Sample records for advanced sampling techniques

  1. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    PubMed

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified

  2. ADVANCES IN PARTICLE SAMPLING AND MEASUREMENT

    EPA Science Inventory

    The paper, by five authorities who contributed significantly to the second symposium on advances to particle sampling and measurement (October 1979 in Daytona Beach, FL) summarizes salient developments in the field. Current techniques were described as being expensive, complicate...

  3. Advanced Curation Protocols for Mars Returned Sample Handling

    NASA Astrophysics Data System (ADS)

    Bell, M.; Mickelson, E.; Lindstrom, D.; Allton, J.

    Introduction: Johnson Space Center has over 30 years experience handling precious samples which include Lunar rocks and Antarctic meteorites. However, we recognize that future curation of samples from such missions as Genesis, Stardust, and Mars S mple Return, will require a high degree of biosafety combined witha extremely low levels of inorganic, organic, and biological contamination. To satisfy these requirements, research in the JSC Advanced Curation Lab is currently focused toward two major areas: preliminary examination techniques and cleaning and verification techniques . Preliminary Examination Techniques : In order to minimize the number of paths for contamination we are exploring the synergy between human &robotic sample handling in a controlled environment to help determine the limits of clean curation. Within the Advanced Curation Laboratory is a prototype, next-generation glovebox, which contains a robotic micromanipulator. The remotely operated manipulator has six degrees-of- freedom and can be programmed to perform repetitive sample handling tasks. Protocols are being tested and developed to perform curation tasks such as rock splitting, weighing, imaging, and storing. Techniques for sample transfer enabling more detailed remote examination without compromising the integrity of sample science are also being developed . The glovebox is equipped with a rapid transfer port through which samples can be passed without exposure. The transfer is accomplished by using a unique seal and engagement system which allows passage between containers while maintaining a first seal to the outside environment and a second seal to prevent the outside of the container cover and port door from becoming contaminated by the material being transferred. Cleaning and Verification Techniques: As part of the contamination control effort, innovative cleaning techniques are being identified and evaluated in conjunction with sensitive cleanliness verification methods. Towards this

  4. Advanced Curation Preparation for Mars Sample Return and Cold Curation

    NASA Technical Reports Server (NTRS)

    Fries, M. D.; Harrington, A. D.; McCubbin, F. M.; Mitchell, J.; Regberg, A. B.; Snead, C.

    2017-01-01

    NASA Curation is tasked with the care and distribution of NASA's sample collections, such as the Apollo lunar samples and cometary material collected by the Stardust spacecraft. Curation is also mandated to perform Advanced Curation research and development, which includes improving the curation of existing collections as well as preparing for future sample return missions. Advanced Curation has identified a suite of technologies and techniques that will require attention ahead of Mars sample return (MSR) and missions with cold curation (CCur) requirements, perhaps including comet sample return missions.

  5. Review of advanced imaging techniques

    PubMed Central

    Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737

  6. Advanced Navigation Strategies For Asteroid Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Getzandanner, K.; Bauman, J.; Williams, B.; Carpenter, J.

    2010-01-01

    Flyby and rendezvous missions to asteroids have been accomplished using navigation techniques derived from experience gained in planetary exploration. This paper presents analysis of advanced navigation techniques required to meet unique challenges for precision navigation to acquire a sample from an asteroid and return it to Earth. These techniques rely on tracking data types such as spacecraft-based laser ranging and optical landmark tracking in addition to the traditional Earth-based Deep Space Network radio metric tracking. A systematic study of navigation strategy, including the navigation event timeline and reduction in spacecraft-asteroid relative errors, has been performed using simulation and covariance analysis on a representative mission.

  7. Magnetic separation techniques in sample preparation for biological analysis: a review.

    PubMed

    He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke

    2014-12-01

    Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Advanced Navigation Strategies for an Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Bauman, J.; Getzandanner, K.; Williams, B.; Williams, K.

    2011-01-01

    The proximity operations phases of a sample return mission to an asteroid have been analyzed using advanced navigation techniques derived from experience gained in planetary exploration. These techniques rely on tracking types such as Earth-based radio metric Doppler and ranging, spacecraft-based ranging, and optical navigation using images of landmarks on the asteroid surface. Navigation strategies for the orbital phases leading up to sample collection, the touch down for collecting the sample, and the post sample collection phase at the asteroid are included. Options for successfully executing the phases are studied using covariance analysis and Monte Carlo simulations of an example mission to the near Earth asteroid 4660 Nereus. Two landing options were studied including trajectories with either one or two bums from orbit to the surface. Additionally, a comparison of post-sample collection strategies is presented. These strategies include remaining in orbit about the asteroid or standing-off a given distance until departure to Earth.

  9. Manipulation of biological samples using micro and nano techniques.

    PubMed

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable properties with physical transducers has been possible, giving rise to new and highly sensitive biosensing devices. This article reviews the different techniques available to manipulate and integrate biological materials in a controlled manner either by sliding them along a surface (2-D manipulation), by grapping them and moving them to a new position (3-D manipulation), or by manipulating and relocating them applying external forces. The advantages and drawbacks are mentioned together with examples that reflect the state of the art of manipulation techniques for biological samples (171 references).

  10. Advanced techniques in placental biology -- workshop report.

    PubMed

    Nelson, D M; Sadovsky, Y; Robinson, J M; Croy, B A; Rice, G; Kniss, D A

    2006-04-01

    Major advances in placental biology have been realized as new technologies have been developed and existing methods have been refined in many areas of biological research. Classical anatomy and whole-organ physiology tools once used to analyze placental structure and function have been supplanted by more sophisticated techniques adapted from molecular biology, proteomics, and computational biology and bioinformatics. In addition, significant refinements in morphological study of the placenta and its constituent cell types have improved our ability to assess form and function in highly integrated manner. To offer an overview of modern technologies used by investigators to study the placenta, this workshop: Advanced techniques in placental biology, assembled experts who discussed fundamental principles and real time examples of four separate methodologies. Y. Sadovsky presented the principles of microRNA function as an endogenous mechanism of gene regulation. J. Robinson demonstrated the utility of correlative microscopy in which light-level and transmission electron microscopy are combined to provide cellular and subcellular views of placental cells. A. Croy provided a lecture on the use of microdissection techniques which are invaluable for isolating very small subsets of cell types for molecular analysis. Finally, G. Rice presented an overview methods on profiling of complex protein mixtures within tissue and/or fluid samples that, when refined, will offer databases that will underpin a systems approach to modern trophoblast biology.

  11. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  12. Analysis of leading edge and trailing edge cover glass samples before and after treatment with advanced satellite contamination removal techniques

    NASA Technical Reports Server (NTRS)

    Hotaling, S. P.

    1993-01-01

    Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.

  13. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    PubMed

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  14. Advanced Curation of Current and Future Extraterrestrial Samples

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2013-01-01

    methods currently used. New analytical and screening techniques will increase the value of current sample collections. Improved web-based tools will make information on all samples more accessible to researchers and the public. Advanced curation of current and future extraterrestrial samples includes: Contamination Control - inorganic / organic Temperature of preservation - subfreezing / cryogenic Non-destructive preliminary examination - X-ray tomography / XRF mapping / Raman mapping Microscopic samples - handling / sectioning / transport Special samples - unopened lunar cores Informatics - online catalogs / community-based characterization.

  15. Two sampling techniques for game meat.

    PubMed

    van der Merwe, Maretha; Jooste, Piet J; Hoffman, Louw C; Calitz, Frikkie J

    2013-03-20

    A study was conducted to compare the excision sampling technique used by the export market and the sampling technique preferred by European countries, namely the biotrace cattle and swine test. The measuring unit for the excision sampling was grams (g) and square centimetres (cm2) for the swabbing technique. The two techniques were compared after a pilot test was conducted on spiked approved beef carcasses (n = 12) that statistically proved the two measuring units correlated. The two sampling techniques were conducted on the same game carcasses (n = 13) and analyses performed for aerobic plate count (APC), Escherichia coli and Staphylococcus aureus, for both techniques. A more representative result was obtained by swabbing and no damage was caused to the carcass. Conversely, the excision technique yielded fewer organisms and caused minor damage to the carcass. The recovery ratio from the sampling technique improved 5.4 times for APC, 108.0 times for E. coli and 3.4 times for S. aureus over the results obtained from the excision technique. It was concluded that the sampling methods of excision and swabbing can be used to obtain bacterial profiles from both export and local carcasses and could be used to indicate whether game carcasses intended for the local market are possibly on par with game carcasses intended for the export market and therefore safe for human consumption.

  16. Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: A minireview.

    PubMed

    Lü, Fan; Shao, Li-Ming; Zhang, Hua; Fu, Wen-Ding; Feng, Shi-Jin; Zhan, Liang-Tong; Chen, Yun-Min; He, Pin-Jing

    2018-01-01

    Bio-stability is a key feature for the utilization and final disposal of biowaste-derived residues, such as aerobic compost or vermicompost of food waste, bio-dried waste, anaerobic digestate or landfilled waste. The present paper reviews conventional methods and advanced techniques used for the assessment of bio-stability. The conventional methods are reclassified into two categories. Advanced techniques, including spectroscopic (fluorescent, ultraviolet-visible, infrared, Raman, nuclear magnetic resonance), thermogravimetric and thermochemolysis analysis, are emphasized for their application in bio-stability assessment in recent years. Their principles, pros and cons are critically discussed. These advanced techniques are found to be convenient in sample preparation and to supply diversified information. However, the viability of these techniques as potential indicators for bio-stability assessment ultimately lies in the establishment of the relationship of advanced ones with the conventional methods, especially with the methods based on biotic response. Furthermore, some misuses in data explanation should be noted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques.

    PubMed

    Kranz, Christine

    2014-01-21

    In recent years, major developments in scanning electrochemical microscopy (SECM) have significantly broadened the application range of this electroanalytical technique from high-resolution electrochemical imaging via nanoscale probes to large scale mapping using arrays of microelectrodes. A major driving force in advancing the SECM methodology is based on developing more sophisticated probes beyond conventional micro-disc electrodes usually based on noble metals or carbon microwires. This critical review focuses on the design and development of advanced electrochemical probes particularly enabling combinations of SECM with other analytical measurement techniques to provide information beyond exclusively measuring electrochemical sample properties. Consequently, this critical review will focus on recent progress and new developments towards multifunctional imaging.

  18. Review of online coupling of sample preparation techniques with liquid chromatography.

    PubMed

    Pan, Jialiang; Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-03-07

    Sample preparation is still considered as the bottleneck of the whole analytical procedure, and efforts has been conducted towards the automation, improvement of sensitivity and accuracy, and low comsuption of organic solvents. Development of online sample preparation techniques (SP) coupled with liquid chromatography (LC) is a promising way to achieve these goals, which has attracted great attention. This article reviews the recent advances on the online SP-LC techniques. Various online SP techniques have been described and summarized, including solid-phase-based extraction, liquid-phase-based extraction assisted with membrane, microwave assisted extraction, ultrasonic assisted extraction, accelerated solvent extraction and supercritical fluids extraction. Specially, the coupling approaches of online SP-LC systems and the corresponding interfaces have been discussed and reviewed in detail, such as online injector, autosampler combined with transport unit, desorption chamber and column switching. Typical applications of the online SP-LC techniques have been summarized. Then the problems and expected trends in this field are attempted to be discussed and proposed in order to encourage the further development of online SP-LC techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Advanced overlay: sampling and modeling for optimized run-to-run control

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.

    2016-03-01

    In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to

  20. Nonuniform sampling techniques for antenna applications

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya; Cheung, Rudolf Lap-Tung

    1987-01-01

    A two-dimensional sampling technique, which can employ irregularly spaced samples (amplitude and phase) in order to generate the complete far-field patterns is presented. The technique implements a matrix inversion algorithm, which depends only on the nonuniform sampled data point locations and with no dependence on the actual field values at these points. A powerful simulation algorithm is presented to allow a real-life simulation of many reflector/feed configurations and to determine the usefulness of the nonuniform sampling technique for the copolar and cross-polar patterns. Additionally, an overlapped window concept and a generalized error simulation model are discussed to identify the stability of the technique for recovering the field data among the nonuniform sampled data. Numerical results are tailored for the pattern reconstruction of a 20-m offset reflector antenna operating at L-band. This reflector is planned to be used in a proposed measurement concept of large antenna aboard the Space Shuttle, whereby it would be almost impractical to accurately control the movement of the Shuttle with respect to the RF source in prescribed directions in order to generate uniform sampled points. Also, application of the nonuniform sampling technique to patterns obtained using near-field measured data is demonstrated. Finally, results of an actual far-field measurement are presented for the construction of patterns of a reflector antenna from a set of nonuniformly distributed measured amplitude and phase data.

  1. Misrepresenting random sampling? A systematic review of research papers in the Journal of Advanced Nursing.

    PubMed

    Williamson, Graham R

    2003-11-01

    This paper discusses the theoretical limitations of the use of random sampling and probability theory in the production of a significance level (or P-value) in nursing research. Potential alternatives, in the form of randomization tests, are proposed. Research papers in nursing, medicine and psychology frequently misrepresent their statistical findings, as the P-values reported assume random sampling. In this systematic review of studies published between January 1995 and June 2002 in the Journal of Advanced Nursing, 89 (68%) studies broke this assumption because they used convenience samples or entire populations. As a result, some of the findings may be questionable. The key ideas of random sampling and probability theory for statistical testing (for generating a P-value) are outlined. The result of a systematic review of research papers published in the Journal of Advanced Nursing is then presented, showing how frequently random sampling appears to have been misrepresented. Useful alternative techniques that might overcome these limitations are then discussed. REVIEW LIMITATIONS: This review is limited in scope because it is applied to one journal, and so the findings cannot be generalized to other nursing journals or to nursing research in general. However, it is possible that other nursing journals are also publishing research articles based on the misrepresentation of random sampling. The review is also limited because in several of the articles the sampling method was not completely clearly stated, and in this circumstance a judgment has been made as to the sampling method employed, based on the indications given by author(s). Quantitative researchers in nursing should be very careful that the statistical techniques they use are appropriate for the design and sampling methods of their studies. If the techniques they employ are not appropriate, they run the risk of misinterpreting findings by using inappropriate, unrepresentative and biased samples.

  2. Advanced sampling techniques for hand-held FT-IR instrumentation

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Frunzi, Michael; Weber, Chris; Levy, Dustin

    2013-05-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenging ConOps in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, extreme reliability, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the HazMatID™ Elite, a FT-IR instrument designed to balance the portability advantages of a handheld device with the performance challenges associated with miniaturization. In this paper, special focus will be given to the HazMatID Elite's sampling interfaces optimized to collect and interrogate different types of samples: accumulated material using the on-board ATR press, dispersed powders using the ClearSampler™ tool, and the touch-to-sample sensor for direct liquid sampling. The application of the novel sample swipe accessory (ClearSampler) to collect material from surfaces will be discussed in some detail. The accessory was tested and evaluated for the detection of explosive residues before and after detonation. Experimental results derived from these investigations will be described in an effort to outline the advantages of this technology over existing sampling methods.

  3. Advanced techniques to prepare seed to sow

    Treesearch

    Robert P. Karrfalt

    2013-01-01

    This paper reviews research on improving the basic technique of cold stratification for tree and shrub seeds. Advanced stratification techniques include long stratification, stratification re-dry, or multiple cycles of warm-cold stratification. Research demonstrates that careful regulation of moisture levels and lengthening the stratification period have produced a...

  4. Critical evaluation of sample pretreatment techniques.

    PubMed

    Hyötyläinen, Tuulia

    2009-06-01

    Sample preparation before chromatographic separation is the most time-consuming and error-prone part of the analytical procedure. Therefore, selecting and optimizing an appropriate sample preparation scheme is a key factor in the final success of the analysis, and the judicious choice of an appropriate procedure greatly influences the reliability and accuracy of a given analysis. The main objective of this review is to critically evaluate the applicability, disadvantages, and advantages of various sample preparation techniques. Particular emphasis is placed on extraction techniques suitable for both liquid and solid samples.

  5. [Advance in interferogram data processing technique].

    PubMed

    Jing, Juan-Juan; Xiangli, Bin; Lü, Qun-Bo; Huang, Min; Zhou, Jin-Song

    2011-04-01

    Fourier transform spectrometry is a type of novel information obtaining technology, which integrated the functions of imaging and spectra, but the data that the instrument acquired is the interference data of the target, which is an intermediate data and couldn't be used directly, so data processing must be adopted for the successful application of the interferometric data In the present paper, data processing techniques are divided into two classes: general-purpose and special-type. First, the advance in universal interferometric data processing technique is introduced, then the special-type interferometric data extracting method and data processing technique is illustrated according to the classification of Fourier transform spectroscopy. Finally, the trends of interferogram data processing technique are discussed.

  6. Comparative study of nail sampling techniques in onychomycosis.

    PubMed

    Shemer, Avner; Davidovici, Batya; Grunwald, Marcelo H; Trau, Henri; Amichai, Boaz

    2009-07-01

    Onychomycosis is a common problem. Obtaining accurate laboratory test results before treatment is important in clinical practice. The purpose of this study was to compare results of curettage and drilling techniques of nail sampling in the diagnosis of onychomycosis, and to establish the best technique and location of sampling. We evaluated 60 patients suffering from distal and lateral subungual onychomycosis and lateral subungual onychomycosis using curettage and vertical and horizontal drilling sampling techniques from three different sites of the infected nail. KOH examination and fungal culture were used for detection and identification of fungal infection. At each sample site, the horizontal drilling technique has a better culture sensitivity than curettage. Trichophyton rubrum was by far the most common pathogen detected by both techniques from all sampling sites. The drilling technique was found to be statistically better than curettage at each site of sampling, furthermore vertical drilling from the proximal part of the affected nail was found to be the best procedure for nail sampling. With each technique we found that the culture sensitivity improved as the location of the sample was more proximal. More types of pathogens were detected in samples taken by both methods from proximal parts of the affected nails.

  7. Advanced Curation: Solving Current and Future Sample Return Problems

    NASA Technical Reports Server (NTRS)

    Fries, M.; Calaway, M.; Evans, C.; McCubbin, F.

    2015-01-01

    Advanced Curation is a wide-ranging and comprehensive research and development effort at NASA Johnson Space Center that identifies and remediates sample related issues. For current collections, Advanced Curation investigates new cleaning, verification, and analytical techniques to assess their suitability for improving curation processes. Specific needs are also assessed for future sample return missions. For each need, a written plan is drawn up to achieve the requirement. The plan draws while upon current Curation practices, input from Curators, the analytical expertise of the Astromaterials Research and Exploration Science (ARES) team, and suitable standards maintained by ISO, IEST, NIST and other institutions. Additionally, new technologies are adopted on the bases of need and availability. Implementation plans are tested using customized trial programs with statistically robust courses of measurement, and are iterated if necessary until an implementable protocol is established. Upcoming and potential NASA missions such as OSIRIS-REx, the Asteroid Retrieval Mission (ARM), sample return missions in the New Frontiers program, and Mars sample return (MSR) all feature new difficulties and specialized sample handling requirements. The Mars 2020 mission in particular poses a suite of challenges since the mission will cache martian samples for possible return to Earth. In anticipation of future MSR, the following problems are among those under investigation: What is the most efficient means to achieve the less than 1.0 ng/sq cm total organic carbon (TOC) cleanliness required for all sample handling hardware? How do we maintain and verify cleanliness at this level? The Mars 2020 Organic Contamination Panel (OCP) predicts that organic carbon, if present, will be present at the "one to tens" of ppb level in martian near-surface samples. The same samples will likely contain wt% perchlorate salts, or approximately 1,000,000x as much perchlorate oxidizer as organic carbon

  8. Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques

    NASA Technical Reports Server (NTRS)

    Rahmatsamii, Y.

    1988-01-01

    Future satellite communication and scientific spacecraft will utilize antennas with dimensions as large as 20 meters. In order to commercially use these large, low sidelobe and multiple beam antennas, a high level of confidence must be established as to their performance in the 0-g and space environment. Furthermore, it will be desirable to demonstrate the applicability of surface compensation techniques for slowly varying surface distortions which could result from thermal effects. An overview of recent advances in performing RF measurements on large antennas is presented with emphasis given to the application of a space based far-field range utilizing the Space Shuttle and the concept of a newly developed nonuniform sampling technique.

  9. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  10. Wafer hot spot identification through advanced photomask characterization techniques

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2016-10-01

    As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.

  11. Teaching advanced wound closure techniques using cattle digits.

    PubMed

    Khalil, Philipe N; Kanz, Karl-Georg; Siebeck, Matthias; Mutschler, Wolf

    2011-03-01

    To evaluate a model used to impart advanced wound closure skills because available models do not meet the necessary requirements to a substantial degree. Seventy-one residents were asked to evaluate a 75-minute-long skills course using cadaveric cattle digits to learn Z-plasty, V-Y-plasty, and oval-shaped rotational flaps. A short film and the course instructor demonstrated each technique first. A Likert rating scale ranging from 1 to 6 was used for questions in the survey given to the residents. There was strong agreement among residents (1.65 ± 1.17 years of experience) that advanced wound closure training courses are necessary (5.73 ± 0.73), which corresponded to the residents' low level of knowledge and self-assessment of practical skills and present experience (2.84 ± 1.01). The course was evaluated with high acceptance, even though it was found to be demanding for the trainees (5.84 ± 0.40). This might also be related to the high rating of the model itself, which was found to be a suitable method for teaching advanced wound closure techniques (5.50 ± 0.71) that was easily comprehensible (5.73 ± 0.53). Skills training courses for young trainees are warranted to impart advanced wound closure techniques. The curriculum using cattle digits presented here is recommended. The authors have indicated no significant interest with commercial supporters. © 2011 by the American Society for Dermatologic Surgery, Inc.

  12. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples

    PubMed Central

    Feist, Peter; Hummon, Amanda B.

    2015-01-01

    Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed. PMID:25664860

  13. Non-terminal blood sampling techniques in guinea pigs.

    PubMed

    Birck, Malene M; Tveden-Nyborg, Pernille; Lindblad, Maiken M; Lykkesfeldt, Jens

    2014-10-11

    Guinea pigs possess several biological similarities to humans and are validated experimental animal models(1-3). However, the use of guinea pigs currently represents a relatively narrow area of research and descriptive data on specific methodology is correspondingly scarce. The anatomical features of guinea pigs are slightly different from other rodent models, hence modulation of sampling techniques to accommodate for species-specific differences, e.g., compared to mice and rats, are necessary to obtain sufficient and high quality samples. As both long and short term in vivo studies often require repeated blood sampling the choice of technique should be well considered in order to reduce stress and discomfort in the animals but also to ensure survival as well as compliance with requirements of sample size and accessibility. Venous blood samples can be obtained at a number of sites in guinea pigs e.g., the saphenous and jugular veins, each technique containing both advantages and disadvantages(4,5). Here, we present four different blood sampling techniques for either conscious or anaesthetized guinea pigs. The procedures are all non-terminal procedures provided that sample volumes and number of samples do not exceed guidelines for blood collection in laboratory animals(6). All the described methods have been thoroughly tested and applied for repeated in vivo blood sampling in studies within our research facility.

  14. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments.

    PubMed

    Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J

    2014-11-01

    Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.

  15. Sonic Fatigue Design Techniques for Advanced Composite Aircraft Structures

    DTIC Science & Technology

    1980-04-01

    AFWAL-TR-80.3019 AD A 090553 SONIC FATIGUE DESIGN TECHNIQUES FOR ADVANCED COMPOSITE AIRCRAFT STRUCTURES FINAL REPORT Ian Holehouse Rohr Industries...5 2. General Sonic Fatigue Theory .... ....... 7 3. Composite Laminate Analysis .. ....... ... 10 4. Preliminary Sonic Fatigue...overall sonic fatigue design guides. These existing desiyn methcds have been developed for metal structures. However, recent advanced composite

  16. Advanced neuroimaging techniques for the term newborn with encephalopathy.

    PubMed

    Chau, Vann; Poskitt, Kenneth John; Miller, Steven Paul

    2009-03-01

    Neonatal encephalopathy is associated with a high risk of morbidity and mortality in the neonatal period and of long-term neurodevelopmental disability in survivors. Advanced magnetic resonance techniques now play a major role in the clinical care of newborns with encephalopathy and in research addressing this important condition. From conventional magnetic resonance imaging, typical patterns of injury have been defined in neonatal encephalopathy. When applied in contemporary cohorts of newborns with encephalopathy, the patterns of brain injury on magnetic resonance imaging distinguish risk factors, clinical presentation, and risk of abnormal outcome. Advanced magnetic resonance techniques such as magnetic resonance spectroscopy, diffusion-weighted imaging, and diffusion tensor imaging provide novel perspectives on neonatal brain metabolism, microstructure, and connectivity. With the application of these imaging tools, it is increasingly apparent that brain injury commonly occurs at or near the time of birth and evolves over the first weeks of life. These observations have complemented findings from trials of emerging strategies of brain protection, such as hypothermia. Application of these advanced magnetic resonance techniques may enable the earliest possible identification of newborns at risk of neurodevelopmental impairment, thereby ensuring appropriate follow-up with rehabilitation and psychoeducational resources.

  17. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  18. Arsenic, Antimony, Chromium, and Thallium Speciation in Water and Sediment Samples with the LC-ICP-MS Technique

    PubMed Central

    Jabłońska-Czapla, Magdalena

    2015-01-01

    Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962

  19. Advances in Testing Techniques for Digital Microfluidic Biochips

    PubMed Central

    Shukla, Vineeta; Hussin, Fawnizu Azmadi; Hamid, Nor Hisham; Zain Ali, Noohul Basheer

    2017-01-01

    With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips. PMID:28749411

  20. Advances in Testing Techniques for Digital Microfluidic Biochips.

    PubMed

    Shukla, Vineeta; Hussin, Fawnizu Azmadi; Hamid, Nor Hisham; Zain Ali, Noohul Basheer

    2017-07-27

    With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips.

  1. Wastewater Sampling Methodologies and Flow Measurement Techniques.

    ERIC Educational Resources Information Center

    Harris, Daniel J.; Keffer, William J.

    This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA),…

  2. Recent advances in stable isotope labeling based techniques for proteome relative quantification.

    PubMed

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2014-10-24

    The large scale relative quantification of all proteins expressed in biological samples under different states is of great importance for discovering proteins with important biological functions, as well as screening disease related biomarkers and drug targets. Therefore, the accurate quantification of proteins at proteome level has become one of the key issues in protein science. Herein, the recent advances in stable isotope labeling based techniques for proteome relative quantification were reviewed, from the aspects of metabolic labeling, chemical labeling and enzyme-catalyzed labeling. Furthermore, the future research direction in this field was prospected. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Advanced wiring technique and hardware application: Airplane and space vehicle

    NASA Technical Reports Server (NTRS)

    Ernst, H. L.; Eichman, C. D.

    1972-01-01

    An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.

  4. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments

    PubMed Central

    Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J

    2014-01-01

    Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments. PMID:25485128

  5. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  6. Advanced Diffusion-Weighted Magnetic Resonance Imaging Techniques of the Human Spinal Cord

    PubMed Central

    Andre, Jalal B.; Bammer, Roland

    2012-01-01

    Unlike those of the brain, advances in diffusion-weighted imaging (DWI) of the human spinal cord have been challenged by the more complicated and inhomogeneous anatomy of the spine, the differences in magnetic susceptibility between adjacent air and fluid-filled structures and the surrounding soft tissues, and the inherent limitations of the initially used echo-planar imaging techniques used to image the spine. Interval advances in DWI techniques for imaging the human spinal cord, with the specific aims of improving the diagnostic quality of the images, and the simultaneous reduction in unwanted artifacts have resulted in higher-quality images that are now able to more accurately portray the complicated underlying anatomy and depict pathologic abnormality with improved sensitivity and specificity. Diffusion tensor imaging (DTI) has benefited from the advances in DWI techniques, as DWI images form the foundation for all tractography and DTI. This review provides a synopsis of the many recent advances in DWI of the human spinal cord, as well as some of the more common clinical uses for these techniques, including DTI and tractography. PMID:22158130

  7. Visible light scatter measurements of the Advanced X-ray Astronomical Facility /AXAF/ mirror samples

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1981-01-01

    NASA is studying the properties of mirror surfaces for X-ray telescopes, the data of which will be used to develop the telescope system for the Advanced X-ray Astronomical Facility. Visible light scatter measurements, using a computer controlled scanner, are made of various mirror samples to determine surface roughness. Total diffuse scatter is calculated using numerical integration techniques and used to estimate the rms surface roughness. The data measurements are then compared with X-ray scatter measurements of the same samples. A summary of the data generated is presented, along with graphs showing changes in scatter on samples before and after cleaning. Results show that very smooth surfaces can be polished on the common substrate materials (from 2 to 10 Angstroms), and nickel appears to give the lowest visible light scatter.

  8. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  9. Nose biopsy: a comparison between two sampling techniques.

    PubMed

    Segal, Nili; Osyntsov, Lidia; Olchowski, Judith; Kordeluk, Sofia; Plakht, Ygal

    2016-06-01

    Pre operative biopsy is important in obtaining preliminary information that may help in tailoring the optimal treatment. The aim of this study was to compare two sampling techniques of obtaining nasal biopsy-nasal forceps and nasal scissors in terms of pathological results. Biopsies of nasal lesions were taken from patients undergoing nasal surgery by two techniques- with nasal forceps and with nasal scissors. Each sample was examined by a senior pathologist that was blinded to the sampling method. A grading system was used to rate the crush artifact in every sample (none, mild, moderate, severe). A comparison was made between the severity of the crush artifact and the pathological results of the two techniques. One hundred and forty-four samples were taken from 46 patients. Thirty-one were males and the mean age was 49.6 years. Samples taken by forceps had significantly higher grades of crush artifacts compared to those taken by scissors. The degree of crush artifacts had a significant influence on the accuracy of the pre operative biopsy. Forceps cause significant amount of crush artifacts compared to scissors. The degree of crush artifact in the tissue sample influences the accuracy of the biopsy.

  10. Using Candy Samples to Learn about Sampling Techniques and Statistical Data Evaluation

    ERIC Educational Resources Information Center

    Canaes, Larissa S.; Brancalion, Marcel L.; Rossi, Adriana V.; Rath, Susanne

    2008-01-01

    A classroom exercise for undergraduate and beginning graduate students that takes about one class period is proposed and discussed. It is an easy, interesting exercise that demonstrates important aspects of sampling techniques (sample amount, particle size, and the representativeness of the sample in relation to the bulk material). The exercise…

  11. Advanced Communication Processing Techniques

    NASA Astrophysics Data System (ADS)

    Scholtz, Robert A.

    This document contains the proceedings of the workshop Advanced Communication Processing Techniques, held May 14 to 17, 1989, near Ruidoso, New Mexico. Sponsored by the Army Research Office (under Contract DAAL03-89-G-0016) and organized by the Communication Sciences Institute of the University of Southern California, the workshop had as its objective to determine those applications of intelligent/adaptive communication signal processing that have been realized and to define areas of future research. We at the Communication Sciences Institute believe that there are two emerging areas which deserve considerably more study in the near future: (1) Modulation characterization, i.e., the automation of modulation format recognition so that a receiver can reliably demodulate a signal without using a priori information concerning the signal's structure, and (2) the incorporation of adaptive coding into communication links and networks. (Encoders and decoders which can operate with a wide variety of codes exist, but the way to utilize and control them in links and networks is an issue). To support these two new interest areas, one must have both a knowledge of (3) the kinds of channels and environments in which the systems must operate, and of (4) the latest adaptive equalization techniques which might be employed in these efforts.

  12. Novel and Advanced Techniques for Complex IVC Filter Retrieval.

    PubMed

    Daye, Dania; Walker, T Gregory

    2017-04-01

    Inferior vena cava (IVC) filter placement is indicated for the treatment of venous thromboembolism (VTE) in patients with a contraindication to or a failure of anticoagulation. With the advent of retrievable IVC filters and their ease of placement, an increasing number of such filters are being inserted for prophylaxis in patients at high risk for VTE. Available data show that only a small number of these filters are retrieved within the recommended period, if at all, prompting the FDA to issue a statement on the need for their timely removal. With prolonged dwell times, advanced techniques may be needed for filter retrieval in up to 60% of the cases. In this article, we review standard and advanced IVC filter retrieval techniques including single-access, dual-access, and dissection techniques. Complicated filter retrievals carry a non-negligible risk for complications such as filter fragmentation and resultant embolization of filter components, venous pseudoaneurysms or stenoses, and breach of the integrity of the caval wall. Careful pre-retrieval assessment of IVC filter position, any significant degree of filter tilting or of hook, and/or strut epithelialization and caval wall penetration by filter components should be considered using dedicated cross-sectional imaging for procedural planning. In complex cases, the risk for retrieval complications should be carefully weighed against the risks of leaving the filter permanently indwelling. The decision to remove an embedded IVC filter using advanced techniques should be individualized to each patient and made with caution, based on the patient's age and existing comorbidities.

  13. Study of sample drilling techniques for Mars sample return missions

    NASA Technical Reports Server (NTRS)

    Mitchell, D. C.; Harris, P. T.

    1980-01-01

    To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed.

  14. Application of Advanced Nondestructive Evaluation Techniques for Cylindrical Composite Test Samples

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Roth, Donald J.; Salem, Jonathan A.

    2013-01-01

    Two nondestructive methods were applied to composite cylinder samples pressurized to failure in order to determine manufacturing quality and monitor damage progression under load. A unique computed tomography (CT) image processing methodology developed at NASA Glenn Research was used to assess the condition of the as-received samples while acoustic emission (AE) monitoring was used to identify both the extent and location of damage within the samples up to failure. Results show the effectiveness of both of these methods in identifying potentially critical fabrication issues and their resulting impact on performance.

  15. The Importance of Introductory Statistics Students Understanding Appropriate Sampling Techniques

    ERIC Educational Resources Information Center

    Menil, Violeta C.

    2005-01-01

    In this paper the author discusses the meaning of sampling, the reasons for sampling, the Central Limit Theorem, and the different techniques of sampling. Practical and relevant examples are given to make the appropriate sampling techniques understandable to students of Introductory Statistics courses. With a thorough knowledge of sampling…

  16. REVIEW ARTICLE: Emission measurement techniques for advanced powertrains

    NASA Astrophysics Data System (ADS)

    Adachi, Masayuki

    2000-10-01

    Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

  17. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  18. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  19. Enhanced sampling techniques in biomolecular simulations.

    PubMed

    Spiwok, Vojtech; Sucur, Zoran; Hosek, Petr

    2015-11-01

    Biomolecular simulations are routinely used in biochemistry and molecular biology research; however, they often fail to match expectations of their impact on pharmaceutical and biotech industry. This is caused by the fact that a vast amount of computer time is required to simulate short episodes from the life of biomolecules. Several approaches have been developed to overcome this obstacle, including application of massively parallel and special purpose computers or non-conventional hardware. Methodological approaches are represented by coarse-grained models and enhanced sampling techniques. These techniques can show how the studied system behaves in long time-scales on the basis of relatively short simulations. This review presents an overview of new simulation approaches, the theory behind enhanced sampling methods and success stories of their applications with a direct impact on biotechnology or drug design. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Advanced decision aiding techniques applicable to space

    NASA Technical Reports Server (NTRS)

    Kruchten, Robert J.

    1987-01-01

    RADC has had an intensive program to show the feasibility of applying advanced technology to Air Force decision aiding situations. Some aspects of the program, such as Satellite Autonomy, are directly applicable to space systems. For example, RADC has shown the feasibility of decision aids that combine the advantages of laser disks and computer generated graphics; decision aids that interface object-oriented programs with expert systems; decision aids that solve path optimization problems; etc. Some of the key techniques that could be used in space applications are reviewed. Current applications are reviewed along with their advantages and disadvantages, and examples are given of possible space applications. The emphasis is to share RADC experience in decision aiding techniques.

  1. Multiple sensitive estimation and optimal sample size allocation in the item sum technique.

    PubMed

    Perri, Pier Francesco; Rueda García, María Del Mar; Cobo Rodríguez, Beatriz

    2018-01-01

    For surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown population means are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir

    2018-03-01

    The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.

  3. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  4. Differences in sampling techniques on total post-mortem tryptase.

    PubMed

    Tse, R; Garland, J; Kesha, K; Elstub, H; Cala, A D; Ahn, Y; Stables, S; Palmiere, C

    2018-05-01

    The measurement of mast cell tryptase is commonly used to support the diagnosis of anaphylaxis. In the post-mortem setting, the literature recommends sampling from peripheral blood sources (femoral blood) but does not specify the exact sampling technique. Sampling techniques vary between pathologists, and it is unclear whether different sampling techniques have any impact on post-mortem tryptase levels. The aim of this study is to compare the difference in femoral total post-mortem tryptase levels between two sampling techniques. A 6-month retrospective study comparing femoral total post-mortem tryptase levels between (1) aspirating femoral vessels with a needle and syringe prior to evisceration and (2) femoral vein cut down during evisceration. Twenty cases were identified, with three cases excluded from analysis. There was a statistically significant difference (paired t test, p < 0.05) between mean post-mortem tryptase by aspiration (10.87 ug/L) and by cut down (14.15 ug/L). The mean difference between the two methods was 3.28 ug/L (median, 1.4 ug/L; min, - 6.1 ug/L; max, 16.5 ug/L; 95% CI, 0.001-6.564 ug/L). Femoral total post-mortem tryptase is significantly different, albeit by a small amount, between the two sampling methods. The clinical significance of this finding and what factors may contribute to it are unclear. When requesting post-mortem tryptase, the pathologist should consider documenting the exact blood collection site and method used for collection. In addition, blood samples acquired by different techniques should not be mixed together and should be analyzed separately if possible.

