Sample records for advanced porous materials

  1. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.

    PubMed

    Wang, Libin; Hu, Xianluo

    2018-06-18

    Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Advances in design and modeling of porous materials

    NASA Astrophysics Data System (ADS)

    Ayral, André; Calas-Etienne, Sylvie; Coasne, Benoit; Deratani, André; Evstratov, Alexis; Galarneau, Anne; Grande, Daniel; Hureau, Matthieu; Jobic, Hervé; Morlay, Catherine; Parmentier, Julien; Prelot, Bénédicte; Rossignol, Sylvie; Simon-Masseron, Angélique; Thibault-Starzyk, Frédéric

    2015-07-01

    This special issue of the European Physical Journal Special Topics is dedicated to selected papers from the symposium "High surface area porous and granular materials" organized in the frame of the conference "Matériaux 2014", held on November 24-28, 2014 in Montpellier, France. Porous materials and granular materials gather a wide variety of heterogeneous, isotropic or anisotropic media made of inorganic, organic or hybrid solid skeletons, with open or closed porosity, and pore sizes ranging from the centimeter scale to the sub-nanometer scale. Their technological and industrial applications cover numerous areas from building and civil engineering to microelectronics, including also metallurgy, chemistry, health, waste water and gas effluent treatment. Many emerging processes related to environmental protection and sustainable development also rely on this class of materials. Their functional properties are related to specific transfer mechanisms (matter, heat, radiation, electrical charge), to pore surface chemistry (exchange, adsorption, heterogeneous catalysis) and to retention inside confined volumes (storage, separation, exchange, controlled release). The development of innovative synthesis, shaping, characterization and modeling approaches enables the design of advanced materials with enhanced functional performance. The papers collected in this special issue offer a good overview of the state-of-the-art and science of these complex media. We would like to thank all the speakers and participants for their contribution to the success of the symposium. We also express our gratitude to the organization committee of "Matériaux 2014". We finally thank the reviewers and the staff of the European Physical Journal Special Topics who made the publication of this special issue possible.

  3. Gravitational Effects on Combustion Synthesis of Advanced Porous Materials

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Thorne, K.

    2000-01-01

    Combustion Synthesis (self-Propagating high-temperature synthesis-(SHS)) of porous Ti-TiB(x), composite materials has been studied with respect to the sensitivity to the SHS reaction parameters of stoichiometry, green density, gasifying agents, ambient pressure, diluents and gravity. The main objective of this research program is to engineer the required porosity and mechanical properties into the composite materials to meet the requirements of a consumer, such as for the application of bone replacement materials. Gravity serves to restrict the gas expansion and the liquid movement during SHS reaction. As a result, gravitational forces affect the microstructure and properties of the SHS products. Reacting these SHS systems in low gravity in the KC-135 aircraft has extended the ability to form porous products. This paper will emphasize the effects of gravity (low g, 1g and 2g) on the SHS reaction process, and the microstructure and properties of the porous composite. Some of biomedical results are also discussed.

  4. Synthesis and gas adsorption study of porous metal-organic framework materials

    NASA Astrophysics Data System (ADS)

    Mu, Bin

    Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have become the focus of intense study over the past decade due to their potential for advancing a variety of applications including air purification, gas storage, adsorption separations, catalysis, gas sensing, drug delivery, and so on. These materials have some distinct advantages over traditional porous materials such as the well-defined structures, uniform pore sizes, chemically functionalized sorption sites, and potential for postsynthetic modification, etc. Thus, synthesis and adsorption studies of porous MOFs have increased substantially in recent years. Among various prospective applications, air purification is one of the most immediate concerns, which has urgent requirements to improve current nuclear, biological, and chemical (NBC) filters involving commercial and military purposes. Thus, the major goal of this funded project is to search, synthesize, and test these novel hybrid porous materials for adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs), and to install the benchmark for new-generation NBC filters. The objective of this study is three-fold: (i) Advance our understanding of coordination chemistry by synthesizing novel MOFs and characterizing these porous coordination polymers; (ii) Evaluate porous MOF materials for gasadsorption applications including CO2 capture, CH4 storage, other light gas adsorption and separations, and examine the chemical and physical properties of these solid adsorbents including thermal stability and heat capacity of MOFs; (iii) Evaluate porous MOF materials for next-generation NBC filter media by adsorption breakthrough measurements of TICs on MOFs, and advance our understanding about structureproperty relationships of these novel adsorbents.

  5. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  6. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  7. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  8. Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors.

    PubMed

    Sun, Li; Tian, Chungui; Fu, Yu; Yang, Ying; Yin, Jie; Wang, Lei; Fu, Honggang

    2014-01-07

    An advanced supercapacitor material based on nitrogen-doped porous graphitic carbon (NPGC) with high a surface area was synthesized by means of a simple coordination-pyrolysis combination process, in which tetraethyl orthosilicate (TEOS), nickel nitrate, and glucose were adopted as porogent, graphitic catalyst precursor, and carbon source, respectively. In addition, melamine was selected as a nitrogen source owing to its nitrogen-enriched structure and the strong interaction between the amine groups and the glucose unit. A low-temperature treatment resulted in the formation of a NPGC precursor by combination of the catalytic precursor, hydrolyzed TEOS, and the melamine-glucose unit. Following pyrolysis and removal of the catalyst and porogent, the NPGC material showed excellent electrical conductivity owing to its high crystallinity, a large Brunauer-Emmett-Teller surface area (SBET =1027 m(2)  g(-1) ), and a high nitrogen level (7.72 wt %). The unusual microstructure of NPGC materials could provide electrochemical energy storage. The NPGC material, without the need for any conductive additives, showed excellent capacitive behavior (293 F g(-1) at 1 A g(-1) ), long-term cycling stability, and high coulombic efficiency (>99.9 % over 5000 cycles) in KOH when used as an electrode. Notably, in a two-electrode symmetric supercapacitor, NPGC energy densities as high as 8.1 and 47.5 Wh kg(-1) , at a high power density (10.5 kW kg(-1) ), were achieved in 6 M KOH and 1 M Et4 NBF4 -PC electrolytes, respectively. Thus, the synthesized NPGC material could be a highly promising electrode material for advanced supercapacitors and other conversion devices. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Silk Fibroin Based Porous Materials

    PubMed Central

    Zhang, Qiang; Yan, Shuqin; Li, Mingzhong

    2009-01-01

    Silk from the Bombyx mori silkworm is a protein-based fiber. Bombyx mori silk fibroin (SF) is one of the most important candidates for biomedical porous material based on its superior machinability, biocompatibility, biodegradation, bioresorbability, and so on. In this paper, we have reviewed the key features of SF. Moreover we have focused on the morphous, technical processing, and biocompatibility of SF porous materials, followed by the application research. Finally, we provide a perspective the potential and problems of SF porous materials.

  10. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  11. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  12. Advanced Industrial Materials Program

    NASA Astrophysics Data System (ADS)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  13. Porous material neutron detector

    DOEpatents

    Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  14. Digital material laboratory: Considerations on high-porous volcanic rock

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Stöckhert, Ferdinand; Duda, Mandy; Fischer, Laura; Osorno, Maria; Steeb, Holger

    2017-04-01

    Digital material methodology combines modern microscopic imaging with advanced numerical simulations of the physical properties of materials. One goal is to complement physical laboratory investigations for a deeper understanding of relevant physical processes. Large-scale numerical modeling of elastic wave propagation directly from the microstructure of the porous material is integral to this technology. The parallelized finite-difference-based Stokes solver is suitable for the calculation of effective hydraulic parameters for low and high porous materials. Reticulite is formed in very high Hawaiian fire fountaining events. Hawaiian fire fountaining eruptions produce columns or fountains of lava, which can last for a few hours to days. Reticulite was originally thought to have formed from further expanded hot scoria foam. However, some researchers believe reticulite forms from magma that formed vesicles instantly, which expanded rapidly and uniformly to produce the polyhedral vesicle walls. These walls then ruptured and cooled rapidly. The (open) honeycomb network of bubbles is held together by glassy threads and forms a structure with a porosity higher than 80%. The fragile rock sample is difficult to characterize with classical experimental methods and we show how to determine porosity, effective elastic properties and Darcy permeability by using digital material methodology. A technical challenge will be to image with the CT technique the thin skin between the glassy threads visible on the microscopy image. A numerical challenge will be determination of effective material properties and viscous fluid effects on wave propagation in such a high porous material.

  15. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Luis; Barpaga, Dushyant; Zheng, Jian

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which ledmore » to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.« less

  16. Constitutive model for porous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weston, A.M.; Lee, E.L.

    1982-01-01

    A simple pressure versus porosity compaction model is developed to calculate the response of granular porous bed materials to shock impact. The model provides a scheme for calculating compaction behavior when relatively limited material data are available. While the model was developed to study porous explosives and propellants, it has been applied to a much wider range of materials. The early development of porous material models, such as that of Hermann, required empirical dynamic compaction data. Erkman and Edwards successfully applied the early theory to unreacted porous high explosives using a Gruneisen equation of state without yield behavior and withoutmore » trapped gas in the pores. Butcher included viscoelastic rate dependance in pore collapse. The theoretical treatment of Carroll and Holt is centered on the collapse of a circular pore and includes radial inertia terms and a complex set of stress, strain and strain rate constitutive parameters. Unfortunately data required for these parameters are generally not available. The model described here is also centered on the collapse of a circular pore, but utilizes a simpler elastic-plastic static equilibrium pore collapse mechanism without strain rate dependence, or radial inertia terms. It does include trapped gas inside the pore, a solid material flow stress that creates both a yield point and a variation in solid material pressure with radius. The solid is described by a Mie-Gruneisen type EOS. Comparisons show that this model will accurately estimate major mechanical features which have been observed in compaction experiments.« less

  17. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    PubMed

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  18. Computational materials chemistry for carbon capture using porous materials

    NASA Astrophysics Data System (ADS)

    Sharma, Abhishek; Huang, Runhong; Malani, Ateeque; Babarao, Ravichandar

    2017-11-01

    Control over carbon dioxide (CO2) release is extremely important to decrease its hazardous effects on the environment such as global warming, ocean acidification, etc. For CO2 capture and storage at industrial point sources, nanoporous materials offer an energetically viable and economically feasible approach compared to chemisorption in amines. There is a growing need to design and synthesize new nanoporous materials with enhanced capability for carbon capture. Computational materials chemistry offers tools to screen and design cost-effective materials for CO2 separation and storage, and it is less time consuming compared to trial and error experimental synthesis. It also provides a guide to synthesize new materials with better properties for real world applications. In this review, we briefly highlight the various carbon capture technologies and the need of computational materials design for carbon capture. This review discusses the commonly used computational chemistry-based simulation methods for structural characterization and prediction of thermodynamic properties of adsorbed gases in porous materials. Finally, simulation studies reported on various potential porous materials, such as zeolites, porous carbon, metal organic frameworks (MOFs) and covalent organic frameworks (COFs), for CO2 capture are discussed.

  19. Sputtering from a Porous Material by Penetrating Ions

    NASA Technical Reports Server (NTRS)

    Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Johnson, R. E.; Caro, A.; Fama, M.; Loeffler, M.; Baragiola, R. A.; Farkas, D.

    2012-01-01

    Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space, Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.

  20. Metal recovery from porous materials

    DOEpatents

    Sturcken, Edward F.

    1992-01-01

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  1. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1992-10-13

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  2. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  3. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  4. Hierarchical porous nickel oxide-carbon nanotubes as advanced pseudocapacitor materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Su, Aldwin D.; Zhang, Xiang; Rinaldi, Ali; Nguyen, Son T.; Liu, Huihui; Lei, Zhibin; Lu, Li; Duong, Hai M.

    2013-03-01

    Hierarchical porous carbon anode and metal oxide cathode are promising for supercapacitor with both high energy density and high power density. This Letter uses NiO and commercial carbon nanotubes (CNTs) as electrode materials for electrochemical capacitors with high energy storage capacities. Experimental results show that the specific capacitance of the electrode materials for 10%, 30% and 50% CNTs are 279, 242 and 112 F/g, respectively in an aqueous 1 M KOH electrolyte at a charge rate of 0.56 A/g. The maximum specific capacitance is 328 F/g at a charge rate of 0.33 A/g.

  5. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dong-Kyun; Volosin, Alex

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite materialmore » can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.« less

  6. On the sensitivity analysis of porous material models

    NASA Astrophysics Data System (ADS)

    Ouisse, Morvan; Ichchou, Mohamed; Chedly, Slaheddine; Collet, Manuel

    2012-11-01

    Porous materials are used in many vibroacoustic applications. Different available models describe their behaviors according to materials' intrinsic characteristics. For instance, in the case of porous material with rigid frame, and according to the Champoux-Allard model, five parameters are employed. In this paper, an investigation about this model sensitivity to parameters according to frequency is conducted. Sobol and FAST algorithms are used for sensitivity analysis. A strong parametric frequency dependent hierarchy is shown. Sensitivity investigations confirm that resistivity is the most influent parameter when acoustic absorption and surface impedance of porous materials with rigid frame are considered. The analysis is first performed on a wide category of porous materials, and then restricted to a polyurethane foam analysis in order to illustrate the impact of the reduction of the design space. In a second part, a sensitivity analysis is performed using the Biot-Allard model with nine parameters including mechanical effects of the frame and conclusions are drawn through numerical simulations.

  7. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients

    PubMed Central

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P.; Ritchie, Robert O.

    2015-01-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062

  8. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    NASA Technical Reports Server (NTRS)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  9. Structural control in the synthesis of inorganic porous materials

    NASA Astrophysics Data System (ADS)

    Holland, Brian Thomas

    Mesoporous (2.0--50.0 nm pore diameter) and macroporous (50.0 nm on up) materials have been the basis of my studies. These materials, for many years, possessed large pore size distributions. Recently, however, it has been possible to synthesize both mesoporous and macroporous materials that possess highly ordered uniform pores throughout the material. Workers at Mobil Corporation in 1992 discovered a hexagonally arrayed mesoporous material, designated MCM-41, which exhibited uniform pores ranging from 2.0--10.0 nm in diameter. In my work MCM-41 was used as a host for the incorporation of meso-tetrakis(5-trimethylammoniumpentyl)porphyrin (TMAP-Cl) and as a model for the synthesis of mesoporous alumino- and galloaluminophosphates which were created using cluster precursors of the type MO4Al 12(OH)24(H2O)12 7+, M = Al or Ga. Macroporous materials with uniform pore sizes have been synthesized by our group with frameworks consisting of a variety of metal oxides, metals, organosilanes, aluminophosphates and bimodal pores. These materials are synthesized from the addition of metal precursors to preordered polystyrene spheres. Removal of the spheres results in the formation of macropores with highly uniform pores extending microns in length. Porous materials with uniform and adjustable pore sizes in the mesoporous and macroporous size regimes offer distinct advantages over non-ordered materials for numerous reasons. First, catalysis reactions that are based on the ability of the porous materials to impose size and shape restrictions on the substrate are of considerable interest in the petroleum and petrochemical industries. As pore diameters increase larger molecules can be incorporated into the pores, i.e., biological molecules, dyes, etc. For the macroporous materials synthesized by our group it has been envisioned that these structures may not only be used for catalysis because of increased efficiencies of flow but for more advanced applications, e.g., photonic crystals

  10. Porous silicon advances in drug delivery and immunotherapy

    PubMed Central

    Savage, D; Liu, X; Curley, S; Ferrari, M; Serda, RE

    2013-01-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. PMID:23845260

  11. Advances in Porous Biomaterials for Dental and Orthopaedic Applications

    PubMed Central

    Mour, Meenakshi; Das, Debarun; Winkler, Thomas; Hoenig, Elisa; Mielke, Gabriela; Morlock, Michael M.; Schilling, Arndt F.

    2010-01-01

    The connective hard tissues bone and teeth are highly porous on a micrometer scale, but show high values of compression strength at a relatively low weight. The fabrication of porous materials has been actively researched and different processes have been developed that vary in preparation complexity and also in the type of porous material that they produce. Methodologies are available for determination of pore properties. The purpose of the paper is to give an overview of these methods, the role of porosity in natural porous materials and the effect of pore properties on the living tissues. The minimum pore size required to allow the ingrowth of mineralized tissue seems to be in the order of 50 µm: larger pore sizes seem to improve speed and depth of penetration of mineralized tissues into the biomaterial, but on the other hand impair the mechanical properties. The optimal pore size is therefore dependent on the application and the used material.

  12. Porous ionic liquids: synthesis and application.

    PubMed

    Zhang, Shiguo; Dokko, Kaoru; Watanabe, Masayoshi

    2015-07-15

    Solidification of fluidic ionic liquids into porous materials yields porous ionic networks that combine the unique characteristics of ionic liquids with the common features of polymers and porous materials. This minireview reports the most recent advances in the design of porous ionic liquids. A summary of the synthesis of ordered and disordered porous ionic liquid-based nanoparticles or membranes with or without templates is provided, together with the new concept of room temperature porous ionic liquids. As a versatile platform for functional materials, porous ionic liquids have shown widespread applications in catalysis, adsorption, sensing, actuation, etc. This new research direction towards ionic liquids chemistry is still in its early stages but has great potential.

  13. Porous Silicon—A Versatile Host Material

    PubMed Central

    Granitzer, Petra; Rumpf, Klemens

    2010-01-01

    This work reviews the use of porous silicon (PS) as a nanomaterial which is extensively investigated and utilized for various applications, e.g., in the fields of optics, sensor technology and biomedicine. Furthermore the combination of PS with one or more materials which are also nanostructured due to their deposition within the porous matrix is discussed. Such nanocompounds offer a broad avenue of new and interesting properties depending on the kind of involved materials as well as on their morphology. The filling of the pores performed by electroless or electrochemical deposition is described, whereas different morphologies, reaching from micro- to macro pores are utilized as host material which can be self-organized or fabricated by prestructuring. For metal-deposition within the porous structures, both ferromagnetic and non-magnetic metals are used. Emphasis will be put on self-arranged mesoporous silicon, offering a quasi-regular pore arrangement, employed as template for filling with ferromagnetic metals. By varying the deposition parameters the precipitation of the metal structures within the pores can be tuned in geometry and spatial distribution leading to samples with desired magnetic properties. The correlation between morphology and magnetic behaviour of such semiconducting/magnetic systems will be determined. Porous silicon and its combination with a variety of filling materials leads to nanocomposites with specific physical properties caused by the nanometric size and give rise to a multiplicity of potential applications in spintronics, magnetic and magneto-optic devices, nutritional food additives as well as drug delivery.

  14. Porous Molecular Solids and Liquids

    PubMed Central

    2017-01-01

    Until recently, porous molecular solids were isolated curiosities with properties that were eclipsed by porous frameworks, such as metal–organic frameworks. Now molecules have emerged as a functional materials platform that can have high levels of porosity, good chemical stability, and, uniquely, solution processability. The lack of intermolecular bonding in these materials has also led to new, counterintuitive states of matter, such as porous liquids. Our ability to design these materials has improved significantly due to advances in computational prediction methods. PMID:28691065

  15. Porous silicon advances in drug delivery and immunotherapy.

    PubMed

    Savage, David J; Liu, Xuewu; Curley, Steven A; Ferrari, Mauro; Serda, Rita E

    2013-10-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Porous graphene materials for water remediation.

    PubMed

    Niu, Zhiqiang; Liu, Lili; Zhang, Li; Chen, Xiaodong

    2014-09-10

    Water remediation has been a critical issue over the past decades due to the expansion of wastewater discharge to the environment. Currently, a variety of functional materials have been successfully prepared for water remediation applications. Among them, graphene is an attractive candidate due to its high specific surface area, tunable surface behavior, and high strength. This Concept paper summarizes the design strategy of porous graphene materials and their applications in water remediation, such as the cleanup of oil, removal of heavy metal ions, and elimination of water soluble organic contaminants. The progress made so far will guide further development in structure design strategy of porous materials based on graphene and exploration of such materials in environmental remediation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.

    PubMed

    Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L

    2018-04-18

    In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.

  18. Random-walk diffusion and drying of porous materials

    NASA Astrophysics Data System (ADS)

    Mehrafarin, M.; Faghihi, M.

    2001-12-01

    Based on random-walk diffusion, a microscopic model for drying is proposed to explain the characteristic features of the drying-rate curve of porous materials. The constant drying-rate period is considered as a normal diffusion process. The transition to the falling-rate regime is attributed to the fractal nature of porous materials which results in crossover to anomalous diffusion.

  19. Head-on collision of normal shock waves with rigid porous materials

    NASA Astrophysics Data System (ADS)

    Levy, A.; Ben-Dor, G.; Skews, B. W.; Sorek, S.

    1993-08-01

    The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm × 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections. Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.

  20. Tuneable porous carbonaceous materials from renewable resources.

    PubMed

    White, Robin J; Budarin, Vitaly; Luque, Rafael; Clark, James H; Macquarrie, Duncan J

    2009-12-01

    Porous carbon materials are ubiquitous with a wide range of technologically important applications, including separation science, heterogeneous catalyst supports, water purification filters, stationary phase materials, as well as the developing future areas of energy generation and storage applications. Hard template routes to ordered mesoporous carbons are well established, but whilst offering different mesoscopic textural phases, the surface of the material is difficult to chemically post-modify and processing is energy, resource and step intensive. The production of carbon materials from biomass (i.e. sugars or polysaccharides) is a relatively new but rapidly expanding research area. In this tutorial review, we compare and contrast recently reported routes to the preparation of porous carbon materials derived from renewable resources, with examples of our previously reported mesoporous polysaccharide-derived "Starbon" carbonaceous material technology.

  1. Modeling the Shock Hugoniot in Porous Materials

    NASA Astrophysics Data System (ADS)

    Cochrane, Kyle R.; Shulenburger, Luke; Mattsson, Thomas R.; Lane, J. Matthew D.; Weck, Philippe F.; Vogler, Tracy J.; Desjarlais, Michael P.

    2017-06-01

    Porous materials are present in many scenarios from planetary science to ICF. Understanding how porosity modifies the behavior of the shock Hugoniot in an equation of state is key to being able to predictively simulate experiments. For example, modeling shocks in under-dense iron oxide can aid in understanding planetary formation and silica aerogel can be used to approximate the shock response of deuterium. Simulating the shock response of porous materials presents a variety of theoretical challenges, but by combining ab initio calculations with a surface energy and porosity model, we are able to accurately represent the shock Hugoniot. Finally, we show that this new approach can be used to calculate the Hugoniot of porous materials using existing tabular equations of state. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Assessment of porous material anisotropy and its effect on gas permeability

    NASA Astrophysics Data System (ADS)

    Wałowski, Grzegorz

    2017-10-01

    The results of experimental research upon the assessment of porous material anisotropy and its effect on gas permeability of porous materials with respect to the gas flow. The conducted research applied to natural materials with an anisotropic gap-porous structure and - for comparative purposes - to model materials such as coke, pumice and polyamide agglomerates. The research was conducted with the use of a special test stand that enables measuring the gas permeability with respect to three flow orientations compared with symmetric cubic-shaped samples. The research results show an explicit impact of the flow direction on the permeability of materials porous, which results from their anisotropic internal structures. The anisotropy coefficient and permeability effective coefficient of such materials was determined and an experimental evaluation of the value of this coefficient was conducted with respect to the gas stream and the total pressure drop across the porous deposit. The process of gas permeability was considered in the category of hydrodynamics of gas flow through porous deposits. It is important to broaden the knowledge of gas hydrodynamics assessment in porous media so far unrecognised for the development of a new generation of clean energy sources, especially in the context of biogas or raw gas production.

  3. Porous materials produced from incineration ash using thermal plasma technology.

    PubMed

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks.

    PubMed

    Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, María

    2017-06-01

    Nanotechnology has provided new tools for addressing unmet clinical situations, especially in the oncology field. The development of smart nanocarriers able to deliver chemotherapeutic agents specifically to the diseased cells and to release them in a controlled way has offered a paramount advantage over conventional therapy. Areas covered: Among the different types of nanoparticle that can be employed for this purpose, inorganic porous materials have received significant attention in the last decade due to their unique properties such as high loading capacity, chemical and physical robustness, low toxicity and easy and cheap production in the laboratory. This review discuss the recent advances performed in the application of porous inorganic and metal-organic materials for antitumoral therapy, paying special attention to the application of mesoporous silica, porous silicon and metal-organic nanoparticles. Expert opinion: The use of porous inorganic nanoparticles as drug carriers for cancer therapy has the potential to improve the life expectancy of the patients affected by this disease. However, much work is needed to overcome their drawbacks, which are aggravated by their hard nature, exploiting the advantages offered by highly the ordered pore network of these materials.

  5. Porous polymeric materials for hydrogen storage

    DOEpatents

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  6. Multi-regime transport model for leaching behavior of heterogeneous porous materials.

    PubMed

    Sanchez, F; Massry, I W; Eighmy, T; Kosson, D S

    2003-01-01

    Utilization of secondary materials in civil engineering applications (e.g. as substitutes for natural aggregates or binder constituents) requires assessment of the physical and environment properties of the product. Environmental assessment often necessitates evaluation of the potential for constituent release through leaching. Currently most leaching models used to estimate long-term field performance assume that the species of concern is uniformly dispersed in a homogeneous porous material. However, waste materials are often comprised of distinct components such as coarse or fine aggregates in a cement concrete or waste encapsulated in a stabilized matrix. The specific objectives of the research presented here were to (1) develop a one-dimensional, multi-regime transport model (i.e. MRT model) to describe the release of species from heterogeneous porous materials and, (2) evaluate simple limit cases using the model for species when release is not dependent on pH. Two different idealized model systems were considered: (1) a porous material contaminated with the species of interest and containing inert aggregates and, (2) a porous material containing the contaminant of interest only in the aggregates. The effect of three factors on constituent release were examined: (1) volume fraction of material occupied by the aggregates compared to a homogeneous porous material, (2) aggregate size and, (3) differences in mass transfer rates between the binder and the aggregates. Simulation results confirmed that assuming homogeneous materials to evaluate the release of contaminants from porous waste materials may result in erroneous long-term field performance assessment.

  7. In silico design of porous polymer networks: high-throughput screening for methane storage materials.

    PubMed

    Martin, Richard L; Simon, Cory M; Smit, Berend; Haranczyk, Maciej

    2014-04-02

    Porous polymer networks (PPNs) are a class of advanced porous materials that combine the advantages of cheap and stable polymers with the high surface areas and tunable chemistry of metal-organic frameworks. They are of particular interest for gas separation or storage applications, for instance, as methane adsorbents for a vehicular natural gas tank or other portable applications. PPNs are self-assembled from distinct building units; here, we utilize commercially available chemical fragments and two experimentally known synthetic routes to design in silico a large database of synthetically realistic PPN materials. All structures from our database of 18,000 materials have been relaxed with semiempirical electronic structure methods and characterized with Grand-canonical Monte Carlo simulations for methane uptake and deliverable (working) capacity. A number of novel structure-property relationships that govern methane storage performance were identified. The relationships are translated into experimental guidelines to realize the ideal PPN structure. We found that cooperative methane-methane attractions were present in all of the best-performing materials, highlighting the importance of guest interaction in the design of optimal materials for methane storage.

  8. Porous polymeric materials for hydrogen storage

    DOEpatents

    Yu, Luping [Hoffman Estates, IL; Liu, Di-Jia [Naperville, IL; Yuan, Shengwen [Chicago, IL; Yang, Junbing [Westmont, IL

    2011-12-13

    Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  9. Modelling and Microstructural Characterization of Sintered Metallic Porous Materials

    PubMed Central

    Depczynski, Wojciech; Kazala, Robert; Ludwinek, Krzysztof; Jedynak, Katarzyna

    2016-01-01

    This paper presents selected characteristics of the metallic porous materials produced by the sintering of metal powders. The authors focus on materials produced from the iron powder (Fe) of ASC 100.29 and Distaloy SE. ASC 100.29 is formed by atomization and has a characteristic morphology. It consists of spherical particles of different sizes forming agglomerates. Distaloy SE is also based on the sponge-iron. The porous material is prepared using the patented method of sintering the mixture of iron powder ASC 100.29, Fe(III) oxide, Distaloy SE and Fe(III) oxide in the reducing atmosphere of dissociated ammonia. As a result, the materials with open pores of micrometer sizes are obtained. The pores are formed between iron particles bonded by diffusion bridges. The modelling of porous materials containing diffusion bridges that allows for three-dimensional (3D) imaging is presented. PMID:28773690

  10. Gold decorated porous biosilica nanodevices for advanced medicine.

    PubMed

    Terracciano, Monica; Napolitano, Michela; De Stefano, Luca; De Luca, Anna Chiara; Rea, Ilaria

    2018-06-08

    Diatomite is a fossil material made of amorphous porous silica. In this work, polyethylene glycol (PEG)-modified diatomite NPs (PEG-DNPs) are decorated with gold NPs (AuNPs) by one-pot liquid-phase synthesis. Nanocomplexes (PEG-DNPs@AuNPs), with an average size of about 450 nm, are characterized by dynamic light scattering, electron microscopy, nitrogen adsorption/desorption analysis, UV-vis and photoluminescence spectroscopies. Preliminary studies on the use of the nanocomplex in nanomedicine are also presented. Tests performed incubating PEG-DNPs@AuNPs in physiological conditions reveal a good stability of material. Cellular uptake of labeled PEG-DNPs@AuNPs is investigated by confocal microscopy after incubation with human cervix epithelioid carcinoma (HeLa) cells up to 48 h: an efficient cytoplasmic localization is observed. In vitro cytotoxicity of nanocomplexes with a concentration up to 400 μg ml -1 for 72 h is also evaluated. The results suggest the use of PEG-DNPs@AuNPs as advanced nanodevices adding imaging features to the nanocomplexes, due to AuNPs as contrast agent.

  11. Gold decorated porous biosilica nanodevices for advanced medicine

    NASA Astrophysics Data System (ADS)

    Terracciano, Monica; Napolitano, Michela; De Stefano, Luca; Chiara De Luca, Anna; Rea, Ilaria

    2018-06-01

    Diatomite is a fossil material made of amorphous porous silica. In this work, polyethylene glycol (PEG)-modified diatomite NPs (PEG-DNPs) are decorated with gold NPs (AuNPs) by one-pot liquid-phase synthesis. Nanocomplexes (PEG-DNPs@AuNPs), with an average size of about 450 nm, are characterized by dynamic light scattering, electron microscopy, nitrogen adsorption/desorption analysis, UV–vis and photoluminescence spectroscopies. Preliminary studies on the use of the nanocomplex in nanomedicine are also presented. Tests performed incubating PEG-DNPs@AuNPs in physiological conditions reveal a good stability of material. Cellular uptake of labeled PEG-DNPs@AuNPs is investigated by confocal microscopy after incubation with human cervix epithelioid carcinoma (HeLa) cells up to 48 h: an efficient cytoplasmic localization is observed. In vitro cytotoxicity of nanocomplexes with a concentration up to 400 μg ml‑1 for 72 h is also evaluated. The results suggest the use of PEG-DNPs@AuNPs as advanced nanodevices adding imaging features to the nanocomplexes, due to AuNPs as contrast agent.

  12. Advanced Materials through Assembly of Nanocelluloses.

    PubMed

    Kontturi, Eero; Laaksonen, Päivi; Linder, Markus B; Nonappa; Gröschel, André H; Rojas, Orlando J; Ikkala, Olli

    2018-06-01

    There is an emerging quest for lightweight materials with excellent mechanical properties and economic production, while still being sustainable and functionalizable. They could form the basis of the future bioeconomy for energy and material efficiency. Cellulose has long been recognized as an abundant polymer. Modified celluloses were, in fact, among the first polymers used in technical applications; however, they were later replaced by petroleum-based synthetic polymers. Currently, there is a resurgence of interest to utilize renewable resources, where cellulose is foreseen to make again a major impact, this time in the development of advanced materials. This is because of its availability and properties, as well as economic and sustainable production. Among cellulose-based structures, cellulose nanofibrils and nanocrystals display nanoscale lateral dimensions and lengths ranging from nanometers to micrometers. Their excellent mechanical properties are, in part, due to their crystalline assembly via hydrogen bonds. Owing to their abundant surface hydroxyl groups, they can be easily modified with nanoparticles, (bio)polymers, inorganics, or nanocarbons to form functional fibers, films, bulk matter, and porous aerogels and foams. Here, some of the recent progress in the development of advanced materials within this rapidly growing field is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of porous material heating on the drag force of a cylinder with gas-permeable porous inserts in a supersonic flow

    NASA Astrophysics Data System (ADS)

    Mironov, S. G.; Poplavskaya, T. V.; Kirilovskiy, S. V.

    2017-10-01

    The paper presents the results of an experimental investigation of supersonic flow around a solid cylinder with a gas-permeable porous insert on its front end and of supersonic flow around a hollow cylinder with internal porous inserts in the presence of heating of the porous material. The experiments were performed in a supersonic wind tunnel with Mach number 4.85 and 7 with porous inserts of cellular-porous nickel. The results of measurements on the filtration stand of the air filtration rate through the cellular-porous nickel when it is heated are also shown. For a number of experiments, numerical modeling based on the skeletal model of a cellular-porous material was carried out.

  14. Fabrication and application of advanced functional materials from lignincellulosic biomass

    NASA Astrophysics Data System (ADS)

    Hu, Sixiao

    This dissertation explored the conversion of lignocellulosic biomass into advanced functional materials and their potential applications. Lignocellulosic biomass represents an as-of-yet underutilized renewable source for not only biofuel production but also functional materials fabrication. This renewable source is a great alternative for fossil fuel based chemicals, which could be one of the solutions to energy crisis. In this work, it was demonstrated a variety of advanced materials including functional carbons, metal and silica nanoparticles could be derived from lignocellulosic biomass. Chapter 1 provided overall reviewed of the lignin structures, productions and its utilizations as plastics, absorbents and carbons, as well as the preparation of nano-structured silver, silica and silicon carbide/nitride from biomass. Chapter 2, 3 and 4 discussed the fabrication of highly porous carbons from isolated lignin, and their applications as electric supercapacitors for energy storage. In chapter 2, ultrafine porous carbon fibers were prepared via electrospinning followed by simultaneous carbonization and activation. Chapter 3 covered the fabrication of supercapacitor based on the porous carbon fibers and the investigation of their electrochemical performances. In chapter 4, porous carbon particulates with layered carbon nano plates structures were produced by simple oven-drying followed by simultaneous carbonization and activation. The effects of heat processing parameters on the resulting carbon structures and their electrochemical properties were discussed in details. Chapter 5 and 6 addressed the preparation of silver nanoparticles using lignin. Chapter 5 reported the synthesis, underlying kinetics and mechanism of monodispersed silver nanospheres with diameter less than 25 nm in aqueous solutions using lignin as dual reducing and capping agents. Chapter 6 covered the preparation of silver nanoparticles on electrospun celluloses ultrafine fibers using lignin as both

  15. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  16. Mechanical properties of porous and cellular materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieradzki, K.; Green, D.J.; Gibson, L.J.

    1991-01-01

    This symposium successfully brought scientists together from a wide variety of disciplines to focus on the mechanical behavior of porous and cellular solids composed of metals, ceramics, polymers, or biological materials. For cellular materials, papers ranged from processing techniques through microstructure-mechanical property relationships to design. In an overview talk, Mike Ashby (Cambridge Univ.) showed how porous cellular materials can be more efficient than dense materials in designs that require minimum weight. He indicated that many biological materials have been able to accomplish such efficiency but there exists an opportunity to design even more efficient, manmade materials controlling microstructures at differentmore » scale levels. In the area of processing, James Aubert (Sandia National Laboratories) discussed techiques for manipulating polymersolvent phase equilibria to control the microstructure of microcellular foams. Other papers on processing discussed the production of cellular ceramics by CVD, HIPing and sol- gel techniques. Papers on the mechanical behavior of cellular materials considered various ceramics microcellular polymers, conventional polymer foams and apples. There were also contributions that considered optimum design procedures for cellular materials. Steven Cowin (City Univ. of New York) discussed procedures to match the discrete microstructural aspects of cellular materials with the continuum mechanics approach to their elastic behavior.« less

  17. Simplified method to solve sound transmission through structures lined with elastic porous material.

    PubMed

    Lee, J H; Kim, J

    2001-11-01

    An approximate analysis method is developed to calculate sound transmission through structures lined with porous material. Because the porous material has both the solid phase and fluid phase, three wave components exist in the material, which makes the related analysis very complicated. The main idea in developing the approximate method is very simple: modeling the porous material using only the strongest of the three waves, which in effect idealizes the material as an equivalent fluid. The analysis procedure has to be conducted in two steps. In the first step, sound transmission through a flat double panel with a porous liner of infinite extents, which has the same cross sectional construction as the actual structure, is solved based on the full theory and the strongest wave component is identified. In the second step sound transmission through the actual structure is solved modeling the porous material as an equivalent fluid while using the actual geometry of the structure. The development and validation of the method are discussed in detail. As an application example, the transmission loss through double walled cylindrical shells with a porous core is calculated utilizing the simplified method.

  18. Modulation power of porous materials and usage as ripple filter in particle therapy.

    PubMed

    Printz Ringbæk, Toke; Simeonov, Yuri; Witt, Matthias; Engenhart-Cabillic, Rita; Kraft, Gerhard; Zink, Klemens; Weber, Uli

    2017-04-07

    Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material. The beam-modulating effect from a porous plate enlarges the Bragg peak, yielding similar benefits in irradiation time reduction as a ripple filter. A porous plate can additionally function as a range shifter, which since a higher energy can be selected for the same penetration depth in the body reduces the scattering at the beam line and therefore improves the lateral fall-off. Bragg curve measurements of ion beams passing through different porous materials have been performed in order to determine the beam modulation effect of each. A mathematical model describing the correlation between the mean material density, the porous pore structure size and the strength of the modulation has been developed and a new material parameter called 'modulation power' is defined as the square of the Gaussian sigma divided by the mean water-equivalent thickness of the porous absorber. Monte Carlo simulations have been performed in order to validate the model and to investigate the Bragg peak enlargement, the scattering effects of porosity and the lateral beam width at the end of the beam range. The porosity is found to only influence the lateral scattering in a negligible way. As an example of a practical application, it is found that a 20 mm and 50 mm plate of Gammex LN300 performs similar to a 3 mm and 6 mm ripple filter, respectively, and at the same time can improve the sharpness of the lateral beam due to its multifunctionality as a ripple filter and a range shifter.

  19. Sound Transmission Through Multi-Panel Structures Lined with Elastic Porous Materials

    NASA Astrophysics Data System (ADS)

    Bolton, J. S.; Shiau, N.-M.; Kang, Y. J.

    1996-04-01

    Theory and measurements related to sound transmission through double panels lined with elastic porous media are presented. The information has application to the design of noise control barriers and to the optimization of aircraft fuselage transmission loss, for example. The major difference between the work described here and earlier research in this field relates to the treatment of the porous material that is used to line the cavity between the two panels of the double panel structure. Here we have used the porous material theory proposed by Biot since it takes explicit account of all the wave types known to propagate in elastic porous materials. As a result, it is possible to use the theory presented here to calculate the transmission loss of lined double panels at arbitrary angles of incidence; results calculated over a range of incidence angles may then be combined to yield the random incidence transmission loss. In this paper, the equations governing wave propagation in an elastic porous material are first considered briefly and then the general forms for the stresses and displacements within the porous material are given. Those solutions are expressed in terms of a number of constants that can be determined by application of appropriate boundary conditions. The boundary conditions required to model double panels having linings that are either directly attached to the facing panels or separated?!from them by air gaps are presented and discussed. Measurements of the random incidence transmission loss of aluminium double-panel structures lined with polyurethane foam are presented and have been found to be in good agreement with theoretical predictions. Both the theoretical predictions and the measured results have shown that the method by which an elastic porous lining material is attached to the facing panels can have a profound influence on the transmission loss of the panel system. It has been found, for example, that treatments in which the lining material

  20. Methods for removing contaminant matter from a porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  1. Oxidation resistant porous material for transpiration cooled vanes

    NASA Technical Reports Server (NTRS)

    Madsen, P.; Rusnak, R. M.

    1972-01-01

    Porous metal sheet with controlled permeability was made by space winding and diffusion bonding fine wire. Two iron-chromium-aluminum alloys and three-chromium alloys were used: GE 1541 (Fe-Cr-Al-Y), H 875 (Fe-Cr-Al-Si), TD Ni Cr, DH 245 (Ni-Cr-Al-Si) and DH 242 (Ni-Cr-Si-Cb). GE 1541 and H 875 were shown in initial tests to have greater oxidation resistance than the other candidate alloys and were therefore tested more extensively. These two materials were cyclic furnace oxidation tested in air at 1800 and 2000 F for accumulated exposure times of 4, 16, 64, 100, 200, 300, 400, 500, and and 600 hours. Oxidation weight gain, permeability change and mechanical properties were determined after exposure. Metallographic examination was performed to determine effects of exposure on the porous metal and electron beam weld joints of porous sheet to IN 100 strut material. Hundred hour stress rupture life and tensile tests were performed at 1800 F. Both alloys had excellent oxidation resistance and retention of mechanical properties and appear suitable for use as transpiration cooling materials in high temperature gas turbine engines.

  2. Porous multi-component material for the capture and separation of species of interest

    DOEpatents

    Addleman, Raymond S.; Chouyyok, Wilaiwan; Li, Xiaohong S.; Cinson, Anthony D.; Gerasimenko, Aleksandr A

    2016-06-21

    A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.

  3. Macroscopically Oriented Porous Materials with Periodic Ordered Structures: From Zeolites and Metal-Organic Frameworks to Liquid-Crystal-Templated Mesoporous Materials.

