Hammond, 2000; Rice, 2003; Rockoff, 2003; Sanders and Horn, 1996; Wright Horn and Sanders, 1997). Generally, students taught by highly qualified teachers perform better on standardized tests than students with less qualified teachers (Ferguson and Womack 1993; Ferguson and Ladd 1996; Rowan, Chiang, and Miller 1997). Previous research indicates that teachers indeed matter for the improvement of student achievement, but getting good measures of what is meant by teacher quality is a continuing challenge (Goldhaber, 2002). The purpose of this study was to describe the effect of teacher quality on the achievement of students in Integrated Physics and Chemistry (IPC). In order to achieve this purpose, this study addressed the following research question: chemistry and physics teachers compare to the achievement of students taught by less-qualified IPC teachers? A causal-comparative methodology was employed to address this research question. The independent variable was teacher quality---highly-qualified or less qualified. The teacher attributes that were examined in this study are: (1) teachers' educational background; (2) content knowledge; (3) pedagogical knowledge; and (4) certification. The dependent variable was student achievement in integrated physics and chemistry, as measured by an end-of-course IPC District Assessment of Curriculum, IPC DAC. Descriptive statistics were computed for the independent variable in the study. A Chi Square was performed on the data

  9. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    ERIC Educational Resources Information Center

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  10. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012)

    NASA Astrophysics Data System (ADS)

    Foffi, G.; Pastore, A.; Piazza, F.; Temussi, P. A.

    2013-08-01

    held in Ascona from 10 to 14 June 2012. In the unique scenario of the Maggiore lake and absorbed in the magic atmosphere of the Centro Stefano Franscini (CSF) at Monte Verità, we enjoyed three-and-a-half days of intense and inspiring activity, where not only many of the most prominent scientists working on macromolecular crowding, but also experts in closely related fields such as colloids and soft matter presented their work. The meeting was intended and has been organized to bring theoreticians and experimentalists together in the attempt to promote an active dialogue. Moreover, we wanted different disciplines to be represented, notably physics and chemistry, besides biology, as cross-fertilization is proving an increasingly fundamental source of inspiration and advancement. This issue of Physical Biology (PB) features a selection of the oral contributions presented at the conference, expanded in the form of research or review articles. PB, one of the scientific journals of the Institute of Physics (IOP), is one of the most dynamic and lively forums active at the interface between biology on one side, and physics and mathematics on the other. As its mission is stated by IOP, PB 'focuses on research in which physics-based approaches lead to new insights into biological systems at all scales of space and time, and all levels of complexity'. For these reasons, and also in view of its high reputation and broad readership, PB appears to be the ideal place for disseminating the thriving pieces of research presented at the conference. We are extremely grateful to PB and its kind and efficient editorial staff who helped make this issue a great scientific follow-up to the conference. The opening lecture of the conference, the first of four day-opening keynote lectures, was given by Allen P Minton from NIH (USA), possibly the most influential among the pioneers in the field. He provided a lucid and well-thought-out overview of the concept of macromolecular crowding through an

  12. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  13. Bioorganic Chemistry. A Natural Reunion of the Physical and Life Sciences

    PubMed Central

    Poulter, C. Dale

    2009-01-01

    Organic substances were conceived as those found in living organisms. Although the definition was soon broadened to include all carbon-containing compounds, naturally occurring molecules have always held a special fascination for organic chemists. From these beginnings, molecules from nature were indespensible tools as generations of organic chemists developed new techniques for determining structures, analyzed the mechanisms of reactions, explored the effects conformation and stereochemistry on reactions, and found challenging new targets to synthesize. Only recently have organic chemists harnessed the powerful techniques of organic chemistry to study the functions of organic molecules in their biological hosts, the enzymes that synthesize molecules and the complex processes that occur in a cell. In this Perspective, I present a personal account my entrée into bioorganic chemistry as a physical organic chemist and subsequent work to understand the chemical mechanisms of enzyme-catalyzed reactions, to develop techniques to identify and assign hydrogen bonds in tRNAs through NMR studies with isotopically labeled molecules, and to study how structure determines function in biosynthetic enzymes with proteins obtained by genetic engineering. PMID:19323569

  14. Liaison activities with the institute of physical chemistry, Russian academy of sciences: FY 1996

    SciTech Connect

    Delegard, C.H.

    1996-09-23

    The task ``IPC/RAS Liaison and Tank Waste Testing`` is a program being conducted in fiscal year (FY) 1996 with the support of the U.S. Department of Energy (DOE) Office of Science and Technology, EM-53 Efficient Separations and Processing (ESP) Crosscutting Program, under the technical task plan RLA6C342. The principal investigator is Cal Delegard of the Westinghouse Hanford Company. The task involves a technical liaison with the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) and their DOE-supported investigations into the fundamental and applied chemistry of the transuranium elements (primarily neptunium, plutonium, and americium) and technetium in alkaline media. The task has three purposes: 1. Providing technical information and technical direction to the IPC/RAS. 2. Disseminating IPC/RAS data and information to the DOE technical community. 3. Verifying IPC/RAS results through laboratory testing and comparison with published data. This report fulfills the milestone ``Provide End-of-Year Report to Focus Area,`` due September 30, 1996.

  15. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers.

    PubMed

    Buttini, Francesca; Miozzi, Michele; Balducci, Anna Giulia; Royall, Paul G; Brambilla, Gaetano; Colombo, Paolo; Bettini, Ruggero; Forbes, Ben

    2014-04-25

    Solution composition alters the dynamics of beclomethasone diproprionate (BDP) particle formation from droplets emitted by pressurised metered dose inhalers (pMDIs). The hypothesis that differences in inhaler solutions result in different solid particle physical chemistry was tested using a suite of complementary calorimetric techniques. The atomisation of BDP-ethanol solutions from commercial HFA-pMDI produced aerodynamically-equivalent solid particle aerosols. However, differences in particle physico-chemistry (morphology and solvate/clathrate formation) were detected by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and supported by hot stage microscopy (HSM). Increasing the ethanol content of the formulation from 8 to 12% (w/w), which retards the evaporation of propellant and slows the increase in droplet surface viscosity, enhanced the likelihood of particles drying with a smooth surface. The dissolution rate of BDP from the 12% (w/w) ethanol formulation-derived particles (63% dissolved over 120 min) was reduced compared to the 8% (w/w) ethanol formulation-derived particles (86% dissolved over 120 min). The addition of 0.01% (w/w) formoterol fumarate or 1.3% (w/w) glycerol to the inhaler solution modified the particles and reduced the BDP dissolution rate further to 34% and 16% dissolved in 120 min, respectively. These data provide evidence that therapeutic aerosols from apparently similar inhaler products, including those with similar aerodynamic performance, may behave non-equivalently after deposition in the lungs. PMID:24491530

  16. Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Hofmann, A.; Staude, J.

    The third Advances in Solar Physics Euroconference (ASPE) "Magnetic Fields and Oscillations"concluded a series of three Euroconferences sponsored by the European Union. The meeting took place in Caputh near Potsdam, Germany, on September 22-25, 1998, followed by the JOSO (Joint Organization for Solar Observations) 30th Annual Board Meeting on September 26, 1998. The ASPE formula is attractive and compares well with other meetings with "show-and-tell" character. This meeting had 122 participants coming from 26 countries; 36 participants came from countries formerly behind the Iron Curtain; a "politically incorrect" estimate says that 48 participants were below 35 years of age, with an unusually large female-to-male ratio. This characteristic of youngness is the more striking since solar physics is a perhaps overly established field exhibiting an overly senior age profile. It was a good opportunity to train this young generation in Solar Physics. The conference topic "Magnetic Fields and Oscillations" obviously was wide enough to cater to many an interest. These proceedings are organized according to the structure of the meeting. They include the topics 'High resolution spectropolarimetry and magnetometry', 'Flux-tube dynamics', 'Modelling of the 3-D magnetic field structure', 'Mass motions and magnetic fields in sunspot penumbral structures', 'Sunspot oscillations', 'Oscillations in active regions - diagnostics and seismology', 'Network and intranetwork structure and dynamics', and 'Waves in magnetic structures'. These topics covered the first 2.5 days of the conference. The reviews, oral contributions, and poster presentations were by no means all of the meeting. The ASPE formula also adds extensive plenary sessions of JOSO Working groups on topics that involve planning of Europe-wide collaboration. At this meeting these concerned solar observing techniques, solar data bases, coordination between SOHO and ground-based observing, and preparations for August 11, 1999

  17. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.

  18. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    DOE PAGESBeta

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that themore » alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less

  19. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    SciTech Connect

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  20. The Puzzle of Falling Enrolments in Physics and Chemistry Courses: Putting Some Pieces Together

    NASA Astrophysics Data System (ADS)

    Lyons, Terry

    2006-09-01

    This paper reports and discusses the principal findings of an Australian study exploring the decisions of high achieving Year 10 students about taking physics and chemistry courses (Lyons, 2003). The study used a ‘multiple worlds’ framework to explore the diverse background characteristics that previous quantitative research had shown were implicated in these decisions. Based on analyses of questionnaire and interview data, the study found that the students’ decisions involved the complex negotiation of a number of cultural characteristics within their school science and family worlds. Many of the students regarded junior high school science as irrelevant, uninteresting and difficult, leaving them with few intrinsic reasons for enrolling in senior science courses. The study found that decisions about taking physical science courses were associated with the resources of cultural and social capital within their families, and the degree to which these resources were congruent with the advantages of choosing these courses. The paper concludes that the low intrinsic value of school science and the erosion of its strategic value contribute to the reluctance of students to choose physical science courses in the senior school.

  1. For the love of learning science: Connecting learning orientation and career productivity in physics and chemistry

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Potvin, Geoff; Tai, Robert H.; Almarode, John

    2010-06-01

    An individual’s motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this paper: performance orientation or motivation to demonstrate one’s ability or performance to others, and learning orientation or motivation through the desire to learn about a topic. The data were obtained as part of Project Crossover, a mixed-methods study which focused on studying the transition from graduate student to scientist in the physical sciences and included a survey of members of two national professional physical science organizations. Using regression analysis on data from 2353 physicists and chemists, results indicate that physicists and chemists who reported a learning orientation as their motivation for going to graduate school were more productive, in terms of total career primary and/or first-author publications and grant funding, than those reporting a performance orientation. Furthermore, given equal salary, learning-oriented individuals produced more primary and/or first-author publications than their nonlearning oriented counterparts.

  2. Advanced quantitative measurement methodology in physics education research

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three

  3. Using Metaphor Theory to Examine Conceptions of Energy in Biology, Chemistry, and Physics

    NASA Astrophysics Data System (ADS)

    Lancor, Rachael

    2014-06-01

    Energy is one of the most important unifying themes in science. Yet the way energy is conceptualized varies depending on context. In this paper, the discourse used to explain the role of energy in systems from biology, chemistry, and physics is examined from the perspective of metaphor theory. Six substance metaphors for energy are identified in pedagogical discourse (i.e., textbooks and the science education literature): energy as a substance that can be accounted for, can flow, can be carried, can change forms, can be lost, and can be an ingredient, a product or stored in some way. Each of these conceptual metaphors highlight and obscure various characteristics of energy, and provide a set of frameworks that each afford a different understanding of the energy concept.

  4. On determining important aspects of mathematical models: Application to problems in physics and chemistry

    NASA Technical Reports Server (NTRS)

    Rabitz, Herschel

    1987-01-01

    The use of parametric and functional gradient sensitivity analysis techniques is considered for models described by partial differential equations. By interchanging appropriate dependent and independent variables, questions of inverse sensitivity may be addressed to gain insight into the inversion of observational data for parameter and function identification in mathematical models. It may be argued that the presence of a subset of dominantly strong coupled dependent variables will result in the overall system sensitivity behavior collapsing into a simple set of scaling and self similarity relations amongst elements of the entire matrix of sensitivity coefficients. These general tools are generic in nature, but herein their application to problems arising in selected areas of physics and chemistry is presented.

  5. Heterodyne Spectroscopy in the Thermal Infrared Region: A Window on Physics and Chemistry

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    2004-01-01

    The thermal infrared region contains molecular bands of many of the most important species in gaseous astronomical sources. True shapes and frequencies of emission and absorption spectral lines from these constituents of planetary and stellar atmospheres contain unique information on local temperature and abundance distribution, non-thermal effects, composition, local dynamics and winds. Heterodyne spectroscopy in the thermal infrared can remotely measure true line shapes in relatively cool and thin regions and enable the retrieval of detailed information about local physics and chemistry. The concept and techniques for heterodyne detection will be discussed including examples of thermal infrared photomixers and instrumentation used in studies of several astronomical sources. Use of heterodyne detection to study non-LTE phenomena, planetary aurora, minor planetary species and gas velocities (winds) will be discussed. A discussion of future technological developments and relation to space flight missions will be addressed.

  6. Enhancing Student Success in Biology, Chemistry, and Physics by Transforming the Faculty Culture

    NASA Astrophysics Data System (ADS)

    Jackson, Howard; Smith, Leigh; Koenig, Kathleen; Beyette, Jill; Kinkle, Brian; Vonderheide, Anne

    We present preliminary results of an effort to enhance undergraduate student success in the STEM disciplines. We explore a multistep approach that reflects recent literature and report initial results by each of the Departments of Biology, Chemistry, and Physics of implementing several change strategies. The central elements of our approach involve identified departmental Teaching and Learning Liaisons, a unique faculty development component by our teaching center, a vertical integration of leadership across department heads, the Dean, and the Provost, and the explicit acknowledgement that change happens locally. Teaching and Learning lunches across the departments have attracted an attendance of ~65% of the faculty. The use of Learning Assistants in classrooms has also increased sharply. Modest changes in the student success rates have been observed. These efforts and others at the decanal and provostal levels promise changes in student success. We acknowledge the financial support of the National Science Foundation through DUE 1544001 and 1431350.