  5. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  6. Analytical techniques for steroid estrogens in water samples - A review.

    PubMed

    Fang, Ting Yien; Praveena, Sarva Mangala; deBurbure, Claire; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Rasdi, Irniza

    2016-12-01

    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  8. A visual training tool for the Photoload sampling technique

    Treesearch

    Violet J. Holley; Robert E. Keane

    2010-01-01

    This visual training aid is designed to provide Photoload users a tool to increase the accuracy of fuel loading estimations when using the Photoload technique. The Photoload Sampling Technique (RMRS-GTR-190) provides fire managers a sampling method for obtaining consistent, accurate, inexpensive, and quick estimates of fuel loading. It is designed to require only one...

  9. Recent advances of mesoporous materials in sample preparation.

    PubMed

    Zhao, Liang; Qin, Hongqiang; Wu, Ren'an; Zou, Hanfa

    2012-03-09

    Sample preparation has been playing an important role in the analysis of complex samples. Mesoporous materials as the promising adsorbents have gained increasing research interest in sample preparation due to their desirable characteristics of high surface area, large pore volume, tunable mesoporous channels with well defined pore-size distribution, controllable wall composition, as well as modifiable surface properties. The aim of this paper is to review the recent advances of mesoporous materials in sample preparation with emphases on extraction of metal ions, adsorption of organic compounds, size selective enrichment of peptides/proteins, specific capture of post-translational peptides/proteins and enzymatic reactor for protein digestion. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects.

    PubMed

    Biswas, Abhijit; Bayer, Ilker S; Biris, Alexandru S; Wang, Tao; Dervishi, Enkeleda; Faupel, Franz

    2012-01-15

    This review highlights the most significant advances of the nanofabrication techniques reported over the past decade with a particular focus on the approaches tailored towards the fabrication of functional nano-devices. The review is divided into two sections: top-down and bottom-up nanofabrication. Under the classification of top-down, special attention is given to technical reports that demonstrate multi-directional patterning capabilities less than or equal to 100 nm. These include recent advances in lithographic techniques, such as optical, electron beam, soft, nanoimprint, scanning probe, and block copolymer lithography. Bottom-up nanofabrication techniques--such as, atomic layer deposition, sol-gel nanofabrication, molecular self-assembly, vapor-phase deposition and DNA-scaffolding for nanoelectronics--are also discussed. Specifically, we describe advances in the fabrication of functional nanocomposites and graphene using chemical and physical vapor deposition. Our aim is to provide a comprehensive platform for prominent nanofabrication tools and techniques in order to facilitate the development of new or hybrid nanofabrication techniques leading to novel and efficient functional nanostructured devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Investigation of spectral analysis techniques for randomly sampled velocimetry data

    NASA Technical Reports Server (NTRS)

    Sree, Dave

    1993-01-01

    It is well known that velocimetry (LV) generates individual realization velocity data that are randomly or unevenly sampled in time. Spectral analysis of such data to obtain the turbulence spectra, and hence turbulence scales information, requires special techniques. The 'slotting' technique of Mayo et al, also described by Roberts and Ajmani, and the 'Direct Transform' method of Gaster and Roberts are well known in the LV community. The slotting technique is faster than the direct transform method in computation. There are practical limitations, however, as to how a high frequency and accurate estimate can be made for a given mean sampling rate. These high frequency estimates are important in obtaining the microscale information of turbulence structure. It was found from previous studies that reliable spectral estimates can be made up to about the mean sampling frequency (mean data rate) or less. If the data were evenly samples, the frequency range would be half the sampling frequency (i.e. up to Nyquist frequency); otherwise, aliasing problem would occur. The mean data rate and the sample size (total number of points) basically limit the frequency range. Also, there are large variabilities or errors associated with the high frequency estimates from randomly sampled signals. Roberts and Ajmani proposed certain pre-filtering techniques to reduce these variabilities, but at the cost of low frequency estimates. The prefiltering acts as a high-pass filter. Further, Shapiro and Silverman showed theoretically that, for Poisson sampled signals, it is possible to obtain alias-free spectral estimates far beyond the mean sampling frequency. But the question is, how far? During his tenure under 1993 NASA-ASEE Summer Faculty Fellowship Program, the author investigated from his studies on the spectral analysis techniques for randomly sampled signals that the spectral estimates can be enhanced or improved up to about 4-5 times the mean sampling frequency by using a suitable

  13. Advanced flow MRI: emerging techniques and applications

    PubMed Central

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  14. Comparative Evaluation of Two Venous Sampling Techniques for the Assessment of Pancreatic Insulin and Zinc Release upon Glucose Challenge.

    PubMed

    Pillai, Anil Kumar; Silvers, William; Christensen, Preston; Riegel, Matthew; Adams-Huet, Beverley; Lingvay, Ildiko; Sun, Xiankai; Öz, Orhan K

    2015-01-01

    Advances in noninvasive imaging modalities have provided opportunities to study β cell function through imaging zinc release from insulin secreting β cells. Understanding the temporal secretory pattern of insulin and zinc corelease after a glucose challenge is essential for proper timing of administration of zinc sensing probes. Portal venous sampling is an essential part of pharmacological and nutritional studies in animal models. The purpose of this study was to compare two different percutaneous image-guided techniques: transhepatic ultrasound guided portal vein access and transsplenic fluoroscopy guided splenic vein access for ease of access, safety, and evaluation of temporal kinetics of insulin and zinc release into the venous effluent from the pancreas. Both techniques were safe, reproducible, and easy to perform. The mean time required to obtain desired catheter position for venous sampling was 15 minutes shorter using the transsplenic technique. A clear biphasic insulin release profile was observed in both techniques. Statistically higher insulin concentration but similar zinc release after a glucose challenge was observed from splenic vein samples, as compared to the ones from the portal vein. To our knowledge, this is the first report of percutaneous methods to assess zinc release kinetics from the porcine pancreas.

  15. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  16. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  17. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  18. Sampling techniques for thrips (Thysanoptera: Thripidae) in preflowering tomato.

    PubMed

    Joost, P Houston; Riley, David G

    2004-08-01

    Sampling techniques for thrips (Thysanoptera: Thripidae) were compared in preflowering tomato plants at the Coastal Plain Experiment Station in Tifton, GA, in 2000 and 2003, to determine the most effective method of determining abundance of thrips on tomato foliage early in the growing season. Three relative sampling techniques, including a standard insect aspirator, a 946-ml beat cup, and an insect vacuum device, were compared for accuracy to an absolute method and to themselves for precision and efficiency of sampling thrips. Thrips counts of all relative sampling methods were highly correlated (R > 0.92) to the absolute method. The aspirator method was the most accurate compared with the absolute sample according to regression analysis in 2000. In 2003, all sampling methods were considered accurate according to Dunnett's test, but thrips numbers were lower and sample variation was greater than in 2000. In 2000, the beat cup method had the lowest relative variation (RV) or best precision, at 1 and 8 d after transplant (DAT). Only the beat cup method had RV values <25 for all sampling dates. In 2003, the beat cup method had the lowest RV value at 15 and 21 DAT. The beat cup method also was the most efficient method for all sample dates in both years. Frankliniella fusca (Pergande) was the most abundant thrips species on the foliage of preflowering tomato in both years of study at this location. Overall, the best thrips sampling technique tested was the beat cup method in terms of precision and sampling efficiency.

  19. Endoscopic therapy for early gastric cancer: Standard techniques and recent advances in ESD

    PubMed Central

    Kume, Keiichiro

    2014-01-01

    The technique of endoscopic submucosal dissection (ESD) is now a well-known endoscopic therapy for early gastric cancer. ESD was introduced to resect large specimens of early gastric cancer in a single piece. ESD can provide precision of histologic diagnosis and can also reduce the recurrence rate. However, the drawback of ESD is its technical difficulty, and, consequently, it is associated with a high rate of complications, the need for advanced endoscopic techniques, and a lengthy procedure time. Various advances in the devices and techniques used for ESD have contributed to overcoming these drawbacks. PMID:24914364

  20. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  1. Surface sampling techniques for 3D object inspection

    NASA Astrophysics Data System (ADS)

    Shih, Chihhsiong S.; Gerhardt, Lester A.

    1995-03-01

    While the uniform sampling method is quite popular for pointwise measurement of manufactured parts, this paper proposes three novel sampling strategies which emphasize 3D non-uniform inspection capability. They are: (a) the adaptive sampling, (b) the local adjustment sampling, and (c) the finite element centroid sampling techniques. The adaptive sampling strategy is based on a recursive surface subdivision process. Two different approaches are described for this adaptive sampling strategy. One uses triangle patches while the other uses rectangle patches. Several real world objects were tested using these two algorithms. Preliminary results show that sample points are distributed more closely around edges, corners, and vertices as desired for many classes of objects. Adaptive sampling using triangle patches is shown to generally perform better than both uniform and adaptive sampling using rectangle patches. The local adjustment sampling strategy uses a set of predefined starting points and then finds the local optimum position of each nodal point. This method approximates the object by moving the points toward object edges and corners. In a hybrid approach, uniform points sets and non-uniform points sets, first preprocessed by the adaptive sampling algorithm on a real world object were then tested using the local adjustment sampling method. The results show that the initial point sets when preprocessed by adaptive sampling using triangle patches, are moved the least amount of distance by the subsequently applied local adjustment method, again showing the superiority of this method. The finite element sampling technique samples the centroids of the surface triangle meshes produced from the finite element method. The performance of this algorithm was compared to that of the adaptive sampling using triangular patches. The adaptive sampling with triangular patches was once again shown to be better on different classes of objects.

  2. Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review.

    PubMed

    Tankiewicz, Maciej; Fenik, Jolanta; Biziuk, Marek

    2011-10-30

    The intensification of agriculture means that increasing amounts of toxic organic and inorganic compounds are entering the environment. The pesticides generally applied nowadays are regarded as some of the most dangerous contaminants of the environment. Their presence in the environment, especially in water, is hazardous because they cause human beings to become more susceptible to disease. For these reasons, it is essential to monitor pesticide residues in the environment with the aid of all accessible analytical methods. The analysis of samples for the presence of pesticides is problematic, because of the laborious and time-consuming operations involved in preparing samples for analysis, which themselves may be a source of additional contaminations and errors. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solventless and solvent-minimized techniques are coming into use. This paper discusses the most commonly used over the last 15 years sample preparation techniques for monitoring organophosphorus and organonitrogen pesticides residue in water samples. Furthermore, a significant trend in sample preparation, in accordance with the principles of 'Green Chemistry' is the simplification, miniaturization and automation of analytical techniques. In view of this aspect, several novel techniques are being developed in order to reduce the analysis step, increase the sample throughput and to improve the quality and the sensitivity of analytical methods. The paper describes extraction techniques requiring the use of solvents - liquid-liquid extraction (LLE) and its modifications, membrane extraction techniques, hollow fibre-protected two-phase solvent microextraction, liquid phase microextraction based on the solidification of a floating organic drop (LPME-SFO), solid-phase extraction (SPE) and single-drop microextraction (SDME) - as well as solvent

  3. OSL technique for studies of jasper samples

    NASA Astrophysics Data System (ADS)

    Teixeira, Maria Inês; Caldas, Linda V. E.

    2014-02-01

    Jasper samples (green, red, brown, ocean and striped) were studied in relation to their optically stimulated luminescence (OSL) dosimetric properties, in this work. Since 2000, the radiation metrology group of IPEN has studied different stones as new materials for application in high-dose dosimetry. The jasper samples were exposed to different radiation doses, using the Gamma-cell 220 system (60Co) of IPEN. Calibration curves were obtained for the jasper samples between 50 Gy and 300 kGy. The reproducibility of the OSL response and the lower detection doses were determined. All five types of jasper samples showed their usefulness as irradiation indicators and as high-dose dosimeters, using the OSL technique.

  4. Transportation informatics : advanced image processing techniques automated pavement distress evaluation.

    DOT National Transportation Integrated Search

    2010-01-01

    The current project, funded by MIOH-UTC for the period 1/1/2009- 4/30/2010, is concerned : with the development of the framework for a transportation facility inspection system using : advanced image processing techniques. The focus of this study is ...

  5. Veterinary extension on sampling techniques related to heartwater research.

    PubMed

    Steyn, H C; McCrindle, C M E; Du Toit, D

    2010-09-01

    Heartwater, a tick-borne disease caused by Ehrlichia ruminantium, is considered to be a significant cause of mortality amongst domestic and wild ruminants in South Africa. The main vector is Amblyomma hebraeum and although previous epidemiological studies have outlined endemic areas based on mortalities, these have been limited by diagnostic methods which relied mainly on positive brain smears. The indirect fluorescent antibody test (IFA) has a low specificity for heartwater organisms as it cross-reacts with some other species. Since the advent of biotechnology and genomics, molecular epidemiology has evolved using the methodology of traditional epidemiology coupled with the new molecular techniques. A new quantitative real-time polymerase chain reaction (qPCR) test has been developed for rapid and accurate diagnosis of heartwater in the live animal. This method can also be used to survey populations of A. hebraeum ticks for heartwater. Sampling whole blood and ticks for this qPCR differs from routine serum sampling, which is used for many serological tests. Veterinary field staff, particularly animal health technicians, are involved in surveillance and monitoring of controlled and other diseases of animals in South Africa. However, it was found that the sampling of whole blood was not done correctly, probably because it is a new sampling technique specific for new technology, where the heartwater organism is much more labile than the serum antibodies required for other tests. This qPCR technique is highly sensitive and can diagnose heartwater in the living animal within 2 hours, in time to treat it. Poor sampling techniques that decrease the sensitivity of the test will, however, result in a false negative diagnosis. This paper describes the development of a skills training programme for para-veterinary field staff, to facilitate research into the molecular epidemiology of heartwater in ruminants and eliminate any sampling bias due to collection errors. Humane

  6. Advances in paper-based sample pretreatment for point-of-care testing.

    PubMed

    Tang, Rui Hua; Yang, Hui; Choi, Jane Ru; Gong, Yan; Feng, Shang Sheng; Pingguan-Murphy, Belinda; Huang, Qing Sheng; Shi, Jun Ling; Mei, Qi Bing; Xu, Feng

    2017-06-01

    In recent years, paper-based point-of-care testing (POCT) has been widely used in medical diagnostics, food safety and environmental monitoring. However, a high-cost, time-consuming and equipment-dependent sample pretreatment technique is generally required for raw sample processing, which are impractical for low-resource and disease-endemic areas. Therefore, there is an escalating demand for a cost-effective, simple and portable pretreatment technique, to be coupled with the commonly used paper-based assay (e.g. lateral flow assay) in POCT. In this review, we focus on the importance of using paper as a platform for sample pretreatment. We firstly discuss the beneficial use of paper for sample pretreatment, including sample collection and storage, separation, extraction, and concentration. We highlight the working principle and fabrication of each sample pretreatment device, the existing challenges and the future perspectives for developing paper-based sample pretreatment technique.

  7. Development and evaluation of the photoload sampling technique

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Wildland fire managers need better estimates of fuel loading so they can accurately predict potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents the development and evaluation of a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common...

  8. State-of-the-art characterization techniques for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wu, Tianpin; Amine, Khalil

    2017-03-01

    To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.

  9. Comparative Evaluation of Two Venous Sampling Techniques for the Assessment of Pancreatic Insulin and Zinc Release upon Glucose Challenge

    PubMed Central

    Pillai, Anil Kumar; Silvers, William; Christensen, Preston; Riegel, Matthew; Adams-Huet, Beverley; Lingvay, Ildiko; Sun, Xiankai; Öz, Orhan K.

    2015-01-01

    Advances in noninvasive imaging modalities have provided opportunities to study β cell function through imaging zinc release from insulin secreting β cells. Understanding the temporal secretory pattern of insulin and zinc corelease after a glucose challenge is essential for proper timing of administration of zinc sensing probes. Portal venous sampling is an essential part of pharmacological and nutritional studies in animal models. The purpose of this study was to compare two different percutaneous image-guided techniques: transhepatic ultrasound guided portal vein access and transsplenic fluoroscopy guided splenic vein access for ease of access, safety, and evaluation of temporal kinetics of insulin and zinc release into the venous effluent from the pancreas. Both techniques were safe, reproducible, and easy to perform. The mean time required to obtain desired catheter position for venous sampling was 15 minutes shorter using the transsplenic technique. A clear biphasic insulin release profile was observed in both techniques. Statistically higher insulin concentration but similar zinc release after a glucose challenge was observed from splenic vein samples, as compared to the ones from the portal vein. To our knowledge, this is the first report of percutaneous methods to assess zinc release kinetics from the porcine pancreas. PMID:26273676

  10. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  11. Improved spatial resolution in PET scanners using sampling techniques

    PubMed Central

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  12. Comparing efficiency of American Fisheries Society standard snorkeling techniques to environmental DNA sampling techniques

    USGS Publications Warehouse

    Ulibarri, Roy M.; Bonar, Scott A.; Rees, Christopher B.; Amberg, Jon J.; Ladell, Bridget; Jackson, Craig

    2017-01-01

    Analysis of environmental DNA (eDNA) is an emerging technique used to detect aquatic species through water sampling and the extraction of biological material for amplification. Our study compared the efficacy of eDNA methodology to American Fisheries Society (AFS) standard snorkeling surveys with regard to detecting the presence of rare fish species. Knowing which method is more efficient at detecting target species will help managers to determine the best way to sample when both traditional sampling methods and eDNA sampling are available. Our study site included three Navajo Nation streams that contained Navajo Nation Genetic Subunit Bluehead Suckers Catostomus discobolus and Zuni Bluehead Suckers C. discobolus yarrowi. We first divided the entire wetted area of streams into consecutive 100-m reaches and then systematically selected 10 reaches/stream for snorkel and eDNA surveys. Surface water samples were taken in 10-m sections within each 100-m reach, while fish presence was noted via snorkeling in each 10-m section. Quantitative PCR was run on each individual water sample in quadruplicate to test for the presence or absence of the target species. With eDNA sampling techniques, we were able to positively detect both species in two out of the three streams. Snorkeling resulted in positive detection of both species in all three streams. In streams where the target species were detected with eDNA sampling, snorkeling detected fish at 11–29 sites/stream, whereas eDNA detected fish at 3–12 sites/stream. Our results suggest that AFS standard snorkeling is more effective than eDNA for detecting target fish species. To improve our eDNA procedures, the amount of water collected and tested should be increased. Additionally, filtering water on-site may improve eDNA techniques for detecting fish. Future research should focus on standardization of eDNA sampling to provide a widely operational sampling tool.

  13. Simultaneous sampling technique for two spectral sources

    NASA Technical Reports Server (NTRS)

    Jarrett, Olin, Jr.

    1987-01-01

    A technique is described that uses a bundle of fiber optics to simultaneously sample a dye laser and a spectral lamp. By the use of a real-time display with this technique, the two signals can be superimposed, and the effect of any spectral adjustments can be immediately accessed. In the NASA's CARS system used for combustion diagnostics, the dye laser mixes with a simultaneously pulsed Nd:YAG laser at 532 nm to probe the vibrational levels of nitrogen. An illustration of the oscilloscopic display of the system is presented.

  14. Development of advanced strain diagnostic techniques for reactor environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less

  15. Advanced Diagnostic Techniques in Autoimmune Bullous Diseases

    PubMed Central

    Jindal, Anuradha; Rao, Raghavendra; Bhogal, Balbir S

    2017-01-01

    Autoimmune blistering diseases are diverse group of conditions characterized by blisters in the skin with or without mucosal lesions. There may be great degree of clinical and histopathological overlap; hence, advanced immunological tests may be necessary for more precise diagnosis of these conditions. Direct immunofluorescence microscopy is the gold standard tests to demonstrate the tissue-bound antibodies and should be done in all cases. Magnitude of antibody level in patient’ serum can be assessed by indirect immunofluorescence and enzyme linked immunosorbent assay. In this article we have reviewed the various techniques that are available in the diagnosis of autoimmune blistering diseases. PMID:28584369

  16. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGES

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  17. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  18. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  19. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  20. The role of alternative (advanced) conscious sedation techniques in dentistry for adult patients: a series of cases.

    PubMed

    Robb, N

    2014-03-01

    The basic techniques of conscious sedation have been found to be safe and effective for the management of anxiety in adult dental patients requiring sedation to allow them to undergo dental treatment. There remains great debate within the profession as to the role of the so called advanced sedation techniques. This paper presents a series of nine patients who were managed with advanced sedation techniques where the basic techniques were either inappropriate or had previously failed to provide adequate relief of anxiety. In these cases, had there not been the availability of advanced sedation techniques, the most likely recourse would have been general anaesthesia--a treatment modality that current guidance indicates should not be used where there is an appropriate alternative. The sedation techniques used have provided that appropriate alternative management strategy.

  1. Urine sampling techniques in symptomatic primary-care patients: a diagnostic accuracy review.

    PubMed

    Holm, Anne; Aabenhus, Rune

    2016-06-08

    Choice of urine sampling technique in urinary tract infection may impact diagnostic accuracy and thus lead to possible over- or undertreatment. Currently no evidencebased consensus exists regarding correct sampling technique of urine from women with symptoms of urinary tract infection in primary care. The aim of this study was to determine the accuracy of urine culture from different sampling-techniques in symptomatic non-pregnant women in primary care. A systematic review was conducted by searching Medline and Embase for clinical studies conducted in primary care using a randomized or paired design to compare the result of urine culture obtained with two or more collection techniques in adult, female, non-pregnant patients with symptoms of urinary tract infection. We evaluated quality of the studies and compared accuracy based on dichotomized outcomes. We included seven studies investigating urine sampling technique in 1062 symptomatic patients in primary care. Mid-stream-clean-catch had a positive predictive value of 0.79 to 0.95 and a negative predictive value close to 1 compared to sterile techniques. Two randomized controlled trials found no difference in infection rate between mid-stream-clean-catch, mid-stream-urine and random samples. At present, no evidence suggests that sampling technique affects the accuracy of the microbiological diagnosis in non-pregnant women with symptoms of urinary tract infection in primary care. However, the evidence presented is in-direct and the difference between mid-stream-clean-catch, mid-stream-urine and random samples remains to be investigated in a paired design to verify the present findings.

  2. Numerical characterization of landing gear aeroacoustics using advanced simulation and analysis techniques

    NASA Astrophysics Data System (ADS)

    Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G.

    2017-09-01

    With the objective of aircraft noise mitigation, we here address the numerical characterization of the aeroacoustics by a simplified nose landing gear (NLG), through the use of advanced simulation and signal processing techniques. To this end, the NLG noise physics is first simulated through an advanced hybrid approach, which relies on Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) calculations. Compared to more traditional hybrid methods (e.g. those relying on the use of an Acoustic Analogy), and although it is used here with some approximations made (e.g. design of the CFD-CAA interface), the present approach does not rely on restrictive assumptions (e.g. equivalent noise source, homogeneous propagation medium), which allows to incorporate more realism into the prediction. In a second step, the outputs coming from such CFD-CAA hybrid calculations are processed through both traditional and advanced post-processing techniques, thus offering to further investigate the NLG's noise source mechanisms. Among other things, this work highlights how advanced computational methodologies are now mature enough to not only simulate realistic problems of airframe noise emission, but also to investigate their underlying physics.

  3. Solid Phase Microextraction and Related Techniques for Drugs in Biological Samples

    PubMed Central

    Moein, Mohammad Mahdi; Said, Rana; Bassyouni, Fatma

    2014-01-01

    In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from one side, toward automatization and online coupling of sample preparation units. The primary objective of this review is to present the recent developments in microextraction sample preparation methods for analysis of drugs in biological fluids. Microextraction techniques allow for less consumption of solvent, reagents, and packing materials, and small sample volumes can be used. In this review the use of solid phase microextraction (SPME), microextraction in packed sorbent (MEPS), and stir-bar sorbtive extraction (SBSE) in drug analysis will be discussed. In addition, the use of new sorbents such as monoliths and molecularly imprinted polymers will be presented. PMID:24688797

  4. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    lectin-binding- analysis has been suggested as a suitable approach to image glycoconjugates within the polymer matrix of biofilm communities. More recently synchrotron radiation is increasingly recognized as a powerful tool for studying biological samples. Hard X-ray excitation can be used to map elemental composition whereas IR imaging allows examination of biological macromolecules. A further technique called soft X-ray scanning transmission microscopy (STXM) has the advantage of both techniques and may be employed to detect elements as well as biomolecules. Using the appropriate spectra, near edge X-ray absorption fine structure (NEXAFS) microscopy allows quantitative chemical mapping at 50 nm resolution. In this presentation the applicability of LSM and STXM will be demonstrated using several examples of different environmental biofilm systems. The techniques in combination provide a new view of complex microbial communities and their interaction with the environment. These advanced imaging techniques offer the possibility to study the spatial structure of cellular and polymeric compounds in biofilms as well as biofilm microhabitats, biofilm functionality and biofilm processes.

  5. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  6. Comparison of extraction techniques of robenidine from poultry feed samples.

    PubMed

    Wilga, Joanna; Wasik, Agata Kot-; Namieśnik, Jacek

    2007-10-31

    In this paper, effectiveness of six different commonly applied extraction techniques for the determination of robenidine in poultry feed has been compared. The sample preparation techniques included shaking, Soxhlet, Soxtec, ultrasonically assisted extraction, microwave - assisted extraction and accelerated solvent extraction. Comparison of these techniques was done with respect to the recovery extraction, temperature and time, reproducibility and solvent consumption. Every single extract was subjected to clean - up using aluminium oxide column (Pasteur pipette filled with 1g of aluminium oxide), from which robenidine was eluted with 10ml of methanol. The eluate from the clean-up column was collected in a volumetric flask, and finally it was analysed by HPLC-DAD-MS. In general, all extraction techniques were capable of isolating of robenidine from poultry feed, but the recovery obtained using modern extraction techniques was higher than that obtained using conventional techniques. In particular, accelerated solvent extraction was more superior to other techniques, which highlights the advantages of this sample preparation technique. However, in routine analysis, shaking and ultrasonically assisted extraction is still the preferred method for the solution of robenidine and other coccidiostatics.

  7. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  8. Liquid sample delivery techniques for serial femtosecond crystallography

    PubMed Central

    Weierstall, Uwe

    2014-01-01

    X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques. PMID:24914163

  9. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    PubMed

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  10. Surveillance of Endoscopes: Comparison of Different Sampling Techniques.

    PubMed

    Cattoir, Lien; Vanzieleghem, Thomas; Florin, Lisa; Helleputte, Tania; De Vos, Martine; Verhasselt, Bruno; Boelens, Jerina; Leroux-Roels, Isabel

    2017-09-01

    OBJECTIVE To compare different techniques of endoscope sampling to assess residual bacterial contamination. DESIGN Diagnostic study. SETTING The endoscopy unit of an 1,100-bed university hospital performing ~13,000 endoscopic procedures annually. METHODS In total, 4 sampling techniques, combining flushing fluid with or without a commercial endoscope brush, were compared in an endoscope model. Based on these results, sterile physiological saline flushing with or without PULL THRU brush was selected for evaluation on 40 flexible endoscopes by adenosine triphosphate (ATP) measurement and bacterial culture. Acceptance criteria from the French National guideline (<25 colony-forming units [CFU] per endoscope and absence of indicator microorganisms) were used as part of the evaluation. RESULTS On biofilm-coated PTFE tubes, physiological saline in combination with a PULL THRU brush generated higher mean ATP values (2,579 relative light units [RLU]) compared with saline alone (1,436 RLU; P=.047). In the endoscope samples, culture yield using saline plus the PULL THRU (mean, 43 CFU; range, 1-400 CFU) was significantly higher than that of saline alone (mean, 17 CFU; range, 0-500 CFU; P<.001). In samples obtained using the saline+PULL THRU brush method, ATP values of samples classified as unacceptable were significantly higher than those of samples classified as acceptable (P=.001). CONCLUSION Physiological saline flushing combined with PULL THRU brush to sample endoscopes generated higher ATP values and increased the yield of microbial surveillance culture. Consequently, the acceptance rate of endoscopes based on a defined CFU limit was significantly lower when the saline+PULL THRU method was used instead of saline alone. Infect Control Hosp Epidemiol 2017;38:1062-1069.

  11. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  12. Sample-interpolation timing: an optimized technique for the digital measurement of time of flight for γ rays and neutrons at relatively low sampling rates

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Mackin, R. O.; Jarrah, Z.; Boston, A. J.; Nolan, P. J.; Peyton, A. J.; Hawkes, N. P.

    2009-01-01

    A unique, digital time pick-off method, known as sample-interpolation timing (SIT) is described. This method demonstrates the possibility of improved timing resolution for the digital measurement of time of flight compared with digital replica-analogue time pick-off methods for signals sampled at relatively low rates. Three analogue timing methods have been replicated in the digital domain (leading-edge, crossover and constant-fraction timing) for pulse data sampled at 8 GSa s-1. Events arising from the 7Li(p, n)7Be reaction have been detected with an EJ-301 organic liquid scintillator and recorded with a fast digital sampling oscilloscope. Sample-interpolation timing was developed solely for the digital domain and thus performs more efficiently on digital signals compared with analogue time pick-off methods replicated digitally, especially for fast signals that are sampled at rates that current affordable and portable devices can achieve. Sample interpolation can be applied to any analogue timing method replicated digitally and thus also has the potential to exploit the generic capabilities of analogue techniques with the benefits of operating in the digital domain. A threshold in sampling rate with respect to the signal pulse width is observed beyond which further improvements in timing resolution are not attained. This advance is relevant to many applications in which time-of-flight measurement is essential.

  13. Sampling Mars: Analytical requirements and work to do in advance

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1988-01-01

    Sending a mission to Mars to collect samples and return them to the Earth for analysis is without doubt one of the most exciting and important tasks for planetary science in the near future. Many scientifically important questions are associated with the knowledge of the composition and structure of Martian samples. Amongst the most exciting questions is the clarification of the SNC problem- to prove or disprove a possible Martian origin of these meteorites. Since SNC meteorites have been used to infer the chemistry of the planet Mars, and its evolution (including the accretion history), it would be important to know if the whole story is true. But before addressing possible scientific results, we have to deal with the analytical requirements, and with possible pre-return work. It is unlikely to expect that a possible Mars sample return mission will bring back anything close to the amount returned by the Apollo missions. It will be more like the amount returned by the Luna missions, or at least in that order of magnitude. This requires very careful sample selection, and very precise analytical techniques. These techniques should be able to use minimal sample sizes and on the other hand optimize the scientific output. The possibility to work with extremely small samples should not obstruct another problem: possible sampling errors. As we know from terrestrial geochemical studies, sampling procedures are quite complicated and elaborate to ensure avoiding sampling errors. The significance of analyzing a milligram or submilligram sized sample and putting that in relationship with the genesis of whole planetary crusts has to be viewed with care. This leaves a dilemma on one hand, to minimize the sample size as far as possible in order to have the possibility of returning as many different samples as possible, and on the other hand to take a sample large enough to be representative. Whole rock samples are very useful, but should not exceed the 20 to 50 g range, except in

  14. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  15. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  16. Anterior Urethral Advancement as a Single-Stage Technique for Repair of Anterior Hypospadias: Our Experience.

    PubMed

    Gite, Venkat A; Nikose, Jayant V; Bote, Sachin M; Patil, Saurabh R

    2017-07-02

    Many techniques have been described to correct anterior hypospadias with variable results. Anterior urethral advancement as one stage technique was first described by Ti Chang Shing in 1984. It was also used for the repair of strictures and urethrocutaneous fistulae involving distal urethra. We report our experience of using this technique with some modification for the repair of anterior hypospadias. In the period between 2013-2015, 20 cases with anterior hypospadias including 2 cases of glanular, 3 cases of coronal, 12 cases of subcoronal and 3 cases of distal penile hypospadias were treated with anterior urethral advancement technique. Patients' age groups ranged from 18 months to 10 years. Postoperatively, patients were passing urine from tip of neomeatus with satisfactory stream during follow up period of 6 months to 2 years. There were no major complications in any of our patients except in one patient who developed meatal stenosis which was treated by periodic dilatation. Three fold urethral mobilization was sufficient in all cases. Anterior urethral advancement technique is a single-stage procedure with good cosmetic results and least complications for anterior hypospadias repair in properly selected cases.

  17. Sample preparation techniques for the determination of trace residues and contaminants in foods.

    PubMed

    Ridgway, Kathy; Lalljie, Sam P D; Smith, Roger M

    2007-06-15

    The determination of trace residues and contaminants in complex matrices, such as food, often requires extensive sample extraction and preparation prior to instrumental analysis. Sample preparation is often the bottleneck in analysis and there is a need to minimise the number of steps to reduce both time and sources of error. There is also a move towards more environmentally friendly techniques, which use less solvent and smaller sample sizes. Smaller sample size becomes important when dealing with real life problems, such as consumer complaints and alleged chemical contamination. Optimal sample preparation can reduce analysis time, sources of error, enhance sensitivity and enable unequivocal identification, confirmation and quantification. This review considers all aspects of sample preparation, covering general extraction techniques, such as Soxhlet and pressurised liquid extraction, microextraction techniques such as liquid phase microextraction (LPME) and more selective techniques, such as solid phase extraction (SPE), solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The applicability of each technique in food analysis, particularly for the determination of trace organic contaminants in foods is discussed.

  18. [Wound microbial sampling methods in surgical practice, imprint techniques].

    PubMed

    Chovanec, Z; Veverková, L; Votava, M; Svoboda, J; Peštál, A; Doležel, J; Jedlička, V; Veselý, M; Wechsler, J; Čapov, I

    2012-12-01

    The wound is a damage of tissue. The process of healing is influenced by many systemic and local factors. The most crucial and the most discussed local factor of wound healing is infection. Surgical site infection in the wound is caused by micro-organisms. This information is known for many years, however the conditions leading to an infection occurrence have not been sufficiently described yet. Correct sampling technique, correct storage, transportation, evaluation, and valid interpretation of these data are very important in clinical practice. There are many methods for microbiological sampling, but the best one has not been yet identified and validated. We aim to discuss the problem with the focus on the imprint technique.

  19. Methodological integrative review of the work sampling technique used in nursing workload research.

    PubMed

    Blay, Nicole; Duffield, Christine M; Gallagher, Robyn; Roche, Michael

    2014-11-01

    To critically review the work sampling technique used in nursing workload research. Work sampling is a technique frequently used by researchers and managers to explore and measure nursing activities. However, work sampling methods used are diverse making comparisons of results between studies difficult. Methodological integrative review. Four electronic databases were systematically searched for peer-reviewed articles published between 2002-2012. Manual scanning of reference lists and Rich Site Summary feeds from contemporary nursing journals were other sources of data. Articles published in the English language between 2002-2012 reporting on research which used work sampling to examine nursing workload. Eighteen articles were reviewed. The review identified that the work sampling technique lacks a standardized approach, which may have an impact on the sharing or comparison of results. Specific areas needing a shared understanding included the training of observers and subjects who self-report, standardization of the techniques used to assess observer inter-rater reliability, sampling methods and reporting of outcomes. Work sampling is a technique that can be used to explore the many facets of nursing work. Standardized reporting measures would enable greater comparison between studies and contribute to knowledge more effectively. Author suggestions for the reporting of results may act as guidelines for researchers considering work sampling as a research method. © 2014 John Wiley & Sons Ltd.

  20. An improved sample loading technique for cellular metabolic response monitoring under pressure

    NASA Astrophysics Data System (ADS)

    Gikunda, Millicent Nkirote

    To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.

  1. Nuts and Bolts - Techniques for Genesis Sample Curation

    NASA Technical Reports Server (NTRS)

    Burkett, Patti J.; Rodriquez, M. C.; Allton, J. H.

    2011-01-01

    The Genesis curation staff at NASA Johnson Space Center provides samples and data for analysis to the scientific community, following allocation approval by the Genesis Oversight Committee, a sub-committee of CAPTEM (Curation Analysis Planning Team for Extraterrestrial Materials). We are often asked by investigators within the scientific community how we choose samples to best fit the requirements of the request. Here we will demonstrate our techniques for characterizing samples and satisfying allocation requests. Even with a systematic approach, every allocation is unique. We are also providing updated status of the cataloging and characterization of solar wind collectors as of January 2011. The collection consists of 3721 inventoried samples consisting of a single fragment, or multiple fragments containerized or pressed between post-it notes, jars or vials of various sizes.

  2. Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography.