    PubMed

    Cho, Joonil; Ishida, Yasuhiro

    2017-07-01

    Porous materials with molecular-sized periodic structures, as exemplified by zeolites, metal-organic frameworks, or mesoporous silica, have attracted increasing attention due to their range of applications in storage, sensing, separation, and transformation of small molecules. Although the components of such porous materials have a tendency to pack in unidirectionally oriented periodic structures, such ideal types of packing cannot continue indefinitely, generally ceasing when they reach a micrometer scale. Consequently, most porous materials are composed of multiple randomly oriented domains, and overall behave as isotropic materials from a macroscopic viewpoint. However, if their channels could be unidirectionally oriented over a macroscopic scale, the resultant porous materials might serve as powerful tools for manipulating molecules. Guest molecules captured in macroscopically oriented channels would have their positions and directions well-defined, so that molecular events in the channels would proceed in a highly controlled manner. To realize such an ideal situation, numerous efforts have been made to develop various porous materials with macroscopically oriented channels. An overview of recent studies on the synthesis, properties, and applications of macroscopically oriented porous materials is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar

    2018-04-01

    In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.

  5. Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar

    2018-07-01

    In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.

  6. Porous silicon based anode material formed using metal reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V tomore » 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.« less

  7. Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application

    PubMed Central

    Luo, Jun; Jiang, Tao; Li, Guanghui; Peng, Zhiwei; Rao, Mingjun; Zhang, Yuanbo

    2017-01-01

    In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (SSA) of porous alumina/silica increases with silica/alumina dissolution, but without marked change of the BJH pore size. Furthermore, change in pore volume is more dependent on activation temperature. The porous alumina and silica obtained from alkali leaching of kaolinite activated at 1150 °C for 15 min and acid leaching of kaolinite activated at 850 °C for 15 min are mesoporous, with SSAs, BJH pore sizes and pore volumes of 55.8 m2/g and 280.3 m2/g, 6.06 nm and 3.06 nm, 0.1455 mL/g and 0.1945 mL/g, respectively. According to the adsorption tests, porous alumina has superior adsorption capacities for Cu2+, Pb2+ and Cd2+ compared with porous silica and activated carbon. The maximum capacities of porous alumina for Cu2+, Pb2+ and Cd2+ are 134 mg/g, 183 mg/g and 195 mg/g, respectively, at 30 °C. PMID:28773002

  8. Disorder-induced stiffness degradation of highly disordered porous materials

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-09-01

    The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.

  9. Numerical investigation of porous materials composites reinforced with natural fibers

    NASA Astrophysics Data System (ADS)

    Chikhi, M.; Metidji, N.; Mokhtari, F.; Merzouk, N. k.

    2018-05-01

    The present article tends to predict the effective thermal properties of porous biocomposites materials. The composites matrix consists on porous materials namely gypsum and the reinforcement is a natural fiber as date palm fibers. The numerical study is done using Comsol software resolving the heat transfer equation. The results are fitted with theoretical model and experimental results. The results of this study indicate that the porosity has an effect on the Effective thermal conductivity biocompoites.

  10. The Importance of the Initial State in Understanding Shocked Porous Materials

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Lane, J. Matthew D.; Weck, Philippe F.; Vogler, Tracy J.; Shulenburger, Luke

    Modeling the response of porous materials to shock loading presents a variety of theoretical challenges, however if done well it can open a whole new area of phase space for probing the equation of state of materials. Shocked porous materials achieve significantly hotter temperatures for the same drive than fully dense ones. By combining ab initio calculations of fully dense material with a model of porosity we show the critical importance of an accurate treatment of the initial state in understanding these experiments. This approach is also directly applicable to present application of tabular equations of state to the modeling of porous material. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    NASA Astrophysics Data System (ADS)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  12. Statistical Inference for Porous Materials using Persistent Homology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chul; Heath, Jason E.; Mitchell, Scott A.

    2017-12-01

    We propose a porous materials analysis pipeline using persistent homology. We rst compute persistent homology of binarized 3D images of sampled material subvolumes. For each image we compute sets of homology intervals, which are represented as summary graphics called persistence diagrams. We convert persistence diagrams into image vectors in order to analyze the similarity of the homology of the material images using the mature tools for image analysis. Each image is treated as a vector and we compute its principal components to extract features. We t a statistical model using the loadings of principal components to estimate material porosity, permeability,more » anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity index (SSIM), a similarity metric for images, as a measure to determine the statistical representative elementary volumes (sREV) for persistence homology. Thus we provide a capability for making a statistical inference of the uid ow and transport properties of porous materials based on their geometry and connectivity.« less

  13. Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material.

    PubMed

    Huhtinen, Reeta; Sandeman, Susan; Rose, Susanna; Fok, Elsie; Howell, Carol; Fröberg, Linda; Moritz, Niko; Hupa, Leena; Lloyd, Andrew

    2013-05-01

    Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth.

  14. Porous Inorganic Drug Delivery Systems-a Review.

    PubMed

    Sayed, E; Haj-Ahmad, R; Ruparelia, K; Arshad, M S; Chang, M-W; Ahmad, Z

    2017-07-01

    Innovative methods and materials have been developed to overcome limitations associated with current drug delivery systems. Significant developments have led to the use of a variety of materials (as excipients) such as inorganic and metallic structures, marking a transition from conventional polymers. Inorganic materials, especially those possessing significant porosity, are emerging as good candidates for the delivery of a range of drugs (antibiotics, anticancer and anti-inflammatories), providing several advantages in formulation and engineering (encapsulation of drug in amorphous form, controlled delivery and improved targeting). This review focuses on key selected developments in porous drug delivery systems. The review provides a short broad overview of porous polymeric materials for drug delivery before focusing on porous inorganic materials (e.g. Santa Barbara Amorphous (SBA) and Mobil Composition of Matter (MCM)) and their utilisation in drug dosage form development. Methods for their preparation and drug loading thereafter are detailed. Several examples of porous inorganic materials, drugs used and outcomes are discussed providing the reader with an understanding of advances in the field and realistic opportunities.

  15. Normal shock wave reflection on porous compressible material

    NASA Astrophysics Data System (ADS)

    Gvozdeva, L. G.; Faresov, Iu. M.; Brossard, J.; Charpentier, N.

    The present experimental investigation of the interaction of plane shock waves in air and a rigid wall coated with flat layers of expanded polymers was conducted in a standard shock tube and a diaphragm with an initial test section pressure of 100,000 Pa. The Mach number of the incident shock wave was varied from 1.1 to 2.7; the peak pressures measured on the wall behind polyurethane at various incident wave Mach numbers are compared with calculated values, with the ideal model of propagation, and with the reflection of shock waves in a porous material that is understood as a homogeneous mixture. The effect of elasticity and permeability of the porous material structure on the rigid wall's pressure pulse parameters is qualitatively studied.

  16. Freeze-drying of “pearl milk tea”: A general strategy for controllable synthesis of porous materials

    PubMed Central

    Zhou, Yingke; Tian, Xiaohui; Wang, Pengcheng; Hu, Min; Du, Guodong

    2016-01-01

    Porous materials have been widely used in many fields, but the large-scale synthesis of materials with controlled pore sizes, pore volumes, and wall thicknesses remains a considerable challenge. Thus, the controllable synthesis of porous materials is of key general importance. Herein, we demonstrate the “pearl milk tea” freeze-drying method to form porous materials with controllable pore characteristics, which is realized by rapidly freezing the uniformly distributed template-containing precursor solution, followed by freeze-drying and suitable calcination. This general and convenient method has been successfully applied to synthesize various porous phosphate and oxide materials using different templates. The method is promising for the development of tunable porous materials for numerous applications of energy, environment, and catalysis, etc. PMID:27193866

  17. Graded porous inorganic materials derived from self-assembled block copolymer templates.

    PubMed

    Gu, Yibei; Werner, Jörg G; Dorin, Rachel M; Robbins, Spencer W; Wiesner, Ulrich

    2015-03-19

    Graded porous inorganic materials directed by macromolecular self-assembly are expected to offer unique structural platforms relative to conventional porous inorganic materials. Their preparation to date remains a challenge, however, based on the sparsity of viable synthetic self-assembly pathways to control structural asymmetry. Here we demonstrate the fabrication of graded porous carbon, metal, and metal oxide film structures from self-assembled block copolymer templates by using various backfilling techniques in combination with thermal treatments for template removal and chemical transformations. The asymmetric inorganic structures display mesopores in the film top layers and a gradual pore size increase along the film normal in the macroporous sponge-like support structure. Substructure walls between macropores are themselves mesoporous, constituting a structural hierarchy in addition to the pore gradation. Final graded structures can be tailored by tuning casting conditions of self-assembled templates as well as the backfilling processes. We expect that these graded porous inorganic materials may find use in applications including separation, catalysis, biomedical implants, and energy conversion and storage.

  18. Structural parameter effect of porous material on sound absorption performance of double-resonance material

    NASA Astrophysics Data System (ADS)

    Fan, C.; Tian, Y.; Wang, Z. Q.; Nie, J. K.; Wang, G. K.; Liu, X. S.

    2017-06-01

    In view of the noise feature and service environment of urban power substations, this paper explores the idea of compound impedance, fills some porous sound-absorption material in the first resonance cavity of the double-resonance sound-absorption material, and designs a new-type of composite acoustic board. We conduct some acoustic characterizations according to the standard test of impedance tube, and research on the influence of assembly order, the thickness and area density of the filling material, and back cavity on material sound-absorption performance. The results show that the new-type of acoustic board consisting of aluminum fibrous material as inner structure, micro-porous board as outer structure, and polyester-filled space between them, has good sound-absorption performance for low frequency and full frequency noise. When the thickness, area density of filling material and thickness of back cavity increase, the sound absorption coefficient curve peak will move toward low frequency.

  19. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review

    NASA Astrophysics Data System (ADS)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.

    2017-06-01

    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  20. Metal-organic frameworks as functional, porous materials

    NASA Astrophysics Data System (ADS)

    Rood, Jeffrey A.

    The research presented in this thesis investigates the use of metal carboxylates as permanently porous materials called metal-organic frameworks (MOFs). The project has focused on three broad areas of study, each which strives to develop a further understanding of this class of materials. The first topic is concerned with the synthesis and structural characterization of MOFs. Our group and others have found that the reaction of metal salts with carboxylic acids in polar solvents at elevated temperatures often leads the formation of crystalline MOF materials that can be examined by single crystal X-ray diffraction. Specifically, Chapter 2 reports on some of the first examples of magnesium MOFs, constructed from formate or aryldicarboxylate ligands. The magnesium formate MOF, [Mg3(O2CH) 6] was found to be a permanently porous 3-D material capable of selective uptake and exchange of small molecules. Once the synthesis and structures of some of these materials was known, their physical properties were studied. The magnesium formate MOF, [Mg 3(O2CH)6], was found to be permanently porous and able to reversibly adsorb both N2 and H2 gas. Furthermore, the material was also capable of taking up a variety of organic molecules to form new inclusion compounds that were characterized by XRD studies. Size exclusion was shown for cyclohexane and larger molecules. Chapters 3, 5, and 6 attempt to build off of the synthetic findings reported in Chapter 2. Specifically, the ability of these materials to take up guest molecules is expanded by the attempted synthesis of porous, homochiral MOFs using enantiopure carboxylic acids in the synthesis. It was found that under the appropriate synthetic conditions, both L-tartaric acid and (+)-camphoric acid were robust linkers for the formation of homochiral MOFs. Of the compounds synthesized, the most interesting were the set of compounds, [Zn2(Cam) 2(bipy)⊃3DMF] and [Zn2(Cam)2(apyr)⊃2DMF]. These compounds formed isoreticular cubic

  1. Institute for Advanced Materials at University of Louisville

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunkara, Mahendra; Sumaneskara, Gamini; Starr, Thomas L

    2009-10-29

    In this project, a university-wide, academic center has been established entitled Institute for Advanced Materials and Renewable Energy. In this institute, a comprehensive materials characterization facility has been established by co-locating several existing characterization equipment and acquiring several state of the art instrumentation such as field emission transmission electron microscope, scanning electron microscope, high resolution X-ray diffractometer, Particle Size Distribution/Zeta Potential measurement system, and Ultra-microtome for TEM specimen. In addition, a renewable energy conversion and storage research facility was also established by acquiring instrumentation such as UV-Vis absorption spectroscopy, Atomic Layer Deposition reactor, Solar light simulator, oxygen-free glove box, potentiostat/galvanostatsmore » and other miscellaneous items. The institute is staffed with three full-time staff members (one senior research technologist, a senior PhD level research scientist and a junior research scientist) to enable proper use of the techniques. About thirty faculty, fifty graduate students and several researchers access the facilities on a routine basis. Several industry R&D organizations (SudChemie, Optical Dynamics and Hexion) utilize the facility. The established Institute for Advanced Materials at UofL has three main objectives: (a) enable a focused research effort leading to the rapid discovery of new materials and processes for advancing alternate energy conversion and storage technologies; (b) enable offering of several laboratory courses on advanced materials science and engineering; and (c) develop university-industry partnerships based on the advanced materials research. The Institute's efforts were guided by an advisory board comprising eminent researchers from outside KY. Initial research efforts were focused on the discovery of new materials and processes for solar cells and Li ion battery electrodes. Initial sets of results helped

  2. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, H; Gandara, F; Zhang, YB

    2014-03-19

    Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset ofmore » these, MOF-801-SC (single crystal form), -802, -805, -806, -808, -812, and -841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 synthesis. All the new zirconium MOFs are made from the Zr6O4(OH)(4)(-CO2)(n) secondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks. The permanent porosity of all 23 materials was confirmed and their water adsorption measured to reveal that MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature. An X-ray single-crystal study and a powder neutron diffraction study reveal the position of the water adsorption sites in MOF-801 and highlight the importance of the intermolecular interaction between adsorbed water molecules within the pores.« less

  3. Water adsorption in porous metal-organic frameworks and related materials.

    PubMed

    Furukawa, Hiroyasu; Gándara, Felipe; Zhang, Yue-Biao; Jiang, Juncong; Queen, Wendy L; Hudson, Matthew R; Yaghi, Omar M

    2014-03-19

    Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal-organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset of these, MOF-801-SC (single crystal form), -802, -805, -806, -808, -812, and -841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 synthesis. All the new zirconium MOFs are made from the Zr6O4(OH)4(-CO2)n secondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks. The permanent porosity of all 23 materials was confirmed and their water adsorption measured to reveal that MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature. An X-ray single-crystal study and a powder neutron diffraction study reveal the position of the water adsorption sites in MOF-801 and highlight the importance of the intermolecular interaction between adsorbed water molecules within the pores.

  4. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  5. Klinkenberg effect in hydrodynamics of gas flow through anisotropic porous materials

    NASA Astrophysics Data System (ADS)

    Wałowski, Grzegorz; Filipczak, Gabriel

    2017-10-01

    This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics, both natural origin (rocky, pumice) and process materials (char and coke). The study was conducted for a variety of hydrodynamic conditions, using air, as well as for nitrogen and carbon dioxide. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally - as a result of their anisotropic internal structure - to a significant effect of the flow direction on the value of gas stream.

  6. Porous Materials with Ultralow Optical Constants for Integrated Optical Device Applications

    NASA Astrophysics Data System (ADS)

    Chen, Hsuen-Li; Hsieh, Chung-I; Cheng, Chao-Chia; Chang, Chia-Pin; Hsu, Wen-Hau; Wang, Way-Seen; Liu, Po-Tsun

    2005-07-01

    Ultralow dielectric constant (<2.0) porous materials have received much attention as next-generation dielectric materials. In this study, optical properties of porous-methyl-silsesquioxane(MSQ)-like films (porous polysilazane, PPSZ) were characterized for optical waveguide devices applications. Measured results indicate that the refractive index is decreased to approximately 1.320 as the hydration time exceeds 24 h. The measured refractive index is about 1.163 at a wavelength of 1550 nm. PPSZ films have low absorption in the 500 to 2000 nm wavelength regime. Because of their relatively low refractive index and low absorption over a large spectral regime, PPSZ films can be good cladding materials for use in optically integrated devices with many high-refractive-index materials such as silicon oxide, silicon nitride, silicon, and polymers. We demonstrate two structures, ridge waveguides and large-angle Y-branch power splitters, composed of PPSZ and SU8 films to illustrate the use of low dielectric constant (K) cladding materials. The simulation results indicate that the PPSZ films provide better confinement of light. Experimentally, a large-angle Y-branch power splitter with PPSZ cladding can be used to guide waves with the large branching angle of 33.58°.

  7. A semi-empirical model relating micro structure to acoustic properties of bimodal porous material

    NASA Astrophysics Data System (ADS)

    Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine

    2015-01-01

    Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.

  8. Systems and strippable coatings for decontaminating structures that include porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  9. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    PubMed

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  10. Zirconia-hydroxyapatite composite material with micro porous structure.

    PubMed

    Matsumoto, Takuya Junior; An, Sang-Hyun; Ishimoto, Takuya; Nakano, Takayoshi; Matsumoto, Takuya; Imazato, Satoshi

    2011-11-01

    Titanium plates and apatite blocks are commonly used for restoring large osseous defects in dental and orthopedic surgery. However, several cases of allergies against titanium have been recently reported. Also, sintered apatite block does not possess sufficient mechanical strength. In this study, we attempted to fabricate a composite material that has mechanical properties similar to biocortical bone and high bioaffinity by compounding hydroxyapatite (HAp) with the base material zirconia (ZrO(2)), which possesses high mechanical properties and low toxicity toward living organisms. After mixing the raw material powders at several different ZrO(2)/HAp mixing ratios, the material was compressed in a metal mold (8 mm in diameter) at 5 MPa. Subsequently, it was sintered for 5 h at 1500°C to obtain the ZrO(2)/HAp composite. The mechanical property and biocompatibility of materials were investigated. Furthermore, osteoconductivity of materials was investigated by animal studies. A composite material with a minute porous structure was successfully created using ZrO(2)/HAp powders, having different particle sizes, as the starting material. The material also showed high protein adsorption and a favorable cellular affinity. When the mixing ratio was ZrO(2)/HAp=70/30, the strength was equal to cortical bone. Furthermore, in vivo experiments confirmed its high osteoconductivity. The composite material had strength similar to biocortical bones with high cell and tissue affinities by compounding ZrO(2) and HAp. The ZrO(2)/HAp composite material having micro porous structure would be a promising bone restorative material. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Electrostatic-Assisted Liquefaction of Porous Carbons

    DOE PAGES

    Li, Peipei; Schott, Jennifer A.; Zhang, Jinshui; ...

    2017-10-10

    Porous liquids are a newly developed porous material that combine unique fluidity with permanent porosity, which exhibit promising functionalities for a variety of applications. However, the apparent incompatibility between fluidity and permanent porosity makes the stabilization of porous nanoparticle with still empty pores in the dense liquid phase a significant challenging. For this study, by exploiting the electrostatic interaction between carbon networks and polymerized ionic liquids, we demonstrate that carbon-based porous nanoarchitectures can be well stabilized in liquids to afford permanent porosity, and thus opens up a new approach to prepare porous carbon liquids. Furthermore, we hope this facile synthesismore » strategy can be widely applicated to fabricate other types of porous liquids, such as those (e.g., carbon nitride, boron nitride, metal–organic frameworks, covalent organic frameworks etc.) also having the electrostatic interaction with polymerized ionic liquids, evidently advancing the development and understanding of porous liquids.« less

  12. Artificial 3D hierarchical and isotropic porous polymeric materials

    PubMed Central

    Musteata, Valentina-Elena; Behzad, Ali Reza

    2018-01-01

    Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene-b-poly(t-butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

  13. Artificial 3D hierarchical and isotropic porous polymeric materials.

    PubMed

    Chisca, Stefan; Musteata, Valentina-Elena; Sougrat, Rachid; Behzad, Ali Reza; Nunes, Suzana P

    2018-05-01

    Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene- b -poly( t -butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

  14. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOEpatents

    Lin, YuPo J [Naperville, IL; Henry, Michael P [Batavia, IL; Snyder, Seth W [Lincolnwood, IL

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  15. Tortuosity Computations of Porous Materials using the Direct Simulation Monte Carlo

    NASA Technical Reports Server (NTRS)

    Borner, A.; Ferguson, C.; Panerai, F.; Mansour, Nagi N.

    2017-01-01

    Low-density carbon fiber preforms, used as thermal protection systems (TPS) materials for planetary entry systems, have permeable, highly porous microstructures consisting of interlaced fibers. Internal gas transport in TPS is important in modeling the penetration of hot boundary-layer gases and the in-depth transport of pyrolysis and ablation products. The gas effective diffusion coefficient of a porous material must be known before the gas transport can be modeled in material response solvers; however, there are very little available data for rigid fibrous insulators used in heritage TPS.The tortuosity factor, which reflects the efficiency of the percolation paths, can be computed from the effective diffusion coefficient of a gas inside a porous material and is based on the micro-structure of the material. It is well known, that the tortuosity factor is a strong function of the Knudsen number. Due to the small characteristic scales of porous media used in TPS applications (typical pore size of the order of 50 micron), the transport of gases can occur in the rarefied and transitional regimes, at Knudsen numbers above 1. A proper way to model the gas dynamics at these conditions consists in solving the Boltzmann equation using particle-based methods that account for movement and collisions of atoms and molecules.In this work we adopt, for the first time, the Direct Simulation Monte Carlo (DSMC) method to compute the tortuosity factor of fibrous media in the rarefied regime. To enable realistic simulations of the actual transport of gases in the porous medium, digitized computational grids are obtained from X-ray micro-tomography imaging of real TPS materials. The SPARTA DSMC solver is used for simulations. Effective diffusion coefficients and tortuosity factors are obtained by computing the mean-square displacement of diffusing particles.We first apply the method to compute the tortuosity factors as a function of the Knudsen number for computationally designed

  16. Sound absorption of a porous material with a perforated facing at high sound pressure levels

    NASA Astrophysics Data System (ADS)

    Peng, Feng

    2018-07-01

    A semi-empirical model is proposed to predict the sound absorption of an acoustical unit consisting of a rigid-porous material layer with a perforated facing under the normal incidence at high sound pressure levels (SPLs) of pure tones. The nonlinearity of the perforated facing and the porous material, and the interference between them are considered in the model. The sound absorptive performance of the acoustical unit is tested at different incident SPLs and in three typical configurations: 1) when the perforated panel (PP) directly contacts with the porous layer, 2) when the PP is separated from the porous layer by an air gap and 3) when an air cavity is set between the porous material and the hard backing wall. The test results agree well with the corresponding theoretical predictions. Moreover, the results show that the interference effect is correlated to the width of the air gap between the PP and the porous layer, which alters not only the linear acoustic impedance but also the nonlinear acoustic impedance of the unit and hence its sound absorptive properties.

  17. Modelling of Imbibition Phenomena in Fluid Flow through Heterogeneous Inclined Porous Media with different porous materials

    NASA Astrophysics Data System (ADS)

    Patel, Hardik S.; Meher, Ramakanta

    2017-12-01

    In this paper, the counter - current imbibition phenomenon is discussed in an inclined heterogeneous porous media with the consideration of two types of porous materials like volcanic sand and fine sand. Adomian decomposition method is applied to find the saturation of wetting phase and the recovery rate of the reservoir. Finally, a simulation result is developed to study the saturation of wetting phase and the optimum recovery rate of reservoir with the choices of some interesting parametric values. This problem has a great importance in the field of oil recovery process.

  18. Global sensitivity analysis of multiscale properties of porous materials

    NASA Astrophysics Data System (ADS)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  19. Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials

    PubMed Central

    Stadie, Nicholas P.; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2015-01-01

    Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml-1, modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride. PMID:26066492

  20. Porous and Microporous Honeycomb Composites as Potential Boundary-Layer Bleed Materials

    NASA Technical Reports Server (NTRS)

    Davis, D. O.; Willis, B. P.; Schoenenberger, M.

    1997-01-01

    Results of an experimental investigation are presented in which the use of porous and microporous honeycomb composite materials is evaluated as an alternate to perforated solid plates for boundary-layer bleed in supersonic aircraft inlets. The terms "porous" and "microporous," respectively, refer to bleed orifice diameters roughly equal to and much less than the displacement thickness of the approach boundary-layer. A Baseline porous solid plate, two porous honeycomb, and three microporous honeycomb configurations are evaluated. The performance of the plates is characterized by the flow coefficient and relative change in boundary-layer profile parameters across the bleed region. The tests were conducted at Mach numbers of 1.27 and 1.98. The results show the porous honeycomb is not as efficient at removing mass compared to the baseline. The microporous plates were about equal to the baseline with one plate demonstrating a significantly higher efficiency. The microporous plates produced significantly fuller boundary-layer profiles downstream of the bleed region for a given mass flow removal rate than either the baseline or the porous honeycomb plates.

  1. A wave model for rigid-frame porous materials using lumped parameter concepts

    NASA Astrophysics Data System (ADS)

    Rossetti, S.; Gardonio, P.; Brennan, M. J.

    2005-08-01

    The work presented in this paper concerns the behaviour of porous media when exposed to a normal incidence sound field. A propagating wave model based on lumped parameter concepts of acoustic mass, stiffness and damping is used to investigate the absorption phenomena due to the wave propagation in the layer(s) and interference effects due to the wave reflection-transmission at the interfaces of the layer(s). Results from the theoretical model have been validated by measurements on samples of consolidated rubber granulate material. Two typical installations where a layer of porous material is placed next to a rigid wall, and where it is placed at a distance from a rigid wall are used as reference cases. The geometrical and physical properties of porous materials can be described by such parameters as the non-dimensional shape factor and the porosity. The propagating model introduced is used to investigate the effect of these two parameters on acoustic absorption and thus relate the physical properties to the acoustic behaviour.

  2. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites.

    PubMed

    Sampath, Udeni Gunathilake T M; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J; Lin, Pai-Chen

    2016-12-07

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic- co -glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  3. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    PubMed Central

    Sampath, Udeni Gunathilake T.M.; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J.; Lin, Pai-Chen

    2016-01-01

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic-co-glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials. PMID:28774113

  4. Highlights from the Faraday Discussion on New Directions in Porous Crystalline Materials, Edinburgh, UK, June 2017.

    PubMed

    Addicoat, Matthew A; Bennett, Thomas D; Stassen, Ivo

    2017-09-28

    A lively discussion on new directions in porous crystalline materials took place in June 2017, with the beautiful city of Edinburgh as a backdrop, in the context of the unique Faraday Discussions format. Here, 5 minute presentations were given on papers which had been submitted in advance of the conference, with copious time allocated for in-depth discussion of the work presented. Prof. Mircea Dincă (MIT), chair of the scientific committee, opened the conference by welcoming the many different nationalities attending, and outlining the format of discussions.

  5. Variably porous structures

    DOEpatents

    Braun, Paul V [Savoy, IL; Yu, Xindi [Urbana, IL

    2011-01-18

    A method of making a monolithic porous structure, comprises electrodepositing a material on a template; removing the template from the material to form a monolithic porous structure comprising the material; and electropolishing the monolithic porous structure.

  6. Microbial ranking of porous packaging materials (exposure chamber method), ASTM method: collaborative study.

    PubMed

    Placencia, A M; Peeler, J T

    1999-01-01

    A collaborative study involving 11 laboratories was conducted to measure the microbial barrier effectiveness of porous medical packaging. Two randomly cut samples from each of 6 commercially available porous materials and one positive and one negative control were tested by one operator in each of 11 laboratories. Microbial barrier effectiveness was measured in terms of logarithm reduction value (LRV), which reflects the log10 microbial penetration of the material being tested. The logarithm of the final concentration is subtracted from that of the initial concentration to obtain the LRV. Thus the higher the LRV, the better the barrier. Repeatability standard deviations ranged from 6.42 to 16.40; reproducibility standard deviations ranged from 15.50 to 22.70. Materials B(53), C(50), D(CT), and E(45MF) differ significantly from the positive control. The microbial ranking of porous packaging materials (exposure chamber method), ASTM method, has been adopted First Action by AOAC INTERNATIONAL.

  7. Porous materials for thermal management under extreme conditions.

    PubMed

    Clyne, T W; Golosnoy, I O; Tan, J C; Markaki, A E

    2006-01-15

    A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc. i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid-solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials.

  8. Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly

    DOEpatents

    Warren, Scott; Wiesner, Ulrich; DiSalvo, Jr., Francis J

    2013-10-29

    The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.

  9. Formation and characterization of ZnS/CdS nanocomposite materials into porous silicon

    NASA Astrophysics Data System (ADS)

    Xue, Tao; Lv, Xiao-yi; Jia, Zhen-hong; Hou, Jun-wei; Jian, Ji-kang

    2008-11-01

    ZnS/CdS were deposited by chemical vapor deposition (CVD) technique on porous silicon substrates formed by electrochemical anodization of n-type (100) silicon wafer. The optical properties of ZnS/CdS porous silicon composite materials are studied. The results showed that new luminescence characteristics such as strong and stable visible-light emissions with different colors were observed from the ZnS/CdS-PS nanocomposite materials at room temperature.

  10. Porous coordination polymers as novel sorption materials for heat transformation processes.

    PubMed

    Janiak, Christoph; Henninger, Stefan K

    2013-01-01

    Porous coordination polymers (PCPs)/metal-organic frameworks (MOFs) are inorganic-organic hybrid materials with a permanent three-dimensional porous metal-ligand network. PCPs or MOFs are inorganic-organic analogs of zeolites in terms of porosity and reversible guest exchange properties. Microporous water-stable PCPs with high water uptake capacity are gaining attention for low temperature heat transformation applications in thermally driven adsorption chillers (TDCs) or adsorption heat pumps (AHPs). TDCs or AHPs are an alternative to traditional air conditioners or heat pumps operating on electricity or fossil fuels. By using solar or waste heat as the operating energy TDCs or AHPs can significantly help to minimize primary energy consumption and greenhouse gas emissions generated by industrial or domestic heating and cooling processes. TDCs and AHPs are based on the evaporation and consecutive adsorption of coolant liquids, preferably water, under specific conditions. The process is driven and controlled by the microporosity and hydrophilicity of the employed sorption material. Here we summarize the current investigations, developments and possibilities of PCPs/MOFs for use in low-temperature heat transformation applications as alternative materials for the traditional inorganic porous substances like silica gel, aluminophosphates or zeolites.

  11. Measurements of the frame acoustic properties of porous and granular materials

    NASA Astrophysics Data System (ADS)

    Park, Junhong

    2005-12-01

    For porous and granular materials, the dynamic characteristics of the solid component (frame) are important design factors that significantly affect the material's acoustic properties. The primary goal of this study was to present an experimental method for measuring the vibration characteristics of this frame. The experimental setup was designed to induce controlled vibration of the solid component while minimizing the influence from coupling between vibrations of the fluid and the solid component. The Biot theory was used to verify this assumption, taking the two dilatational wave propagations and interactions into account. The experimental method was applied to measure the dynamic properties of glass spheres, lightweight microspheres, acoustic foams, and fiberglass. A continuous variation of the frame vibration characteristics with frequency similar to that of typical viscoelastic materials was measured. The vibration amplitude had minimal effects on the dynamic characteristics of the porous material compared to those of the granular material. For the granular material, materials comprised of larger particles and those under larger vibration amplitudes exhibited lower frame wave speeds and larger decay rates.

  12. Numerical Analysis of a Class of THM Coupled Model for Porous Materials

    NASA Astrophysics Data System (ADS)

    Liu, Tangwei; Zhou, Jingying; Lu, Hongzhi

    2018-01-01

    We consider the coupled models of the Thermo-hydro-mechanical (THM) problem for porous materials which arises in many engineering applications. Firstly, mathematical models of the THM coupled problem for porous materials were discussed. Secondly, for different cases, some numerical difference schemes of coupled model were constructed, respectively. Finally, aassuming that the original water vapour effect is neglectable and that the volume fraction of liquid phase and the solid phase are constants, the nonlinear equations can be reduced to linear equations. The discrete equations corresponding to the linear equations were solved by the Arnodli method.

  13. Analysis of variability in additive manufactured open cell porous structures.

    PubMed

    Evans, Sam; Jones, Eric; Fox, Pete; Sutcliffe, Chris

    2017-06-01

    In this article, a novel method of analysing build consistency of additively manufactured open cell porous structures is presented. Conventionally, methods such as micro computed tomography or scanning electron microscopy imaging have been applied to the measurement of geometric properties of porous material; however, high costs and low speeds make them unsuitable for analysing high volumes of components. Recent advances in the image-based analysis of open cell structures have opened up the possibility of qualifying variation in manufacturing of porous material. Here, a photogrammetric method of measurement, employing image analysis to extract values for geometric properties, is used to investigate the variation between identically designed porous samples measuring changes in material thickness and pore size, both intra- and inter-build. Following the measurement of 125 samples, intra-build material thickness showed variation of ±12%, and pore size ±4% of the mean measured values across five builds. Inter-build material thickness and pore size showed mean ranges higher than those of intra-build, ±16% and ±6% of the mean material thickness and pore size, respectively. Acquired measurements created baseline variation values and demonstrated techniques suitable for tracking build deviation and inspecting additively manufactured porous structures to indicate unwanted process fluctuations.

  14. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    PubMed Central

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-01-01

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials. PMID:29084152

  15. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials.

    PubMed

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-10-30

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  16. High-intensity sound in air saturated fibrous bulk porous materials

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L., II

    1982-01-01

    The interaction high-intensity sound with bulk porous materials in porous materials including Kevlar 29 is reported. The nonlinear behavior of the materials was described by dc flow resistivity tests. Then acoustic propagation and reflection were measured and small signal broadband measurements of phase speed and attenuation were carried out. High-intensity tests were made with 1, 2, and 3 kHz tone bursts to measure harmonic generation and extra attenuation of the fundamental. Small signal standing wave tests measured impedence between 0.1 and 3.5 kHz. High level tests with single cycle tone bursts at 1 to 4 kHz show that impedance increases with intensity. A theoretical analysis is presented for high-porosity, rigid-frame, isothermal materials. One dimensional equations of motion are derived and solved by perturbation. The experiments show that there is excess attenuation of the fundamental component and in some cases a close approach to saturation. A separate theoretical model, developed to explain the excess attenuation, yields predictions that are in good agreement with the measurements. Impedance and attenuation at high intensities are modeled.

  17. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor

    NASA Astrophysics Data System (ADS)

    Yang, Zhewei; Guo, Huajun; Li, Xinhai; Wang, Zhixing; Yan, Zhiliang; Wang, Yansen

    2016-10-01

    Lithium-ion capacitor (LIC) is a novel advanced electrochemical energy storage (EES) system bridging gap between lithium ion battery (LIB) and electrochemical capacitor (ECC). In this work, we report that sisal fiber activated carbon (SFAC) was synthesized by hydrothermal treatment followed by KOH activation and served as capacitive material in LIC for the first time. Different particle structure, morphology, specific surface area and heteroatoms affected the electrochemical performance of as-prepared materials and corresponding LICs. When the mass ratio of KOH to char precursor was 2, hierarchical porous structured SFAC-2 was prepared and exhibited moderate specific capacitance (103 F g-1 at 0.1 A g-1), superior rate capability and cyclic stability (88% capacity retention after 5000 cycles at 1 A g-1). The corresponding assembled LIC (LIC-SC2) with optimal comprehensive electrochemical performance, displayed the energy density of 83 Wh kg-1, the power density of 5718 W kg-1 and superior cyclic stability (92% energy density retention after 1000 cycles at 0.5 A g-1). It is worthwhile that the source for activated carbon is a natural and renewable one and the synthesis method is eco-friendly, which facilitate that hierarchical porous activated carbon has potential applications in the field of LIC and other energy storage systems.

  18. GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomeng; Jiao, Yanqing; Sun, Li; Wang, Lei; Wu, Aiping; Yan, Haijing; Meng, Meichen; Tian, Chungui; Jiang, Baojiang; Fu, Honggang

    2016-01-01

    Layer-like nanocarbons with high surface area and good conductivity are promising materials for supercapacitors due to their good ability for effective charge-transfer and mass-transfer. In this paper, stacked layer-like porous carbon containing RGO (reduced graphene oxides) (LPCG) was constructed via the GO-induced assembly of gelatin followed by carbonization and activation processes. Under suitable conditions, LPCG-based materials with a thickness of about 100 nm and a high specific surface area (up to 1476 m2 g-1) could be obtained. In the materials, the closed combination of RGO and porous carbon can be observed, which is favourable for the development of the synergistic effects of both components. The presence of GO can not only enhance the conductivity of LPCG-based materials, but also is essential for the formation of a thin carbon sheet with a stacked structure. Otherwise, the plate-like, non-stacked carbon with a thickness of about 500 nm could be formed in the absence of RGO. The porous structure along with the presence of RGO allows rapid charge-transfer and easy access and diffusion of electrolyte ions. As a result, the materials exhibited a high discharge specific capacitance (455 F g-1 at 0.5 A g-1, 366 F g-1 at 1 A g-1), good rate capability (221 F g-1 at density 30 A g-1) and good cycling stability. In aqueous electrolytes, the energy density could be up to 9.32 W h kg-1 at a relatively low power density of 500 W kg-1 with a good cycling stability (>96% over 5000 cycles). It was found that (1) the rational combination of RGO and porous carbon is essential for enhancing the capacitance performance and improving the cycling stability and (2) the high conductivity is favorable for improving the rate performance of the materials. The LPCG-based materials have extensive potential for practical applications in energy storage and conversion devices.Layer-like nanocarbons with high surface area and good conductivity are promising materials for

  19. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane

    PubMed Central

    Umegaki, Tetsuo; Xu, Qiang; Kojima, Yoshiyuki

    2015-01-01

    Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane. PMID:28793453

  20. Infiltration of MHD liquid into a deformable porous material

    NASA Astrophysics Data System (ADS)

    Naseem, Anum; Mahmood, Asif; Siddique, J. I.; Zhao, Lifeng

    2018-03-01

    We analyze the capillary rise dynamics for magnetohydrodynamics (MHD) fluid flow through deformable porous material in the presence of gravity effects. The modeling is performed using mixture theory approach and mathematical manipulation yields a nonlinear free boundary problem. Due to the capillary rise action, the pressure gradient in the liquid generates a stress gradient that results in the deformation of porous substrate. The capillary rise process for MHD fluid slows down as compared to Newtonian fluid case. Numerical solutions are obtained using a method of lines approach. The graphical results are presented for important physical parameters, and comparison is presented with Newtonian fluid case.

  1. Accurate van der Waals force field for gas adsorption in porous materials.

    PubMed

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Coordination Covalent Frameworks: A New Route for Synthesis and Expansion of Functional Porous Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsaidi, Sameh K.; Mohamed, Mona H.; Loring, John S.

    The synthetic approaches for fine-tuning the structural properties of coordination polymers or metal organic frameworks have exponentially grown during the last decade. This is due to the control over the properties of the resulting structures such as stability, pore size, pore chemis-try and surface area for myriad possible applications. Herein, we present a new class of porous materials called Covalent Coordination Frameworks (CCFs) that were designed and effectively synthesized using a two-step reticular chemistry approach. During the first step, trigonal prismatic molecular building block was isolated using 4-aminobenazoic acid and Cr (III) salt, subsequently in the second step the polymerizationmore » of the isolated molecular building blocks (MBBs) takes place by the formation of strong covalent bonds where small organic molecules can connect the MBBs forming extended porous CCF materials. All the isolated CCFs were found to be permanently porous while the discrete MBB were non-porous. This approach would inevitably open a feasible path for the applications of reticular chemistry and the synthesis of novel porous materials with various topologies under ambient conditions using simple organic molecules and versatile MBBs with different functionalities which would not be possible using the traditional one step approach« less

  3. Porous carbon material containing CaO for acidic gas capture: preparation and properties.

    PubMed

    Przepiórski, Jacek; Czyżewski, Adam; Pietrzak, Robert; Toyoda, Masahiro; Morawski, Antoni W

    2013-12-15

    A one-step process for the preparation of CaO-containing porous carbons is described. Mixtures of poly(ethylene terephthalate) with natural limestone were pyrolyzed and thus hybrid sorbents could be easily obtained. The polymeric material and the mineral served as a carbon precursor and CaO delivering agent, respectively. We discuss effects of the preparation conditions and the relative amounts of the raw materials used for the preparations on the porosity of the hybrid products. The micropore areas and volumes of the obtained products tended to decrease with increasing CaO contents. Increase in the preparation temperature entailed a decrease in the micropore volume, whereas the mesopore volume increased. The pore creation mechanism is proposed on the basis of thermogravimetric and temperature-programmed desorption measurements. The prepared CaO-containing porous carbons efficiently captured SO2 and CO2 from air. Washing out of CaO from the hybrid materials was confirmed as a suitable method to obtain highly porous carbon materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Glycol-modified silanes: novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials.

    PubMed

    Hartmann, Sarah; Brandhuber, Doris; Hüsing, Nicola

    2007-09-01

    The preparation of porous hierarchical architectures that have structural features spanning from the nanometer to micrometer and even larger dimensions and that exhibit certain functionalities is one of the new challenging frontiers in materials chemistry. The sol-gel process is one of the most promising synthesis routes toward such materials because it not only offers the possibility to incorporate organic functions into the porous host but also offers the possibility to deliberately tailor the pore structure. In this Account, the opportunities given by the application of novel diol-modified silanes are discussed for the synthesis of hierarchically organized inorganic and also inorganic-organic porous monoliths.

  5. Mixed Cassie-Baxter wetting states on a porous material stabilized by electrowetting

    NASA Astrophysics Data System (ADS)

    Lambert, Jérôme; Gauchet, Lucien; Crassous, Jérôme

    2017-07-01

    Electrowetting is used to force imbibition in model porous plates. These porous plates are sintered disordered bronze bead packings that are homogeneously coated with a constant-thickness layer of parylene. Cycles of increasing and decreasing voltage trigger the imbibition of a ionized water sessile drop by changing its contact angle with the porous material from non-wetting to wetting shapes. During a cycle, a drop experiences partial imbibition and a strong hysteresis of its contact angle with the porous plate. Since the imbibition process quickly stabilizes, we adopt an equilibrium description of the wetting properties of the drop on the porous plate. Our model, based on the Cassie-Baxter approach, shows that three different wetting states are experienced by the drop, one of which being made possible only by the modification of the contact angle inside the pores. Our model describes the experimental results very well.

  6. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    NASA Astrophysics Data System (ADS)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  7. Porous titanium materials with entangled wire structure for load-bearing biomedical applications.