  7. Exploring Atmospheric Aerosol Chemistry with Advanced High-Resolution Mass Spectrometry and Particle Imaging Methods

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S.

    2014-12-01

    Physical and chemical complexity of atmospheric aerosols presents significant challenges both to experimentalists working on aerosol characterization and to modelers trying to parameterize critical aerosol properties. Multi-modal approaches that combine state-of-the-art experimental, theoretical, and modeling methods are becoming increasingly important in aerosol research. This presentation will discuss recent applications of unique high-resolution mass spectrometry and particle imaging tools developed at two Department of Energy's user facilities, the Environmental Molecular Science Laboratory (EMSL) and Advanced Light Source (ALS), to studies of molecular composition, photochemical aging, and properties of laboratory-generated and field aerosols. Specifically, this presentation will attempt to address the following questions: (a) how do NO2, SO2, and NH3 affect molecular level composition of anthropogenic aerosols?; (b) what factors determine viscosity/surface tension of organic aerosol particles?; (c) how does photolysis affect molecular composition and optical properties of organic aerosols?

  8. Undergraduate Professional Education in Chemistry: Guidelines and Evaluation Procedures.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    Provided are guidelines for evaluating undergraduate professional education in chemistry. The guidelines summarize an approved program as including: 400 hours of classroom work; 500 hours of laboratory work; a core curriculum covering principles of analytical, inorganic, organic, and physical chemistry; 1 year of advanced work in chemistry or…

  9. Surface chemistry improvement of 100mm GaSb for advanced space based applications

    NASA Astrophysics Data System (ADS)

    Allen, L. P.; Flint, J. P.; Meshew, G.; Trevethan, J.; Furlong, M. J.; Martinez, B.; Mobray, A.

    2012-01-01

    As size requirements and pixel viabilities for infrared focal plane arrays (IRFPAs) continue to increase, resolution and sensitivity requirements for high performance advanced imaging systems must meet or surpass stringent demands. Strain layer superlattice (SLS) grown by molecular beam epitaxy (MBE) on 100mm GaSb has necessitated changes in crystal processing and finishing parameters. Device layer growth typically requires a thin (2-5 nm) and highly desorbable surface oxide on very flat substrates for successful MBE. This study compares the ability for rapid pre-epi desoprtion of three different chemo-mechanical (CMP) finishes on 100mm n:GaSb: CMP-1 with sequential double side polished (DSP), CMP-2 with sequential DSP, and CMP-2 with simultaneous double side polished (S-DSP). X-ray photoelectron spectroscopy (XPS) reveals the improvement from a CMP-1 (Ga-oxide rich) to CMP-2 (Sb-oxide rich) surface. No difference in surface chemistry was found between the CMP-2 of the sequential vs. simultaneous DSP. Tropel flatness measurements of the 100mm n:GaSb substrates show that both DSP and SDSP substrate batches yield excellent (<5μm) wafer warp. However, initial studies have shown a more consistent wafer flatness with use of the simultaneous-DSP process. MBE growth on the Sb-rich surface was examined by high resolution XRD and resulted in a 64.7A periodicity and excellent FWHM (~20 arcsec) which verified the GaSb surface finish effectiveness. The resultant surface finish and flatness may provide a benefit for larger diameter GaSb IRFPA applications.

  10. Recent advances in the application of electron tomography to materials chemistry.

    PubMed

    Leary, Rowan; Midgley, Paul A; Thomas, John Meurig

    2012-10-16

    Nowadays, tomography plays a central role in pureand applied science, in medicine, and in many branches of engineering and technology. It entails reconstructing the three-dimensional (3D) structure of an object from a tilt series of two-dimensional (2D) images. Its origin goes back to 1917, when Radon showed mathematically how a series of 2D projection images could be converted to the 3D structural one. Tomographic X-ray and positron scanning for 3D medical imaging, with a resolution of ∼1 mm, is now ubiquitous in major hospitals. Electron tomography, a relatively new chemical tool, with a resolution of ∼1 nm, has been recently adopted by materials chemists as an invaluable aid for the 3D study of the morphologies, spatially-discriminating chemical compositions, and defect properties of nanostructured materials. In this Account, we review the advances that have been made in facilitating the recording of the required series of 2D electron microscopic images and the subsequent process of 3D reconstruction of specimens that are vulnerable, to a greater or lesser degree, to electron beam damage. We describe how high-fidelity 3D tomograms may be obtained from relatively few 2D images by incorporating prior structural knowledge into the reconstruction process. In particular, we highlight the vital role of compressed sensing, a recently developed procedure well-known to information theorists that exploits ideas of image compression and "sparsity" (that the important image information can be captured in a reduced data set). We also touch upon another promising approach, "discrete" tomography, which builds into the reconstruction process a prior assumption that the object can be described in discrete terms, such as the number of constituent materials and their expected densities. Other advances made recently that we outline, such as the availability of aberration-corrected electron microscopes, electron wavelength monochromators, and sophisticated specimen goniometers

  11. Bridging the Cognitive-Affective Gaps: Teaching Chemistry while Advancing Affective Objectives. The Singapore Curricular Experience

    ERIC Educational Resources Information Center

    Tan, Kok Siang; Goh, Ngoh Khang; Chia, Lian Sai

    2006-01-01

    Chemistry teachers face constraints when trying to integrate cognitive and affective objectives, and hence thoughtful lesson planning is required to achieve the goal. Chemistry teachers can educate students to be knowledgeable about chemical concepts, processes and the benefits of responsible practice by the chemical industry, while being aware,…

  12. TIMSS Advanced 2015 and Advanced Placement Calculus & Physics. A Framework Analysis. Research in Review 2016-1

    ERIC Educational Resources Information Center

    Lazzaro, Christopher; Jones, Lee; Webb, David C.; Grover, Ryan; Di Giacomo, F. Tony; Marino, Katherine Adele

    2016-01-01

    This report will determine to what degree the AP Physics 1 and 2 and AP Calculus AB and BC frameworks are aligned with the Trends in International Mathematics and Science Study (TIMSS) Advanced Physics and Mathematics frameworks. This will enable an exploration of any differences in content coverage and levels of complexity, and will set the stage…

  13. Advanced tokamak physics experiments on DIII-D

    SciTech Connect

    Taylor, T.S.

    1998-12-01

    Significant reductions in the size and cost of a fusion power plant core can be realized if simultaneous improvements in the energy confinement time ({tau}{sub E}) and the plasma pressure (or beta {beta}{sub T} = 2 {mu}{sub 0} < p > /B{sub T}{sup 2}) can be achieved in steady-state conditions with high self driven bootstrap current fraction. In addition, effective power exhaust and impurity and particle control is required. Significant progress has been made in experimentally achieving regimes having the required performance in all of these aspects as well as in developing a theoretical understanding of the underlying physics. The authors have extended the duration of high performance ELMing H-mode plasmas with {beta}{sub N} H{sub iop} {approximately} 10 for 5 {tau}{sub E} ({approximately}1 s) and have demonstrated that core transport barriers can be sustained for the entire 5-s neutral beam duration in L-mode plasmas. Recent DIII-D work has advanced the understanding of improved confinement and internal transport barriers in terms of E x B shear stabilization of micro turbulence. With the aim of current profile control in discharges with negative central magnetic shear, they have demonstrated off-axis electron cyclotron current drive for the first time in a tokamak, finding an efficiency above theoretical expectations. MHD stability has been improved through shape optimization, wall stabilization, and modification of the pressure and current density profiles. Heat flux reduction and improved impurity and particle control have been realized through edge/divertor radiation and understanding and utilization of forced scrape off layer flow and divertor baffling.

  14. Earth materials research: Report of a Workshop on Physics and Chemistry of Earth Materials

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The report concludes that an enhanced effort of earth materials research is necessary to advance the understanding of the processes that shape the planet. In support of such an effort, there are new classes of experiments, new levels of analytical sensitivity and precision, and new levels of theory that are now applicable in understanding the physical and chemical properties of geological materials. The application of these capabilities involves the need to upgrade and make greater use of existing facilities as well as the development of new techniques. A concomitant need is for a sample program involving their collection, synthesis, distribution, and analysis.

  15. The Clarinet Reed: AN Introduction to its Biology, Chemistry, and Physics

    NASA Astrophysics Data System (ADS)

    Casadonte, Donald Jay

    Although clarinet reeds have been used for over two-hundred years, there has been little scientific study of the reed, either from a material science or engineering perspective. This document is intended to be the first large-scale study of the clarinet reed covering its biology, chemistry and physics. The reed is made, most often, from cane--Arundo donax. We present a complete atlas of the anatomy of Arundo donax, and examine the role of each of the cellular components in the clarinet reed performance. We examine the three principal chemical components of the processed clarinet reed: cellulose, xylan, and lignin through the use of instrumental analysis. We examine the breakdown pathways of the clarinet reed, and isolate five: (1) decrystallization of the cellulose microstructure, (2) removal of xylan by saliva, (3) plasticization of the reed material due to alkalai attack in saliva, (4) the culturing of a bacterium, Staph Epidermitis, in the cell wall matrix, (5) density changes due to salival coating of the reed. The physics of the reed is examined, and a finite element model of the modal shapes is presented. We present a theoretical treatment of the two modes of excitation of the reed, a low frequency mode (normal playing mode) due to vortex shedding, and a high frequency mode which is associated with reed squeak.

  16. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    SciTech Connect

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  17. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.

    PubMed

    Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael

    2015-10-14

    Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts. PMID:26355535

  18. Filling a Plastic Bag with Carbon Dioxide: A Student-Designed Guided-Inquiry Lab for Advanced Placement and College Chemistry Courses

    ERIC Educational Resources Information Center

    Lanni, Laura M.

    2014-01-01

    A guided-inquiry lab, suitable for first-year general chemistry or high school advanced placement chemistry, is presented that uses only inexpensive, store-bought materials. The reaction of sodium bicarbonate (baking soda) with aqueous acetic acid (vinegar), under the constraint of the challenge to completely fill a sealable plastic bag with the…

  19. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  20. Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating Their Knowledge Transfer Relating to Particle Position in Physical Changes

    ERIC Educational Resources Information Center

    Smith, K. Christopher; Villarreal, Savannah

    2015-01-01

    This article reports on the types of views and misconceptions uncovered after assessing 155 freshman general chemistry students on the concept of particle position during the reversible physical change of melting, using the Melting Cycle Instrument, which illustrates particulate-level representations of a melting-freezing cycle. Animations…

  1. Theory of planetary atmospheres: an introduction to their physics and chemistry /2nd revised and enlarged edition/

    NASA Astrophysics Data System (ADS)

    Chamberlain, Joseph W.; Hunten, Donald M.

    Theoretical models of planetary atmospheres are characterized in an introductory text intended for graduate physics students and practicing scientists. Chapters are devoted to the vertical structure of an atmosphere; atmospheric hydrodynamics; the chemistry and dynamics of the earth stratosphere; planetary astronomy; ionospheres; airglows, auroras, and aeronomy; and the stability of planetary atmospheres. Extensive graphs, diagrams, and tables of numerical data are provided.

  2. Reasoning Using Particulate Nature of Matter: An Example of a Sociochemical Norm in a University-Level Physical Chemistry Class

    ERIC Educational Resources Information Center

    Becker, Nicole; Rasmussen, Chris; Sweeney, George; Wawro, Megan; Towns, Marcy; Cole, Renee

    2013-01-01

    In college level chemistry courses, reasoning using molecular and particulate descriptions of matter becomes central to understanding physical and chemical properties. In this study, we used a qualitative approach to analyzing classroom discourse derived from Toulmin's model of argumentation in order to describe the ways in which students develop…

  3. Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Heinz, William F.; Hoh, Jan H.

    2005-01-01

    Atomic force microscope (AFM) investigates mechanically the chemical properties of individual molecules, surfaces, and materials using suitably designed probes. The current state of the art of AFM in terms of imaging, force measurement, and sample manipulation and its application to physical chemistry is discussed.

  4. A Precise, Simple, and Low-Cost Experiment to Determine the Isobaric Expansion Coefficient for Physical Chemistry Students

    ERIC Educational Resources Information Center

    Pe´rez, Eduardo

    2015-01-01

    The procedure of a physical chemistry experiment for university students must be designed in a way that the accuracy and precision of the measurements is properly maintained. However, in many cases, that requires costly and sophisticated equipment not readily available in developing countries. A simple, low-cost experiment to determine isobaric…

  5. Translating across Macroscopic, Submicroscopic, and Symbolic Levels: The Role of Instructor Facilitation in an Inquiry-Oriented Physical Chemistry Class

    ERIC Educational Resources Information Center

    Becker, Nicole; Stanford, Courtney; Towns, Marcy; Cole, Renee

    2015-01-01

    In physical chemistry classrooms, mathematical and graphical representations are critical tools for reasoning about chemical phenomena. However, there is abundant evidence that to be successful in understanding complex thermodynamics topics, students must go beyond rote mathematical problem solving in order to connect their understanding of…

  6. Determination of Spin-Lattice Relaxation of Time Using (Super 13)C NMR: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Gasyna, Zbigniew L.; Jurkiewicz, Antoni

    2004-01-01

    An experiment designed for the physical chemistry laboratory where (super 13)C NMR is applied to determine the spin-lattice relaxation time for carbon atoms in n-hexanol is proposed. It is concluded that students learn the principles and concepts of NMR spectroscopy as well as dynamic NMR experiments.