    PubMed

    Kremser, Andreas; Jochmann, Maik A; Schmidt, Torsten C

    2016-09-01

    Six automated, headspace-based sample preparation techniques were used to extract volatile analytes from water with the goal of establishing a systematic comparison between commonly available instrumental alternatives. To that end, these six techniques were used in conjunction with the same gas chromatography instrument for analysis of a common set of volatile organic carbon (VOC) analytes. The methods were thereby divided into three classes: static sampling (by syringe or loop), static enrichment (SPME and PAL SPME Arrow), and dynamic enrichment (ITEX and trap sampling). For PAL SPME Arrow, different sorption phase materials were also included in the evaluation. To enable an effective comparison, method detection limits (MDLs), relative standard deviations (RSDs), and extraction yields were determined and are discussed for all techniques. While static sampling techniques exhibited sufficient extraction yields (approx. 10-20 %) to be reliably used down to approx. 100 ng L(-1), enrichment techniques displayed extraction yields of up to 80 %, resulting in MDLs down to the picogram per liter range. RSDs for all techniques were below 27 %. The choice on one of the different instrumental modes of operation (aforementioned classes) was thereby the most influential parameter in terms of extraction yields and MDLs. Individual methods inside each class showed smaller deviations, and the least influences were observed when evaluating different sorption phase materials for the individual enrichment techniques. The option of selecting specialized sorption phase materials may, however, be more important when analyzing analytes with different properties such as high polarity or the capability of specific molecular interactions. Graphical Abstract PAL SPME Arrow during the extraction of volatile analytes from the headspace of an aqueous sample.

  3. Noncoherent sampling technique for communications parameter estimations

    NASA Technical Reports Server (NTRS)

    Su, Y. T.; Choi, H. J.

    1985-01-01

    This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.

  4. Advanced analysis techniques for uranium assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples countmore » rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.« less

  5. Irreversible electroporation of stage 3 locally advanced pancreatic cancer: optimal technique and outcomes

    PubMed Central

    2015-01-01

    Objective Irreversible electroporation (IRE) of stage 3 pancreatic adenocarcinoma has been used to provide quality of life time in patients who have undergone appropriate induction therapy. The optimal technique has been reported within the literature, but not in video form. IRE of locally advanced pancreatic cancer is technically demanding requiring precision ultrasound use for continuous imaging in multiple needle placements and during IRE energy delivery. Methods Appropriate patients with locally advanced pancreatic cancer should have undergone appropriate induction chemotherapy for a reasonable duration. The safe and effective technique for irreversible electroporation is preformed through an open approach with the emphasis on intra-operative ultrasound and intra-operative electroporation management. Results The technique of open irreversible electroporation of the pancreas involves bracketing the target tumor with IRE probes and any and all invaded vital structures including the celiac axis, superior mesenteric artery (SMA), superior mesenteric-portal vein, and bile duct with continuous intraoperative ultrasound imaging through a caudal to cranial approach. Optimal IRE delivery requires a change in amperage of at least 12 amps from baseline tissue conductivity in order to achieve technical success. Multiple pull-backs are necessary since the IRE ablation probe lengths are 1 cm and thus needed to achieve technical success along the caudal to cranial plane. Conclusions Irreversible electroporation in combination with multi-modality therapy for locally advanced pancreatic carcinoma is feasible for appropriate patients with locally advanced cancer. Technical demands are high and require the highest quality ultrasound for precise spacing measurements and optimal delivery to ensure adequate change in tissue resistance. PMID:29075594

  6. A comparison of liver sampling techniques in dogs.

    PubMed

    Kemp, S D; Zimmerman, K L; Panciera, D L; Monroe, W E; Leib, M S; Lanz, O I

    2015-01-01

    The liver sampling technique in dogs that consistently provides samples adequate for accurate histopathologic interpretation is not known. To compare histopathologic results of liver samples obtained by punch, cup, and 14 gauge needle to large wedge samples collected at necropsy. Seventy dogs undergoing necropsy. Prospective study. Liver specimens were obtained from the left lateral liver lobe with an 8 mm punch, a 5 mm cup, and a 14 gauge needle. After sample acquisition, two larger tissue samples were collected near the center of the left lateral lobe to be used as a histologic standard for comparison. Histopathologic features and numbers of portal triads in each sample were recorded. The mean number of portal triads obtained by each sampling method were 2.9 in needle samples, 3.4 in cup samples, 12 in punch samples, and 30.7 in the necropsy samples. The diagnoses in 66% of needle samples, 60% of cup samples, and 69% of punch samples were in agreement with the necropsy samples, and these proportions were not significantly different from each other. The corresponding kappa coefficients were 0.59 for needle biopsies, 0.52 for cup biopsies, and 0.62 for punch biopsies. The histopathologic interpretation of a liver sample in the dog is unlikely to vary if the liver biopsy specimen contains at least 3-12 portal triads. However, in comparison large necropsy samples, the accuracy of all tested methods was relatively low. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  7. Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery

    PubMed Central

    Zhang, Peipei; Xia, Junfei; Luo, Sida

    2018-01-01

    Micro/nanoparticles have great potentials in biomedical applications, especially for drug delivery. Existing studies identified that major micro/nanoparticle features including size, shape, surface property and component materials play vital roles in their in vitro and in vivo applications. However, a demanding challenge is that most conventional particle synthesis techniques such as emulsion can only generate micro/nanoparticles with a very limited number of shapes (i.e., spherical or rod shapes) and have very loose control in terms of particle sizes. We reviewed the advanced manufacturing techniques for producing micro/nanoparticles with precisely defined characteristics, emphasizing the use of these well-controlled micro/nanoparticles for drug delivery applications. Additionally, to illustrate the vital roles of particle features in therapeutic delivery, we also discussed how the above-mentioned micro/nanoparticle features impact in vitro and in vivo applications. Through this review, we highlighted the unique opportunities in generating controllable particles via advanced manufacturing techniques and the great potential of using these micro/nanoparticles for therapeutic delivery. PMID:29670013

  8. Improved importance sampling technique for efficient simulation of digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, Dingqing; Yao, Kung

    1988-01-01

    A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.

  9. Bioelectrographic testing of mineral samples: a comparison of techniques.

    PubMed

    Vainshelboim, Alex; Momoh, Kenneth S

    2005-04-01

    This study was initiated to determine the suitability of differing techniques to record optical properties of gemstones under electromagnetic stimulation. Such properties are of interest due to the historical use of gemstones in folkloric remedies, specifically as agents for concentrating, focusing, or otherwise conducting energy flows in the human body. The techniques researched produce a localized corona discharge around the tested material. The simplest technique, Tesla coil Kirlian photography (TCKP), uses a Tesla coil to introduce a strong electric current, and the circuit is completed by a glass electrode. The corona discharge is then photographed. The other technique used in the study is gas discharge visualization (GDV), which uses a pulsed current and a digital camera integral to the coil to produce digital images of the corona discharge. Gemstones were tested both whole and in powdered form. The sample gemstones were amethyst, aquamarine, garnet, golden citrine, pink tourmaline, and yellow topaz. Powdered gemstones were ground to a particle size of 2-5 microns; whole gemstones were roundcut to a diameter of 5 mm. In our tests, TCKP showed divergent effects for differing types of gemstone. The most extreme effects were exhibited by tourmaline, both in powdered and whole form. In addition, TCKP appeared to indicate differing effects for gemstones of the identical type but mined from differing locations. The GDV technique showed differing data among the gemstones for the measured parameters, indicating that a high relative intensity did not correspond to the size of the corona discharge. While both techniques showed promise in distinguishing differences in corona discharge behavior in gemstone samples, further work is necessary to determine the significance of differences in geographical sources or between gemstones of similar crystalline structure. The techniques explored show promise in characterizing the properties of gem materials under electromagnetic

  10. Application of drilling, coring, and sampling techniques to test holes and wells

    USGS Publications Warehouse

    Shuter, Eugene; Teasdale, Warren E.

    1989-01-01

    The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.

  11. Comparison of efficacy of pulverization and sterile paper point techniques for sampling root canals.

    PubMed

    Tran, Kenny T; Torabinejad, Mahmoud; Shabahang, Shahrokh; Retamozo, Bonnie; Aprecio, Raydolfo M; Chen, Jung-Wei

    2013-08-01

    The purpose of this study was to compare the efficacy of the pulverization and sterile paper point techniques for sampling root canals using 5.25% NaOCl/17% EDTA and 1.3% NaOCl/MTAD (Dentsply, Tulsa, OK) as irrigation regimens. Single-canal extracted human teeth were decoronated and infected with Enterococcus faecalis. Roots were randomly assigned to 2 irrigation regimens: group A with 5.25% NaOCl/17% EDTA (n = 30) and group B with 1.3% NaOCl/MTAD (n = 30). After chemomechanical debridement, bacterial samplings were taken using sterile paper points and pulverized powder of the apical 5 mm root ends. The sterile paper point technique did not show growth in any samples. The pulverization technique showed growth in 24 of the 60 samples. The Fisher exact test showed significant differences between sampling techniques (P < .001). The sterile paper point technique showed no difference between irrigation regimens. However, 17 of the 30 roots in group A and 7 of the 30 roots in group B resulted in growth as detected by pulverization technique. Data showed a significant difference between irrigation regimens (P = .03) in pulverization technique. The pulverization technique was more efficacious in detecting viable bacteria. Furthermore, this technique showed that 1.3% NaOCl/MTAD regimen was more effective in disinfecting root canals. Published by Elsevier Inc.

  12. A new surgical technique for concealed penis using an advanced musculocutaneous scrotal flap.

    PubMed

    Han, Dong-Seok; Jang, Hoon; Youn, Chang-Shik; Yuk, Seung-Mo

    2015-06-19

    Until recently, no single, universally accepted surgical method has existed for all types of concealed penis repairs. We describe a new surgical technique for repairing concealed penis by using an advanced musculocutaneous scrotal flap. From January 2010 to June 2014, we evaluated 12 patients (12-40 years old) with concealed penises who were surgically treated with an advanced musculocutaneous scrotal flap technique after degloving through a ventral approach. All the patients were scheduled for regular follow-up at 6, 12, and 24 weeks postoperatively. The satisfaction grade for penile size, morphology, and voiding status were evaluated using a questionnaire preoperatively and at all of the follow-ups. Information regarding complications was obtained during the postoperative hospital stay and at all follow-ups. The patients' satisfaction grades, which included the penile size, morphology, and voiding status, improved postoperatively compared to those preoperatively. All patients had penile lymphedema postoperatively; however, this disappeared within 6 weeks. There were no complications such as skin necrosis and contracture, voiding difficulty, or erectile dysfunction. Our advanced musculocutaneous scrotal flap technique for concealed penis repair is technically easy and safe. In addition, it provides a good cosmetic appearance, functional outcomes and excellent postoperative satisfaction grades. Lastly, it seems applicable in any type of concealed penis, including cases in which the ventral skin defect is difficult to cover.

  13. Technology Development and Advanced Planning for Curation of Returned Mars Samples

    NASA Technical Reports Server (NTRS)

    Lindstrom, David J.; Allen, Carlton C.

    2002-01-01

    Safety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.

  14. Technology Development and Advanced Planning for Curation of Returned Mars Samples

    NASA Astrophysics Data System (ADS)

    Lindstrom, D. J.; Allen, C. C.

    2002-05-01

    Safety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.

  15. Can groundwater sampling techniques used in monitoring wells influence methane concentrations and isotopes?

    PubMed

    Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier

    2018-03-06

    Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells. This work lies within the framework of a larger project carried out in the Saint-Édouard area (southern Québec, Canada), whose objective was to assess the risk to shallow groundwater quality related to potential shale gas exploitation. The selected sampling devices, which were tested on ten wells during three sampling campaigns, consist of an impeller pump, a bladder pump, and disposable sampling bags (HydraSleeve). The sampling bags were used both before and after pumping, to verify the appropriateness of a no-purge approach, compared to the low-flow approach involving pumping until stabilization of field physicochemical parameters. Results show that methane concentrations obtained with the selected sampling techniques are usually similar and that there is no systematic bias related to a specific technique. Nonetheless, concentrations can sometimes vary quite significantly (up to 3.5 times) for a given well and sampling event. Methane isotopic composition obtained with all sampling techniques is very similar, except in some cases where sampling bags were used before pumping (no-purge approach), in wells where multiple groundwater sources enter the borehole.

  16. Cost minimization analysis for combinations of sampling techniques in bronchoscopy of endobronchial lesions.

    PubMed

    Roth, Kjetil; Hardie, Jon Andrew; Andreassen, Alf Henrik; Leh, Friedemann; Eagan, Tomas Mikal Lind

    2009-06-01

    The choice of sampling techniques in bronchoscopy with sampling from a visible lesion will depend on the expected diagnostic yields and the costs of the sampling techniques. The aim of this study was to determine the most economical combination of sampling techniques when approaching endobronchial visible lesions. A cost minimization analysis was performed. All bronchoscopies from 2003 and 2004 at Haukeland university hospital, Bergen, Norway, were reviewed retrospectively for diagnostic yields. 162 patients with endobronchial disease were included. Potential sampling techniques used were biopsy, brushing, endobronchial needle aspiration (EBNA) and washings. Costs were estimated based on registration of equipment costs and personnel costs. Sensitivity analyses were performed to determine threshold values. The combination of biopsy, brushing and EBNA was the most economical strategy with an average cost of Euro 893 (95% CI: 657, 1336). The cost of brushing had to be below Euro 83 and it had to increase the diagnostic yield more than 2.2%, for biopsy and brushing to be more economical than biopsy alone. The combination of biopsy, brushing and EBNA was more economical than biopsy and brushing when the cost of EBNA was below Euro 205 and the increase in diagnostic yield was above 5.2%. In the current study setting, biopsy, brushing and EBNA was the most economical combination of sampling techniques for endobronchial visible lesions.

  17. Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison

    PubMed Central

    2018-01-01

    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (sampling, irrespective of the specific method used, is fit for implementation in risk assessment and management of contaminated sediments, provided that method setup and performance, as well as chemical analyses are quality-controlled. PMID:29488382

  18. Wafer hot spot identification through advanced photomask characterization techniques: part 2

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; Cho, Young; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2017-03-01

    Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for mask end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on sub-resolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. To overcome the limitation of 1D metrics, there are numerous on-going industry efforts to better define wafer-predictive metrics through both standard mask metrology and aerial CD methods. Even with these improvements, the industry continues to struggle to define useful correlative metrics that link the mask to final device performance. In part 1 of this work, we utilized advanced mask pattern characterization techniques to extract potential hot spots on the mask and link them, theoretically, to issues with final wafer performance. In this paper, part 2, we complete the work by verifying these techniques at wafer level. The test vehicle (TV) that was used for hot spot detection on the mask in part 1 will be used to expose wafers. The results will be used to verify the mask-level predictions. Finally, wafer performance with predicted and verified mask/wafer condition will be shown as the result of advanced mask characterization. The goal is to maximize mask end user yield through mask-wafer technology harmonization. This harmonization will provide the necessary feedback to determine optimum design, mask specifications, and mask-making conditions for optimal wafer process margin.

  19. Standardization of proton-induced x-ray emission technique for analysis of thick samples

    NASA Astrophysics Data System (ADS)

    Ali, Shad; Zeb, Johar; Ahad, Abdul; Ahmad, Ishfaq; Haneef, M.; Akbar, Jehan

    2015-09-01

    This paper describes the standardization of the proton-induced x-ray emission (PIXE) technique for finding the elemental composition of thick samples. For the standardization, three different samples of standard reference materials (SRMs) were analyzed using this technique and the data were compared with the already known data of these certified SRMs. These samples were selected in order to cover the maximum range of elements in the periodic table. Each sample was irradiated for three different values of collected beam charges at three different times. A proton beam of 2.57 MeV obtained using 5UDH-II Pelletron accelerator was used for excitation of x-rays from the sample. The acquired experimental data were analyzed using the GUPIXWIN software. The results show that the SRM data and the data obtained using the PIXE technique are in good agreement.

  20. Ionospheric Measurements Using Environmental Sampling Techniques

    NASA Technical Reports Server (NTRS)

    Bourdeau, R. E.; Jackson, J. E.; Kane, J. A.; Serbu, G. P.

    1960-01-01

    Two rockets were flown to peak altitudes of 220 km in September 1959 to test various methods planned for future measurements of ionization parameters in the ionosphere, exosphere, and interplanetary plasma. The experiments used techniques which sample the ambient environment in the immediate vicinity of the research vehicle. Direct methods were chosen since indirect propagation techniques do not provide the temperatures of charged particles, are insensitive to ion densities, and cannot measure local electron densities under all conditions. Very encouraging results have been obtained from a preliminary analysis of data provided by one of the two flights. A new rf probe technique was successfully used to determine the electron density profile. This was indicated by its agreement with the results of a companion cw propagation experiment, particularly when the probe data were corrected for the effects of the ion sheath which surrounds the vehicle. The characteristics of this sheath were determined directly in flight by an electric field meter which provided the sheath field, and by a Langmuir probe which measured the total potential across the sheath. The electron temperatures deduced from the Langmuir probe data are greater than the neutral gas temperatures previously measured for the same location and season, but these measurements possibly were taken under different atmospheric conditions. Ion densities were calculated from the ion trap data for several altitudes ranging from 130 to 210 km and were found to be within 20 percent of the measured electron densities.

  1. A comparison of five sampling techniques to estimate surface fuel loading in montane forests

    Treesearch

    Pamela G. Sikkink; Robert E. Keane

    2008-01-01

    Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...

  2. A novel visually CO2 controlled alveolar breath sampling technique.

    PubMed

    Birken, Thomas; Schubert, Jochen; Miekisch, Wolfram; Nöldge-Schomburg, Gabriele

    2006-01-01

    A crucial issue in the analysis of exhaled breath is the collection of gaseous samples. The analysis of pure alveolar gas is the method of choice if contamination of samples is to be minimized. Monitoring of expired CO2 can be used to identify alveolar gas. The purpose of this study was to evaluate a bed side version of this technique using visual CO2 control by means of a capnometer. 22 mechanically ventilated patients of an ICU were enrolled into the study. Alveolar and mixed expiratory gas, and arterial blood were sampled. PCO2 in blood and gas was determined in a blood gas analyzer. End tidal PCO2 was monitored in all patients by a fast responding main stream capnometry. Taking the gaseous samples was visually synchronized with the expired CO2. Alveolar CO2 contents measured during two different respiratory cycles were identical (p 0.86). The variation of the CO2 content during 10 measurements in one patient was lower than 4%. Arterial PCO2, PCO2 in alveolar gas and end tidal PCO2 showed positive correlation. The visually CO2-controlled sampling technique of alveolar gas is a reliable and reproducible method. It represents an important step in simplifying and standardizing breath analysis.

  3. Compressed NMR: Combining compressive sampling and pure shift NMR techniques.

    PubMed

    Aguilar, Juan A; Kenwright, Alan M

    2017-12-26

    Historically, the resolution of multidimensional nuclear magnetic resonance (NMR) has been orders of magnitude lower than the intrinsic resolution that NMR spectrometers are capable of producing. The slowness of Nyquist sampling as well as the existence of signals as multiplets instead of singlets have been two of the main reasons for this underperformance. Fortunately, two compressive techniques have appeared that can overcome these limitations. Compressive sensing, also known as compressed sampling (CS), avoids the first limitation by exploiting the compressibility of typical NMR spectra, thus allowing sampling at sub-Nyquist rates, and pure shift techniques eliminate the second issue "compressing" multiplets into singlets. This paper explores the possibilities and challenges presented by this combination (compressed NMR). First, a description of the CS framework is given, followed by a description of the importance of combining it with the right pure shift experiment. Second, examples of compressed NMR spectra and how they can be combined with covariance methods will be shown. Copyright © 2017 John Wiley & Sons, Ltd.

  4. 'Boomerang' technique: an improved method for conformal treatment of locally advanced nasopharyngeal cancer.

    PubMed

    Corry, June; Hornby, Colin; Fisher, Richard; D'Costa, Ieta; Porceddu, Sandro; Rischin, Danny; Peters, Lester J

    2004-06-01

    The primary aim of the present study was to assess radiation dosimetry and subsequent clinical outcomes in patients with locally advanced nasopharyngeal cancer using a novel radiation technique termed the 'Boomerang'. Dosimetric comparisons were made with both conventional and intensity modulated radiation therapy (IMRT) techniques. This is a study of 22 patients treated with this technique from June 1995 to October 1998. The technique used entailed delivery of 36 Gy in 18 fractions via parallel opposed fields, then 24 Gy in 12 fractions via asymmetric rotating arc fields for a total of 60 Gy in 30 fractions. Patients also received induction and concurrent chemotherapy. The radiation dosimetry was excellent. Dose-volume histograms showed that with the arc fields, 90% of the planning target volume received 94% of the prescribed dose. Relative to other conventional radiation therapy off-cord techniques, the Boomerang technique results in a 27% greater proportion of the prescribed dose being received by 90% of the planning target volume. This translates into an overall 10% greater dose received for the same prescribed dose. At 3 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 91, 75 and 91%, respectively. At 5 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 74, 62 and 71%, respectively. The Boomerang technique provided excellent radiation dosimetry with correspondingly good loco-regional control rates (in conjunction with chemotherapy) and very acceptable acute and late toxicity profiles. Because treatment can be delivered with conventional standard treatment planning and delivery systems, it is a validated treatment option for centres that do not have the capability or capacity for IMRT. A derivative of the Boomerang technique, excluding the parallel opposed component, is now our standard for patients with locally advanced

  5. An evaluation of adhesive sample holders for advanced crystallographic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzorana, Marco; Sanchez-Weatherby, Juan, E-mail: juan.sanchez-weatherby@diamond.ac.uk; Sandy, James

    Commercially available adhesives have been evaluated for crystal mounting when undertaking complex macromolecular crystallography experiments. Here, their use as tools for advanced sample mounting and cryoprotection is assessed and their suitability for room-temperature data-collection and humidity-controlled studies is investigated. The hydration state of macromolecular crystals often affects their overall order and, ultimately, the quality of the X-ray diffraction pattern that they produce. Post-crystallization techniques that alter the solvent content of a crystal may induce rearrangement within the three-dimensional array making up the crystal, possibly resulting in more ordered packing. The hydration state of a crystal can be manipulated by exposingmore » it to a stream of air at controlled relative humidity in which the crystal can equilibrate. This approach provides a way of exploring crystal hydration space to assess the diffraction capabilities of existing crystals. A key requirement of these experiments is to expose the crystal directly to the dehydrating environment by having the minimum amount of residual mother liquor around it. This is usually achieved by placing the crystal on a flat porous support (Kapton mesh) and removing excess liquid by wicking. Here, an alternative approach is considered whereby crystals are harvested using adhesives that capture naked crystals directly from their crystallization drop, reducing the process to a one-step procedure. The impact of using adhesives to ease the harvesting of different types of crystals is presented together with their contribution to background scattering and their usefulness in dehydration experiments. It is concluded that adhesive supports represent a valuable tool for mounting macromolecular crystals to be used in humidity-controlled experiments and to improve signal-to-noise ratios in diffraction experiments, and how they can protect crystals from modifications in the sample environment is

  6. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui

    2017-12-01

    More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.

  7. Application of advanced control techniques to aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1984-01-01

    Two programs are described which involve the application of advanced control techniques to the design of engine control algorithms. Multivariable control theory is used in the F100 MVCS (multivariable control synthesis) program to design controls which coordinate the control inputs for improved engine performance. A systematic method for handling a complex control design task is given. Methods of analytical redundancy are aimed at increasing the control system reliability. The F100 DIA (detection, isolation, and accommodation) program, which investigates the uses of software to replace or augment hardware redundancy for certain critical engine sensor, is described.

  8. [Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.

    PubMed

    Ying, Bin-Wu

    2016-11-01

    Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.

  9. Cleaning and Cleanliness Verification Techniques for Mars Returned Sample Handling

    NASA Technical Reports Server (NTRS)

    Mickelson, E. T.; Lindstrom, D. J.; Allton, J. H.; Hittle, J. D.

    2002-01-01

    Precision cleaning and cleanliness verification techniques are examined as a subset of a comprehensive contamination control strategy for a Mars sample return mission. Additional information is contained in the original extended abstract.

  10. 32 CFR Appendix D to Part 110 - Application of Advanced Course Formula (Male and Female Members) (Sample)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Application of Advanced Course Formula (Male and Female Members) (Sample) D Appendix D to Part 110 National Defense Department of Defense OFFICE OF THE... Appendix D to Part 110—Application of Advanced Course Formula (Male and Female Members) (Sample) Zone I...

  11. An Effective Technique for Endoscopic Resection of Advanced Stage Angiofibroma

    PubMed Central

    Mohammadi Ardehali, Mojtaba; Samimi, Seyyed Hadi; Bakhshaee, Mehdi

    2014-01-01

    Introduction: In recent years, the surgical management of angiofibroma has been greatly influenced by the use of endoscopic techniques. However, large tumors that extend into difficult anatomic sites present major challenges for management by either endoscopy or an open-surgery approach which needs new technique for the complete en block resection. Materials and Methods: In a prospective observational study we developed an endoscopic transnasal technique for the resection of angiofibroma via pushing and pulling the mass with 1/100000 soaked adrenalin tampons. Thirty two patients were treated using this endoscopic technique over 7 years. The mean follow-up period was 36 months. The main outcomes measured were tumor staging, average blood loss, complications, length of hospitalization, and residual and/or recurrence rate of the tumor. Results: According to the Radkowski staging, 23,5, and 4 patients were at stage IIC, IIIA, and IIIB, respectively. Twenty five patients were operated on exclusively via transnasal endoscopy while 7 patients were managed using endoscopy-assisted open-surgery techniques. Mean blood loss in patients was 1261± 893 cc. The recurrence rate was 21.88% (7 cases) at two years following surgery. Mean hospitalization time was 3.56 ± 0.6 days. Conclusion: Using this effective technique, endoscopic removal of more highly advanced angiofibroma is possible. Better visualization, less intraoperative blood loss, lower rates of complication and recurrence, and shorter hospitalization time are some of the advantages. PMID:24505571

  12. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  13. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    NASA Astrophysics Data System (ADS)

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l

  14. Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation

    PubMed Central

    Martín Noguerol, Teodoro; Luna, Antonio; Gómez Cabrera, Marta; Riofrio, Alexie D

    2017-01-01

    Magnetic resonance imaging (MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response. PMID:28979849

  15. The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles.

    PubMed

    Lasagna, Manuela; De Luca, Domenico Antonio

    2016-10-01

    Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth. Different techniques can be used to highlight this stratification. The paper aims at comparing the advantages and limitations of three open hole multilevel sampling techniques (packer system, dialysis membrane samplers and bailer), chosen on the base of a literary review, to highlight a nitrate vertical stratification under the assumption of (sub)horizontal flow in the aquifer. The sampling systems were employed at three different times of the year in a shallow aquifer piezometer in northern Italy. The optimal purge time, equilibration time and water volume losses during the time in the piezometer were evaluated. Multilevel techniques highlighted a similar vertical nitrate stratification, present throughout the year. Indeed, nitrate concentrations generally decreased with depth downwards, but with significantly different levels in the sampling campaigns. Moreover, the sampling techniques produced different degrees of accuracy. More specifically, the dialysis membrane samplers provided the most accurate hydrochemical profile of the shallow aquifer and they appear to be necessary when the objective is to detect the discontinuities in the nitrate profile. Bailer and packer system showed the same nitrate profile with little differences of concentration. However, the bailer resulted much more easier to use.

  16. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliescu, Bogdan; Haskal, Ziv J., E-mail: ziv2@mac.com

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful,more » with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.« less

  17. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  18. Why minimally invasive skin sampling techniques? A bright scientific future.

    PubMed

    Wang, Christina Y; Maibach, Howard I

    2011-03-01

    There is increasing interest in minimally invasive skin sampling techniques to assay markers of molecular biology and biochemical processes. This overview examines methodology strengths and limitations, and exciting developments pending in the scientific community. Publications were searched via PubMed, the U.S. Patent and Trademark Office Website, the DermTech Website and the CuDerm Website. The keywords used were noninvasive skin sampling, skin stripping, skin taping, detergent method, ring method, mechanical scrub, reverse iontophoresis, glucose monitoring, buccal smear, hair root sampling, mRNA, DNA, RNA, and amino acid. There is strong interest in finding methods to access internal biochemical, molecular, and genetic processes through noninvasive and minimally invasive external means. Minimally invasive techniques include the widely used skin tape stripping, the abrasion method that includes scraping and detergent, and reverse iontophoresis. The first 2 methods harvest largely the stratum corneum. Hair root sampling (material deeper than the epidermis), buccal smear, shave biopsy, punch biopsy, and suction blistering are also methods used to obtain cellular material for analysis, but involve some degree of increased invasiveness and thus are only briefly mentioned. Existing and new sampling methods are being refined and validated, offering exciting, different noninvasive means of quickly and efficiently obtaining molecular material with which to monitor bodily functions and responses, assess drug levels, and follow disease processes without subjecting patients to unnecessary discomfort and risk.

  19. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  20. ANALYSIS OF SAMPLING TECHNIQUES FOR IMBALANCED DATA: AN N=648 ADNI STUDY

    PubMed Central

    Dubey, Rashmi; Zhou, Jiayu; Wang, Yalin; Thompson, Paul M.; Ye, Jieping

    2013-01-01

    Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases eligible for the study are nearly two times the Alzheimer’s disease (AD) patients for structural magnetic resonance imaging (MRI) modality and six times the control cases for proteomics modality. Constructing an accurate classifier from imbalanced data is a challenging task. Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data into the majority class. In this paper, we study an ensemble system of feature selection and data sampling for the class imbalance problem. We systematically analyze various sampling techniques by examining the efficacy of different rates and types of undersampling, oversampling, and a combination of over and under sampling approaches. We thoroughly examine six widely used feature selection algorithms to identify significant biomarkers and thereby reduce the complexity of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers including Random Forest and Support Vector Machines based on classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our extensive experimental results show that for various problem settings in ADNI, (1). a balanced training set obtained with K-Medoids technique based undersampling gives the best overall performance among different data sampling techniques and no sampling approach; and (2). sparse logistic regression with stability selection achieves competitive performance among various feature selection algorithms. Comprehensive experiments with various settings show that our proposed ensemble model of multiple undersampled datasets yields stable and promising results. PMID:24176869

  1. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis.

    PubMed

    Deeb, Sami El; Wätzig, Hermann; El-Hady, Deia Abd; Albishri, Hassan M; de Griend, Cari Sänger-van; Scriba, Gerhard K E

    2014-01-01

    Since the introduction about 30 years ago, CE techniques have gained a significant impact in pharmaceutical analysis. The present review covers recent advances and applications of CE for the analysis of pharmaceuticals. Both small molecules and biomolecules such as proteins are considered. The applications range from the determination of drug-related substances to the analysis of counterions and the determination of physicochemical parameters. Furthermore, general considerations of CE methods in pharmaceutical analysis are described. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Applications of Advanced, Waveform Based AE Techniques for Testing Composite Materials

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1996-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been previously used to evaluate damage progression in laboratory tests of composite coupons. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite structures, the effects of wave propagation over larger distances and through structural complexities must be well characterized and understood. In this research, measurements were made of the attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels. As these materials have applications in a cryogenic environment, the effects of cryogenic insulation on the attenuation of plate mode AE signals were also documented.

  3. A technique for extracting blood samples from mice in fire toxicity tests

    NASA Technical Reports Server (NTRS)

    Bucci, T. J.; Hilado, C. J.; Lopez, M. T.

    1976-01-01

    The extraction of adequate blood samples from moribund and dead mice has been a problem because of the small quantity of blood in each animal and the short time available between the animals' death and coagulation of the blood. These difficulties are particularly critical in fire toxicity tests because removal of the test animals while observing proper safety precautions for personnel is time-consuming. Techniques for extracting blood samples from mice were evaluated, and a technique was developed to obtain up to 0.8 ml of blood from a single mouse after death. The technique involves rapid exposure and cutting of the posterior vena cava and accumulation of blood in the peritoneal space. Blood samples of 0.5 ml or more from individual mice have been consistently obtained as much as 16 minutes after apparent death. Results of carboxyhemoglobin analyses of blood appeared reproducible and consistent with carbon monoxide concentrations in the exposure chamber.

  4. [Recent advances in sample preparation methods of plant hormones].

    PubMed

    Wu, Qian; Wang, Lus; Wu, Dapeng; Duan, Chunfeng; Guan, Yafeng

    2014-04-01

    Plant hormones are a group of naturally occurring trace substances which play a crucial role in controlling the plant development, growth and environment response. With the development of the chromatography and mass spectroscopy technique, chromatographic analytical method has become a widely used way for plant hormone analysis. Among the steps of chromatographic analysis, sample preparation is undoubtedly the most vital one. Thus, a highly selective and efficient sample preparation method is critical for accurate identification and quantification of phytohormones. For the three major kinds of plant hormones including acidic plant hormones & basic plant hormones, brassinosteroids and plant polypeptides, the sample preparation methods are reviewed in sequence especially the recently developed methods. The review includes novel methods, devices, extractive materials and derivative reagents for sample preparation of phytohormones analysis. Especially, some related works of our group are included. At last, the future developments in this field are also prospected.

  5. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGES

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  6. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  7. Mantle biopsy: a technique for nondestructive tissue-sampling of freshwater mussels

    Treesearch

    David J. Berg; Wendell R. Haag; Sheldon I. Guttman; James B. Sickel

    1995-01-01

    Mantle biopsy is a means of obtaining tissue samples for genetic, physiological, and contaminant studies of bivalves; but the effects of this biopsy on survival have not been determined. We describe a simple technique for obtaining such samples from unionacean bivalves and how we compared survival among biopsied and control organisms in field experiments. Survival was...

  8. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, David; Chang, Won; Haran, Murali; Applegate, Patrick; DeConto, Robert

    2016-05-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ˜ 20 000 yr. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. The analyses provide sea-level-rise envelopes with well-defined parametric uncertainty bounds, but the simple averaging method only provides robust results with full-factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree well with the more advanced techniques. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds.

  9. Recent Advances in Techniques for Starch Esters and the Applications: A Review

    PubMed Central

    Hong, Jing; Zeng, Xin-An; Brennan, Charles S.; Brennan, Margaret; Han, Zhong

    2016-01-01

    Esterification is one of the most important methods to alter the structure of starch granules and improve its applications. Conventionally, starch esters are prepared by conventional or dual modification techniques, which have the disadvantages of being expensive, have regent overdoses, and are time-consuming. In addition, the degree of substitution (DS) is often considered as the primary factor in view of its contribution to estimate substituted groups of starch esters. In order to improve the detection accuracy and production efficiency, different detection techniques, including titration, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis/infrared spectroscopy (TGA/IR) and headspace gas chromatography (HS-GC), have been developed for DS. This paper gives a comprehensive overview on the recent advances in DS analysis and starch esterification techniques. Additionally, the advantages, limitations, some perspectives on future trends of these techniques and the applications of their derivatives in the food industry are also presented. PMID:28231145

  10. Multiple Replica Repulsion Technique for Efficient Conformational Sampling of Biological Systems

    PubMed Central

    Malevanets, Anatoly; Wodak, Shoshana J.

    2011-01-01

    Here, we propose a technique for sampling complex molecular systems with many degrees of freedom. The technique, termed “multiple replica repulsion” (MRR), does not suffer from poor scaling with the number of degrees of freedom associated with common replica exchange procedures and does not require sampling at high temperatures. The algorithm involves creation of multiple copies (replicas) of the system, which interact with one another through a repulsive potential that can be applied to the system as a whole or to portions of it. The proposed scheme prevents oversampling of the most populated states and provides accurate descriptions of conformational perturbations typically associated with sampling ground-state energy wells. The performance of MRR is illustrated for three systems of increasing complexity. A two-dimensional toy potential surface is used to probe the sampling efficiency as a function of key parameters of the procedure. MRR simulations of the Met-enkephalin pentapeptide, and the 76-residue protein ubiquitin, performed in presence of explicit water molecules and totaling 32 ns each, investigate the ability of MRR to characterize the conformational landscape of the peptide, and the protein native basin, respectively. Results obtained for the enkephalin peptide reflect more closely the extensive conformational flexibility of this peptide than previously reported simulations. Those obtained for ubiquitin show that conformational ensembles sampled by MRR largely encompass structural fluctuations relevant to biological recognition, which occur on the microsecond timescale, or are observed in crystal structures of ubiquitin complexes with other proteins. MRR thus emerges as a very promising simple and versatile technique for modeling the structural plasticity of complex biological systems. PMID:21843487

  11. The effect of a cannula milk sampling technique on the microbiological diagnosis of bovine mastitis.

    PubMed

    Friman, M; Hiitiö, H; Niemi, M; Holopainen, J; Pyörälä, S; Simojoki, H

    2017-08-01

    Two methods of collecting milk samples from mastitic bovine mammary quarters were compared. Samples were taken in a consistent order in which standard aseptic technique sampling was done first, followed by insertion of a sterile cannula through the teat canal and collection of a second sample. Microbiological results of those two sampling techniques were compared. Milk samples were analysed using multiplex real-time polymerase chain reaction (PCR). The cannula technique produced a reduced number of microbial species or groups of species per sample compared with conventional sampling. Staphylococcus spp. were the most common species identified and were detected more often during conventional sampling than with cannula sampling. Staphylococcus spp. identified in milk samples could also have originated from the teat canal without being present in the milk. The number of samples positive for Trueperella pyogenes or yeasts in the conventional samples was twice as high as in the cannula samples, indicating that the presence of Trueperella pyogenes and yeast species should not necessarily be interpreted as being the causative agents of bovine intra-mammary infections (IMI). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of primary immunization coverage of infants under universal immunization programme in an urban area of bangalore city using cluster sampling and lot quality assurance sampling techniques.