    PubMed

    He, Guo; Liu, Ping; Tan, Qingbiao

    2012-01-01

    A kind of porous metal-entangled titanium wire material has been investigated in terms of the pore structure (size and distribution), the strength, the elastic modulus, and the mechanical behavior under uniaxial tensile loading. Its functions and potentials for surgical application have been explained. In particular, its advantages over competitors (e.g., conventional porous titanium) have been reviewed. In the study, a group of entangled titanium wire materials with non-woven structure were fabricated by using 12-180 MPa forming pressure, which have porosity in a range of 48%-82%. The pores in the materials are irregular in shape, which have a nearly half-normal distribution in size range. The yield strength, ultimate tensile strength, and elastic modulus are 75 MPa, 108 MPa, and 1.05 GPa, respectively, when its porosity is 44.7%. The mechanical properties decrease significantly as the porosity increases. When the porosity is 57.9%, these values become 24 MPa, 47.5 MPa, and 0.33 GPa, respectively. The low elastic modulus is due to the structural flexibility of the entangled titanium wire materials. For practical reference, a group of detailed data of the porous structure and the mechanical properties are reported. This kind of material is very promising for implant applications because of their very good toughness, perfect flexibility, high strength, adequate elastic modulus, and low cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Impact of physical properties on ozone removal by several porous materials.

    PubMed

    Gall, Elliott T; Corsi, Richard L; Siegel, Jeffrey A

    2014-04-01

    Models of reactive uptake of ozone in indoor environments generally describe materials through aerial (horizontal) projections of surface area, a potentially limiting assumption for porous materials. We investigated the effect of changing porosity/pore size, material thickness, and chamber fluid mechanic conditions on the reactive uptake of ozone to five materials: two cellulose filter papers, two cementitious materials, and an activated carbon cloth. Results include (1) material porosity and pore size distributions, (2) effective diffusion coefficients for ozone in materials, and (3) material-ozone deposition velocities and reaction probabilities. At small length scales (0.02-0.16 cm) increasing thickness caused increases in estimated reaction probabilities from 1 × 10(-6) to 5 × 10(-6) for one type of filter paper and from 1 × 10(-6) to 1 × 10(-5) for a second type of filter paper, an effect not observed for materials tested at larger thicknesses. For high porosity materials, increasing chamber transport-limited deposition velocities resulted in increases in reaction probabilities by factors of 1.4-2.0. The impact of physical properties and transport effects on values of the Thiele modulus, ranging across all materials from 0.03 to 13, is discussed in terms of the challenges in estimating reaction probabilities to porous materials in scenarios relevant to indoor environments.

  9. Evaluation of Toluene Adsorption Performance of Mortar Adhesives Using Porous Carbon Material as Adsorbent.

    PubMed

    Wi, Seunghwan; Chang, Seong Jin; Jeong, Su-Gwang; Lee, Jongki; Kim, Taeyeon; Park, Kyung-Won; Lee, Dong Ryeol; Kim, Sumin

    2017-07-26

    Porous carbon materials are advantageous in adsorbing pollutants due to their wide range of specific surface areas, pore diameter, and pore volume. Among the porous carbon materials in the current study, expanded graphite, xGnP, xGnP C-300, xGnP C-500, and xGnP C-750 were prepared as adsorbent materials. Brunauer-Emmett-Teller (BET) analysis was conducted to select the adsorbent material through the analysis of the specific surface area, pore size, and pore volume of the prepared porous carbon materials. Morphological analysis using SEM was also performed. The xGnP C-500 as adsorbent material was applied to a mortar adhesive that is widely used in the installation of interior building materials. The toluene adsorption performances of the specimens were evaluated using 20 L small chamber. Furthermore, the performance of the mortar adhesive, as indicated by the shear bond strength, length change rate, and water retention rate, was analyzed according to the required test method specified in the Korean standards. It was confirmed that for the mortar adhesives prepared using the xGnP C-500 as adsorbent material, the toluene adsorption performance was excellent and satisfied the required physical properties.

  10. Evaluation of Toluene Adsorption Performance of Mortar Adhesives Using Porous Carbon Material as Adsorbent

    PubMed Central

    Chang, Seong Jin; Jeong, Su-Gwang; Lee, Jongki; Kim, Taeyeon; Park, Kyung-Won; Lee, Dong Ryeol; Kim, Sumin

    2017-01-01

    Porous carbon materials are advantageous in adsorbing pollutants due to their wide range of specific surface areas, pore diameter, and pore volume. Among the porous carbon materials in the current study, expanded graphite, xGnP, xGnP C-300, xGnP C-500, and xGnP C-750 were prepared as adsorbent materials. Brunauer–Emmett–Teller (BET) analysis was conducted to select the adsorbent material through the analysis of the specific surface area, pore size, and pore volume of the prepared porous carbon materials. Morphological analysis using SEM was also performed. The xGnP C-500 as adsorbent material was applied to a mortar adhesive that is widely used in the installation of interior building materials. The toluene adsorption performances of the specimens were evaluated using 20 L small chamber. Furthermore, the performance of the mortar adhesive, as indicated by the shear bond strength, length change rate, and water retention rate, was analyzed according to the required test method specified in the Korean standards. It was confirmed that for the mortar adhesives prepared using the xGnP C-500 as adsorbent material, the toluene adsorption performance was excellent and satisfied the required physical properties. PMID:28773214

  11. Dimpled elastic sheets: a new class of non-porous negative Poisson’s ratio materials

    NASA Astrophysics Data System (ADS)

    Javid, Farhad; Smith-Roberge, Evelyne; Innes, Matthew C.; Shanian, Ali; Weaver, James C.; Bertoldi, Katia

    2015-12-01

    In this study, we report a novel periodic material with negative Poisson’s ratio (also called auxetic materials) fabricated by denting spherical dimples in an elastic flat sheet. While previously reported auxetic materials are either porous or comprise at least two phases, the material proposed here is non-porous and made of a homogeneous elastic sheet. Importantly, the auxetic behavior is induced by a novel mechanism which exploits the out-of-plane deformation of the spherical dimples. Through a combination of experiments and numerical analyses, we demonstrate the robustness of the proposed concept, paving the way for developing a new class of auxetic materials that significantly expand their design space and possible applications.

  12. Microscale Modeling of Porous Thermal Protection System Materials

    NASA Astrophysics Data System (ADS)

    Stern, Eric C.

    Ablative thermal protection system (TPS) materials play a vital role in the design of entry vehicles. Most simulation tools for ablative TPS in use today take a macroscopic approach to modeling, which involves heavy empiricism. Recent work has suggested improving the fidelity of the simulations by taking a multi-scale approach to the physics of ablation. In this work, a new approach for modeling ablative TPS at the microscale is proposed, and its feasibility and utility is assessed. This approach uses the Direct Simulation Monte Carlo (DSMC) method to simulate the gas flow through the microstructure, as well as the gas-surface interaction. Application of the DSMC method to this problem allows the gas phase dynamics---which are often rarefied---to be modeled to a high degree of fidelity. Furthermore this method allows for sophisticated gas-surface interaction models to be implemented. In order to test this approach for realistic materials, a method for generating artificial microstructures which emulate those found in spacecraft TPS is developed. Additionally, a novel approach for allowing the surface to move under the influence of chemical reactions at the surface is developed. This approach is shown to be efficient and robust for performing coupled simulation of the oxidation of carbon fibers. The microscale modeling approach is first applied to simulating the steady flow of gas through the porous medium. Predictions of Darcy permeability for an idealized microstructure agree with empirical correlations from the literature, as well as with predictions from computational fluid dynamics (CFD) when the continuum assumption is valid. Expected departures are observed for conditions at which the continuum assumption no longer holds. Comparisons of simulations using a fabricated microstructure to experimental data for a real spacecraft TPS material show good agreement when similar microstructural parameters are used to build the geometry. The approach is then applied to

  13. High-Throughput Characterization of Porous Materials Using Graphics Processing Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihan; Martin, Richard L.; Rübel, Oliver

    We have developed a high-throughput graphics processing units (GPU) code that can characterize a large database of crystalline porous materials. In our algorithm, the GPU is utilized to accelerate energy grid calculations where the grid values represent interactions (i.e., Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CHmore » $$_{4}$$ and CO$$_{2}$$) and material's framework atoms. Using a parallel flood fill CPU algorithm, inaccessible regions inside the framework structures are identified and blocked based on their energy profiles. Finally, we compute the Henry coefficients and heats of adsorption through statistical Widom insertion Monte Carlo moves in the domain restricted to the accessible space. The code offers significant speedup over a single core CPU code and allows us to characterize a set of porous materials at least an order of magnitude larger than ones considered in earlier studies. For structures selected from such a prescreening algorithm, full adsorption isotherms can be calculated by conducting multiple grand canonical Monte Carlo simulations concurrently within the GPU.« less

  14. Small-scale, self-propagating combustion realized with on-chip porous silicon.

    PubMed

    Piekiel, Nicholas W; Morris, Christopher J

    2015-05-13

    For small-scale energy applications, energetic materials represent a high energy density source that, in certain cases, can be accessed with a very small amount of energy input. Recent advances in microprocessing techniques allow for the implementation of a porous silicon energetic material onto a crystalline silicon wafer at the microscale; however, combustion at a small length scale remains to be fully investigated, particularly with regards to the limitations of increased relative heat loss during combustion. The present study explores the critical dimensions of an on-chip porous silicon energetic material (porous silicon + sodium perchlorate (NaClO4)) required to propagate combustion. We etched ∼97 μm wide and ∼45 μm deep porous silicon channels that burned at a steady rate of 4.6 m/s, remaining steady across 90° changes in direction. In an effort to minimize the potential on-chip footprint for energetic porous silicon, we also explored the minimum spacing between porous silicon channels. We demonstrated independent burning of porous silicon channels at a spacing of <40 μm. Using this spacing, it was possible to have a flame path length of >0.5 m on a chip surface area of 1.65 cm(2). Smaller porous silicon channels of ∼28 μm wide and ∼14 μm deep were also utilized. These samples propagated combustion, but at times, did so unsteadily. This result may suggest that we are approaching a critical length scale for self-propagating combustion in a porous silicon energetic material.

  15. Effect Of Gravity On Porous Tricalcium Phosphate And Nonstoichiometric Titanium Carbide Produced Via Combustion Synthesis

    NASA Technical Reports Server (NTRS)

    Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Novel processing techniques, such as self-propagating high temperature synthesis (SHS), have the capability to rapidly produce advanced porous materials that are difficult to fabricate by other methods. This processing technique is also capable of near net shape synthesis, while variable gravity allows the manipulation of the structure and composition of the material. The creation of porous tricalcium phosphate (TCP) is advantageous in the biomaterials field, since it is both a biocompatible material and an osteoconductive material. Porous tricalcium phosphate produced via SHS is an excellent candidate for bone scaffold material in the bone regeneration process. The porosity allows for great vascularization and ingrowth of tissue. Titanium Carbide is a nonstoichiometric biocompatible material that can be incorporated into a TiC-Ti composite system using combustion synthesis. The TiC-Ti composite exhibits a wide range of mechanical and chemical properties. Both of these material systems (TCP and TiC-Ti) can be used to advantage in designing novel bone replacement materials. Gravity plays an important role in both the pore structure and the chemical uniformity of these composite systems and offers considerable potential in advanced bone engineering.

  16. On the influence of frequency-dependent elastic properties in vibro-acoustic modelling of porous materials under structural excitation

    NASA Astrophysics Data System (ADS)

    Van der Kelen, C.; Göransson, P.; Pluymers, B.; Desmet, W.

    2014-12-01

    The aspects related to modelling the frequency dependence of the elastic properties of air-saturated porous materials have been largely neglected in the past for several reasons. For acoustic excitation of porous materials, the material behaviour can be quite well represented by models where the properties of the solid frame have little influence. Only recently has the importance of the dynamic moduli of the frame come into focus. This is related to a growing interest in the material behaviour due to structural excitation. Two aspects stand out in connection with the elastic-dynamic behaviour. The first is related to methods for the characterisation of the dynamic moduli of porous materials. The second is a perceived lack of numerical methods able to model the complex material behaviour under structural excitation, in particular at higher frequencies. In the current paper, experimental data from a panel under structural excitation, coated with a porous material, are presented. In an attempt to correlate the experimental data to numerical predictions, it is found that the measured quasi-static material parameters do not suffice for an accurate prediction of the measured results. The elastic material parameters are then estimated by correlating the numerical prediction to the experimental data, following the physical behaviour predicted by the augmented Hooke's law. The change in material behaviour due to the frequency-dependent properties is illustrated in terms of the propagation of the slow wave and the shear wave in the porous material.

  17. Porous organic cages

    NASA Astrophysics Data System (ADS)

    Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.

    2009-12-01

    Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

  18. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  19. Acoustics of multiscale sorptive porous materials

    NASA Astrophysics Data System (ADS)

    Venegas, R.; Boutin, C.; Umnova, O.

    2017-08-01

    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves.

  20. Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Sensen; Li, Ying; Li, Min

    2018-02-01

    Porous hard carbon with large interlayer distance was fabricated from walnut shells through a facile high-temperature pyrolysis process and investigated as an anode material for sodium-ion batteries (SIBs). The results show that the electrochemical performance is mainly dependent on the pyrolysis temperature. The porous hard carbon, which was carbonized at 1300°C, displays the highest reversible capacity of 230 mAh g-1 at 20 mA g-1 and an excellent cycling stability (96% capacity retained over 200 cycles). The promising electrochemical performances are attributed to the porous structure reducing distances for sodium ion diffusion and expanded interlayer spacing, which is beneficial for sodium reversible insertion/extraction. The excellent electrochemical performance as well as the low-cost and environmental friendliness demonstrates that walnut shell-derived porous hard carbon is a promising anode material candidate for SIBs.

  1. A dynamic experimental study on the evaporative cooling performance of porous building materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Lei; Meng, Qinglin; Feng, Yanshan; Chen, Yuanrui

    2017-08-01

    Conventional outdoor dynamic and indoor steady-state experiments have certain limitations in regard to investigating the evaporative cooling performance of porous building materials. The present study investigated the evaporative cooling performance of a porous building material using a special wind tunnel apparatus. First, the composition and control principles of the wind tunnel environment control system were elucidated. Then, the meteorological environment on a typical summer day in Guangzhou was reproduced in the wind tunnel and the evaporation process and thermal parameters of specimens composed of a porous building material were continuously measured. Finally, the experimental results were analysed to evaluate the accuracy of the wind tunnel environment control system, the heat budget of the external surface of the specimens and the total thermal resistance of the specimens and its uncertainty. The analysis results indicated that the normalized root-mean-square error between the measured value of each environmental parameter in the wind tunnel test section and the corresponding value input into the environment control system was <4%, indicating that the wind tunnel apparatus had relatively high accuracy in reproducing outdoor meteorological environments. In addition, the wet specimen could cumulatively consume approximately 80% of the shortwave radiation heat during the day, thereby reducing the temperature of the external surface and the heat flow on the internal surface of the specimen. Compared to the dry specimen, the total thermal resistance of the wet specimen was approximately doubled, indicating that the evaporation process of the porous building material could significantly improve the thermal insulation performance of the specimen.

  2. Ceramic porous material and method of making same

    DOEpatents

    Liu, Jun; Kim, Anthony Y.; Virden, Jud W.

    1997-01-01

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.

  3. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  4. Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials.

    PubMed

    Hedayati, R; Ahmadi, S M; Lietaert, K; Pouran, B; Li, Y; Weinans, H; Rans, C D; Zadpoor, A A

    2018-03-01

    In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials with different topological designs (i.e. different unit cell types and relative densities) and material types. Porous structures were additively manufactured from Co-Cr using a selective laser melting (SLM) machine and tested under quasi-static compression. The normalized mechanical properties obtained from those structures were compared with mechanical properties available from our previous studies for porous structures made from Ti-6Al-4V and pure titanium as well as with analytical solutions. The normalized values of elastic modulus and yield stress were found to be relatively close to each other as well as in agreement with analytical solutions regardless of material type. However, the material type was found to systematically affect the mechanical properties of AM porous biomaterials in general and the post-elastic/post-yield range (plateau stress and energy absorption capacity) in particular. To put this in perspective, topological design could cause up to 10-fold difference in the mechanical properties of AM porous biomaterials while up to 2-fold difference was observed as a consequence of changing the material type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    NASA Astrophysics Data System (ADS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  6. Advances in dental materials.

    PubMed

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  7. Methyl alcohol used as penetrant inspection medium for porous materials

    NASA Technical Reports Server (NTRS)

    Hendron, J. A.

    1971-01-01

    Porous material thoroughly wetted with alcohol shows persistent wet line or area at locations of cracks or porosity. Inspection is qualitative and repeatable, but is used quantitatively with select samples to grade density variations in graphite blocks. Photography is employed to achieve permanent record of results.

  8. In situ vibrational spectroscopy of adsorbed nitrogen in porous carbon materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Paramita; Xu, Enshi; Crespi, Vincent H.

    This study uses in situ vibrational spectroscopy to probe nitrogen adsorption to porous carbon materials, including single-wall carbon nanotubes and Maxsorb super-activated carbon, demonstrating how the nitrogen Raman stretch mode is perturbed by adsorption.

  9. In situ vibrational spectroscopy of adsorbed nitrogen in porous carbon materials

    DOE PAGES

    Ray, Paramita; Xu, Enshi; Crespi, Vincent H.; ...

    2018-01-01

    This study uses in situ vibrational spectroscopy to probe nitrogen adsorption to porous carbon materials, including single-wall carbon nanotubes and Maxsorb super-activated carbon, demonstrating how the nitrogen Raman stretch mode is perturbed by adsorption.

  10. Potential of hybrid functionalized meso-porous materials for the separation and immobilization of radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luca, V.

    2013-07-01

    Functionalized meso-porous materials are a class of hybrid organic-inorganic material in which a meso-porous metal oxide framework is functionalized with multifunctional organic molecules. These molecules may contain one or more anchor groups that form strong bonds to the pore surfaces of the metal oxide framework and free functional groups that can impart and or modify the functionality of the material such as for binding metal ions in solution. Such materials have been extensively studied over the past decade and are of particular interest in absorption applications because of the tremendous versatility in choosing the composition and architecture of the metalmore » oxide framework and the nature of the functional organic molecule as well as the efficient mass transfer that can occur through a well-designed hierarchically porous network. A sorbent for nuclear applications would have to be highly selective for particular radio nuclides, it would need to be hydrolytically and radiolytically stable, and it would have to possess reasonable capacity and fast kinetics. The sorbent would also have to be available in a form suitable for use in a column. Finally, it would also be desirable if once saturated with radio nuclides, the sorbent could be recycled or converted directly into a ceramic or glass waste form suitable for direct repository disposal or even converted directly into a material that could be used as a transmutation target. Such a cradle-to- grave strategy could have many benefits in so far as process efficiency and the generation of secondary wastes are concerned.This paper will provide an overview of work done on all of the above mentioned aspects of the development of functionalized meso-porous adsorbent materials for the selective separation of lanthanides and actinides and discuss the prospects for future implementation of a cradle-to-grave strategy with such materials. (author)« less

  11. An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    PubMed Central

    Xie, Zaiku; Liu, Zhicheng; Wang, Yangdong; Yang, Qihua; Xu, Longya; Ding, Weiping

    2010-01-01

    Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts. PMID:20559508

  12. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon.

    PubMed

    Qiu, Xu; Wang, Lixi; Zhu, Hongli; Guan, Yongkang; Zhang, Qitu

    2017-06-08

    Lightweight microwave absorbing materials have drawn tremendous attention. Herein, nano-porous biomass carbon materials have been prepared by carbonization with a subsequent potassium hydroxide activation of walnut shells and the microwave absorption properties have also been investigated. The obtained samples have large specific surface areas with numerous micropores and nanopores. The sample activated at 600 °C with a specific surface area of 736.2 m 2 g -1 exhibits the most enhanced microwave absorption performance. It has the maximum reflection loss of -42.4 dB at 8.88 GHz and the effective absorption bandwidth (reflection loss below -10 dB) is 1.76 GHz (from 8.08 GHz to 9.84 GHz), corresponding to a thickness of 2 mm. Additionally, the effective absorption bandwidth can reach 2.24 GHz (from 10.48 GHz to 12.72 GHz) when the absorber thickness is 1.5 mm. Three-dimensional porous architecture, interfacial polarization relaxation loss, and the dipolar relaxation loss make a great contribution to the excellent microwave absorption performance. In contrast, the non-activated sample with lower specific surface area (435.3 m 2 g -1 ) has poor microwave absorption performance due to a poor dielectric loss capacity. This comparison highlights the role of micropores and nanopores in improving the dielectric loss property of porous carbon materials. To sum up, porous biomass carbon has great potential to become lightweight microwave absorbers. Moreover, KOH is an efficient activation agent in the fabrication of carbonaceous materials.

  13. Ceramic porous material and method of making same

    DOEpatents

    Liu, J.; Kim, A.Y.; Virden, J.W.

    1997-07-08

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors. 21 figs.

  14. Europium (III) Organic Complexes in Porous Boron Nitride Microfibers: Efficient Hybrid Luminescent Material

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Feng, Congcong; He, Xin; Wang, Weijia; Fang, Yi; Liu, Zhenya; Li, Jie; Tang, Chengchun; Huang, Yang

    2016-09-01

    We report the design and synthesis of a novel kind of organic-inorganic hybrid material via the incorporation of europium (III) β-diketonate complexes (Eu(TTA)3, TTA = 2-thenoyltrifluoroacetone) into one-dimensional (1D) porous boron nitride (BN) microfibers. The developed Eu(TTA)3@BN hybrid composites with typical 1D fibrous morphology exhibit bright visible red-light emission on UV illumination. The confinement of Eu(TTA)3 within pores of BN microfibers not only decreases the aggregation-caused quenching in solid Eu(TTA)3, but also improves their thermal stabilities. Moreover, The strong interactions between Eu(TTA)3 and porous BN matrix result in an interesting energy transfer process from BN host to TTA ligand and TTA ligand to Eu3+ ions, leading to the remarkable increase of red emission. The synthetic approach should be a very promising strategy which can be easily expanded to other hybrid luminescent materials based on porous BN.

  15. Europium (III) Organic Complexes in Porous Boron Nitride Microfibers: Efficient Hybrid Luminescent Material

    PubMed Central

    Lin, Jing; Feng, Congcong; He, Xin; Wang, Weijia; Fang, Yi; Liu, Zhenya; Li, Jie; Tang, Chengchun; Huang, Yang

    2016-01-01

    We report the design and synthesis of a novel kind of organic-inorganic hybrid material via the incorporation of europium (III) β-diketonate complexes (Eu(TTA)3, TTA = 2-thenoyltrifluoroacetone) into one-dimensional (1D) porous boron nitride (BN) microfibers. The developed Eu(TTA)3@BN hybrid composites with typical 1D fibrous morphology exhibit bright visible red-light emission on UV illumination. The confinement of Eu(TTA)3 within pores of BN microfibers not only decreases the aggregation-caused quenching in solid Eu(TTA)3, but also improves their thermal stabilities. Moreover, The strong interactions between Eu(TTA)3 and porous BN matrix result in an interesting energy transfer process from BN host to TTA ligand and TTA ligand to Eu3+ ions, leading to the remarkable increase of red emission. The synthetic approach should be a very promising strategy which can be easily expanded to other hybrid luminescent materials based on porous BN. PMID:27687246

  16. Computer design of porous active materials at different dimensional scales

    NASA Astrophysics Data System (ADS)

    Nasedkin, Andrey

    2017-12-01

    The paper presents a mathematical and computer modeling of effective properties of porous piezoelectric materials of three types: with ordinary porosity, with metallized pore surfaces, and with nanoscale porosity structure. The described integrated approach includes the effective moduli method of composite mechanics, simulation of representative volumes, and finite element method.

  17. Fabrication of a porous material with a porosity gradient by a pulsed electric current sintering process

    NASA Astrophysics Data System (ADS)

    Suk, Myung-Jin; Choi, Sung-II; Kim, Ji-Soon; Kim, Young Do; Kwon, Young-Soon

    2003-12-01

    A porous structure with a porosity gradient can be applied to the preparation of continuous FGM, where liquid or chemical vapor of the second phase is infiltrated into the graded pores. It also has applications in skeletal implant materials and ultrafiltration media. An attempt was made to fabricate a porous material with a porosity gradient by means of a pulsed electric current sintering (PECS) process. The present work describes not only the measured value of the temperature difference between the upper and lower part of the specimen, which brings about a gradual change in pore distribution, but also the sintering characteristics of the porous structure obtained by the pressureless PECS process.

  18. Method of preparing porous, active material for use in electrodes of secondary electrochemical cells

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1977-01-01

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure.The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  19. Heat transfer enhancement of flow insulator by combined stainless steel fibrous and wire net porous materials

    NASA Astrophysics Data System (ADS)

    Khantikomol, P.; Polsongkram, M.; Apisitpinyo, W.; Poowadin, T.

    2018-01-01

    The present research article aims to propose the heat transfer enhancement of the flow insulator using combined fibrous and wire net stainless steel porous material. The stainless fibrous plate with porosity of 0.9292 was combined to the stainless steel wire net having pore per inch (PPI) of 16 and total thickness of 30 mm. Two models of the arranging porous plates were prepared, which were model BA and model AB. Each porous plate segment had the same thickness. The examined porous plate model have porosities of 0.8452. The porous plate was placed normal to the flow direction. The air was used as working fluid heated by 5 kW electric heater, which was controlled by the automatic temperature control. Type-K thermocouples were employed to measure the air temperatures. The temperature at front of the porous plate was varied to be 350, 450, and 550°C. The air flow rate was varied in the range of 4-12 m3/hr. The experimental result showed that the temperature drop across the porous plate and the thermal efficiency increase with the inlet temperature. The air velocity slightly affects the temperature profile inside the test section at the upstream side of the porous plate but greatly affects temperature inside the porous plate. In consideration of the arranging porous plate, placing of the stainless steel wire net at the upstream side and placing the stainless steel fibrous at downstream side (model BA) results in the highest temperature drop and the highest thermal efficiency. At Re 733 and inlet temperature 550°C for model BA at 30 mm thickness, the thermal efficiency was 50%. It was shown that the combined stainless steel fibrous and stainless steel wire net porous material could be a good flow insulator.

  20. METHOD OF IMPREGNATING A POROUS MATERIAL

    DOEpatents

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  1. Effect of Pressing Parameters on the Structure of Porous Materials Based on Cobalt and Nickel Powders

    NASA Astrophysics Data System (ADS)

    Shustov, V. S.; Rubtsov, N. M.; Alymov, M. I.; Ankudinov, A. B.; Evstratov, E. V.; Zelensky, V. A.

    2018-03-01

    Porous materials with a bulk porosity of more than 68% were synthesized by powder metallurgy methods from a cobalt-nickel mixture. The effect of the ratio of nickel and cobalt powders used in the synthesis of this porous material (including cases when either nickel or cobalt alone was applied) and the conditions of their compaction on structural parameters, such as open and closed porosities and pose size, was established.

  2. Method of preparing thin porous sheets of ceramic material

    DOEpatents

    Swarr, Thomas E.; Nickols, Richard C.; Krasij, Myron

    1987-03-24

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  3. Method of preparing thin porous sheets of ceramic material

    DOEpatents

    Swarr, T.E.; Nickols, R.C.; Krasij, M.

    1984-05-23

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  4. Use of a porous material description of forests in infrasonic propagation algorithms.

    PubMed

    Swearingen, Michelle E; White, Michael J; Ketcham, Stephen A; McKenna, Mihan H

    2013-10-01

    Infrasound can propagate very long distances and remain at measurable levels. As a result infrasound sensing is used for remote monitoring in many applications. At local ranges, on the order of 10 km, the influence of the presence or absence of forests on the propagation of infrasonic signals is considered. Because the wavelengths of interest are much larger than the scale of individual components, the forest is modeled as a porous material. This approximation is developed starting with the relaxation model of porous materials. This representation is then incorporated into a Crank-Nicholson method parabolic equation solver to determine the relative impacts of the physical parameters of a forest (trunk size and basal area), the presence of gaps/trees in otherwise continuous forest/open terrain, and the effects of meteorology coupled with the porous layer. Finally, the simulations are compared to experimental data from a 10.9 kg blast propagated 14.5 km. Comparison to the experimental data shows that appropriate inclusion of a forest layer along the propagation path provides a closer fit to the data than solely changing the ground type across the frequency range from 1 to 30 Hz.

  5. Luminescent Porous Polymers Based on Aggregation-Induced Mechanism: Design, Synthesis and Functions.

    PubMed

    Dalapati, Sasanka; Gu, Cheng; Jiang, Donglin

    2016-12-01

    Enormous research efforts are focusing on the design and synthesis of advanced luminescent systems, owing to their diverse capability in scientific studies and technological developments. In particular, fluorescence systems based on aggregation-induced emission (AIE) have emerged to show great potential for sensing, bio-imaging, and optoelectronic applications. Among them, integrating AIE mechanisms to design porous polymers is unique because it enables the combination of porosity and luminescence activity in one molecular skeleton for functional design. In recent years rapid progress in exploring AIE-based porous polymers has developed a new class of luminescent materials that exhibit broad structural diversity, outstanding properties and functions and promising applications. By classifying the structural nature of the skeleton, herein the design principle, synthetic development and structural features of different porous luminescent materials are elucidated, including crystalline covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and amorphous porous organic polymers (POPs). The functional exploration of these luminescent porous polymers are highlighted by emphasizing electronic interplay within the confined nanospace, fundamental issues to be addressed are disclosed, and future directions from chemistry, physics and materials science perspectives are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions

    DOE PAGES

    Zhang, Pengfei; Zhu, Huiyuan; Dai, Sheng

    2015-08-31

    The importance of porous carbon as the support material is well recognized in the catalysis community, and it would be even more attractive if several characteristics are considered, such as the stability in acidic and basic media or the ease of noble metal recovery through complete burn off. Because it is still difficult to obtain constant properties even from batch to batch, activated carbons are not popular in industrial catalysis now.

  7. Sound transmission through stiffened double-panel structures lined with elastic porous materials

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal P.; Tran, Boi N.; Bolton, J. S.; Shiau, Nae-Ming

    This paper presents transmission loss prediction models for a periodically stiffened panel and stiffened double-panel structures using the periodic structure theory. The inter-panel cavity in the double-panels structures can be modeled as being separated by an airspace or filled with an elastic porous layer in various configurations. The acoustic behavior of elastic porous layer is described by a theory capable of accounting fully for multi-dimensional wave propagation in such materials. The predicted transmission loss of a single stiffened panel is compared with the measured data.

  8. Quasi-optic millimeter-wave device application of liquid crystal material by using porous PMMA matrix

    NASA Astrophysics Data System (ADS)

    Nose, T.; Watanabe, Y.; Kon, A.; Ito, R.; Honma, M.

    2018-02-01

    Recently, millimeter-waves (MMWs) have become indispensable for application in next-generation high-speed wireless communication i.e., 5G, in addition to conventional applications such as in automobile collision avoidance radars and airport security inspection systems. Some manageable devices to control MMW propagation will be necessary with the development of this new technology field. We believe that liquid crystal (LC) devices are one of the major candidates for such applications because it is known that LC materials are excellent electro-optic materials. However, as the wavelength of MMWs is extremely longer than the optics region, extremely thick LC layers are necessary if we choose the quasioptic approach to attain LC MMW control devices. Therefore, we adopt a PDLC structure to attain the extremely thick LC layers by using porous (polymethyl methacrylate) PMMA materials, which can be easily obtained using a solvent consisting of a mixture of ethanol/water and a little heating. In this work, we focus on Fresnel lens, which is an important quasi-optic device for MMW application, to introduce a tunable property by using LC materials. Here, we adopt the thin film deposition method to obtain a porous PMMA matrix with the aim of obtaining final composite structure based on the Fresnel substrate. First, the fundamental material properties of porous PMMA are investigated to control the microscopic porous structure. Then, the LC-MMW Fresnel lens substrate is prepared using a 3D printer, and the fundamental MMW focusing properties of the prototype composite Fresnel structure are investigated.

  9. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    NASA Technical Reports Server (NTRS)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  10. Molecules with polymerizable ligands as precursors to porous doped materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubert-Pfalzgraf, L.G.; Pajot, N.; Papiernik, R.

    1996-12-31

    Titanium and aluminum alkoxide derivatives with polymerizable ligands such as 2-(methacryloyloxy)ethylacetoacetate (HAAEMA), oleic acid and geraniol (HOGE) have been obtained. The various compounds have been characterized by FT-IR and NMR {sup 1}H. Copolymerization with styrene and divinylbenzene affords porous doped organic materials which have been characterized by scanning electron microscopy (SEM), elemental analysis, density measurements.

  11. A review of low density porous materials used in laser plasma experiments

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

    2018-03-01

    This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

  12. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.

    PubMed

    Zhang, Bin; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong

    2014-08-13

    Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.

  13. Explicit accounting of electronic effects on the Hugoniot of porous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Bishnupriya; Menon, S. V. G., E-mail: menon.svg98@gmail.com

    2016-03-28

    A generalized enthalpy based equation of state, which includes thermal electron excitations explicitly, is formulated from simple considerations. Its application to obtain Hugoniot of materials needs simultaneous evaluation of pressure-volume curve and temperature, the latter requiring solution of a differential equation. The errors involved in two recent papers [Huayun et al., J. Appl. Phys. 92, 5917 (2002); 92, 5924 (2002)], which employed this approach, are brought out and discussed. In addition to developing the correct set of equations, the present work also provides a numerical method to implement this approach. Constant pressure specific heat of ions and electrons and ionicmore » enthalpy parameter, needed for applications, are calculated using a three component equation of state. The method is applied to porous Cu with different initial porosities. Comparison of results with experimental data shows good agreement. It is found that temperatures along the Hugoniot of porous materials are significantly modified due to electronic effects.« less

  14. Fly Ash Porous Material using Geopolymerization Process for High Temperature Exposure

    PubMed Central

    Abdullah, Mohd Mustafa Al Bakri; Jamaludin, Liyana; Hussin, Kamarudin; Bnhussain, Mohamed; Ghazali, Che Mohd Ruzaidi; Ahmad, Mohd Izzat

    2012-01-01

    This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure. PMID:22605984

  15. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  16. Electrode including porous particles with embedded active material for use in a secondary electrochemical cell

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1978-04-25

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure. The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  17. The efficacy of post porosity plasma protection against vacuum-ultraviolet damage in porous low-k materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lionti, K.; Volksen, W.; Darnon, M.

    2015-03-21

    As of today, plasma damage remains as one of the main challenges to the reliable integration of porous low-k materials into microelectronic devices at the most aggressive node. One promising strategy to limit damage of porous low-k materials during plasma processing is an approach we refer to as post porosity plasma protection (P4). In this approach, the pores of the low-k material are filled with a sacrificial agent prior to any plasma treatment, greatly minimizing the total damage by limiting the physical interactions between plasma species and the low-k material. Interestingly, the contribution of the individual plasma species to themore » total plasma damage is not fully understood. In this study, we investigated the specific damaging effect of vacuum-ultraviolet (v-UV) photons on a highly porous, k = 2.0 low-k material and we assessed the P4 protective effect against them. It was found that the impact of the v-UV radiation varied depending upon the v-UV emission lines of the plasma. More importantly, we successfully demonstrated that the P4 process provides excellent protection against v-UV damage.« less

  18. A practical approach in porous medium combustion for domestic application: A review

    NASA Astrophysics Data System (ADS)

    Ismail, A. K.; Ibrahim, N. H.; Shamsuddin, K. A.; Abdullah, M. Z.; Zubair, M.

    2018-05-01

    Combustion in porous media has been widely studied. Many application involving the combustion of porous media has been reported in various way with most consider on numerical works and industrial application. Besides, recent application of porous medium combustion for domestic is the topic of interest among researchers. In this paper, a review was conducted on the combustion of porous media in term of practical application for domestic consumers. Details on the type of fuel used including bio fuel and their system have been search thoroughly. Most of the system have utilized compressed air system to provide lean combustion in domestic application. Some self-aspirating system of porous medium burner was also reported. The application of new technology such as cogeneration by using thermoelectric cells in tandem with porous medium combustion is also revised according to recent work which have already been published. Besides, the recent advances which include coating of porous material is also considered at the end of this paper.

  19. Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Fangfang; Bai, Jing; Feng, Jinkui; Xiong, Shenglin

    2015-10-01

    The relentless pursuit of new electrode materials for lithium ion batteries (LIBs) has been conducted for decades. Structures with either porous or nanostructure configurations have been confirmed as advantageous candidates for energy storage/conversion applications. The integration of the two features into one structure can provide another chance to improve the electroactivities. Recently, single-phased mixed metal oxides (MMOs) containing different metal cations, in particular, have confirmed high electrochemical activities because of their complex chemical composition, interfacial effects, and the synergic effects of the multiple metal species. In this review, we will focus on recent research advances of MMOs with porous architectures as anode materials in the matter of structural arrangement and compositional manipulation. Moreover, the application of self-supported MMO-based porous structures as LIB anodes is also explained herein. More importantly, investigations on the synthetic system and formation mechanism of porous MMOs will be highlighted. Some future trends for the innovative design of new electrode materials are also discussed in this review. The challenges and prospects will draw many researchers' attention.

  20. Porous graphene nanocages for battery applications

    DOEpatents

    Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.

    2017-03-07

    An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.

  1. High performance aqueous symmetric supercapacitors based on advanced carbon electrodes and hydrophilic poly(vinylidene fluoride) porous separator

    NASA Astrophysics Data System (ADS)

    Xie, Qinxing; Huang, Xiaolin; Zhang, Yufeng; Wu, Shihua; Zhao, Peng

    2018-06-01

    The main components of a supercapacitor include two electrodes, electrolyte, and a separator, which are all essential to specify the energy storage capability of the device. In this work, two kinds of porous carbon materials have been fabricated via different routes using pomelo peel as raw material. The specific surface area are 1187 m2 g-1 for the nanosized worm-like carbon, and 1744 m2 g-1 for the nitrogen-enriched microsized carbon. Both carbon materials demonstrate excellent energy storage capability as electrodes for aqueous supercapacitors. According to the three-electrode measurements, the worm-like carbon exhibits a high specific capacitance of 316 F g-1 at 0.2 A g-1 in 6 M KOH, while the other exhibits 471 F g-1 due to the highly enriched nitrogen atoms in structure. In addition, two-electrode coin-type cells have been assembled with the carbon materials as electrodes and hydrophilic poly(vinylidene fluoride) porous membrane as the separator. The assembled cells exhibit high specific capacitances, excellent rate performance and superior cycling durability because of a synergistic effect of the high performance carbon electrodes and hydrophilic porous separator.

  2. Impact of physicochemical properties of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond on drug loading and release behavior

    NASA Astrophysics Data System (ADS)

    Numpilai, Thanapha; Witoon, Thongthai; Chareonpanich, Metta; Limtrakul, Jumras

    2017-02-01

    The conjugation of dexamethasone (DEX) onto modified-porous silica materials via a pH-responsive hydrazone bond has been reported to be highly efficient method to specifically deliver the DEX to diseased sites. However, the influence of physicochemical properties of porous silica materials has not yet been fully understood. In this paper, the impact of pore sizes, particle sizes and silanol contents on surface functionalization, drug loading and release behavior of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond was investigated. The grafting density was found to relate to the number of silanol groups on the surface of porous silica materials. The particle size and macropores of the porous silica materials played an vital role on the drug loading and release behavior. Although the porous silica materials with larger particle sizes possessed a lower grafting density, a larger amount of drug loading could be achieved. Moreover, the porous silica materials with larger particle sizes showed a slower release rate of DEX due to a longer distance for cleaved DEX diffusion out of pores. DEX release rate exhibited pH-dependent, sustained release. At pH 4.5, the amount of DEX release within 10 days could be controlled in the range of 12.74-36.41%, depending on the host material. Meanwhile, less than 1.5% of DEX was released from each of type of the porous silica materials at pH 7.4. The results of silica dissolution suggested that the degradation of silica matrix did not significantly affect the release rate of DEX. In addition, the kinetic modeling studies revealed that the DEX releases followed Korsmeyer-Peppas model with a release exponent (n) ranged from 0.3 to 0.47, indicating a diffusion-controlled release mechanism.

  3. X-ray microanalysis of porous materials using Monte Carlo simulations.

    PubMed

    Poirier, Dominique; Gauvin, Raynald

    2011-01-01

    Quantitative X-ray microanalysis models, such as ZAF or φ(ρz) methods, are normally based on solid, flat-polished specimens. This limits their use in various domains where porous materials are studied, such as powder metallurgy, catalysts, foams, etc. Previous experimental studies have shown that an increase in porosity leads to a deficit in X-ray emission for various materials, such as graphite, Cr(2) O(3) , CuO, ZnS (Ichinokawa et al., '69), Al(2) O(3) , and Ag (Lakis et al., '92). However, the mechanisms responsible for this decrease are unclear. The porosity by itself does not explain the loss in intensity, other mechanisms have therefore been proposed, such as extra energy loss by the diffusion of electrons by surface plasmons generated at the pores-solid interfaces, surface roughness, extra charging at the pores-solid interface, or carbon diffusion in the pores. However, the exact mechanism is still unclear. In order to better understand the effects of porosity on quantitative microanalysis, a new approach using Monte Carlo simulations was developed by Gauvin (2005) using a constant pore size. In this new study, the X-ray emissions model was modified to include a random log normal distribution of pores size in the simulated materials. This article presents, after a literature review of the previous works performed about X-ray microanalysis of porous materials, some of the results obtained with Gauvin's modified model. They are then compared with experimental results. Copyright © 2011 Wiley Periodicals, Inc.

  4. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    PubMed

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material.

    PubMed

    Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung

    2017-07-01

    Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Numerical investigation of active porous composites with enhanced acoustic absorption

    NASA Astrophysics Data System (ADS)

    Zieliński, Tomasz G.