  7. Practical Work in Biology, Chemistry and Physics at Lower Secondary and General Upper Secondary Schools in Slovenia

    ERIC Educational Resources Information Center

    Sorgo, Andrej; Spernjak, Andreja

    2012-01-01

    Syllabi in the science subjects, biology, chemistry and physics at lower and general upper secondary school are compared in the light of their underlying philosophies, goals, objectives and recognized importance in science teaching. Even though all syllabi were prepared within the same framework, great differences among syllabi concerning…

  8. Post-16 Physics and Chemistry Uptake: Combining Large-Scale Secondary Analysis with In-Depth Qualitative Methods

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith

    2011-01-01

    Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…

  9. Ionic Strength Effect on the Rate of Reduction of Hexacyanoferrate (III) by Ascorbic Acid: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Watkins, Kenneth W.; Olson, June A.

    1980-01-01

    Describes a physical chemistry experiment that allows students to test the effect of ionic strength on the rates of a reaction between ions. The reduction of hexacyanoferrate III by ascorbic acid is detailed. Comparisons with the iodine clock reaction are made. (CS)

  10. Utilization of a Microcomputer for the Study of an Iodine Oxidation and Equilibrium Reaction: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Julien, L. M.

    1984-01-01

    Describes a physical chemistry experiment which incorporates the use of a microcomputer to enhance understanding of combined kinetic and equilibrium phenomena, to increase experimental capabilities when working with large numbers of students and limited equipment, and for the student to develop a better understanding of experimental design. (JN)

  11. Determination of Molecular Self-Diffusion Coefficients Using Pulsed-Field-Gradient NMR: An Experiment for Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.

    2012-01-01

    NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…

  12. Converting STEM Doctoral Dissertations into Patent Applications: A Study of Chemistry, Physics, Mathematics, and Chemical Engineering Dissertations from CIC Institutions

    ERIC Educational Resources Information Center

    Butkovich, Nancy J.

    2015-01-01

    Doctoral candidates may request short-term embargoes on the release of their dissertations in order to apply for patents. This study examines how often inventions described in dissertations in chemical engineering, chemistry, physics, and mathematics are converted into U.S. patent applications, as well as the relationship between dissertation…

  13. Ab Initio Determinations of Photoelectron Spectra Including Vibronic Features: An Upper-Level Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.

    2008-01-01

    We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…

  14. Observation and Analysis of N[subscript 2]O Rotation-Vibration Spectra: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Bryant, Mark S.; Reeve, Scott W.; Burns, William A.

    2008-01-01

    The linear molecule N[subscript 2]O is presented as an alternative gas-phase species for the ubiquitous undergraduate physical chemistry rotation-vibration spectroscopy experiment. Utilizing a 0.5 cm[superscript -1] resolution teaching grade FTIR spectrometer, 15 vibrational bands, corresponding to 1229 rotation-vibration transitions, have been…

  15. Theory of planetary atmospheres: an introduction to their physics and chemistry /2nd revised and enlarged edition/

    SciTech Connect

    Chamberlain, J.W.; Hunten, D.M.

    1987-01-01

    Theoretical models of planetary atmospheres are characterized in an introductory text intended for graduate physics students and practicing scientists. Chapters are devoted to the vertical structure of an atmosphere; atmospheric hydrodynamics; the chemistry and dynamics of the earth stratosphere; planetary astronomy; ionospheres; airglows, auroras, and aeronomy; and the stability of planetary atmospheres. Extensive graphs, diagrams, and tables of numerical data are provided.

  16. "U.S. News and World Report's" Complete Rankings of Graduate Programs in Biology, Chemistry, Physics, and Nursing.

    ERIC Educational Resources Information Center

    Webster, David S.

    1994-01-01

    The "U.S. News and World Report" 1993 rankings of doctoral programs in biology (n=229), chemistry (n=178), and physics (n=151) and graduate programs in nursing (n=201) are presented, with some narrative analysis. Best-regarded institutions for doctoral education in six science disciplines are also listed. (MSE)

  17. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  18. A Study of Motivation and Other Factors as Relating to Course Achievement in Introductory College Biology, Chemistry, and Physics.

    ERIC Educational Resources Information Center

    Pridmore, Brooke M.; Halyard, Rebecca A.

    Results of a preliminary study that examined various factors relating to achievement in introductory level biology, chemistry, and physics classes at a public junior college are presented. Background variables, including age, sex, college major, grade point average, SAT-Verbal and SAT-Quantitative, and the sixteen-part scores of Academic…

  19. The Quantitative and Qualitative Analysis of Cohorts' Early Enrollment in Physics: concurrent with enrollment in mathematics, biology and chemistry

    NASA Astrophysics Data System (ADS)

    Lynch, Robert Bruce Rodes

    Cohorts of 48 entering biological science majors was recruited in the fall of 2007 and again in 2008 and 2009 for the Interdisciplinary Science Experience (ISE). These ISE students enrolled in their own sections of standard courses of physics, chemistry, and biology. In these courses average ISE student out-performed their non-cohort peers by up to a full letter grade. A qualitative analysis of ISE student interviews illuminates the student experience and shows how the ISE students perceived themselves to be different than their non-cohort peers. Quantitative modeling of student performance shows that higher grades are correlated with multiple factors. These factors includes admissions characteristics such as high school GPA, and SAT scores, as well as demographic information. These trends support and elaborate on the selection narratives told by participants. Additionally the quantitative model found that higher student performance is predicted by structural aspects of the ISE program, specifically the timing of course, enrolling as a freshmen in many of their courses, and the sequencing of physics and chemistry courses. There is a statistically significant benefit to student performance in general and organic chemistry courses associated with completing the first quarter of the Physics for Bio-Science majors prior to enrollment. Further the combination of quantitative and qualitative data suggest that there is a epistemological transfer of problem solving skills and outlook from the physics to the chemistry courses.

  20. Non-Algorithmic Quantitative Problem Solving in University Physical Chemistry: A Correlation Study of the Role of Selective Cognitive Factors

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios

    2005-01-01

    This work provides a correlation study of the role of the following cognitive variables on problem solving in elementary physical chemistry: scientific reasoning (level of intellectual development/developmental level), working-memory capacity, functional mental ("M") capacity, and disembedding ability (i.e., degree of perceptual field…

  1. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    ERIC Educational Resources Information Center

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  2. Application of Advances in Learning Theory and Philosophy of Science to the Improvement of Chemistry Teaching.

    ERIC Educational Resources Information Center

    Novak, Joseph D.

    1984-01-01

    Discusses seven key concepts in Ausubel's learning theory which function to guide research and teaching. Also discusses concept mapping and Gowins Vee, providing examples of how they are used in chemistry instruction. (JN)

  3. A chemistry/physics pathway with nanofibrous scaffolds for gene delivery.

    PubMed

    Wan, Fen; Tang, Zhaohui; He, Weidong; Chu, Benjamin

    2010-10-21

    This perspective is to introduce a new pathway for non-viral gene delivery by taking advantage of nanofibrous scaffolds as gene storage devices, gene carriers and homing devices. During gene delivery to the target, the DNA has to be protected in order to pass through a set of barriers before reaching the nucleus. The DNA can form a complex with polycations, and numerous publications exist on how to stabilize the DNA fragments by natural and synthetic materials. Electrospun nanofibrous scaffolds can be used to store the DNA, especially in the form of a more stabilized polyplex, and then to deliver the DNA (polyplex) to cells that are attached to the scaffold. While each essential step has been tested experimentally, the overall yet untested process, especially for in vivo experiments, may lead to a promising specific approach for gene/drug storage and delivery. The pathway described herein is based mainly on our understanding of the physics and chemistry of gene storage and delivery processes, in contrast to using pure biological concepts. Novel biodegradable, biocompatible nanofibrous materials with imbedded DNA (e.g., in the polyplex form) can then be designed to fabricate an intelligent scaffold for gene delivery. To achieve the above goal, the first step is to stabilize the DNA so that it can be incorporated into nanofibrous scaffolds. In this respect, we shall discuss the different methods of DNA/gene condensation and complex formation, and then explain the strategy used to incorporate DNA into electrospun nanofibers. Solvent-induced DNA condensation and then encapsulation were achieved. However, the released naked DNA was not sufficiently protected for gene transfection in cells. The objective of the current perspective is to suggest that, instead of the solvent-induced DNA condensation, one can combine the recently developed polyplex formation by using branched polyethyleneimine (bPEI). More importantly, free bPEI can be incorporated into the nanofibers

  4. Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.

    1996-01-01

    Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional

  5. Students' confidence in the ability to transfer basic math skills in introductory physics and chemistry courses at a community college

    NASA Astrophysics Data System (ADS)

    Quinn, Reginald

    2013-01-01

    The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and

  6. Free Radical Reactions in Aqueous Solutions: Examples from Advanced Oxidation Processes for Wastewater from the Chemistry in Airborne Water Droplets

    NASA Astrophysics Data System (ADS)

    Baird, N. Colin

    1997-07-01

    Inorganic chemistry involving free radicals in aqueous solutions can be important in environmental processes. A common free radical reaction in aqueous solution is electron transfer, especially to the hydroxyl radical and to ozone. Hydrogen peroxide and free radicals related to it act as weak acids, so both their neutral and deprotonated forms must be considered in reactions. In Advanced Oxidation Processes, the hydroxyl radical concentration in water is greatly increased by reactions involving ozone and/or ultraviolet light. Irradiation of solid titanium dioxide can also be used to generate the radicals. The hydroxyl radicals are used in the Processes to initiate the oxidation of dissolved organic pollutants. Free radical reactions also play an important role in the chemistry of water droplets suspended in air in clouds and fogs. The radicals arise indirectly from the photoionization of dissolved organic compounds such as aldehydes and from the iron-catalyzed decomposition of dissolved hydrogen peroxide. They oxidize dissolved sulfur dioxide and certain organic compounds.

  7. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    NASA Astrophysics Data System (ADS)

    Sastry, Kumara Narasimha

    2007-03-01

    Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common

  8. An assemblage of science and home. The gendered lifestyle of Svante Arrhenius and early twentieth-century physical chemistry.

    PubMed

    Bergwik, Staffan

    2014-06-01

    This essay explores the gendered lifestyle of early twentieth-century physics and chemistry and shows how that way of life was produced through linking science and home. In 1905, the Swedish physical chemist Svante Arrhenius married Maja Johansson and established a scientific household at the Nobel Institute for Physical Chemistry in Stockholm. He created a productive context for research in which ideas about marriage and family were pivotal. He also socialized in similar scientific sites abroad. This essay displays how scholars in the international community circulated the gendered lifestyle through frequent travel and by reproducing gendered behavior. Everywhere, husbands and wives were expected to perform distinct duties. Shared performances created loyalties across national divides. The essay thus situates the physical sciences at the turn of the twentieth century in a bourgeois gender ideology. Moreover, it argues that the gendered lifestyle was not external to knowledge making but, rather, foundational to laboratory life. A legitimate and culturally intelligible lifestyle produced the trust and support needed for collaboration. In addition, it enabled access to prestigious facilities for Svante Arrhenius, ultimately securing his position in international physical chemistry. PMID:25154133

  9. FOREWORD: Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology and Mathematics

    NASA Astrophysics Data System (ADS)

    Kaski, K.; Salomaa, M.

    1990-01-01

    These are Proceedings of the Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology, and Mathematics, held August 25-26, 1989, at Lahti (Finland). The Symposium belongs to an annual series of Meetings, the first one of which was arranged in 1987 at Lund (Sweden) and the second one in 1988 at Kolle-Kolle near Copenhagen (Denmark). Although these Symposia have thus far been essentially Nordic events, their international character has increased significantly; the trend is vividly reflected through contributions in the present Topical Issue. The interdisciplinary nature of Computational Science is central to the activity; this fundamental aspect is also responsible, in an essential way, for its rapidly increasing impact. Crucially important to a wide spectrum of superficially disparate fields is the common need for extensive - and often quite demanding - computational modelling. For such theoretical models, no closed-form (analytical) solutions are available or they would be extremely difficult to find; hence one must rather resort to the Art of performing computational investigations. Among the unifying features in the computational research are the methods of simulation employed; methods which frequently are quite closely related with each other even for faculties of science that are quite unrelated. Computer simulation in Natural Sciences is presently apprehended as a discipline on its own right, occupying a broad region somewhere between the experimental and theoretical methods, but also partially overlapping with and complementing them. - Whichever its proper definition may be, the computational approach serves as a novel and an extremely versatile tool with which one can equally well perform "pure" experimental modelling and conduct "computational theory". Computational studies that have earlier been made possible only through supercomputers have opened unexpected, as well as exciting, novel frontiers equally in mathematics (e.g., fractals

  10. DNA as information: at the crossroads between biology, mathematics, physics and chemistry.

    PubMed

    Cartwright, Julyan H E; Giannerini, Simone; González, Diego L

    2016-03-13

    On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems-or parts of them-within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate. PMID:26857674

  11. DNA as information: at the crossroads between biology, mathematics, physics and chemistry

    PubMed Central

    2016-01-01

    On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems—or parts of them—within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate. PMID:26857674

  12. Chemistry and physics of the Earth's lower mantle influenced by iron spin and valence states

    NASA Astrophysics Data System (ADS)

    Xu, S.; Lin, J.; Morgan, D.

    2013-12-01

    Abstract: Earth's lower mantle is believed to be mainly made of (Al,Fe)-bearing silicate perovskite and ferropericlase in which the spin and valence states of iron can play a major role in our understanding of the physics and chemistry of the planet's interior. An ab-initio thermodynamic model has been used to predict the partitioning of iron in various spin and valence states, focusing on the effects of the spin transitions of Fe2+/Fe3+ and the Al3+ substitution in these major phases at relevant pressure-temperature and oxygen fugacity conditions. Our results show significant changes in the partition coefficient [KD=(Fe/Mg)Mg-Pv/(Fe/Mg)Fp] at the top lower-mantle conditions, and are further extended to understand the consequences of the dramatic changes in iron partitioning on lower mantle's density, bulk modulus and bulk sound speed. Our ab-initio simulations demonstrate that the Al content in the silicate perovskite plays a critical role on the Fe partitioning and stabilizes Fe3+ in perovskite through the coupled substitution of Fe3+-Al3+. The effects of the high-spin to low-spin transition of Fe2+ in ferropericlase and Fe3+ in perosvkite are explored. Based on a pyrolitic compositional model along an expected lower-mantle geotherm, we will present how the variations in iron spin and valences affect lower-mantle geophysics and geochemistry.