    PubMed

    K, Punith; K, Lalitha; G, Suman; Bs, Pradeep; Kumar K, Jayanth

    2008-07-01

    Is LQAS technique better than cluster sampling technique in terms of resources to evaluate the immunization coverage in an urban area? To assess and compare the lot quality assurance sampling against cluster sampling in the evaluation of primary immunization coverage. Population-based cross-sectional study. Areas under Mathikere Urban Health Center. Children aged 12 months to 23 months. 220 in cluster sampling, 76 in lot quality assurance sampling. Percentages and Proportions, Chi square Test. (1) Using cluster sampling, the percentage of completely immunized, partially immunized and unimmunized children were 84.09%, 14.09% and 1.82%, respectively. With lot quality assurance sampling, it was 92.11%, 6.58% and 1.31%, respectively. (2) Immunization coverage levels as evaluated by cluster sampling technique were not statistically different from the coverage value as obtained by lot quality assurance sampling techniques. Considering the time and resources required, it was found that lot quality assurance sampling is a better technique in evaluating the primary immunization coverage in urban area.

  13. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  14. A Feasibility Study of the Collection of Unscheduled Maintenance Data Using Statistical Sampling Techniques.

    DTIC Science & Technology

    1985-09-01

    TECHNIQUES THESIS Robert A. Heinlein Captain, USAF AFIT/GLM/LSM/855-32.- _ DTIC MU’noN ’ST.,TEMENT A A-ZELECTE Approved lt public teleo*I Al \\ Z #&N0V21...343" A FEASIBILITY STUDY OF THE COLLECTION OF UNSCHEDULED MAINTENANCE DATA USING STrATISTICAL SAMPLING TECHNIQUES THESIS L .9 Robe-t A. Heinlein...a AFIT/GLM/LSM/85S-32 A FEASIBILITY STUDY OF THE COLLECTION OF UNSCHEDULED MAINTENANCE DATA USING STATISTICAL SAMPLING TECHNIQUES THESIS

  15. Evaluation of Primary Immunization Coverage of Infants Under Universal Immunization Programme in an Urban Area of Bangalore City Using Cluster Sampling and Lot Quality Assurance Sampling Techniques

    PubMed Central

    K, Punith; K, Lalitha; G, Suman; BS, Pradeep; Kumar K, Jayanth

    2008-01-01

    Research Question: Is LQAS technique better than cluster sampling technique in terms of resources to evaluate the immunization coverage in an urban area? Objective: To assess and compare the lot quality assurance sampling against cluster sampling in the evaluation of primary immunization coverage. Study Design: Population-based cross-sectional study. Study Setting: Areas under Mathikere Urban Health Center. Study Subjects: Children aged 12 months to 23 months. Sample Size: 220 in cluster sampling, 76 in lot quality assurance sampling. Statistical Analysis: Percentages and Proportions, Chi square Test. Results: (1) Using cluster sampling, the percentage of completely immunized, partially immunized and unimmunized children were 84.09%, 14.09% and 1.82%, respectively. With lot quality assurance sampling, it was 92.11%, 6.58% and 1.31%, respectively. (2) Immunization coverage levels as evaluated by cluster sampling technique were not statistically different from the coverage value as obtained by lot quality assurance sampling techniques. Considering the time and resources required, it was found that lot quality assurance sampling is a better technique in evaluating the primary immunization coverage in urban area. PMID:19876474

  16. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, D.; Chang, W.; Haran, M.; Applegate, P.; DeConto, R.

    2015-11-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.

  17. JSC Advanced Curation: Research and Development for Current Collections and Future Sample Return Mission Demands

    NASA Technical Reports Server (NTRS)

    Fries, M. D.; Allen, C. C.; Calaway, M. J.; Evans, C. A.; Stansbery, E. K.

    2015-01-01

    Curation of NASA's astromaterials sample collections is a demanding and evolving activity that supports valuable science from NASA missions for generations, long after the samples are returned to Earth. For example, NASA continues to loan hundreds of Apollo program samples to investigators every year and those samples are often analyzed using instruments that did not exist at the time of the Apollo missions themselves. The samples are curated in a manner that minimizes overall contamination, enabling clean, new high-sensitivity measurements and new science results over 40 years after their return to Earth. As our exploration of the Solar System progresses, upcoming and future NASA sample return missions will return new samples with stringent contamination control, sample environmental control, and Planetary Protection requirements. Therefore, an essential element of a healthy astromaterials curation program is a research and development (R&D) effort that characterizes and employs new technologies to maintain current collections and enable new missions - an Advanced Curation effort. JSC's Astromaterials Acquisition & Curation Office is continually performing Advanced Curation research, identifying and defining knowledge gaps about research, development, and validation/verification topics that are critical to support current and future NASA astromaterials sample collections. The following are highlighted knowledge gaps and research opportunities.

  18. A Visual Evaluation Study of Graph Sampling Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fangyan; Zhang, Song; Wong, Pak C.

    2017-01-29

    We evaluate a dozen prevailing graph-sampling techniques with an ultimate goal to better visualize and understand big and complex graphs that exhibit different properties and structures. The evaluation uses eight benchmark datasets with four different graph types collected from Stanford Network Analysis Platform and NetworkX to give a comprehensive comparison of various types of graphs. The study provides a practical guideline for visualizing big graphs of different sizes and structures. The paper discusses results and important observations from the study.

  19. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  20. Development of a syringe pump assisted dynamic headspace sampling technique for needle trap device.

    PubMed

    Eom, In-Yong; Niri, Vadoud H; Pawliszyn, Janusz

    2008-07-04

    This paper describes a new approach that combines needle trap devices (NTDs) with a dynamic headspace sampling technique (purge and trap) using a bidirectional syringe pump. The needle trap device is a 22-G stainless steel needle 3.5-in. long packed with divinylbenzene sorbent particles. The same sized needle, without packing, was used for purging purposes. We chose an aqueous mixture of benzene, toluene, ethylbenzene, and p-xylene (BTEX) and developed a sequential purge and trap (SPNT) method, in which sampling (trapping) and purging cycles were performed sequentially by the use of syringe pump with different distribution channels. In this technique, a certain volume (1 mL) of headspace was sequentially sampled using the needle trap; afterwards, the same volume of air was purged into the solution at a high flow rate. The proposed technique showed an effective extraction compared to the continuous purge and trap technique, with a minimal dilution effect. Method evaluation was also performed by obtaining the calibration graphs for aqueous BTEX solutions in the concentration range of 1-250 ng/mL. The developed technique was compared to the headspace solid-phase microextraction method for the analysis of aqueous BTEX samples. Detection limits as low as 1 ng/mL were obtained for BTEX by NTD-SPNT.

  1. Clinical forensic sample collection techniques following consensual intercourse in volunteers - cervical canal brush compared to conventional swabs.

    PubMed

    Joki-Erkkilä, Minna; Tuomisto, Sari; Seppänen, Mervi; Huhtala, Heini; Ahola, Arja; Rainio, Juha; Karhunen, Pekka J

    2014-10-01

    The purpose of the research was to evaluate gynecological evidence collection techniques; the benefit of cervical canal brush sample compared to vaginal fornix and cervical swab samples and the time frame for detecting Y-chromosomal material QiAmp DNA Mini Kit(®) and Quantifiler Y Human Male DNA Quantification Kit(®) in adult volunteers following consensual intercourse. Eighty-four adult female volunteers following consensual intercourse were recruited for the study. By combining all sample collecting techniques, 81.0% of the volunteers were Y-DNA positive. Up to 60 h the conventional swab sampling techniques detected more Y-DNA positive samples when compared to the brush technique. However, after 60 h, the cervical canal brush sample technique showed its benefit by detecting 27.3% (6/22) of Y-DNA positive samples, which were Y-DNA negative in both conventional swab sampling techniques. By combining swab and brush techniques, 75% of the volunteers were still Y-DNA positive in 72-144 post-coital hours. The rate of measurable Y-DNA decreased approximately 3% per hour. Despite reported consensual intercourse, 6.8% (3/44) of volunteers were Y-DNA negative within 48 h. Y-DNA was not detected after 144 post-coital hours (6 days). In conclusion, the brush as a forensic evidence collection method may provide additional biological trace evidence from the cervical canal, although the best biological trace evidence collection can be obtained by combining all three sampling techniques. The time frame for gynecological forensic evidence sample collection should be considered to be at least a week if sexual violence is suspected. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. Advanced spacecraft thermal control techniques

    NASA Technical Reports Server (NTRS)

    Fritz, C. H.

    1977-01-01

    The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function.

  3. Evaluation of an advanced physical diagnosis course using consumer preferences methods: the nominal group technique.

    PubMed

    Coker, Joshua; Castiglioni, Analia; Kraemer, Ryan R; Massie, F Stanford; Morris, Jason L; Rodriguez, Martin; Russell, Stephen W; Shaneyfelt, Terrance; Willett, Lisa L; Estrada, Carlos A

    2014-03-01

    Current evaluation tools of medical school courses are limited by the scope of questions asked and may not fully engage the student to think on areas to improve. The authors sought to explore whether a technique to study consumer preferences would elicit specific and prioritized information for course evaluation from medical students. Using the nominal group technique (4 sessions), 12 senior medical students prioritized and weighed expectations and topics learned in a 100-hour advanced physical diagnosis course (4-week course; February 2012). Students weighted their top 3 responses (top = 3, middle = 2 and bottom = 1). Before the course, 12 students identified 23 topics they expected to learn; the top 3 were review sensitivity/specificity and high-yield techniques (percentage of total weight, 18.5%), improving diagnosis (13.8%) and reinforce usual and less well-known techniques (13.8%). After the course, students generated 22 topics learned; the top 3 were practice and reinforce advanced maneuvers (25.4%), gaining confidence (22.5%) and learn the evidence (16.9%). The authors observed no differences in the priority of responses before and after the course (P = 0.07). In a physical diagnosis course, medical students elicited specific and prioritized information using the nominal group technique. The course met student expectations regarding education of the evidence-based physical examination, building skills and confidence on the proper techniques and maneuvers and experiential learning. The novel use for curriculum evaluation may be used to evaluate other courses-especially comprehensive and multicomponent courses.

  4. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-729] Certain Semiconductor Products Made by... the sale within the United States after importation of certain semiconductor products made by advanced lithography techniques and products containing same by reason of infringement of certain claims of U.S. Patent...

  5. Tackling sampling challenges in biomolecular simulations.

    PubMed

    Barducci, Alessandro; Pfaendtner, Jim; Bonomi, Massimiliano

    2015-01-01

    Molecular dynamics (MD) simulations are a powerful tool to give an atomistic insight into the structure and dynamics of proteins. However, the time scales accessible in standard simulations, which often do not match those in which interesting biological processes occur, limit their predictive capabilities. Many advanced sampling techniques have been proposed over the years to overcome this limitation. This chapter focuses on metadynamics, a method based on the introduction of a time-dependent bias potential to accelerate sampling and recover equilibrium properties of a few descriptors that are able to capture the complexity of a process at a coarse-grained level. The theory of metadynamics and its combination with other popular sampling techniques such as the replica exchange method is briefly presented. Practical applications of these techniques to the study of the Trp-Cage miniprotein folding are also illustrated. The examples contain a guide for performing these calculations with PLUMED, a plugin to perform enhanced sampling simulations in combination with many popular MD codes.

  6. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  7. Advancement of Techniques for Modeling the Effects of Atmospheric Gravity-Wave-Induced Inhomogeneities on Infrasound Propagation

    DTIC Science & Technology

    2010-09-01

    ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound

  8. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  9. Analysis of pure and malachite green doped polysulfone sample using FT-IR technique

    NASA Astrophysics Data System (ADS)

    Nayak, Rashmi J.; Khare, P. K.; Nayak, J. G.

    2018-05-01

    The sample of pure and malachite green doped Polysulfone in the form of foil was prepared by isothermal immersion technique. For the preparation of pure sample 4 gm of Polysulfone was dissolved in 50 ml of Dimethyl farmamide (DMF) solvent, while for the preparation of doped sample 10 mg, 50 mg and 100 mg Malachite Green was mixed with 4 gm of Polysulfone respectively. For the study of structural characterization of these pure and doped sample, Fourier Transform Infra-Red Spectroscopy (FT-IR) technique was used. This study shows that the intensity of transmittance decreases as the ratio of doping increases in pure polysulfone. The reduction in intensity of transmittance is clearly apparent in the present case more over the bands were broader which indicates towards charge transfer interaction between the donar and acceptor molecule.

  10. Application of Lamendin's adult dental aging technique to a diverse skeletal sample.

    PubMed

    Prince, Debra A; Ubelaker, Douglas H

    2002-01-01

    Lamendin et al. (1) proposed a technique to estimate age at death for adults by analyzing single-rooted teeth. They expressed age as a function of two factors: translucency of the tooth root and periodontosis (gingival regression). In their study, they analyzed 306 singled rooted teeth that were extracted at autopsy from 208 individuals of known age at death, all of whom were considered as having a French ancestry. Their sample consisted of 135 males, 73 females, 198 whites, and 10 blacks. The sample ranged in age from 22 to 90 years of age. By using a simple formulae (A = 0.18 x P + 0.42 x T + 25.53, where A = Age in years, P = Periodontosis height x 100/root height, and T = Transparency height x 100/root height), Lamendin et al. were able to estimate age at death with a mean error of +/- 10 years on their working sample and +/- 8.4 years on a forensic control sample. Lamendin found this technique to work well with a French population, but did not test it outside of that sample area. This study tests the accuracy of this adult aging technique on a more diverse skeletal population, the Terry Collection housed at the Smithsonian's National Museum of Natural History. Our sample consists of 400 teeth from 94 black females, 72 white females, 98 black males, and 95 white males, ranging from 25 to 99 years. Lamendin's technique was applied to this sample to test its applicability to a population not of French origin. Providing results from a diverse skeletal population will aid in establishing the validity of this method to be used in forensic cases, its ideal purpose. Our results suggest that Lamendin's method estimates age fairly accurately outside of the French sample yielding a mean error of 8.2 years, standard deviation 6.9 years, and standard error of the mean 0.34 years. In addition, when ancestry and sex are accounted for, the mean errors are reduced for each group (black females, white females, black males, and white males). Lamendin et al. reported an inter

  11. Analysis of sampling techniques for imbalanced data: An n = 648 ADNI study.

    PubMed

    Dubey, Rashmi; Zhou, Jiayu; Wang, Yalin; Thompson, Paul M; Ye, Jieping

    2014-02-15

    Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases eligible for the study are nearly two times the Alzheimer's disease (AD) patients for structural magnetic resonance imaging (MRI) modality and six times the control cases for proteomics modality. Constructing an accurate classifier from imbalanced data is a challenging task. Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data into the majority class. In this paper, we study an ensemble system of feature selection and data sampling for the class imbalance problem. We systematically analyze various sampling techniques by examining the efficacy of different rates and types of undersampling, oversampling, and a combination of over and undersampling approaches. We thoroughly examine six widely used feature selection algorithms to identify significant biomarkers and thereby reduce the complexity of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers including Random Forest and Support Vector Machines based on classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our extensive experimental results show that for various problem settings in ADNI, (1) a balanced training set obtained with K-Medoids technique based undersampling gives the best overall performance among different data sampling techniques and no sampling approach; and (2) sparse logistic regression with stability selection achieves competitive performance among various feature selection algorithms. Comprehensive experiments with various settings show that our proposed ensemble model of multiple undersampled datasets yields stable and promising results. © 2013 Elsevier Inc. All rights reserved.

  12. PROCEEDINGS: ADVANCES IN PARTICLE SAMPLING AND MEASUREMENT (ASHEVILLE, NC, MAY 1978)

    EPA Science Inventory

    The proceedings consist of 17 papers on improved instruments and techniques for sampling and measuring particulate emissions and aerosols; e.g., cascade impactors, cyclone collectors, and diffusion-battery/nuclei-counter combinations. Transmissometers and instruments for measurin...

  13. 75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Semiconductor Products Made by Advanced Lithography Techniques and Products Containing Same; Notice of... Mexico) (``STC''), alleging a violation of section 337 in the importation, sale for [[Page 81644

  14. Comparison of destructive and nondestructive sampling techniques of retail chicken carcasses for enumeration of hygiene indicator microorganisms.

    PubMed

    Cossi, Marcus Vinícius Coutinho; de Almeida, Michelle Vieira; Dias, Mariane Rezende; de Arruda Pinto, Paulo Sérgiode; Nero, Luís Augusto

    2012-01-01

    The type of sampling technique used to obtain food samples is fundamental to the success of microbiological analysis. Destructive and nondestructive techniques, such as tissue excision and rinsing, respectively, are widely employed in obtaining samples from chicken carcasses. In this study, four sampling techniques used for chicken carcasses were compared to evaluate their performances in the enumeration of hygiene indicator microorganisms. Sixty fresh chicken carcasses were sampled by rinsing, tissue excision, superficial swabbing, and skin excision. All samples were submitted for enumeration of mesophilic aerobes, Enterobacteriaceae, coliforms, and Escherichia coli. The results were compared to determine the statistical significance of differences and correlation (P < 0.05). Tissue excision provided the highest microbial counts compared with the other procedures, with significant differences obtained only for coliforms and E. coli (P < 0.05). Significant correlations (P < 0.05) were observed for all the sampling techniques evaluated for most of the hygiene indicators. Despite presenting a higher recovery ability, tissue excision did not present significant differences for microorganism enumeration compared with other nondestructive techniques, such as rinsing, indicating its adequacy for microbiological analysis of chicken carcasses.

  15. Advancements in optical techniques and imaging in the diagnosis and management of bladder cancer.

    PubMed

    Rose, Tracy L; Lotan, Yair

    2018-03-01

    Accurate detection and staging is critical to the appropriate management of urothelial cancer (UC). The use of advanced optical techniques during cystoscopy is becoming more widespread to prevent recurrent nonmuscle invasive bladder cancer. Standard of care for muscle-invasive UC includes the use of computed tomography and/or magnetic resonance imaging, but staging accuracy of these tests remains imperfect. Novel imaging modalities are being developed to improve current test performance. Positron emission tomography/computed tomography has a role in the initial evaluation of select patients with muscle-invasive bladder cancer and in disease recurrence in some cases. Several novel immuno-positron emission tomography tracers are currently in development to address the inadequacy of current imaging modalities for monitoring of tumor response to newer immune-based treatments. This review summaries the current standards and recent advances in optical techniques and imaging modalities in localized and metastatic UC. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Statistical evaluation of vibration analysis techniques

    NASA Technical Reports Server (NTRS)

    Milner, G. Martin; Miller, Patrice S.

    1987-01-01

    An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.

  17. Petrosal sinus sampling: technique and rationale.

    PubMed

    Miller, D L; Doppman, J L

    1991-01-01

    Bilateral simultaneous sampling of the inferior petrosal sinuses is an extremely sensitive, specific, and accurate test for diagnosing Cushing disease and distinguishing between that entity and the ectopic ACTH syndrome. It is also valuable for lateralizing small hormone-producing adenomas within the pituitary gland. The inferior petrosal sinuses connect the cavernous sinuses with the ipsilateral internal jugular veins. The anatomy of the anastomoses between the inferior petrosal sinus, the internal jugular vein, and the venous plexuses at the base of the skull varies, but it is almost always possible to catheterize the inferior petrosal sinus. In addition, variations in size and anatomy are often present between the two inferior petrosal sinuses in a patient. Advance preparation is required for petrosal sinus sampling. Teamwork is a critical element, and each member of the staff should know what he or she will be doing during the procedure. The samples must be properly labeled, processed, and stored. Specific needles, guide wires, and catheters are recommended for this procedure. The procedure is performed with specific attention to the three areas of potential technical difficulty: catheterization of the common femoral veins, crossing the valve at the base of the left internal jugular vein, and selective catheterization of the inferior petrosal sinuses. There are specific methods for dealing with each of these areas. The sine qua non of correct catheter position in the inferior petrosal sinus is demonstration of reflux of contrast material into the ipsilateral cavernous sinus. Images must always be obtained to document correct catheter position. Special attention must be paid to two points to prevent potential complications: The patient must be given an adequate dose of heparin, and injection of contrast material into the inferior petrosal sinuses and surrounding veins must be done gently and carefully. When the procedure is performed as outlined, both inferior

  18. Advanced proteomic liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  19. A Coordinated Focused Ion Beam/Ultramicrotomy Technique for Serial Sectioning of Hayabusa Particles and Other Returned Samples

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Keller, L. P.

    2014-01-01

    Recent sample return missions, such as NASA's Stardust mission to comet 81P/Wild 2 and JAXA's Hayabusa mission to asteroid 25143 Itokawa, have returned particulate samples (typically 5-50 µm) that pose tremendous challenges to coordinated analysis using a variety of nano- and micro-beam techniques. The ability to glean maximal information from individual particles has become increasingly important and depends critically on how the samples are prepared for analysis. This also holds true for other extraterrestrial materials, including interplanetary dust particles, micrometeorites and lunar regolith grains. Traditionally, particulate samples have been prepared using microtomy techniques (e.g., [1]). However, for hard mineral particles ?20 µm, microtome thin sections are compromised by severe chatter and sample loss. For these difficult samples, we have developed a hybrid technique that combines traditional ultramicrotomy with focused ion beam (FIB) techniques, allowing for the in situ investigation of grain surfaces and interiors. Using this method, we have increased the number of FIB-SEM prepared sections that can be recovered from a particle with dimensions on the order of tens of µms. These sections can be subsequently analyzed using a variety of electron beam techniques. Here, we demonstrate this sample preparation technique on individual lunar regolith grains in order to study their space-weathered surfaces. We plan to extend these efforts to analyses of individual Hayabusa samples.

  20. Techniques for Down-Sampling a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces

  1. Tenon advancement and duplication technique to prevent postoperative Ahmed valve tube exposure in patients with refractory glaucoma.

    PubMed

    Tamcelik, Nevbahar; Ozkok, Ahmet; Sarıcı, Ahmet Murat; Atalay, Eray; Yetik, Huseyin; Gungor, Kivanc

    2013-07-01

    To present and compare the long-term results of Dr. Tamcelik's previously described technique of Tenon advancement and duplication with the conventional Ahmed glaucoma valve (AGV) implantation technique in patients with refractory glaucoma. This study was a multicenter, retrospective case series that included 303 eyes of 276 patients with refractory glaucoma who underwent glaucoma valve implantation surgery. The patients were divided into three groups according to the surgical technique applied and the outcomes compared. In group 1, 96 eyes of 86 patients underwent AGV implant surgery without patch graft; in group 2, 78 eyes of 72 patients underwent AGV implant surgery with donor scleral patch; in group 3, 129 eyes of 118 patients underwent Ahmed valve implant surgery with "combined short scleral tunnel with Tenon advancement and duplication technique". The endpoint assessed was tube exposure through the conjunctiva. In group 1, conjunctival tube exposure was seen in 11 eyes (12.9 %) after a mean 9.2 ± 3.7 years of follow-up. In group 2, conjunctival tube exposure was seen in six eyes (2.2 %) after a mean 8.9 ± 3.3 years of follow-up. In group 3, there was no conjunctival exposure after a mean 7.8 ± 2.8 years of follow-up. The difference between the groups was statistically significant. (P = 0.0001, Chi-square test). This novel surgical technique combining a short scleral tunnel with Tenon advancement and duplication was found to be effective and safe to prevent conjunctival tube exposure after AGV implantation surgery in patients with refractory glaucoma.

  2. Advances in Procedural Techniques - Antegrade

    PubMed Central

    Wilson, William; Spratt, James C.

    2014-01-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the “hybrid’ approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited “interventional” collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  3. Advances in magnetic resonance neuroimaging techniques in the evaluation of neonatal encephalopathy.

    PubMed

    Panigrahy, Ashok; Blüml, Stefan

    2007-02-01

    Magnetic resonance (MR) imaging has become an essential tool in the evaluation of neonatal encephalopathy. Magnetic resonance-compatible neonatal incubators allow sick neonates to be transported to the MR scanner, and neonatal head coils can improve signal-to-noise ratio, critical for advanced MR imaging techniques. Refinement of conventional imaging techniques include the use of PROPELLER techniques for motion correction. Magnetic resonance spectroscopic imaging and diffusion tensor imaging provide quantitative assessment of both brain development and brain injury in the newborn with respect to metabolite abnormalities and hypoxic-ischemic injury. Knowledge of normal developmental changes in MR spectroscopy metabolite concentration and diffusion tensor metrics is essential to interpret pathological cases. Perfusion MR and functional MR can provide additional physiological information. Both MR spectroscopy and diffusion tensor imaging can provide additional information in the differential of neonatal encephalopathy, including perinatal white matter injury, hypoxic-ischemic brain injury, metabolic disease, infection, and birth injury.

  4. Impact of sampling techniques on measured stormwater quality data for small streams

    USGS Publications Warehouse

    Harmel, R.D.; Slade, R.M.; Haney, R.L.

    2010-01-01

    Science-based sampling methodologies are needed to enhance water quality characterization for setting appropriate water quality standards, developing Total Maximum Daily Loads, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water quality in small (wadeable) streams, is typically conducted by manual grab or integrated sampling or with an automated sampler. Although it is typically assumed that samples from a single point adequately represent mean cross-sectional concentrations, especially for dissolved constituents, this assumption of well-mixed conditions has received limited evaluation. Similarly, the impact of temporal (within-storm) concentration variability is rarely considered. Therefore, this study evaluated differences in stormwater quality measured in small streams with several common sampling techniques, which in essence evaluated within-channel and within-storm concentration variability. Constituent concentrations from manual grab samples and from integrated samples were compared for 31 events, then concentrations were also compared for seven events with automated sample collection. Comparison of sampling techniques indicated varying degrees of concentration variability within channel cross sections for both dissolved and particulate constituents, which is contrary to common assumptions of substantial variability in particulate concentrations and of minimal variability in dissolved concentrations. Results also indicated the potential for substantial within-storm (temporal) concentration variability for both dissolved and particulate constituents. Thus, failing to account for potential cross-sectional and temporal concentration variability in stormwater monitoring projects can introduce additional uncertainty in measured water quality data. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  6. Top-down analysis of protein samples by de novo sequencing techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyatkina, Kira; Wu, Si; Dekker, Lennard J. M.

    MOTIVATION: Recent technological advances have made high-resolution mass spectrometers affordable to many laboratories, thus boosting rapid development of top-down mass spectrometry, and implying a need in efficient methods for analyzing this kind of data. RESULTS: We describe a method for analysis of protein samples from top-down tandem mass spectrometry data, which capitalizes on de novo sequencing of fragments of the proteins present in the sample. Our algorithm takes as input a set of de novo amino acid strings derived from the given mass spectra using the recently proposed Twister approach, and combines them into aggregated strings endowed with offsets. Themore » former typically constitute accurate sequence fragments of sufficiently well-represented proteins from the sample being analyzed, while the latter indicate their location in the protein sequence, and also bear information on post-translational modifications and fragmentation patterns.« less

  7. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  8. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  9. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  10. Advanced proteomic liquid chromatography

    PubMed Central

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-01-01

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput. PMID:22840822

  11. A look-ahead probabilistic contingency analysis framework incorporating smart sampling techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Etingov, Pavel V.; Ren, Huiying

    2016-07-18

    This paper describes a framework of incorporating smart sampling techniques in a probabilistic look-ahead contingency analysis application. The predictive probabilistic contingency analysis helps to reflect the impact of uncertainties caused by variable generation and load on potential violations of transmission limits.

  12. Effects of sampling techniques on physical parameters and concentrations of selected persistent organic pollutants in suspended matter.

    PubMed

    Pohlert, Thorsten; Hillebrand, Gudrun; Breitung, Vera

    2011-06-01

    This study focusses on the effect of sampling techniques for suspended matter in stream water on subsequent particle-size distribution and concentrations of total organic carbon and selected persistent organic pollutants. The key questions are whether differences between the sampling techniques are due to the separation principle of the devices or due to the difference between time-proportional versus integral sampling. Several multivariate homogeneity tests were conducted on an extensive set of field-data that covers the period from 2002 to 2007, when up to three different sampling techniques were deployed in parallel at four monitoring stations of the River Rhine. The results indicate homogeneity for polychlorinated biphenyls, but significant effects due to the sampling techniques on particle-size, organic carbon and hexachlorobenzene. The effects can be amplified depending on the site characteristics of the monitoring stations.

  13. Random sampling technique for ultra-fast computations of molecular opacities for exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Min, M.

    2017-10-01

    Context. Opacities of molecules in exoplanet atmospheres rely on increasingly detailed line-lists for these molecules. The line lists available today contain for many species up to several billions of lines. Computation of the spectral line profile created by pressure and temperature broadening, the Voigt profile, of all of these lines is becoming a computational challenge. Aims: We aim to create a method to compute the Voigt profile in a way that automatically focusses the computation time into the strongest lines, while still maintaining the continuum contribution of the high number of weaker lines. Methods: Here, we outline a statistical line sampling technique that samples the Voigt profile quickly and with high accuracy. The number of samples is adjusted to the strength of the line and the local spectral line density. This automatically provides high accuracy line shapes for strong lines or lines that are spectrally isolated. The line sampling technique automatically preserves the integrated line opacity for all lines, thereby also providing the continuum opacity created by the large number of weak lines at very low computational cost. Results: The line sampling technique is tested for accuracy when computing line spectra and correlated-k tables. Extremely fast computations ( 3.5 × 105 lines per second per core on a standard current day desktop computer) with high accuracy (≤1% almost everywhere) are obtained. A detailed recipe on how to perform the computations is given.

  14. [Development of sample pretreatment techniques-rapid detection coupling methods for food security analysis].

    PubMed

    Huang, Yichun; Ding, Weiwei; Zhang, Zhuomin; Li, Gongke

    2013-07-01

    This paper summarizes the recent developments of the rapid detection methods for food security, such as sensors, optical techniques, portable spectral analysis, enzyme-linked immunosorbent assay, portable gas chromatograph, etc. Additionally, the applications of these rapid detection methods coupled with sample pretreatment techniques in real food security analysis are reviewed. The coupling technique has the potential to provide references to establish the selective, precise and quantitative rapid detection methods in food security analysis.

  15. On the Applications of IBA Techniques to Biological Samples Analysis: PIXE and RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falcon-Gonzalez, J. M.; Bernal-Alvarado, J.; Sosa, M.

    2008-08-11

    The analytical techniques based on ion beams or IBA techniques give quantitative information on elemental concentration in samples of a wide variety of nature. In this work, we focus on PIXE technique, analyzing thick target biological specimens (TTPIXE), using 3 MeV protons produced by an electrostatic accelerator. A nuclear microprobe was used performing PIXE and RBS simultaneously, in order to solve the uncertainties produced in the absolute PIXE quantifying. The advantages of using both techniques and a nuclear microprobe are discussed. Quantitative results are shown to illustrate the multielemental resolution of the PIXE technique; for this, a blood standard wasmore » used.« less

  16. Sampling and analysis techniques for monitoring serum for trace elements.

    PubMed

    Ericson, S P; McHalsky, M L; Rabinow, B E; Kronholm, K G; Arceo, C S; Weltzer, J A; Ayd, S W

    1986-07-01

    We describe techniques for controlling contamination in the sampling and analysis of human serum for trace metals. The relatively simple procedures do not require clean-room conditions. The atomic absorption and atomic emission methods used have been applied in studying zinc, copper, chromium, manganese, molybdenum, selenium, and aluminum concentrations. Values obtained for a group of 16 normal subjects agree with the most reliable values reported in the literature, obtained by much more elaborate techniques. All of these metals can be measured in 3 to 4 mL of serum. The methods may prove especially useful in monitoring concentrations of essential trace elements in blood of patients being maintained on total parenteral nutrition.

  17. Examining Returned Samples in their Collection Tubes Using Synchrotron Radiation-Based Techniques

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Hurowitz, J. A.; Thieme, J.; Dooryhee, E.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    Synchrotron radiation-based techniques can be leveraged for triaging and analysis of returned samples before unsealing collection tubes. Proof-of-concept measurements conducted at Brookhaven National Lab's National Synchrotron Light Source-II.

  18. Green Aspects of Techniques for the Determination of Currently Used Pesticides in Environmental Samples

    PubMed Central

    Stocka, Jolanta; Tankiewicz, Maciej; Biziuk, Marek; Namieśnik, Jacek

    2011-01-01

    Pesticides are among the most dangerous environmental pollutants because of their stability, mobility and long-term effects on living organisms. Their presence in the environment is a particular danger. It is therefore crucial to monitor pesticide residues using all available analytical methods. The analysis of environmental samples for the presence of pesticides is very difficult: the processes involved in sample preparation are labor-intensive and time-consuming. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solvent-less and solvent-minimized techniques are becoming popular. The application of Green Chemistry principles to sample preparation is primarily leading to the miniaturization of procedures and the use of solvent-less techniques, and these are discussed in the paper. PMID:22174632

  19. Advances in the analysis of biological samples using ionic liquids.

    PubMed

    Clark, Kevin D; Trujillo-Rodríguez, María J; Anderson, Jared L

    2018-02-12

    Ionic liquids are a class of solvents and materials that hold great promise in bioanalytical chemistry. Task-specific ionic liquids have recently been designed for the selective extraction, separation, and detection of proteins, peptides, nucleic acids, and other physiologically relevant analytes from complex biological samples. To facilitate rapid bioanalysis, ionic liquids have been integrated in miniaturized and automated procedures. Bioanalytical separations have also benefited from the modification of nonspecific magnetic materials with ionic liquids or the implementation of ionic liquids with inherent magnetic properties. Furthermore, the direct detection of the extracted molecules in the analytical instrument has been demonstrated with structurally tuned ionic liquids and magnetic ionic liquids, providing a significant advantage in the analysis of low-abundance analytes. This article gives an overview of these advances that involve the application of ionic liquids and derivatives in bioanalysis. Graphical abstract Ionic liquids, magnetic ionic liquids, and ionic liquid-based sorbents are increasing the speed, selectivity, and sensitivity in the analysis of biological samples.

  20. New developments of X-ray fluorescence imaging techniques in laboratory

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  1. Advanced Techniques in Pulmonary Function Test Analysis Interpretation and Diagnosis

    PubMed Central

    Gildea, T.J.; Bell, C. William

    1980-01-01

    The Pulmonary Functions Analysis and Diagnostic System is an advanced clinical processing system developed for use at the Pulmonary Division, Department of Medicine at the University of Nebraska Medical Center. The system generates comparative results and diagnostic impressions for a variety of routine and specialized pulmonary functions test data. Routine evaluation deals with static lung volumes, breathing mechanics, diffusing capacity, and blood gases while specialized tests include lung compliance studies, small airways dysfunction studies and dead space to tidal volume ratios. Output includes tabular results of normal vs. observed values, clinical impressions and commentary and, where indicated, a diagnostic impression. A number of pulmonary physiological and state variables are entered or sampled (A to D) with periodic status reports generated for the test supervisor. Among the various physiological variables sampled are respiratory frequency, minute ventilation, oxygen consumption, carbon dioxide production, and arterial oxygen saturation.

  2. Comparative Study of Radon Concentration with Two Techniques and Elemental Analysis in Drinking Water Samples of the Jammu District, Jammu and Kashmir, India.

    PubMed

    Kumar, Ajay; Kaur, Manpreet; Mehra, Rohit; Sharma, Dinesh Kumar; Mishra, Rosaline

    2017-10-01

    The level of radon concentration has been assessed using the Advanced SMART RnDuo technique in 30 drinking water samples from Jammu district, Jammu and Kashmir, India. The water samples were collected from wells, hand pumps, submersible pumps, and stored waters. The randomly obtained 14 values of radon concentration in water sources using the SMART RnDuo technique have been compared and cross checked by a RAD7 device. A good positive correlation (R = 0.88) has been observed between the two techniques. The overall value of radon concentration in various water sources has ranged from 2.45 to 18.43 Bq L, with a mean value of 8.24 ± 4.04 Bq L, and it agreed well with the recommended limit suggested by the European Commission and UNSCEAR. However, the higher activity of mean radon concentration was found in groundwater drawn from well, hand and submersible pumps as compared to stored water. The total annual effective dose due to radon inhalation and ingestion ranged from 6.69 to 50.31 μSv y with a mean value of 22.48 ± 11.03 μSv y. The total annual effective dose was found to lie within the safe limit (100 μSv y) suggested by WHO. Heavy metal analysis was also carried out in various water sources by using an atomic absorption spectrophotometer (AAS), and the highest value of heavy metals was found mostly in groundwater samples. The obtained results were compared with Indian and International organizations like WHO and the EU Council. Among all the samples, the elemental analysis is not on the exceeding side of the permissible limit.