    2011-10-01

    The paper presents numerical analysis - involving an advanced multiphysics modeling - of the concept of active porous composite sound absorbers. Such absorbers should be made up of a layer or layers of poroelastic material (porous foams) with embedded elastic inclusions having active (piezoelectric) elements. The purpose of such active composite material is to significantly absorb the energy of acoustic waves in a wide frequency range, particularly, at lower frequencies. At the same time the total thickness of composite should be very moderate. The active parts of composites are used to adapt the absorbing properties of porous layers to different noise conditions by affecting the so-called solid-borne wave - originating mainly from the vibrations of elastic skeleton of porous medium - to counteract the fluid-borne wave - resulting mainly from the vibrations of air in the pores; both waves are strongly coupled, especially, at lower frequencies. In fact, since the traction between the air and the solid frame of porous medium is the main absorption mechanism, the elastic skeleton is actively vibrated in order to adapt and improve the dissipative interaction of the skeleton and air in the pores. Passive and active performance of such absorbers is analyzed to test the feasibility of this approach.

  7. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    PubMed

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  8. A porous carbon material from pyrolysis of fructus cannabis’s shells for supercapacitor electrode application

    NASA Astrophysics Data System (ADS)

    Li, Kai; Zhang, Wei-Bin; Zhao, Zhi-Yun; Zhao, Yue; Chen, Xi-Wen; Kong, Ling-Bin

    2018-02-01

    The porous carbon material is obtained via pyrolysis and activation of fructus cannabis’s shells, an easy-to-get biomass source, and is used as an active electrode material for supercapacitors. The obtained carbon exhibit a high specific surface area of 2389 m2 g-1. And the result of x-ray photoelectron spectroscopy (XPS) shows that the obtained porous carbon possess numerous oxygen groups, which can facilitate the wettability of the electrode. The prepared porous carbon also exhibit remarkable electrochemical properties, such as high specific capacitance of 357 F g-1 at a current density of 0.5 A g-1 in 6 mol L-1 aqueous KOH electrolyte, good rate capability of 77% capacitance retention as the current density increase from 0.5 A g-1 to 10 A g-1. In addition, it also presents a superior cycling stability of 100% capacitance retention after 10 000 cycles at the current density of 1 A g-1.

  9. Advanced materials for energy storage.

    PubMed

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  10. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Wenlong; Xiao, Dan; Wang, Xinhui

    2017-09-01

    Oxygen-rich hierarchical porous carbon has been fabricated using pomelo peel fiber as a carbon source via an improved KOH activation method. The morphology and chemical composition of the obtained carbon materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), electron microscopy (EM), Raman spectra and elemental analysis. The unique porous structure with abundant oxygen functional groups is favorable to capacitive behavior, and the as-prepared carbon material exhibits high specific capacitance of 222.6 F g-1 at 0.5 A g-1 in 6 M KOH and superior stability over 5000 cycles. This work not only describes a simple way to prepare high-performance carbon material from the discarded pomelo peel, but also provides a strategy for its disposal issue and contributes to the environmental improvement.

  11. Three-dimensional Aerographite-GaN hybrid networks: Single step fabrication of porous and mechanically flexible materials for multifunctional applications

    PubMed Central

    Schuchardt, Arnim; Braniste, Tudor; Mishra, Yogendra K.; Deng, Mao; Mecklenburg, Matthias; Stevens-Kalceff, Marion A.; Raevschi, Simion; Schulte, Karl; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion

    2015-01-01

    Three dimensional (3D) elastic hybrid networks built from interconnected nano- and microstructure building units, in the form of semiconducting-carbonaceous materials, are potential candidates for advanced technological applications. However, fabrication of these 3D hybrid networks by simple and versatile methods is a challenging task due to the involvement of complex and multiple synthesis processes. In this paper, we demonstrate the growth of Aerographite-GaN 3D hybrid networks using ultralight and extremely porous carbon based Aerographite material as templates by a single step hydride vapor phase epitaxy process. The GaN nano- and microstructures grow on the surface of Aerographite tubes and follow the network architecture of the Aerographite template without agglomeration. The synthesized 3D networks are integrated with the properties from both, i.e., nanoscale GaN structures and Aerographite in the form of flexible and semiconducting composites which could be exploited as next generation materials for electronic, photonic, and sensors applications. PMID:25744694

  12. Porous silicon technology for integrated microsystems

    NASA Astrophysics Data System (ADS)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  13. Synergistic Carbon Dioxide Capture and Conversion in Porous Materials.

    PubMed

    Zhang, Yugen; Lim, Diane S W

    2015-08-24

    Global climate change and excessive CO2 emissions have caused widespread public concern in recent years. Tremendous efforts have been made towards CO2 capture and conversion. This has led to the development of numerous porous materials as CO2 capture sorbents. Concurrently, the conversion of CO2 into value-added products by chemical methods has also been well-documented recently. However, realizing the attractive prospect of direct, in situ chemical conversion of captured CO2 into other chemicals remains a challenge. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Facile fabrication of 3D porous MnO@GS/CNT architecture as advanced anode materials for high-performance lithium-ion battery.

    PubMed

    Wang, Junyong; Deng, Qinglin; Li, Mengjiao; Wu, Cong; Jiang, Kai; Hu, Zhigao; Chu, Junhao

    2018-08-03

    To overcome inferior rate capability and cycle stability of MnO-based anode materials for lithium-ion batteries (LIBs), we reported a novel 3D porous MnO@GS/CNT composite, consisting of MnO nanoparticles homogeneously distributed on the conductive interconnected framework based on 2D graphene sheets (GS) and 1D carbon nanotubes (CNTs). The distinctive architecture offers highly interpenetrated network along with efficient porous channels for fast electron transfer and ionic diffusion as well as abundant stress buffer space to accommodate the volume expansion of the MnO nanoparticles. The MnO@GS/CNT anode exhibits an ultrahigh capacity of 1115 mAh g -1 at 0.2 A g -1 after 150 cycles and outstanding rate capacity of 306 mAh g -1 at 10.0 A g -1 . Moreover, a stable capacity of 405 mAh g -1 after 3200 cycles can still be achieved, even at a large current density of 5.0 A g -1 . When coupled with LiMn 2 O 4 (LMO) cathode, the LMO [Formula: see text] MnO@GS/CNT full cell characterizes an excellent cycling stability and rate capability, indicating the promising application of MnO@GS/CNT anode in the next-generation LIBs.

  15. Approach to failure in porous granular materials under compression

    NASA Astrophysics Data System (ADS)

    Kun, Ferenc; Varga, Imre; Lennartz-Sassinek, Sabine; Main, Ian G.

    2013-12-01

    We investigate the approach to catastrophic failure in a model porous granular material undergoing uniaxial compression. A discrete element computational model is used to simulate both the microstructure of the material and the complex dynamics and feedbacks involved in local fracturing and the production of crackling noise. Under strain-controlled loading, microcracks initially nucleate in an uncorrelated way all over the sample. As loading proceeds the damage localizes into a narrow damage band inclined at 30∘-45∘ to the load direction. Inside the damage band the material is crushed into a poorly sorted mixture of mainly fine powder hosting some larger fragments. The mass probability density distribution of particles in the damage zone is a power law of exponent 2.1, similar to a value of 1.87 inferred from observations of the length distribution of wear products (gouge) in natural and laboratory faults. Dynamic bursts of radiated energy, analogous to acoustic emissions observed in laboratory experiments on porous sedimentary rocks, are identified as correlated trails or cascades of local ruptures that emerge from the stress redistribution process. As the system approaches macroscopic failure consecutive bursts become progressively more correlated. Their size distribution is also a power law, with an equivalent Gutenberg-Richter b value of 1.22 averaged over the whole test, ranging from 3 to 0.5 at the time of failure, all similar to those observed in laboratory tests on granular sandstone samples. The formation of the damage band itself is marked by a decrease in the average distance between consecutive bursts and an emergent power-law correlation integral of event locations with a correlation dimension of 2.55, also similar to those observed in the laboratory (between 2.75 and 2.25).

  16. Static Corrosion Test of Porous Iron Material with Polymer Coating

    NASA Astrophysics Data System (ADS)

    Markušová-Bučková, Lucia; Oriňaková, Renáta; Oriňak, Andrej; Gorejová, Radka; Kupková, Miriam; Hrubovčáková, Monika; Baláž, Matej; Kováľ, Karol

    2016-12-01

    At present biodegradable implants received increased attention due to their use in various fields of medicine. This work is dedicated to testing of biodegradable materials which could be used as bone implants. The samples were prepared from the carbonyl iron powder by replication method and surface polymer film was produced through sol-gel process. Corrosion testing was carried out under static conditions during 12 weeks in Hank's solution. The quantity of corrosion products increased with prolonging time of static test as it can be concluded from the results of EDX analysis. The degradation of open cell materials with polyethylene glycol coating layer was faster compared to uncoated Fe sample. Also the mass losses were higher for samples with PEG coating. The polymer coating brought about the desired increase in degradation rate of porous iron material.

  17. A Family of Reference Hugoniots for Two-phase Porous Materials

    DTIC Science & Technology

    2015-06-01

    Copper powder is used to illustrate the use of the Hugoniots, using a porosity m = 4, where m = ρ01/ρ0, and ρ0 is the average density of the powder ...material will be illustrated below with a number of calculated Hugoniots compared with experiments for several metallic powders , an organic porous...examples of condensed constituent for the metallic powders we take Cobalt, Copper, Iron, Molybdenum and Zinc. We take calcite (CaCO3) to represent a

  18. Frost induced damages within porous materials - from concrete technology to fuel cells technique

    NASA Astrophysics Data System (ADS)

    Palecki, Susanne; Gorelkov, Stanislav; Wartmann, Jens; Heinzel, Angelika

    2017-12-01

    Porous media like concrete or layers of membrane electrode assemblies (MEA) within fuel cells are affected by a cyclic frost exposure due to different damage mechanisms which could lead to essential degradation of the material. In general, frost damages can only occur in case of a specific material moisture content. In fuel cells, residual water is generally available after shut down inside the membrane i.e. the gas diffusion layer (GDL). During subsequent freezing, this could cause various damage phenomena such as frost heaves and delamination effects of the membrane electrode assembly, which depends on the location of pore water and on the pore structure itself. Porous materials possess a pore structure that could range over several orders of magnitudes with different properties and freezing behaviour of the pore water. Latter can be divided into macroscopic, structured and pre-structured water, influenced by surface interactions. Therefore below 0 °C different water modifications can coexist in a wide temperature range, so that during frost exposure a high amount of unfrozen and moveable water inside the pore system is still available. This induces transport mechanisms and shrinkage effects. The physical basics are similar for porous media. While the freezing behaviour of concrete has been studied over decades of years, in order to enhance the durability, the know-how about the influence of a frost attack on fuel cell systems is not fully understood to date. On the basis of frost damage models for concrete structures, an approach to describe the impact of cyclic freezing and thawing on membrane electrode assemblies has been developed within this research work. Major aim is beyond a better understanding of the frost induced mechanisms, the standardization of a suitable test procedure for the assessment of different MEA materials under such kind of attack. Within this contribution first results will be introduced.

  19. Shock-loading response of advanced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T. III

    1993-08-01

    Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevantmore » to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.« less

  20. Flue-gas and direct-air capture of CO2 by porous metal–organic materials

    PubMed Central

    2017-01-01

    Sequestration of CO2, either from gas mixtures or directly from air (direct air capture), is a technological goal important to large-scale industrial processes such as gas purification and the mitigation of carbon emissions. Previously, we investigated five porous materials, three porous metal–organic materials (MOMs), a benchmark inorganic material, Zeolite 13X and a chemisorbent, TEPA-SBA-15, for their ability to adsorb CO2 directly from air and from simulated flue-gas. In this contribution, a further 10 physisorbent materials that exhibit strong interactions with CO2 have been evaluated by temperature-programmed desorption for their potential utility in carbon capture applications: four hybrid ultramicroporous materials, SIFSIX-3-Cu, DICRO-3-Ni-i, SIFSIX-2-Cu-i and MOOFOUR-1-Ni; five microporous MOMs, DMOF-1, ZIF-8, MIL-101, UiO-66 and UiO-66-NH2; an ultramicroporous MOM, Ni-4-PyC. The performance of these MOMs was found to be negatively impacted by moisture. Overall, we demonstrate that the incorporation of strong electrostatics from inorganic moieties combined with ultramicropores offers improved CO2 capture performance from even moist gas mixtures but not enough to compete with chemisorbents. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’. PMID:27895255

  1. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity].

    PubMed

    Zhang, Yumin; Li, Baoxing; Li, Ji

    2007-02-01

    To fabricate a novel porous bioactive composite biomaterial consisting of poly lactic acid (PLA)-bone matrix gelatin (BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3 : 1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100-200 microm in diameter for the porosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblast-like MC3T3-E1 cells were cultured in the dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 microl of the MC3T3-E1 cell suspensions containing 2 X 10(6) cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 microg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 microg of the crushed PLA material was contained in each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis on the calcification area was performed by the staining of the alizarin red S. The co-cultured cells were harvested and lysated in 1 ml of 0. 2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. The porous PLA-BMG composite material showed a good homological porosity with a pore diameter of 50-150 microm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in

  2. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection.

    PubMed

    Lu, Lu

    2018-07-01

    Electrochemical (bio)sensors have attracted much attention due to their high sensitivity, fast response time, biocompatibility, low cost and easy miniaturization. Specially, ever-growing necessity and interest have given rise to the fast development of electrochemical (bio)sensors for the detection of small biomolecules. They play enormous roles in the life processes with various biological function, such as life signal transmission, genetic expression and metabolism. Moreover, their amount in body can be used as an indicator for diagnosis of many diseases. For example, an abnormal concentration of blood glucose can indicate hyperglycemia or hypoglycemia. Graphene (GR) shows great applications in electrochemical (bio)sensors. Compared with two-dimensional (2D) GR that is inclined to stack together due to the strong π-π interaction, monolithic 3D porous GR has larger specific area, superior mechanical strength, better stability, higher conductivity and electrocatalytic activity. So they attracted more and increasing attention as sensing materials for small biomolecules. This review focuses on the recent advances and strategies in the fabrication methods of 3D porous GR and the development of various electrochemical (bio)sensors based on porous GR and its nanocomposites for the detection of small biomolecules. The challenges and future efforts direction of high-performance electrochemical (bio)sensors based on 3D porous GR for more sensitive analysis of small biomolecules are discussed and proposed. It will give readers an overall understanding of their progress and provide some theoretical guidelines for their future efforts and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liby, Alan L; Rogers, Hiram

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less

  4. Advanced Aerospace Materials by Design

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  5. Ventilation of porous media

    DOEpatents

    Neeper, Donald A.

    1994-01-01

    Methods for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction.

  6. Recent Advances in the Separation of Rare Earth Elements Using Mesoporous Hybrid Materials.

    PubMed

    Hu, Yimu; Florek, Justyna; Larivière, Dominic; Fontaine, Frédéric-Georges; Kleitz, Freddy

    2018-05-27

    Over the past decades, the need for rare earth elements (REEs) has increased substantially, mostly because these elements are used as valuable additives in advanced technologies. However, the difference in ionic radius between neighboring REEs is small, which renders an efficient sized-based separation extremely challenging. Among different types of extraction methods, solid-phase extraction (SPE) is a promising candidate, featuring high enrichment factor, rapid adsorption kinetics, reduced solvent consumption and minimized waste generation. The great challenge remains yet to develop highly efficient and selective adsorbents for this process. In this regard, ordered mesoporous materials (OMMs) possess high specific surface area, tunable pore size, large pore volume, as well as stable and interconnected frameworks with active pore surfaces for functionalization. Such features meet the requirements for enhanced adsorbents, not only providing huge reactional interface and large surface capable of accommodating guest species, but also enabling the possibility of ion-specific binding for enrichment and separation purposes. This short personal account summarizes some of the recent advances in the use of porous hybrid materials as selective sorbents for REE separation and purification, with particular attention devoted to ordered mesoporous silica and carbon-based sorbents. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Scaling impact and shock-compression response for porous materials: Application to planetary formation

    NASA Astrophysics Data System (ADS)

    Jeanloz, R.

    2016-12-01

    A thermodynamic model based on the Mie-Grüneisen equation of state does a good job of describing the response of porous materials to impact, so can provide insights into the accretion and cohesion of planetesimals too small to be significantly held together by gravity (e.g., tens of km or less in average diameter). The model identifies an offset in Hugoniot pressure (ΔPH) due to porosity that is found to be in agreement with experimental shock-compression measurements for samples having a wide range of initial porosities. Assuming the Grüneisen parameter (γ) is proportional to volume (γ/V = constant), the relative offset in Hugoniot pressure as a function of initial porosity (φ = 1 - V0/V0por) and compression (η = 1 - V/V0) is ΔPH/PH = γ0 φ/[2(1 - φ) - γ0 (φ + η(1 - φ))] where subscripts 0 and por represent zero-pressure (non-porous) conditions and a porous sample, respectively. This additional thermal pressure at a given volume is due to the extra internal energy and corresponding temperature increase associated with collapsing pores (Fig. 1: near-identical curves for φ = 0.001 and 0.01). This result can be interpreted as indicating that upon collapse individual pores create hot spots with temperatures of order 103-104K above the background, suggesting that impact into an initially porous target can result in cohesion due to partial melting and vaporization. Moreover, the waste heat associated with pore closure far exceeds the dissipation in shock loading of non-porous material, reflecting the ability of a porous target to absorb and dissipate impact energy. The Mie-Grüneisen model along with analysis of waste heat thus provides a scaling for planetesimal impact that might explain how rock and regolith accrete into a gravitationally bound planet. Fig. 1. Porosity-induced anomaly in Hugoniot temperature per unit of porosity, shown as a function of compression for samples with initial porosity φ = 0.001 (green), 0.01 (blue) and 0.1 (gold) assuming

  8. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview.

    PubMed

    Gupta, Vinod K; Saleh, Tawfik A

    2013-05-01

    The quality of water is continuously deteriorating due to its increasing toxic threat to humans and the environment. It is imperative to perform treatment of wastewater in order to remove pollutants and to get good quality water. Carbon materials like porous carbon, carbon nanotubes and fullerene have been extensively used for advanced treatment of wastewaters. In recent years, carbon nanomaterials have become promising adsorbents for water treatment. This review attempts to compile relevant knowledge about the adsorption activities of porous carbon, carbon nanotubes and fullerene related to various organic and inorganic pollutants from aqueous solutions. A detailed description of the preparation and treatment methods of porous carbon, carbon nanotubes and fullerene along with relevant applications and regeneration is also included.

  9. Additively manufactured biodegradable porous magnesium.

    PubMed

    Li, Y; Zhou, J; Pavanram, P; Leeflang, M A; Fockaert, L I; Pouran, B; Tümer, N; Schröder, K-U; Mol, J M C; Weinans, H; Jahr, H; Zadpoor, A A

    2018-02-01

    An ideal bone substituting material should be bone-mimicking in terms of mechanical properties, present a precisely controlled and fully interconnected porous structure, and degrade in the human body to allow for full regeneration of large bony defects. However, simultaneously satisfying all these three requirements has so far been highly challenging. Here we present topologically ordered porous magnesium (WE43) scaffolds based on the diamond unit cell that were fabricated by selective laser melting (SLM) and satisfy all the requirements. We studied the in vitro biodegradation behavior (up to 4 weeks), mechanical properties and biocompatibility of the developed scaffolds. The mechanical properties of the AM porous WE43 (E = 700-800 MPa) scaffolds were found to fall into the range of the values reported for trabecular bone even after 4 weeks of biodegradation. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), electrochemical tests and µCT revealed a unique biodegradation mechanism that started with uniform corrosion, followed by localized corrosion, particularly in the center of the scaffolds. Biocompatibility tests performed up to 72 h showed level 0 cytotoxicity (according to ISO 10993-5 and -12), except for one time point (i.e., 24 h). Intimate contact between cells (MG-63) and the scaffolds was also observed in SEM images. The study shows for the first time that AM of porous Mg may provide distinct possibilities to adjust biodegradation profile through topological design and open up unprecedented opportunities to develop multifunctional bone substituting materials that mimic bone properties and enable full regeneration of critical-size load-bearing bony defects. The ideal biomaterials for bone tissue regeneration should be bone-mimicking in terms of mechanical properties, present a fully interconnected porous structure, and exhibit a specific biodegradation behavior to enable full regeneration of bony defects

  10. Advanced energy materials (Preface)

    NASA Astrophysics Data System (ADS)

    Titus, Elby; Ventura, João; Araújo, João Pedro; Campos Gil, João

    2017-12-01

    Advances in material science make it possible to fabricate the building blocks of an entirely new generation of hierarchical energy materials. Recent developments were focused on functionality and areas connecting macroscopic to atomic and nanoscale properties, where surfaces, defects, interfaces and metastable state of the materials played crucial roles. The idea is to combine both, the top-down and bottom-up approach as well as shape future materials with a blend of both the paradigms.

  11. Ventilation of porous media

    DOEpatents

    Neeper, D.A.

    1994-02-22

    Methods are presented for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction. 10 figures.

  12. Hierarchical porous carbon materials derived from petroleum pitch for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Abudu, Patiman; Wang, Luxiang; Xu, Mengjiao; Jia, Dianzeng; Wang, Xingchao; Jia, Lixia

    2018-06-01

    In this work, a honeycomb-like carbon material derived from petroleum pitch was synthesized by a simple one-step carbonization/activation method using silica nanospheres as the hard templates. The obtained hierarchical porous carbon materials (HPCs) with a large specific surface area and uniform macropore distribution provide abundant active sites and sufficient ion migration channels. When used as an electrode material for supercapacitors, the HPCs exhibit a high specific capacitance of 341.0 F g-1 at 1 A g-1, excellent rate capability with a capacitance retention of 55.6% at 50 A g-1 (189.5 F g-1), and outstanding cycling performance in the three-electrode system.

  13. Magnetic resonance of porous media (MRPM): a perspective.

    PubMed

    Song, Yi-Qiao

    2013-04-01

    Porous media are ubiquitous in our environment and their application is extremely broad. The common connection between these diverse materials is the importance of the microstructure (μm to mm scale) in determining the physical, chemical and biological functions and properties. Magnetic resonance and its imaging modality have been essential for noninvasive characterization of these materials, in the development of catalysts, understanding cement hydration, fluid transport in rocks and soil, geological prospecting, and characterization of tissue properties for medical diagnosis. The past two decades have witnessed significant development of MRPM that couples advances in physics, chemistry and engineering with a broad range of applications. This article will summarize key advances in basic physics and methodology, examine their limitations and envision future R&D directions. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Preparation of Self-Assembled Chitin Nanofiber-Natural Rubber Composite Sheets and Porous Materials

    PubMed Central

    Kawano, Akito; Yamamoto, Kazuya

    2017-01-01

    We previously reported the preparation of a self-assembled chitin nanofiber (CNF) film via regeneration from an ion gel with an ionic liquid, followed by sonication and filtration. Based on the finding that CNFs were redispersed in a mixture of the film with ammonia aqueous solution (aq.), in this study, CNF-natural rubber (NR) composite sheets were fabricated by mixing redispersed CNF with NR latex stabilized by ammonia, followed by drying under reduced pressure. Tensile testing of the sheets indicated the reinforcing effect of CNFs. Further, CNF-NR composite porous materials were fabricated by evaporating ammonia from the CNF-NR dispersion, followed by lyophilization. The mechanism for the formation of porous structures was evaluated. PMID:28671578

  15. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  16. Video Fact Sheets: Everyday Advanced Materials

    ScienceCinema

    None

    2018-06-21

    What are Advanced Materials? Ames Laboratory is behind some of the best advanced materials out there. Some of those include: Lead-Free Solder, Photonic Band-Gap Crystals, Terfenol-D, Aluminum-Calcium Power Cable and Nano Particles. Some of these are in products we use every day.

  17. Video Fact Sheets: Everyday Advanced Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-10-06

    What are Advanced Materials? Ames Laboratory is behind some of the best advanced materials out there. Some of those include: Lead-Free Solder, Photonic Band-Gap Crystals, Terfenol-D, Aluminum-Calcium Power Cable and Nano Particles. Some of these are in products we use every day.

  18. Enthalpy-based equation of state for highly porous materials employing modified soft sphere fluid model

    NASA Astrophysics Data System (ADS)

    Nayak, Bishnupriya; Menon, S. V. G.

    2018-01-01

    Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.

  19. Porous media modeling and micro-structurally motivated material moduli determination via the micro-dilatation theory

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Ramézani, H.; Sardini, P.; Kondo, D.; Ponson, L.; Siitari-Kauppi, M.

    2015-07-01

    In the present contribution, the porous material modeling and micro-structural material parameters determination are scrutinized via the micro-dilatation theory. The main goal is to take advantage of the micro-dilatation theory which belongs to the generalized continuum media. In the first stage, the thermodynamic laws are entirely revised to reach the energy balance relation using three variables, deformation, porosity change and its gradient underlying the porous media as described in the micro-dilatation theory or so-called void elasticity. Two experiments over cement mortar specimens are performed in order to highlight the material parameters related to the pore structure. The shrinkage due to CO2 carbonation, porosity and its gradient are calculated. The extracted values are verified via 14C-PMMA radiographic image method. The modeling of swelling phenomenon of Delayed Ettringite Formation (DEF) is studied later on. This issue is performed via the crystallization pressure application using the micro-dilatation theory.

  20. Effect of Moisture Content on Thermal Properties of Porous Building Materials

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2017-02-01

    The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.

  1. A note on flow reversal in a wavy channel filled with anisotropic porous material

    NASA Astrophysics Data System (ADS)

    Karmakar, Timir; Raja Sekhar, G. P.

    2017-07-01

    Viscous flow through a symmetric wavy channel filled with anisotropic porous material is investigated analytically. Flow inside the porous bed is assumed to be governed by the anisotropic Brinkman equation. It is assumed that the ratio of the channel width to the wavelength is small (i.e. δ2≪1). The problem is solved up to O(δ2) assuming that δ2λ2≪1, where λ is the anisotropic ratio. The key purpose of this paper is to study the effect of anisotropic permeability on flow near the crests of the wavy channel which causes flow reversal. We present a detailed analysis of the flow reversal at the crests. The ratio of the permeabilities (anisotropic ratio) is responsible for the flow separation near the crests of the wall where viscous forces are effective. For a flow configuration (say, low amplitude parameter) in which there is no separation if the porous media is isotropic, introducing anisotropy causes flow separation. On the other hand, interestingly, flow separation occurs even in the case of isotropic porous medium if the amplitude parameter a is large.

  2. TiO2/porous adsorbents: Recent advances and novel applications.

    PubMed

    MiarAlipour, Shayan; Friedmann, Donia; Scott, Jason; Amal, Rose

    2018-01-05

    This article reviews two interrelated areas of research: the first is the use of TiO 2 -supported adsorbent materials as enhanced heterogeneous photocatalysts and their application to various reactions for organic pollutant removal from air and water; the second is the combination of adsorbent materials with TiO 2 photocatalysts which aims to efficiently regenerate adsorbent materials using illumination. By reviewing both areas of research, the following topics are covered; (i) photocatalytic activation of TiO 2; (ii) related properties of photocatalytic TiO 2; (iii) shortcomings of photocatalytic processes; (iv) preparation methods of composite TiO 2 /adsorbent materials and their photocatalytic performance; (v) properties of common adsorbents and their applications for pollutant removal from air and water; (vi) adsorbent regeneration methods and their economic and operational issues; (vii) conclusions and future outlooks. This topic has not been previously reviewed to such an extent, and considerable knowledge can be gained from assembling the large number of studies on adsorption-photocatalysis combinations. As such, this review provides guidance for researchers working in the fields of environmental and chemical engineering focussing on organic pollutant removal and the engineering of new high performance photocatalytic TiO 2 -supported porous adsorbent materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Synthesis of Hierarchically Porous Sandwich-Like Carbon Materials for High-Performance Supercapacitors.

    PubMed

    Li, Yiju; Chen, Chaoji; Gao, Tingting; Zhang, Dongming; Huang, Xiaomei; Pan, Yue; Ye, Ke; Cheng, Kui; Cao, Dianxue; Wang, Guiling

    2016-11-14

    For the first time, hierarchically porous carbon materials with a sandwich-like structure are synthesized through a facile and efficient tri-template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich-like structure has a relatively high specific surface (1235 m 2  g -1 ), large pore volume (1.30 cm 3  g -1 ), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g -1 at 0.2 A g -1 and satisfying rate performance (87.7 % retention from 1 to 20 A g -1 ). More importantly, the symmetric supercapacitor with two identical as-prepared carbon samples shows a superior energy density of 18.47 Wh kg -1 at a power density of 179.9 W kg -1 . The asymmetric supercapacitor based on as-obtained carbon sample and its composite with manganese dioxide (MnO 2 ) can reach up to an energy density of 25.93 Wh kg -1 at a power density of 199.9 W kg -1 . Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors

    NASA Astrophysics Data System (ADS)

    Xu, Xuena; Niu, Feier; Zhang, Dapeng; Chu, Chenxiao; Wang, Chunsheng; Yang, Jian; Qian, Yitai

    2018-04-01

    Lithium-ion capacitors, as a hybrid electrochemical energy storage device, realize high specific energy and power density within one device, thus attracting extensive attention. Here, hierarchically porous Li3VO4/C nanocomposite is prepared by a solvo-thermal reaction, followed with a post-annealing process. This composite has macropores at the center and mesopores in the wall, thus effectively promoting electrolyte penetration and structure stability upon cycling simultaneously. Compared to mesoporous Li3VO4, the enhanced rate capability and specific capacity of hierarchically porous Li3VO4/C indicate the synergistic effect of mesopores and macropores. Inspired by these results, this composite is coupled with mesoporous carbon (CMK-3) for lithium-ion capacitors, generating a specific energy density of 105 Wh kg-1 at a power density of 188 W kg-1. Even if the power density increases to 9.3 kW kg-1, the energy density still remains 62 Wh kg-1. All these results demonstrate the promising potential of hierarchically porous Li3VO4 in lithium ion capacitors.

  5. Hierarchical Porous Carbon Materials Derived from Sheep Manure for High-Capacity Supercapacitors.

    PubMed

    Zhang, Caiyun; Zhu, Xiaohong; Cao, Min; Li, Menglin; Li, Na; Lai, Liuqin; Zhu, Jiliang; Wei, Dacheng

    2016-05-10

    3 D capacitance: Hierarchical porous carbon-based electrode materials with a composite structure are prepared from a biomass waste by a facile carbonization and activation process without using any additional templates. Benefiting from the composite structure, the ions experience a variety of environments, which contribute significantly to the excellent electrochemical properties of supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Advanced Electrical Materials and Component Development

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2003-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give a description and status of the internal and external research sponsored by NASA Glenn Research Center on soft magnetic materials, dielectric materials and capacitors, and high quality silicon carbide (SiC) atomically smooth substrates. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will be briefly discussed.

  7. Method and apparatus for measuring surface changes, in porous materials, using multiple differently-configured acoustic sensors

    DOEpatents

    Hietala, Susan Leslie; Hietala, Vincent Mark; Tigges, Chris Phillip

    2001-01-01

    A method and apparatus for measuring surface changes, such as mass uptake at various pressures, in a thin-film material, in particular porous membranes, using multiple differently-configured acoustic sensors.

  8. Experimental determination of the viscous flow permeability of porous materials by measuring reflected low frequency acoustic waves

    NASA Astrophysics Data System (ADS)

    Berbiche, A.; Sadouki, M.; Fellah, Z. E. A.; Ogam, E.; Fellah, M.; Mitri, F. G.; Depollier, C.

    2016-01-01

    An acoustic reflectivity method is proposed for measuring the permeability or flow resistivity of air-saturated porous materials. In this method, a simplified expression of the reflection coefficient is derived in the Darcy's regime (low frequency range), which does not depend on frequency and porosity. Numerical simulations show that the reflection coefficient of a porous material can be approximated by its simplified expression obtained from its Taylor development to the first order. This approximation is good especially for resistive materials (of low permeability) and for the lower frequencies. The permeability is reconstructed by solving the inverse problem using waves reflected by plastic foam samples, at different frequency bandwidths in the Darcy regime. The proposed method has the advantage of being simple compared to the conventional methods that use experimental reflected data, and is complementary to the transmissivity method, which is more adapted to low resistive materials (high permeability).

  9. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, JR; Yu, JM; Lu, WG

    2013-02-26

    Despite tremendous efforts, precise control in the synthesis of porous materials with pre-designed pore properties for desired applications remains challenging. Newly emerged porous metal-organic materials, such as metal-organic polyhedra and metal-organic frameworks, are amenable to design and property tuning, enabling precise control of functionality by accurate design of structures at the molecular level. Here we propose and validate, both experimentally and computationally, a precisely designed cavity, termed a 'single-molecule trap', with the desired size and properties suitable for trapping target CO2 molecules. Such a single-molecule trap can strengthen CO2-host interactions without evoking chemical bonding, thus showing potential for CO2 capture.more » Molecular single-molecule traps in the form of metal-organic polyhedra are designed, synthesised and tested for selective adsorption of CO2 over N-2 and CH4, demonstrating the trapping effect. Building these pre-designed single-molecule traps into extended frameworks yields metal-organic frameworks with efficient mass transfer, whereas the CO2 selective adsorption nature of single-molecule traps is preserved.« less

  10. Monodisperse Carbon Nanospheres with Hierarchical Porous Structure as Electrode Material for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Xiutao; Xia, Hui; Liang, Zhongguan; Li, Haiyan; Yu, Hongwen

    2017-09-01

    Carbon nanospheres with distinguishable microstructure were prepared by carbonization and subsequent KOH activation of F108/resorcinol-formaldehyde composites. The dosage of triblock copolymer Pluronic F108 is crucial to the microstructure differences. With the adding of F108, the polydisperse carbon nanospheres (PCNS) with microporous structure, monodisperse carbon nanospheres (MCNS) with hierarchical porous structure, and agglomerated carbon nanospheres (ACNS) were obtained. Their microstructure and capacitance properties were carefully compared. As a result of the synergetic effect of mono-dispersion spheres and hierarchical porous structures, the MCNS sample shows improved electrochemical performance, i.e., the highest specific capacitance of 224 F g-1 (0.2 A g-1), the best rate capability (73% retention at 20 A g-1), and the most excellent capacitance retention of 93% over 10,000 cycles, making it to be the promising electrode material for high-performance supercapacitors.

  11. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    PubMed

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of Steam Activation on Development of Light Weight Biomorphic Porous SiC from Pine Wood Precursor

    NASA Astrophysics Data System (ADS)

    Manocha, Satish M.; Patel, Hemang; Manocha, L. M.

    2013-02-01

    Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.

  13. Formation of Foam-like Microstructural Carbon Material by Carbonization of Porous Coordination Polymers through a Ligand-Assisted Foaming Process.

    PubMed

    Kongpatpanich, Kanokwan; Horike, Satoshi; Fujiwara, Yu-Ichi; Ogiwara, Naoki; Nishihara, Hirotomo; Kitagawa, Susumu

    2015-09-14

    Porous carbon material with a foam-like microstructure has been synthesized by direct carbonization of porous coordination polymer (PCP). In situ generation of foaming agents by chemical reactions of ligands in PCP during carbonization provides a simple way to create lightweight carbon material with a foam-like microstructure. Among several substituents investigated, the nitro group has been shown to be the key to obtain the unique foam-like microstructure, which is due to the fast kinetics of gas evolution during carbonization. Foam-like microstructural carbon materials showed higher pore volume and specific capacitance compared to a microporous carbon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions.

    PubMed

    Doutres, Olivier; Atalla, Noureddine; Osman, Haisam

    2015-06-01

    Porous materials are widely used for improving sound absorption and sound transmission loss of vibrating structures. However, their efficiency is limited to medium and high frequencies of sound. A solution for improving their low frequency behavior while keeping an acceptable thickness is to embed resonant structures such as Helmholtz resonators (HRs). This work investigates the absorption and transmission acoustic performances of a cellular porous material with a two-dimensional periodic arrangement of HR inclusions. A low frequency model of a resonant periodic unit cell based on the parallel transfer matrix method is presented. The model is validated by comparison with impedance tube measurements and simulations based on both the finite element method and a homogenization based model. At the HR resonance frequency (i) the transmission loss is greatly improved and (ii) the sound absorption of the foam can be either decreased or improved depending on the HR tuning frequency and on the thickness and properties of the host foam. Finally, the diffuse field sound absorption and diffuse field sound transmission loss performance of a 2.6 m(2) resonant cellular material are measured. It is shown that the improvements observed at the Helmholtz resonant frequency on a single cell are confirmed at a larger scale.

  15. Limit analysis and homogenization of porous materials with Mohr-Coulomb matrix. Part I: Theoretical formulation

    NASA Astrophysics Data System (ADS)

    Anoukou, K.; Pastor, F.; Dufrenoy, P.; Kondo, D.

    2016-06-01

    The present two-part study aims at investigating the specific effects of Mohr-Coulomb matrix on the strength of ductile porous materials by using a kinematic limit analysis approach. While in the Part II, static and kinematic bounds are numerically derived and used for validation purpose, the present Part I focuses on the theoretical formulation of a macroscopic strength criterion for porous Mohr-Coulomb materials. To this end, we consider a hollow sphere model with a rigid perfectly plastic Mohr-Coulomb matrix, subjected to axisymmetric uniform strain rate boundary conditions. Taking advantage of an appropriate family of three-parameter trial velocity fields accounting for the specific plastic deformation mechanisms of the Mohr-Coulomb matrix, we then provide a solution of the constrained minimization problem required for the determination of the macroscopic dissipation function. The macroscopic strength criterion is then obtained by means of the Lagrangian method combined with Karush-Kuhn-Tucker conditions. After a careful analysis and discussion of the plastic admissibility condition associated to the Mohr-Coulomb criterion, the above procedure leads to a parametric closed-form expression of the macroscopic strength criterion. The latter explicitly shows a dependence on the three stress invariants. In the special case of a friction angle equal to zero, the established criterion reduced to recently available results for porous Tresca materials. Finally, both effects of matrix friction angle and porosity are briefly illustrated and, for completeness, the macroscopic plastic flow rule and the voids evolution law are fully furnished.

  16. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials

    NASA Astrophysics Data System (ADS)

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-05-01

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4+/-4.1 to 277.5+/-30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering.

  17. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials

    PubMed Central

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-01-01

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4±4.1 to 277.5±30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering. PMID:28462937

  18. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials.

    PubMed

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun

    2017-05-02

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4±4.1 to 277.5±30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering.

  19. Hyper-crosslinked cyclodextrin porous polymer: An efficient CO 2 capturing material with tunable porosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Bo; Li, Haiyang; East China Univ. of Science and Technology, Shanghai

    We designed and synthesized the cyclodextrin (CD)-based hyper-crosslinked porous polymers (HCPPs) for selective CO 2 adsorption and storage. We also explored the effect of monomer size on micropore formation, and determined a feasible way to tailor the porosity of the materials during the hyper-crosslinking process.

  20. Hyper-crosslinked cyclodextrin porous polymer: An efficient CO 2 capturing material with tunable porosity

    DOE PAGES

    Meng, Bo; Li, Haiyang; East China Univ. of Science and Technology, Shanghai; ...

    2016-11-11

    We designed and synthesized the cyclodextrin (CD)-based hyper-crosslinked porous polymers (HCPPs) for selective CO 2 adsorption and storage. We also explored the effect of monomer size on micropore formation, and determined a feasible way to tailor the porosity of the materials during the hyper-crosslinking process.

  1. Supported Intrinsically Porous Oligomers as Hybrid Materials for Separations, Storage, and Sensing

    NASA Astrophysics Data System (ADS)

    Thompson, Anthony Boone

    Adsorption-desorption phenomena are often difficult to study at the molecular level because the surfaces on which they occur can be heterogeneous, giving a wide distribution of adsorption sites and associated energies. Considering that these phenomena underlie an incredibly wide variety of industrially important processes, a better understanding could aid in the development of more efficient methods. In this work, we describe an approach to designing materials with well-defined adsorption sites by covalently attaching intrinsically porous molecules to solid surfaces by a rigid multidentate linker. These cup-shaped molecules are intended to act as adsorption sites on the material, whereas the rigid attachment to the solid support serves to prevent movement and conformational changes of the sites, leading to better understanding of adsorption phenomena. As a proof-of-concept application, materials were used for adsorption of n-butanol biofuel and related compounds from dilute aqueous solution. The materials were thermally and hydrolytically stable, and adsorption phenomena were reversible. Adsorption sites containing more hydrophobic molecular area led to stronger adsorption, suggesting that it is driven by weak van der Waals forces. Likewise, adsorption sites that were strongly polarized performed poorly, possibly reflecting a greater energy penalty of removing water molecules from the cavity. Upon placing a Lewis acidic metal at the bottom of the cavity, an enhancement was seen only with the most acidic metal, which may indicate weak guest coordination. Observing that hydrophobic interactions dominate adsorption on these materials, efforts were made to develop hybrid materials with large hydrophobic area for adsorption. Glaser coupling of diethynylbenzene was used to grow oligo(phenylene butadiynylene)s from the surface of silica, resulting in materials that were more than 25% organic by weight. In addition to their potential use as adsorbents, these materials may

  2. Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials

    NASA Astrophysics Data System (ADS)

    Faux, D. A.; Cachia, S.-H. P.; McDonald, P. J.; Bhatt, J. S.; Howlett, N. C.; Churakov, S. V.