  13. Lipidology and lipidomics--quo vadis? A new era for the physical chemistry of lipids.

    PubMed

    Mouritsen, Ole G

    2011-11-21

    Our picture of lipid membranes has come a long way since Gorter and Grendel in 1925 formulated the lipid bilayer hypothesis. Most modern textbook models of membranes are based on the Singer-Nicolson model from 1972, although we have in recent years seen significant amendments to this model, not least fuelled by the finding of lipid membrane domains and the subsequent 'raft rush'. The science of lipids, lipidology, has now become an established discipline, acknowledging that lipids organize in space and time and display emergent physico-chemical properties that are beyond the chemical nature of the individual molecules and which collectively control membrane function. Recently, lipidomics has been followed as a new discipline in the omics-sequel, characterized by an explosion in detailed data for lipid profiles of tissues, cells, and subcellular components. The focus is now swinging toward enumerating individual lipid species, determining their identity, and quantitating their amount. Time is ripe to marry the two disciplines, both in order to take lipidomics beyond the stage of 'stamp collection' and in order to incorporate into the lipidology approach the new knowledge about the individual lipid species. As an important matchmaker for this marriage, the physical chemistry of lipids in lipid bilayers and membranes is entering a new era of renaissance. PMID:21892490

  14. How and why does the immunological synapse form? Physical chemistry meets cell biology.

    PubMed

    Chakraborty, Arup K

    2002-03-01

    During T lymphocyte (T cell) recognition of an antigen, a highly organized and specific pattern of membrane proteins forms in the junction between the T cell and the antigen-presenting cell (APC). This specialized cell-cell junction is called the immunological synapse. It is several micrometers large and forms over many minutes. A plethora of experiments are being performed to study the mechanisms that underlie synapse formation and the way in which information transfer occurs across the synapse. The wealth of experimental data that is beginning to emerge must be understood within a mechanistic framework if it is to prove useful in developing modalities to control the immune response. Quantitative models can complement experiments in the quest for such a mechanistic understanding by suggesting experimentally testable hypotheses. Here, a quantitative synapse assembly model is described. The model uses concepts developed in physical chemistry and cell biology and is able to predict the spatiotemporal evolution of cell shape and receptor protein patterns observed during synapse formation. Attention is directed to how the juxtaposition of model predictions and experimental data has led to intriguing hypotheses regarding the role of null and self peptides during synapse assembly, as well as correlations between T cell effector functions and the robustness of synapse assembly. We remark on some ways in which synergistic experiments and modeling studies can improve current models, and we take steps toward a better understanding of information transfer across the T cell-APC junction. PMID:11880685

  15. Visual Representations on High School Biology, Chemistry, Earth Science, and Physics Assessments

    NASA Astrophysics Data System (ADS)

    LaDue, Nicole D.; Libarkin, Julie C.; Thomas, Stephen R.

    2015-12-01

    The pervasive use of visual representations in textbooks, curricula, and assessments underscores their importance in K-12 science education. For example, visual representations figure prominently in the recent publication of the Next Generation Science Standards (NGSS Lead States in Next generation science standards: for states, by states. Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS, 2013). Although assessments of the NGSS have yet to be developed, most students are currently evaluated on their ability to interpret science visuals. While numerous studies exist on particular visuals, it is unclear whether the same types of visuals are emphasized in all science disciplines. The present study is an evaluation of the similarities and differences of visuals used to assess students' knowledge of chemistry, earth science, living environment (biology), and physics on the New York State Regents examination. Analysis of 266 distinct visual representations categorized across the four content examinations reveals that the frequency and type of visuals vary greatly between disciplines. Diagrams, Graphs, Tables, and Maps are the most prevalent across all science disciplines. Maps, Cartograms, and Time Charts are unique to the Earth Science examination, and Network Diagrams are unique to the living environment (biology) examination. This study identifies which representations are most critical for training students across the science disciplines in anticipation of the implementation and eventual assessment of the NGSS.

  16. Intrinsic charge trapping in organic and polymeric semiconductors: a physical chemistry perspective

    SciTech Connect

    Kaake, Loren; Barbara, Paul F.; Zhu, Xiaoyang

    2010-01-12

    We aim to understand the origins of intrinsic charge carrier traps in organic and polymeric semiconductor materials from a physical chemistry perspective. In crystalline organic semiconductors, we point out some of the inadequacies in the description of intrinsic charge traps using language and concepts developed for inorganic semiconductors. In π-conjugated polymeric semiconductors, we suggest the presence of a two-tier electronic energy landscape, a bimodal majority landscape due to two dominant structural motifs and a minority electronic energy landscape from intrinsic charged defects. The bimodal majority electronic energy landscape results from a combination of amorphous domains and microcrystalline or liquid-crystalline domains. The minority tier of the electronic density of states is comprised of deep Coulomb traps embedded in the majority electronic energy landscape. This minority electronic energy landscape may dominate transport properties at low charge carrier densities, such as those expected for organic photovoltaic devices, while the bimodal majority electronic energy landscape becomes significant at high carrier densities, that is, in organic field effect transistors.

  17. CURRICULUM GUIDES IN PHYSICS--GENERAL ADVANCED PLACEMENT, COLLEGE LEVEL.

    ERIC Educational Resources Information Center

    WESNER, GORDON E.

    THE GENERAL PHYSICS CURRICULUM IS PLANNED FOR THOSE WHOSE GENERAL ABILITY IS BETTER THAN AVERAGE AND IS OFFERED IN GRADES 11 OR 12. GENERAL OBJECTIVES ARE, TO DEVELOP CRITICAL THINKING THROUGH THE SCIENTIFIC METHOD, TO UNDERSTAND BASIC PHYSICAL LAWS AND MAN'S PLACE IN THE UNIVERSE, AND TO DEVELOP A SCIENTIFIC ABILITY AND INTEREST. ELEVEN UNITS OF…

  18. Advanced modelling of the multiphase DMS chemistry with the CAPRAM DMS module 1.0

    NASA Astrophysics Data System (ADS)

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Wolke, Ralf; Herrmann, Hartmut

    2016-04-01

    Oceans are the general emitter of dimethyl sulphide (DMS), the major natural sulphur source (Andreae, 1990), and cover approximately 70 % of earth's surface. The main DMS oxidation products are SO2, H2SO4 and methyl sulfonic acid (MSA). Hence, DMS is very important for formation of non-sea salt sulphate (nss SO42-) aerosols and secondary particulate matter and thus global climate. Despite many previous model studies, there are still important knowledge gaps, especially in aqueous phase DMS chemistry, of its atmospheric fate (Barnes et al., 2006). Therefore, a comprehensive multiphase DMS chemistry mechanism, the CAPRAM DMS module 1.0 (DM1.0), has been developed. The DM1.0 includes 103 gas phase reactions, 5 phase transfers and 54 aqueous phase reactions. It was coupled with the multiphase chemistry mechanism MCMv3.2/CAPRAM4.0α (Rickard et al., 2015; Bräuer et al., 2016) and the extended CAPRAM halogen module 2.1 (HM2.1, Bräuer et al., 2013) for investigation of multiphase DMS oxidation in the marine boundary layer. Then, a pristine ocean scenario was simulated using the air parcel model SPACCIM (Wolke et al., 2005) including 8 non-permanent cloud passages - 4 at noon and 4 at midnight. This allows the investigation of the influence of deliquesced particles and clouds on multiphase DMS chemistry during both daytime and nighttime conditions as well as under cloud formation and evaporation. To test the influence of various subsystems on multiphase DMS chemistry different sensitivity runs were performed. Investigations of multiphase chemistry of DMS and its important oxidation products were done using concentration-time profiles and detailed time-resolved reaction flux analyses. The model studies revealed the importance of aqueous phase chemistry for DMS and its oxidation products. Overall about 7.0% of DMS is effectively oxidised by O3 in the aqueous phase of clouds. The simulations revealed the importance of halogen and aqueous phase chemistry for DMS and its

  19. Beyond Popper and Polanyi: Leonor Michaelis, a critical and passionate pioneer of research at the interface of medicine, enzymology, and physical chemistry.

    PubMed

    Deichmann, Ute

    2012-01-01

    The biochemist and biophysicist Leonor Michaelis (1875-1949) was a renowned pioneer who worked at the interface of physical chemistry and biochemistry. He is best known for his work on the physical chemistry of proteins and enzymes and for the mathematical derivation, together with Maud Menten, of the affinity constant of the enzyme substrate bond, now known as the Michaelis-Menten constant. His thorough experimentation and careful theorizing made him critical of his contemporaries in medical biochemistry, whose work did not withstand scrutiny. His strong influence resulted from combining new concepts and approaches with traditional ones, thus bridging conceptual gaps. Most importantly, his success was brought about because he combined a critical and sharp mind with competence, passion, and determination. A review of Michaelis's approach and achievements shows that critical theory testing, as suggested by Popper, cannot explain scientific advance if taken alone; the existence of a passionate commitment to scientific beliefs, as emphasized by Polanyi, is another necessary prerequisite for the development of science. PMID:23502569

  20. Physical and Chemical Properties of the Copper-Alanine System: An Advanced Laboratory Project

    ERIC Educational Resources Information Center

    Farrell, John J.

    1977-01-01

    An integrated physical-analytical-inorganic chemistry laboratory procedure for use with undergraduate biology majors is described. The procedure requires five to six laboratory periods and includes acid-base standardizations, potentiometric determinations, computer usage, spectrophotometric determinations of crystal-field splitting…

  1. Recent Advances in chemistry and pharmacology of 2-methoxyestradiol: An anticancer investigational drug.

    PubMed

    Kumar, B Sathish; Raghuvanshi, Dushyant Singh; Hasanain, Mohammad; Alam, Sarfaraz; Sarkar, Jayanta; Mitra, Kalyan; Khan, Feroz; Negi, Arvind S

    2016-06-01

    2-Methoxyestradiol (2ME2), an estrogen hormone metabolite is a potential cancer chemotherapeutic agent. Presently, it is an investigational drug under various phases of clinical trials alone or in combination therapy. Its anticancer activity has been attributed to its antitubulin, antiangiogenic, pro-apoptotic and ROS induction properties. This anticancer drug candidate has been explored extensively in last twenty years for its detailed chemistry and pharmacology. Present review is an update of its chemistry and biological activity. It also extends an assessment of potential of 2ME2 and its analogues as possible anticancer drug in future. PMID:27020471

  2. Research in Physical Chemistry and Chemical Education: Part A--Water Mediated Chemistry of Oxidized Atmospheric Compounds Part B--The Development of Surveying Tools to Determine How Effective Laboratory Experiments Contribute to Student Conceptual Understanding

    ERIC Educational Resources Information Center

    Maron, Marta Katarzyna

    2011-01-01

    This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water…

  3. Key Enabling Physical Layer Technologies for LTE-Advanced

    NASA Astrophysics Data System (ADS)

    Jiang, Meilong; Prasad, Narayan; Xin, Yan; Yue, Guosen; Khojastepour, Amir; Liu, Le; Inoue, Takamichi; Koyanagi, Kenji; Kakura, Yoshikazu

    The 3GPP Long Term Evolution Advanced (LTE-A) system, as compared to the LTE system, is anticipated to include several new features and enhancements, such as the usage of channel bandwidth beyond 20MHz (up 100MHz), higher order multiple input multiple output (MIMO) for both downlink and uplink transmissions, larger capacity especially for cell edge user equipment, and voice over IP (VoIP) users, and wider coverage and etc. This paper presents some key enabling technologies including flexible uplink access schemes, advanced uplink MIMO receiver designs, cell search, adaptive hybrid ARQ, and multi-resolution MIMO precoding, for the LTE-A system.

  4. Japan - UK Conference: Trends in Physics and Chemistry Education in Secondary Schools

    NASA Astrophysics Data System (ADS)

    1998-11-01

    demonstrations by groups of physics and chemistry teachers of apparatus that they had made. This hugely enjoyable session has resulted in a great number of good ideas appearing ready for use in a certain British physics lab. Poaching ideas in teaching can be an international activity as well! One impression that this session left us with is that, making a gross generalization, the Japanese are physics teachers, the British physics teachers. How delightful if we in Britain could more often gather in this fashion to delight in exploring physics for ourselves. A substantial benefit of the conference was the challenge of presenting the substantive arguments behind the philosophy of curriculum change to teachers from a different culture, with thoughts being tempered in the furnace of translation. When each word requires lengthy translation, they become precious. An attempt to explain what was meant by the phrase `positive formative reinforcement' that had been carelessly written on one overhead transparency on the purpose of assessment has left permanent mental scars (and perhaps rightly so!). And what of the future? The conference, and perhaps more especially the surrounding visits, resulted in the start of new friendships and the renewal of old acquaintances. Other visits and conferences will doubtless be arranged. The two groups of physics teachers have much to share and discuss with each other. In the short term it is hoped that fruitful e-mail communication and cooperation can be continued both between participants and among a wider circle of physics teachers from both countries. Philip Britton and Ian Lawrence Head of Physics, Leeds Grammar School, and Secretary, IoP Education Group King's School Worcester, and Chairman, IoP Education Group

  5. Japan - UK Conference: Trends in Physics and Chemistry Education in Secondary Schools

    NASA Astrophysics Data System (ADS)

    1998-11-01

    demonstrations by groups of physics and chemistry teachers of apparatus that they had made. T

  6. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Geiger, H. Cristina; Donohoe, James S.