  3. Laboratory Testing of Volcanic Gas Sampling Techniques

    NASA Astrophysics Data System (ADS)

    Kress, V. C.; Green, R.; Ortiz, M.; Delmelle, P.; Fischer, T.

    2003-12-01

    results suggest that they are poor recorders of gas composition. Filter pack methods are somewhat better, but are more difficult to interpret than previously recognized. We suggest several refinements to the filter-pack technique that can improve accuracy. Giggenbach bottles remain the best method for volcanic gas sampling, despite the inherent difficulty and danger of obtaining samples in active volcanic environments. Relative merits of different alkali solutions and indicators are discussed.

  4. SSAGES: Software Suite for Advanced General Ensemble Simulations.

    PubMed

    Sidky, Hythem; Colón, Yamil J; Helfferich, Julian; Sikora, Benjamin J; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S; Reid, Daniel R; Sevgen, Emre; Thapar, Vikram; Webb, Michael A; Whitmer, Jonathan K; de Pablo, Juan J

    2018-01-28

    Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques-including adaptive biasing force, string methods, and forward flux sampling-that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.

  5. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be < 4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  6. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    PubMed

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be <4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sample Containerization and Sealing Techniques for Contamination Prevention and Preservation of Science Value for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Younse, Paulo

    Four sealing methods for encapsulating samples in 1 cm diameter thin-walled sample tubes were designed, along with a set of tests for characterization and evaluation of contamination prevention and sample preservation capability for the proposed Mars Sample Return (MSR) campaign. The sealing methods include a finned shape memory alloy (SMA) plug, expanding torque plug, contracting SMA ring cap, and expanding SMA ring plug. Mechanical strength and hermeticity of the seal were measured using a helium leak detector. Robustness of the seal to Mars simulant dust, surface abrasion, and pressure differentials were tested. Survivability tests were run to simulate thermal cycles on Mars, vibration from a Mars Ascent Vehicle (MAV), and shock from Earth Entry Vehicle (EEV) landing. Material compatibility with potential sample minerals and organic molecules were studied to select proper tube and seal materials that would not lead to adverse reactions nor contaminate the sample. Cleaning and sterilization techniques were executed on coupons made from the seal materials to assess compliance with planetary protection and contamination control. Finally, a method to cut a sealed tube for sample removal was designed and tested.

  8. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US

  9. The effect of sampling techniques used in the multiconfigurational Ehrenfest method

    NASA Astrophysics Data System (ADS)

    Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.

    2018-05-01

    In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

  10. The effect of sampling techniques used in the multiconfigurational Ehrenfest method.

    PubMed

    Symonds, C; Kattirtzi, J A; Shalashilin, D V

    2018-05-14

    In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

  11. The Lunar Sample Compendium

    NASA Technical Reports Server (NTRS)

    Meyer, Charles

    2009-01-01

    The Lunar Sample Compendium is a succinct summary of the data obtained from 40 years of study of Apollo and Luna samples of the Moon. Basic petrographic, chemical and age information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. The LSC can be found online using Google. The initial allocation of lunar samples was done sparingly, because it was realized that scientific techniques would improve over the years and new questions would be formulated. The LSC is important because it enables scientists to select samples within the context of the work that has already been done and facilitates better review of proposed allocations. It also provides back up material for public displays, captures information found only in abstracts, grey literature and curatorial databases and serves as a ready access to the now-vast scientific literature.

  12. Comparison of diagnostic performances among bronchoscopic sampling techniques in the diagnosis of peripheral pulmonary lesions.

    PubMed

    Boonsarngsuk, Viboon; Kanoksil, Wasana; Laungdamerongchai, Sarangrat

    2015-04-01

    There are many sampling techniques dedicated to radial endobronchial ultrasound (R-EBUS) guided flexible bronchoscopy (FB). However, data regarding the diagnostic performances among bronchoscopic sampling techniques is limited. This study was conducted to compare the diagnostic yields among bronchoscopic sampling techniques in the diagnosis of peripheral pulmonary lesions (PPLs). A prospective study was conducted on 112 patients who were diagnosed with PPLs and underwent R-EBUS-guided FB between Oct 2012 and Sep 2014. Sampling techniques-including transbronchial biopsy (TBB), brushing cell block, brushing smear, rinsed fluid of brushing, and bronchoalveolar lavage (BAL)-were evaluated for the diagnosis. The mean diameter of the PPLs was 23.5±9.5 mm. The final diagnoses included 76 malignancies and 36 benign lesions. The overall diagnostic yield of R-EBUS-guided bronchoscopy was 80.4%; TBB gave the highest yield among the 112 specimens: 70.5%, 34.8%, 62.5%, 50.0% and 42.0% for TBB, brushing cell block, brushing smear, rinsed brushing fluid, and BAL fluid (BALF), respectively (P<0.001). TBB provided high diagnostic yield irrespective of the size and etiology of the PPLs. The combination of TBB and brushing smear achieved the maximum diagnostic yield. Of 31 infectious PPLs, BALF culture gave additional microbiological information in 20 cases. TBB provided the highest diagnostic yield; however, to achieve the highest diagnostic performance, TBB, brushing smear and BAL techniques should be performed together.

  13. Advanced Curation Activities at NASA: Implications for Astrobiological Studies of Future Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Evans, C. A.; Fries, M. D.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for re-search, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  14. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    NASA Astrophysics Data System (ADS)

    Ünak, T.; Avcibasi, U.; Yildirim, Y.; Çetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 μg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  15. Use of Advanced Spectroscopic Techniques for Predicting the Mechanical Properties of Wood Composites

    Treesearch

    Timothy G. Rials; Stephen S. Kelley; Chi-Leung So

    2002-01-01

    Near infrared (NIR) spectroscopy was used to characterize a set of medium-density fiberboard (MDF) samples. This spectroscopic technique, in combination with projection to latent structures (PLS) modeling, effectively predicted the mechanical strength of MDF samples with a wide range of physical properties. The stiffness, strength, and internal bond properties of the...

  16. Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer

    USGS Publications Warehouse

    Claassen, Hans C.

    1982-01-01

    Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.

  17. Image acquisition system using on sensor compressed sampling technique

    NASA Astrophysics Data System (ADS)

    Gupta, Pravir Singh; Choi, Gwan Seong

    2018-01-01

    Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.

  18. Airway emergencies presenting to the paediatric emergency department requiring advanced management techniques.

    PubMed

    Simma, Leopold; Cincotta, Domenic; Sabato, Stefan; Long, Elliot

    2017-09-01

    Airway emergencies presenting to the emergency department (ED) are usually managed with conventional equipment and techniques. The patient group managed urgently in the operating room (OR) has not been described. This study aims to describe a case series of children presenting to the ED with airway emergencies managed urgently in the OR, particularly the anaesthetic equipment and techniques used and airway findings. A retrospective cohort study undertaken at The Royal Children's Hospital, Melbourne, Australia. All patients presenting to the ED between 1 January 2012 and 30 July 2015 (42 months) with an airway emergency who were subsequently managed in the OR were included. Patient characteristics, anaesthetic equipment and technique and airway findings were recorded. Twenty-two airway emergencies in 21 patients were included over the study period, on average one every 2 months. Median age was 18 months and 43% were male. Inhalational induction was used in 77.3%, combined inhalational and intravenous induction in 9.1%, and intravenous induction alone in 13.6%. The most commonly used inhalational induction agent was sevoflurane, and the most commonly used intravenous induction agents were ketamine and propofol. Ten airway emergencies did not require intubation, seven for removal of inhaled foreign body, two with progressive tracheal stenosis requiring emergent dilatation and one examination under anaesthesia to rule out inhaled foreign body. Of the 12 airway emergencies that required immediate intubation, direct laryngoscopy was used in 9 and fibre-optic intubating bronchoscopy in 3. For intubations performed by direct laryngoscopy, one was difficult (Cormack and Lehane grade 3). First pass success was 83.3%. Adverse events occurred in 3/22 (13.6%) cases. Advanced airway techniques, including inhalational induction and intubation via fibre-optic intubating bronchoscope, are rarely but predictably required in the management of patients presenting to the ED

  19. Advanced Pressure Coring System for Deep Earth Sampling (APRECOS)

    NASA Astrophysics Data System (ADS)

    Anders, E.; Rothfuss, M.; Müller, W. H.

    2009-04-01

    Nowadays the recovery of cores from boreholes is a standard operation. However, during that process the mechanical, physical, and chemical properties as well as living conditions for microorganisms are significantly altered. In-situ sampling is one approach to overcome the severe scientific limitations of conventional, depressurized core investigations by recovering, processing, and conducting experiments in the laboratory, while maintaining unchanged environmental parameters. The most successful equipment today is the suite of tools developed within the EU funded projects HYACE (Hydrate Autoclave Coring Equipment) and HYACINTH (Deployment of HYACE tools In New Tests on Hydrates) between 1997 and 2005. Within several DFG (German Research Foundation) projects the Technical University Berlin currently works on concepts to increase the present working pressure of 250 bar as well as to reduce logistical and financial expenses by merging redundant and analogous procedures and scaling down the considerable size of key components. It is also proposed to extend the range of applications for the wireline rotary pressure corer and the sub-sampling and transfer system to all types of soil conditions (soft to highly-consolidated). New modifications enable the tools to be used in other pressure related fields of research, such as unconventional gas exploration (coal-bed methane, tight gas, gas hydrate), CO2 sequestration, and microbiology of the deep biosphere. Expedient enhancement of an overall solution for pressure core retrieval, process and investigation will open the way for a complete on-site, all-purpose, in-situ equipment. The advanced assembly would allow for executing the whole operation sequences of coring, non-destructive measurement, sub-sampling and transfer into storage, measurement and transportation chambers, all in sterile, anaerobic conditions, and without depressurisation in quick succession. Extensive post-cruise handling and interim storage would be

  20. Advances in microscale separations towards nanoproteomics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Lian; Piehowski, Paul D.; Shi, Tujin

    Microscale separations (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. While significant advances have been achieved in MS-based proteomics, the current platforms still face a significant challenge in overall sensitivity towards nanoproteomics (i.e., with less than 1 g total amount of proteins available) applications such as cellular heterogeneity in tissue pathologies. Herein, we review recent advances in microscale separation techniques and integrated sample processing systems that improve the overall sensitivity and coverage of the proteomics workflow, and their contributionsmore » towards nanoproteomics applications.« less

  1. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  2. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    PubMed Central

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors. PMID:12587031

  3. Biotechnology apprenticeship for secondary-level students: teaching advanced cell culture techniques for research.

    PubMed

    Lewis, Jennifer R; Kotur, Mark S; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A; Ferrell, Nick; Sullivan, Kathryn D; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors.

  4. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  6. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.

    PubMed

    Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees

    2017-08-01

    While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Detection of Mycobacterium avium subspecies paratuberculosis in tie-stall dairy herds using a standardized environmental sampling technique and targeted pooled samples.

    PubMed

    Arango-Sabogal, Juan C; Côté, Geneviève; Paré, Julie; Labrecque, Olivia; Roy, Jean-Philippe; Buczinski, Sébastien; Doré, Elizabeth; Fairbrother, Julie H; Bissonnette, Nathalie; Wellemans, Vincent; Fecteau, Gilles

    2016-07-01

    Mycobacterium avium ssp. paratuberculosis (MAP) is the etiologic agent of Johne's disease, a chronic contagious enteritis of ruminants that causes major economic losses. Several studies, most involving large free-stall herds, have found environmental sampling to be a suitable method for detecting MAP-infected herds. In eastern Canada, where small tie-stall herds are predominant, certain conditions and management practices may influence the survival and transmission of MAP and recovery (isolation). Our objective was to estimate the performance of a standardized environmental and targeted pooled sampling technique for the detection of MAP-infected tie-stall dairy herds. Twenty-four farms (19 MAP-infected and 5 non-infected) were enrolled, but only 20 were visited twice in the same year, to collect 7 environmental samples and 2 pooled samples (sick cows and cows with poor body condition). Concurrent individual sampling of all adult cows in the herds was also carried out. Isolation of MAP was achieved using the MGIT Para TB culture media and the BACTEC 960 detection system. Overall, MAP was isolated in 7% of the environmental cultures. The sensitivity of the environmental culture was 44% [95% confidence interval (CI): 20% to 70%] when combining results from 2 different herd visits and 32% (95% CI: 13% to 57%) when results from only 1 random herd visit were used. The best sampling strategy was to combine samples from the manure pit, gutter, sick cows, and cows with poor body condition. The standardized environmental sampling technique and the targeted pooled samples presented in this study is an alternative sampling strategy to costly individual cultures for detecting MAP-infected tie-stall dairies. Repeated samplings may improve the detection of MAP-infected herds.

  8. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  9. Cell block samples from malignant pleural effusion might be valid alternative samples for anaplastic lymphoma kinase detection in patients with advanced non-small-cell lung cancer.

    PubMed

    Zhou, Jianya; Yao, Hongtian; Zhao, Jing; Zhang, Shumeng; You, Qihan; Sun, Ke; Zou, Yinying; Zhou, Caicun; Zhou, Jianying

    2015-06-01

    To evaluate the clinical value of cell block samples from malignant pleural effusion (MPE) as alternative samples to tumour tissue for anaplastic lymphoma kinase (ALK) detection in patients with advanced non-small-cell lung cancer (NSCLC). Fifty-two matched samples were eligible for analysis. ALK status was detected by Ventana immunohistochemistry (IHC) (with the D5F3 clone), reverse transcription polymerase chain reaction (RT-PCR) and fluorescence in-situ hybridization (FISH) in MPE cell block samples, and by FISH in tumour tissue block samples. In total, ALK FISH results were obtained for 52 tumour tissue samples and 41 MPE cell block samples. Eight cases (15.4%) were ALK-positive in tumour tissue samples by FISH, and among matched MPE cell block samples, five were ALK-positive by FISH, seven were ALK-positive by RT-PCR, and eight were ALK-positive by Ventana IHC. The ALK status concordance rates between tumour tissue and MPE cell block samples were 78.9% by FISH, 98.1% by RT-PCR, and 100% by Ventana IHC. In MPE cell block samples, the sensitivity and specificity of Ventana IHC (100% and 100%) and RT-PCR (87.5% and 100%) were higher than those of FISH (62.5% and 100%). Malignant pleural effusion cell block samples had a diagnostic performance for ALK detection in advanced NSCLC that was comparable to that of tumour tissue samples. MPE cell block samples might be valid alternative samples for ALK detection when tissue is not available. Ventana IHC could be the most suitable method for ALK detection in MPE cell block samples. © 2014 John Wiley & Sons Ltd.

  10. U-series dating of impure carbonates: An isochron technique using total-sample dissolution

    USGS Publications Warehouse

    Bischoff, J.L.; Fitzpatrick, J.A.

    1991-01-01

    U-series dating is a well-established technique for age determination of Late Quaternary carbonates. Materials of sufficient purity for nominal dating, however, are not as common as materials with mechanically inseparable aluminosilicate detritus. Detritus contaminates the sample with extraneous Th. We propose that correction for contamination is best accomplished with the isochron technique using total sample dissolution (TSD). Experiments were conducted on artificial mixtures of natural detritus and carbonate and on an impure carbonate of known age. Results show that significant and unpredictable transfer of radionuclides occur from the detritus to the leachate in commonly used selective leaching procedures. The effects of correcting via leachate-residue pairs and isochron plots were assessed. Isochrons using TSD gave best results, followed by isochron plots of leachates only. ?? 1991.

  11. Advances in Tissue Engineering Techniques for Articular Cartilage Repair

    PubMed Central

    Haleem, AM; Chu, CR

    2010-01-01

    The limited repair potential of human articular cartilage contributes to development of debilitating osteoarthritis and remains a great clinical challenge. This has led to evolution of cartilage treatment strategies from palliative to either reconstructive or reparative methods in an attempt to delay or “bridge the gap” to joint replacement. Further development of tissue engineering-based cartilage repair methods have been pursued to provide a more functional biological tissue. Currently, tissue engineering of articular cartilage has three cornerstones; a cell population capable of proliferation and differentiation into mature chondrocytes, a scaffold that can host these cells, provide a suitable environment for cellular functioning and serve as a sustained-release delivery vehicle of chondrogenic growth factors and thirdly, signaling molecules and growth factors that stimulate the cellular response and the production of a hyaline extracellular matrix (ECM). The aim of this review is to summarize advances in each of these three fields of tissue engineering with specific relevance to surgical techniques and technical notes. PMID:29430164

  12. Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances

    PubMed Central

    Mincholé, Ana; Martínez, Juan Pablo; Laguna, Pablo; Rodriguez, Blanca

    2018-01-01

    Widely developed for clinical screening, electrocardiogram (ECG) recordings capture the cardiac electrical activity from the body surface. ECG analysis can therefore be a crucial first step to help diagnose, understand and predict cardiovascular disorders responsible for 30% of deaths worldwide. Computational techniques, and more specifically machine learning techniques and computational modelling are powerful tools for classification, clustering and simulation, and they have recently been applied to address the analysis of medical data, especially ECG data. This review describes the computational methods in use for ECG analysis, with a focus on machine learning and 3D computer simulations, as well as their accuracy, clinical implications and contributions to medical advances. The first section focuses on heartbeat classification and the techniques developed to extract and classify abnormal from regular beats. The second section focuses on patient diagnosis from whole recordings, applied to different diseases. The third section presents real-time diagnosis and applications to wearable devices. The fourth section highlights the recent field of personalized ECG computer simulations and their interpretation. Finally, the discussion section outlines the challenges of ECG analysis and provides a critical assessment of the methods presented. The computational methods reported in this review are a strong asset for medical discoveries and their translation to the clinical world may lead to promising advances. PMID:29321268

  13. An efficient sampling technique for sums of bandpass functions

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1982-01-01

    A well known sampling theorem states that a bandlimited function can be completely determined by its values at a uniformly placed set of points whose density is at least twice the highest frequency component of the function (Nyquist rate). A less familiar but important sampling theorem states that a bandlimited narrowband function can be completely determined by its values at a properly chosen, nonuniformly placed set of points whose density is at least twice the passband width. This allows for efficient digital demodulation of narrowband signals, which are common in sonar, radar and radio interferometry, without the side effect of signal group delay from an analog demodulator. This theorem was extended by developing a technique which allows a finite sum of bandlimited narrowband functions to be determined by its values at a properly chosen, nonuniformly placed set of points whose density can be made arbitrarily close to the sum of the passband widths.

  14. Advances in regional anaesthesia: A review of current practice, newer techniques and outcomes

    PubMed Central

    Wahal, Christopher; Kumar, Amanda; Pyati, Srinivas

    2018-01-01

    Advances in ultrasound guided regional anaesthesia and introduction of newer long acting local anaesthetics have given clinicians an opportunity to apply novel approaches to block peripheral nerves with ease. Consequently, improvements in outcomes such as quality of analgesia, early rehabilitation and patient satisfaction have been observed. In this article we will review some of the newer regional anaesthetic techniques, long acting local anaesthetics and adjuvants, and discuss evidence for key outcomes such as cancer recurrence and safety with ultrasound guidance. PMID:29491513

  15. Thermal Analysis of Brazing Seal and Sterilizing Technique to Break Contamination Chain for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2015-01-01

    The potential to return Martian samples to Earth for extensive analysis is in great interest of the planetary science community. It is important to make sure the mission would securely contain any microbes that may possibly exist on Mars so that they would not be able to cause any adverse effects on Earth's environment. A brazing sealing and sterilizing technique has been proposed to break the Mars-to-Earth contamination chain. Thermal analysis of the brazing process was conducted for several conceptual designs that apply the technique. Control of the increase of the temperature of the Martian samples is a challenge. The temperature profiles of the Martian samples being sealed in the container were predicted by finite element thermal models. The results show that the sealing and sterilization process can be controlled such that the samples' temperature is maintained below the potentially required level, and that the brazing technique is a feasible approach to break the contamination chain.

  16. Advanced endografting techniques: snorkels, chimneys, periscopes, fenestrations, and branched endografts.

    PubMed

    Kansagra, Kartik; Kang, Joseph; Taon, Matthew-Czar; Ganguli, Suvranu; Gandhi, Ripal; Vatakencherry, George; Lam, Cuong

    2018-04-01

    The anatomy of aortic aneurysms from the proximal neck to the access vessels may create technical challenges for endovascular repair. Upwards of 30% of patients with abdominal aortic aneurysms (AAA) have unsuitable proximal neck morphology for endovascular repair. Anatomies considered unsuitable for conventional infrarenal stent grafting include short or absent necks, angulated necks, conical necks, or large necks exceeding size availability for current stent grafts. A number of advanced endovascular techniques and devices have been developed to circumvent these challenges, each with unique advantages and disadvantages. These include snorkeling procedures such as chimneys, periscopes, and sandwich techniques; "homemade" or "back-table" fenestrated endografts as well as manufactured, customized fenestrated endografts; and more recently, physician modified branched devices. Furthermore, new devices in the pipeline under investigation, such as "off-the-shelf" fenestrated stent grafts, branched stent grafts, lower profile devices, and novel sealing designs, have the potential of solving many of the aforementioned problems. The treatment of aortic aneurysms continues to evolve, further expanding the population of patients that can be treated with an endovascular approach. As the technology grows so do the number of challenging aortic anatomies that endovascular specialists take on, further pushing the envelope in the arena of aortic repair.

  17. Recent Advances in Mass Spectrometry for the Identification of Neuro-chemicals and their Metabolites in Biofluids.

    PubMed

    Kailasa, Suresh Kumar; Wu, Hui-Fen

    2013-07-01

    Recently, mass spectrometric related techniques have been widely applied for the identification and quantification of neurochemicals and their metabolites in biofluids. This article presents an overview of mass spectrometric techniques applied in the detection of neurological substances and their metabolites from biological samples. In addition, the advances of chromatographic methods (LC, GC and CE) coupled with mass spectrometric techniques for analysis of neurochemicals in pharmaceutical and biological samples are also discussed.

  18. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  19. Sampling and analytical techniques for an interim survey in the South Carolina lowcountry

    Treesearch

    Richard L. Welch; Robert A. Cathey

    1976-01-01

    Remeasurement of 675 permanent sample locations in the South Carolina Lowcountry using modified sampling techniques showed that net growth of pine for the 6 years 1968-1974 was 637.0 million cubic feet while removals were slightly over 390.6 million cubic feet. In 1974, there were 1,533.5 million cubic feet of pine in the area with that portion in sawtimber size...

  20. Comparison of Techniques for Sampling Adult Necrophilous Insects From Pig Carcasses.

    PubMed

    Cruise, Angela; Hatano, Eduardo; Watson, David W; Schal, Coby

    2018-02-06

    Studies of the pre-colonization interval and mechanisms driving necrophilous insect ecological succession depend on effective sampling of adult insects and knowledge of their diel and successional activity patterns. The number of insects trapped, their diversity, and diel periodicity were compared with four sampling methods on neonate pigs. Sampling method, time of day and decomposition age of the pigs significantly affected the number of insects sampled from pigs. We also found significant interactions of sampling method and decomposition day, time of sampling and decomposition day. No single method was superior to the other methods during all three decomposition days. Sampling times after noon yielded the largest samples during the first 2 d of decomposition. On day 3 of decomposition however, all sampling times were equally effective. Therefore, to maximize insect collections from neonate pigs, the method used to sample must vary by decomposition day. The suction trap collected the most species-rich samples, but sticky trap samples were the most diverse, when both species richness and evenness were factored into a Shannon diversity index. Repeated sampling during the noon to 18:00 hours period was most effective to obtain the maximum diversity of trapped insects. The integration of multiple sampling techniques would most effectively sample the necrophilous insect community. However, because all four tested methods were deficient at sampling beetle species, future work should focus on optimizing the most promising methods, alone or in combinations, and incorporate hand-collections of beetles. © The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Comparative performance of three sampling techniques to detect airborne Salmonella species in poultry farms.

    PubMed

    Adell, Elisa; Moset, Verónica; Zhao, Yang; Jiménez-Belenguer, Ana; Cerisuelo, Alba; Cambra-López, María

    2014-01-01

    Sampling techniques to detect airborne Salmonella species (spp.) in two pilot scale broiler houses were compared. Broilers were inoculated at seven days of age with a marked strain of Salmonella enteritidis. The rearing cycle lasted 42 days during the summer. Airborne Salmonella spp. were sampled weekly using impaction, gravitational settling, and impingement techniques. Additionally, Salmonella spp. were sampled on feeders, drinkers, walls, and in the litter. Environmental conditions (temperature, relative humidity, and airborne particulate matter (PM) concentration) were monitored during the rearing cycle. The presence of Salmonella spp. was determined by culture-dependent and molecular methods. No cultivable Salmonella spp. were recovered from the poultry houses' surfaces, the litter, or the air before inoculation. After inoculation, cultivable Salmonella spp. were recovered from the surfaces and in the litter. Airborne cultivable Salmonella spp. Were detected using impaction and gravitational settling one or two weeks after the detection of Salmonella spp. in the litter. No cultivable Salmonella spp. were recovered using impingement based on culture-dependent techniques. At low airborne concentrations, the use of impingement for the quantification or detection of cultivable airborne Salmonella spp. is not recommended. In these cases, a combination of culture-dependent and culture-independent methods is recommended. These data are valuable to improve current measures to control the transmission of pathogens in livestock environments and for optimising the sampling and detection of airborne Salmonella spp. in practical conditions.

  2. Advances and unresolved challenges in the structural characterization of isomeric lipids.

    PubMed

    Hancock, Sarah E; Poad, Berwyck L J; Batarseh, Amani; Abbott, Sarah K; Mitchell, Todd W

    2017-05-01

    As the field of lipidomics grows and its application becomes wide and varied it is important that we don't forget its foundation, i.e. the identification and measurement of molecular lipids. Advances in liquid chromatography and the emergence of ion mobility as a useful tool in lipid analysis are allowing greater separation of lipid isomers than ever before. At the same time, novel ion activation techniques, such as ozone-induced dissociation, are pushing lipid structural characterization by mass spectrometry to new levels. Nevertheless, the quantitative capacity of these techniques is yet to be proven and further refinements are required to unravel the high level of lipid complexity found in biological samples. At present there is no one technique capable of providing full structural characterization of lipids from a biological sample. There are however, numerous techniques now available (as discussed in this review) that could be deployed in a targeted approach. Moving forward, the combination of advanced separation and ion activation techniques is likely to provide mass spectrometry-based lipidomics with its best opportunity to achieve complete molecular-level lipid characterization and measurement from complex mixtures. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  3. 32 CFR Appendix D to Part 110 - Application of Advanced Course Formula (Male and Female Members) (Sample)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Female Members) (Sample) D Appendix D to Part 110 National Defense Department of Defense OFFICE OF THE... COMMUTATION INSTEAD OF UNIFORMS FOR MEMBERS OF THE SENIOR RESERVE OFFICERS' TRAINING CORPS Pt. 110, App. D Appendix D to Part 110—Application of Advanced Course Formula (Male and Female Members) (Sample) Zone I...

  4. Human mixed lymphocyte cultures. Evaluation of microculture technique utilizing the multiple automated sample harvester (MASH)

    PubMed Central

    Thurman, G. B.; Strong, D. M.; Ahmed, A.; Green, S. S.; Sell, K. W.; Hartzman, R. J.; Bach, F. H.

    1973-01-01

    Use of lymphocyte cultures for in vitro studies such as pretransplant histocompatibility testing has established the need for standardization of this technique. A microculture technique has been developed that has facilitated the culturing of lymphocytes and increased the quantity of cultures feasible, while lowering the variation between replicate samples. Cultures were prepared for determination of tritiated thymidine incorporation using a Multiple Automated Sample Harvester (MASH). Using this system, the parameters that influence the in vitro responsiveness of human lymphocytes to allogeneic lymphocytes have been investigated. PMID:4271568

  5. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  6. [Influence of Natural Dissolved Organic Matter on the Passive Sampling Technique and its Application].

    PubMed

    Yu, Shang-yun; Zhou, Yan-mei

    2015-08-01

    This paper studied the effects of different concentrations of natural dissolved organic matter (DOM) on the passive sampling technique. The results showed that the presence of DOM affected the organic pollutant adsorption ability of the membrane. For lgK(OW), 3-5, DOM had less impact on the adsorption of organic matter by the membrane; for lgK(OW), > 5.5, DOM significantly increased the adsorption capacity of the membrane. Meanwhile, LDPE passive sampling technique was applied to monitor PAHs and PAEs in pore water of three surface sediments in Taizi River. All of the target pollutants were detected in varying degrees at each sampling point. Finally, the quotient method was used to assess the ecological risks of PAHs and PAEs. The results showed that fluoranthene exceeded the reference value of the aquatic ecosystem, meaning there was a big ecological risk.

  7. Sample preparation for the analysis of isoflavones from soybeans and soy foods.

    PubMed

    Rostagno, M A; Villares, A; Guillamón, E; García-Lafuente, A; Martínez, J A

    2009-01-02

    This manuscript provides a review of the actual state and the most recent advances as well as current trends and future prospects in sample preparation and analysis for the quantification of isoflavones from soybeans and soy foods. Individual steps of the procedures used in sample preparation, including sample conservation, extraction techniques and methods, and post-extraction treatment procedures are discussed. The most commonly used methods for extraction of isoflavones with both conventional and "modern" techniques are examined in detail. These modern techniques include ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction and microwave-assisted extraction. Other aspects such as stability during extraction and analysis by high performance liquid chromatography are also covered.

  8. Sampling techniques for burbot in a western non-wadeable river

    USGS Publications Warehouse

    Klein, Z. B.; Quist, Michael C.; Rhea, D.T.; Senecal, A. C.

    2015-01-01

    Burbot, Lota lota (L.), populations are declining throughout much of their native distribution. Although numerous aspects of burbot ecology are well understood, less is known about effective sampling techniques for burbot in lotic systems. Occupancy models were used to estimate the probability of detection () for three gears (6.4- and 19-mm bar mesh hoop nets, night electric fishing), within the context of various habitat characteristics. During the summer, night electric fishing had the highest estimated detection probability for both juvenile (, 95% C.I.; 0.35, 0.26–0.46) and adult (0.30, 0.20–0.41) burbot. However, small-mesh hoop nets (6.4-mm bar mesh) had similar detection probabilities to night electric fishing for both juvenile (0.26, 0.17–0.36) and adult (0.27, 0.18–0.39) burbot during the summer. In autumn, a similar overlap between detection probabilities was observed for juvenile and adult burbot. Small-mesh hoop nets had the highest estimated probability of detection for both juvenile and adult burbot (0.46, 0.33–0.59), whereas night electric fishing had a detection probability of 0.39 (0.28–0.52) for juvenile and adult burbot. By using detection probabilities to compare gears, the most effective sampling technique can be identified, leading to increased species detections and more effective management of burbot.

  9. Advanced hierarchical distance sampling

    USGS Publications Warehouse

    Royle, Andy

    2016-01-01

    In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.

  10. Comparison of two headspace sampling techniques for the analysis of off-flavour volatiles from oat based products.

    PubMed

    Cognat, Claudine; Shepherd, Tom; Verrall, Susan R; Stewart, Derek

    2012-10-01

    Two different headspace sampling techniques were compared for analysis of aroma volatiles from freshly produced and aged plain oatcakes. Solid phase microextraction (SPME) using a Carboxen-Polydimethylsiloxane (PDMS) fibre and entrainment on Tenax TA within an adsorbent tube were used for collection of volatiles. The effects of variation in the sampling method were also considered using SPME. The data obtained using both techniques were processed by multivariate statistical analysis (PCA). Both techniques showed similar capacities to discriminate between the samples at different ages. Discrimination between fresh and rancid samples could be made on the basis of changes in the relative abundances of 14-15 of the constituents in the volatile profiles. A significant effect on the detection level of volatile compounds was observed when samples were crushed and analysed by SPME-GC-MS, in comparison to undisturbed product. The applicability and cost effectiveness of both methods were considered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Top-down analysis of protein samples by de novo sequencing techniques.

    PubMed

    Vyatkina, Kira; Wu, Si; Dekker, Lennard J M; VanDuijn, Martijn M; Liu, Xiaowen; Tolić, Nikola; Luider, Theo M; Paša-Tolić, Ljiljana; Pevzner, Pavel A

    2016-09-15

    Recent technological advances have made high-resolution mass spectrometers affordable to many laboratories, thus boosting rapid development of top-down mass spectrometry, and implying a need in efficient methods for analyzing this kind of data. We describe a method for analysis of protein samples from top-down tandem mass spectrometry data, which capitalizes on de novo sequencing of fragments of the proteins present in the sample. Our algorithm takes as input a set of de novo amino acid strings derived from the given mass spectra using the recently proposed Twister approach, and combines them into aggregated strings endowed with offsets. The former typically constitute accurate sequence fragments of sufficiently well-represented proteins from the sample being analyzed, while the latter indicate their location in the protein sequence, and also bear information on post-translational modifications and fragmentation patterns. Freely available on the web at http://bioinf.spbau.ru/en/twister vyatkina@spbau.ru or ppevzner@ucsd.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Application of selection techniques to electric-propulsion options on an advanced synchronous satellite

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.; Degrey, S. P.

    1973-01-01

    This paper addresses the comparison of several candidate auxiliary-propulsion systems and system combinations for an advanced synchronous satellite. Economic selection techniques, evolved at the Jet Propulsion Laboratory, are used as a basis for system option comparisons. Electric auxiliary-propulsion types considered include pulsed plasma and ion bombardment, with hydrazine systems used as a state-of-the-art reference. Current as well as projected electric-propulsion system performance data are used, as well as projected hydrazine system costs resulting from NASA standardization program projections.

  13. Heating and thermal control of brazing technique to break contamination path for potential Mars sample return

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio

    2017-04-01

    The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.

  14. Novel sample preparation technique with needle-type micro-extraction device for volatile organic compounds in indoor air samples.

    PubMed

    Ueta, Ikuo; Mizuguchi, Ayako; Fujimura, Koji; Kawakubo, Susumu; Saito, Yoshihiro

    2012-10-09

    A novel needle-type sample preparation device was developed for the effective preconcentration of volatile organic compounds (VOCs) in indoor air before gas chromatography-mass spectrometry (GC-MS) analysis. To develop a device for extracting a wide range of VOCs typically found in indoor air, several types of particulate sorbents were tested as the extraction medium in the needle-type extraction device. To determine the content of these VOCs, air samples were collected for 30min with the packed sorbent(s) in the extraction needle, and the extracted VOCs were thermally desorbed in a GC injection port by the direct insertion of the needle. A double-bed sorbent consisting of a needle packed with divinylbenzene and activated carbon particles exhibited excellent extraction and desorption performance and adequate extraction capacity for all the investigated VOCs. The results also clearly demonstrated that the proposed sample preparation method is a more rapid, simpler extraction/desorption technique than traditional sample preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  16. Advances in microscale separations towards nanoproteomics applications

    DOE PAGES

    Yi, Lian; Piehowski, Paul D.; Shi, Tujin; ...

    2017-07-21

    Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. But, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1 μg total proteins (e.g., cellular heterogeneity in tissue pathologies). We review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, andmore » their contributions towards nanoproteomics applications.« less

  17. Advances in microscale separations towards nanoproteomics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Lian; Piehowski, Paul D.; Shi, Tujin

    Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. But, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1 μg total proteins (e.g., cellular heterogeneity in tissue pathologies). We review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, andmore » their contributions towards nanoproteomics applications.« less

  18. Language Sample Analysis and Elicitation Technique Effects in Bilingual Children With and Without Language Impairment.

    PubMed

    Kapantzoglou, Maria; Fergadiotis, Gerasimos; Restrepo, M Adelaida

    2017-10-17

    This study examined whether the language sample elicitation technique (i.e., storytelling and story-retelling tasks with pictorial support) affects lexical diversity (D), grammaticality (grammatical errors per communication unit [GE/CU]), sentence length (mean length of utterance in words [MLUw]), and sentence complexity (subordination index [SI]), which are commonly used indices for diagnosing primary language impairment in Spanish-English-speaking children in the United States. Twenty bilingual Spanish-English-speaking children with typical language development and 20 with primary language impairment participated in the study. Four analyses of variance were conducted to evaluate the effect of language elicitation technique and group on D, GE/CU, MLUw, and SI. Also, 2 discriminant analyses were conducted to assess which indices were more effective for story retelling and storytelling and their classification accuracy across elicitation techniques. D, MLUw, and SI were influenced by the type of elicitation technique, but GE/CU was not. The classification accuracy of language sample analysis was greater in story retelling than in storytelling, with GE/CU and D being useful indicators of language abilities in story retelling and GE/CU and SI in storytelling. Two indices in language sample analysis may be sufficient for diagnosis in 4- to 5-year-old bilingual Spanish-English-speaking children.

  19. A technique for sampling low shrub vegetation, by crown volume classes

    Treesearch

    Jay R. Bentley; Donald W. Seegrist; David A. Blakeman

    1970-01-01

    The effects of herbicides or other cultural treatments of low shrubs can be sampled by a new technique using crown volume as the key variable. Low shrubs were grouped in 12 crown volume classes with index values based on height times surface area of crown. The number of plants, by species, in each class is counted on quadrats. Many quadrats are needed for highly...