    2015-03-01

    Nuclear magnetic resonance (NMR) relaxation experimentation is an effective technique for probing the dynamics of proton spins in porous media, but interpretation requires the application of appropriate spin-diffusion models. Molecular dynamics (MD) simulations of porous silicate-based systems containing a quasi-two-dimensional water-filled pore are presented. The MD simulations suggest that the residency time of the water on the pore surface is in the range 0.03-12 ns, typically 2-5 orders of magnitude less than values determined from fits to experimental NMR measurements using the established surface-layer (SL) diffusion models of Korb and co-workers [Phys. Rev. E 56, 1934 (1997), 10.1103/PhysRevE.56.1934]. Instead, MD identifies four distinct water layers in a tobermorite-based pore containing surface Ca2 + ions. Three highly structured water layers exist within 1 nm of the surface and the central region of the pore contains a homogeneous region of bulklike water. These regions are referred to as layer 1 and 2 (L1, L2), transition layer (TL), and bulk (B), respectively. Guided by the MD simulations, a two-layer (2L) spin-diffusion NMR relaxation model is proposed comprising two two-dimensional layers of slow- and fast-moving water associated with L2 and layers TL+B, respectively. The 2L model provides an improved fit to NMR relaxation times obtained from cementitious material compared to the SL model, yields diffusion correlation times in the range 18-75 ns and 28-40 ps in good agreement with MD, and resolves the surface residency time discrepancy. The 2L model, coupled with NMR relaxation experimentation, provides a simple yet powerful method of characterizing the dynamical properties of proton-bearing porous silicate-based systems such as porous glasses, cementitious materials, and oil-bearing rocks.

  3. Progress of Application Researches of Porous Fiber Metals

    PubMed Central

    Xi, Zhengping; Zhu, Jilei; Tang, Huiping; Ao, Qingbo; Zhi, Hao; Wang, Jianyong; Li, Cheng

    2011-01-01

    Metal fiber porous materials with intrinsic properties of metal and functional properties of porous materials have received a great deal of attention in the fundamental research and industry applications. With developments of the preparation technologies and industrial requirements, porous fiber metals with excellent properties are developed and applied in many industry areas, e.g., sound absorption, heat transfer, energy absorption and lightweight structures. The applied research progress of the metal fiber porous materials in such application areas based on the recent work in our group was reviewed in this paper. PMID:28879952

  4. Hysteretic Four-Step Spin Crossover within a Three-Dimensional Porous Hofmann-like Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, John E.; Price, Jason R.; Neville, Suzanne M.

    Materials that display multiple stepped spin crossover (SCO) transitions with accompanying hysteresis present the opportunity for ternary, quaternary, and quinary electronic switching and data storage but are rare in existence. Herein, we present the first report of a four-step hysteretic SCO framework. Single-crystal structure analysis of a porous 3D Hofmann-like material showed long-range ordering of spin states: HS, HS 0.67LS 0.33, HS 0.5LS 0.5, HS 0.33LS 0.67, and LS. These detailed structural studies provide insight into how multistep SCO materials can be rationally designed through control of host–host and host–guest interactions.

  5. High-performance supercapacitors of Cu-based porous coordination polymer nanowires and the derived porous CuO nanotubes.

    PubMed

    Wu, Meng-Ke; Zhou, Jiao-Jiao; Yi, Fei-Yan; Chen, Chen; Li, Yan-Li; Li, Qin; Tao, Kai; Han, Lei

    2017-12-12

    Electrode materials for supercapacitors with one-dimensional porous nanostructures, such as nanowires and nanotubes, are very attractive for high-efficiency storage of electrochemical energy. Herein, ultralong Cu-based porous coordination polymer nanowires (copper-l-aspartic acid) were used as the electrode material for supercapacitors, for the first time. The as-prepared material exhibits a high specific capacitance of 367 F g -1 at 0.6 A g -1 and excellent cycling stability (94% retention over 1000 cycles). Moreover, porous CuO nanotubes were successfully fabricated by the thermal decomposition of this nanowire precursor. The CuO nanotube exhibits good electrochemical performance with high rate capacity (77% retention at 12.5 A g -1 ) and long-term stability (96% retention over 1000 cycles). The strategy developed here for the synthesis of porous nanowires and nanotubes can be extended to the construction of other electrode materials for more efficient energy storage.

  6. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  7. Hierarchically porous materials from layer-by-layer photopolymerization of high internal phase emulsions.

    PubMed

    Sušec, Maja; Ligon, Samuel Clark; Stampfl, Jürgen; Liska, Robert; Krajnc, Peter

    2013-06-13

    A combination of high internal phase emulsion (HIPE) templating and additive manufacturing technology (AMT) is applied for creating hierarchical porosity within an acrylate and acrylate/thiol-based polymer network. The photopolymerizable formulation is optimized to produce emulsions with a volume fraction of droplet phase greater than 80 vol%. Kinetic stability of the emulsions is sufficient enough to withstand in-mold curing or computer-controlled layer-by-layer stereolithography without phase separation. By including macroscale cellular cavities within the build file, a level of controlled porosity is created simultaneous to the formation of the porous microstructure of the polyHIPE. The hybrid HIPE-AMT technique thus provides hierarchically porous materials with mechanical properties tailored by the addition of thiol chain transfer agent. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A B-C-N hybrid porous sheet: an efficient metal-free visible-light absorption material.

    PubMed

    Lu, Ruifeng; Li, Feng; Salafranca, Juan; Kan, Erjun; Xiao, Chuanyun; Deng, Kaiming

    2014-03-07

    The polyphenylene network, known as porous graphene, is one of the most important and widely studied two-dimensional materials. As a potential candidate for photocatalysis and photovoltaic energy generation, its application has been limited by the low photocatalytic activity in the visible-light region. State-of-the-art hybrid density functional theory investigations are presented to show that an analogous B-C-N porous sheet outperforms the pristine polyphenylene network with significantly enhanced visible-light absorption. Compared with porous graphene, the calculated energy gap of the B-C-N hybrid crystal shrinks to 2.7 eV and the optical absorption peak remarkably shifts to the visible light region. The redox potentials of water splitting are well positioned in the middle of the band gap. Hybridizations among B_p, N_p and C_p orbitals are responsible for these findings. Valence and conduction band calculations indicate that the electrons and holes can be effectively separated, reducing charge recombination and improving the photoconversion efficiency. Moreover, the band gap and optical properties of the B-C-N hybrid porous sheet can be further finely engineered by external strain.

  9. Optical performance of hybrid porous silicon-porous alumina multilayers

    NASA Astrophysics Data System (ADS)

    Cencha, L. G.; Antonio Hernández, C.; Forzani, L.; Urteaga, R.; Koropecki, R. R.

    2018-05-01

    In this work, we study the optical response of structures involving porous silicon and porous alumina in a multi-layered hybrid structure. We performed a rational design of the optimal sequence necessary to produce a high transmission and selective filter, with potential applications in chemical and biosensors. The combination of these porous materials can be used to exploit its distinguishing features, i.e., high transparency of alumina and high refractive index of porous silicon. We assembled hybrid microcavities with a central porous alumina layer between two porous silicon Bragg reflectors. In this way, we constructed a Fabry-Perot resonator with high reflectivity and low absorption that improves the quality of the filter compared to a microcavity built only with porous silicon or porous alumina. We explored a simpler design in which one of the Bragg reflectors is replaced by the aluminium that remains bound to the alumina after its fabrication. We theoretically explored the potential of the proposal and its limitations when considering the roughness of the layers. We found that the quality of a microcavity made entirely with porous silicon shows a limit in the visible range due to light absorption. This limitation is overcome in the hybrid scheme, with the roughness of the layers determining the ultimate quality. Q-factors of 220 are experimentally obtained for microcavities supported on aluminium, while Q-factors around 600 are reached for microcavities with double Bragg reflectors, centred at 560 nm. This represents a four-fold increase with respect to the optimal porous silicon microcavity at this wavelength.

  10. Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material.

    PubMed

    Lamba, Randeep; Umar, Ahmad; Mehta, S K; Kansal, Sushil Kumar

    2015-01-01

    This work demonstrates the synthesis and characterization of porous ZnO-SnO2 nanosheets prepared by the simple and facile hydrothermal method at low-temperature. The prepared nanosheets were characterized by several techniques which revealed the well-crystallinity, porous and well-defined nanosheet morphology for the prepared material. The synthesized porous ZnO-SnO2 nanosheets were used as an efficient photocatalyst for the photocatalytic degradation of highly hazardous dye, i.e., direct blue 15 (DB 15), under visible-light irradiation. The excellent photocatalytic degradation of prepared material towards DB 15 dye could be ascribed to the formation of ZnO-SnO2 heterojunction which effectively separates the photogenerated electron-hole pairs and possess high surface area. Further, the prepared porous ZnO-SnO2 nanosheets were utilized to fabricate a robust chemical sensor to detect 4-nitrophenol in aqueous medium. The fabricated sensor exhibited extremely high sensitivity of ~ 1285.76 µA/mmol L(-1)cm(-2) and an experimental detection limit of 0.078 mmol L(-1) with a linear dynamic range of 0.078-1.25 mmol L(-1). The obtained results confirmed that the prepared porous ZnO-SnO2 nanosheets are potential material for the removal of organic pollutants under visible light irradiation and efficient chemical sensing applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Advances in dental materials.

    PubMed

    Vaderhobli, Ram M

    2011-07-01

    The use of materials to rehabilitate tooth structures is constantly changing. Over the past decade, newer material processing techniques and technologies have significantly improved the dependability and predictability of dental material for clinicians. The greatest obstacle, however, is in choosing the right combination for continued success. Finding predictable approaches for successful restorative procedures has been the goal of clinical and material scientists. This article provides a broad perspective on the advances made in various classes of dental restorative materials in terms of their functionality with respect to pit and fissure sealants, glass ionomers, and dental composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Material development for laminar flow control wing panels

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1977-01-01

    The absence of suitable porous materials or techniques for the economic perforation of surface materials has previously restricted the design of laminar flow control (LFC) wing panels to a consideration of mechanically slotted LFC surfaces. A description is presented of a program which has been conducted to exploit recent advances in materials and manufacturing technology for the fabrication of reliable porous or perforated LFC surface panels compatible with the requirements of subsonic transport aircraft. Attention is given to LFC design criteria, surface materials, surface concepts, the use of microporous composites, perforated composites, and perforated metal. The described program was successful in that fabrication processes were developed for producing predictable perforated panels both of composite and of metal.

  13. Acoustic structure and propagation in highly porous, layered, fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.; Tesar, J. S.

    1984-01-01

    The acoustic structure and propagation of sound in highly porous, layered, fine fiber materials is examined. Of particular interest is the utilization of the Kozeny number for determining the static flow resistance and the static structure factor based on flow permeability measurements. In this formulation the Kozeny number is a numerical constant independent of volume porosity at high porosities. The other essential parameters are then evaluated employing techniques developed earlier for open cell foams. The attenuation and progressive phase characteristics in bulk samples are measured and compared with predicted values. The agreements on the whole are very satisfactory.

  14. A soft porous drop in linear flows

    NASA Astrophysics Data System (ADS)

    Young, Yuan-Nan; Miksis, Michael; Mori, Yoichiro; Shelley, Michael

    2017-11-01

    The cellular cytoplasm consists a viscous fluid filled with fibrous networks that also have their own dynamics. Such fluid-structure interactions have been modeled as a soft porous material immersed in a viscous fluid. In this talk we focus on the hydrodynamics of a viscous drop filled with soft porous material inside. Suspended in a Stokes flow, such a porous viscous drop is allowed to deform, both the drop interface and the porous structures inside. Special focus is on the deformation dynamics of both the porosity and the shape of the drop under simple flows such as a uniform streaming flow and linear flows. We examine the effects of flow boundary conditions at interface between the porous drop and the surrounding viscous fluid. We also examine the dynamics of a porous drop with active stress from the porous network.

  15. Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lingyan; Zhuo, Linhai; Cheng, Haiyang; Zhang, Chao; Zhao, Fengyu

    2015-06-01

    Generally, the fast ion/electron transport and structural stability dominate the superiority in lithium-storage applications. In this work, porous carbon nanotubes decorated with nanosized CoFe2O4 particles (p-CNTs@CFO) have been rationally designed and synthesized by the assistance of supercritical carbon dioxide (scCO2). When tested as anode materials for lithium-ion batteries, the p-CNTs@CFO composite exhibits outstanding electrochemical behavior with high lithium-storage capacity (1077 mAh g-1 after 100 cycles) and rate capability (694 mAh g-1 at 3 A g-1). These outstanding electrochemical performances are attributed to the synergistic effect of porous p-CNTs and nanosized CFO. Compared to pristine CNTs, the p-CNTs with substantial pores in the tubes possess largely increased specific surface area and rich oxygen-containing functional groups. The porous structure can not only accommodate the volume change during lithiation/delithiation processes, but also provide bicontinuous electron/ion pathways and large electrode/electrolyte interface, which facilitate the ion diffusion kinetics, improving the rate performance. Moreover, the CFO particles are bonded strongly to the p-CNTs through metal-oxygen bridges, which facilitate the electron fast capture from p-CNTs to CFO, and thus resulting in a high reversible capacity and excellent rate performance. Overall, the porous p-CNTs provide an efficient way for ion diffusion and continuous electron transport as anode materials.

  16. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification.

    PubMed

    Cao, Yu; Wu, Zhuofu; Wang, Tao; Xiao, Yu; Huo, Qisheng; Liu, Yunling

    2016-04-28

    Bacillus subtilis lipase (BSL2) has been successfully immobilized into a Cu-BTC based hierarchically porous metal-organic framework material for the first time. The Cu-BTC hierarchically porous MOF material with large mesopore apertures is prepared conveniently by using a template-free strategy under mild conditions. The immobilized BSL2 presents high enzymatic activity and perfect reusability during the esterification reaction. After 10 cycles, the immobilized BSL2 still exhibits 90.7% of its initial enzymatic activity and 99.6% of its initial conversion.

  17. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.

    PubMed

    Zhang, Jiawei; Cai, Yurong; Zhong, Qiwei; Lai, Dongzhi; Yao, Juming

    2015-11-14

    The features of a carbon substrate are crucial for the electrochemical performance of lithium-sulfur (Li-S) batteries. Nitrogen doping of carbon materials is assumed to play an important role in sulfur immobilisation. In this study, natural silk fibroin protein is used as a precursor of nitrogen-rich carbon to fabricate a novel, porous, nitrogen-doped carbon material through facile carbonisation and activation. Porous carbon, with a reversible capacity of 815 mA h g(-1) at 0.2 C after 60 cycles, serves as the cathode material in Li-S batteries. Porous carbon retains a reversible capacity of 567 mA h g(-1), which corresponds to a capacity retention of 98% at 1 C after 200 cycles. The promising electrochemical performance of porous carbon is attributed to its mesoporous structure, high specific surface area and nitrogen doping into the carbon skeleton. This study provides a general strategy to synthesise nitrogen-doped carbons with a high specific surface area, which is crucial to improve the energy density and electrochemical performance of Li-S batteries.

  18. Vertically Aligned and Interconnected Boron Nitride Nanosheets for Advanced Flexible Nanocomposite Thermal Interface Materials.

    PubMed

    Chen, Jin; Huang, Xingyi; Sun, Bin; Wang, Yuxin; Zhu, Yingke; Jiang, Pingkai

    2017-09-13

    The continuous evolution toward semiconductor technology in the "more-than-Moore" era and rapidly increasing power density of modern electronic devices call for advanced thermal interface materials (TIMs). Here, we report a novel strategy to construct flexible polymer nanocomposite TIMs for advanced thermal management applications. First, aligned polyvinyl alcohol (PVA) supported and interconnected 2D boron nitride nanosheets (BNNSs) composite fiber membranes were fabricated by electrospinning. Then, the nanocomposite TIMs were constructed by rolling the PVA/BNNS composite fiber membranes to form cylinders and subsequently vacuum-assisted impregnation of polydimethylsiloxane (PDMS) into the porous cylinders. The nanocomposite TIMs not only exhibit a superhigh through-plane thermal conductivity enhancement of about 10 times at a low BNNS loading of 15.6 vol % in comparison with the pristine PDMS but also show excellent electrical insulating property (i.e., high volume electrical resistivity). The outstanding thermal management capability of the nanocomposite TIMs was practically confirmed by capturing the surface temperature variations of a working LED chip integrated with the nanocomposite TIMs.

  19. Drag Measurements of Porous Plate Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Wolter, John D.

    2005-01-01

    This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.

  20. Monodisperse Porous Silicon Spheres as Anode Materials for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Favors, Zachary; Ionescu, Robert; Ye, Rachel; Bay, Hamed Hosseini; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2015-03-01

    Highly monodisperse porous silicon nanospheres (MPSSs) are synthesized via a simple and scalable hydrolysis process with subsequent surface-protected magnesiothermic reduction. The spherical nature of the MPSSs allows for a homogenous stress-strain distribution within the structure during lithiation and delithiation, which dramatically improves the electrochemical stability. To fully extract the real performance of the MPSSs, carbon nanotubes (CNTs) were added to enhance the electronic conductivity within the composite electrode structure, which has been verified to be an effective way to improve the rate and cycling performance of anodes based on nano-Si. The Li-ion battery (LIB) anodes based on MPSSs demonstrate a high reversible capacity of 3105 mAh g-1. In particular, reversible Li storage capacities above 1500 mAh g-1 were maintained after 500 cycles at a high rate of C/2. We believe this innovative approach for synthesizing porous Si-based LIB anode materials by using surface-protected magnesiothermic reduction can be readily applied to other types of SiOx nano/microstructures.

  1. Monodisperse porous silicon spheres as anode materials for lithium ion batteries.

    PubMed

    Wang, Wei; Favors, Zachary; Ionescu, Robert; Ye, Rachel; Bay, Hamed Hosseini; Ozkan, Mihrimah; Ozkan, Cengiz S

    2015-03-05

    Highly monodisperse porous silicon nanospheres (MPSSs) are synthesized via a simple and scalable hydrolysis process with subsequent surface-protected magnesiothermic reduction. The spherical nature of the MPSSs allows for a homogenous stress-strain distribution within the structure during lithiation and delithiation, which dramatically improves the electrochemical stability. To fully extract the real performance of the MPSSs, carbon nanotubes (CNTs) were added to enhance the electronic conductivity within the composite electrode structure, which has been verified to be an effective way to improve the rate and cycling performance of anodes based on nano-Si. The Li-ion battery (LIB) anodes based on MPSSs demonstrate a high reversible capacity of 3105 mAh g(-1). In particular, reversible Li storage capacities above 1500 mAh g(-1) were maintained after 500 cycles at a high rate of C/2. We believe this innovative approach for synthesizing porous Si-based LIB anode materials by using surface-protected magnesiothermic reduction can be readily applied to other types of SiOx nano/microstructures.

  2. Application of Advanced Materials in Petroleum Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Gufan; Di, Weina; Wang, Minsheng

    With the background of increasing requirements on the petroleum engineering technology from more high demanding exploration targets, global oil companies and oil service companies are making more efforts on both R&D and application of new petroleum engineering technology. Advanced materials always have a decisive role in the functionality of a new product. Technology transplantation has become the important means of innovation in oil and gas industry. Here, we mainly discuss the properties and scope of application of several advanced materials. Based on the material requirements in petroleum engineering, we provide several candidates for downhole electronics protection, drilling fluid additives, downhole tools, etc. Based on the analysis of petroleum engineering technology characteristics, this paper made analysis and research on such advanced materials as new insulation materials, functional gradient materials, self-healing polymers, and introduced their application prospect in petroleum engineering in terms of specific characteristics.

  3. Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Lähivaara, Timo; Kärkkäinen, Leo; Huttunen, Janne M. J.; Hesthaven, Jan S.

    2018-02-01

    We study the feasibility of data based machine learning applied to ultrasound tomography to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, we consider a high-order discontinuous Galerkin method while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, we estimate the material porosity and tortuosity while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirms the feasibility and accuracy of this approach.

  4. Preparation And Evaluation Techniques of Porous Materials and Mixed Matrix Membranes for Targeted CO2 Separation Applications

    NASA Astrophysics Data System (ADS)

    Tessema, Tsemre Dingel Mesfin

    The use of porous sorbents for physisorptive capture of CO2 from gas mixtures has been deemed attractive due to the low energy penalty associated with recycling of such materials. Porous organic polymers (POPs) have emerged as promising candidates with potential in the treatment of pre- and post- fuel combustion processes to separate CO2 from gas mixtures. Concurrently, significant advances have been made in establishing calculation methods that evaluate the practicality of porous sorbents for targeted gas separation applications. However, these methods rely on single gas adsorption isotherms without accounting for the dynamic gas mixtures encountered in real-life applications. To this end, the design and application of a dynamic gas mixture breakthrough apparatus to assess the CO2 separation performance of a new class of heteroatom (N and O) doped porous carbons derived from a Pyrazole precursor from flue gas mixtures is presented. Here in, two new benzimidazole linked polymers (BILPs) have been designed and synthesized. These polymers display high surface while their imidazole functionality and microporous nature resulted in high CO2 uptakes and isosteric heat of adsorption (Qst). BILP-30 displayed very good selectivity for CO2 in flue gas while BILP-31 was superior in CO2 separation from landfill gas mixtures at 298 K and 1 bar. Additionally, a new POP incorporating a highly conjugated pyrene core into a polymer framework linked by azo-bonds is presented. Azo-Py displays a nanofibrous morphology induced by the pi-pi stacking of the electron rich pyrene core. Due to its high surface area and microporous nature, Azo-Py displays impressive CO2 uptakes at 298 K and 1 bar. Evaluation of the S value for CO2 separation of Azo-Py revealed competitive values for flue gas and landfill gas at 298 K and 1 bar. Finally, a highly cross-linked benzimidazole linked polymer, BILP-4, was successfully incorporated into MatrimidRTM polymer to form a series of new mixed matrix

  5. A General 3-D Methodology for Quasi-Static Simulation of Drainage and Imbibition: Application to Highly Porous Fibrous Materials

    NASA Astrophysics Data System (ADS)

    Riasi, S.; Huang, G.; Montemagno, C.; Yeghiazarian, L.

    2013-12-01

    Micro-scale modeling of multiphase flow in porous media is critical to characterize porous materials. Several modeling techniques have been implemented to date, but none can be used as a general strategy for all porous media applications due to challenges presented by non-smooth high-curvature solid surfaces, and by a wide range of pore sizes and porosities. Finite approaches like the finite volume method require a high quality, problem-dependent mesh, while particle-based approaches like the lattice Boltzmann require too many particles to achieve a stable meaningful solution. Both come at a large computational cost. Other methods such as pore network modeling (PNM) have been developed to accelerate the solution process by simplifying the solution domain, but so far a unique and straightforward methodology to implement PNM is lacking. We have developed a general, stable and fast methodology to model multi-phase fluid flow in porous materials, irrespective of their porosity and solid phase topology. We have applied this methodology to highly porous fibrous materials in which void spaces are not distinctly separated, and where simplifying the geometry into a network of pore bodies and throats, as in PNM, does not result in a topology-consistent network. To this end, we have reduced the complexity of the 3-D void space geometry by working with its medial surface. We have used a non-iterative fast medial surface finder algorithm to determine a voxel-wide medial surface of the void space, and then solved the quasi-static drainage and imbibition on the resulting domain. The medial surface accurately represents the topology of the porous structure including corners, irregular cross sections, etc. This methodology is capable of capturing corner menisci and the snap-off mechanism numerically. It also allows for calculation of pore size distribution, permeability and capillary pressure-saturation-specific interfacial area surface of the porous structure. To show the

  6. Porous polymer media

    DOEpatents

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  7. Graphene-based porous materials with tunable surface area and CO2 adsorption properties synthesized by fluorine displacement reaction with various diamines.

    PubMed

    Li, Baoyin; Fan, Kun; Ma, Xin; Liu, Yang; Chen, Teng; Cheng, Zheng; Wang, Xu; Jiang, Jiaxing; Liu, Xiangyang

    2016-09-15

    A mild, operationally simple and controllable protocol for preparing graphene-based porous materials is essential to achieve a good pore-design development. In this paper, graphene-based porous materials with tunable surface area were constructed by the intercalation of fluorinated graphene (FG) based on the reaction of reactive CF bonds attached to graphene sheets with various amine-terminated molecules. In the porous materials, graphene sheets are like building blocks, and the diamines covalently grafted onto graphene framework act as pillars. Various diamines are successfully grafted onto graphene sheets, but the grafting ratio of diamines and reduction degree of FG differ greatly and depend on the chemical reactivity of diamines. Pillared diamine molecules chemically anchor at one end and are capable of undergoing a different reaction on the other end, resulting in three different conformations of graphene derivatives. Nitrogen sorption isotherms revealed that the surface area and pore distribution of the obtained porous materials depend heavily on the size and structure of diamine pillars. CO2 uptake capacity characterization showed that ethylenediamine intercalated FG achieved a high CO2 uptake density of 18.0 CO2 molecules per nm(2) at 0°C and 1.1bars, and high adsorption heat, up to 46.1kJmol(-1) at zero coverage. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. TESTING ANTIMICROBIAL EFFICACY ON POROUS MATERIALS

    EPA Science Inventory

    The efficacy of antimicrobial treatments to eliminate or control biological growth in the indoor environment can easily be tested on nonporous surfaces. However, the testing of antimicrobial efficacy on porous surfaces, such as those found in the indoor environment [i.e., gypsum ...

  9. Development of advanced thermoelectric materials

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of an advanced thermoelectric material for radioisotope thermoelectric generator (RTG) applications is reported. A number of materials were explored. The bulk of the effort, however, was devoted to improving silicon germanium alloys by the addition of gallium phosphide, the synthesis and evaluation of lanthanum chrome sulfide and the formulation of various mixtures of lanthanum sulfide and chrome sulfide. It is found that each of these materials exhibits promise as a thermoelectric material.

  10. Heterogeneous porous structures for the fastest liquid absorption

    NASA Astrophysics Data System (ADS)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2013-08-01

    Engineered porous materials, which have fast absorption of liquids under global constraints (e.g. volume, surface area, or cost of the materials), are useful in many applications including moisture management fabrics, medical wound dressings, paper-based analytical devices, liquid molding composites, etc.. The absorption in capillary tubes and porous media is driven by the surface tension of liquid, which is inversely proportional to the pore size. On the contrary, the ability of conduction (or permeability) of liquid in porous materials is linear with the square of pore size. Both mechanisms superimpose with each other leading to a possibility of the fastest absorption for a porous structure. In this work, we explore the flow behaviors for the fastest absorption using heterogeneous porous architectures, from two-portion tubes to two-layer porous media. The absorption time for filling up the voids in these porous materials is expressed in terms of pore size, height and porosity. It is shown that under the given height and void volume, these two-component porous structures with a negative gradient of pore size/porosity against the imbibition direction, have a faster absorption rate than controlled samples with uniform pore size/porosity. Particularly, optimal structural parameters including pore size, height and porosity are found for the minimum absorption time. The obtained results will be used as a priori for the design of porous structures with excellent water absorption and moisture management property in various fields.

  11. Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives.

    PubMed

    Kumeria, Tushar; McInnes, Steven J P; Maher, Shaheer; Santos, Abel

    2017-12-01

    Porous silicon (pSi) engineered by electrochemical etching has been used as a drug delivery vehicle to address the intrinsic limitations of traditional therapeutics. Biodegradability, biocompatibility, and optoelectronic properties make pSi a unique candidate for developing biomaterials for theranostics and photodynamic therapies. This review presents an updated overview about the recent therapeutic systems based on pSi, with a critical analysis on the problems and opportunities that this technology faces as well as highlighting pSi's growing potential. Areas covered: Recent progress in pSi-based research includes drug delivery systems, including biocompatibility studies, drug delivery, theranostics, and clinical trials with the most relevant examples of pSi-based systems presented here. A critical analysis about the technical advantages and disadvantages of these systems is provided along with an assessment on the challenges that this technology faces, including clinical trials and investors' support. Expert opinion: pSi is an outstanding material that could improve existing drug delivery and photodynamic therapies in different areas, paving the way for developing advanced theranostic nanomedicines and incorporating payloads of therapeutics with imaging capabilities. However, more extensive in-vivo studies are needed to assess the feasibility and reliability of this technology for clinical practice. The technical and commercial challenges that this technology face are still uncertain.

  12. Development of Specialized Advanced Materials Curriculum.

    ERIC Educational Resources Information Center

    Malmgren, Thomas; And Others

    This course is intended to give students a comprehensive experience in current and future manufacturing materials and processes. It familiarizes students with: (1) base of composite materials; (2) composites--a very light, strong material used in spacecraft and stealth aircraft; (3) laminates; (4) advanced materials--especially aluminum alloys;…

  13. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries.

    PubMed

    Mondal, Anjon Kumar; Kretschmer, Katja; Zhao, Yufei; Liu, Hao; Wang, Chengyin; Sun, Bing; Wang, Guoxiu

    2017-03-13

    Nitrogen-doped porous carbon nanosheets were prepared from eucalyptus tree leaves by simply mixing the leaf powders with KHCO 3 and subsequent carbonisation. Porous carbon nanosheets with a high specific surface area of 2133 m 2  g -1 were obtained and applied as electrode materials for supercapacitors and lithium ion batteries. For supercapacitor applications, the porous carbon nanosheet electrode exhibited a supercapacitance of 372 F g -1 at a current density of 500 mA g -1 in 1 m H 2 SO 4 aqueous electrolyte and excellent cycling stability over 15 000 cycles. In organic electrolyte, the nanosheet electrode showed a specific capacitance of 71 F g -1 at a current density of 2 Ag -1 and stable cycling performance. When applied as the anode material for lithium ion batteries, the as-prepared porous carbon nanosheets also demonstrated a high specific capacity of 819 mA h g -1 at a current density of 100 mA g -1 , good rate capability, and stable cycling performance. The outstanding electrochemical performances for both supercapacitors and lithium ion batteries are derived from the large specific surface area, porous nanosheet structure and nitrogen doping effects. The strategy developed in this paper provides a novel route to utilise biomass-derived materials for low-cost energy storage systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Controlling shockwave dynamics using architecture in periodic porous materials

    DOE PAGES

    Branch, Brittany; Ionita, Axinte; Clements, Bradford E.; ...

    2017-04-07

    Additive manufacturing (AM) is an attractive approach for the design and fabrication of structures capable of achieving controlled mechanical response of the underlying deformation mechanisms. While there are numerous examples illustrating how the quasi-static mechanical responses of polymer foams have been tailored by additive manufacturing, there is limited understanding of the response of these materials under shockwave compression. Dynamic compression experiments coupled with time-resolved X-ray imaging were performed to obtain insights into the in situ evolution of shockwave coupling to porous, periodic polymer foams. We further demonstrate shock wave modulation or “spatially graded-flow” in shock-driven experiments via the spatial controlmore » of layer symmetries afforded by additive manufacturing techniques at the micron scale.« less

  15. Materials Requirements for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  16. Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sundriyal, Poonam; Bhattacharya, Shantanu

    2017-03-01

    The exploration of new and advanced electrode materials are required in electronic and electrical devices for power storage applications. Also, there has been a continuous endeavour to formulate strategies for extraction of high performance electrode materials from naturally obtained waste products. In this work, we have developed an in situ hybrid nanocomposite from coffee waste extracted porous graphene oxide (CEPG), polyaniline (PANI) and silver nanoparticles (Ag) and have found this novel composite to serve as an efficient electrode material for batteries. The successful interaction among the three phases of the nano-composite i.e. CEPG-PANI-Ag have been thoroughly understood through RAMAN, Fourier transform infrared and x-ray diffraction spectroscopy, morphological studies through field emission scanning electron microscope and transmission electron microscope. Thermo-gravimetric analysis of the nano-composite demonstrates higher thermal stability up-to a temperature of 495 °C. Further BET studies through nitrogen adsorption-desorption isotherms confirm the presence of micro/meso and macro-pores in the nanocomposite sample. The cyclic-voltammetry (CV) analysis performed on CEPG-PANI-Ag nanocomposite exhibits a purely faradic behaviour using nickel foam as a current collector thus suggests the prepared nanocomposite as a battery electrode material. The nanocomposite reports a maximum specific capacity of 1428 C g-1 and excellent cyclic stability up-to 5000 cycles.

  17. Gas permeability of ice-templated, unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  18. Porous Networks Through Colloidal Templates

    NASA Astrophysics Data System (ADS)

    Li, Qin; Retsch, Markus; Wang, Jianjun; Knoll, Wolfgang; Jonas, Ulrich

    Porous networks represent a class of materials with interconnected voids with specific properties concerning adsorption, mass and heat transport, and spatial confinement, which lead to a wide range of applications ranging from oil recovery and water purification to tissue engineering. Porous networks with well-defined, highly ordered structure and periodicities around the wavelength of light can furthermore show very sophisticated optical properties. Such networks can be fabricated from a very large range of materials by infiltration of a sacrificial colloidal crystal template and subsequent removal of the template. The preparation procedures reported in the literature are discussed in this review and the resulting porous networks are presented with respect to the underlying material class. Furthermore, methods for hierarchical superstructure formation and functionalization of the network walls are discussed.

  19. Three-dimensional imaging of porous media using confocal laser scanning microscopy.

    PubMed

    Shah, S M; Crawshaw, J P; Boek, E S

    2017-02-01

    In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  20. One-dimensional scanning of moisture in heated porous building materials with NMR.

    PubMed

    van der Heijden, G H A; Huinink, H P; Pel, L; Kopinga, K

    2011-02-01

    In this paper we present a new dedicated NMR setup which is capable of measuring one-dimensional moisture profiles in heated porous materials. The setup, which is placed in the bore of a 1.5 T whole-body scanner, is capable of reaching temperatures up to 500 °C. Moisture and temperature profiles can be measured quasi simultaneously with a typical time resolution of 2-5 min. A methodology is introduced for correcting temperature effects on NMR measurements at these elevated temperatures. The corrections are based on the Curie law for paramagnetism and the observed temperature dependence of the relaxation mechanisms occurring in porous materials. Both these corrections are used to obtain a moisture content profile from the raw NMR signal profile. To illustrate the methodology, a one-sided heating experiment of concrete with a moisture content in equilibrium with 97% RH is presented. This kind of heating experiment is of particular interest in the research on fire spalling of concrete, since it directly reveals the moisture and heat transport occurring inside the concrete. The obtained moisture profiles reveal a moisture peak building up behind the boiling front, resulting in a saturated layer. To our knowledge the direct proof of the formation of a moisture peak and subsequent moisture clogging has not been reported before. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    NASA Astrophysics Data System (ADS)

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-02-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.

  2. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery.

    PubMed

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-02-05

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.

  3. Method for modeling the gradual physical degradation of a porous material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, Greg

    Cementitious and other engineered porous materials encountered in waste disposals may degrade over time due to one or more mechanisms. Physical degradation may take the form of cracking (fracturing) and/or altered (e.g. increased) porosity, depending on the material and underlying degradation mechanism. In most cases, the hydraulic properties of degrading materials are expected to evolve due to physical changes occurring over roughly the pore to decimeter scale, which is conducive to calculating equivalent or effective material properties. The exact morphology of a degrading material in its end-state may or may not be known. In the latter case, the fully-degraded conditionmore » can be assumed to be similar to a more-permeable material in the surrounding environment, such as backfill soil. Then the fully-degraded waste form or barrier material is hydraulically neutral with respect to its surroundings, constituting neither a barrier to nor conduit for moisture flow and solute transport. Unless the degradation mechanism is abrupt, a gradual transition between the intact initial and fully-degraded final states is desired. Linear interpolation through time is one method for smoothly blending hydraulic properties between those of an intact matrix and those of a soil or other surrogate for the end-state.« less

  4. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    PubMed

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  5. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray

    2018-03-02

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  6. Generalization of experimental data on heat transfer in permeable shells made of porous reticular materials

    NASA Astrophysics Data System (ADS)

    Polyakov, A. F.; Strat'ev, V. K.; Tret'yakov, A. F.; Shekhter, Yu. L.

    2010-06-01

    Heat transfer from six samples of porous reticular material to cooling gas (air) at small Reynolds numbers is experimentally studied. The specific features pertinent to heat transfer essentially affected by longitudinal heat conductivity along gas flow are analyzed. The experimental results are generalized in the form of dimensionless empirical relations.

  7. Coupled fluid and solid mechanics study for improved permeability estimation of fines' invaded porous materials

    NASA Astrophysics Data System (ADS)

    Mirabolghasemi, M.; Prodanovic, M.

    2012-12-01

    destruction of particle bridges. Finally, depending on the material and fluids that penetrate into the porous medium, the ionic forces might play a significant role in the filtration process. We thus also report on influence of particle attachment (and detachment) on the type of clogging mechanisms. Pore scale simulations allow for visualization and understanding of fundamental processes, and, further, the velocity fields are integrated into a distinctly non-monotonic permeability-porosity/(depth of penetration) relationship.

  8. Recent advances in photonics packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2006-02-01

    There are now over a dozen low-CTE materials with thermal conductivities between that of copper (400 w/m-K) and over 4X copper (1700 W/m-K). Most have low densities. For comparison, traditional low-CTE packaging materials like copper/tungsten have thermal conductivities that are little or no better than that of aluminum (200 W/m-K) and high densities. There are also low-density thermal insulators with low CTEs. Some advanced materials are low cost. Most do not outgas. They have a wide range of electrical properties that can be used to minimize electromagnetic emissions or provide EMI shielding. Several are now in commercial and aerospace applications, including laser diode packages; light-emitting diode (LED) packages; thermoelectric cooler bases, plasma displays; power modules; servers; laptops; heat sinks; thermally conductive, low-CTE printed circuit boards; and printed circuit board cold plates. Advanced material payoffs include: improved thermal performance, reliability, alignment and manufacturing yield; reduced thermal stresses and heating power requirements; simplified thermal design; enablement of hard solder direct attach; weight savings up to 85%; size reductions up to 65%; and lower cost. This paper discusses the large and increasing number of advanced packaging materials, including properties, development status, applications, increasing manufacturing yield, cost, lessons learned and future directions, including nanocomposites.

  9. Porous titanium bases for osteochondral tissue engineering

    PubMed Central

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  10. Porous titanium bases for osteochondral tissue engineering.

    PubMed

    Nover, Adam B; Lee, Stephanie L; Georgescu, Maria S; Howard, Daniel R; Saunders, Reuben A; Yu, William T; Klein, Robert W; Napolitano, Anthony P; Ateshian, Gerard A; Hung, Clark T

    2015-11-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young's modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. Copyright © 2015. Published by Elsevier Ltd.

  11. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  12. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors.

    PubMed

    Du, Si-Hong; Wang, Li-Qun; Fu, Xiao-Ting; Chen, Ming-Ming; Wang, Cheng-Yang

    2013-07-01

    Porous starch was used as a precursor for hierarchical porous carbon microspheres. The preparation consisted of stabilisation, carbonisation and KOH activation, and the resultant hierarchical porous carbon microspheres had a large BET surface area of 3251 m(2)g(-1). Due to the large surface area and the hierarchical pore structure, electrodes made of the hierarchical porous carbon microsphere materials had high specific capacitances of 304 Fg(-1) at a current density of 0.05 Ag(-1) and 197 Fg(-1) at a current density of 180 Ag(-1) when used in a symmetric capacitor with 6M KOH as the electrolyte. After 10,000 cycles, the capacitor still exhibited a stable performance with a capacitance retention of 98%. These results indicate that porous starch is an excellent precursor to prepare high performance electrode materials for EDLCs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Future requirements for advanced materials

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1980-01-01

    Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.

  14. Graphene synthesized on porous silicon for active electrode material of supercapacitors

    NASA Astrophysics Data System (ADS)

    Su, B. B.; Chen, X. Y.; Halvorsen, E.

    2016-11-01

    We present graphene synthesized by chemical vapour deposition under atmospheric pressure on both porous nanostructures and flat wafers as electrode scaffolds for supercapacitors. A 3nm thin gold layer was deposited on samples of both porous and flat silicon for exploring the catalytic influence during graphene synthesis. Micro-four-point probe resistivity measurements revealed that the resistivity of porous silicon samples was nearly 53 times smaller than of the flat silicon ones when all the samples were covered by a thin gold layer after the graphene growth. From cyclic voltammetry, the average specific capacitance of porous silicon coated with gold was estimated to 267 μF/cm2 while that without catalyst layer was 145μF/cm2. We demonstrated that porous silicon based on nanorods can play an important role in graphene synthesis and enable silicon as promising electrodes for supercapacitors.

  15. Porous materials based on foaming solutions obtained from industrial waste

    NASA Astrophysics Data System (ADS)

    Starostina, I. V.; Antipova, A. N.; Ovcharova, I. V.; Starostina, Yu L.

    2018-03-01

    This study analyzes foam concrete production efficiency. Research has shown the possibility of using a newly-designed protein-based foaming agent to produce porous materials using gypsum and cement binders. The protein foaming agent is obtained by alkaline hydrolysis of a raw mixture consisting of industrial waste in an electromagnetic field. The mixture consists of spent biomass of the Aspergillus niger fungus and dust from burning furnaces used in cement production. Varying the content of the foaming agent allows obtaining gypsum binder-based foam concretes with the density of 200-500 kg/m3 and compressive strength of 0.1-1.0 MPa, which can be used for thermal and sound insulation of building interiors. Cement binders were used to obtain structural and thermal insulation materials with the density of 300-950 kg/m3 and compressive strength of 0.9-9.0 MPa. The maximum operating temperature of cement-based foam concretes is 500°C because it provides the shrinkage of less than 2%.

  16. Salinity index determination of porous materials using open-ended probes

    NASA Astrophysics Data System (ADS)

    Szypłowska, Agnieszka; Kafarski, Marcin; Wilczek, Andrzej; Lewandowski, Arkadiusz; Skierucha, Wojciech

    2017-01-01

    The relations among soil water content, bulk electrical conductivity and electrical conductivity of soil solution can be described by a number of theoretical and empirical models. The aim of the paper is to examine the performance of open-ended coaxial probes with and without a short antenna in determination of complex dielectric permittivity spectra, moisture and salinity of porous materials using the salinity index approach. Glass beads of 0.26 and 1.24 mm average diameters moistened to various water contents with distilled water and KCl solutions were used to model the soil material. Due to the larger sensitivity zone, only the probe with the antenna enabled determination of bulk electrical conductivity and salinity index of the samples. The relations between bulk electrical conductivity and dielectric permittivity of the samples were highly linear, which was consistent with the salinity index model. The slope of the relation between salinity index and electrical conductivity of moistening solutions closely matched the value for 100 % sand presented in literature.