    2012-01-01

    Green chemistry addresses environmental concerns associated with chemical processes and increases awareness of possible harmful effects of chemical reagents. Efficient reactions that eliminate or reduce the use of organic solvents or toxic reagents are increasingly available. A two-week experiment is reported that entails the calcium hypochlorite…

  7. Advanced Chemistry for Operators. Training Module 1.321.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with inorganic and general organic chemistry as applied to water and wastewater treatment. Included are objectives, instructor guides, and student handouts. The module contains material related to chemical reactions in water solutions,…

  8. Exploring Interactive and Dynamic Simulations Using a Computer Algebra System in an Advanced Placement Chemistry Course

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2014-01-01

    The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…

  9. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  10. Advances in the physics basis for the European DEMO design

    NASA Astrophysics Data System (ADS)

    Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.

    2015-06-01

    In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.

  11. Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals

    ERIC Educational Resources Information Center

    Robertson, Michael J.; Jorgensen, William L.

    2015-01-01

    Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…

  12. Semiempirical and ab initio Calculations of Charged Species Used in the Physical Organic Chemistry Course.

    ERIC Educational Resources Information Center

    Gilliom, Richard D.

    1989-01-01

    Concentrates on the semiempirical methods MINDO/3, MNDO, and AMI available in the program AMPAC from the Quantum Chemistry Program Exchange at Indiana University. Uses charged ions in the teaching of computational chemistry. Finds that semiempirical methods are accurate enough for the general use of the bench chemist. (MVL)

  13. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Not Available

    1992-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

  14. Effect of the science teaching advancement through modeling physical science professional development workshop on teachers' attitudes, beliefs and content knowledge and students' content knowledge

    NASA Astrophysics Data System (ADS)

    Dietz, Laura

    The Science Teaching Advancement through Modeling Physical Science (STAMPS) professional development workshop was evaluated for effectiveness in improving teachers' and students' content knowledge. Previous research has shown modeling to be an effective method of instruction for improving student and teacher content knowledge, evidenced by assessment scores. Data includes teacher scores on the Force Concept Inventory (FCI; Hestenes, Wells, & Swackhamer, 1992) and the Chemistry Concept Inventory (CCI; Jenkins, Birk, Bauer, Krause, & Pavelich, 2004), as well as student scores on a physics and chemistry assessment. Quantitative data is supported by teacher responses to a post workshop survey and classroom observations. Evaluation of the data shows that the STAMPS professional development workshop was successful in improving both student and teacher content knowledge. Conclusions and suggestions for future study are also included.

  15. Tribology of soot suspension in hexadecane as distinguished by the physical structure and chemistry of soot particles

    NASA Astrophysics Data System (ADS)

    Bhowmick, Hiralal; Majumdar, S. K.; Biswas, S. K.

    2012-05-01

    Ethylene gas is burnt to generate soot which is collected thermophoretically from different locations of the flame. Tribological performance of the collected soot in hexadecane suspension is compared with that of carbon black and diesel soot. The soots are analysed to yield a range of mechanical properties, physical structures and chemistry. The paper correlates these property variations with the corresponding variations in friction and wear when the soot suspended in hexadecane is used to lubricate a steel on steel sliding interaction. The particles are dispersed in hexadecane by a non-ionic surfactant, poly-isobutylene succinimide (PIBS), which is mono-functional with no free amine group. The grafting of the surfactant on the soot particles is found to have a profound effect on the dispersion of the soot, in general, while, between the different soot types, the tribology is differentiated by the physical structure and chemistry.

  16. Neutron and nuclear data revised for the 1997/98 handbook of chemistry and physics

    SciTech Connect

    Holden, N.E.

    1997-07-01

    The 1997/98 Handbook of Chemistry and Physics will contain revised nuclear data information dealing with scattering and absorption properties of neutrons. All of these nuclear data were recently reevaluated. The 2,200 meter per second neutron cross sections and the neutron resonance integrals evaluation was performed in conjunction with the 1997 KAPL Wall-Chart of the Nuclides to insure consistency in the recommended values in the Handbook and on the Chart. The 2,200 meters per second neutron cross sections presented in the Handbook correspond to room temperature neutrons, 20.43 C, or a thermal neutron energy of 0.0253 electron volts, (eV). Neutron resonance integrals are defined over the energy range from 0.5 eV up to 0.1 {times} 10{sup 6} eV. They are averaged over a flux spectrum with a 1/E shape. Evaluated experimental data are derived from either a direct measurement or from 1/E spectrum averaged resonance parameter information. Resonance integrals are presented for neutron capture, charged particle or neutron fission reactions. Thermal neutron scattering is used for the investigation of the static and dynamic properties of condensed matter and it requires a knowledge of neutron scattering lengths. The Handbook presents bound atom neutron coherent scattering lengths in units of fentometers. Stellar slow neutron capture processes occur in a thermal neutron spectrum with temperatures approximately 30 keV. 30 keV Maxwellian averaged neutron cross sections for astrophysical applications are a new parameter presented in the 78th edition of the Handbook. No new parameters will be added to the Table of Isotopes` nuclear information but revised values will be provided for parameters of all known nuclides of the 112 chemical elements.

  17. Working with Advanced Primary School Students in Physics

    NASA Astrophysics Data System (ADS)

    Jankovic, Ljiljana; Cucic, Dragoljub

    2010-01-01

    Working with students who have special needs is the type of work that requires special engagement and skills of those who perform it. Working with gifted children requires outstanding knowledge of a teacher and above all the teachers should be very well informed on the subject they teach, Physics in our case. This work also requires great pedagogical and psychological skills so that these talented students would be approached in a suitable way. In this paper we will present to you our methods of teaching Physics to these talented children (13 years old), in the Regional Center for Talents "Mihajlo Pupin" in Pancevo.

  18. An experimental investigation by optical methods of the physics and chemistry of transient plasma ignition

    NASA Astrophysics Data System (ADS)

    Pendleton, Scott James

    The use of nonequilibrium plasma generated by nanosecond discharges to ignite fuel/air mixtures, known as transient plasma ignition (TPI), has been shown to effectively reduce ignition delay and improve engine performance relative to spark ignition for combustion engines. While this method is potentially useful for many engine applications, at present the underlying physics are poorly understood. This work provides a review of previous engine implementation work as well as previous experimental work seeking to provide an understanding of the physical and chemical mechanisms of TPI. Work on producing the pulses needed for TPI, both engine testing and optical diagnostic is presented. The emission of TPI is analyzed in order to determine the spectral, spatial, and temporal behavior of the discharge. Temperature mesurements of TPI using optical emission spectroscopy (OES) show that the temperature in streamer discharge and afterglow increases, though it is difficult to quantify the increase with this method. The results of coherent anti-Stokes Raman spectroscopy temperature measurements are reported and discussed, with temperature increases up to 1500 K above ambient observed in the discharge afterglow in fuel/air mixtures. The impact of this temperature increase on TPI and the possibility of thermal ignition is considered. In addition, CARS measurements show that generation of vibrationally excited states of nitrogen is inefficient during the discharge in air but that generation occurs at a high rate roughly 5 micros following the discharge; with the addition of fuels vibrationally excited states are observed during the discharge but an increase in population is still seen at 5 micros. Possible mechanisms for this behavior are discussed. Additionally, this work uses two-photon absorption laser induced fluorescence to measure oxygen atom concentrations in streamer discharge afterglow in a variety of fuel/air mixtures in order to account for the oxygen pathways in

  19. Physics and chemistry on well-defined semiconductor and oxide surfaces

    SciTech Connect

    Chen, Peijun

    1992-12-31

    High resolution electron energy loss spectroscopy (HREELS) and other surface spectroscopic techniques have been employed to investigate the following two classes of surface/interface phenomena on well-defined semiconductor and oxide surfaces: (i) the fundamental physical and chemical processes involved in gas-solid interaction on silicon single crystal surfaces, and (ii) the physical and chemical properties of metal-oxide interfaces. The particular systems reported in this dissertation are: NH{sub 3}, PH{sub 3} and B{sub 10}H{sub 14} on Si(111)-(7 x 7); NH{sub 3} on Si(100)-(2 x 1); atomic H on Si(111)-(7 x 7) and boron-modified Si(111); Al on Al{sub 2}O{sub 3} and Sn on SiO{sub 2}. On silicon surfaces, the surface dangling bonds function as the primary adsorption sites where surface chemical processes take place. The unambiguous identification of surface species by vibrational spectroscopy allow the elementary steps involved in these surface chemical processes to be followed on a molecular level. For adsorbate such as NH{sub 3} and PH{sub 3}, the nature of the initial low temperature (100-300 K) adsorption is found to be dissociative, while that for B{sub 10}H{sub 14} is non-dissociative. This has been deduced based upon the presence (or absence) of specific characteristic vibrational mode(s) on surface. By following the evolution of surface species as a function of temperature, the elementary steps leading to silicon nitride thin film growth and doping of silicon are elucidated. In the case of NH{sub 3} on Si(111)-(7 x7) and Si(100)-(2 x 1), a detailed understanding on the role of substrate surface structure is controlling the surface reactivity has been gained on the basis of a Si adatom backbond-strain relief mechanism on the Si(111)-(7 x 7). The electronic modification to Si(111) surface by subsurface boron doping has been shown to quench its surface chemistry, even for the most aggressive atomic H.

  20. Teacher candidates' beliefs about including socioscientific issues in physics and chemistry

    NASA Astrophysics Data System (ADS)

    Barrett, Sarah Elizabeth

    Teaching science for social justice involves a deliberate effort to reconstruct society into something more equitable and just. Introducing socioscientific issues (SSI) into science is one strategy toward this end. However, research indicates that SSI are rarely discussed in the physical sciences even though they exist. This may be due to the beliefs of chemistry and physics teachers with respect to what belongs in these subjects. If we wish to begin to influence these beliefs through initial teacher education, it is essential for teacher educators to understand the origins of these beliefs. In this qualitative study 12 teacher candidates were interviewed at 3 points during a 9 month teacher education program: at the beginning of the course (in September), after the first practicum (in November) and after the second practicum (in March). Teacher candidates' beliefs did not change significantly from the beginning of the study to the end. They displayed varying degrees of commitment to including SSI in their teaching. Based on their (a) conception of the ethics of science, (b) goals for science education, (c) idea of the place of ethics in science (education), and (d) beliefs about including SSI, the teacher candidates were divided into four groups. Four archetypes were derived: "Model Scientist/Engineer", "Model Individual", "Model Teacher", and "Model Citizen". Since these groups are archetypes, none of the participants fits into the categories perfectly but individual teacher candidates demonstrated more characteristics of one archetype than others. Only the 3 Model Citizens were committed to including SSI in their teaching while the others placed the priority on preparing students for the next level of schooling. A model was developed to serve as a microgeneology of teacher candidates' beliefs about including SSI in their teaching. It traced their beliefs from (a) life experiences to (b) conception of ethics and nature of science to (c) goals for science

  1. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    PubMed

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers. PMID:25860255

  2. PREFACE: XIII International Seminar on Physics and Chemistry of Solids (ISPCS)

    NASA Astrophysics Data System (ADS)

    Berdowski, Janusz

    2007-06-01

    This volume of Journal of Physics: Conference Series contains some of the papers which were presented at the XIII International Seminar on Physics and Chemistry of Solids (ISPCS) in June 2007, in Ustroń, Poland. As the materials from ISPCS are presented in this Journal for the first time it is a good opportunity to give a brief outline of the Seminar's roots, history and goals. The initiator of the Seminars, conceived as annual meetings of the physicists and chemists from Ukraine and Poland, was the late Professor of the Ivan Franko National University in Lviv, Wlodymyr Sawicki. As Professor Sawicki had also lectured for the students of Jan Dlugosz University in Czȩstochowa he had seen both these universities as future organizers of the conference. Coincidentally rectors of Lviv and Czȩstochowa universities, Professor Ivan Vakarchuk and Professor Józef Światek were physicists so this proposition was received very warmly and got strong support from the officials of the universities. From the early beginnings the Seminar also had wide organizational help from the Research and Development Enterprise 'Carat' from Lviv and especially from its president Dr Mykola Vakiv. The Seminars started in 1996—the first meeting took place in Zakopane (Poland) in May 1996 and the second one in September of the same year in Schack (Ukraine). From 1997, ISPCS Seminars have gathered together a group of chemists and physicists interested in condensed matter physics and chemistry, in even years in Ukraine, in odd years in Poland. This circle is growing: at the first Seminar in Zakopane thirty scientists took part, mainly from Lviv and from Czȩstochowa, ISPCS13 gave us the opportunity to meet over eighty people from several universities and research institutions, including delegates from countries other than Poland and Ukraine, with over seventy presentations. The organizers plan that ISPCS conferences should achieve the following two objectives: help in building closer

  3. Using Tiered Assignments to Engage Learners in Advanced Placement Physics

    ERIC Educational Resources Information Center

    Geddes, Kimberly A.

    2010-01-01

    This article presents lesson plans that incorporate tiered objectives and brainstorming techniques as means for differentiating instruction and ensuring that learners are challenged at levels commensurate with their abilities even though they are developing an understanding of the same physics concepts. A listing of materials and resources…

  4. Advanced Ground Systems Maintenance Physics Models for Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.

  5. The Consortium for the Advancement of Physics Education

    ERIC Educational Resources Information Center

    Spangler, John D.; Hathaway, C. E.

    1971-01-01

    Describes programs that have been initiated between Kansas State University and six non-Ph.D. granting institutions. Special attention is given to an undergraduate program on low-energy accelerator physics, student symposia, seminar research grants and assistantships, and faculty fellowships and symposia. (DS)

  6. Advanced Quantitative Measurement Methodology in Physics Education Research

    ERIC Educational Resources Information Center

    Wang, Jing

    2009-01-01

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and…

  7. A Model for Improving "Advanced" Courses in Physics

    ERIC Educational Resources Information Center

    Friedman, Charles P.