  20. Monitoring airborne molecular contamination: a quantitative and qualitative comparison of real-time and grab-sampling techniques

    NASA Astrophysics Data System (ADS)

    Shupp, Aaron M.; Rodier, Dan; Rowley, Steven

    2007-03-01

    Monitoring and controlling Airborne Molecular Contamination (AMC) has become essential in deep ultraviolet (DUV) photolithography for both optimizing yields and protecting tool optics. A variety of technologies have been employed for both real-time and grab-sample monitoring. Real-time monitoring has the advantage of quickly identifying "spikes" and upset conditions, while 2 - 24 hour plus grab sampling allows for extremely low detection limits by concentrating the mass of the target contaminant over a period of time. Employing a combination of both monitoring techniques affords the highest degree of control, lowest detection limits, and the most detailed data possible in terms of speciation. As happens with many technologies, there can be concern regarding the accuracy and agreement between real-time and grab-sample methods. This study utilizes side by side comparisons of two different real-time monitors operating in parallel with both liquid impingers and dry sorbent tubes to measure NIST traceable gas standards as well as real world samples. By measuring in parallel, a truly valid comparison is made between methods while verifying the results against a certified standard. The final outcome for this investigation is that a dry sorbent tube grab-sample technique produced results that agreed in terms of accuracy with NIST traceable standards as well as the two real-time techniques Ion Mobility Spectrometry (IMS) and Pulsed Fluorescence Detection (PFD) while a traditional liquid impinger technique showed discrepancies.

  1. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    PubMed

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. © 2014 Australian Veterinary Association.

  2. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  3. Optimization of techniques for multiple platform testing in small, precious samples such as human chorionic villus sampling.

    PubMed

    Pisarska, Margareta D; Akhlaghpour, Marzieh; Lee, Bora; Barlow, Gillian M; Xu, Ning; Wang, Erica T; Mackey, Aaron J; Farber, Charles R; Rich, Stephen S; Rotter, Jerome I; Chen, Yii-der I; Goodarzi, Mark O; Guller, Seth; Williams, John

    2016-11-01

    Multiple testing to understand global changes in gene expression based on genetic and epigenetic modifications is evolving. Chorionic villi, obtained for prenatal testing, is limited, but can be used to understand ongoing human pregnancies. However, optimal storage, processing and utilization of CVS for multiple platform testing have not been established. Leftover CVS samples were flash-frozen or preserved in RNAlater. Modifications to standard isolation kits were performed to isolate quality DNA and RNA from samples as small as 2-5 mg. RNAlater samples had significantly higher RNA yields and quality and were successfully used in microarray and RNA-sequencing (RNA-seq). RNA-seq libraries generated using 200 versus 800-ng RNA showed similar biological coefficients of variation. RNAlater samples had lower DNA yields and quality, which improved by heating the elution buffer to 70 °C. Purification of DNA was not necessary for bisulfite-conversion and genome-wide methylation profiling. CVS cells were propagated and continue to express genes found in freshly isolated chorionic villi. CVS samples preserved in RNAlater are superior. Our optimized techniques provide specimens for genetic, epigenetic and gene expression studies from a single small sample which can be used to develop diagnostics and treatments using a systems biology approach in the prenatal period. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  4. Application of the guided lock technique to Advanced Virgo's high-finesse cavities using reduced actuation

    NASA Astrophysics Data System (ADS)

    Bersanetti, Diego

    2018-02-01

    The recent upgrades of the Advanced Virgo experiment required an update of the locking strategy for the long, high-finesse arm cavities of the detector. In this work we will present a full description of the requirements and the constraints of such system in relation to the lock acquisition of the cavities; the focus of this work is the strategy used to accomplish this goal, which is the adaptation and use of the guided lock technique, which dynamically slows down a suspended optical cavity in order to make the lock possible. This work describes the first application of such locking technique to 3km long optical cavities, which are affected by stringent constraints as the low force available on the actuators, the high finesse and the maximum sustainable speed of the cavities, which is quite low due to a number of technical reasons that will be explained. A full set of optical time domain simulations has been developed in order to study the feasibility and the performance of this algorithm and will be throughout discussed, while finally the application on the real Advanced Virgo's arm cavities will be reported.

  5. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    NASA Technical Reports Server (NTRS)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  6. Advances in Surface Plasmon Resonance Imaging allowing for quantitative measurement of laterally heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Raegen, Adam; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2012-02-01

    The Surface Plasmon Resonance (SPR) phenomenon is routinely exploited to qualitatively probe changes to materials on metallic surfaces for use in probes and sensors. Unfortunately, extracting truly quantitative information is usually limited to a select few cases -- uniform absorption/desorption of small biomolecules and films, in which a continuous ``slab'' model is a good approximation. We present advancements in the SPR technique that expand the number of cases for which the technique can provide meaningful results. Use of a custom, angle-scanning SPR imaging system, together with a refined data analysis method, allow for quantitative kinetic measurements of laterally heterogeneous systems. The degradation of cellulose microfibrils and bundles of microfibrils due to the action of cellulolytic enzymes will be presented as an excellent example of the capabilities of the SPR imaging system.

  7. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  8. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m-3 (N=13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m-3) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time consuming preparation procedures while providing the advancement of selective mass determination that eliminates potential interferences associated with traditional fluorescence detection. This step forward in precise mass determination with the use of internal standardization, improves the confidence of compound identification. With the increasing focus on WSOC (including ON) characterization in the atmospheric science community, native detection by LC-MS (Q-TOF) will play a central role in determining the most direct approach to quantify an increasing fraction of the co-extracted polar organic compounds. Method application for further characterization of atmospheric ON will be discussed. Reference: Samy, S., Robinson, J., and M.D. Hays. "An Advanced LC-MS (Q-TOF) Technique for the Detection of Amino Acids in Atmospheric Aerosols", Analytical Bioanalytical Chemistry, 2011, DOI: 10.1007/s00216-011-5238-2

  9. Studying Ultradisperse Diamond Structure within Explosively Synthesized Samples via X-Ray Techniques

    NASA Astrophysics Data System (ADS)

    Sharkov, M. D.; Boiko, M. E.; Ivashevskaya, S. N.; Belyakova, N. S.

    2013-08-01

    XRD (X-Ray Diffraction) and SAXS (Small-Angle X-Ray Scattering) data have been measured for a pair of samples produced with the help of explosives. XRD peaks have shown the both samples to contain crystal diamond components as well as graphite ones. Basing on SAXS analysis, possible presence of grains with radii up to 30-50 nm within all the samples has been shown. Structure components with fractal dimension between 1 and 2 in the sample have been detected, this fact being in agreement with the assumption of diamond grain coating similarity to onion shells. In order to broad rocking curves analysis, the standard SAXS treatment technique has been complemented by a Fourier filtering procedure. For the sample #1, rocking curve components corresponding to individual interplanar distances with magnitudes from 5 nm up to 15 nm have been separated. A hypothesis relating these values to the distances between concentric onion-like shells of diamond grains has been formulated.

  10. Advanced defect classification by smart sampling, based on sub-wavelength anisotropic scatterometry

    NASA Astrophysics Data System (ADS)

    van der Walle, Peter; Kramer, Esther; Ebeling, Rob; Spruit, Helma; Alkemade, Paul; Pereira, Silvania; van der Donck, Jacques; Maas, Diederik

    2018-03-01

    We report on advanced defect classification using TNO's RapidNano particle scanner. RapidNano was originally designed for defect detection on blank substrates. In detection-mode, the RapidNano signal from nine azimuth angles is added for sensitivity. In review-mode signals from individual angles are analyzed to derive additional defect properties. We define the Fourier coefficient parameter space that is useful to study the statistical variation in defect types on a sample. By selecting defects from each defect type for further review by SEM, information on all defects can be obtained efficiently.

  11. Proteomic characterization of intermediate and advanced glycation end-products in commercial milk samples.

    PubMed

    Renzone, Giovanni; Arena, Simona; Scaloni, Andrea

    2015-03-18

    The Maillard reaction consists of a number of chemical processes affecting the structure of the proteins present in foods. We previously accomplished the proteomic characterization of the lactosylation targets in commercial milk samples. Although characterizing the early modification derivatives, this analysis did not describe the corresponding advanced glycation end-products (AGEs), which may be formed from the further oxidation of former ones or by reaction of oxidized sugars with proteins, when high temperatures are exploited. To fill this gap, we have used combined proteomic procedures for the systematic characterization of the lactosylated and AGE-containing proteins from the soluble and milk fat globule membrane fraction of various milk products. Besides to confirm all lactulosyl-lysines described previously, 40 novel lactosylation sites were identified. More importantly, 308 additional intermediate and advanced glyco-oxidation derivatives (including cross-linking adducts) were characterized in 31 proteins, providing the widest qualitative inventory of modified species ascertained in commercial milk samples so far. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyllysine and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Depending on thermal treatment, a variable number of modification sites was identified within each protein; their number increased with harder food processing conditions. Among the modified proteins, species involved in assisting the delivery of nutrients, defense response against pathogens and cellular proliferation/differentiation were highly affected by AGE formation. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, abates the bioavailability of the essential amino acids and eventually affects food digestibility. These aspects

  12. Advanced Intellect-Augmentation Techniques.

    ERIC Educational Resources Information Center

    Engelbart, D. C.

    This progress report covers a two-year project which is part of a program that is exploring the value of computer aids in augmenting human intellectual capability. The background and nature of the program, its resources, and the activities it has undertaken are outlined. User experience in applying augmentation tools and techniques to various…

  13. Volatile organic compounds: sampling methods and their worldwide profile in ambient air.

    PubMed

    Kumar, Anuj; Víden, Ivan

    2007-08-01

    The atmosphere is a particularly difficult analytical system because of the very low levels of substances to be analysed, sharp variations in pollutant levels with time and location, differences in wind, temperature and humidity. This makes the selection of an efficient sampling technique for air analysis a key step to reliable results. Generally, methods for volatile organic compounds sampling include collection of the whole air or preconcentration of samples on adsorbents. All the methods vary from each other according to the sampling technique, type of sorbent, method of extraction and identification technique. In this review paper we discuss various important aspects for sampling of volatile organic compounds by the widely used and advanced sampling methods. Characteristics of various adsorbents used for VOCs sampling are also described. Furthermore, this paper makes an effort to comprehensively review the concentration levels of volatile organic compounds along with the methodology used for analysis, in major cities of the world.

  14. Prompt Gamma Activation Analysis (PGAA): Technique of choice for nondestructive bulk analysis of returned comet samples

    NASA Technical Reports Server (NTRS)

    Lindstrom, David J.; Lindstrom, Richard M.

    1989-01-01

    Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably.

  15. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  16. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  17. Application of the mid-IR radio correlation to the Ĝ sample and the search for advanced extraterrestrial civilisations

    NASA Astrophysics Data System (ADS)

    Garrett, M. A.

    2015-09-01

    Wright et al. (2014, ApJ, 792, 26) have embarked on a search for advanced Karadashev Type III civilisations via the compilation of a sample of sources with extreme mid-IR emission and colours. The aim is to furnish a list of candidate galaxies that might harbour an advanced Kardashev Type III civilisation; in this scenario, the mid-IR emission is then primarily associated with waste heat energy by-products. I apply the mid-IR radio correlation to this Glimpsing Heat from Alien Technology (Ĝ) sample, a catalogue of 93 candidate galaxies compiled by Griffith et al. (2015, ApJS, 217, 25). I demonstrate that the mid-IR and radio luminosities are correlated for the sample, determining a k-corrected value of q22 = 1.35 ± 0.42. By comparison, a similar measurement for 124 galaxies drawn from the First Look Survey (FLS) has q22 = 0.87 ± 0.27. The statistically significant difference of the mean value of q22 for these two samples, taken together with their more comparable far-IR properties, suggests that the Ĝ sample shows excessive emission in the mid-IR. The fact that the Ĝ sample largely follows the mid-IR radio correlation strongly suggests that the vast majority of these sources are associated with galaxies in which natural astrophysical processes are dominant. This simple application of the mid-IR radio correlation can substantially reduce the number of false positives in the Ĝ catalogue since galaxies occupied by advanced Kardashev Type III civilisations would be expected to exhibit very high values of q. I identify nine outliers in the sample with q22> 2 of which at least three have properties that are relatively well explained via standard astrophysical interpretations e.g. dust emission associated with nascent star formation and/or nuclear activity from a heavily obscured AGN. The other outliers have not been studied in any great detail, and are deserving of further observation. I also note that the comparison of resolved mid-IR and radio images of galaxies

  18. Application of scanning acoustic microscopy to advanced structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1987-01-01

    A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.

  19. Characterization of Macroinvertebrate Communities in the Hyporheic Zone of River Ecosystems Reflects the Pump-Sampling Technique Used

    PubMed Central

    Dole-Olivier, Marie-José; Galassi, Diana M. P.; Hogan, John-Paul; Wood, Paul J.

    2016-01-01

    The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: Bou-Rouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive taxon lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection. PMID:27723819

  20. Filter paper-assisted cell transfer (FaCT) technique: A novel cell-sampling technique for intraoperative diagnosis of central nervous system tumors.

    PubMed

    Kawamura, Jumpei; Kamoshida, Shingo; Shimakata, Takaaki; Hayashi, Yurie; Sakamaki, Kuniko; Denda, Tamami; Kawai, Kenji; Kuwao, Sadahito

    2017-04-01

    Intraoperative diagnosis of central nervous system (CNS) tumors provides critical guidance to surgeons in the determination of surgical resection margins and treatment. The techniques and preparations used for the intraoperative diagnosis of CNS tumors include frozen sectioning and cytologic methods (squash smear and touch imprint). Cytologic specimens, which do not have freezing artifacts, are important as an adjuvant tool to frozen sections. However, if the amount of submitted tissue samples is limited, then it is difficult to prepare both frozen sections and squash smears or touch imprint specimens from a single sample at the same time. Therefore, the objective of this study was to derive cells directly from filter paper on which tumor samples are placed. The authors established the filter paper-assisted cell transfer (FaCT) smear technique, in which tumor cells are transferred onto a glass slide directly from the filter paper sample spot after the biopsy is removed. Cell yields and diagnostic accuracy of the FaCT smears were assessed in 40 CNS tumors. FaCT smears had ample cell numbers and well preserved cell morphology sufficient for cytologic diagnosis, even if the submitted tissues were minimal. The overall diagnostic concordance rates between frozen sections and FaCT smears were 90% and 87.5%, respectively (no significant differences). When combining FaCT smears with frozen sections, the diagnostic concordance rate rose to 92.5%. The current results suggest that the FaCT smear technique is a simple and effective processing method that has significant value for intraoperative diagnosis of CNS tumors. Cancer Cytopathol 2017;125:277-282. © 2016 American Cancer Society. © 2017 American Cancer Society.

  1. Towards fast, rigorous and efficient conformational sampling of biomolecules: Advances in accelerated molecular dynamics.

    PubMed

    Doshi, Urmi; Hamelberg, Donald

    2015-05-01

    Accelerated molecular dynamics (aMD) has been proven to be a powerful biasing method for enhanced sampling of biomolecular conformations on general-purpose computational platforms. Biologically important long timescale events that are beyond the reach of standard molecular dynamics can be accessed without losing the detailed atomistic description of the system in aMD. Over other biasing methods, aMD offers the advantages of tuning the level of acceleration to access the desired timescale without any advance knowledge of the reaction coordinate. Recent advances in the implementation of aMD and its applications to small peptides and biological macromolecules are reviewed here along with a brief account of all the aMD variants introduced in the last decade. In comparison to the original implementation of aMD, the recent variant in which all the rotatable dihedral angles are accelerated (RaMD) exhibits faster convergence rates and significant improvement in statistical accuracy of retrieved thermodynamic properties. RaMD in conjunction with accelerating diffusive degrees of freedom, i.e. dual boosting, has been rigorously tested for the most difficult conformational sampling problem, protein folding. It has been shown that RaMD with dual boosting is capable of efficiently sampling multiple folding and unfolding events in small fast folding proteins. RaMD with the dual boost approach opens exciting possibilities for sampling multiple timescales in biomolecules. While equilibrium properties can be recovered satisfactorily from aMD-based methods, directly obtaining dynamics and kinetic rates for larger systems presents a future challenge. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  3. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Schaffers, K I; Bayramian, A J

    2008-02-26

    Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.

  4. Use of advanced modeling techniques to optimize thermal packaging designs.

    PubMed

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  5. Comparison of two stable hydrogen isotope-ratio measurement techniques on Antarctic surface-water and ice samples

    USGS Publications Warehouse

    Hopple, J.A.; Hannon, J.E.; Coplen, T.B.

    1998-01-01

    A comparison of the new hydrogen isotope-ratio technique of Vaughn et al. ([Vaughn, B.H., White, J.W.C., Delmotte, M., Trolier, M., Cattani, O., Stievenard, M., 1998. An automated system for hydrogen isotope analysis of water. Chem. Geol. (Isot. Geosci. Sect.), 152, 309-319]; the article immediately preceding this article) for the analysis of water samples utilizing automated on-line reduction by elemental uranium showed that 94% of 165 samples of Antarctic snow, ice, and stream water agreed with the ??2H values determined by H2-H2O platinum equilibration, exhibiting a bias of +0.5??? and a 2 - ?? variation of 1.9???. The isotopic results of 10 reduction technique samples, however, gave ??2H values that differed by 3.5??? or more, and were too negative by as much as 5.4??? and too positive by as much as 4.9??? with respect to those determined using the platinum equilibration technique.

  6. Determination of methylmercury in marine biota samples with advanced mercury analyzer: method validation.

    PubMed

    Azemard, Sabine; Vassileva, Emilia

    2015-06-01

    In this paper, we present a simple, fast and cost-effective method for determination of methyl mercury (MeHg) in marine samples. All important parameters influencing the sample preparation process were investigated and optimized. Full validation of the method was performed in accordance to the ISO-17025 (ISO/IEC, 2005) and Eurachem guidelines. Blanks, selectivity, working range (0.09-3.0ng), recovery (92-108%), intermediate precision (1.7-4.5%), traceability, limit of detection (0.009ng), limit of quantification (0.045ng) and expanded uncertainty (15%, k=2) were assessed. Estimation of the uncertainty contribution of each parameter and the demonstration of traceability of measurement results was provided as well. Furthermore, the selectivity of the method was studied by analyzing the same sample extracts by advanced mercury analyzer (AMA) and gas chromatography-atomic fluorescence spectrometry (GC-AFS). Additional validation of the proposed procedure was effectuated by participation in the IAEA-461 worldwide inter-laboratory comparison exercises. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Advanced Atmospheric Ensemble Modeling Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.; Chiswell, S.; Kurzeja, R.

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two releasemore » times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.« less

  8. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  9. Use of X-ray diffraction technique and chemometrics to aid soil sampling strategies in traceability studies.

    PubMed

    Bertacchini, Lucia; Durante, Caterina; Marchetti, Andrea; Sighinolfi, Simona; Silvestri, Michele; Cocchi, Marina

    2012-08-30

    Aim of this work is to assess the potentialities of the X-ray powder diffraction technique as fingerprinting technique, i.e. as a preliminary tool to assess soil samples variability, in terms of geochemical features, in the context of food geographical traceability. A correct approach to sampling procedure is always a critical issue in scientific investigation. In particular, in food geographical traceability studies, where the cause-effect relations between the soil of origin and the final foodstuff is sought, a representative sampling of the territory under investigation is certainly an imperative. This research concerns a pilot study to investigate the field homogeneity with respect to both field extension and sampling depth, taking also into account the seasonal variability. Four Lambrusco production sites of the Modena district were considered. The X-Ray diffraction spectra, collected on the powder of each soil sample, were treated as fingerprint profiles to be deciphered by multivariate and multi-way data analysis, namely PCA and PARAFAC. The differentiation pattern observed in soil samples, as obtained by this fast and non-destructive analytical approach, well matches with the results obtained by characterization with other costly analytical techniques, such as ICP/MS, GFAAS, FAAS, etc. Thus, the proposed approach furnishes a rational basis to reduce the number of soil samples to be collected for further analytical characterization, i.e. metals content, isotopic ratio of radiogenic element, etc., while maintaining an exhaustive description of the investigated production areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials

    NASA Astrophysics Data System (ADS)

    Guz, Nataliia

    In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.

  11. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs).

    PubMed

    Zepon Tarpani, Raphael Ricardo; Azapagic, Adisa

    2018-06-01

    Pharmaceutical and personal care products (PPCPs) are of increasing interest because of their ecotoxicological properties and environmental impacts. Wastewater treatment plants (WWTPs) are the main pathway for their release into freshwaters due to the inefficiency of conventional WWTPs in removing many of these contaminants from effluents. Therefore, different advanced effluent treatment techniques have been proposed for their treatment. However, it is not known at present how effective these treatment methods are and whether on a life cycle basis they cause other environmental impacts which may outweigh the benefits of the treatment. In an effort to provide an insight into this question, this paper considers life cycle environmental impacts of the following advanced treatment techniques aimed at reducing freshwater ecotoxicity potential of PPCPs: granular activated carbon (GAC), nanofiltration (NF), solar photo-Fenton (SPF) and ozonation. The results suggest that on average NF has the lowest impacts for 13 out of 18 categories considered. GAC is the best alternative for five impacts, including metals and water depletion, but it has the highest marine eutrophication. SPF and ozonation are the least sustainable for eight impacts, including ecotoxicity and climate change. GAC and NF are also more efficient in treating heavy metals while avoiding generation of harmful by-products during the treatment, thus being more suitable for potable reuse of wastewater. However, releasing the effluent without advanced treatment to agricultural land achieves a much higher reduction of freshwater ecotoxicity than treating it by any of the advanced treatments and releasing to the environment. Therefore, the use of advanced effluent treatment for agricultural purposes is not recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.

    2001-05-01

    The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.

  13. Recommended advanced techniques for waterborne pathogen detection in developing countries.

    PubMed

    Alhamlan, Fatimah S; Al-Qahtani, Ahmed A; Al-Ahdal, Mohammed N

    2015-02-19

    The effect of human activities on water resources has expanded dramatically during the past few decades, leading to the spread of waterborne microbial pathogens. The total global health impact of human infectious diseases associated with pathogenic microorganisms from land-based wastewater pollution was estimated to be approximately three million disability-adjusted life years (DALY), with an estimated economic loss of nearly 12 billion US dollars per year. Although clean water is essential for healthy living, it is not equally granted to all humans. Indeed, people who live in developing countries are challenged every day by an inadequate supply of clean water. Polluted water can lead to health crises that in turn spread waterborne pathogens. Taking measures to assess the water quality can prevent these potential risks. Thus, a pressing need has emerged in developing countries for comprehensive and accurate assessments of water quality. This review presents current and emerging advanced techniques for assessing water quality that can be adopted by authorities in developing countries.

  14. Advanced Cu chemical displacement technique for SiO2-based electrochemical metallization ReRAM application.

    PubMed

    Chin, Fun-Tat; Lin, Yu-Hsien; You, Hsin-Chiang; Yang, Wen-Luh; Lin, Li-Min; Hsiao, Yu-Ping; Ko, Chum-Min; Chao, Tien-Sheng

    2014-01-01

    This study investigates an advanced copper (Cu) chemical displacement technique (CDT) with varying the chemical displacement time for fabricating Cu/SiO2-stacked resistive random-access memory (ReRAM). Compared with other Cu deposition methods, this CDT easily controls the interface of the Cu-insulator, the switching layer thickness, and the immunity of the Cu etching process, assisting the 1-transistor-1-ReRAM (1T-1R) structure and system-on-chip integration. The modulated shape of the Cu-SiO2 interface and the thickness of the SiO2 layer obtained by CDT-based Cu deposition on SiO2 were confirmed by scanning electron microscopy and atomic force microscopy. The CDT-fabricated Cu/SiO2-stacked ReRAM exhibited lower operation voltages and more stable data retention characteristics than the control Cu/SiO2-stacked sample. As the Cu CDT processing time increased, the forming and set voltages of the CDT-fabricated Cu/SiO2-stacked ReRAM decreased. Conversely, decreasing the processing time reduced the on-state current and reset voltage while increasing the endurance switching cycle time. Therefore, the switching characteristics were easily modulated by Cu CDT, yielding a high performance electrochemical metallization (ECM)-type ReRAM.

  15. Detection of rebars in concrete using advanced ultrasonic pulse compression techniques.

    PubMed

    Laureti, S; Ricci, M; Mohamed, M N I B; Senni, L; Davis, L A J; Hutchins, D A

    2018-04-01

    A pulse compression technique has been developed for the non-destructive testing of concrete samples. Scattering of signals from aggregate has historically been a problem in such measurements. Here, it is shown that a combination of piezocomposite transducers, pulse compression and post processing can lead to good images of a reinforcement bar at a cover depth of 55 mm. This has been achieved using a combination of wide bandwidth operation over the 150-450 kHz range, and processing based on measuring the cumulative energy scattered back to the receiver. Results are presented in the form of images of a 20 mm rebar embedded within a sample containing 10 mm aggregate. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  17. Techniques for Nonterminal Blood Sampling in Black-Tailed Prairie Dogs (Cynomys ludovicianus).

    PubMed

    Head, Valerie; Eshar, David; Nau, Melissa R

    2017-03-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are used as an animal model for research on gallbladder stones and several infectious diseases. A comprehensive, instructive resource regarding the appropriate techniques for venipuncture and collection of nonterminal blood samples in this species has not yet been published. Blood samples (1 mL or larger) were readily obtained from the jugular vein, femoral vein, or cranial vena cava, whereas peripheral sites, such as the cephalic vein, saphenous vein, and tarsal vein, mainly were useful for obtaining smaller volumes. The detailed and illustrated information presented here can aid clinicians and researchers in performing venipuncture, anesthesia, and handling of this species.

  18. Advanced intellect-augmentation techniques

    NASA Technical Reports Server (NTRS)

    Engelbart, D. C.

    1972-01-01

    User experience in applying our augmentation tools and techniques to various normal working tasks within our center is described so as to convey a subjective impression of what it is like to work in an augmented environment. It is concluded that working-support, computer-aid systems for augmenting individuals and teams, are undoubtedly going to be widely developed and used. A very special role in this development is seen for multi-access computer networks.

  19. Advancement on Visualization Techniques

    DTIC Science & Technology

    1980-10-01

    proposed STOL airport , a missed approach requires a go-around path = that must simultaneously (1) avoid existing reserved flight corridors ( JFK and Newark...absent but the aim is still to produce a particular colour sensation at a given spatio-temporal position on the display. Economical representation of...and p, q, r ... respectively. 1.5.1 Selection techniques An element is selected by applying a suitable signal between one of the row and one of the

  20. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  1. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Weinbruch, S.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Schneider, J.; Schmidt, S.; Ebert, M.

    2014-09-01

    In the present work, three different techniques are used to separate ice-nucleating particles (INP) and ice particle residuals (IPR) from non-ice-active particles: the Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI), which sample ice particles from mixed phase clouds and allow for the analysis of the residuals, as well as the combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Virtual Impactor (IN-PCVI), which provides ice-activating conditions to aerosol particles and extracts the activated ones for analysis. The collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Samples were taken during January/February 2013 at the High Alpine Research Station Jungfraujoch. All INP/IPR-separating techniques had considerable abundances (median 20-70%) of contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). Also, potential measurement artifacts (soluble material) occurred (median abundance < 20%). After removal of the contamination particles, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Minor types include soot and Pb-bearing particles. Sea-salt and sulfates were identified by all three methods as INP/IPR. Lead was identified in less than 10% of the INP/IPR. It was mainly present as an internal mixture with other particle types, but also external lead-rich particles were found. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 μm, while the Ice-CVI also

  2. Determination of Se in soil samples using the proton induced X-ray emission technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Flocchini, Robert G.

    1993-04-01

    An alternative method for the direct determination of total Se in soil samples is presented. A large number of trace elements is present in soil at concentration values in the range of part per billion and tenths of parts of million. The most common are the trace elements of Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Br, Rb, Mo, Cd and Pb. As for biological samples many of these elements are of great importance for the nutrition of plants, while others are toxic and others have an unknown role. Selenium is an essential micronutrient for humans and animals but it is also known that in certain areas Se deficiency or toxicity has caused endemic disease to livestock and humans through the soil-plant-animal linkage. In this work the suitability of the proton induced X-ray emission (PIXE) technique as a fast and nondestructive technique useful to measure total the Se content in soil samples is demonstrated. To validate the results a comparison of data collected using the conventional atomic absorption spectrophotometry (AAS) method was performed.

  3. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    PubMed Central

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  4. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2015-12-30

    FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine

  5. Advanced Techniques for Simulating the Behavior of Sand

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2009-12-01

    research is to simulate the look and behavior of sand, this work will go beyond simple particle collision. In particular, we can continue to use our parallel algorithms not only on single particles but on particle “clumps” that consist of multiple combined particles. Since sand is typically not spherical in nature, these particle “clumps” help to simulate the coarse nature of sand. In a simulation environment, multiple combined particles could be used to simulate the polygonal and granular nature of sand grains. Thus, a diversity of sand particles can be generated. The interaction between these particles can then be parallelized using GPU hardware. As such, this research will investigate different graphics and physics techniques and determine the tradeoffs in performance and visual quality for sand simulation. An enhanced sand model through the use of high performance computing and GPUs has great potential to impact research for both earth and space scientists. Interaction with JPL has provided an opportunity for us to refine our simulation techniques that can ultimately be used for their vehicle simulator. As an added benefit of this work, advancements in simulating sand can also benefit scientists here on earth, especially in regard to understanding landslides and debris flows.

  6. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  7. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  8. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  9. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  10. The Performance of A Sampled Data Delay Lock Loop Implemented with a Kalman Loop Filter.

    DTIC Science & Technology

    1980-01-01

    que for analysis is computer simulation. Other techniques include state variable techniques and z-transform methods. Since the Kalman filter is linear...LOGIC NOT SHOWN Figure 2. Block diagram of the sampled data delay lock loop (SDDLL) Es A/ A 3/A/ Figure 3. Sampled error voltage ( Es ) as a function of...from a sum of two components. The first component is the previous filtered es - timate advanced one step forward by the state transition matrix. The 8

  11. The photoload sampling technique: estimating surface fuel loadings from downward-looking photographs of synthetic fuelbeds

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...

  12. Automated liver sampling using a gradient dual-echo Dixon-based technique.

    PubMed

    Bashir, Mustafa R; Dale, Brian M; Merkle, Elmar M; Boll, Daniel T

    2012-05-01

    Magnetic resonance spectroscopy of the liver requires input from a physicist or physician at the time of acquisition to insure proper voxel selection, while in multiecho chemical shift imaging, numerous regions of interest must be manually selected in order to ensure analysis of a representative portion of the liver parenchyma. A fully automated technique could improve workflow by selecting representative portions of the liver prior to human analysis. Complete volumes from three-dimensional gradient dual-echo acquisitions with two-point Dixon reconstruction acquired at 1.5 and 3 T were analyzed in 100 subjects, using an automated liver sampling algorithm, based on ratio pairs calculated from signal intensity image data as fat-only/water-only and log(in-phase/opposed-phase) on a voxel-by-voxel basis. Using different gridding variations of the algorithm, the average correct liver volume samples ranged from 527 to 733 mL. The average percentage of sample located within the liver ranged from 95.4 to 97.1%, whereas the average incorrect volume selected was 16.5-35.4 mL (2.9-4.6%). Average run time was 19.7-79.0 s. The algorithm consistently selected large samples of the hepatic parenchyma with small amounts of erroneous extrahepatic sampling, and run times were feasible for execution on an MRI system console during exam acquisition. Copyright © 2011 Wiley Periodicals, Inc.

  13. Convergence and Efficiency of Adaptive Importance Sampling Techniques with Partial Biasing

    NASA Astrophysics Data System (ADS)

    Fort, G.; Jourdain, B.; Lelièvre, T.; Stoltz, G.

    2018-04-01

    We propose a new Monte Carlo method to efficiently sample a multimodal distribution (known up to a normalization constant). We consider a generalization of the discrete-time Self Healing Umbrella Sampling method, which can also be seen as a generalization of well-tempered metadynamics. The dynamics is based on an adaptive importance technique. The importance function relies on the weights (namely the relative probabilities) of disjoint sets which form a partition of the space. These weights are unknown but are learnt on the fly yielding an adaptive algorithm. In the context of computational statistical physics, the logarithm of these weights is, up to an additive constant, the free-energy, and the discrete valued function defining the partition is called the collective variable. The algorithm falls into the general class of Wang-Landau type methods, and is a generalization of the original Self Healing Umbrella Sampling method in two ways: (i) the updating strategy leads to a larger penalization strength of already visited sets in order to escape more quickly from metastable states, and (ii) the target distribution is biased using only a fraction of the free-energy, in order to increase the effective sample size and reduce the variance of importance sampling estimators. We prove the convergence of the algorithm and analyze numerically its efficiency on a toy example.

  14. Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Knight, Rosemary; Müller-Petke, Mike; Auken, Esben; Barfod, Adrian A. S.; Ferré, Ty P. A.; Vilhelmsen, Troels N.; Johnson, Carole D.; Christiansen, Anders V.

    2017-11-01

    The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high-quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near-surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements.

  15. Evaluation of sampling technique and transport media for the diagnostics of adenoviral eye infections. Adenovirus sampling and transport.

    PubMed

    Wölfel, Roman; Pfeffer, Martin; Essbauer, Sandra; Nerkelun, Sylke; Dobler, Gerhard

    2006-11-01

    Human adenoviruses (HAdV) may cause pharyngoconjunctival fever, follicular conjunctivitis or epidemic keratoconjunctivitis (EKC). Especially, outbreaks of the latter may lead to severe economic losses when preventive measures are implemented too late. Thus, a safe sampling method, proper specimen transport conditions and a fast and sensitive diagnostic technique is mandatory. Two commercially available virus transport systems (VTS) were compared with two NaCl-moisturised sampling devices, one of which comprises Dacron-tipped plastic-shafted swabs and the other a cotton-tipped wood-shafted swab, available in most ophthalmologists' offices. Downstream methods for specific detection of HAdV included direct immunofluorescence assay (IFA) of conjunctival swabs, virus isolation by cell culture and quantitative real-time polymerase chain reaction (qPCR). Furthermore, the influence of application of local anaesthetics prior to swabbing on subsequent detection of HAdV was investigated. Application of local anaesthetics had a positive influence on the amount of swabbed cells, thus increasing the chance of obtaining positive results by IFA. Neither isolation of HAdV by cell culture nor by qPCR was negatively influenced by this pretreatment. Surprisingly, both commercially available VTS performed significantly worse than the NaCl-moisturised swabs. This was shown with regard to virus recovery rates in cell culture as well as viral genome copy numbers in the qPCR. Based on our results, the following recommendations are provided to improve sampling, transport and diagnostic techniques regarding conjunctival swabs for diagnosis of human adenovirus infection: (1) application of local anaesthetics, (2) NaCl-moisturised VTS for shipment of specimens, and (3) detection of HAdV by qPCR. The latter method proved to be superior to virus isolation by cell culture, including subsequent identification by IFA, because it is faster, more sensitive and allows simultaneous handling of a number

  16. Recent advances in Lorentz microscopy

    DOE PAGES

    Phatak, C.; Petford-Long, A. K.; De Graef, M.

    2016-01-05

    Lorentz transmission electron microscopy (LTEM) has evolved from a qualitative magnetic domain observation technique to a quantitative technique for the determination of the magnetization state of a sample. Here, we describe recent developments in techniques and imaging modes, including the use of spherical aberration correction to improve the spatial resolution of LTEM into the single nanometer range, and novel in situ observation modes. We also review recent advances in the modeling of the wave optical magnetic phase shift as well as in the area of phase reconstruction by means of the Transport of Intensity Equation (TIE) approach, and discuss vectormore » field electron tomography, which has emerged as a powerful tool for the 3D reconstruction of magnetization configurations. Finally, we conclude this review with a brief overview of recent LTEM applications.« less

  17. Quantification of the overall measurement uncertainty associated with the passive moss biomonitoring technique: Sample collection and processing.

    PubMed

    Aboal, J R; Boquete, M T; Carballeira, A; Casanova, A; Debén, S; Fernández, J A

    2017-05-01

    In this study we examined 6080 data gathered by our research group during more than 20 years of research on the moss biomonitoring technique, in order to quantify the variability generated by different aspects of the protocol and to calculate the overall measurement uncertainty associated with the technique. The median variance of the concentrations of different pollutants measured in moss tissues attributed to the different methodological aspects was high, reaching values of 2851 (ng·g -1 ) 2 for Cd (sample treatment), 35.1 (μg·g -1 ) 2 for Cu (sample treatment), 861.7 (ng·g -1 ) 2 and for Hg (material selection). These variances correspond to standard deviations that constitute 67, 126 and 59% the regional background levels of these elements in the study region. The overall measurement uncertainty associated with the worst experimental protocol (5 subsamples, refrigerated, washed, 5 × 5 m size of the sampling area and once a year sampling) was between 2 and 6 times higher than that associated with the optimal protocol (30 subsamples, dried, unwashed, 20 × 20 m size of the sampling area and once a week sampling), and between 1.5 and 7 times higher than that associated with the standardized protocol (30 subsamples and once a year sampling). The overall measurement uncertainty associated with the standardized protocol could generate variations of between 14 and 47% in the regional background levels of Cd, Cu, Hg, Pb and Zn in the study area and much higher levels of variation in polluted sampling sites. We demonstrated that although the overall measurement uncertainty of the technique is still high, it can be reduced by using already well defined aspects of the protocol. Further standardization of the protocol together with application of the information on the overall measurement uncertainty would improve the reliability and comparability of the results of different biomonitoring studies, thus extending use of the technique beyond the context of

  18. Recent advances in lossless coding techniques

    NASA Astrophysics Data System (ADS)

    Yovanof, Gregory S.