  17. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    PubMed

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  18. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yi, Jianan; Qing, Yan; Wu, ChuTian; Zeng, Yinxiang; Wu, Yiqiang; Lu, Xihong; Tong, Yexiang

    2017-05-01

    Engineering porous heteroatom-doped carbon nanomaterials with remarkable capacitive performance is highly attractive. Herein, a simple and smart method has been developed to synthesize phosphorus (P) doped carbon with hierarchical porous structure derived from lignocellulose. Hierarchically porous P doped carbon is readily obtained by the pyrolysis of lignocellulose immersed in ZnCl2/NaH2PO4 aqueous solution, and exhibits excellent capacitive properties. The as-obtained P doped porous carbon delivers a significant capacitance of 133 F g-1 (146 mF cm-2) at a high current density of 10 A g-1 with outstanding rate performance. Furthermore, the P doped carbon electrode yields a long-term cycling durability with more than 97.9% capacitance retention after 10000 cycles as well. A symmetric supercapacitor with a maximum energy density of 4.7 Wh kg-1 is also demonstrated based on these P doped carbon electrodes.

  19. A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: II - Applications to FCC and HCP materials

    NASA Astrophysics Data System (ADS)

    Song, Dawei; Ponte Castañeda, P.

    2018-06-01

    In Part I of this work (Song and Ponte Castañeda, 2018a), a new homogenization model was developed for the macroscopic behavior of three-scale porous polycrystals consisting of random distributions of large pores in a fine-grained polycrystalline matrix. In this second part, the model is used to investigate both the instantaneous effective behavior and the finite-strain macroscopic response of porous FCC and HCP polycrystals for axisymmetric loading conditions. The stress triaxiality and Lode parameter are found to have significant effects on the evolution of the substructure, which in turn have important implications for the overall hardening/softening behavior of the porous polycrystal. The intrinsic effect of the texture evolution of the polycrystalline matrix is inferred by appropriate comparisons with corresponding results for porous isotropic materials, and found to be significant, especially at low triaxialities. In particular, the predictions of the model identify, for the first time, two disparate regimes for the macroscopic response of porous polycrystals: a porosity-controlled regime at high triaxialities, and a texture-controlled regime at low triaxialities. The transition between these two regimes is found to be quite sharp, taking place between triaxialities of 1 and 2.

  20. Role of copper in time dependent dielectric breakdown of porous organo-silicate glass low-k materials

    NASA Astrophysics Data System (ADS)

    Zhao, Larry; Pantouvaki, Marianna; Croes, Kristof; Tőkei, Zsolt; Barbarin, Yohan; Wilson, Christopher J.; Baklanov, Mikhail R.; Beyer, Gerald P.; Claeys, Cor

    2011-11-01

    The role of copper in time dependent dielectric breakdown (TDDB) of a porous low-k dielectric with TaN/Ta barrier was investigated on a metal-insulator-metal capacitor configuration where Cu ions can drift into the low-k film by applying a positive potential on the top while they are not permitted to enter the low-k dielectric if a negative potential is applied on the top. No difference in TDDB performance was observed between the positive and negative bias conditions, suggesting that Cu cannot penetrate TaN/Ta barrier to play a critical role in the TDDB of porous low-k material.

  1. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun

    2014-10-15

    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{supmore » 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.« less

  2. Anode Design Based on Microscale Porous Scaffolds for Advanced Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Park, Hyeji; Choi, Hyelim; Nam, Kyungju; Lee, Sukyung; Um, Ji Hyun; Kim, Kyungbae; Kim, Jae-Hun; Yoon, Won-Sub; Choe, Heeman

    2017-06-01

    Considering the increasing demands for advanced power sources, present-day lithium-ion batteries (LIBs) must provide a higher energy and power density and better cycling stability than conventional LIBs. This study suggests a promising electrode design solution to this problem using Cu, Co, and Ti scaffolds with a microscale porous structure synthesized via freeze-casting. Co3O4 and TiO2 layers are uniformly formed on the Co and Ti scaffolds, respectively, through a simple thermal heat-treatment process, and a SnO2 layer is formed on the Cu scaffold through electroless plating and thermal oxidation. This paper characterizes and evaluates the physical and electrochemical properties of the proposed electrodes using scanning electron microscopy, four-point probe and coin-cell tests to confirm the feasibility of their potential use in LIBs.

  3. Electron beam selectively seals porous metal filters

    NASA Technical Reports Server (NTRS)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  4. Chemically Layered Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    1991-01-01

    Aerogels and other porous solids in which surfaces of pores have chemical properties varying with depth below macroscopic surfaces prepared by sequences of chemical treatments. Porous glass or silica bead treated to make two depth zones having different chemical properties. Beads dropped along tube filled with flowing gas containing atomic oxygen, generated in microwave discharge. General class of materials treatable include oxides of aluminum, silicon, zirconium, tin, titanium, and nickel, and mixtures of these oxides. Potential uses of treated materials include chromatographic separations, membrane separations, controlled releases of chemicals, and catalysis.

  5. CO₂ Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues.

    PubMed

    Bermúdez, José M; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael

    2013-10-18

    Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO₂ adsorption properties, with interestingly high gas selectivities for CO₂ (α > 200 at a gas composition of 15% CO₂/85% N₂, 273K, 1 bar) and capacities (>2 mmol·g -1 at 273 K). Both CO₂ isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO₂ which may be correlated with both: N content in the leather residues and ultrasmall pore sizes.

  6. Structure of a designed protein cage that self-assembles into a highly porous cube

    DOE PAGES

    Lai, Yen-Ting; Reading, Eamonn; Hura, Greg L.; ...

    2014-11-10

    Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic level agreement with the designed model, while electron microscopy, native mass spectrometry, and small angle x-raymore » scattering revealed alternate assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will likely require limiting flexibility to select against alternative forms. Finally, these results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.« less

  7. Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure

    NASA Astrophysics Data System (ADS)

    Hiraoui, M.; Guendouz, M.; Lorrain, N.; Haji, L.; Oueslati, M.

    2012-11-01

    A buried anti resonant reflecting optical waveguide for an integrated Mach Zehnder structure based on porous silicon material is achieved using a classical photolithography process. Three distinct porous silicon layers are then elaborated in a single step, by varying the porosity (thus the refractive index) and the thickness while respecting the anti-resonance conditions. Simulations and experimental results clearly show the antiresonant character of the buried waveguides. Significant variation of the reflectance and light propagation with different behavior depending on the polarization and the Mach Zehnder dimensions is obtained. Finally, we confirm the feasibility of this structure for sensing applications.

  8. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    PubMed Central

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-01-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator. PMID:25653104

  9. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel.

    PubMed

    Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin

    2011-09-07

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  10. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin

    2011-09-01

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  11. Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities

    PubMed Central

    Deville, Sylvain

    2010-01-01

    The freeze-casting of porous materials has received a great deal of attention during the past few years. This simple process, where a material suspension is simply frozen and then sublimated, provides materials with unique porous architectures, where the porosity is almost a direct replica of the frozen solvent crystals. This review focuses on the recent results on the process and the derived porous structures with regards to the biomaterials applications. Of particular interest is the architecture of the materials and the versatility of the process, which can be readily controlled and applied to biomaterials applications. A careful control of the starting formulation and processing conditions is required to control the integrity of the structure and resulting properties. Further in vitro and in vivo investigations are required to validate the potential of this new class of porous materials.

  12. Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials.

    PubMed

    Yamauchi, Yusuke; Suzuki, Norihiro; Radhakrishnan, Logudurai; Wang, Liang

    2009-01-01

    Currently, ordered mesoporous materials prepared through the self-assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic-based materials, for example, transition-metal oxides, carbons, inorganic-organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant-based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation-mediated direct templating (EDIT), spray-dried techniques, and collaboration with hard-templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic-scale controls of mesochannels are important for innovative applications such as molecular-scale devices and electrodes with enhanced diffusions of guest species. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  13. Advances in photonics thermal management and packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  14. Theory of adsorption in a polydisperse templated porous material: Hard sphere systems

    NASA Astrophysics Data System (ADS)

    RŻysko, Wojciech; Sokołowski, Stefan; Pizio, Orest

    2002-03-01

    A theoretical description of adsorption in a templated porous material, formed by an equilibrium quench of a polydisperse fluid composed of matrix and template particles and subsequent removal of the template particles is presented. The approach is based on the solution of the replica Ornstein-Zernike equations with Percus-Yevick and hypernetted chain closures. The method of solution uses expansions of size-dependent correlation functions into Fourier series, as described by Lado [J. Chem. Phys. 108, 6441 (1998)]. Specific calculations have been carried out for model systems, composed of hard spheres.

  15. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  16. Advanced morphological analysis of patterns of thin anodic porous alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toccafondi, C.; Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163; Stępniowski, W.J.

    2014-08-15

    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for themore » thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.« less

  17. 3D ordered porous MoxC (x = 1 or 2) for advanced hydrogen evolution and Li storage.

    PubMed

    Yu, Hong; Fan, Haosen; Wang, Jiong; Zheng, Yun; Dai, Zhengfei; Lu, Yizhong; Kong, Junhua; Wang, Xin; Kim, Young Jin; Yan, Qingyu; Lee, Jong-Min

    2017-06-01

    3D ordered porous structures of Mo x C are prepared with different Mo to C ratios and tested for two possible promising applications: hydrogen evolution reaction (HER) through water splitting and lithium ion batteries (LIBs). Mo 2 C and MoC with 3D periodic ordered structures are prepared with a similar process but different precursors. The 3D ordered porous MoC exhibits excellent cycling stability and rate performance as an anode material for LIBs. A discharge capacity of 450.9 mA h g -1 is maintained up to 3000 cycles at 10.0 A g -1 . The Mo 2 C with a similar ordered porous structure shows impressive electrocatalytic activity for the HER in neutral, alkaline and acidic pH solutions. In particular, Mo 2 C shows an onset potential of only 33 mV versus a reversible hydrogen electrode (RHE) and a Tafel slope of 42.5 mV dec -1 in a neutral aqueous solution (1.0 M phosphate buffer solution), which is approaching that of the commercial Pt/C catalyst.

  18. Gas permeability of ice-templated, unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 [Formula: see text]m and 19.1 [Formula: see text]m. The maximum permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) was measured in samples with the highest total pore volume (72%) and pore size (19.1 [Formula: see text]m). However, we demonstrate that it is possible to achieve a similar permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity ([Formula: see text]) is mainly controlled by pore size, unlike in isotropic porous structures where [Formula: see text] is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  19. Superior performance of nanoscaled Fe3O4 as anode material promoted by mosaicking into porous carbon framework

    NASA Astrophysics Data System (ADS)

    Wan, Wang; Wang, Chao; Zhang, Weidong; Chen, Jitao; Zhou, Henghui; Zhang, Xinxiang

    2014-01-01

    A nanoscale Fe3O4/porous carbon-multiwalled carbon nanotubes (MWCNTs) composite is synthesized through a simple hard-template method by using Fe2O3 nanoparticles as the precursor and SiO2 nanoparticles as the template. The composite shows good cycle performance (941 mAh g-1 for the first cycle at 0.1 C, with 106% capacity retention at the 80th cycle) and high rate capability (71% capacity retained at 5 C rate). Its excellent electrical properties can be attributed to the porous carbon framework structure, which is composed of carbon and MWCNTs. In this composite, the porous structure provides space for the change in Fe3O4 volume during cycling and shortens the lithium ion diffusion distance, the MWCNTs increase the electron conductivity, and the carbon coating reduces the risk of side reactions. The results provide clear evidences for the utility of porous carbon framework to improve the electrochemical performances of nanosized transition-metal oxides as anode materials for lithium-ion batteries.

  20. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion.

    PubMed

    Yang, Jie; Yu, Peng; Tang, Li-Sheng; Bao, Rui-Ying; Liu, Zheng-Ying; Yang, Ming-Bo; Yang, Wei

    2017-11-23

    An ice-templating self-assembly strategy and a vacuum impregnation method were used to fabricate polyethylene glycol (PEG)/hierarchical porous scaffold composite phase change materials (PCMs). Hierarchically interconnected porous scaffolds of boron nitride (BN), with the aid of a small amount of graphene oxide (GO), endow the composite PCMs with high thermal conductivity, excellent shape-stability and efficient solar-to-electric energy conversion. The formation of a three-dimensional (3D) thermally conductive pathway in the composites contributes to improving the thermal conductivity up to 2.36 W m -1 K -1 at a relatively low content of BN (ca. 23 wt%). This work provides a route for thermally conductive and shape-stabilized composite PCMs used as energy storage materials.

  1. Porous carbon materials synthesized using IRMOF-3 and furfuryl alcohol as precursor

    NASA Astrophysics Data System (ADS)

    Deka, Pemta Tia; Ediati, Ratna

    2016-03-01

    IRMOF-3 crystals have been synthesized using solvothermal method by adding zinc nitrate hexahydrate with 2-amino-1,4-benzenedicarboxylic acid in N'N-dimethylformamide (DMF) at 100°C for 24 (note as IR-24) and 72 h (note as IR-72). The obtained crystals were characterized using X-ray Diffraction (XRD), SEM (Scanning Electron Microscopy) and Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX), FTIR and Isothermal adsorption-desorption N2. The diffractogram solids synthesized show characteristic peak at 2θ 6.8, 9.6 and 13.7°. SEM micrograph show cubic shape of IRMOF-3 crystal. Based on FTIR characterization, IRMOF-3 appear at wavelength (1691,46; 1425,3; 1238,21; 1319,22 dan 3504,42)cm-1. The Isotherm of crystal IRMOF-3 at heating time 24 h and 72 h are type IV. The surface area of IR-24 and IR-72 are respectively 24,758 m2/g and 29,139 m2/g with its dominant mesopores. Carbonaceous materials has been successfully synthesized using IR-24, IR-72 and furfuryl alcohol (FA) as second carbon precursor with variation of carbonation temperature 550, 700 and 850°C. The XRD result from both carbonaceous materials show formation of amorphous carbon and caharacteristic peak of ZnO oxide. Micrograph SEM show that carbonaceous materials have cubic shape as IRMOF-3 and SEM-EDX result indicate Zn and nitrogen content of these materials has decrease until temperature 850°C. Porous carbon using IR-24 and FA (notes as C-24) has increased surface area with higher carbonation temperature. The highest surface area is 1495,023 m2/g. Total pore volume and pore size of C-24 from low to high temperature respectively as (0,338; 0,539 and 1,598) cc/g; (0,107; 0,152 and 0,610) cc/g. Porous carbon using IR-72 and FA (notes as C-72) has smaller surface area than C-24 but its also increased during higher carbonation heating. The highest surface area is 1029,668 m2/g.The total pore volume and pore size of these carbon materials from low to high temperature respectively as (0,390; 0

  2. In situ vibrational spectroscopy of adsorbed nitrogen in porous carbon materials.

    PubMed

    Ray, Paramita; Xu, Enshi; Crespi, Vincent H; Badding, John V; Lueking, Angela D

    2018-05-25

    This study uses in situ vibrational spectroscopy to probe nitrogen adsorption to porous carbon materials, including single-wall carbon nanotubes and Maxsorb super-activated carbon, demonstrating how the nitrogen Raman stretch mode is perturbed by adsorption. In all porous carbon samples upon N2 physisorption in the mesopore filling regime, the N2 Raman mode downshifts by ∼2 cm-1, a downshift comparable to liquid N2. The relative intensity of this mode increases as pressure is increased to saturation, and trends in the relative intensity parallel the volumetric gas adsorption isotherm. This mode with ∼2 cm-1 downshift is thus attributed to perturbations arising due to N2-N2 interactions in a condensed film. The mode is also observed for the activated carbon at 298 K, and the relative intensity once again parallels the gas adsorption isotherm. For select samples, a mode with a stronger downshift (>4 cm-1) is observed, and the stronger downshift is attributed to stronger N2-carbon surface interactions. Simulations for a N2 surface film support peak assignments. These results suggest that N2 vibrational spectroscopy could provide an indication of the presence or absence of porosity for very small quantities of samples.

  3. Sound transmission through double panel constructions lined with elastic porous materials

    NASA Astrophysics Data System (ADS)

    Bolton, J. S.; Green, E. R.

    1986-07-01

    Attention is given to a theory governing one-dimensional wave motion in elastic porous materials which is capable of reproducing experimental transmission measurements for unfaced polyurethane foam layers. Calculations of the transmission loss of fuselage-like foam-lined double panels are presented and it is shown that the foam/panel boundary conditions have a large effect on the panel performance; a hybrid arrangement whereby the foam is bonded directly to one panel and separated from the other by a thin air gap appears to be the most advantageous under practical circumstances. With this configuratiom, the mass-air-mass resonance is minimized and increased low-frequency performance is offered.

  4. Solar synthesis of advanced materials: A solar industrial program initiative

    NASA Astrophysics Data System (ADS)

    Lewandowski, A.

    1992-06-01

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  5. Activated alumina preparation and characterization: The review on recent advancement

    NASA Astrophysics Data System (ADS)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Aluminum and aluminum based material are significant industrial materials synthesis because of their abandonment, low weight and high-quality corrosion resistance. The most advances in aluminum processing are the ability to synthesize it's under suitable chemical composition and conditions, a porous structure can be formed on the surface. Activated alumina particles (AAP) synthesized by the electrochemically process from aluminum have gained serious attention, inexpensive material that can be employed for water filtration due to its active surface. Thus, the paper present a review study based on recent progress and advances in synthesizing activated alumina, various techniques currently being used in preparing activated alumina and its characteristics are studied and summarized

  6. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    PubMed Central

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  7. Porous ceramic scaffolds with complex architectures

    NASA Astrophysics Data System (ADS)

    Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.

    2008-06-01

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  8. Deformation and Damage Studies for Advanced Structural Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advancements made in understanding deformation and damage of advanced structural materials have enabled the development of new technologies including the attainment of a nationally significant NASA Level 1 Milestone and the provision of expertise to the Shuttle Return to Flight effort. During this collaborative agreement multiple theoretical and experimental research programs, facilitating safe durable high temperature structures using advanced materials, have been conceived, planned, executed. Over 26 publications, independent assessments of structures and materials in hostile environments, were published within this agreement. This attainment has been recognized by 2002 Space Flight Awareness Team Award, 2004 NASA Group Achievement Award and 2003 and 2004 OAI Service Awards. Accomplishments in the individual research efforts are described as follows.

  9. Materials for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.

    1985-01-01

    A study program was conducted to identify those materials that will provide the greatest benefits as turbine blades for advanced liquid propellant rocket engine turbines and to prepare technology plans for the development of those materials for use in the 1990 through 1995 period. The candidate materials were selected from six classes of materials: single-crystal (SC) superalloys, oxide dispersion-strengthened (ODS) superalloys, rapid solidification processed (RSP) superalloys, directionally solidified eutectic (DSE) superalloys, fiber-reinforced superalloy (FRS) composites, and ceramics. Properties of materials from the six classes were compiled and evaluated and property improvements were projected approximately 5 years into the future for advanced versions of materials in each of the six classes.

  10. Utilization of Porous Media for Condensing Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tuan, George C.

    2006-01-01

    The use of porous media as a mean of separating liquid condensate from the air stream in condensing heat exchangers has been explored in the past inside small plant growth chambers and in the Apollo Command Module. Both applications used a cooled porous media made of sintered stainless steel to cool and separate condensation from the air stream. However, the main issues with the utilization of porous media in the past have been the deterioration of the porous media over long duration, such as clogging and changes in surface wetting characteristics. In addition, for long duration usage, biofilm growth from microorganisms on the porous medial would also be an issue. In developing Porous Media Condensing Heat Exchangers (PMCHX) for future space applications, different porous materials and microbial growth control methods will need to be explored. This paper explores the work performed at JSC and GRC to evaluate different porous materials and microbial control methods to support the development of a Porous Media Condensing Heat Exchanger. It outlines the basic principles for designing a PMCHX and issues that were encountered and ways to resolve those issues. The PMCHX has potential of mass, volume, and power savings over current CHX and water separator technology and would be beneficial for long duration space missions.

  11. Application of porous materials in oil substances separation from water

    NASA Astrophysics Data System (ADS)

    Gołub, Adam; Piekutin, Janina

    2017-11-01

    The aim of the study was to determine the ability of the four porous materials: birch bark, cork, glass wool, and polyurethane foam to reduce the mineral oil index and the concentration of n-alkanes C7H16-C38H78 as well as to select the most efficient materials. Model solutions of gasoline, diesel oil, and distilled water with the following values of mineral oil index were prepared to tests: 52 μg/dm3, 68 μg/dm3 and 73 μg/dm3. Then, studies were carried out using a dynamic method, wherein the columns were filled with adsorbents tested, and in each of three testing series, 500 mL of the model solution at constant bed load of 1,0551 m3/m2h was filtered through the column. After filtration, the collected sample had volume of 250 mL. The collected samples were subject to determination of mineral oil index and concentrations of n-alkanes from C7H16 to C38H78. Studies have shown that the most effective materials to lower the mineral oil index and the concentrations of n-alkanes in water are birch bark and glass wool.

  12. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-07-01

    A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e

  13. Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents

    DOEpatents

    Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.

    2017-03-21

    A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.

  14. Advances in LED packaging and thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  15. X-ray Micro-Tomography of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  16. One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Bi, Linlin; Ci, Suqin; Cai, Pingwei; Li, Hao; Wen, Zhenhai

    2018-01-01

    The design and synthesis of low-cost and favourable anode materials is crucial to both power production efficiency and overall performance of microbial fuel cells (MFCs). Herein, we reported the preparation of three dimensional (3D) nitrogen-doped porous carbons (N/PCs) by one-step pyrolysis of solid mixture of sodium citrate and melamine. a variety of techniques, including electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), etc., were applied to characterize the surface physicochemical properties of the products, featuring macroporous structure with rich nitrogen doping on the as-prepared N/PCs. When applied as anode materials of MFC, the N/PCs exhibits a maximum power density of 2777.7 mW m-2, approximately twice higher than that of the MFCs with the commercial carbon cloth (CC) as anode. The significantly improved performance of the N/PCs was attributed to the unique structure and properties, such as favourable porous structure, good electrical conductivity, and large pore volume (0.7 cm3 g-1) in the present N/PCs. Nitrogen dopant on the surface of porous carbon contributed to an increasing in biocompatibility, resulting in a suitable micro-environment for microbial growth and thus helps to decrease charge transfer resistance at the electrode interface.

  17. The effect of fluid and solid properties on the auxetic behavior of porous materials having rock-like microstructures

    DOE PAGES

    Wollner, U.; Vanorio, T.; Kiss, A. M.

    2017-09-30

    Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit negative PR. The paper proposes a novel auxetic structure based on pore-space configuration observed in rocks. We developed a theoretical auxetic 3D model consisting of rotating rigid bodies. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. Wemore » then used a 3D printer to create a physical version of the modified model, whose PR was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. Here, we conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.« less

  18. The effect of fluid and solid properties on the auxetic behavior of porous materials having rock-like microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollner, U.; Vanorio, T.; Kiss, A. M.

    Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit negative PR. The paper proposes a novel auxetic structure based on pore-space configuration observed in rocks. We developed a theoretical auxetic 3D model consisting of rotating rigid bodies. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. Wemore » then used a 3D printer to create a physical version of the modified model, whose PR was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. Here, we conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.« less

  19. Ice crystallization in porous building materials: assessing damage using real-time 3D monitoring

    NASA Astrophysics Data System (ADS)

    Deprez, Maxim; De Kock, Tim; De Schutter, Geert; Cnudde, Veerle

    2017-04-01

    Frost action is one of the main causes of deterioration of porous building materials in regions at middle to high latitudes. Damage will occur when the internal stresses due to ice formation become larger than the strength of the material. Hence, the sensitivity of the material to frost damage is partly defined by the structure of the solid body. On the other hand, the size, shape and interconnection of pores manages the water distribution in the building material and, therefore, the characteristics of the pore space control potential to form ice crystals (Ruedrich et al., 2011). In order to assess the damage to building materials by ice crystallization, lot of effort was put into identifying the mechanisms behind the stress build up. First of all, volumetric expansion of 9% (Hirschwald, 1908) during the transition of water to ice should be mentioned. Under natural circumstances, however, water saturation degrees within natural rocks or concrete cannot reach a damaging value. Therefore, linear growth pressure (Scherer, 1999), as well as several mechanisms triggered by water redistribution during freezing (Powers and Helmuth, 1953; Everett, 1961) are more likely responsible for damage due to freezing. Nevertheless, these theories are based on indirect observations and models and, thus, direct evidence that reveals the exact damage mechanism under certain conditions is still lacking. To obtain this proof, in-situ information needs to be acquired while a freezing process is performed. X-ray computed tomography has proven to be of great value in material research. Recent advances at the Ghent University Centre for Tomography (UGCT) have already allowed to dynamically 3D image crack growth in natural rock during freeze-thaw cycles (De Kock et al., 2015). A great potential to evaluate the different stress build-up mechanisms can be found in this imaging technique consequently. It is required to cover a range of materials with different petrophysical properties to achieve

  20. Porous silicon carbide (SIC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  1. Polymer composites and porous materials prepared by thermally induced phase separation and polymer-metal hybrid methods

    NASA Astrophysics Data System (ADS)

    Yoon, Joonsung

    The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and

  2. Use of high-speed visualization for the study of shock-wave interactions with deformable porous materials

    NASA Astrophysics Data System (ADS)

    Skews, Beric W.; Glick, Gavin; Doyle, Graham K.; Lamond, Paul W.

    1997-05-01

    This paper describes the use of high-speed photography, and videography, in the study of material distortion and movement when a shock wave traverses a highly deformable porous structure, such as a blob of foam or a porous bed of particles. The effects of surface porosity can be significant in determining the nature of reflection of shock waves from surfaces. Not only are wave geometries substantially modified but the resulting wall pressures are also strongly affected. It, in addition, the surface is highly deformable by being made up of an elastic matrix or a collection of discrete particles, then the reflection geometry and loading can be even more complex. It is known, for example, that shock wave impact on open-cell polyurethane foam attached to a wall can cause a significant increase in pressure on the wall compared to reflection off a plane rigid wall without covering. The motion of the interface is an essential consideration in understanding the dynamics of these interactions. These studies could have application to the effects of blast wave propagation over complex surfaces such as forests, grasslands, and snow; as well as in establishing the efficacy of safety padding and attenuation materials under shock and impact loading conditions. Studies on an assortment of materials are presented, using a variety of visualization techniques. Recording methods used range from short duration flash photography (both shadow and schlieren), through multi-frame videography; to single frame, multi-exposure video capture with a camera capable of rates up to 1 million pictures per second. In the case of shock wave impact on specimens of polyurethane foam, the results clearly show the expulsion and reingestion of shock heated gas from within the foam body as the material collapses and then recovers, coupled with longitudinal and transverse oscillations of the body of the foam material. For blast wave propagation over porous beds, occurrence of particle lift off, bed

  3. Disintegration of porous polyethylene prostheses.

    PubMed

    Kerr, A G; Riley, D N

    1999-06-01

    A Plastipore (porous polyethylene) Total Ossicular Replacement Prosthesis gave an excellent initial hearing result which was maintained for 14 years. Hearing then began to deteriorate and revision surgery showed disintegration of the prosthesis and a defect in the stapes footplate. Histological examination confirmed previous findings in porous polyethylene with multinucleated foreign body giant cells and breakdown of the material.

  4. Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants.

    PubMed

    Ahn, Hyunhee; Patel, Ravi R; Hoyt, Anthony J; Lin, Angela S P; Torstrick, F Brennan; Guldberg, Robert E; Frick, Carl P; Carpenter, R Dana; Yakacki, Christopher M; Willett, Nick J

    2018-05-01

    Poly(para-phenylene) (PPP) is a novel aromatic polymer with higher strength and stiffness than polyetheretherketone (PEEK), the gold standard material for polymeric load-bearing orthopaedic implants. The amorphous structure of PPP makes it relatively straightforward to manufacture different architectures, while maintaining mechanical properties. PPP is promising as a potential orthopaedic material; however, the biocompatibility and osseointegration have not been well investigated. The objective of this study was to evaluate biological and mechanical behavior of PPP, with or without porosity, in comparison to PEEK. We examined four specific constructs: 1) solid PPP, 2) solid PEEK, 3) porous PPP and 4) porous PEEK. Pre-osteoblasts (MC3T3) exhibited similar cell proliferation among the materials. Osteogenic potential was significantly increased in the porous PPP scaffold as assessed by ALP activity and calcium mineralization. In vivo osseointegration was assessed by implanting the cylindrical materials into a defect in the metaphysis region of rat tibiae. Significantly more mineral ingrowth was observed in both porous scaffolds compared to the solid scaffolds, and porous PPP had a further increase compared to porous PEEK. Additionally, porous PPP implants showed bone formation throughout the porous structure when observed via histology. A computational simulation of mechanical push-out strength showed approximately 50% higher interfacial strength in the porous PPP implants compared to the porous PEEK implants and similar stress dissipation. These data demonstrate the potential utility of PPP for orthopaedic applications and show improved osseointegration when compared to the currently available polymeric material. PEEK has been widely used in orthopaedic surgery; however, the ability to utilize PEEK for advanced fabrication methods, such as 3D printing and tailored porosity, remain challenging. We present a promising new orthopaedic biomaterial, Poly

  5. Application of computational methods to the design and characterisation of porous molecular materials.

    PubMed

    Evans, Jack D; Jelfs, Kim E; Day, Graeme M; Doonan, Christian J

    2017-06-06

    Composed from discrete units, porous molecular materials (PMMs) possess unique properties not observed for conventional, extended, solids, such as solution processibility and permanent porosity in the liquid phase. However, identifying the origin of porosity is not a trivial process, especially for amorphous or liquid phases. Furthermore, the assembly of molecular components is typically governed by a subtle balance of weak intermolecular forces that makes structure prediction challenging. Accordingly, in this review we canvass the crucial role of molecular simulations in the characterisation and design of PMMs. We will outline strategies for modelling porosity in crystalline, amorphous and liquid phases and also describe the state-of-the-art methods used for high-throughput screening of large datasets to identify materials that exhibit novel performance characteristics.

  6. Porous silicon in drug delivery devices and materials☆

    PubMed Central

    Anglin, Emily J.; Cheng, Lingyun; Freeman, William R.; Sailor, Michael J.

    2009-01-01

    Porous Si exhibits a number of properties that make it an attractive material for controlled drug delivery applications: The electrochemical synthesis allows construction of tailored pore sizes and volumes that are controllable from the scale of microns to nanometers; a number of convenient chemistries exist for the modification of porous Si surfaces that can be used to control the amount, identity, and in vivo release rate of drug payloads and the resorption rate of the porous host matrix; the material can be used as a template for organic and biopolymers, to prepare composites with a designed nanostructure; and finally, the optical properties of photonic structures prepared from this material provide a self-reporting feature that can be monitored in vivo. This paper reviews the preparation, chemistry, and properties of electrochemically prepared porous Si or SiO2 hosts relevant to drug delivery applications. PMID:18508154

  7. Giant Negative Area Compressibility Tunable in a Soft Porous Framework Material.

    PubMed

    Cai, Weizhao; Gładysiak, Andrzej; Anioła, Michalina; Smith, Vincent J; Barbour, Leonard J; Katrusiak, Andrzej

    2015-07-29

    A soft porous material [Zn(L)2(OH)2]n·Guest (where L is 4-(1H-naphtho[2,3-d]imidazol-1-yl)benzoate, and Guest is water or methanol) exhibits the strongest ever observed negative area compressibility (NAC), an extremely rare property, as at hydrostatic pressure most materials shrink in all directions and few expand in one direction. This is the first NAC reported in metal-organic frameworks (MOFs), and its magnitude, clearly visible and by far the highest of all known materials, can be reversibly tuned by exchanging guests adsorbed from hydrostatic fluids. This counterintuitive strong NAC of [Zn(L)2(OH)2]n·Guest arises from the interplay of flexible [-Zn-O(H)-]n helices with layers of [-Zn-L-]4 quadrangular puckered rings comprising large channel voids. The compression of helices and flattening of puckered rings combine to give a giant piezo-mechanical response, applicable in ultrasensitive sensors and actuators. The extrinsic NAC response to different hydrostatic fluids is due to varied host-guest interactions affecting the mechanical strain within the range permitted by exceptionally high flexibility of the framework.

  8. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  9. Barriers to applying advanced high-temperature materials

    NASA Astrophysics Data System (ADS)

    Premkumar, M. K.

    1993-01-01

    During the past 25 years, aerospace engineers and material scientists have made significant technical progress toward developing next-generation aircraft. However, while advanced high-temperature materials continue to be developed, the outlook for their future application is uncertain and will depend on the ability of these materials to satisfy a more diverse market.

  10. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  11. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    PubMed Central

    Bermúdez, José M.; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael

    2013-01-01

    Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar) and capacities (>2 mmol·g−1 at 273 K). Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes. PMID:28788352

  12. Advanced materials for automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narula, C.K.; Allison, J.E.; Bauer, D.R.

    Quite early on, manufacturers realized that lighter automobiles (with gas and diesel engines) would be more fuel efficient and produce fewer tailpipe emissions. They also realized that burning diesel fuel at elevated temperatures (1,315 C) would result in similar improvements. However, materials limitations prevent the operation of diesel vehicles at high temperatures. The fuel efficiency of gasoline-powered vehicles is currently improved by reducing the weight of the automobile and treated the emissions with a three-way catalyst. Additional improvements can be achieved with the use of advanced materials that reduce the weight of vehicles without compromising safety. The use of ceramics,more » fiber-reinforced plastics, and metal-matrix composites are discussed. The paper also discusses automotive catalysts and their components, electrically heated catalyst devices, a lean-burn NOx catalyst, and the future for materials chemistry.« less

  13. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  14. Performance of Partially Exfoliated Nitrogen-Doped Carbon Nanotubes Wrapped with Hierarchical Porous Carbon in Electrolytes.

    PubMed

    Mangisetti, Sandhya Rani; Pari, Baraneedharan; M, Kamaraj; Ramaprabhu, Sundara

    2018-05-25

    The preparation of highly conductive, high-surface-area, heteroatom-doped, porous carbon nanocomposite materials with enhanced electrochemical performance for sustainable energy-storage technologies, such as supercapacitors, is challenging. Herein, a route for the large-scale synthesis of nitrogen-doped porous carbon wrapped partially exfoliated carbon nanotubes (N-PPECNTs) with an interconnected hierarchical porous structure, as an advanced electrode material that can realize several potential applications for energy storage, is presented. Polypyrrole conductive polymer acts as both nitrogen and carbon sources that contribute to the pseudocapacitance. Partially exfoliated carbon nanotubes (PECNTs) provide a high specific surface area for ion and charge transportation and act as a conductive matrix. The derived porous N-PPECNT displays a nitrogen content of 6.95 at %, with a specific surface area of 2050 m 2  g -1 , and pore volume of 1.13 cm 3  g -1 . N-PPECNTs, as an electrode material for supercapacitors, exhibit an excellent specific capacitance of 781 F g -1 at 2 A g -1 , with a high cycling stability of 95.3 % over 10 000 cycles. Furthermore, the symmetric supercapacitor exhibits remarkable energy densities as high as 172.8, 62.7, and 53.55 Wh kg -1 in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIM][TFSI]), organic, and aqueous electrolytes, respectively. Also, biocompatible hydrogel and polymer gel electrolyte based, stable, flexible supercapacitors with excellent electrochemical performance could be demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. New porous monolithic membranes based on supported ionic liquid-like phases for oil/water separation and homogenous catalyst immobilisation.

    PubMed

    Porcar, Raúl; Nuevo, Daniel; García-Verdugo, Eduardo; Lozano, Pedro; Sanchez-Marcano, José; Burguete, M Isabel; Luis, Santiago V

    2018-03-07

    Porous monolithic advanced functional materials based on supported ionic liquid-like phase (SILLP) systems were used for the preparation of oleophilic and hydrophobic cylindrical membranes and successfully tested as eco-friendly and safe systems for oil/water separation and for the continuous integration of catalytic and separation processes in an aqueous-organic biphasic reaction system.

  16. Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials.

    PubMed

    Cui, Xili; Yang, Qiwei; Yang, Lifeng; Krishna, Rajamani; Zhang, Zhiguo; Bao, Zongbi; Wu, Hui; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin

    2017-07-01

    The efficient capture of SO 2 is of great significance in gas-purification processes including flue-gas desulfurization and natural-gas purification, but the design of porous materials with high adsorption capacity and selectivity of SO 2 remains very challenging. Herein, the selective recognition and dense packing of SO 2 clusters through multiple synergistic host-guest and guest-guest interactions by controlling the pore chemistry and size in inorganic anion (SiF 6 2- , SIFSIX) pillared metal-organic frameworks is reported. The binding sites of anions and aromatic rings in SIFSIX materials grasp every atom of SO 2 firmly via S δ+ ···F δ- electrostatic interactions and O δ- ···H δ+ dipole-dipole interactions, while the guest-guest interactions between SO 2 molecules further promote gas trapping within the pore space, which is elucidated by first-principles density functional theory calculations and powder X-ray diffraction experiments. These interactions afford new benchmarks for the highly efficient removal of SO 2 from other gases, even if at a very low SO 2 concentration. Exceptionally high SO 2 capacity of 11.01 mmol g -1 is achieved at atmosphere pressure by SIFSIX-1-Cu, and unprecedented low-pressure SO 2 capacity is obtained in SIFSIX-2-Cu-i (4.16 mmol g -1 SO 2 at 0.01 bar and 2.31 mmol g -1 at 0.002 bar). More importantly, record SO 2 /CO 2 selectivity (86-89) and excellent SO 2 /N 2 selectivity (1285-3145) are also achieved. Experimental breakthrough curves further demonstrate the excellent performance of these hybrid porous materials in removing low-concentration SO 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Advanced Industrial Materials (AIM) fellowship program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currentlymore » under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).« less

  18. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications.

    PubMed

    Benzigar, Mercy R; Talapaneni, Siddulu Naidu; Joseph, Stalin; Ramadass, Kavitha; Singh, Gurwinder; Scaranto, Jessica; Ravon, Ugo; Al-Bahily, Khalid; Vinu, Ajayan

    2018-04-23

    Functionalized nanoporous carbon materials have attracted the colossal interest of the materials science fraternity owing to their intriguing physical and chemical properties including a well-ordered porous structure, exemplary high specific surface areas, electronic and ionic conductivity, excellent accessibility to active sites, and enhanced mass transport and diffusion. These properties make them a special and unique choice for various applications in divergent fields such as energy storage batteries, supercapacitors, energy conversion fuel cells, adsorption/separation of bulky molecules, heterogeneous catalysts, catalyst supports, photocatalysis, carbon capture, gas storage, biomolecule detection, vapour sensing and drug delivery. Because of the anisotropic and synergistic effects arising from the heteroatom doping at the nanoscale, these novel materials show high potential especially in electrochemical applications such as batteries, supercapacitors and electrocatalysts for fuel cell applications and water electrolysis. In order to gain the optimal benefit, it is necessary to implement tailor made functionalities in the porous carbon surfaces as well as in the carbon skeleton through the comprehensive experimentation. These most appealing nanoporous carbon materials can be synthesized through the carbonization of high carbon containing molecular precursors by using soft or hard templating or non-templating pathways. This review encompasses the approaches and the wide range of methodologies that have been employed over the last five years in the preparation and functionalisation of nanoporous carbon materials via incorporation of metals, non-metal heteroatoms, multiple heteroatoms, and various surface functional groups that mostly dictate their place in a wide range of practical applications.

  19. Rapid Generation of Superheated Steam Using a Water-containing Porous Material

    NASA Astrophysics Data System (ADS)

    Mori, Shoji; Okuyama, Kunito

    Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.

  20. Use of porous materials to remove oil contaminants from water.

    PubMed

    Gołub, Adam; Piekutin, Janina

    2018-06-15

    The purpose of the research was to remove petroleum substances from water using porous materials. Birch bark, cork, glass wool and polyurethane foam were used for the study. The model solution was distilled water enriched with a mixture of petrol and diesel fuel in a volume ratio of 1:3. The model water used had 3 different concentrations of oil substances. The research included petroleum substances expressed as mineral oil index and aliphatic hydrocarbons, n-alkanes (from C7H16 to C38H78). The process of oil substances removal was carried out applying two methods: static and dynamic. Based on the research, it was found that materials the most effective in lowering the index of mineral oil and C7H16-C38H78 n-alkane concentrations were both birch bark and glass wool, both static and dynamic, while cork and polyurethane foam were less effective. In addition, concentration of C7H16-C38H78 n-alkanes was lowered in each measurement series to a greater extent than the mineral oil index. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries.

    PubMed

    Chen, Taiqiang; Pan, Likun; Loh, T A J; Chua, D H C; Yao, Yefeng; Chen, Qun; Li, Dongsheng; Qin, Wei; Sun, Zhuo

    2014-10-28

    Nitrogen-doped carbon microspheres (NCSs) were fabricated via a simple, fast and energy-saving microwave-assisted method followed by thermal treatment under an ammonia atmosphere. NCSs thermally treated at different temperatures were investigated as anode materials for lithium ion batteries (LIBs). The results show that NCSs treated at 900 °C exhibit a maximum reversible capacity of 816 mA h g(-1) at a current density of 50 mA g(-1) and preserve a capacity of 660 mA h g(-1) after 50 cycles, and even at a high current density of 1000 mA g(-1), a capacity of 255 mA h g(-1) is maintained. The excellent electrochemical performance of NCSs is due to their porous structure and nitrogen-doping. The present NCSs should be promising low-cost anode materials with a high capacity and good cycle stability for LIBs.

  2. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    PubMed

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance

    NASA Technical Reports Server (NTRS)

    Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.

    2002-01-01

    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.

  4. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.

    PubMed

    Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing

    2015-10-28

    Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.