    1972-01-01

    Individualized instruction similar to the Keller plan with two additional features: (1) student freedom in selecting his own procedure for mastering the course material; (2) some variety in topics studied by each student. Describes two successful trials of this plan in an atomic physics course at MIT. (Author/DF)

  8. Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels

    PubMed Central

    Lin, Chien-Chi

    2015-01-01

    The design and application of biomimetic hydrogels have become an important and integral part of modern tissue engineering and regenerative medicine. Many of these hydrogels are prepared from synthetic macromers (e.g., poly(ethylene glycol) or PEG) as they provide high degrees of tunability for matrix crosslinking, degradation, and modification. For a hydrogel to be considered biomimetic, it has to recapitulate key features that are found in the native extracellular matrix, such as the appropriate matrix mechanics and permeability, the ability to sequester and deliver drugs, proteins, and or nucleic acids, as well as the ability to provide receptor-mediated cell-matrix interactions and protease-mediated matrix cleavage. A variety of chemistries have been employed to impart these biomimetic features into hydrogel crosslinking. These chemistries, such as radical-mediated polymerizations, enzyme-mediated crosslinking, bio-orthogonal click reactions, and supramolecular assembly, may be different in their crosslinking mechanisms but are required to be efficient for gel crosslinking and ligand bioconjugation under aqueous reaction conditions. The prepared biomimetic hydrogels should display a diverse array of functionalities and should also be cytocompatible for in vitro cell culture and/or in situ cell encapsulation. The focus of this article is to review recent progress in the crosslinking chemistries of biomimetic hydrogels with a special emphasis on hydrogels crosslinked from poly(ethylene glycol)-based macromers. PMID:26029357

  9. How is Science Learning Assessed at the Postsecondary Level? Assessment and Grading Practices in College Biology, Chemistry and Physics

    NASA Astrophysics Data System (ADS)

    Goubeaud, Karleen

    2010-06-01

    The role of assessment in higher education is gaining importance as accountability requirements intensify and as assessments are increasingly recognized as having potential to improve teaching and learning. During the last two decades, educators have begun implementing a wider variety of assessment types including alternative and student-centered assessment practices. However, few research studies have examined the extent that college science faculty use such practices. This large-scale descriptive study utilized a nationally representative sample of higher education faculty from the US Department of Education to examine the assessment and grading practices of college science faculty from 2 and 4-year higher education institutions. When data was disaggregated by science discipline, statistically significant differences were found among physics, chemistry and biology faculty's assessment and grading practices. Biology faculty used a larger repertoire of assessment types overall, and used assessments that have potential to enhance the learning process more than chemistry and physics faculty. Physics and chemistry faculty graded on a curve more often and used competency-grading practices less often than biology faculty. Assessment practices that could be considered formative with potential to promote student learning appear to be underutilized by all science faculty.

  10. UCSD Geothermal Chemical Modeling Project: DOE Advanced Brine Chemistry Program. [University of California at San Diego (UCSD)

    SciTech Connect

    Moeller, N.; Weare, J.H.

    1992-04-01

    DOE funding to the UCSD Chemical Modeling Group supports research to provide computer models which will reliably characterize the equilibrium chemistry of geothermal brines (solution, solid and gas phases) under variable thermodynamic conditions. With this technology, it will be possible to rapidly and inexpensively predict the chemical behavior of geothermal brines during various resource recovery stages; exploration, production, plant energy extraction and rejection as well as in ancillary programs such as mineral recovery. Our modeling technology is based on recent progress in the physical chemistry of concentrated aqueous solutions. The behavior of these fluids has not been predicted from first principle theories. However, because of the importance of concentrated brines to many industrial and natural processes, there have been numerous efforts to develop accurate phenomenological expressions for predicting the chemical behavior of these brines. One of the most successful of these efforts is that of Pitzer and coworkers. Incorporating the semiempirical equations of Pitzer, we have shown at UCSD that we can create highly accurate models of brine-solid-gas chemistry.

  11. Learning that Prepares for More Learning: Symbolic Mathematics in Physical Chemistry

    ERIC Educational Resources Information Center

    Zielinski, Theresa Julia

    2004-01-01

    The well-crafted templates are useful to learn the new concepts of chemistry. The templates focus on pressure-volume work, the Boltzmann distribution, the Gibbs free energy function, intermolecular potentials, the second virial coefficient and quantum mechanical tunneling.

  12. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Industrial Physics.

    ERIC Educational Resources Information Center

    Whisenhunt, James E.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour introduction to industrial physics that explains and demonstrates to industrial maintenance mechanics the direct relationship of physics to machinery. Project TEAM is intended to upgrade basic technical competencies of…

  13. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  14. Climate Solutions based on advanced scientific discoveries of Allatra physics

    NASA Astrophysics Data System (ADS)

    Vershigora, Valery

    2016-05-01

    Global climate change is one of the most important international problems of the 21st century. The overall rapid increase in the dynamics of cataclysms, which have been observed in recent decades, is particularly alarming. Howdo modern scientists predict the occurrence of certain events? In meteorology, unusually powerful cumulonimbus clouds are one of the main conditions for the emergence of a tornado. The former, in their turn, are formed during the invasion of cold air on the overheated land surface. The satellite captures the cloud front, and, based on these pictures, scientists make assumptions about the possibility of occurrence of the respective natural phenomena. In fact, mankind visually observes and draws conclusions about the consequences of the physical phenomena which have already taken place in the invisible world, so the conclusions of scientists are assumptions by their nature, rather than precise knowledge of the causes of theorigin of these phenomena in the physics of microcosm. The latest research in the field of the particle physics and neutrino astrophysics, which was conducted by a working team of scientists of ALLATRA International Public Movement (hereinafter ALLATRA SCIENCE group) allatra-science.org, last accessed 10 April 2016.

  15. Experiments in Physical Chemistry, Sixth Edition (by David P. Shoemaker, Carl W. Garland, and Joseph W. Nibler)

    NASA Astrophysics Data System (ADS)

    Feigerle, Charles S.

    1997-05-01

    McGraw-Hill: New York, 1996. xii + 778 pp. ISBN 0-07-057074-4. Experiments in Physical Chemistry has long been one of the best textbooks available for undergraduate courses in physical chemistry laboratory. The present edition follows a similar format as previous editions, consisting of (i) a series of introductory sections dealing with common aspects of all experiments, such as recording of data, report writing, data and error analysis, and the use of computer software to aide in these, (ii) 48 experiments spanning 12 fundamental areas, and (iii) a series of resource chapters providing an introduction to electronics, instruments, techniques, and procedures commonly utilized in the performance of experiments in physical chemistry. Some needed changes have been incorporated in this edition, most notably the addition of sections that recognize the increased role of computers in modern experimentation. In particular, the section on computer software has been expanded and moved ahead of the experiments. The use of word processing, spreadsheets, and symbolic mathematics programs is emphasized, with examples using some of the most popular commercial programs. Three new experiments have been added and a fourth substantially modified. Each of the 44 other experiments has undergone some review and modernization, and a much-needed section on safety issues has been added to each. A resource chapter on computer interfacing, treating data types, programming languages and interfacing has been added. Examples are given for programming RS-232 communication and analog/digital interface boards using visual basic routines. I recommend this book be given serious consideration as a text for a one- or two-semester course in physical chemistry laboratory. The approach to experimentation in physical chemistry, the experiments, and the techniques that are described can form a solid basis for such a course. My one criticism is that the text offers only a limited number of laser

  16. Advances in reactor physics education: Visualization of reactor parameters

    SciTech Connect

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-07-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  17. Recent advances in the chemistry of Rh carbenoids: multicomponent reactions of diazocarbonyl compounds

    NASA Astrophysics Data System (ADS)

    Medvedev, J. J.; Nikolaev, V. A.

    2015-07-01

    Multicomponent reactions of diazo compounds catalyzed by RhII complexes become a powerful tool for organic synthesis. They enable three- or four-step processes to be carried out as one-pot procedures (actually as one step) with high stereoselectivity to give complex organic molecules, including biologically active compounds. This review addresses recent results in the chemistry of Rh-catalyzed multicomponent reactions of diazocarbonyl compounds with the intermediate formation of N-, O- and C=O-ylides. The diastereo- and enantioselectivity of these reactions and the possibility of using various co-catalysts to increase the efficiency of the processes under consideration are discussed. The bibliography includes 120 references.

  18. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  19. Applying and assessing some semi-local density functionals for condensed matter physics and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Hao, Pan

    Density functional theory (DFT) is a widely used quantum mechanical method for the simulation of the electronic structure of atoms, molecules, and solids. The only part that needs to be approximated is the exchange-correlation energy as a functional of the electron density. After many-year development, there is a huge variety of exchange-correlation functionals. According to the ingredients, an exchange-correlation functional can be classified as a semi-local functional or beyond. A semi-local functional can be nonempirical or empirical and only uses locality information, such as electron density, gradient of the density, Laplacian of the density, and kinetic energy density. Unlike a non-local functional that uses non-locality information, a semi-local functional is computationally efficient and can be applied to large systems. The meta-generalized gradient approximation (meta-GGA), which is the highest-level semi-local functional, has the potential to give a good description for condensed matter physics and quantum chemistry. We built the self-consistent revised Tao-Perdew-Staroverov-Scuseria (revTPSS) meta-GGA into the band-structure program BAND to test the performances of some self-consistent semi-local functionals on lattice constant with a 58-solid test set. The self-consistent effect of revTPSS was also discussed. The vibration of a crystal has a contribution to the ground state energy of a system, which is the zero-point energy at zero temperature. It has anharmonicity at the equilibrium geometry. The standard DFT doesn't consider the zero-point energy of a crystal. We used density functional perturbation theory (DFPT), which is a powerful and flexible theoretical technique within the density functional framework, to study the zero-point energy and make a correction to the lattice constant. The method was compared to a traditional zero-point anharmonic expansion method that is based on the Debye and Dugdale-MacDonald approximations. We also tested some new

  20. Physics and chemistry of non-equilibrium, atmospheric pressure plasmas containing fluorine

    NASA Astrophysics Data System (ADS)

    Yang, Xiawan

    The physics and chemistry of low temperature, atmospheric pressure plasmas containing fluorine have been investigated with current, voltage, and power measurements, infrared absorption spectroscopy, and optical emission spectroscopy. The plasma source consisted of two closely spaced metal electrodes, supplied with radio-frequency power at 13.56 MHz. The fluorine atom concentration was measured in the downstream region of a carbon tetrafluoride and helium plasma using infrared spectroscopy. The gas discharge generated 1.2 x 10 15 cm-3 of F atoms, which is ˜100 times higher than that found in low-pressure plasmas. A numerical model of the plasma indicated that most of the F atoms were generated by the reaction of CF4 with metastable helium atoms. It was discovered that the atmospheric pressure, radio-frequency plasma could be made to undergo sheath breakdown with conversion from an alpha- to a gamma-mode discharge. With 0.4 vol% nitrogen in helium, this transition was accompanied by a 40% drop in voltage, a 12% decrease in current, and a surge in power density from 25 to 2083 W/cm3. The shift in intense plasma emission from the bulk gas to the surface of the electrodes was documented by optical techniques. When the plasma was operated in the alpha and gamma modes, 5.2% and 15.2% of the N2 was dissociated into atoms, respectively. In the latter case, the low dissociation efficiency was ascribed to the nonuniform structure of the plasma across the gap. In plasmas containing 1.0 vol% carbon tetrafluoride and sulfur hexafluoride, the alpha to gamma transition occurred smoothly with no discharge contraction. The electron density in these plasmas equaled 6.0 x 1011 cm-3, compared to 1.9 x 1013 cm -3 in pure helium. The drop in plasma density was due to fast electron attachment processes caused by the electronegative molecules, which also resulted in a high density of negative ions, up to 1013 cm-3. In addition, the non-equilibrium, atmospheric pressure plasma was used to

  1. Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis.

    PubMed

    Jana, Subhra

    2015-11-21

    Based on the bottom-up chemistry techniques, the size, shape, and composition controlled synthesis of nanoparticles can now be achieved uniformly, which is of great importance to the nanoscience community as well as in modern catalysis research. The low-temperature solution-phase synthesis approach represents one of the most attractive strategies and has been utilized to synthesize nanoscale metals, alloys and intermetallics, including a number of new metastable phases. This perspective will highlight the solution-based nanoparticle synthesis techniques, a low-temperature platform, for the synthesis of size and shape-tunable nanoscale transition metals, alloys, and intermetallics from the literature, keeping a focus on the utility of these nanomaterials in understanding the catalysis. For each solution-based nanoparticle synthesis technique, a comprehensive overview has been given for the reported nanoscale metals, alloys, and intermetallics, followed by critical comments. Finally, their enhanced catalytic activity and durability as novel catalysts have been discussed towards several hydrogenation/dehydrogenation reactions and also for different inorganic to organic reactions. Hence, the captivating advantages of this controllable low-temperature solution chemistry approach have several important implications and together with them this approach provides a promising route to the development of next-generation nanostructured metals, alloys, and intermetallics since they possess fascinating properties as well as outstanding catalytic activity. PMID:26477400

  2. Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1

    SciTech Connect

    Not Available

    1983-12-01

    This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry.

  3. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  4. Advanced Analytical/Physics Tools to Characterize Tire Materials and Behavior

    NASA Astrophysics Data System (ADS)

    Gerspacher, Michel

    2001-10-01

    Tires are assembled with common materials like polymers, fillers, reinforcing fibers and various chemicals which are used to cure the rubber compound, and also, to protect the finished tire from oxydative degradation. This is certainly more related to chemistry than to physics. Nevertheless, a finished tire on the road is becoming a fascinating object of physics if one wants to understand its behavior. Indeed, it is its viscoelastic nature which confers to the tire its unique capabilities. The lecture will be centered on the usage of physical methods, not only to study the visco- elasticity of the composite, but also the nature of the interactions between the materials composing the tires. It will be shown that the usage of physics has tremendously helped to better understand the tire and also participated in developing new generations of tires.