    Current lossless techniques are reviewed with reference to both sequential data files and still images. Two major groups of sequential algorithms, dictionary and statistical techniques, are discussed. In particular, attention is given to Lempel-Ziv coding, Huffman coding, and arithmewtic coding. The subject of lossless compression of imagery is briefly discussed. Finally, examples of practical implementations of lossless algorithms and some simulation results are given.

  19. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  20. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  1. Fabric phase sorptive extraction: Two practical sample pretreatment techniques for brominated flame retardants in water.

    PubMed

    Huang, Guiqi; Dong, Sheying; Zhang, Mengfei; Zhang, Haihan; Huang, Tinglin

    2016-09-15

    Sample pretreatment is the critical section for residue monitoring of hazardous pollutants. In this paper, using the cellulose fabric as host matrix, three extraction sorbents such as poly (tetrahydrofuran) (PTHF), poly (ethylene glycol) (PEG) and poly (dimethyldiphenylsiloxane) (PDMDPS), were prepared on the surface of the cellulose fabric. Two practical extraction techniques including stir bar fabric phase sorptive extraction (stir bar-FPSE) and magnetic stir fabric phase sorptive extraction (magnetic stir-FPSE) have been designed, which allow stirring of fabric phase sorbent during the whole extraction process. In the meantime, three brominated flame retardants (BFRs) [tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bisallylether (TBBPA-BAE), tetrabromobisphenol A bis(2,3-dibromopropyl)ether (TBBPA-BDBPE)] in the water sample were selected as model analytes for the practical evaluation of the proposed two techniques using high-performance liquid chromatography (HPLC). Moreover, various experimental conditions affecting extraction process such as the type of fabric phase, extraction time, the amount of salt and elution conditions were also investigated. Due to the large sorbent loading capacity and unique stirring performance, both techniques possessed high extraction capability and fast extraction equilibrium. Under the optimized conditions, high recoveries (90-99%) and low limits of detection (LODs) (0.01-0.05 μg L(-1)) were achieved. In addition, the reproducibility was obtained by evaluating the intraday and interday precisions with relative standard deviations (RSDs) less than 5.1% and 6.8%, respectively. The results indicated that two pretreatment techniques were promising and practical for monitoring of hazardous pollutants in the water sample. Due to low solvent consumption and high repeated use performance, proposed techniques also could meet green analytical criteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Advanced Methods of Protein Crystallization.

    PubMed

    Moreno, Abel

    2017-01-01

    This chapter provides a review of different advanced methods that help to increase the success rate of a crystallization project, by producing larger and higher quality single crystals for determination of macromolecular structures by crystallographic methods. For this purpose, the chapter is divided into three parts. The first part deals with the fundamentals for understanding the crystallization process through different strategies based on physical and chemical approaches. The second part presents new approaches involved in more sophisticated methods not only for growing protein crystals but also for controlling the size and orientation of crystals through utilization of electromagnetic fields and other advanced techniques. The last section deals with three different aspects: the importance of microgravity, the use of ligands to stabilize proteins, and the use of microfluidics to obtain protein crystals. All these advanced methods will allow the readers to obtain suitable crystalline samples for high-resolution X-ray and neutron crystallography.

  3. New approaches to the analysis of complex samples using fluorescence lifetime techniques and organized media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertz, P.R.

    Fluorescence spectroscopy is a highly sensitive and selective tool for the analysis of complex systems. In order to investigate the efficacy of several steady state and dynamic techniques for the analysis of complex systems, this work focuses on two types of complex, multicomponent samples: petrolatums and coal liquids. It is shown in these studies dynamic, fluorescence lifetime-based measurements provide enhanced discrimination between complex petrolatum samples. Additionally, improved quantitative analysis of multicomponent systems is demonstrated via incorporation of organized media in coal liquid samples. This research provides the first systematic studies of (1) multifrequency phase-resolved fluorescence spectroscopy for dynamic fluorescence spectralmore » fingerprinting of complex samples, and (2) the incorporation of bile salt micellar media to improve accuracy and sensitivity for characterization of complex systems. In the petroleum studies, phase-resolved fluorescence spectroscopy is used to combine spectral and lifetime information through the measurement of phase-resolved fluorescence intensity. The intensity is collected as a function of excitation and emission wavelengths, angular modulation frequency, and detector phase angle. This multidimensional information enhances the ability to distinguish between complex samples with similar spectral characteristics. Examination of the eigenvalues and eigenvectors from factor analysis of phase-resolved and steady state excitation-emission matrices, using chemometric methods of data analysis, confirms that phase-resolved fluorescence techniques offer improved discrimination between complex samples as compared with conventional steady state methods.« less

  4. Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.

    PubMed

    Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J

    2018-05-14

    We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.

  5. Advanced Millimeter-Wave Security Portal Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  6. Clinical Application of a Hybrid RapidArc Radiotherapy Technique for Locally Advanced Lung Cancer.

    PubMed

    Silva, Scott R; Surucu, Murat; Steber, Jennifer; Harkenrider, Matthew M; Choi, Mehee

    2017-04-01

    Radiation treatment planning for locally advanced lung cancer can be technically challenging, as delivery of ≥60 Gy to large volumes with concurrent chemotherapy is often associated with significant risk of normal tissue toxicity. We clinically implemented a novel hybrid RapidArc technique in patients with lung cancer and compared these plans with 3-dimensional conformal radiotherapy and RapidArc-only plans. Hybrid RapidArc was used to treat 11 patients with locally advanced lung cancer having bulky mediastinal adenopathy. All 11 patients received concurrent chemotherapy. All underwent a 4-dimensional computed tomography planning scan. Hybrid RapidArc plans concurrently combined static (60%) and RapidArc (40%) beams. All cases were replanned using 3- to 5-field 3-dimensional conformal radiotherapy and RapidArc technique as controls. Significant reductions in dose were observed in hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans for total lung V20 and mean (-2% and -0.6 Gy); contralateral lung mean (-2.92 Gy); and esophagus V60 and mean (-16.0% and -2.2 Gy; all P < .05). Contralateral lung doses were significantly lower for hybrid RapidArc plans compared to RapidArc-only plans (all P < .05). Compared to 3-dimensional conformal radiotherapy, heart V60 and mean dose were significantly improved with hybrid RapidArc (3% vs 5%, P = .04 and 16.32 Gy vs 16.65 Gy, P = .03). However, heart V40 and V45 and maximum spinal cord dose were significantly lower with RapidArc plans compared to hybrid RapidArc plans. Conformity and homogeneity were significantly better with hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans ( P < .05). Treatment was well tolerated, with no grade 3+ toxicities. To our knowledge, this is the first report on the clinical application of hybrid RapidArc in patients with locally advanced lung cancer. Hybrid RapidArc permitted safe delivery of 60 to 66 Gy to large lung tumors with concurrent

  7. Advances in High-Fidelity Multi-Physics Simulation Techniques

    DTIC Science & Technology

    2008-01-01

    predictor - corrector method is used to advance the solution in time. 33 x (m) y (m ) 0 1 2 3.00001 0 1 2 3 4 5 40 x 50 Grid 3 Figure 17: Typical...Unclassified c . THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 60 Datta Gaitonde 19b. TELEPHONE...advanced parallel computing platforms. The motivation to develop high-fidelity algorithms derives from considerations in various areas of current

  8. Accuracy and sampling error of two age estimation techniques using rib histomorphometry on a modern sample.

    PubMed

    García-Donas, Julieta G; Dyke, Jeffrey; Paine, Robert R; Nathena, Despoina; Kranioti, Elena F

    2016-02-01

    Most age estimation methods are proven problematic when applied in highly fragmented skeletal remains. Rib histomorphometry is advantageous in such cases; yet it is vital to test and revise existing techniques particularly when used in legal settings (Crowder and Rosella, 2007). This study tested Stout & Paine (1992) and Stout et al. (1994) histological age estimation methods on a Modern Greek sample using different sampling sites. Six left 4th ribs of known age and sex were selected from a modern skeletal collection. Each rib was cut into three equal segments. Two thin sections were acquired from each segment. A total of 36 thin sections were prepared and analysed. Four variables (cortical area, intact and fragmented osteon density and osteon population density) were calculated for each section and age was estimated according to Stout & Paine (1992) and Stout et al. (1994). The results showed that both methods produced a systemic underestimation of the individuals (to a maximum of 43 years) although a general improvement in accuracy levels was observed when applying the Stout et al. (1994) formula. There is an increase of error rates with increasing age with the oldest individual showing extreme differences between real age and estimated age. Comparison of the different sampling sites showed small differences between the estimated ages suggesting that any fragment of the rib could be used without introducing significant error. Yet, a larger sample should be used to confirm these results. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  9. Water stable isotope measurements of Antarctic samples by means of IRMS and WS-CRDS techniques

    NASA Astrophysics Data System (ADS)

    Michelini, Marzia; Bonazza, Mattia; Braida, Martina; Flora, Onelio; Dreossi, Giuliano; Stenni, Barbara

    2010-05-01

    In the last years in the scientific community there has been an increasing interest for the application of stable isotope techniques to several environmental problems such as drinking water safeguarding, groundwater management, climate change, soils and paleoclimate studies etc. For example, the water stable isotopes, being natural tracers of the hydrological cycle, have been extensively used as tools to characterize regional aquifers and to reconstruct past temperature changes from polar ice cores. Here the need for improvements in analytical techniques: the high request for information calls for technologies that can offer a great quantity of analyses in short times and with low costs. Furthermore, sometimes it is difficult to obtain big amount of samples (as is the case for Antarctic ice cores or interstitial water) preventing the possibility to replicate the analyses. Here, we present oxygen and hydrogen measurements performed on water samples covering a big range of isotopic values (from very negative antarctic precipitation to mid-latitude precipitation values) carried out with both the conventional Isotope Ratio Mass Spectrometry (IRMS) technique and with a new method based on laser absorption techniques, the Wavelenght Scanned Cavity Ringdown Spectroscopy (WS-CRDS). This study is focusing on improving the precision of the measurements carried out with WS-CRDS in order to extensively apply this method to Antarctic ice core paleoclimate studies. The WS-CRDS is a variation of the CRDS developed in 1988 by O'Keef and Deacon. In CRDS a pulse of light goes through a box with high reflective inner surfaces; when there is no sample in the box the light beam doesn't find any obstacle in its path, but the reflectivity of the walls is not perfect so eventually there will be an absorption of the light beam; when the sample is injected in the box there is absorption and the difference between the time of absorption without and with sample is proportional to the quantity

  10. SU-E-T-398: Feasibility of Automated Tools for Robustness Evaluation of Advanced Photon and Proton Techniques in Oropharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liang, X; Kalbasi, A

    2014-06-01

    Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician

  11. SSAGES: Software Suite for Advanced General Ensemble Simulations

    NASA Astrophysics Data System (ADS)

    Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian; Sikora, Benjamin J.; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z.; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J.; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S.; Reid, Daniel R.; Sevgen, Emre; Thapar, Vikram; Webb, Michael A.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2018-01-01

    Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.

  12. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  13. Clinical application of microsampling versus conventional sampling techniques in the quantitative bioanalysis of antibiotics: a systematic review.

    PubMed

    Guerra Valero, Yarmarly C; Wallis, Steven C; Lipman, Jeffrey; Stove, Christophe; Roberts, Jason A; Parker, Suzanne L

    2018-03-01

    Conventional sampling techniques for clinical pharmacokinetic studies often require the removal of large blood volumes from patients. This can result in a physiological or emotional burden, particularly for neonates or pediatric patients. Antibiotic pharmacokinetic studies are typically performed on healthy adults or general ward patients. These may not account for alterations to a patient's pathophysiology and can lead to suboptimal treatment. Microsampling offers an important opportunity for clinical pharmacokinetic studies in vulnerable patient populations, where smaller sample volumes can be collected. This systematic review provides a description of currently available microsampling techniques and an overview of studies reporting the quantitation and validation of antibiotics using microsampling. A comparison of microsampling to conventional sampling in clinical studies is included.

  14. Advanced Curation Activities at NASA: Preparing to Receive, Process, and Distribute Samples Returned from Future Missions

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis M.; Zeigler, Ryan A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  15. Head and neck cancer: proteomic advances and biomarker achievements.

    PubMed

    Rezende, Taia Maria Berto; de Souza Freire, Mirna; Franco, Octávio Luiz

    2010-11-01

    Tumors of the head and neck comprise an important neoplasia group, the incidence of which is increasing in many parts of the world. Recent advances in diagnostic and therapeutic techniques for these lesions have yielded novel molecular targets, uncovered signal pathway dominance, and advanced early cancer detection. Proteomics is a powerful tool for investigating the distribution of proteins and small molecules within biological systems through the analysis of different types of samples. The proteomic profiles of different types of cancer have been studied, and this has provided remarkable advances in cancer understanding. This review covers recent advances for head and neck cancer; it encompasses the risk factors, pathogenesis, proteomic tools that can help in understanding cancer, and new proteomic findings in this type of cancer. Copyright © 2010 American Cancer Society.

  16. [Recent advances in analysis of petroleum geological samples by comprehensive two-dimensional gas chromatography].

    PubMed

    Gao, Xuanbo; Chang, Zhenyang; Dai, Wei; Tong, Ting; Zhang, Wanfeng; He, Sheng; Zhu, Shukui

    2014-10-01

    Abundant geochemical information can be acquired by analyzing the chemical compositions of petroleum geological samples. The information obtained from the analysis provides scientifical evidences for petroleum exploration. However, these samples are complicated and can be easily influenced by physical (e. g. evaporation, emulsification, natural dispersion, dissolution and sorption), chemical (photodegradation) and biological (mainly microbial degradation) weathering processes. Therefore, it is very difficult to analyze the petroleum geological samples and they cannot be effectively separated by traditional gas chromatography/mass spectrometry. A newly developed separation technique, comprehensive two-dimensional gas chromatography (GC x GC), has unique advantages in complex sample analysis, and recently it has been applied to petroleum geological samples. This article mainly reviews the research progres- ses in the last five years, the main problems and the future research about GC x GC applied in the area of petroleum geology.

  17. Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques.

    PubMed

    Terzano, Roberto; Santoro, Anna; Spagnuolo, Matteo; Vekemans, Bart; Medici, Luca; Janssens, Koen; Göttlicher, Jörg; Denecke, Melissa A; Mangold, Stefan; Ruggiero, Pacifico

    2010-08-01

    Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg(-1). Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as mu-XRF, mu-XRD and mu-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 microm. The main Hg-species found in the soil samples were metacinnabar (beta-HgS), cinnabar (alpha-HgS), corderoite (Hg(3)S(2)Cl(2)), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 microm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Vapor Measurement System of Essential Oil Based on MOS Gas Sensors Driven with Advanced Temperature Modulation Technique

    NASA Astrophysics Data System (ADS)

    Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.

    2018-05-01

    The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.

  19. Recent advances in endovascular techniques for management of acute nonvariceal upper gastrointestinal bleeding

    PubMed Central

    Loffroy, Romaric F; Abualsaud, Basem A; Lin, Ming D; Rao, Pramod P

    2011-01-01

    Over the past two decades, transcatheter arterial embolization has become the first-line therapy for the management of upper gastrointestinal bleeding that is refractory to endoscopic hemostasis. Advances in catheter-based techniques and newer embolic agents, as well as recognition of the effectiveness of minimally invasive treatment options, have expanded the role of interventional radiology in the management of hemorrhage for a variety of indications, such as peptic ulcer bleeding, malignant disease, hemorrhagic Dieulafoy lesions and iatrogenic or trauma bleeding. Transcatheter interventions include the following: selective embolization of the feeding artery, sandwich coil occlusion of the gastroduodenal artery, blind or empiric embolization of the supposed bleeding vessel based on endoscopic findings and coil pseudoaneurysm or aneurysm embolization by three-dimensional sac packing with preservation of the parent artery. Transcatheter embolization is a fast, safe and effective, minimally invasive alternative to surgery when endoscopic treatment fails to control bleeding from the upper gastrointestinal tract. This article reviews the various transcatheter endovascular techniques and devices that are used in a variety of clinical scenarios for the management of hemorrhagic gastrointestinal emergencies. PMID:21860697

  20. Sample Preparation Techniques for Grain Boundary Characterization of Annealed TRISO-Coated Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunzik-Gougar, M. L.; van Rooyen, I. J.; Hill, C. M.

    Crystallographic information about chemical vapor deposition layers of silicon carbide (SiC) is essential to understanding layer performance, especially when the layers are in non planar geometries, such as spherical. We performed electron Back Scatter Diffraction (EBSD) analysis of spherical SiC layers using a different approach to sample focus ion beam milling technique to avoid the negative impacts of traditional sample polishing and to address the need of very small samples of irradiated materials for analysis. Mechanical and chemical grinding and polishing of sample surfaces can introduce lattice strains and result in unequal removal of SiC and surrounding layers of differentmore » material due to the hardness differences of these materials. The nature of layer interfaces is thought to play a key role in performance of the SiC; therefore, analysis of representative samples at these interfacial areas is crucial. In work reported here, a focused ion beam (FIB) was employed in a novel manner to prepare a more representative sample for EBSD analysis from TRISO layers free of effects introduced by mechanical and chemical preparation methods. In addition, the difficulty of handling neutron irradiated microscopic samples such as those analyzed in this work has been simplified with pre tilted mounting stages. Our study showed that although the average grain size of samples may be similar, the grain boundary characteristics may differ significantly. It was also found that low angle grain boundaries, comprises 25% in the FIB-prepared sample vs only 1-2% in the polished sample measured in the same particle. From this study it was determined that results of FIB prepared sample will provide more repeatable results, as the role of sample preparation is eliminated.« less

  1. Sample Preparation Techniques for Grain Boundary Characterization of Annealed TRISO-Coated Particles

    DOE PAGES

    Dunzik-Gougar, M. L.; van Rooyen, I. J.; Hill, C. M.; ...

    2016-08-25

    Crystallographic information about chemical vapor deposition layers of silicon carbide (SiC) is essential to understanding layer performance, especially when the layers are in non planar geometries, such as spherical. We performed electron Back Scatter Diffraction (EBSD) analysis of spherical SiC layers using a different approach to sample focus ion beam milling technique to avoid the negative impacts of traditional sample polishing and to address the need of very small samples of irradiated materials for analysis. Mechanical and chemical grinding and polishing of sample surfaces can introduce lattice strains and result in unequal removal of SiC and surrounding layers of differentmore » material due to the hardness differences of these materials. The nature of layer interfaces is thought to play a key role in performance of the SiC; therefore, analysis of representative samples at these interfacial areas is crucial. In work reported here, a focused ion beam (FIB) was employed in a novel manner to prepare a more representative sample for EBSD analysis from TRISO layers free of effects introduced by mechanical and chemical preparation methods. In addition, the difficulty of handling neutron irradiated microscopic samples such as those analyzed in this work has been simplified with pre tilted mounting stages. Our study showed that although the average grain size of samples may be similar, the grain boundary characteristics may differ significantly. It was also found that low angle grain boundaries, comprises 25% in the FIB-prepared sample vs only 1-2% in the polished sample measured in the same particle. From this study it was determined that results of FIB prepared sample will provide more repeatable results, as the role of sample preparation is eliminated.« less

  2. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  3. Sample analysis at Mars

    NASA Astrophysics Data System (ADS)

    Coll, P.; Cabane, M.; Mahaffy, P. R.; Brinckerhoff, W. B.; Sam Team

    The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. The Sample Analysis at Mars (SAM) suite consists of a group of tightly-integrated experiments that would analyze samples delivered directly from a coring drill or by a facility sample processing and delivery (SPAD) mechanism. SAM consists of an advanced GC/MS system and a laser desorption mass spectrometer (LDMS). The combined capabilities of these techniques can address Mars science objectives with much improved sensitivity, resolution, and analytical breadth over what has been previously possible in situ. The GC/MS system analyzes the bulk composition (both molecular and isotopic) of solid-phase and atmospheric samples. Solid samples are introduced with a highly flexible chemical derivatization/pyrolysis subsystem (Pyr/GC/MS) that is significantly more capable than the mass spectrometers on Viking. The LDMS analyzes local elemental and molecular composition in solid samples vaporized and ionized with a pulsed laser. We will describe how each of these capabilities has particular strengths that can achieve key measurement objectives at Mars. In addition, the close codevelopment of the GC/MS and LDMS along with a sample manipulation system enables the the sharing of resources, the correlation of results, and the utilization of certain approaches that would not be possible with separate instruments. For instance, the same samples could be analyzed with more than one technique, increasing efficiency and providing cross-checks for quantification. There is also the possibility of combining methods, such as by permitting TOF-MS analyses of evolved gas (Pyr/EI-TOF-MS) or GC/MS analyses of laser evaporated gas (LD-GC/MS).

  4. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  5. Miniaturized blood sampling techniques to benefit reduction in mice and refinement in nonhuman primates: applications to bioanalysis in toxicity studies with antibody-drug conjugates.

    PubMed

    Caron, Alexis; Lelong, Christine; Pascual, Marie-Hélène; Benning, Véronique

    2015-03-01

    Minimizing the number of animals in regulatory toxicity studies while achieving study objectives to support the development of future medicines contributes to good scientific and ethical practices. Recent advances in technology have enabled the development of miniaturized blood sampling methods (including microsampling and dried blood spots) applicable to toxicokinetic determinations of small-molecule drugs. Implementation of miniaturized blood sampling methods in the context of biotherapeutic drugs is desirable because a limitation to this type of medicine remains the total blood volume needed from a single animal to support toxicokinetic determinations of several analytes (parent drug, metabolites[s], antidrug antibodies, and so forth). We describe here the technical details, applicability, and relevance of new miniaturized blood sampling procedures in mice and nonhuman primates in the context of the toxicologic evaluation of biotherapeutic drugs consisting of antibody-drug conjugates developed for oncology indications. These examples illustrate how these techniques can benefit the reduction of animal usage in mouse toxicity studies by decreasing the number of animals dedicated to toxicokinetic determinations and the refinement of practices in nonhuman primate toxicity studies by decreasing the blood volume repeatedly drawn for toxicokinetic determinations.

  6. Miniaturized Blood Sampling Techniques to Benefit Reduction in Mice and Refinement in Nonhuman Primates: Applications to Bioanalysis in Toxicity Studies with Antibody–Drug Conjugates

    PubMed Central

    Caron, Alexis; Lelong, Christine; Pascual, Marie-Hélène; Benning, Véronique

    2015-01-01

    Minimizing the number of animals in regulatory toxicity studies while achieving study objectives to support the development of future medicines contributes to good scientific and ethical practices. Recent advances in technology have enabled the development of miniaturized blood sampling methods (including microsampling and dried blood spots) applicable to toxicokinetic determinations of small-molecule drugs. Implementation of miniaturized blood sampling methods in the context of biotherapeutic drugs is desirable because a limitation to this type of medicine remains the total blood volume needed from a single animal to support toxicokinetic determinations of several analytes (parent drug, metabolites[s], antidrug antibodies, and so forth). We describe here the technical details, applicability, and relevance of new miniaturized blood sampling procedures in mice and nonhuman primates in the context of the toxicologic evaluation of biotherapeutic drugs consisting of antibody–drug conjugates developed for oncology indications. These examples illustrate how these techniques can benefit the reduction of animal usage in mouse toxicity studies by decreasing the number of animals dedicated to toxicokinetic determinations and the refinement of practices in nonhuman primate toxicity studies by decreasing the blood volume repeatedly drawn for toxicokinetic determinations. PMID:25836960

  7. Improved sample preparation and counting techniques for enhanced tritium measurement sensitivity

    NASA Astrophysics Data System (ADS)

    Moran, J.; Aalseth, C.; Bailey, V. L.; Mace, E. K.; Overman, C.; Seifert, A.; Wilcox Freeburg, E. D.

    2015-12-01

    Tritium (T) measurements offer insight to a wealth of environmental applications including hydrologic tracking, discerning ocean circulation patterns, and aging ice formations. However, the relatively short half-life of T (12.3 years) limits its effective age dating range. Compounding this limitation is the decrease in atmospheric T content by over two orders of magnitude (from 1000-2000 TU in 1962 to < 10 TU currently) since the cessation of above ground nuclear testing in the 1960's. We are developing sample preparation methods coupled to direct counting of T via ultra-low background proportional counters which, when combined, offer improved T measurement sensitivity (~4.5 mmoles of H2 equivalent) and will help expand the application of T age dating to smaller sample sizes linked to persistent environmental questions despite the limitations above. For instance, this approach can be used to T date ~ 2.2 mmoles of CH4 collected from sample-limited systems including microbial communities, soils, or subsurface aquifers and can be combined with radiocarbon dating to distinguish the methane's formation age from C age in a system. This approach can also expand investigations into soil organic C where the improved sensitivity will permit resolution of soil C into more descriptive fractions and provide direct assessments of the stability of specific classes of organic matter in soils environments. We are employing a multiple step sample preparation system whereby organic samples are first combusted with resulting CO2 and H2O being used as a feedstock to synthesize CH4. This CH4 is mixed with Ar and loaded directly into an ultra-low background proportional counter for measurement of T β decay in a shallow underground laboratory. Analysis of water samples requires only the addition of geologic CO2 feedstock with the sample for methane synthesis. The chemical nature of the preparation techniques enable high sample throughput with only the final measurement requiring T decay

  8. Bringing Advanced Computational Techniques to Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  9. Multidirectional mobilities: Advanced measurement techniques and applications

    NASA Astrophysics Data System (ADS)

    Ivarsson, Lars Holger

    Today high noise-and-vibration comfort has become a quality sign of products in sectors such as the automotive industry, aircraft, components, households and manufacturing. Consequently, already in the design phase of products, tools are required to predict the final vibration and noise levels. These tools have to be applicable over a wide frequency range with sufficient accuracy. During recent decades a variety of tools have been developed such as transfer path analysis (TPA), input force estimation, substructuring, coupling by frequency response functions (FRF) and hybrid modelling. While these methods have a well-developed theoretical basis, their application combined with experimental data often suffers from a lack of information concerning rotational DOFs. In order to measure response in all 6 DOFs (including rotation), a sensor has been developed, whose special features are discussed in the thesis. This transducer simplifies the response measurements, although in practice the excitation of moments appears to be more difficult. Several excitation techniques have been developed to enable measurement of multidirectional mobilities. For rapid and simple measurement of the loaded mobility matrix, a MIMO (Multiple Input Multiple Output) technique is used. The technique has been tested and validated on several structures of different complexity. A second technique for measuring the loaded 6-by-6 mobility matrix has been developed. This technique employs a model of the excitation set-up, and with this model the mobility matrix is determined from sequential measurements. Measurements on ``real'' structures show that both techniques give results of similar quality, and both are recommended for practical use. As a further step, a technique for measuring the unloaded mobilities is presented. It employs the measured loaded mobility matrix in order to calculate compensation forces and moments, which are later applied in order to compensate for the loading of the

  10. Performance evaluation of an importance sampling technique in a Jackson network

    NASA Astrophysics Data System (ADS)

    brahim Mahdipour, E.; Masoud Rahmani, Amir; Setayeshi, Saeed

    2014-03-01

    Importance sampling is a technique that is commonly used to speed up Monte Carlo simulation of rare events. However, little is known regarding the design of efficient importance sampling algorithms in the context of queueing networks. The standard approach, which simulates the system using an a priori fixed change of measure suggested by large deviation analysis, has been shown to fail in even the simplest network settings. Estimating probabilities associated with rare events has been a topic of great importance in queueing theory, and in applied probability at large. In this article, we analyse the performance of an importance sampling estimator for a rare event probability in a Jackson network. This article carries out strict deadlines to a two-node Jackson network with feedback whose arrival and service rates are modulated by an exogenous finite state Markov process. We have estimated the probability of network blocking for various sets of parameters, and also the probability of missing the deadline of customers for different loads and deadlines. We have finally shown that the probability of total population overflow may be affected by various deadline values, service rates and arrival rates.

  11. Sculpting 3D worlds with music: advanced texturing techniques

    NASA Astrophysics Data System (ADS)

    Greuel, Christian; Bolas, Mark T.; Bolas, Niko; McDowall, Ian E.

    1996-04-01

    Sound within the virtual environment is often considered to be secondary to the graphics. In a typical scenario, either audio cues are locally associated with specific 3D objects or a general aural ambiance is supplied in order to alleviate the sterility of an artificial experience. This paper discusses a completely different approach, in which cues are extracted from live or recorded music in order to create geometry and control object behaviors within a computer- generated environment. Advanced texturing techniques used to generate complex stereoscopic images are also discussed. By analyzing music for standard audio characteristics such as rhythm and frequency, information is extracted and repackaged for processing. With the Soundsculpt Toolkit, this data is mapped onto individual objects within the virtual environment, along with one or more predetermined behaviors. Mapping decisions are implemented with a user definable schedule and are based on the aesthetic requirements of directors and designers. This provides for visually active, immersive environments in which virtual objects behave in real-time correlation with the music. The resulting music-driven virtual reality opens up several possibilities for new types of artistic and entertainment experiences, such as fully immersive 3D `music videos' and interactive landscapes for live performance.

  12. Programmed LWR metrology by multi-techniques approach

    NASA Astrophysics Data System (ADS)

    Reche, Jérôme; Besacier, Maxime; Gergaud, Patrice; Blancquaert, Yoann; Freychet, Guillaume; Labbaye, Thibault

    2018-03-01

    Nowadays, roughness control presents a huge challenge for the lithography step. For advanced nodes, this morphological aspect reaches the same order of magnitude than the Critical Dimension. Hence, the control of roughness needs an adapted metrology. In this study, specific samples with designed roughness have been manufactured using e-beam lithography. These samples have been characterized with three different methodologies: CD-SEM, OCD and SAXS. The main goal of the project is to compare the capability of each of these techniques in terms of reliability, type of information obtained, time to obtain the measurements and level of maturity for the industry.

  13. Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques

    NASA Technical Reports Server (NTRS)

    Miller, Glenn E.

    1994-01-01

    NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.

  14. The advanced qualtiy control techniques planned for the Internation Soil Moisture Network

    NASA Astrophysics Data System (ADS)

    Xaver, A.; Gruber, A.; Hegiova, A.; Sanchis-Dufau, A. D.; Dorigo, W. A.

    2012-04-01

    In situ soil moisture observations are essential to evaluate and calibrate modeled and remotely sensed soil moisture products. Although a number of meteorological networks and field campaigns measuring soil moisture exist on a global and long-term scale, their observations are not easily accessible and lack standardization of both technique and protocol. Thus, handling and especially comparing these datasets with satellite products or land surface models is a demanding issue. To overcome these limitations the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu/) has been initiated to act as a centralized data hosting facility. One advantage of the ISMN is that users are able to access the harmonized datasets easily through a web portal. Another advantage is the fully automated processing chain including the data harmonization in terms of units and sampling interval, but even more important is the advanced quality control system each measurement has to run through. The quality of in situ soil moisture measurements is crucial for the validation of satellite- and model-based soil moisture retrievals; therefore a sophisticated quality control system was developed. After a check for plausibility and geophysical limits a quality flag is added to each measurement. An enhanced flagging mechanism was recently defined using a spectrum based approach to detect spurious spikes, jumps and plateaus. The International Soil Moisture Network has already evolved to one of the most important distribution platforms for in situ soil moisture observations and is still growing. Currently, data from 27 networks in total covering more than 800 stations in Europe, North America, Australia, Asia and Africa is hosted by the ISMN. Available datasets also include historical datasets as well as near real-time measurements. The improved quality control system will provide important information for satellite-based as well as land surface model-based validation studies.

  15. DERMAL DRUG LEVELS OF ANTIBIOTIC (CEPHALEXIN) DETERMINED BY ELECTROPORATION AND TRANSCUTANEOUS SAMPLING (ETS) TECHNIQUE

    PubMed Central

    Sammeta, SM; Vaka, SRK; Murthy, S. Narasimha

    2009-01-01

    The purpose of this project was to assess the validity of a novel “Electroporation and transcutaneous sampling (ETS)” technique for sampling cephalexin from the dermal extracellular fluid (ECF). This work also investigated the plausibility of using cephalexin levels in the dermal ECF as a surrogate for the drug level in the synovial fluid. In vitro and in vivo studies were carried out using hair less rats to assess the workability of ETS. Cephalexin (20mg/kg) was administered i.v. through tail vein and the time course of drug concentration in the plasma was determined. In the same rats, cephalexin concentration in the dermal ECF was determined by ETS and microdialysis techniques. In a separate set of rats, only intraarticular microdialysis was carried out determine the time course of cephalexin concentration in synovial fluid. The drug concentration in the dermal ECF determined by ETS and microdialysis did not differ significantly from each other and so as were the pharmacokinetic parameters. The results provide validity to the ETS technique. Further, there was a good correlation (~0.9) between synovial fluid and dermal ECF levels of cephalexin indicating that dermal ECF levels could be used as a potential surrogate for cephalexin concentration in the synovial fluid. PMID:19067398

  16. Practical Repair Method for Unilateral Cleft Lips: Straight-Line Advanced Release Technique.

    PubMed

    Baek, Rong-Min; Choi, Jun-Ho; Kim, Baek-Kyu

    2016-04-01

    Straight-line closure repair of unilateral cleft lips was first introduced in the 1840s, and since then, many different techniques have been attempted for cleft repair. However, these methods have several disadvantages and are difficult to adopt. In this study, we describe our novel technique, known as Straight-Line Advanced Release Technique (StART), and its application in treating several cases of unilateral cleft lip. The preoperative design of the surgical method is drawn on the skin, the vermilion, and the oral mucosa. A total of 13 points are marked (points 0-12). The A flap, B flap, triangular flap, M (medial mucosal) flap, and L (lateral mucosal) flap are designed. After completion of the preoperative marking, the wide dissection is performed to separate the orbicularis oris muscle completely from the abnormally inserted bony structure and the enveloped skin-mucosal flap. The freed orbicularis oris muscle is then reconstructed with full width. After all planes of the lip wound are closed, a straight vertical skin suture line is achieved without any unnecessary transverse scar. Unilateral cleft lip repair using StART was conducted in 145 patients between 1993 and 2012. Cases of microform cleft lip were excluded. A total of 21 patients (14%) required a secondary operation on the lip after the first unilateral cheiloplasty. In all patients, satisfactory surgical outcomes were obtained with an indistinct straight-lined scar and a well-aligned lip contour. To acquire a natural and balanced shape in unilateral cleft lip repair, we recommend the novel StART.

  17. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  18. Protein purification and analysis: next generation Western blotting techniques.

    PubMed

    Mishra, Manish; Tiwari, Shuchita; Gomes, Aldrin V

    2017-11-01

    Western blotting is one of the most commonly used techniques in molecular biology and proteomics. Since western blotting is a multistep protocol, variations and errors can occur at any step reducing the reliability and reproducibility of this technique. Recent reports suggest that a few key steps, such as the sample preparation method, the amount and source of primary antibody used, as well as the normalization method utilized, are critical for reproducible western blot results. Areas covered: In this review, improvements in different areas of western blotting, including protein transfer and antibody validation, are summarized. The review discusses the most advanced western blotting techniques available and highlights the relationship between next generation western blotting techniques and its clinical relevance. Expert commentary: Over the last decade significant improvements have been made in creating more sensitive, automated, and advanced techniques by optimizing various aspects of the western blot protocol. New methods such as single cell-resolution western blot, capillary electrophoresis, DigiWest, automated microfluid western blotting and microchip electrophoresis have all been developed to reduce potential problems associated with the western blotting technique. Innovative developments in instrumentation and increased sensitivity for western blots offer novel possibilities for increasing the clinical implications of western blot.

  19. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  20. Development of a real-time aeroperformance analysis technique for the X-29A advanced technology demonstrator

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Hicks, J. W.; Alexander, R. I.

    1988-01-01

    The X-29A advanced technology demonstrator has shown the practicality and advantages of the capability to compute and display, in real time, aeroperformance flight results. This capability includes the calculation of the in-flight measured drag polar, lift curve, and aircraft specific excess power. From these elements many other types of aeroperformance measurements can be computed and analyzed. The technique can be used to give an immediate postmaneuver assessment of data quality and maneuver technique, thus increasing the productivity of a flight program. A key element of this new method was the concurrent development of a real-time in-flight net thrust algorithm, based on the simplified gross thrust method. This net thrust algorithm allows for the direct calculation of total aircraft drag.