  5. Functional porous composites by blending with solution-processable molecular pores.

    PubMed

    Jiang, S; Chen, L; Briggs, M E; Hasell, T; Cooper, A I

    2016-05-25

    We present a simple method for rendering non-porous materials porous by solution co-processing with organic cage molecules. This method can be used both for small functional molecules and for polymers, thus creating porous composites by molecular blending, rather than the more traditional approach of supporting functional molecules on pre-frabricated porous supports.

  6. Lightweight Phase-Change Material For Solar Power

    NASA Technical Reports Server (NTRS)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  7. Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); Stoakley, Diane M. (Inventor); Chu, Sang-Hyon (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Choi, Sang Hyouk (Inventor); Lillehei, Peter T. (Inventor)

    2011-01-01

    A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).

  8. Enhanced densification under shock compression in porous silicon

    DOE PAGES

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less

  9. Materials Requirements for Advanced Energy Systems - New Fuels. Volume 3: Materials Research Needs in Advanced Energy Systems Using New Fuels

    DTIC Science & Technology

    1974-07-01

    elec- Materials se: trode materials and associ- operational ated conductors. 2.5.1 General. H" (02) Materials resources Technoeconomic analysis - None...Advanced Energy Systems Using New Fnels VIII Correlation and Analysis of Materials Requirements IX Research Recommendations and Priorities The authois...of government and industrial organizal ions who gave us the benefit of their knowledge and experience. iv VIII CORRELATION ANU ANALYSIS OF MATERIALS

  10. Light emitting diode with porous SiC substrate and method for fabricating

    DOEpatents

    Li, Ting; Ibbetson, James; Keller, Bernd

    2005-12-06

    A method and apparatus for forming a porous layer on the surface of a semiconductor material wherein an electrolyte is provided and is placed in contact with one or more surfaces of a layer of semiconductor material. The electrolyte is heated and a bias is introduced across said electrolyte and the semiconductor material causing a current to flow between the electrolyte and the semiconductor material. The current forms a porous layer on the one or more surfaces of the semiconductor material in contact with the electrolyte. The semiconductor material with its porous layer can serve as a substrate for a light emitter. A semiconductor emission region can be formed on the substrate. The emission region is capable of emitting light omnidirectionally in response to a bias, with the porous layer enhancing extraction of the emitting region light passing through the substrate.

  11. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  12. A facile and green approach for the controlled synthesis of porous SnO₂ nanospheres: application as an efficient photocatalyst and an excellent gas sensing material.

    PubMed

    Manjula, P; Boppella, Ramireddy; Manorama, Sunkara V

    2012-11-01

    A facile and elegant methodology invoking the principles of Green Chemistry for the synthesis of porous tin dioxide nanospheres has been described. The low-temperature (∼50 °C) synthesis of SnO₂ nanoparticles and their self-assembly into organized, uniform, and monodispersed porous nanospheres with high surface area is facilitated by controlling the concentration of glucose, which acts as a stabilizing as well as structure-directing agent. A systematic control on the stannate to glucose molar concentration ratio determines the exact conditions to obtain monodispersed nanospheres, preferentially over random aggregation. Detailed characterization of the structure, morphology, and chemical composition reveals that the synthesized material, 50 nm SnO₂ porous nanospheres possess BET surface area of about 160 m²/g. Each porous nanosphere consists of a few hundred nanoparticles ∼2-3 nm in diameter with tetragonal cassiterite crystal structure. The SnO₂ nanospheres exhibit elevated photocatalytic activity toward methyl orange with good recyclability. Because of the high activity and stability of this photocatalyst, the material is ideal for applications in environmental remediation. Moreover, SnO₂ nanospheres display excellent gas sensing capabilities toward hydrogen. Surface modification of the nanospheres with Pd transforms this sensing material into a highly sensitive and selective room-temperature hydrogen sensor.

  13. Cermet materials

    DOEpatents

    Kong, Peter C [Idaho Falls, ID

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  14. Porous silicon photonic crystals as hosts for polymers, biopolymers, and magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yang Yang

    This thesis describes the construction of one-dimensional photonic crystals of porous silicon by electrochemically etching and the use of these materials as hosts for polymers, biopolymers, and magnetic nanoparticles. The spectral features of the photonic crystals derive from a porosity gradient that is determined by the electrochemical etching parameters. Since the photonic crystals are constructed of a porous material, they can serve as hosts for other materials. The first chapter of the thesis provides an introduction to porous Si, templating techniques and the use of porous materials for controlled release of drugs. This latter section is added because much of the thesis work addresses the application of porous Si hosts for controlled release of drugs. In the second chapter, it is shown that the spectral properties of the porous Si photonic crystal template can be transferred to a variety of organic and biopolymers. It is demonstrated that these castings can be used as vapor sensors and as self-reporting, bioresorbable materials. If the template is not removed, porous Si polymer composites are formed. The third chapter discussed that by spray-coating a fine mist of polymer solution onto the porous Si film, robust and smooth micron-sized cylindrical photonic crystals suitable for bioassays can be prepared. The fourth chapter focuses on using porous Si photonic crystals as a host for magnetic nanoparticles. The magnetic nanoparticles in this work are found to adhere to the surface of the porous Si film as well to infiltrate the pore structure. In a demonstration of optical switching that may be useful for information display applications, flipping between the colored to dark sides by application of a magnetic field is found to occur at rates of as large as 175 Hz. As the host for soluble molecular species, porous Si photonic crystals can be impregnated from solution. The aggregates that form upon evaporation of solvent are found to scatter light from the resonant

  15. Advanced Electrical Materials and Components Development: An Update

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  16. Advanced materials and concepts for energy storage devices

    NASA Astrophysics Data System (ADS)

    Teng, Shiang Jen

    Over the last decade, technological progress and advances in the miniaturization of electronic devices have increased demands for light-weight, high-efficiency, and carbon-free energy storage devices. These energy storage devices are expected to play important roles in automobiles, the military, power plants, and consumer electronics. Two main types of electrical energy storage systems studied in this research are Li ion batteries and supercapacitors. Several promising solid state electrolytes and supercapacitor electrode materials are investigated in this research. The first section of this dissertation is focused on the novel results on pulsed laser annealing of Li7La3Zr2O12 (LLZO). LLZO powders with a tetragonal structure were prepared by a sol-gel technique, then a pulsed laser annealing process was employed to convert the tetragonal powders to cubic LLZO without any loss of lithium. The second section of the dissertation reports on how Li5La 3Nb2O12 (LLNO) was successfully synthesized via a novel molten salt synthesis (MSS) method at the relatively low temperature of 900°C. The low sintering temperature prevented the loss of lithium that commonly occurs during synthesis using conventional solid state or wet chemical reactions. The second type of energy storage device studied is supercapacitors. Currently, research on supercapacitors is focused on increasing their energy densities and lowering their overall production costs by finding suitable electrode materials. The third section of this dissertation details how carbonized woods electrodes were used as supercapacitor electrode materials. A high energy density of 45.6 Wh/kg and a high power density of 2000 W/kg were obtained from the supercapacitor made from carbonized wood electrodes. The high performance of the supercapacitor was discovered to originate from the hierarchical porous structures of the carbonized wood. Finally, the fourth section of this dissertation is on the electrochemical effects of

  17. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials.

    PubMed

    Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan

    2013-05-13

    Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.

  18. The department of transportation's advanced materials research and technology initiatives

    DOT National Transportation Integrated Search

    1995-02-28

    This report provides an overview of DOT's current research and technology efforts, as well as those planned for Fiscal Year (FY) 1996, in two major areas: 1) Advanced Materials Research for Transportation Infrastructure, and 2) Advanced Materials Res...

  19. Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors.

    PubMed

    Han, Xue; Tao, Kai; Wang, Ding; Han, Lei

    2018-02-08

    Porous nanosheet-structured electrode materials are very attractive for the high efficiency storage of electrochemical energy. Herein, a porous cobalt sulfide nanosheet array on Ni foam (Co 9 S 8 -NSA/NF) is successfully fabricated by a facile method, which involves the uniform growth of 2D Co-based leaf-like zeolitic imidazole frameworks (Co-ZIF-L) on Ni foam followed by subsequent sulfurization with thioacetamide (TAA). Benefiting from the unique porous nanosheet array architecture and conductive substrate, the Co 9 S 8 -NSA/NF exhibits excellent electrochemical performance with a high capacitance (1098.8 F g -1 at 0.5 A g -1 ), good rate capacity (54.6% retention at 10 A g -1 ) and long-term stability (87.4% retention over 1000 cycles), when acted as a binder-free electrode for supercapacitors. Furthermore, an assembled asymmetric supercapacitor device using the as-fabricated Co 9 S 8 -NSA as the positive electrode and activated carbon (AC) as the negative electrode also exhibits a high energy density of 20.0 W h kg -1 at a high power density of 828.5 W kg -1 . The method developed here can be extended to the construction of other structured metal (mono or mixed) sulfide electrode materials for more efficient energy storage.

  20. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  1. Horizontal Advanced Tensiometer

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  2. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

    PubMed

    Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong

    2012-08-28

    Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g(-1) at the current density of 1.0 A g(-1) in 6.0 mol L(-1) aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg(-1). This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

  3. Advanced Material Strategies for Next-Generation Additive Manufacturing

    PubMed Central

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  4. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    PubMed

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  5. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  6. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  7. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  8. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    PubMed

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Two-Dimensional Porous Carbon: Synthesis and Ion-Transport Properties.

    PubMed

    Zheng, Xiaoyu; Luo, Jiayan; Lv, Wei; Wang, Da-Wei; Yang, Quan-Hong

    2015-09-23

    Their chemical stability, high specific surface area, and electric conductivity enable porous carbon materials to be the most commonly used electrode materials for electrochemical capacitors (also known as supercapacitors). To further increase the energy and power density, engineering of the pore structures with a higher electrochemical accessible surface area, faster ion-transport path and a more-robust interface with the electrolyte is widely investigated. Compared with traditional porous carbons, two-dimensional (2D) porous carbon sheets with an interlinked hierarchical porous structure are a good candidate for supercapacitors due to their advantages in high aspect ratio for electrode packing and electron transport, hierarchical pore structures for ion transport, and short ion-transport length. Recent progress on the synthesis of 2D porous carbons is reported here, along with the improved electrochemical behavior due to enhanced ion transport. Challenges for the controlled preparation of 2D porous carbons with desired properties are also discussed; these require precise tuning of the hierarchical structure and a clarification of the formation mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Experimental observation of a hydrodynamic mode in a flow duct with a porous material.

    PubMed

    Aurégan, Yves; Singh, Deepesh Kumar

    2014-08-01

    This paper experimentally investigates the acoustic behavior of a homogeneous porous material with a rigid frame (metallic foam) under grazing flow. The transmission coefficient shows an unusual oscillation over a particular range of frequencies which reports the presence of an unstable hydrodynamic wave that can exchange energy with the acoustic waves. This coupling of acoustic and hydrodynamic waves becomes larger when the Mach number increases. A rise of the static pressure drop in the lined region is induced by an acoustic excitation when the hydrodynamic wave is present.

  11. Methods for making a porous nuclear fuel element

    DOEpatents

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  12. The Effect of Fluid and Solid Properties on the Auxetic Behavior of Porous Materials Having Rock-like Microstructures

    NASA Astrophysics Data System (ADS)

    Wollner, U.; Vanorio, T.; Kiss, A. M.

    2017-12-01

    Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit a negative Poisson's ratio, both from dynamic (PRd) and static measurements. We propose a novel auxetic structure based on pore-space configuration observed in rocks. First, we performed 2D and 3D imaging of a pumice and tight basalt to analyze their rock microstructure as well as similarities to natural structures of auxetic materials - e.g., cork. Based on these analyses, we developed a theoretical auxetic 3D model consisting of rotating rigid bodies having pore configurations similar to those observed in rocks. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. We then used a 3D printer to create a physical version of the modified model, whose PRd was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. We conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.

  13. Double Soft-Template Synthesis of Nitrogen/Sulfur-Codoped Hierarchically Porous Carbon Materials Derived from Protic Ionic Liquid for Supercapacitor.

    PubMed

    Sun, Li; Zhou, Hua; Li, Li; Yao, Ying; Qu, Haonan; Zhang, Chengli; Liu, Shanhu; Zhou, Yanmei

    2017-08-09

    Heteroatom-doped hierarchical porous carbon materials derived from the potential precursors and prepared by a facile, effective, and low-pollution strategy have recently been particularly concerned in different research fields. In this study, the interconnected nitrogen/sulfur-codoped hierarchically porous carbon materials have been successfully obtained via one-step carbonization of the self-assembly of [Phne][HSO 4 ] (a protic ionic liquid originated from dilute sulfuric acid and phenothiazine by a straightforward acid-base neutralization) and the double soft-template of OP-10 and F-127. During carbonization process, OP-10 as macroporous template and F-127 as mesoporous template were removed, while [Phne][HSO 4 ] not only could be used as carbon, nitrogen, and sulfur source, but also as a pore forming agent to create micropores. The acquired carbon materials for supercapacitor not only hold a large specific capacitance of 302 F g -1 even at 1.0 A g -1 , but also fine rate property with 169 F g -1 at 10 A g -1 and excellent capacitance retention of nearly 100% over 5000 circulations in 6 M KOH electrolyte. Furthermore, carbon materials also present eximious rate performance with 70% in 1 M Na 2 SO 4 electrolyte.

  14. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  15. Code qualification of structural materials for AFCI advanced recycling reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Li, M.; Majumdar, S.

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Codemore » Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP

  16. Materials as additives for advanced lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pol, Vilas G.; Thackeray, Michael M.; Mistry, Kuldeep

    This invention relates to carbon-based materials as anti-friction and anti-wear additives for advanced lubrication purposes. The materials comprise carbon nanotubes suspended in a liquid hydrocarbon carrier. Optionally, the compositions further comprise a surfactant (e.g., to aid in dispersion of the carbon particles). Specifically, the novel lubricants have the ability to significantly lower friction and wear, which translates into improved fuel economies and longer durability of mechanical devices and engines.

  17. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2008-08-19

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  18. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2005-12-13

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  19. Fabrication of a Porous Fiber Cladding Material Using Microsphere Templating for Improved Response Time with Fiber Optic Sensor Arrays

    PubMed Central

    Henning, Paul E.; Rigo, M. Veronica; Geissinger, Peter

    2012-01-01

    A highly porous optical-fiber cladding was developed for evanescent-wave fiber sensors, which contains sensor molecules, maintains guiding conditions in the optical fiber, and is suitable for sensing in aqueous environments. To make the cladding material (a poly(ethylene) glycol diacrylate (PEGDA) polymer) highly porous, a microsphere templating strategy was employed. The resulting pore network increases transport of the target analyte to the sensor molecules located in the cladding, which improves the sensor response time. This was demonstrated using fluorescein-based pH sensor molecules, which were covalently attached to the cladding material. Scanning electron microscopy was used to examine the structure of the templated polymer and the large network of interconnected pores. Fluorescence measurements showed a tenfold improvement in the response time for the templated polymer and a reliable pH response over a pH range of five to nine with an estimated accuracy of 0.08 pH units. PMID:22654644

  20. Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Dirican, Mahmut; Zhang, Xiangwu

    2016-09-01

    Natural abundance and low cost of sodium resources bring forward the sodium-ion batteries as a promising alternative to widely-used lithium-ion batteries. However, insufficient energy density and low cycling stability of current sodium-ion batteries hinder their practical use for next-generation smart power grid and stationary storage applications. Electrospun carbon microfibers have recently been introduced as a high-performance anode material for sodium-ion batteries. However, electrospinning is not feasible for mass production of carbon microfibers due to its complex processing condition, low production rate and high cost. Herein, we report centrifugal spinning, a high-rate and low-cost microfiber production method, as an alternative approach to electrospinning for carbon microfiber production and introduce centrifugally-spun carbon microfibers (CMFs) and porous carbon microfibers (PCMFs) as anode materials for sodium-ion batteries. Electrochemical performance results indicated that the highly porous nature of centrifugally-spun PCMFs led to increased Na+ storage capacity and improved cycling stability. The reversible capacity of centrifugally-spun PCMF anodes at the 200th cycle was 242 mAh g-1, which was much higher than that of centrifugally-spun CMFs (143 mAh g-1). The capacity retention and coulombic efficiency of the centrifugally-spun PCMF anodes were 89.0% and 99.9%, respectively, even at the 200th cycle.

  1. Novel Development of Phosphate Treated Porous Hydroxyapatite.

    PubMed

    Doi, Kazuya; Abe, Yasuhiko; Kobatake, Reiko; Okazaki, Yohei; Oki, Yoshifumi; Naito, Yoshihito; Prananingrum, Widyasri; Tsuga, Kazuhiro

    2017-12-08

    Phosphoric acid-etching treatment to the hydroxyapatite (HA) surface can modify the solubility calcium structure. The aim of the present study was to develop phosphate treated porous HA, and the characteristic structures and stimulation abilities of bone formation were evaluated to determine its suitability as a new type of bone graft material. Although the phosphoric acid-etching treatment did not alter the three-dimensional structure, a micrometer-scale rough surface topography was created on the porous HA surface. Compared to porous HA, the porosity of phosphate treated porous HA was slightly higher and the mechanical strength was lower. Two weeks after placement of the cylindrical porous or phosphate treated porous HA in a rabbit femur, newly formed bone was detected in both groups. At the central portion of the bone defect area, substantial bone formation was detected in the phosphate treated porous HA group, with a significantly higher bone formation ratio than detected in the porous HA group. These results indicate that phosphate treated porous HA has a superior surface topography and bone formation abilities in vivo owing to the capacity for both osteoconduction and stimulation abilities of bone formation conferred by phosphoric acid etching.

  2. Novel Development of Phosphate Treated Porous Hydroxyapatite

    PubMed Central

    Doi, Kazuya; Abe, Yasuhiko; Kobatake, Reiko; Okazaki, Yohei; Oki, Yoshifumi; Naito, Yoshihito; Prananingrum, Widyasri; Tsuga, Kazuhiro

    2017-01-01

    Phosphoric acid-etching treatment to the hydroxyapatite (HA) surface can modify the solubility calcium structure. The aim of the present study was to develop phosphate treated porous HA, and the characteristic structures and stimulation abilities of bone formation were evaluated to determine its suitability as a new type of bone graft material. Although the phosphoric acid-etching treatment did not alter the three-dimensional structure, a micrometer-scale rough surface topography was created on the porous HA surface. Compared to porous HA, the porosity of phosphate treated porous HA was slightly higher and the mechanical strength was lower. Two weeks after placement of the cylindrical porous or phosphate treated porous HA in a rabbit femur, newly formed bone was detected in both groups. At the central portion of the bone defect area, substantial bone formation was detected in the phosphate treated porous HA group, with a significantly higher bone formation ratio than detected in the porous HA group. These results indicate that phosphate treated porous HA has a superior surface topography and bone formation abilities in vivo owing to the capacity for both osteoconduction and stimulation abilities of bone formation conferred by phosphoric acid etching. PMID:29292788

  3. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  4. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  5. Precision machining of advanced materials with waterjets

    NASA Astrophysics Data System (ADS)

    Liu, H. T.

    2017-01-01

    Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.

  6. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials.

    PubMed

    Chen, Hao; Zhou, Shuxue; Wu, Limin

    2014-06-11

    This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials. In addition, the Ni(OH)2-MnO2-RGO hybrid spheres-based asymmetric supercapacitor also showed satisfying energy density and electrochemical cycling stability.

  7. Advanced Plasmonic Materials for Dynamic Color Display.

    PubMed

    Shao, Lei; Zhuo, Xiaolu; Wang, Jianfang

    2018-04-01

    Plasmonic structures exhibit promising applications in high-resolution and durable color generation. Research on advanced hybrid plasmonic materials that allow dynamically reconfigurable color control has developed rapidly in recent years. Some of these results may give rise to practically applicable reflective displays in living colors with high performance and low power consumption. They will attract broad interest from display markets, compared with static plasmonic color printing, for example, in applications such as digital signage, full-color electronic paper, and electronic device screens. In this progress report, the most promising recent examples of utilizing advanced plasmonic materials for the realization of dynamic color display are highlighted and put into perspective. The performances, advantages, and disadvantages of different technologies are discussed, with emphasis placed on both the potential and possible limitations of various hybrid materials for dynamic plasmonic color display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hollow porous bowl-shaped lithium-rich cathode material for lithium-ion batteries with exceptional rate capability and stability

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhang, Wansen; Shen, Shuiyun; Yan, Xiaohui; Wu, Aiming; Yin, Jiewei; Zhang, Junliang

    2018-03-01

    Although lithium-rich layered composite cathode materials can meet the requirements of high discharge capacities and energy densities of lithium-ion batteries (LIBs), the drawbacks of encountering structural reconstruction, sharp voltage decay during cycling as well as low packing density still exist, which retard their further commercial development. This paper presents a novel approach to construct hollow porous bowl-shaped Li1.2Mn0.54Ni0.13Co0.13O2 (denoted as HPB-LMNCO) particles, which involves bowl-shaped carbonaceous particles as the predominant template and polyvinylpyrrolidone as an assistant soft template. One crucial step during the synthetic process is the controlled growth of metal ions with specific molar ratios in the bowl-shaped carbonaceous particles, and the key control parameter is the heating rate to ensure the prepared particles own the desired hollow porous bowl-shaped morphology. Of particular note is the desirable architecture which not only inherits the merits of hollow structures but also facilitates the tight particles packing. Owing to these advantages, utilizing this HPB-LMNCO as a cathode material manifests impressive rate capability and exceptional cycling stability at high rates with capacity retention of above 82% over 100 cycles. These results reveal that structural design of cathode materials play a pivotal role in developing high-performance LIBs.

  9. Experimental analysis of the flow near the boundary of random porous media

    NASA Astrophysics Data System (ADS)

    Wu, Zhenxing; Mirbod, Parisa

    2018-04-01

    The aim of this work is to experimentally examine flow over and near random porous media. Different porous materials were chosen to achieve porosity ranging from 0.95 to 0.99. In this study, we report the detailed velocity measurements of the flow over and near random porous material inside a rectangular duct using a planar particle image velocimetry (PIV) technique. By controlling the flow rate, two different Reynolds numbers were achieved. We determined the slip velocity at the interface between the porous media and free flow. Values of the slip velocity normalized either by the maximum flow velocity or by the shear rate at the interface and the screening distance K1/2 were found to depend on porosity. It was also shown that the depth of penetration inside the porous material was larger than the screening length using Brinkman's prediction. Moreover, we examined a model for the laminar coupled flow over and inside porous media and analyzed the permeability of a random porous medium. This study provided detailed analysis of flow over and at the interface of various specific random porous media using the PIV technique. This analysis has the potential to serve as a first step toward using random porous media as a new passive technique to control the flow over smooth surfaces.

  10. Processing and Modeling of Porous Copper Using Sintering Dissolution Process

    NASA Astrophysics Data System (ADS)

    Salih, Mustafa Abualgasim Abdalhakam

    The growth of porous metal has produced materials with improved properties as compared to non-metals and solid metals. Porous metal can be classified as either open cell or closed cell. Open cell allows a fluid media to pass through it. Closed cell is made up of adjacent sealed pores with shared cell walls. Metal foams offer higher strength to weight ratios, increased impact energy absorption, and a greater tolerance to high temperatures and adverse environmental conditions when compared to bulk materials. Copper and its alloys are examples of these, well known for high strength and good mechanical, thermal and electrical properties. In the present study, the porous Cu was made by a powder metallurgy process, using three different space holders, sodium chloride, sodium carbonate and potassium carbonate. Several different samples have been produced, using different ratios of volume fraction. The densities of the porous metals have been measured and compared to the theoretical density calculated using an equation developed for these foams. The porous structure was determined with the removal of spacer materials through sintering process. The sintering process of each spacer material depends on the melting point of the spacer material. Processing, characterization, and mechanical properties were completed. These tests include density measurements, compression tests, computed tomography (CT) and scanning electron microscopy (SEM). The captured morphological images are utilized to generate the object-oriented finite element (OOF) analysis for the porous copper. Porous copper was formed with porosities in the range of 40-66% with density ranges from 3 to 5.2 g/cm3. A study of two different methods to measure porosity was completed. OOF (Object Oriented Finite Elements) is a desktop software application for studying the relationship between the microstructure of a material and its overall mechanical, dielectric, or thermal properties using finite element models based on

  11. Porous yolk-shell microspheres as N-doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials.

    PubMed

    Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin

    2017-09-08

    It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.

  12. Porous yolk-shell microspheres as N-doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials

    NASA Astrophysics Data System (ADS)

    Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin

    2017-09-01

    It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.

  13. Manganese Dioxide Supported on Porous Biomorphic Carbons as Hybrid Materials for Energy Storage Devices.

    PubMed

    Gutierrez-Pardo, Antonio; Lacroix, Bertrand; Martinez-Fernandez, Julian; Ramirez-Rico, Joaquin

    2016-11-16

    A facile and low-cost method has been employed to fabricate MnO 2 /C hybrid materials for use as binder-free electrodes for supercapacitor applications. Biocarbon monoliths were obtained through pyrolysis of beech wood, replicating the microstructure of the cellulosic precursor, and serve as 3D porous and conductive scaffolds for the direct growth of MnO 2 nanosheets by a solution method. Evaluation of the experimental results indicates that a homogeneous and uniform composite material made of a carbon matrix exhibiting ordered hierarchical porosity and MnO 2 nanosheets with a layered nanocrystalline structure is obtained. The tuning of the MnO 2 content and crystallite size via the concentration of KMnO 4 used as impregnation solution allows to obtain composites that exhibit enhanced electrochemical behavior, achieving a capacitance of 592 F g -1 in electrodes containing 3 wt % MnO 2 with an excellent cyclic stability. The electrode materials were characterized before and after electrochemical testing.

  14. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.

    PubMed

    Chen, Weifeng; Ni, Jinzhi

    2017-05-01

    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Metal-Embedded Porous Graphitic Carbon Fibers Fabricated from Bamboo Sticks as a Novel Cathode for Lithium-Sulfur Batteries.

    PubMed

    Zhang, Xuqing; Zhong, Yu; Xia, Xinhui; Xia, Yang; Wang, Donghuang; Zhou, Cheng'ao; Tang, Wangjia; Wang, Xiuli; Wu, J B; Tu, Jiangping

    2018-04-25

    Lithium-sulfur batteries (LSBs) are deemed to be among the most prospective next-generation advanced high-energy batteries. Advanced cathode materials fabricated from biological carbon are becoming more popular due to their unique properties. Inspired by the fibrous structure of bamboo, herein we put forward a smart strategy to convert bamboo sticks for barbecue into uniform bamboo carbon fibers (BCF) via a simple hydrothermal treatment proceeded in alkaline solution. Then NiCl 2 is used to etch the fibers through a heat treatment to achieve Ni-embedded porous graphitic carbon fibers (PGCF/Ni) for LSBs. The designed PGCF/Ni/S electrode exhibits improved electrochemical performances including high initial capacity (1198 mAh g -1 at 0.2 C), prolonged cycling life (1030 mAh g -1 at 0.2 C after 200 cycles), and improved rate capability. The excellent properties are attributed to the synergistic effect of 3D porous graphitic carbon fibers with highly conductive Ni nanoparticles embedded.

  16. Method of fabricating porous silicon carbide (SiC)

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  17. Preparation of the Lentinus edodes-based porous biomass carbon by hydrothermal method for capacitive desalination

    NASA Astrophysics Data System (ADS)

    Yan, Junbin; Zhang, Hexuan; Xie, Zhengzheng; Liu, Jianyun

    2017-08-01

    Biomass carbon materials were prepared by hydrothermal method using Lentinus edodes, followed by activation by ZnCl2 at high carbonization temperature. SEM and contact angle test show that ZnCl2 has a significant effect on the surface morphology and properties of porous carbon materials. Using the porous carbon as electrodes of the capacitor, the specific capacitance of the porous carbon material was found to be 247.6 F/g. The desalination amount of porous carbon material in capacitor cell was 12.9 mg/g, being the 1.9 times of that of the commercial activated carbon.

  18. Properties of porous magnesium prepared by powder metallurgy.

    PubMed

    Čapek, Jaroslav; Vojtěch, Dalibor

    2013-01-01

    Porous magnesium-based materials are biodegradable and promising for use in orthopaedic applications, but their applications are hampered by their difficult fabrication. This work reports the preparation of porous magnesium materials by a powder metallurgy technique using ammonium bicarbonate as spacer particles. The porosity of the materials depended on the amount of ammonium bicarbonate and was found to have strong negative effects on flexural strength and corrosion behaviour. However, the flexural strength of materials with porosities of up to 28 vol.% was higher than the flexural strength of non-metallic biomaterials and comparable with that of natural bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Electrostatic spray deposition of porous Fe 2O 3 thin films as anode material with improved electrochemical performance for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, H. W.; Chen, P. C.; Zhang, D. W.; Ding, C. X.; Chen, C. H.

    Iron oxide materials are attractive anode materials for lithium-ion batteries for their high capacity and low cost compared with graphite and most of other transition metal oxides. Porous carbon-free α-Fe 2O 3 films with two types of pore size distribution were prepared by electrostatic spray deposition, and they were characterized by X-ray diffraction, scanning electron microscopy and X-ray absorption near-edge spectroscopy. The 200 °C-deposited thin film exhibits a high reversible capacity of up to 1080 mAh g -1, while the initial capacity loss is at a remarkable low level (19.8%). Besides, the energy efficiency and energy specific average potential (E av) of the Fe 2O 3 films during charge/discharge process were also investigated. The results indicate that the porous α-Fe 2O 3 films have significantly higher energy density than Li 4Ti 5O 12 while it has a similar E av of about 1.5 V. Due to the porous structure that can buffer the volume changes during lithium intercalation/de-intercalation, the films exhibit stable cycling performance. As a potential anode material for high performance lithium-ion batteries that can be applied on electric vehicle and energy storage, rate capability and electrochemical performance under high-low temperatures were also investigated.

  20. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Interaction of air shock waves and porous compressible materials

    NASA Astrophysics Data System (ADS)

    Gvozdeva, L. G.; Faresov, Yu. M.; Fokeyev, V. P.

    1986-05-01

    Interaction of air shock waves and porous compressible materials was studied in an experiment with two foam-plastic materials: PPU-3M-1 polyurethane (density 33 kg/cu m) and much more rigid PKhV-1 polyvinyl chloride (density 50 kg/cu m). Tests were performed in a shock tube with 0.1x0.1 m square cross-section, a single diaphragm separating its 8 m long low-pressure segment with inspection zone and 1.5 m long high-pressure segment. The instrumentation included an array of piezoelectric pressure transducers and a digital frequency meter for velocity measurements, a Tectronix 451A oscillograph, and IAB-451 shadowgraph, and a ZhFR camera with slit scanning. Air was used as compressing gas, its initial pressure being varied from 10(3) Pa to 10(5) Pa, helium and nitrogen were used as propelling gas. The impact velocity of shock waves was varied over the N(M) = 2-5 range of the Mach number. The maximum amplitude of the pressure pulse increased as the thickness of the foam layer was increased up to 80 mm and then remained constant with further increases of that thickness, at a level depending on the material and on the intitial conditions. A maximum pressure rise by a factor of approximately 10 was attained, with 1.3 x 10(3) Pa initial pressure and an impact velocity N(M) = 5. Reducing the initial pressure to below (0.1-0.3) x 10(3) Pa, with the impact velocity maintained at N(M) = 5, reduced the pressure rise to a factor below 3. The results are interpreted taking into account elasticity forces in the solid skeleton phase and gas filtration through the pores.

  2. Recent Advances in Two-Dimensional Materials beyond Graphene.

    PubMed

    Bhimanapati, Ganesh R; Lin, Zhong; Meunier, Vincent; Jung, Yeonwoong; Cha, Judy; Das, Saptarshi; Xiao, Di; Son, Youngwoo; Strano, Michael S; Cooper, Valentino R; Liang, Liangbo; Louie, Steven G; Ringe, Emilie; Zhou, Wu; Kim, Steve S; Naik, Rajesh R; Sumpter, Bobby G; Terrones, Humberto; Xia, Fengnian; Wang, Yeliang; Zhu, Jun; Akinwande, Deji; Alem, Nasim; Schuller, Jon A; Schaak, Raymond E; Terrones, Mauricio; Robinson, Joshua A

    2015-12-22

    The isolation of graphene in 2004 from graphite was a defining moment for the "birth" of a field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here, we review significant recent advances and important new developments in 2D materials "beyond graphene". We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene that enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.

  3. Ionic Liquids for Advanced Materials

    DTIC Science & Technology

    2008-12-01

    optical clarity to completely opacity with increased amounts of ionic liquid . This transition was not previously observed in Nafion ® membranes swollen...1 IONIC LIQUIDS FOR ADVANCED MATERIALS Timothy E. Long, Sean M. Ramirez, Randy Heflin, Harry W. Gibson, Louis A. Madsen, Donald J. Leo, Nakhiah...is to develop a micromechanical model for the electrochemomechanical transduction mechanisms in newly synthesized ionic liquid polymers in order to

  4. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    DOEpatents

    Kanatzidis, Mercouri G; Katsoulidis, Alexandros

    2015-03-10

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  5. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    DOEpatents

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  6. Transport phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Bear, Jacob; Corapcioglu, M. Yavuz

    The Advanced Study Institute on Fundamentals of Transport Phenomena in Porous Media, held July 14-23, 1985 in Newark, Del. and directed by Jacob Bear (Israel Institute of Technology, Haifa) and M. Yavuz Corapcioglu (City College of New York), under the auspices of NATO, was a sequel to the NATO Advanced Study Institute (ASI) held in 1982 (proceedings published as Fundamentals of Transport Phenomena in Porous Media, J. Bear, and M.Y. Corapcioglu (Ed.), Martinus Nijhoff, Dordrecht, the Netherlands, 1984). The meeting was attended by 106 participants and lecturers from 21 countries.As in the first NATO/ASI, the objective of this meeting—which was a combination of a conference of experts and a teaching institute— was to present and discuss selected topics of transport in porous media. In selecting topics and lecturers, an attempt was made to bridge the gap that sometimes exists between research and practice. An effort was also made to demonstrate the unified approach to the transport of mass of a fluid phase, components of a fluid phase, momentum, and heat in a porous medium domain. The void space may be occupied by a single fluid phase or by a number of such phases; each fluid may constitute a multicomponent system; the solid matrix may be deformable; and the whole process of transport in the system may take place under nonisothermal conditions, with or without phase changes. Such phenomena are encountered in a variety of disciplines, e.g., petroleum engineering, civil engineering (in connection with groundwater flow and contamination), soil mechanics, and chemical engineering. One of the goals of the 1985 NATO/ASI, as in the 1982 institute, was to bring together experts from all these disciplines and enhance communication among them.

  7. Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application.

    PubMed

    Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Karaman, Didem Şen; Jiang, Hua; Koho, Sami; Dolenko, Tatiana A; Hänninen, Pekka E; Vlasov, Denis I; Ralchenko, Victor G; Hosomi, Satoru; Vlasov, Igor I; Sahlgren, Cecilia; Rosenholm, Jessica M

    2013-05-07

    Recent advances within materials science and its interdisciplinary applications in biomedicine have emphasized the potential of using a single multifunctional composite material for concurrent drug delivery and biomedical imaging. Here we present a novel composite material consisting of a photoluminescent nanodiamond (ND) core with a porous silica (SiO2) shell. This novel multifunctional probe serves as an alternative nanomaterial to address the existing problems with delivery and subsequent tracing of the particles. Whereas the unique optical properties of ND allows for long-term live cell imaging and tracking of cellular processes, mesoporous silica nanoparticles (MSNs) have proven to be efficient drug carriers. The advantages of both ND and MSNs were hereby integrated in the new composite material, ND@MSN. The optical properties provided by the ND core rendered the nanocomposite suitable for microscopy imaging in fluorescence and reflectance mode, as well as super-resolution microscopy as a STED label; whereas the porous silica coating provided efficient intracellular delivery capacity, especially in surface-functionalized form. This study serves as a demonstration how this novel nanomaterial can be exploited for both bioimaging and drug delivery for future theranostic applications.

  8. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  9. Technique for measurement of characteristic impedance and propagation constant for porous materials

    NASA Astrophysics Data System (ADS)

    Jung, Ki Won; Atchley, Anthony A.

    2005-09-01

    Knowledge of acoustic properties such as characteristic impedance and complex propagation constant is useful to characterize the acoustic behaviors of porous materials. Song and Bolton's four-microphone method [J. Acoust. Soc. Am. 107, 1131-1152 (2000)] is one of the most widely employed techniques. In this method two microphones are used to determine the complex pressure amplitudes for each side of a sample. Muehleisen and Beamer [J. Acoust. Soc. Am. 117, 536-544 (2005)] improved upon a four-microphone method by interchanging microphones to reduce errors due to uncertainties in microphone response. In this paper, a multiple microphone technique is investigated to reconstruct the pressure field inside an impedance tube. Measurements of the acoustic properties of a material having square cross-section pores is used to check the validity of the technique. The values of characteristic impedance and complex propagation constant extracted from the reconstruction agree well with predicted values. Furthermore, this technique is used in investigating the acoustic properties of reticulated vitreous carbon (RVC) in the range of 250-1100 Hz.

  10. Understanding Nanoemulsion Formation and Developing a Procedure for Porous Material Growth using Assembled Nanoemulsions

    NASA Astrophysics Data System (ADS)

    Yeranossian, Vahagn Frounzig

    Nanoemulsions as an emerging technology have found many applications in consumer products, drug delivery, and even particle formation. However, knowledge gaps exist in how some of these emulsions are formed, specifically what pathways are traversed to reach the final state. Moreover, how these pathways affect the final properties of the nanoemulsions would affect the applications that these droplets possess. Some nanoemulsions possess unique properties, including the assembly of droplets. While the assembly of droplets is being studied in the Helgeson lab, work must be done to understand how the assembly itself could be used to control the growth of porous materials, such a hydrogels. Thus, this thesis aims to address two factors of nanoemulsions: the formation of water-in-oil nanoemulsions and the use of assemblying droplets in oil-in-water nanoemulsions to form macroporous hydrogels. To elucidate the formation mechanism of water-in-oil nanoemulsions, a combination of dynamic light scattering and small angle neutron scattering were used to study the intermediate and final states of the nanoemulsion during its formation. These nanoemulsions were prepared by slowly adding water to an oil and surfactant mixture and were diluted to effectively measure using scattering techniques without multiple scattering events. To develop a procedure to use assembled nanoemulsions for the growth of porous materials, a combination of optical microscopy and diffusional studies were employed. Optical microscopy images taken at various stages of the procedure help elucidate how the pore sizes of the final porous material is related to the droplet-rich domains of the assembled nanoemulsion. Meanwhile, diffusional measurements help confirm the size and interconnectedness of the macropores. From the work done in the completion of my thesis, the formation mechanism of the water-in-oil nanoemulsion studied has been elucidated. The neutron scattering measurements show that during the

  11. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  12. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials

    DOE PAGES

    Zhai, Quan -Guo; Bu, Xianhui; Mao, Chengyu; ...

    2016-12-07

    Metal-organic frameworks are a class of crystalline porous materials with potential applications in catalysis, gas separation and storage, and so on. Of great importance is the development of innovative synthetic strategies to optimize porosity, composition and functionality to target specific applications. Here we show a platform for the development of metal-organic materials and control of their gas sorption properties. This platform can accommodate a large variety of organic ligands and homo- or hetero-metallic clusters, which allows for extraordinary tunability in gas sorption properties. Even without any strong binding sites, most members of this platform exhibit high gas uptake capacity. Asmore » a result, the high capacity is accomplished with an isosteric heat of adsorption as low as 20 kJ mol –1 for carbon dioxide, which could bring a distinct economic advantage because of the significantly reduced energy consumption for activation and regeneration of adsorbents.« less

  13. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  14. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption.

    PubMed

    Zhao, Qiang; Dunlop, John W C; Qiu, Xunlin; Huang, Feihe; Zhang, Zibin; Heyda, Jan; Dzubiella, Joachim; Antonietti, Markus; Yuan, Jiayin

    2014-07-01

    Fast actuation speed, large-shape deformation and robust responsiveness are critical to synthetic soft actuators. A simultaneous optimization of all these aspects without trade-offs remains unresolved. Here we describe porous polymer actuators that bend in response to acetone vapour (24 kPa, 20 °C) at a speed of an order of magnitude faster than the state-of-the-art, coupled with a large-scale locomotion. They are meanwhile multi-responsive towards a variety of organic vapours in both the dry and wet states, thus distinctive from the traditional gel actuation systems that become inactive when dried. The actuator is easy-to-make and survives even after hydrothermal processing (200 °C, 24 h) and pressing-pressure (100 MPa) treatments. In addition, the beneficial responsiveness is transferable, being able to turn 'inert' objects into actuators through surface coating. This advanced actuator arises from the unique combination of porous morphology, gradient structure and the interaction between solvent molecules and actuator materials.

  15. Simulation of a supersonic flow around a body with a frontal gas-permeable insert by using a skeleton model of a highly porous cellular material

    NASA Astrophysics Data System (ADS)

    Poplavskaya, T. V.; Kirilovskiy, S. V.; Mironov, S. G.

    2017-10-01

    Numerical simulation of supersonic flow past a cylinder with a frontal gas-permeable insert is performed using the skeleton model of a highly porous cellular material. Numerical simulation was carried out within the framework of two-dimensional RANS equations written in an axisymmetric form. The skeleton model is a system of coaxial rings of different diameters, arranged in staggered order. The calculations were carried out in a wide range of determining parameters: Mach numbers M∞ = 3, 4.85 and 7, unit Reynolds numbers Re1∞ = 13.8×105 ÷ 13.8×106 m-1, the cylinder diameter 6÷40mm, the length of the porous insert 3÷45mm, the cell diameter of 1 and 3 mm. The results of the calculations are consistent with the available experimental data. The applicability of the skeleton model for the description of supersonic flow around axisymmetric bodies with front inserts from cellular-porous materials is shown.

  16. Semi-solid electrode cell having a porous current collector and methods of manufacture

    DOEpatents

    Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki

    2017-11-21

    An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.

  17. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    PubMed

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  18. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    PubMed Central

    Sidambe, Alfred T.