  5. The Oil Drop Experiment: Do Physical Chemistry Textbooks Refer to Its Controversial Nature?

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Rodriguez, Maria A.

    2005-01-01

    Most general chemistry textbooks consider the oil drop experiment as a classic experiment, characterized by its simplicity and precise results. A review of the history and philosophy of science literature shows that the experiment is difficult to perform (even today!) and generated a considerable amount of controversy. Acceptance of the…

  6. Looking beyond Lewis Structures: A General Chemistry Molecular Modeling Experiment Focusing on Physical Properties and Geometry

    ERIC Educational Resources Information Center

    Linenberger, Kimberly J.; Cole, Renee S.; Sarkar, Somnath

    2011-01-01

    We present a guided-inquiry experiment using Spartan Student Version, ready to be adapted and implemented into a general chemistry laboratory course. The experiment provides students an experience with Spartan Molecular Modeling software while discovering the relationships between the structure and properties of molecules. Topics discussed within…

  7. Chemistry and Physical Properties of Melt Processed- and Solution- Cross Linked Corn Zein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn zein was cross linked with the glutaraldehyde (GDA) using glacial acetic acid (HAc) as catalyst. The objectives are to enhance the mechanical properties of poured films and to compare them with compression molded tensile bars from melt processed zein. Chemistry of the cross linking reaction w...

  8. Technical liaison with the Institute of Physical Chemistry (Russian Academy of Sciences)

    SciTech Connect

    Delegard, C.H.

    1997-10-01

    DOE has engaged the IPC/RAS to study the fundamental and applied chemistry of the transuranium actinide elements (primarily neptunium, plutonium, and americium) and technetium in alkaline media. This work is supported by DOE because the alkaline radioactive wastes stored in underground tanks at DOE sites (Hanford, Savannah River, and Oak Ridge) contain TRUs and technetium, and these radioelements must be partitioned to the HLW fraction in planned waste processing operations. The chemistries of the TRUs and technetium are not well developed in this system. Previous studies at the IPC/RAS centered on the fundamental chemistry of the TRUs and technetium in alkaline media, and on their coprecipitation reactions. During FY 1996, further studies of fundamental and candidate process chemistries were pursued with continuing effort on coprecipitation. The technical liaison was established at Westinghouse Hanford Company to provide information to the IPC/RAS on the Hanford Site waste system, define and refine the work scope, publish IPC/RAS reports in open literature documents and presentations, provide essential materials and equipment to the IPC/RAS, compare IPC/RAS results with results from other sources, and test chemical reactions or processes proposed by the IPC/RAS with actual Hanford Site tank waste. The liaison task was transferred to the Pacific Northwest Laboratory (PNNL) in October 1996.

  9. BOOK REVIEW: New Understanding Physics for Advanced Level

    NASA Astrophysics Data System (ADS)

    Breithaupt, Jim

    2000-09-01

    Breithaupt's new book is big: at 727 pages, it will be a hefty addition to any student's bag. According to the preface, the book is designed to help students achieve the transition from GCSE to A-level and to succeed well at this level. It also aims to cover the requirements of the compulsory parts of all new syllabuses and to cover most of the optional material, too. The book is organized into seven themes along traditional lines: mechanics, materials, fields, waves, electricity, inside the atom, and physics in medicine. Each theme begins with a colourful title page that outlines what the theme is about, lists the applications that students will meet in their reading, identifies prior learning from GCSE and gives a checklist of what students should be able to do once they have finished their reading of the theme. This is all very useful. The text of the book is illustrated with many colourful photographs, pictures and cartoons, but despite this it looks very dense. There are a lot of words on every page in a small font that makes them seem very unfriendly, and although the book claims to be readable I rather doubt that the layout will encourage voluntary reading of the text. Each chapter ends with a useful summary and a selection of short questions that allow students to test their understanding. Each theme has a set of multiple choice and long questions. Some of the questions have an icon referring the student to the accompanying CD (more of this later). There is much up-to-date material in the book. For example, the section on cosmology gives a brief description of the inflationary scenario within the Big Bang model of the origin of the universe, although no mechanism for the inflation is given, which might prove unsatisfying to some students. I do have some reservations about the presentation of some topics within the book: the discussion of relativistic mass, for example, states that `Einstein showed that the mass ... is given by the formula ...' and quotes

  10. PREFACE: International Conference on Advancement in Science and Technology 2012 (iCAST): Contemporary Mathematics, Mathematical Physics and their Applications

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin

    2013-04-01

    The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.

  11. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances.

    PubMed

    Belton, David J; Deschaume, Olivier; Perry, Carole C

    2012-05-01

    Biomineral formation is widespread in nature, and occurs in bacteria, single-celled protists, plants, invertebrates, and vertebrates. Minerals formed in the biological environment often show unusual physical properties (e.g. strength, degree of hydration) and often have structures that exhibit order on many length scales. Biosilica, found in single-celled organisms through to higher plants and primitive animals (sponges), is formed from an environment that is undersaturated with respect to silicon, and under conditions of approximately neutral pH and relatively low temperatures of 4-40 °C compared to those used industrially. Formation of the mineral may occur intracellularly or extracellularly, and specific biochemical locations for mineral deposition that include lipids, proteins and carbohydrates are known. In most cases, the formation of the mineral phase is linked to cellular processes, an understanding of which could lead to the design of new materials for biomedical, optical and other applications. In this contribution, we describe the aqueous chemistry of silica, from uncondensed monomers through to colloidal particles and 3D structures, that is relevant to the environment from which the biomineral forms. We then describe the chemistry of silica formation from alkoxides such as tetraethoxysilane, as this and other silanes have been used to study the chemistry of silica formation using silicatein, and such precursors are often used in the preparation of silicas for technological applications. The focus of this article is on the methods, experimental and computational, by which the process of silica formation can be studied, with an emphasis on speciation. PMID:22333209

  12. Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake

    SciTech Connect

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh

    2013-10-15

    Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes.

  13. Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments.

    PubMed

    Rocha, M S

    2015-09-01

    In this review we focus on the idea of establishing connections between the mechanical properties of DNA-ligand complexes and the physical chemistry of DNA-ligand interactions. This type of connection is interesting because it opens the possibility of performing a robust characterization of such interactions by using only one experimental technique: single molecule stretching. Furthermore, it also opens new possibilities in comparing results obtained by very different approaches, in particular when comparing single molecule techniques to ensemble-averaging techniques. We start the manuscript reviewing important concepts of DNA mechanics, from the basic mechanical properties to the Worm-Like Chain model. Next we review the basic concepts of the physical chemistry of DNA-ligand interactions, revisiting the most important models used to analyze the binding data and discussing their binding isotherms. Then, we discuss the basic features of the single molecule techniques most used to stretch DNA-ligand complexes and to obtain "force × extension" data, from which the mechanical properties of the complexes can be determined. We also discuss the characteristics of the main types of interactions that can occur between DNA and ligands, from covalent binding to simple electrostatic driven interactions. Finally, we present a historical survey of the attempts to connect mechanics to physical chemistry for DNA-ligand systems, emphasizing a recently developed fitting approach useful to connect the persistence length of DNA-ligand complexes to the physicochemical properties of the interaction. Such an approach in principle can be used for any type of ligand, from drugs to proteins, even if multiple binding modes are present. PMID:26287962

  14. Effects of iron enrichment on the chemistry and physical properties of deep lower mantle silicates

    NASA Astrophysics Data System (ADS)

    De Pasquale, Antonella

    Variations in seismic wave speed and density in the Earth's deep lower mantle have been linked to chemical heterogeneities. In order to identify the compositions of these regions and determine their roles in Earth history and dynamics, experimental measurements are needed of the effects of compositional variation, particularly major elements Fe and Al, on phase equilibria and physical properties of mantle minerals. The experiments that comprise this dissertation provide new constraints on the chemistry and compressibility of mantle silicates. Experiments were conducted at mantle pressure-temperature conditions using the laser-heated diamond anvil cell. Determination of pressure in the diamond anvil cell requires internal pressure calibrants which suffer from uncertainty as high as 10% at Mbar pressures. A series of experiments were performed to test the reliability and agreement of pressure scales for Au, Mo, MgO, NaCl B2, Ne and Pt. These data were used to determine a new comprehensive pressure scale for use in experiments on mantle materials. The lower mantle's dominant phase is (Mg,Fe,Al)(Fe,Al,Si)O3 perovskite. At pressure-temperature conditions comparable to the deep lower mantle, perovskite undergoes a transition to a post-perovskite phase. I synthesized perovskites and post-perovskites from a series of Fe-rich (enstatite--ferrosilite, (Mg1--x,Fex)SiO 3, 0 < x < 74) and Fe,Al-rich (pyrope--almandine, (Mg1--x,Fex) 3Al2Si3O12, 0 < x < 100) compositions. These experiments have shown that as much as 75% FeSiO 3 is soluble in perovskite at 70--80 GPa. Fe was observed to lower and broaden the pressure range of the post-perovskite transition. Volume data were collected over a range of pressures for all compositions to constrain the effects of Fe and Al on the equations of state of these phases. Fe and Al incorporation were observed to increase the unit cell volume of perovskite but have a weak effect on its compressibility. The electronic behavior of Fe in

  15. EDITORIAL: The Fifth International Workshop on Physical Chemistry of Wet Etching of Semiconductors (PCWES 2006)

    NASA Astrophysics Data System (ADS)

    Seidel, Helmut

    2007-04-01

    The biannual Workshop on Physical Chemistry of Wet Etching of Semiconductors (PCWES) was held in Saarbrücken, Germany in June 2006 for the fifth time in its history. The event was initiated in 1998 by Miko Elwenspoek from Twente University. It is a dedicated workshop with a typical attendance of about 30 scientists with multidisciplinary backgrounds from all parts of the world working in the field. Starting off in Holten in The Netherlands in 1998, subsequent workshops have been held at Toulouse, France in 2000, Nara, Japan in 2002, and Montreal, Canada in 2004. The initial focus was upon anisotropic etching of silicon in alkaline solutions, including surface topology, modelling aspects and applications. This process has found a wide range of applications in microsystems technology (MST), i.e. in the fabrication of microelectromechanical systems (MEMS). Most prominently, it provides the technological basis for bulk micromachining. More recently, other semiconductors such as germanium, III-V compounds and, particularly, wide-bandgap materials have started to enter the field. Furthermore, electrochemical aspects have gained in importance and the formation of porous silicon has also become a considerable part of the programme. From the very beginning up to the present time there was and is a strong focus on illumination of the underlying mechanism of crystallographic anisotropy, as well as on the understanding of electrochemical and dopant-induced etch stop phenomena. The fifth workshop, presented in Saarbrücken, included a total of twenty four contributions, six of which were as posters. Five of these are included in this partial special issue of Journal of Micromechanics and Microengineering as full length papers after having undergone the standard review process. The selection of contributions starts with the first invited paper given by M Gosalvez et al, resulting from a collaboration between Nagoya University, Japan and Helsinki University of Technology

  16. Recent advances in nuclear physics through on-line isotope separation

    NASA Astrophysics Data System (ADS)

    Jenkins, David Gareth

    2014-12-01

    Nuclear physics is advancing rapidly at the precision frontier, where measurements of nuclear observables are challenging state-of-the-art nuclear models. A major contribution is associated with the increasing availability of accelerated beams of radioactive ions produced using the isotope separation on-line technique. These advances have come hand in hand with significant progress in the development of high-efficiency detector systems and improved target technologies which are invaluable in exploiting these beams to their full advantage. This article reviews some of the recent highlights in the field of nuclear structure profiting from these technological advances.

  17. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    PubMed

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day. PMID:23734052

  18. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    SciTech Connect

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  19. Probing the scale of new physics by Advanced LIGO/VIRGO

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mazumdar, A.

    2016-05-01

    We show that if the new physics beyond the standard model is associated with a first-order phase transition around 107- 108 GeV , the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales.

  20. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.

    PubMed

    Lhermitte, Charles R; Bartlett, Bart M

    2016-06-21

    Photoelectrochemical (PEC) cells are an ongoing area of exploration that provide a means of converting solar energy into a storable chemical form (molecular bonds). In particular, using PEC cells to drive the water splitting reaction to obtain H2 could provide a clean and sustainable route to convert solar energy into chemical fuels. Since the discovery of catalytic water splitting on TiO2 photoelectrodes by Fujishima and Honda, significant efforts have been directed toward developing high efficiency metal oxides to use as photocatalysts for this reaction. Improving the efficiency of PEC cells requires developing chemically stable, and highly catalytic anodes for the oxygen-evolution reaction (OER). This water oxidation half reaction requires four protons and four electrons coupling in two bond making steps to form O2, which limits the rate. Our group has accelerated efforts in CuWO4 as a candidate for PEC OER chemistry. Its small band gap of 2.3 eV allows for using visible light to drive OER, and the reaction proceeds with a high degree of chemoselectivity, even in the presence of more kinetically accessible anions such as chloride, which is common to seawater. Furthermore, CuWO4 is a chemically robust material when subjected to the highly oxidizing conditions of PEC OER. The next steps for accelerating research using this (and other), ternary phase oxides, is to move beyond reporting the basic PEC measurements to understanding fundamental chemical reaction mechanisms operative during OER on semiconductor surfaces. In this Account, we outline the process for PEC OER on CuWO4 thin films with emphasis on the chemistry of this reaction, the reaction rate and selectivity (determined by controlled-potential coulometry and oxygen-detection experiments). We discuss key challenges with CuWO4 such as slow kinetics and the presence of an OER-mediating mid-gap state, probed by electrochemical impedance spectroscopy. We propose that this mid-gap state imparts the observed

  1. Multi-physics nuclear reactor simulator for advanced nuclear engineering education

    SciTech Connect

    Yamamoto, A.