    2014-01-01

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy. PMID:28788296

  19. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  20. Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials

    PubMed Central

    Ziegler, Daniele; Formia, Alessandra; Tulliani, Jean-Marc; Palmero, Paola

    2016-01-01

    This paper assesses the feasibility of two industrial wastes, fly ash (FA) and rice husk ash (RHA), as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i) halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S); (ii) halloysite activated with rice husk ash dissolved into KOH solution (HL-R); (iii) FA activated with the alkaline solution realized with the rice husk ash (FA-R). Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP) was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulation. PMID:28773587

  1. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  2. Thermogravimetric and microscopic analysis of SiC/SiC materials with advanced interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, C.F. Jr.; Jones, R.H.; Snead, L.L.

    1997-04-01

    The chemical stability of SiC/SiC composites with fiber/matrix interfaces consisting of multilayers of SiC/SiC and porous SiC have been evaluated using a thermal gravimetric analyzer (TGA). Previous evaluations of SiC/SiC composites with carbon interfacial layers demonstrated the layers are not chemically stable at goal use temperatures of 800-1100{degrees}C and O{sub 2} concentrations greater than about 1 ppm. No measureable mass change was observed for multilayer and porous SiC interfaces at 800-1100{degrees}C and O{sub 2} concentrations of 100 ppm to air; however, the total amount of oxidizable carbon is on the order of the sensitivity of the TGA. Further studies aremore » in progress to evaluate the stability of these materials.« less

  3. Mechanical behavior of concrete and related porous materials under partial saturation: The effective stress and the viscous softening due to movement of nanometer-scale pore fluid

    NASA Astrophysics Data System (ADS)

    Vlahinic, Ivan

    It has been said that porous materials are like music: the gaps are as important as the filled-in bits. In other words, in addition to the solid structure, pore characteristics such as size and morphology play a crucial role in defining the overall physical properties of the porous materials. This work goes a step further and examines the behaviors of some porous media that arise when the pore network is occupied by two fluids, principally air and water, as a result of drying or wetting. Such a state gives rise to fluid capillarity which can generate significant negative fluid pressures. In the first part, a constitutive model for drying of an elastic porous medium is proposed and then extended to derive a novel expression for effective stress in partially saturated media. The model is motivated by the fact that in a system that is saturated by two different fluids, two different pressure inherently act on the surfaces of the pore network. This causes a non-uniform strain field in the solid structure, something that is not explicitly accounted for in the classic formulations of this problem. We use some standard micromechanical homogenization techniques to estimate the extent of the 'non-uniformity' and on this basis, evaluate the validity of the classic Bishop effective stress expression for partially saturated materials. In the second part, we examine a diverse class of porous materials which behave in an unexpected (and even counterintuitive) way under the internal moisture fluctuations. In particular, during wetting and drying alike, the solid viscosity of these materials appears to soften, sometimes by an order of magnitude or more. Under load, this can lead to significantly increased rates of deformations. On account of the recent experimental and theoretical findings on the nature of water flow in nanometer-size hydrophillic spaces, we provide a physical explanation for the viscous softening and propose a constitutive law on this basis. To this end, it also

  4. Application research on the sensitivity of porous silicon

    NASA Astrophysics Data System (ADS)

    Xu, Gaobin; Xi, Ye; Chen, Xing; Ma, Yuanming

    2017-09-01

    Applications based on sensitive property of porous silicon (PSi) were researched. As a kind of porous material, the feasibility of PSi as a getter material was studied. Five groups of samples with different parameters were prepared. The gas-sensing property of PSi was studied by the test system and suitable parameters of PSi were also discussed. Meanwhile a novel structure of humidity sensor, using porous silicon as humidity-sensitive material, based on MEMS process has been successfully designed. The humidity-sensing properties were studied by a test system. Because of the polysilicon layer deposited upon the PSi layer, the humidity sensor can realize a quick dehumidification by itself. To extend service life and reduce the effect of the environment, a passivation layer (Si3N4) was also deposited on the surface of electrodes. The result indicated the novel humidity sensor presented high sensitivity (1.1 pF/RH%), low hysteresis, low temperature coefficient (0.5%RH/°C) and high stability.

  5. Absorbate-induced piezochromism in a porous molecular crystal

    DOE PAGES

    Hendon, Christopher H.; Wittering, Kate E.; Chen, Teng -Hao; ...

    2015-02-23

    Atmospherically stable porous frameworks and materials are interesting for heterogeneous solid–gas applications. One motivation is the direct and selective uptake of pollutant/hazardous gases, where the material produces a measurable response in the presence of the analyte. In this report, we present a combined experimental and theoretical rationalization for the piezochromic response of a robust and porous molecular crystal built from an extensively fluorinated trispyrazole. The electronic response of the material is directly determined by analyte uptake, which provokes a subtle lattice contraction and an observable bathochromic shift in the optical absorption onset. Selectivity for fluorinated absorbates is demonstrated, and toluenemore » is also found to crystallize within the pore. Lastly, we demonstrate the application of electronic structure calculations to predict a physicochemical response, providing the foundations for the design of electronically tunable porous solids with the chemical properties required for development of novel gas-uptake media.« less

  6. Formation of porous networks on polymeric surfaces by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Assaf, Youssef; Kietzig, Anne-Marie

    2017-02-01

    In this study, porous network structures were successfully created on various polymer surfaces by femtosecond laser micromachining. Six different polymers (poly(tetrafluoroethylene) (PTFE), poly(methyl methacrylate) (PMMA), high density poly(ethylene) (HDPE), poly(lactic acid) (PLA), poly(carbonate) (PC), and poly(ethylene terephthalate) (PET)) were machined at different fluences and pulse numbers, and the resulting structures were identified and compared by lacunarity analysis. At low fluence and pulse numbers, porous networks were confirmed to form on all materials except PLA. Furthermore, all networks except for PMMA were shown to bundle up at high fluence and pulse numbers. In the case of PC, a complete breakdown of the structure at such conditions was observed. Operation slightly above threshold fluence and at low pulse numbers is therefore recommended for porous network formation. Finally, the thickness over which these structures formed was measured and compared to two intrinsic material dependent parameters: the single pulse threshold fluence and the incubation coefficient. Results indicate that a lower threshold fluence at operating conditions favors material removal over structure formation and is hence detrimental to porous network formation. Favorable machining conditions and material-dependent parameters for the formation of porous networks on polymer surfaces have thus been identified.

  7. Characterization and antibacterial properties of porous fibers containing silver ions

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan

    2016-11-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  8. Development of electroactive polymer nanocomposites with porous structured materials

    NASA Astrophysics Data System (ADS)

    Lopes, Ana Catarina Teixeira Castro

    Electroactive polymer composites are interesting materials for advance technological applications due to the possibility to combine the electroactive properties of the polymer matrix with a large variety of fillers that allow tailored responses for specific applications. The best all-around electroactive polymers are poly(vinylidene fluoride) (PVDF) and its copolymers which allied with the properties of porous zeolite materials, with tailored shape, size and Si/Al ratio, among others, leads to the possibility of development of promising PVDF/zeolite composites. In this way, a study of the structural, thermal and electrical properties of PVDF composites prepared with different framework zeolite types (LTL, LTA, FAU and MFI), different polymer solvents (DMF, DMSO, TEP) and different zeolite (NaY) concentrations (4, 16, 24 and 32 wt %) was performed. Further, the dielectric response, electrical conductivity and electric modulus of the composites were investigated as a function of NaYzeolite content. The zeolite influence on the electroactive gamma-phase crystallization of PVDF was explored, as well as the effect of clay layered structure (Montmorillonite, Kaolinite and Laponite) on the electroactive gamma-phase nucleation and on the optical transparency of the composite. It was found that the obtained composites showed an electrical response dependence on the pore structure and chemical content of the inorganic host. The dielectric response of the composites is directly related to the Si/Al ratio, leading zeolites with lower Si/Al ratios to larger dielectric responses and encapsulation efficiencies in the composites. It was also found that the zeolite content strongly influences the macroscopic response of dielectric response, which increases for increasing filler content. The dielectric constant at room temperature reaches values larger than 1000 for the 32 wt.% composite at 1 kHz what is mainly attributed to restricted ion mobility and interfacial polarization

  9. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors

    PubMed Central

    Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng

    2013-01-01

    Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952

  10. Synthesis of Ammonia-Assisted Porous Nickel Ferrite (NiFe₂O₄) Nanostructures as an Electrode Material for Supercapacitors.

    PubMed

    Bhojane, Prateek; Sharma, Alfa; Pusty, Manojit; Kumar, Yogendra; Sen, Somaditya; Shirage, Parasharam

    2017-02-01

    In this work, we report a low cost, facile synthesis method for Nickel ferrite (NiFe₂O₄) nanostructures obtained by chemical bath deposition method for alternate transition metal oxide electrode material as a solution for clean energy. We developed a template free ammonia assisted method for obtaining porous structure which offering better supercapacitive performance of NiFe₂O₄ electrode material than previously reported for pure NiFe₂O₄. Here we explore the physical characterizations X-ray diffraction, FESEM, HRTEM performed to under-stand its crystal structure and morphology as well as the electrochemical measurements was performed to understand the electrochemical behaviour of the material. Here ammonia plays an important role in governing the structure/morphology of the material and enhances the electrochemical performance. The specific capacitance of 541 Fg⁻¹ is achieved at 2 mVs⁻¹ scan rate which is highest for the pure NiFe₂O₄ electrode material without using any addition of carbon based material, heterostructure or template based method.

  11. Application of Porous Polydimethylsiloxane (PDMS) in oil absorption

    NASA Astrophysics Data System (ADS)

    Norfatriah, Abdullah; Syamaizar, Ahmad Sabli Ahmad; Samah Zuruzi, Abu

    2018-04-01

    Porous polydimethysiloxane (PDMS) displays both hydrophobic and oleophilic behaviour which makes it a suitable material to absorb oil in an aqueous stream. Furthermore, its elastomeric nature means that porous PDMS can be a reusable sorbent for oil. For such application, porous PDMS has to (i) absorb oil from aqueous stream quickly and (ii) discharge oil rapidly when compressed. In this study, porous polydimethylsiloxane (PDMS) has been fabricated using sugar templating method. The ability of porous PDMS to absorb olive, sunflower and vegetable oils with and without vibration was investigated. Small amplitude vibration was found to accelerate the oil uptake process and accelerates the absorption of olive and vegetable oil by 2.5 and 3 times, respectively. Compressive stress-strain curves over compression rates between 2 and 100 mm per min are similar and indicate mechanical property of porous PDMS does not vary significantly and can be rapidly compressed.

  12. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  13. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    DOE PAGES

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; ...

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-levelmore » outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. We find the low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.« less

  14. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  15. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    PubMed

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  16. Modeling of nanostructured porous thermoelastic composites with surface effects

    NASA Astrophysics Data System (ADS)

    Nasedkin, A. V.; Nasedkina, A. A.; Kornievsky, A. S.

    2017-01-01

    The paper presents an integrated approach for determination of effective properties of anisotropic porous thermoelastic materials with a nanoscale stochastic porosity structure. This approach includes the effective moduli method for composite me-chanics, the simulation of representative volumes and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses and the highly conducting interface model are used at the borders between material and pores. The general methodology for determination of effective properties of porous composites is demonstrated for a two-phase composite with special conditions for stresses and heat flux discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective constants of the two-phase composites with arbitrary anisotropy and with surface properties are described; the generalized statements are formulated and the finite element approximations are given. It is shown that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses and heat fluxes if the moduli of nanoinclusions are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of porous material with cubic crystal system for various values of surface moduli, porosity and number of pores. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized structure.

  17. NASA Thermographic Inspection of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2004-01-01

    As the use of advanced composite materials continues to increase in the aerospace community, the need for a quantitative, rapid, in situ inspection technology has become a critical concern throughout the industry. In many applications it is necessary to monitor changes in these materials over an extended period of time to determine the effects of various load conditions. Additionally, the detection and characterization of defects such as delaminations, is of great concern. This paper will present the application of infrared thermography to characterize various composite materials and show the advantages of different heat source types. Finally, various analysis methodologies used for quantitative material property characterization will be discussed.

  18. Advanced Materials by Atom Transfer Radical Polymerization.

    PubMed

    Matyjaszewski, Krzysztof

    2018-06-01

    Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well-defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic-organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  20. Improvement in wettability of porous Si by carboxylate termination

    NASA Astrophysics Data System (ADS)

    Sakakibara, Masanori; Matsumoto, Kimihisa; Kamiya, Kazuhide; Kawabata, Shigeki; Inada, Mitsuru; Suzuki, Shinya

    2018-02-01

    The effects of the surface terminations of carboxylic acid and carboxylate on the hydrophilicity of porous Si were studied to observe the changes in the photoluminescence (PL) intensity of water-dispersed porous Si powder over time. Porous Si terminated by carboxylate was produced from carboxylic acid-terminated porous Si by a neutralization reaction with an alkali metal. After the neutralization of porous Si terminated by carboxylic acid, the formation of carboxylate-terminated porous Si was confirmed by observing the absorption peaks corresponding to Si-C and COO- from Fourier transform infrared (FT-IR) spectra. On the basis of changes in the PL intensity of porous Si over time, the hydrophilicity of porous Si terminated by carboxylate was determined to be higher than that of porous Si terminated by carboxylic acid. On the other hand, nonradiative recombination centers on the surface of carboxylate-terminated porous Si were formed during the neutralization process, which reduced the PL intensity. The PL from porous Si terminated by carboxylic acid and carboxylate was caused by the quantum size effect regardless of the termination molecules, which was confirmed by the wavelength dependence of the PL lifetime. Porous Si terminated by undecylenate is an effective material for applications such as bio-labels owing to its hydrophilicity and high PL stability.

  1. Advances in porous and high-energy (001)-faceted anatase TiO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Umar, Akrajas Ali; Md Saad, Siti Khatijah; Ali Umar, Marjoni Imamora; Rahman, Mohd Yusri Abd; Oyama, Munetaka

    2018-01-01

    In this review, we present a summary of research to date on the anatase polymorph of TiO2 nanostructures containing high-energy facet, particularly (001) plane, with porous structure, covering their synthesis and their application in photocatalysis as well as a review of any attempts to modify their electrical, optical and photocatalytic properties via doping. After giving a brief introduction on the role of crystalline facet on the physico-chemical properties of the anatase TiO2, we discuss the electrical and optical properties of pristine anatase TiO2 and after being doped with both metal and non-metals dopants. We then continue to the discussion of the electrical properties of (001) faceted anatase TiO2 and their modification upon being prepared in the form of porous morphology. Before coming to the review of the photocatalytic properties of the (001) faceted anatase and (001) with porous morphology in selected photocatalysis application, such as photodegradation of organic pollutant, hydrogenation reaction, water splitting, etc., we discuss the synthetic strategy for the preparation of them. We then end our discussion by giving an outlook on future strategy for development of research related to high-energy faceted and porous anatase TiO2.

  2. Nanostructured Diclofenac Sodium Releasing Material

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppälä, J.; Ashammakhi, N.

    2008-02-01

    Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(ɛ-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.

  3. Pre-Darcy Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Dejam, Morteza; Hassanzadeh, Hassan; Chen, Zhangxin

    2017-10-01

    Fluid flow in porous media is very important in a wide range of science and engineering applications. The entire establishment of fluid flow application in porous media is based on the use of an experimental law proposed by Darcy (1856). There are evidences in the literature that the flow of a fluid in consolidated and unconsolidated porous media does not follow Darcy law at very low fluxes, which is called pre-Darcy flow. In this paper, the unsteady flow regimes of a slightly compressible fluid under the linear and radial pre-Darcy flow conditions are modeled and the corresponding highly nonlinear diffusivity equations are solved analytically by aid of a generalized Boltzmann transformation technique. The influence of pre-Darcy flow on the pressure diffusion for homogeneous porous media is studied in terms of the nonlinear exponent and the threshold pressure gradient. In addition, the pressure gradient, flux, and cumulative production per unit area are compared with the classical solution of the diffusivity equation based on Darcy flow. The presented results advance our understanding of fluid flow in low-permeability media such as shale and tight formations, where pre-Darcy is the dominant flow regime.

  4. New Class of Type III Porous Liquids: A Promising Platform for Rational Adjustment of Gas Sorption Behavior.

    PubMed

    Shan, Weida; Fulvio, Pasquale F; Kong, Liyun; Schott, Jennifer A; Do-Thanh, Chi-Linh; Tian, Tao; Hu, Xunxiang; Mahurin, Shannon M; Xing, Huabin; Dai, Sheng

    2018-01-10

    Porous materials have already manifested their unique properties in a number of fields. Generally, all porous materials are in a solid state other than liquid, in which molecules are closely packed without porosity. "Porous" and "liquid" seem like antonyms. Herein, we report a new class of Type 3 porous liquids based on rational coupling of microporous framework nanoparticles as porous hosts with a bulky ionic liquid as the fluid media. Positron annihilation lifetime spectroscopy (PALS) and CO 2 adsorption measurements confirm the successful engineering of permanent porosity into these liquids. Compared to common porous solid materials, as-synthesized porous liquids exhibited pronounced hysteresis loops in the CO 2 sorption isotherms even at ambient conditions (298 K, 1 bar). The unique features of these novel porous liquids could bring new opportunities in many fields including gas separation and storage, air separation and regeneration, gas transport, and permanent gas storage at ambient conditions.

  5. Graphene-Like 2D Porous Carbon Nanosheets Derived from Cornstalk Pith for Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Gao, Kezheng; Niu, Qingyuan; Tang, Qiheng; Guo, Yaqing; Wang, Lizhen

    2018-01-01

    Biomass materials from different organisms or different parts (even different periods) of the same organism have different microscopic morphologies, hierarchical pore structures and even elemental compositions. Therefore, carbon materials inheriting the unique hierarchical microstructure of different biomass materials may exhibit significantly different electrochemical properties. Cornstalk pith and cornstalk skin (dried by freeze-drying) exhibit significantly different microstructures due to their different biological functions. The cornstalk skin-based carbon (S-carbon) exhibits a thick planar morphology, and the Barrett-Emmett-Teller (BET) surface area is only about 332.07 m2 g-1. However, cornstalk pith-based carbon (P-carbon) exhibits a graphene-like 2D porous nanosheet structure with a rough, wrinkled morphology, and the BET surface area is about 805.17 m2 g-1. In addition, a P-carbon supercapacitor exhibits much higher specific capacitance and much better rate capability than an S-carbon supercapacitor in 6 M potassium hydroxide (KOH) electrolyte.

  6. Enhanced densification under shock compression in porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.

    2014-10-01

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

  7. Preparation of ultrasmall porous carbon nanospheres by reverse microemulsion-hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Jiasheng; Zhao, Yahong; Wang, Wan-Hui; Bao, Ming

    Porous carbon nanospheres (CNSs) have wide applications. A big challenge in materials science is synthesis of discrete ultrasmall porous carbon nanospheres. Herein, we report a facile reverse microemulsion-hydrothermal method to prepare discrete porous CNSs. The obtained CNSs possess an average diameter of 20nm and pores of 0.7nm and 3.4nm. Our work has provided a convenient method for the controllable synthesis of ultrasmall porous CNSs with potential applications.

  8. The recycling dilemma for advanced materials use: Automobile materials substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, F.R. III; Clark, J.P.

    1991-01-01

    This paper discusses the difficulties associated with imposing recycling imperatives upon advanced materials development by examining the case of automotive materials substitution and its impacts upon the recyclability of the automobile. Parallels are drawn between today's issues, which focus upon the recyclability of the increasing polymeric fraction in automobile shredder fluff, and the junked automobile problem of the 1960's, when the problem of abandoned automobiles became a part of the environmental and legislative agenda in the US and overseas. In the 1960's, both the source and the resolution of the junk automobile problem arose through a confluence of technological andmore » economic factors, rather than through any set of regulatory influences. The rise of electric arc furnace steelmaking and the development of the automobile shredder were sufficient to virtually eliminate the problem - so much so that today's problems are incorrectly viewed as novelties. Today's automobile recycling problem again derives from technological and economic factors, but regulatory influences have spurred some of them. While there are no lack of technological solutions to the problem of automobile shredder fluff, none of these solutions yet provides scrap processors with the kind of profit opportunity necessary to implement them. In some ways, it is implicit in advanced materials markets that there is little to no demand for recycled forms of these materials, and, in the absence of these markets, there are few reasons to expect that the solution to today's problems will be quite so neat.« less

  9. Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  10. Advanced Nanostructured Anode Materials for Sodium-Ion Batteries.

    PubMed

    Wang, Qidi; Zhao, Chenglong; Lu, Yaxiang; Li, Yunming; Zheng, Yuheng; Qi, Yuruo; Rong, Xiaohui; Jiang, Liwei; Qi, Xinguo; Shao, Yuanjun; Pan, Du; Li, Baohua; Hu, Yong-Sheng; Chen, Liquan

    2017-11-01

    Sodium-ion batteries (NIBs), due to the advantages of low cost and relatively high safety, have attracted widespread attention all over the world, making them a promising candidate for large-scale energy storage systems. However, the inherent lower energy density to lithium-ion batteries is the issue that should be further investigated and optimized. Toward the grid-level energy storage applications, designing and discovering appropriate anode materials for NIBs are of great concern. Although many efforts on the improvements and innovations are achieved, several challenges still limit the current requirements of the large-scale application, including low energy/power densities, moderate cycle performance, and the low initial Coulombic efficiency. Advanced nanostructured strategies for anode materials can significantly improve ion or electron transport kinetic performance enhancing the electrochemical properties of battery systems. Herein, this Review intends to provide a comprehensive summary on the progress of nanostructured anode materials for NIBs, where representative examples and corresponding storage mechanisms are discussed. Meanwhile, the potential directions to obtain high-performance anode materials of NIBs are also proposed, which provide references for the further development of advanced anode materials for NIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

    PubMed

    Capek, Jaroslav; Vojtěch, Dalibor

    2014-10-01

    The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.

    PubMed

    Jia, Haiping; Stock, Christoph; Kloepsch, Richard; He, Xin; Badillo, Juan Pablo; Fromm, Olga; Vortmann, Britta; Winter, Martin; Placke, Tobias

    2015-01-28

    In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.

  13. Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials

    PubMed Central

    Ba, Abdoulaye; Kovalenko, Artem; Aristégui, Christophe; Mondain-Monval, Olivier; Brunet, Thomas

    2017-01-01

    Soft porous silicone rubbers are demonstrated to exhibit extremely low sound speeds of tens of m/s for these dense materials, even for low porosities of the order of a few percent. Our ultrasonic experiments show a sudden drop of the longitudinal sound speed with the porosity, while the transverse sound speed remains constant. For such porous elastomeric materials, we propose simple analytical expressions for these two sound speeds, derived in the framework of Kuster and Toksöz, revealing an excellent agreement between the theoretical predictions and the experimental results for both longitudinal and shear waves. Acoustic attenuation measurements also complete the characterization of these soft porous materials. PMID:28054661

  14. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  15. Electronic Chemical Potentials of Porous Metal–Organic Frameworks

    PubMed Central

    2014-01-01

    The binding energy of an electron in a material is a fundamental characteristic, which determines a wealth of important chemical and physical properties. For metal–organic frameworks this quantity is hitherto unknown. We present a general approach for determining the vacuum level of porous metal–organic frameworks and apply it to obtain the first ionization energy for six prototype materials including zeolitic, covalent, and ionic frameworks. This approach for valence band alignment can explain observations relating to the electrochemical, optical, and electrical properties of porous frameworks. PMID:24447027

  16. Optimal design of porous structures for the fastest liquid absorption.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu; Fu, Kunkun

    2014-01-14

    Porous materials engineered for rapid liquid absorption are useful in many applications, including oil recovery, spacecraft life-support systems, moisture management fabrics, medical wound dressings, and microfluidic devices. Dynamic absorption in capillary tubes and porous media is driven by the capillary pressure, which is inversely proportional to the pore size. On the other hand, the permeability of porous materials scales with the square of the pore size. The dynamic competition between these two superimposed mechanisms for liquid absorption through a heterogeneous porous structure may lead to an overall minimum absorption time. In this work, we explore liquid absorption in two different heterogeneous porous structures [three-dimensional (3D) circular tubes and porous layers], which are composed of two sections with variations in radius/porosity and height. The absorption time to fill the voids of porous constructs is expressed as a function of radius/porosity and height of local sections, and the absorption process does not follow the classic Washburn's law. Under given height and void volume, these two-section structures with a negative gradient of radius/porosity against the absorption direction are shown to have faster absorption rates than control samples with uniform radius/porosity. In particular, optimal structural parameters, including radius/porosity and height, are found that account for the minimum absorption time. The liquid absorption in the optimized porous structure is up to 38% faster than in a control sample. The results obtained can be used a priori for the design of porous structures with excellent liquid management property in various fields.

  17. Candidate materials for advanced fire-resistant photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.; Arnett, J. C.; Samuelson, G.

    1985-01-01

    A cooperative, cost-sharing research effort to develop a technology base required to construct fire-ratable photovoltaic modules has resulted in the identification of several high-temperature, back-surface candidate materials capable of raising the fire-resistance of modules using hydrocarbon encapsulants to Class A and B levels. Advanced experimental module configurations have been developed using back surfaces consisting of Kapton, Tedlar laminates, metal-foils, and fiberglass materials with high-temperature coatings. Test results (October 1984; March 1985; May 1985; and October 1985) indicate that several of these advanced module configurations are capable of achieving Class B fire-resistance levels, while a few configurations can achieve Class A levels. The paper summarizes activities to date, discussing flammability failure mechanisms, time-temperature profiles, and results of Block V environmental exposure tests of a candidate material suitable for both Class B and Class A fire-resistance levels.

  18. Advanced textile materials and biopolymers in wound management.

    PubMed

    Petrulyte, Salvinija

    2008-02-01

    New generation medical textiles are an important growing field with great expansion in wound management products. Virtually new products are coming but also well known materials with significantly improved properties using advanced technologies and new methods are in the centre of research which are highly technical, technological, functional, and effective oriented. The key qualities of fibres and dressings as wound care products include that they are bacteriostatic, anti-viral, fungistatic, non-toxic, high absorbent, non-allergic, breathable, haemostatic, biocompatible, and manipulatable to incorporate medications, also provide reasonable mechanical properties. Many advantages over traditional materials have products modified or blended with also based on alginate, chitin/chitosan, collagen, branan ferulate, carbon fibres. Textile structures used for modern wound dressings are of large variety: sliver, yarn, woven, non-woven, knitted, crochet, braided, embroidered, composite materials. Wound care also applies to materials like hydrogels, matrix (tissue engineering), films, hydrocolloids, foams. Specialized additives with special functions can be introduced in advanced wound dressings with the aim to absorb odours, provide strong antibacterial properties, smooth pain and relieve irritation. Because of unique properties as high surface area to volume ratio, film thinness, nano scale fibre diameter, porosity, light weight, nanofibres are used in wound care. The aim of this study is to outline and review the latest developments and advance in medical textiles and biopolymers for wound management providing the overview with generalized scope about novelties in products and properties.

  19. BOOK REVIEW: Heterogeneous Materials I and Heterogeneous Materials II

    NASA Astrophysics Data System (ADS)

    Knowles, K. M.

    2004-02-01

    In these two volumes the author provides a comprehensive survey of the various mathematically-based models used in the research literature to predict the mechanical, thermal and electrical properties of hetereogeneous materials, i.e., materials containing two or more phases such as fibre-reinforced polymers, cast iron and porous ceramic kiln furniture. Volume I covers linear properties such as linear dielectric constant, effective electrical conductivity and elastic moduli, while Volume II covers nonlinear properties, fracture and atomistic and multiscale modelling. Where appropriate, particular attention is paid to the use of fractal geometry and percolation theory in describing the structure and properties of these materials. The books are advanced level texts reflecting the research interests of the author which will be of significant interest to research scientists working at the forefront of the areas covered by the books. Others working more generally in the field\

  20. Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Shan; Lei, Ming; Wang, Zhi-Qiang; Zhao, Xing; Xu, Jun; Yang, Wei; Huang, Yun; Li, Xing

    2016-03-01

    Nano tin dioxide-carbon (SnO2/C) composites prepared by various carbon materials, such as carbon nanotubes, porous carbon, and graphene, have attracted extensive attention in wide fields. However, undesirable concerns of nanoparticles, including in higher surface area, low tap density, and self-agglomeration, greatly restricted their large-scale practical applications. In this study, novel porous micron-SnO2/C (p-SnO2/C) composites are scalable prepared by a simple hydrothermal approach using glucose as a carbon source and Pluronic F127 as a pore forming agent/soft template. The SnO2 nanoparticles were homogeneously dispersed in micron carbon spheres by assembly with F127/glucose. The continuous three-dimensional porous carbon networks have effectively provided strain relaxation for SnO2 volume expansion/shrinkage during lithium insertion/extraction. In addition, the carbon matrix could largely minimize the direct exposure of SnO2 to the electrolyte, thus ensure formation of stable solid electrolyte interface films. Moreover, the porous structure could also create efficient channels for the fast transport of lithium ions. As a consequence, the p-SnO2/C composites exhibit stable cycle performance, such as a high capacity retention of over 96% for 100 cycles at a current density of 200 mA g-1 and a long cycle life up to 800 times at a higher current density of 1000 mA g-1.

  1. Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors.

    PubMed

    Wang, Haoran; Yu, Shukai; Xu, Bin

    2016-09-20

    Hierarchical porous carbon materials with high surface areas and a localized graphitic structure were simply prepared from sucrose using nano-ZnO as a hard template, activation agent and graphitization catalyst simultaneously, which exhibit an outstanding high-rate performance and can endure an ultrafast scan rate of 20 V s -1 and ultrahigh current density of 1000 A g -1 .

  2. Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction.

    PubMed

    Kim, Chang-Shik; Jung, Kyung-Hye; Kim, Hun; Kim, Chan-Bong; Kang, Inn-Kyu

    2016-01-01

    After tumor resection, bone reconstruction such as skull base reconstruction using interconnected porous structure is absolutely necessary. In this study, porous scaffolds for bone reconstruction were prepared using heat-pressing and salt-leaching methods. High-density polyethylene (HDPE) and poly(ethylene-co-acrylic acid) (PEAA) were chosen as the polymer composites for producing a porous scaffold of high mechanical strength and having high reactivity with biomaterials such as collagen, respectively. The porous structure was observed through surface images, and its intrusion volume and porosity were measured. Owing to the carboxylic acids on PEAA, collagen was successfully grafted onto the porous HDPE/PEAA scaffold, which was confirmed by FT-IR spectroscopy and electron spectroscopy for chemical analysis. Osteoblasts were cultured on the collagen-grafted porous scaffold, and their adhesion, proliferation, and differentiation were investigated. The high viability and growth of the osteoblasts suggest that the collagen-grafted porous HDPE/PEAA is a promising scaffold material for bone generation.

  3. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  4. Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zuo, Quan; Zhao, Pingping; Luo, Wei; Cheng, Gongzhen

    2016-07-01

    Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the best non-precious catalysts ever reported for ORR.Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the

  5. Impacts into porous asteroids

    NASA Astrophysics Data System (ADS)

    Housen, Kevin R.; Sweet, William J.; Holsapple, Keith A.

    2018-01-01

    Many small bodies in the solar system have bulk density well below the solid density of the constituent mineral grains in their meteorite counterparts. Those low-density bodies undoubtedly have significant porosity, which is a key factor that affects the formation of impact craters. This paper summarizes the results of lab experiments in which materials with porosity ranging from 43% to 96% were impacted at ∼1800 m/s. The experiments were performed on a geotechnical centrifuge, in order to reproduce the lithostatic overburden stress and ejecta ballistics that occur in large-scale cratering events on asteroids or planetary satellites. Experiments performed at various accelerations, up to 514G, simulate the outcomes of impacts at size scales up to several tens of km in diameter. Our experiments show that an impact into a highly porous cohesionless material generates a large ovoid-shaped cavity, due to crushing by the outgoing shock. The cavity opens up to form a transient crater that grows until the material flow is arrested by gravity. The cavity then collapses to form the final crater. During collapse, finely crushed material that lines the cavity wall is carried down and collected in a localized region below the final crater floor. At large simulated sizes (high accelerations), most of the crater volume is formed by compaction, because growth of the transient crater is quickly arrested. Nearly all ejected material falls back into the crater, leaving the crater without an ejecta blanket. We find that such compaction cratering and suppression of the ejecta blankets occur for large craters on porous bodies when the ratio of the lithostatic stress at one crater depth to the crush strength of the target exceeds ∼0.005. The results are used to identify small solar system bodies on which compaction cratering likely occurs. A model is developed that gives the crater size and ejecta mass that would result for a specified impact into a porous object.

  6. Porous Core-Shell Nanostructures for Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  7. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices.

    PubMed

    Jin, Han; Abu-Raya, Yasmin Shibli; Haick, Hossam

    2017-06-01

    Skin-based wearable devices have a great potential that could result in a revolutionary approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This article gives a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to recent advances and developments in the scope of skin-based wearable devices (e.g. temperature, strain, biomarker-analysis werable devices, etc.), with an emphasis on emerging materials and fabrication techniques in the relevant fields. To give a comprehensive statement, part of the review presents and discusses different aspects of these advanced materials, such as the sensitivity, biocompatibility and durability as well as the major approaches proposed for enhancing their chemical and physical properties. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are highlighted and criticized. Several ideas regarding further improvement of skin-based wearable devices are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Particulate-free porous silicon networks for efficient capacitive deionization water desalination

    PubMed Central

    Metke, Thomas; Westover, Andrew S.; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L.

    2016-01-01

    Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon – a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes. PMID:27101809

  9. Particulate-free porous silicon networks for efficient capacitive deionization water desalination.

    PubMed

    Metke, Thomas; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L

    2016-04-22

    Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon - a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes.

  10. Recent Advances in the Synthesis of High Explosive Materials

    DTIC Science & Technology

    2015-12-29

    explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials...This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary

  11. Advanced reflector materials for solar concentrators

    NASA Astrophysics Data System (ADS)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  12. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors.

    PubMed

    Wang, Lei; Mu, Guang; Tian, Chungui; Sun, Li; Zhou, Wei; Yu, Peng; Yin, Jie; Fu, Honggang

    2013-05-01

    Porous graphitic carbon nanosheets (PGCS) are synthesized by an in situ self-generating template strategy based on the carburized effect of iron with cornstalks. Cornstalks firstly coordinate with [Fe(CN)(6)](4-) ions to form the cornstalk-[Fe(CN)(6)](4-) precursor. After carbonization and removal of the catalyst, PGCS are obtained. Series experiments indicate that PGCS can only be formed when using an iron-based catalyst that can generate a carburized phase during the pyrolytic process. The unique structures of PGCS exhibit excellent capacitive performance. The PGCS-1-1100 sample (synthesized from 0.1 M [Fe(CN)(6)](4-) with a carbonization temperature of 1100 °C), which shows excellent electrochemical capacitance (up to 213 F g(-1) at 1 A g(-1)), cycling stability, and rate performance in 6 M KOH electrolyte. In the two-electrode symmetric supercapacitors, the maximum energy densities that can be achieved are as high as 9.4 and 61.3 Wh kg(-1) in aqueous and organic electrolytes, respectively. Moreover, high energy densities of 8.3 and 40.6 Wh kg(-1) are achieved at the high power density of 10.5 kW kg(-1) in aqueous and organic electrolytes, respectively. This strategy holds great promise for preparing PGCS from natural resources, including cornstalks, as advanced electrodes in supercapacitors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Surface modification of porous titanium with rice husk as space holder

    NASA Astrophysics Data System (ADS)

    Wang, Xinsheng; Hou, Junjian; Liu, Yanpei

    2018-06-01

    Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.

  14. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.

    2013-06-13

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-pointmore » metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find

  15. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  16. Porous Aromatic Framework 48/Gel Hybrid Material Coated Solid-Phase Microextraction Fiber for the Determination of the Migration of Styrene from Polystyrene Food Contact Materials.

    PubMed

    Jin, Yuanyuan; Li, Zhongyue; Yang, Lei; Xu, Jun; Zhao, Le; Li, Zhonghao; Niu, Jiajia

    2017-01-17

    A novel solid-phase microextraction (SPME) fiber was fabricated by a porous aromatic framework 48 (PAF-48)/gel hybrid material through a sol-gel process. PAF-48 is a porous organic framework (POF) material that was polymerized from 1,3,5-triphenylbenzene. The uniform pore structure, high surface area, continuous conjugate network, and hydrophobicity make PAF-48 expected to have special abilities to absorb and extract styrene as well as some other harmful volatile aromatic compounds (VACs). The PAF-48/gel-coated fiber was explored for the extraction of styrene and six VACs (benzene, toluene, ethylbenzene, and xylenes) from aqueous food simulants followed by gas chromatography (GC) separation. The fiber was found to be very sensitive for the determination of the target molecules with wide linear ranges (0.1-200 or 500 μg·kg -1 ), low limits of detection (LODs, 0.003-0.060 μg·kg -1 ), acceptable precisions (intraday relative standard deviation, RSD < 5.9%, interday RSD < 7.3%), and long lifetime (>200 times). Particularly for styrene, the PAF-48/gel-coated fiber exhibited a much lower LOD (0.006 μg·kg -1 ) compared with most of the reported fibers. Moreover, the PAF-48/gel-coated fiber had a high extraction selectivity for styrene and VACs over alcohols, phenols, aromatic amines, and alkanes and show a molecular sieving effect for the different molecule sizes. Finally, the PAF-48/gel-coated SPME fiber was successfully applied in GC for the determination of the specific migrations of styrene and VACs from polystyrene (PS) plastic food contact materials (FCMs).

  17. Advances in thermoelectric materials research: Looking back and moving forward.

    PubMed

    He, Jian; Tritt, Terry M

    2017-09-29

    High-performance thermoelectric materials lie at the heart of thermoelectrics, the simplest technology applicable to direct thermal-to-electrical energy conversion. In its recent 60-year history, the field of thermoelectric materials research has stalled several times, but each time it was rejuvenated by new paradigms. This article reviews several potentially paradigm-changing mechanisms enabled by defects, size effects, critical phenomena, anharmonicity, and the spin degree of freedom. These mechanisms decouple the otherwise adversely interdependent physical quantities toward higher material performance. We also briefly discuss a number of promising materials, advanced material synthesis and preparation techniques, and new opportunities. The renewable energy landscape will be reshaped if the current trend in thermoelectric materials research is sustained into the foreseeable future. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Porous MnCo2O4 as superior anode material over MnCo2O4 nanoparticles for rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Baji, Dona Susan; Jadhav, Harsharaj S.; Nair, Shantikumar V.; Rai, Alok Kumar

    2018-06-01

    Pyro synthesis is a method to coat nanoparticles by uniform layer of carbon without using any conventional carbon source. The resultant carbon coating can be evaporated in the form of CO or CO2 at high temperature with the creation of large number of nanopores on the sample surface. Hence, a porous MnCo2O4 is successfully synthesized here with the same above strategy. It is believed that the electrolyte can easily permeate through these nanopores into the bulk of the sample and allow rapid access of Li+ ions during charge/discharge cycling. In order to compare the superiority of the porous sample synthesized by pyro synthesis method, MnCo2O4 nanoparticles are also synthesized by sol-gel synthesis method at the same parameters. When tested as anode materials for lithium ion battery application, porous MnCo2O4 electrode shows high capacity with long lifespan at all the investigated current rates in comparison to MnCo2O4 nanoparticles electrode.

  19. Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material for ²⁹Si Magnetic Resonance Imaging.

    PubMed

    Seo, Hyeonglim; Choi, Ikjang; Whiting, Nicholas; Hu, Jingzhe; Luu, Quy Son; Pudakalakatti, Shivanand; McCowan, Caitlin; Kim, Yaewon; Zacharias, Niki; Lee, Seunghyun; Bhattacharya, Pratip; Lee, Youngbok

    2018-05-20

    Porous silicon nanoparticles have recently garnered attention as potentially-promising biomedical platforms for drug delivery and medical diagnostics. Here, we demonstrate porous silicon nanoparticles as contrast agents for ²⁹Si magnetic resonance imaging. Size-controlled porous silicon nanoparticles were synthesized by magnesiothermic reduction of silica nanoparticles and were surface activated for further functionalization. Particles were hyperpolarized via dynamic nuclear polarization to enhance their ²⁹Si MR signals; the particles demonstrated long ²⁹Si spin-lattice relaxation (T₁) times (~ 25 mins), which suggests potential applicability for medical imaging. Furthermore, ²⁹Si hyperpolarization levels were sufficient to allow ²⁹Si MRI in phantoms. These results underscore the potential of porous silicon nanoparticles that, when combined with hyperpolarized magnetic resonance imaging, can be a powerful theragnostic deep tissue imaging platform to interrogate various biomolecular processes in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Shockwave dynamics: a comparison between stochastic and periodic porous architectures

    NASA Astrophysics Data System (ADS)

    Branch, Brittany; Ionite, Axinte; Clements, Bradford; Montgomery, David; Schmalzer, Andrew; Patterson, Brian; Mueller, Alexander; Jensen, Brian; Dattelbaum, Dana

    Polymeric foams are used extensively as structural supports and load mitigating materials in which they are subjected to compressive loading at a range of strain rates, up to the high strain rates encountered in blast and shockwave loading. To date, there have been few insights into compaction phenomena in porous structures at the mesoscale, and the influence of structure on shockwave localization. Of particular interest is when the properties of the inherent mesoscopic, periodic structure begin to emerge, versus the discrete behavior of the individual cell. Here, we illustrate, for the first time, modulation of shockwave dynamics controlled at micron-length scales in additively manufactured periodic porous structures measured using in situ, time-resolved x-ray phase contrast imaging at the Advanced Photon Source. Further, we demonstrate how the shockwave dynamics in periodic structures differ from stochastic foams of similar density and we conclude that microstructural control in elastomer foams has a dramatic effect on shockwave dynamics and can be tailored towards a variety of applications. Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory (project# 20160103DR) and DOE/NNSA Campaign 2.