    2012-07-01

    Multi-physics nuclear reactor simulator, which aims to utilize for advanced nuclear engineering education, is being introduced to Nagoya Univ.. The simulator consists of the 'macroscopic' physics simulator and the 'microscopic' physics simulator. The former performs real time simulation of a whole nuclear power plant. The latter is responsible to more detail numerical simulations based on the sophisticated and precise numerical models, while taking into account the plant conditions obtained in the macroscopic physics simulator. Steady-state and kinetics core analyses, fuel mechanical analysis, fluid dynamics analysis, and sub-channel analysis can be carried out in the microscopic physics simulator. Simulation calculations are carried out through dedicated graphical user interface and the simulation results, i.e., spatial and temporal behaviors of major plant parameters are graphically shown. The simulator will provide a bridge between the 'theories' studied with textbooks and the 'physical behaviors' of actual nuclear power plants. (authors)

  2. Social aspects of classroom learning: Results of a discourse analysis in an inquiry-oriented physical chemistry class

    NASA Astrophysics Data System (ADS)

    Becker, Nicole M.

    Engaging students in classroom discourse offers opportunities for students to participate in the construction of joint understandings, to negotiate relationships between different types of evidence, and to practice making evidence-based claims about science content. However, close attention to social aspects of learning is critical to creating inquiry-oriented classroom environments in which students learn with understanding. This study examined the social influences that contribute to classroom learning in an inquiry-oriented undergraduate physical chemistry class using the Process Oriented Guided Inquiry Learning (POGIL) approach. A qualitative approach to analyzing classroom discourse derived from Toulmin's (1968) model of argumentation was used to document patterns in classroom reasoning that reflect normative aspects of social interaction. Adapting the constructs of social and sociomathematical norms from the work of Yackel and Cobb (1996), I describe social aspects of the classroom environment by discussing normative aspects of social interaction (social norms) and discipline-specific criteria related to reasoning and justification in chemistry contexts, referred to here as sociochemical norms. This work discusses four social norms and two sociochemical norms that were documented over a five-week period of observation in Dr. Black's POGIL physical chemistry class. In small group activities, the socially established expectations that students explain reasoning, negotiate understandings of terminology and symbolic representations, and arrive at a consensus on critical thinking questions shaped small group interactions and reasoning. In whole class discussion, there was an expectation that students share reasoning with the class, and that the instructor provide feedback on student reasoning in ways that extended student contributions and elaborated relationships between macroscopic, particulate, and symbolic-level ideas. The ways in which the class constructed

  3. Nobel Prizes in Physics and Chemistry 2014: Celebrating the International Year of Light 2015, commemorating the Old Quantum Theory

    NASA Astrophysics Data System (ADS)

    Shi, Yu

    2015-01-01

    2015 is the International Year of Light and Light-based Technologies (IYL), while the physics and chemistry Nobel Prizes 2014 are both about light. The work leading to the two prizes share the same basic theoretical foundation: when an electron jumps from a higher energy level to a lower energy level, the energy difference is transformed into a photon. This basic way of light generation is a key part of the Old Quantum Theory. Interestingly, the date of announcing the 2014 Nobel Prize for physics coincided with the birthdays of Niels Bohr and, especially, of Planck's blackbody radiation formula. In connection with the two 2014 Nobel Prizes, we recall the development of the Old Quantum Theory by Planck, Einstein and Bohr.

  4. Short Animation Movies as Advance Organizers in Physics Teaching: A Preliminary Study

    ERIC Educational Resources Information Center

    Koscianski, Andre; Ribeiro, Rafael Joao; da Silva, Sani Carvalho Rutz

    2012-01-01

    Background: Advance organizers are instructional materials that help students use previous knowledge to make links with new information. Short animation movies are a possible format and are well suited for physics, as they can portray dynamic phenomena and represent abstract concepts. Purpose: The study aimed to determine guidelines for the…

  5. Physical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the second of six modules in advanced crop and soil science and introduces the agriculture student to the subject of physical features of the soil. Upon completing the two day lesson, the student will be able to determine the texture and structural types of soil, list the structural classes of the soil and where they…

  6. Identifying correlates and determinants of physical activity in youth: How can we advance the field?

    PubMed

    Atkin, Andrew J; van Sluijs, Esther M F; Dollman, James; Taylor, Wendell C; Stanley, Rebecca M

    2016-06-01

    This commentary provides a critical discussion of current research investigating the correlates and determinants of physical activity in young people, with specific focus on conceptual, theoretical and methodological issues. We draw on current child and adolescent literature and our own collective expertise to illustrate our discussion. We conclude with recommendations that will strengthen future research and help to advance the field. PMID:26940254

  7. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    SciTech Connect

    Not Available

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  8. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  9. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene.

    PubMed

    Makshina, Ekaterina V; Dusselier, Michiel; Janssens, Wout; Degrève, Jan; Jacobs, Pierre A; Sels, Bert F

    2014-11-21

    Increasing demand for renewable feedstock-based chemicals is driving the interest of both academic and industrial research to substitute petrochemicals with renewable chemicals from biomass-derived resources. The search towards novel platform chemicals is challenging and rewarding, but the main research activities are concentrated on finding efficient pathways to produce familiar drop-in chemicals and polymer building blocks. A diversity of industrially important monomers like alkenes, conjugated dienes, unsaturated carboxylic acids and aromatic compounds are thus targeted from renewable feedstock. In this context, on-purpose production of 1,3-butadiene from biomass-derived feedstock is an interesting example as its production is under pressure by uncertainty of the conventional fossil feedstock. Ethanol, obtained via fermentation or (biomass-generated) syngas, can be converted to butadiene, although there is no large commercial activity today. Though practised on a large scale in the beginning of the 20th century, there is a growing worldwide renewed interest in the butadiene-from-ethanol route. An alternative route to produce butadiene from biomass is through direct carbohydrate and gas fermentation or indirectly via the dehydration of butanediols. This review starts with a brief discussion on the different feedstock possibilities to produce butadiene, followed by a comprehensive summary of the current state of knowledge regarding advances and achievements in the field of the chemocatalytic conversion of ethanol and butanediols to butadiene, including thermodynamics and kinetic aspects of the reactions with discussions on the reaction pathways and the type of catalysts developed. PMID:24993100

  10. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    SciTech Connect

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  11. Physical Activity in Patients With Advanced-Stage Cancer: A Systematic Review of the Literature

    PubMed Central

    Albrecht, Tara A.; Taylor, Ann Gill

    2014-01-01

    The importance of physical activity for chronic disease prevention and management has become generally well accepted. The number of research interventions and publications examining the benefits of physical activity for patients with cancer has been rising steadily. However, much of that research has focused on the impact of physical activity either prior to or early in the cancer diagnosis, treatment, and survivorship process. Research focusing on the effects of physical activity, specifically for patients with advanced-stage cancer and poorer prognostic outcomes, has been addressed only recently. The purpose of this article is to examine the state of the science for physical activity in the advanced-stage disease subset of the cancer population. Exercise in a variety of intensities and forms, including yoga, walking, biking, and swimming, has many health benefits for people, including those diagnosed with cancer. Research has shown that, for people with cancer (including advanced-stage cancer), exercise can decrease anxiety, stress, and depression while improving levels of pain, fatigue, shortness of breath, constipation, and insomnia. People diagnosed with cancer should discuss with their oncologist safe, easy ways they can incorporate exercise into their daily lives. PMID:22641322

  12. Physical activity in patients with advanced-stage cancer: a systematic review of the literature.

    PubMed

    Albrecht, Tara A; Taylor, Ann Gill

    2012-06-01

    The importance of physical activity for chronic disease prevention and management has become generally well accepted. The number of research interventions and publications examining the benefits of physical activity for patients with cancer has been rising steadily. However, much of that research has focused on the impact of physical activity either prior to or early in the cancer diagnosis, treatment, and survivorship process. Research focusing on the effects of physical activity, specifically for patients with advanced-stage cancer and poorer prognostic outcomes, has been addressed only recently. The purpose of this article is to examine the state of the science for physical activity in the advanced-stage disease subset of the cancer population. Exercise in a variety of intensities and forms, including yoga, walking, biking, and swimming, has many health benefits for people, including those diagnosed with cancer. Research has shown that, for people with cancer (including advanced-stage cancer), exercise can decrease anxiety, stress, and depression while improving levels of pain, fatigue, shortness of breath, constipation, and insomnia. People diagnosed with cancer should discuss with their oncologist safe, easy ways they can incorporate exercise into their daily lives. PMID:22641322

  13. PREFACE: 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2015-06-01

    The 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015), was held at The Westin Resort Nusa Dua, Bali on 31 January - 1 February 2015. The ScieTech 2015 conference is aimed to bring together researchers, engineers and scientists from around the world. ScieTech 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics. As we already know that science and technology have brought tremendous benefits for human civilization. People are becoming healthier, wealthier, better educated, more peaceful, increasingly connected, and living longer. Of course, science and technology provide many answers to global challenges, but we will face more complex problems in the next decade due to increasing world population, limitation of energy, and climate change. Therefore, researchers should be more active in conducting research that enables collaboration between one and the others. Interdisciplinary cooperation is absolutely necessary in order to create a smart system for solving the global problems. We need a global and general long-term view of the future with long-range goals for solving complex problems in next decade. Therefore the conference was held to be a forum for researchers from different disciplines to start collaborating and conducting research that provides a solution to the global issues. The theme of ScieTech 2015 was ''The interdisciplinary Application between Mathematics, Chemistry and Physics to enhance the Quality of Life''. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting conference program as well as the invited and plenary speakers. This year, we received 197 papers and after rigorous review, 59 papers were accepted. The participants came from 19

  14. A Low-order Coupled Chemistry Meteorology Model for Testing Online and Offline Advanced Data Assimilation Schemes

    NASA Astrophysics Data System (ADS)

    Bocquet, M.; Haussaire, J. M.

    2015-12-01

    Bocquet and Sakov have recently introduced a low-order model based on the coupling of thechaotic Lorenz-95 model which simulates winds along a mid-latitude circle, with thetransport of a tracer species advected by this wind field. It has been used to testadvanced data assimilation methods with an online model that couples meteorology andtracer transport. In the present study, the tracer subsystem of the model is replacedwith a reduced photochemistry module meant to emulate reactive air pollution. Thiscoupled chemistry meteorology model, the L95-GRS model, mimics continental andtranscontinental transport and photochemistry of ozone, volatile organic compounds andnitrogen dioxides.The L95-GRS is specially useful in testing advanced data assimilation schemes, such as theiterative ensemble Kalman smoother (IEnKS) that combines the best of ensemble andvariational methods. The model provides useful insights prior to any implementation ofthe data assimilation method on larger models. For instance, online and offline dataassimilation strategies based on the ensemble Kalman filter or the IEnKS can easily beevaluated with it. It allows to document the impact of species concentration observationson the wind estimation. The model also illustrates a long standing issue in atmosphericchemistry forecasting: the impact of the wind chaotic dynamics and of the chemical speciesnon-chaotic but highly nonlinear dynamics on the selected data assimilation approach.

  15. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  16. My maize and blue brick road to physical organic chemistry in materials.

    PubMed

    McNeil, Anne J

    2016-01-01

    Similar to Dorothy's journey along the yellow brick road in The Wizard of Oz, this perspective carves out the path I took from my early childhood fascinations with science through my independent career at the University of Michigan (maize and blue). The influential research projects and mentors are highlighted, including some fortuitous experimental results that drew me into the field of supramolecular chemistry, specifically, and organic materials, broadly. My research group's efforts toward designing new sensors based on small molecule gelators are described. In particular, I highlight how our design strategy has evolved as we learn more about molecular gelators. This perspective concludes with some predictions about where molecular gels, as well as my personal and professional life, are headed. PMID:26977181

  17. Physics, chemistry and pulmonary sequelae of thermodegradation events in long-mission space flight

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sklar, Michael; Ramirez, W. Fred; Smith, Gerald J.; Morgenthaler, George W.; Oberdoerster, Guenter

    1993-01-01

    An event in which electronic insulation consisting of polytetrafluoroethylene undergoes thermodegradation on the Space Station Freedom is considered experimentally and theoretically from the initial chemistry and convective transport through pulmonary deposition in humans. The low-gravity enviroment impacts various stages of event simulation. Vapor-phase and particulate thermodegradation products were considered as potential spacecraft contaminants. A potential pathway for the production of ultrafine particles was identified. Different approaches to the simulation and prediction of contaminant transport were studied and used to predict the distribution of generic vapor-phase products in a Space Station model. A lung transport model was used to assess the pulmonary distribution of inhaled particles, and, finally, the impact of adaptation to low gravity on the human response to this inhalation risk was explored on the basis of known physiological modifications of the immune, endocrine, musculoskeletal and pulmonary systems that accompany space flight.

  18. My maize and blue brick road to physical organic chemistry in materials

    PubMed Central

    2016-01-01

    Summary Similar to Dorothy’s journey along the yellow brick road in The Wizard of Oz, this perspective carves out the path I took from my early childhood fascinations with science through my independent career at the University of Michigan (maize and blue). The influential research projects and mentors are highlighted, including some fortuitous experimental results that drew me into the field of supramolecular chemistry, specifically, and organic materials, broadly. My research group’s efforts toward designing new sensors based on small molecule gelators are described. In particular, I highlight how our design strategy has evolved as we learn more about molecular gelators. This perspective concludes with some predictions about where molecular gels, as well as my personal and professional life, are headed. PMID:26977181

  19. Innovative experimental particle physics through technological advances: Past, present and future

    SciTech Connect

    Cheung, Harry W.K.; /Fermilab

    2005-01-01

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

  20. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.