  1. Cryptosporidium Oocyst Detection in Water Samples: Floatation Technique Enhanced with Immunofluorescence Is as Effective as Immunomagnetic Separation Method

    PubMed Central

    Koompapong, Khuanchai; Sutthikornchai, Chantira

    2009-01-01

    Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, 101, 102, and 103 per 10 µl were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < 102 per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting. PMID:19967082

  2. Cryptosporidium oocyst detection in water samples: floatation technique enhanced with immunofluorescence is as effective as immunomagnetic separation method.

    PubMed

    Koompapong, Khuanchai; Sutthikornchai, Chantira; Sukthana, Yowalark

    2009-12-01

    Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, 10(1), 10(2), and 10(3) per 10 microl were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < 10(2) per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting.

  3. Treatment of multiple adjacent Miller Class I and II gingival recessions with collagen matrix and the modified coronally advanced tunnel technique.

    PubMed

    Molnár, Bálint; Aroca, Sofia; Keglevich, Tibor; Gera, István; Windisch, Péter; Stavropoulos, Andreas; Sculean, Anton

    2013-01-01

    To clinically evaluate the treatment of Miller Class I and II multiple adjacent gingival recessions using the modified coronally advanced tunnel technique combined with a newly developed bioresorbable collagen matrix of porcine origin. Eight healthy patients exhibiting at least three multiple Miller Class I and II multiple adjacent gingival recessions (a total of 42 recessions) were consecutively treated by means of the modified coronally advanced tunnel technique and collagen matrix. The following clinical parameters were assessed at baseline and 12 months postoperatively: full mouth plaque score (FMPS), full mouth bleeding score (FMBS), probing depth (PD), recession depth (RD), recession width (RW), keratinized tissue thickness (KTT), and keratinized tissue width (KTW). The primary outcome variable was complete root coverage. Neither allergic reactions nor soft tissue irritations or matrix exfoliations occurred. Postoperative pain and discomfort were reported to be low, and patient acceptance was generally high. At 12 months, complete root coverage was obtained in 2 out of the 8 patients and 30 of the 42 recessions (71%). Within their limits, the present results indicate that treatment of Miller Class I and II multiple adjacent gingival recessions by means of the modified coronally advanced tunnel technique and collagen matrix may result in statistically and clinically significant complete root coverage. Further studies are warranted to evaluate the performance of collagen matrix compared with connective tissue grafts and other soft tissue grafts.

  4. SEOM-SERAM-SEMNIM guidelines on the use of functional and molecular imaging techniques in advanced non-small-cell lung cancer.

    PubMed

    Fernández Pérez, G; Sánchez Escribano, R; García Vicente, A M; Luna Alcalá, A; Ceballos Viro, J; Delgado Bolton, R C; Vilanova Busquets, J C; Sánchez Rovira, P; Fierro Alanis, M P; García Figueiras, R; Alés Martínez, J E

    2018-05-25

    Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Williams conducts SWAB Sampling during Expedition 22

    NASA Image and Video Library

    2010-03-15

    ISS022-E-094369 (15 March 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  6. Williams conducts SWAB Sampling during Expedition 22

    NASA Image and Video Library

    2010-03-15

    ISS022-E-094374 (15 March 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  7. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advancedmore » digital control/optimization phase of the project.« less

  8. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    PubMed Central

    Dirk, Brennan S.; Van Nynatten, Logan R.; Dikeakos, Jimmy D.

    2016-01-01

    Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle. PMID:27775563

  9. The development of optical microscopy techniques for the advancement of single-particle studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-fieldmore » imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also

  10. Mixing of thawed coagulation samples prior to testing: Is any technique better than another?

    PubMed

    Lima-Oliveira, Gabriel; Adcock, Dorothy M; Salvagno, Gian Luca; Favaloro, Emmanuel J; Lippi, Giuseppe

    2016-12-01

    Thus study was aimed to investigate whether the mixing technique could influence the results of routine and specialized clotting tests on post-thawed specimens. The sample population consisted of 13 healthy volunteers. Venous blood was collected by evacuated system into three 3.5mL tubes containing 0.109mmol/L buffered sodium citrate. The three blood tubes of each subject were pooled immediately after collection inside a Falcon 15mL tube, then mixed by 6 gentle end-over-end inversions, and centrifuged at 1500g for 15min. Plasma-pool of each subject was then divided in 4 identical aliquots. All aliquots were thawed after 2-day freezing -70°C. Immediately afterwards, the plasma of the four paired aliquots were treated using four different techniques: (a) reference procedure, entailing 6 gentle end-over-end inversions; (b) placing the sample on a blood tube rocker (i.e., rotor mixing) for 5min to induce agitation and mixing; (c) use of a vortex mixer for 20s to induce agitation and mixing; and (d) no mixing. The significance of differences against the reference technique for mixing thawed plasma specimens (i.e., 6 gentle end-over-end inversions) were assessed with paired Student's t-test. The statistical significance was set at p<0.05. As compared to the reference 6-time gentle inversion technique, statistically significant differences were only observed for fibrinogen, and factor VIII in plasma mixed on tube rocker. Some trends were observed in the remaining other cases, but the bias did not achieve statistical significance. We hence suggest that each laboratory should standardize the procedures for mixing of thawed plasma according to a single technique. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. Using a novel micro-sampling technique to monitor the effects of methylmercury on the eggs of wild birds

    USGS Publications Warehouse

    Klimstra, J.D.; Stebbins, K.R.; Heinz, G.H.

    2007-01-01

    Methylmercury is the predominant chemical form of mercury reported in the eggs of wild birds. The embryo is the life stage at which birds are most sensitive to methylmercury. Protective guidelines have been based largely on captive-breeding studies done with chickens (Gallus domesticus), mallards (Anas platyrhynchos), and ring-necked pheasants (Phasianus colchicus). Typically these studies are cost and time prohibitive. In the past, researchers have used either egg injections or the ?sample egg? technique to determine contaminant effects on bird eggs. Both techniques have their limitations. As an alternative to the above methods and because most of the methylmercury is found in the albumen we have developed a novel, less invasive technique, to micro-sample the albumen of eggs in the field. An albumen sample would be analyzed and then compared to the hatching success of that egg. Using the micro-sampling procedure, the egg is oriented with the blunt end up and the pointed end down. A vent hole is drilled at the top to relieve pressure. Approximately one third up from the bottom, a withdrawal site is drilled just until the inner shell membrane is exposed. A syringe with a 21 or 18 gauge needle is gently inserted just into the egg and approximately 200?300?l of albumen is removed. Almost concurrently this site and then the vent are sealed. Thus far we have experimented with both chicken and mallard eggs in the laboratory. We sampled chicken eggs at days 0 and 3 of incubation with a hatching success of 76% and 70%, respectively. Neither group was significantly different from control eggs (P=0.52, 0.54). Field studies are in progress using this technique in which birds are allowed to incubate their own eggs. We envision micro-sampling to be a tool that researchers and managers could use in the field to determine the effects of mercury or other contaminants in bird populations. Micro-sampling would reduce the impact on the sampled population and could be used to monitor

  12. Technique of investigations of thermomagnetic Nernst-Ettingshausen and Maggi-Righi-Leduc effects in micro-samples at ultrahigh pressure

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, Sergey; Shchennikov, Vladimir

    2004-03-01

    In the present work the novel technique of investigation of thermomagnetic effects (longitudinal and transverse Nernst-Ettingshausen effects, Maggi-Righi-Leduc effects) on semiconductor micro-samples at high pressure up to 30 GPa has been developed. The technique has been applied for characterisation of semiconductor micro-samples and minerals of VI, IV-VI, and II-VI Groups. Advantages of thermomagnetic effects over the traditional galvanomagnetic ones have been demonstrated. It has been shown that technique of thermomagnetic measurements at high pressure is a powerful tool in studying of parameters of electron structure of semiconductors and being the perspective one for any technological applications. The work was supported by the Russian Foundation for Basic Research, Gr. No. 01-02-17203.

  13. Detection of equine herpesvirus in horses with idiopathic keratoconjunctivitis and comparison of three sampling techniques.

    PubMed

    Hollingsworth, Steven R; Pusterla, Nicola; Kass, Philip H; Good, Kathryn L; Brault, Stephanie A; Maggs, David J

    2015-09-01

    To determine the role of equine herpesvirus (EHV) in idiopathic keratoconjunctivitis in horses and to determine whether sample collection method affects detection of EHV DNA by quantitative polymerase chain reaction (qPCR). Twelve horses with idiopathic keratoconjunctivitis and six horses without signs of ophthalmic disease. Conjunctival swabs, corneal scrapings, and conjunctival biopsies were collected from 18 horses: 12 clinical cases with idiopathic keratoconjunctivitis and six euthanized controls. In horses with both eyes involved, the samples were taken from the eye judged to be more severely affected. Samples were tested with qPCR for EHV-1, EHV-2, EHV-4, and EHV-5 DNA. Quantity of EHV DNA and viral replicative activity were compared between the two populations and among the different sampling techniques; relative sensitivities of the sampling techniques were determined. Prevalence of EHV DNA as assessed by qPCR did not differ significantly between control horses and those with idiopathic keratoconjunctivitis. Sampling by conjunctival swab was more likely to yield viral DNA as assessed by qPCR than was conjunctival biopsy. EHV-1 and EHV-4 DNA were not detected in either normal or IKC-affected horses; EHV-2 DNA was detected in two of 12 affected horses but not in normal horses. EHV-5 DNA was commonly found in ophthalmically normal horses and horses with idiopathic keratoconjunctivitis. Because EHV-5 DNA was commonly found in control horses and in horses with idiopathic keratoconjunctivitis, qPCR was not useful for the etiological diagnosis of equine keratoconjunctivitis. Conjunctival swabs were significantly better at obtaining viral DNA samples than conjunctival biopsy in horses in which EHV-5 DNA was found. © 2015 American College of Veterinary Ophthalmologists.

  14. A new comprehensive technique of catheterisation, blood sampling, sample preparation and sample analysis by means of high-pressure liquid chromatography for pharmacokinetic studies with estradiol-linked nitrosoureas and their metabolites.

    PubMed

    Betsch, B; Berger, M R; Spiegelhalder, B

    1990-09-01

    Estradiol-linked nitrosoureas are offering new perspectives in the antineoplastic chemotherapy of estradiol-receptor positive mammary carcinomas. In such a molecule estradiol has the function of a carrier which brings about a specific accumulation of the anticancer drug in estradiol-receptor containing tumor cells. However, there is only little knowledge about the pharmacokinetic behavior of this new group of anticancer agents. For that reason a new comprehensive technique of catheterisation, blood sampling, sample preparation and sample analysis with high-pressure liquid chromatography (HPLC) for preclinical pharmacokinetic studies with estradiol-linked nitrosoureas and their metabolites has been developed. N-(2-Chloroethyl)-N-nitroso-carbamoyl-L-alanine-estradiol-17-ester (CNC-alanine-estradiol-17-ester) and N-(2-chloroethyl)-N-nitroso-carbamoyl-L-alanine (CNC-alanine) were used as test compounds. The drugs were tested in female Sprague-Dawley rats with chemically induced mammary carcinomas. The laboratory animals were supplied with two catheters prior to the pharmacokinetic experiments. The blood samples were drawn from the vena cava catheter after the drug had been applied through a vena jugularis catheter. The compounds were extracted from plasma with C18 silicagel reversed phase cartridges. The clean-up technique delivered clear samples only slightly contaminated with the biological matrix. The recovery from plasma was 75 +/- 5% for the hormone-linked CNC-alanine-estradiol-17-ester and 70 +/- 5% for the unlinked CNC-alanine. The analysis was carried out by means of HPLC.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Techniques for avoiding discrimination errors in the dynamic sampling of condensable vapors

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1983-01-01

    In the mass spectrometric sampling of dynamic systems, measurements of the relative concentrations of condensable and noncondensable vapors can be significantly distorted if some subtle, but important, instrumental factors are overlooked. Even with in situ measurements, the condensables are readily lost to the container walls, and the noncondensables can persist within the vacuum chamber and yield a disproportionately high output signal. Where single pulses of vapor are sampled this source of error is avoided by gating either the mass spectrometer ""on'' or the data acquisition instrumentation ""on'' only during the very brief time-window when the initial vapor cloud emanating directly from the vapor source passes through the ionizer. Instrumentation for these techniques is detailed and its effectiveness is demonstrated by comparing gated and nongated spectra obtained from the pulsed-laser vaporization of several materials.

  16. Changes in sample collection and analytical techniques and effects on retrospective comparability of low-level concentrations of trace elements in ground water

    USGS Publications Warehouse

    Ivahnenko, T.; Szabo, Z.; Gibs, J.

    2001-01-01

    Ground-water sampling techniques were modified to reduce random low-level contamination during collection of filtered water samples for determination of trace-element concentrations. The modified sampling techniques were first used in New Jersey by the US Geological Survey in 1994 along with inductively coupled plasma-mass spectrometry (ICP-MS) analysis to determine the concentrations of 18 trace elements at the one microgram-per-liter (μg/L) level in the oxic water of the unconfined sand and gravel Kirkwood-Cohansey aquifer system. The revised technique tested included a combination of the following: collection of samples (1) with flow rates of about 2L per minute, (2) through acid-washed single-use disposable tubing and (3) a single-use disposable 0.45-μm pore size capsule filter, (4) contained within portable glove boxes, (5) in a dedicated clean sampling van, (6) only after turbidity stabilized at values less than 2 nephelometric turbidity units (NTU), when possible. Quality-assurance data, obtained from equipment blanks and split samples, indicated that trace element concentrations, with the exception of iron, chromium, aluminum, and zinc, measured in the samples collected in 1994 were not subject to random contamination at 1μg/L.Results from samples collected in 1994 were compared to those from samples collected in 1991 from the same 12 PVC-cased observation wells using the available sampling and analytical techniques at that time. Concentrations of copper, lead, manganese and zinc were statistically significantly lower in samples collected in 1994 than in 1991. Sampling techniques used in 1994 likely provided trace-element data that represented concentrations in the aquifer with less bias than data from 1991 when samples were collected without the same degree of attention to sample handling.

  17. Changes in Selected Biochemical Indices Resulting from Various Pre-sampling Handling Techniques in Broilers

    PubMed Central

    2011-01-01

    Background Since it is not yet clear whether it is possible to satisfactorily avoid sampling-induced stress interference in poultry, more studies on the pattern of physiological response and detailed quantification of stress connected with the first few minutes of capture and pre-sampling handling in poultry are required. This study focused on detection of changes in the corticosterone level and concentrations of other selected biochemical parameters in broilers handled in two different manners during blood sampling (involving catching, carrying, restraint, and blood collection itself) that lasted for various time periods within the interval 30-180 seconds. Methods Stress effects of pre-sampling handling were studied in a group (n = 144) of unsexed ROSS 308 broiler chickens aged 42 d. Handling (catching, carrying, restraint, and blood sampling itself) was carried out in a gentle (caught, held and carried carefully in an upright position) or rough (caught by the leg, held and carried with lack of care in inverted position) manner and lasted for 30 s, 60 s, 90 s, 120 s, 150 s, and 180 s. Plasma corticosterone, albumin, glucose, cholesterol, lactate, triglycerides and total protein were measured in order to assess the stress-induced changes to these biochemical indices following handling in the first few minutes of capture. Results Pre-sampling handling in a rough manner resulted in considerably higher plasma concentrations of all biochemical indices monitored when compared with gentle handling. Concentrations of plasma corticosterone after 150 and 180 s of handling were considerably higher (P < 0.01) than concentrations after 30-120 s of handling regardless of handling technique. Concentrations of plasma lactate were also increased by prolonged handling duration. Handling for 90-180 seconds resulted in a highly significant elevation of lactate concentration in comparison with 30 s handling regardless of handling technique. Similarly to corticosterone concentrations

  18. Changes in selected biochemical indices resulting from various pre-sampling handling techniques in broilers.

    PubMed

    Chloupek, Petr; Bedanova, Iveta; Chloupek, Jan; Vecerek, Vladimir

    2011-05-13

    Since it is not yet clear whether it is possible to satisfactorily avoid sampling-induced stress interference in poultry, more studies on the pattern of physiological response and detailed quantification of stress connected with the first few minutes of capture and pre-sampling handling in poultry are required. This study focused on detection of changes in the corticosterone level and concentrations of other selected biochemical parameters in broilers handled in two different manners during blood sampling (involving catching, carrying, restraint, and blood collection itself) that lasted for various time periods within the interval 30-180 seconds. Stress effects of pre-sampling handling were studied in a group (n = 144) of unsexed ROSS 308 broiler chickens aged 42 d. Handling (catching, carrying, restraint, and blood sampling itself) was carried out in a gentle (caught, held and carried carefully in an upright position) or rough (caught by the leg, held and carried with lack of care in inverted position) manner and lasted for 30 s, 60 s, 90 s, 120 s, 150 s, and 180 s. Plasma corticosterone, albumin, glucose, cholesterol, lactate, triglycerides and total protein were measured in order to assess the stress-induced changes to these biochemical indices following handling in the first few minutes of capture. Pre-sampling handling in a rough manner resulted in considerably higher plasma concentrations of all biochemical indices monitored when compared with gentle handling. Concentrations of plasma corticosterone after 150 and 180 s of handling were considerably higher (P < 0.01) than concentrations after 30-120 s of handling regardless of handling technique. Concentrations of plasma lactate were also increased by prolonged handling duration. Handling for 90-180 seconds resulted in a highly significant elevation of lactate concentration in comparison with 30 s handling regardless of handling technique. Similarly to corticosterone concentrations, a strong positive

  19. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  20. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  1. Characterization of Apollo Regolith by X-Ray and Electron Microbeam Techniques: An Analog for Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.

    2015-01-01

    The Apollo missions collected 382 kg of rock and regolith from the Moon; approximately 1/3 of the sample mass collected was regolith. Lunar regolith consists of well mixed rocks, minerals, and glasses less than 1-centimeter n size. The majority of most surface regolith samples were sieved into less than 1, 1-2, 2-4, and 4-10- millimiter size fractions; a portion of most samples was re-served unsieved. The initial characterization and classification of most Apollo regolith particles was done primarily by binocular microscopy. Optical classification of regolith is difficult because (1) the finest fraction of the regolith coats and obscures the textures of the larger particles, and (b) not all lithologies or minerals are uniquely identifiable optically. In recent years, we have begun to use more modern x-ray beam techniques [1-3], coupled with high resolution 3D optical imaging techniques [4] to characterize Apollo and meteorite samples as part of the curation process. These techniques, particularly in concert with SEM imaging of less than 1-millimeter regolith grain mounts, allow for the rapid characterization of the components within a regolith.

  2. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Chen, Hao

    2016-06-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.

  3. Advanced imaging techniques for small bowel Crohn's disease: what does the future hold?

    PubMed

    Pita, Inês; Magro, Fernando

    2018-01-01

    Treatment of Crohn's disease (CD) is intrinsically reliant on imaging techniques, due to the preponderance of small bowel disease and its transmural pattern of inflammation. Ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) are the most widely employed imaging methods and have excellent diagnostic accuracy in most instances. Some limitations persist, perhaps the most clinically relevant being the distinction between inflammatory and fibrotic strictures. In this regard, several methodologies have recently been tested in animal models and human patients, namely US strain elastography, shear wave elastography, contrast-enhanced US, magnetization transfer MRI and contrast dynamics in standard MRI. Technical advances in each of the imaging methods may expand their indications. The addition of oral contrast to abdominal US appears to substantially improve its diagnostic capabilities compared to standard US. Ionizing dose-reduction methods in CT can decrease concern about cumulative radiation exposure in CD patients and diffusion-weighted MRI may reduce the need for gadolinium contrast. Clinical indexes of disease activity and severity are also increasingly relying on imaging scores, such as the recently developed Lémann Index. In this review we summarize some of the recent advances in small bowel CD imaging and how they might affect clinical practice in the near future.

  4. Label-free imaging of fatty acid content within yeast samples

    NASA Astrophysics Data System (ADS)

    Garrett, N.; Moger, J.

    2013-02-01

    Fungi have been found to be an underlying cause of 70% of all plant and animal extinctions caused by infectious diseases. Fungal infections are a growing problem affecting global health, food production and ecosystems. Lipid metabolism is a promising target for antifungal drugs and since effective treatment of fungal infections requires a better understanding of the effects of antifungal agents at the cellular level, new techniques are needed to investigate this problem. Recent advances in nonlinear microscopy allow chemically-specific contrast to be obtained non-invasively from intrinsic chemical bonds within live samples using advanced spectroscopy techniques probing Raman-active resonances. We present preliminary data using Stimulated Raman Scattering (SRS) microscopy as a means to visualise lipid droplets within individual living fungi by probing Raman resonances of the CH stretching region between 2825cm-1 and 3030cm-1.

  5. Conference Proceedings on Guidance and Control Techniques for Advanced Space Vehicles (37th) Held at Florence, Italy on 27-30 September 1983.

    DTIC Science & Technology

    1984-01-01

    P AD-A14l 969 CONFERENCE PROCEEDINGS ON GUIDANCE AND CONTROL 1 TECHNIQUES FOR ADVANCED SP-.(U,) ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT...findings of these various planning groups relativie to the ’e for advanced controls technology, and the perceived status of the technology t. me-,t... control of large flexible spacecraft. The program has also involved experimental activities to guide Ind validate the theoretical work. The

  6. Methods for quantification of soil-transmitted helminths in environmental media: current techniques and recent advances

    PubMed Central

    Collender, Philip A.; Kirby, Amy E.; Addiss, David G.; Freeman, Matthew C.; Remais, Justin V.

    2015-01-01

    Limiting the environmental transmission of soil-transmitted helminths (STH), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost effective methods to detect and quantify STH in the environment. We review the state of the art of STH quantification in soil, biosolids, water, produce, and vegetation with respect to four major methodological issues: environmental sampling; recovery of STH from environmental matrices; quantification of recovered STH; and viability assessment of STH ova. We conclude that methods for sampling and recovering STH require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. PMID:26440788

  7. Sampling and physico-chemical analysis of precipitation: a review.

    PubMed

    Krupa, Sagar V

    2002-01-01

    Wet deposition is one of two processes governing the transfer of beneficial and toxic chemicals from the atmosphere on to surfaces. Since the early 1970s, numerous investigators have sampled and analyzed precipitation for their chemical constituents, in the context of "acidic rain" and related atmospheric processes. Since then, significant advances have been made in our understanding of how to sample rain, cloud and fog water to preserve their physico-chemical integrity prior to analyses. Since the 1970s large-scale precipitation sampling networks have been in operation to broadly address regional and multi-regional issues. However, in examining the results from such efforts at a site-specific level, concerns have been raised about the accuracy and precision of the information gathered. There is mounting evidence to demonstrate the instability of precipitation samples (e.g. with N species) that have been subjected to prolonged ambient or field conditions. At the present time precipitation sampling procedures allow unrefrigerated or refrigerated collection of wet deposition from individual events, sequential fractions within events, in situ continuous chemical analyses in the field and even sampling of single or individual rain, cloud and fog droplets. Similarly analytical procedures of precipitation composition have advanced from time-consuming methods to rapid and simultaneous analyses of major anions and cations, from bulk samples to single droplets. For example, analytical techniques have evolved from colorimetry to ion chromatography to capillary electrophoresis. Overall, these advances allow a better understanding of heterogeneous reactions and atmospheric pollutant scavenging processes by precipitation. In addition, from an environmental perspective, these advances allow better quantification of semi-labile (e.g. NH4+, frequently its deposition values are underestimated) or labile species [e.g. S (IV)] in precipitation and measurements of toxic chemicals such

  8. SPRUCE Advanced Molecular Techniques Provide a Rigorous Method for Characterizing Organic Matter Quality in Complex Systems: Supporting Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Rachel M; Tfaily, Malak M

    These data are provided in support of the Commentary, Advanced molecular techniques provide a rigorous method for characterizing organic matter quality in complex systems, Wilson and Tfaily (2018). Measurement results demonstrate that optical characterization of peatland dissolved organic matter (DOM) may not fully capture classically identified chemical characteristics and may, therefore, not be the best measure of organic matter quality.

  9. Sample Processing technique onboard ExoMars (MOMA) to analyze organic compounds by Gas Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Buch, A.; Freissinet, C.; Sternberg, R.; Szopa, C.; Coll, P. J.; Brault, A.; Pinnick, V.; Siljeström, S.; Raulin, F.; Steininger, H.; Goesmann, F.; MOMA Team

    2011-12-01

    With the aim of separating and detecting organic compounds from Martian soil onboard the Mars Organic Molecule Analyzer (MOMA) experiment of the ExoMars 2018 upcoming joint ESA/NASA mission, we have developed three different space compatible sample preparation techniques compatible with space missions, able to extract and analyze by GC-MS a wide range of volatile and refractory compounds, including chirality analysis. Then, a sample processing utilizing three derivatization/extraction reactions has been carried out. The first reaction is based on a silyl reagent N-Methyl-N- (Tert-Butyldimethylsilyl)trifluoroacetamide (MTBSTFA) [1], the second one, N,N-Dimethylformamide Dimethylacetal (DMF-DMA) [2,3] is dedicated to the chirality detection and the third one is a thermochemolysis based on the use of tetramethylammoniumhydroxide (TMAH). The sample processing system is performed in an oven, dedicated to the MOMA experiment containing the solid sample (50-100mg). The internal temperature of the oven ranges from 20 to 900 °C. The extraction step is achieved by using thermodesorption in the range of 100 to 300°C for 5 to 20 min. Then, the chemical derivatization of the extracted compounds is performed directly on the soil sample by using a derivatyization capsule which contains a mixture of MTBSTFA-DMF or DMF-DMA solution when enantiomeric separation is required. By decreasing the polarity of the targeted molecules, this step allows their volatilization at a temperature below 250°C without any thermal degradation. Once derivatized, the volatile target molecules are trapped in a chemical trap and promptly desorbed into the gas chromatograph coupled to a mass spectrometer. Thermochemolysis is directly performed in the oven at 400°C during 5 min with a 25% (w/w) methanol solution of tetramethylammonium hydroxide (TMAH). Then, pyrolysis in the presence of TMAH allows both an efficient cleavage of polar bonds and the subsequent methylation of COOH, OH and NH2 groups, hence

  10. Analytical techniques for identification and study of organic matter in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.

    1974-01-01

    The results of geochemical research are reviewed. Emphasis is placed on the contribution of mass spectrometric data to the solution of specific structural problems. Information on the mass spectrometric behavior of compounds of geochemical interest is reviewed and currently available techniques of particular importance to geochemistry, such as gas chromatograph-mass spectrometer coupling, modern sample introduction methods, and computer application in high resolution mass spectrometry, receive particular attention.

  11. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  12. Omasal sampling technique for assessing fermentative digestion in the forestomach of dairy cows.

    PubMed

    Huhtanen, P; Brotz, P G; Satter, L D

    1997-05-01

    A procedure allowing digesta sampling from the omasum via a ruminal cannula without repeated entry into the omasum was developed. The sampling system consisted of a device inserted into the omasum via the ruminal cannula, a tube connecting the device to the ruminal cannula, and a single compressor/vacuum pump. Eight cows given ad libitum access to a total mixed diet were used in a crossover design to evaluate the effects of the sampling system on digestive activity, animal performance, and animal behavior. Results indicated that the omasal sampling system has minimal effect on normal digestive and productive functions of high-producing dairy cows. Dry matter intake was reduced (24.0 vs 21.8 kg/d; P < .02) and seemed related more to the sampling procedures than to the device in the omasum. Observations of animal behavior indicated that cows with the sampling device were similar to control cows, although rumination and total chewing times were reduced slightly. The composition of digesta samples was biased toward an over-abundance of the liquid phase, but using a double-marker system to calculate digesta flow resulted in fairly small coefficients of variation for measurements of ruminal digestion variables. This technique may prove useful for partitioning digestion between the fermentative portion of the forestomach and the lower gastrointestinal tract. The omasal sampling procedure requires less surgical intervention than the traditional methods using abomasal or duodenal cannulas as sampling sites to study forestomach digestion and avoids potentially confounding endogenous secretions of the abomasum.

  13. Advanced Neuroimaging in Traumatic Brain Injury

    PubMed Central

    Edlow, Brian L.; Wu, Ona

    2013-01-01

    Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization and interpretation. PMID:23361483

  14. I Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader.

    PubMed

    Smart, Adam S; Tingley, Reid; Weeks, Andrew R; van Rooyen, Anthony R; McCarthy, Michael A

    2015-10-01

    Effective management of alien species requires detecting populations in the early stages of invasion. Environmental DNA (eDNA) sampling can detect aquatic species at relatively low densities, but few studies have directly compared detection probabilities of eDNA sampling with those of traditional sampling methods. We compare the ability of a traditional sampling technique (bottle trapping) and eDNA to detect a recently established invader, the smooth newt Lissotriton vulgaris vulgaris, at seven field sites in Melbourne, Australia. Over a four-month period, per-trap detection probabilities ranged from 0.01 to 0.26 among sites where L. v. vulgaris was detected, whereas per-sample eDNA estimates were much higher (0.29-1.0). Detection probabilities of both methods varied temporally (across days and months), but temporal variation appeared to be uncorrelated between methods. Only estimates of spatial variation were strongly correlated across the two sampling techniques. Environmental variables (water depth, rainfall, ambient temperature) were not clearly correlated with detection probabilities estimated via trapping, whereas eDNA detection probabilities were negatively correlated with water depth, possibly reflecting higher eDNA concentrations at lower water levels. Our findings demonstrate that eDNA sampling can be an order of magnitude more sensitive than traditional methods, and illustrate that traditional- and eDNA-based surveys can provide independent information on species distributions when occupancy surveys are conducted over short timescales.

  15. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar

    2016-12-01

    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulationmore » tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.« less

  16. Application of Advanced Signal Processing Techniques to Angle of Arrival Estimation in ATC Navigation and Surveillance Systems

    DTIC Science & Technology

    1982-06-23

    Administration Systems Research and Development Service 14, Spseq Aese Ce ’ Washington, D.C. 20591 It. SeppkW•aae metm The work reported in this document was...consider sophisticated signal processing techniques as an alternative method of improving system performanceH Some work in this area has already taken place...demands on the frequency spectrum. As noted in Table 1-1, there has been considerable work on advanced signal processing in the MLS context

  17. Language Sample Analysis and Elicitation Technique Effects in Bilingual Children with and without Language Impairment

    ERIC Educational Resources Information Center

    Kapantzoglou, Maria; Fergadiotis, Gerasimos; Restrepo, M. Adelaida

    2017-01-01

    Purpose: This study examined whether the language sample elicitation technique (i.e., storytelling and story-retelling tasks with pictorial support) affects lexical diversity (D), grammaticality (grammatical errors per communication unit [GE/CU]), sentence length (mean length of utterance in words [MLUw]), and sentence complexity (subordination…

  18. Advanced Visualization and Interactive Display Rapid Innovation and Discovery Evaluation Research (VISRIDER) Program Task 6: Point Cloud Visualization Techniques for Desktop and Web Platforms

    DTIC Science & Technology

    2017-04-01

    ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms

  19. Documenting for Posterity: Advocating the Use of Advanced Recording Techniques for Documentation in the Field of Building Archaeology

    NASA Astrophysics Data System (ADS)

    De Vos, P. J.

    2017-08-01

    Since the new millennium, living in historic cities has become extremely popular in the Netherlands. As a consequence, historic environments are being adapted to meet modern living standards. Houses are constantly subjected to development, restoration and renovation. Although most projects are carried out with great care and strive to preserve and respect as much historic material as possible, nevertheless a significant amount of historical fabric disappears. This puts enormous pressure on building archaeologists that struggle to rapidly and accurately capture in situ authentic material and historical evidence in the midst of construction works. In Leiden, a medieval city that flourished during the seventeenth century and that today counts over 3,000 listed monuments, a solution to the problem has been found with the implementation of advanced recording techniques. Since 2014, building archaeologists of the city council have experienced first-hand that new recording techniques, such as laser scanning and photogrammetry, have dramatically decreased time spent on site with documentation. Time they now use to uncover, analyse and interpret the recovered historical data. Nevertheless, within building archaeology education, a strong case is made for hand drawing as a method for understanding a building, emphasising the importance of close observation and physical contact with the subject. In this paper, the use of advanced recording techniques in building archaeology is being advocated, confronting traditional educational theory with practise, and research tradition with the rapid rise of new recording technologies.

  20. What Can You Do with a Returned Sample of Martian Dust?

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Nakamura-Messenger, K.

    2007-01-01

    A major issue that we managed to successfully address for the Stardust Mission was the magnitude and manner of preliminary examination (PET) of the returned samples, which totaled much less than 1 mg. Not since Apollo and Luna days had anyone faced this issue, and the lessons of Apollo PET were not extremely useful because of the very different sample masses in this case, and the incredible advances in analytical capabilities since the 1960s. This paper reviews some of the techniques for examination of small very rare samples that would be returned from Mars missions.

  1. Analysis of soil samples from Gebeng area using NAA technique

    NASA Astrophysics Data System (ADS)

    Elias, Md Suhaimi; Wo, Yii Mei; Hamzah, Mohd Suhaimi; Shukor, Shakirah Abd; Rahman, Shamsiah Ab; Salim, Nazaratul Ashifa Abdullah; Azman, Muhamad Azfar; Hashim, Azian

    2017-01-01

    Rapid development and urbanization will increase number of residence and industrial area. Without proper management and control of pollution, these will give an adverse effect to environment and human life. The objective of this study to identify and quantify key contaminants into the environment of the Gebeng area as a result of industrial and human activities. Gebeng area was gazetted as one of the industrial estate in Pahang state. Assessment of elemental pollution in soil of Gebeng area base on level of concentration, enrichment factor and geo-accumulation index. The enrichment factors (EFs) were determined by the elemental rationing method, whilst the geo-accumulation index (Igeo) by comparing of current to continental crustal average concentration of element. Twenty-seven of soil samples were collected from Gebeng area. Soil samples were analysed by using Neutron Activation Analyses (NAA) technique. The obtained data showed higher concentration of iron (Fe) due to abundance in soil compared to other elements. The results of enrichment factor showed that Gebeng area have enrich with elements of As, Br, Hf, Sb, Th and U. Base on the geo-accumulation index (Igeo) classification, the soil quality of Gebeng area can be classified as class 0, (uncontaminated) to Class 3, (moderately to heavily contaminated).

  2. Mass Spectrometric and Synchrotron Radiation based techniques for the identification and distribution of painting materials in samples from paints of Josep Maria Sert

    PubMed Central

    2012-01-01

    Background Establishing the distribution of materials in paintings and that of their degradation products by imaging techniques is fundamental to understand the painting technique and can improve our knowledge on the conservation status of the painting. The combined use of chromatographic-mass spectrometric techniques, such as GC/MS or Py/GC/MS, and the chemical mapping of functional groups by imaging SR FTIR in transmission mode on thin sections and SR XRD line scans will be presented as a suitable approach to have a detailed characterisation of the materials in a paint sample, assuring their localisation in the sample build-up. This analytical approach has been used to study samples from Catalan paintings by Josep Maria Sert y Badía (20th century), a muralist achieving international recognition whose canvases adorned international buildings. Results The pigments used by the painter as well as the organic materials used as binders and varnishes could be identified by means of conventional techniques. The distribution of these materials by means of Synchrotron Radiation based techniques allowed to establish the mixtures used by the painter depending on the purpose. Conclusions Results show the suitability of the combined use of SR μFTIR and SR μXRD mapping and conventional techniques to unequivocally identify all the materials present in the sample and their localization in the sample build-up. This kind of approach becomes indispensable to solve the challenge of micro heterogeneous samples. The complementary interpretation of the data obtained with all the different techniques allowed the characterization of both organic and inorganic materials in the samples layer by layer as well as to establish the painting techniques used by Sert in the works-of-art under study. PMID:22616949

  3. GROUND WATER SAMPLING USING LOW-FLOW TECHNIQUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. The sampling device or method used to collect samples from monitoring or compliance well can significantly impact data quality and reliability. Low-flo...

  4. High-Precision Isotope Ratio Measurements of Sub-Picogram Actinide Samples

    NASA Astrophysics Data System (ADS)

    Pollington, A. D.; Kinman, W.

    2016-12-01

    One of the most exciting trends in analytical geochemistry over the past decade is the push towards smaller and smaller sample sizes while simultaneously achieving high precision isotope ratio measurements. This trend has been driven by advances in clean chemistry protocols, and by significant breakthroughs in mass spectrometer ionization efficiency and detector quality (stability and noise for low signals). In this presentation I will focus on new techniques currently being developed at Los Alamos National Laboratory for the characterization of ultra-small samples (pg, fg, ag), with particular focus on actinide measurements by MC-ICP-MS. Analyses of U, Pu, Th and Am are routinely carried out in our facility using multi-ion counting techniques. I will describe some of the challenges associated with using exclusively ion counting methods (e.g., stability, detector cross calibration, etc.), and how we work to mitigate them. While the focus of much of the work currently being carried out is in the broad field of nuclear forensics and safeguards, the techniques that are being developed are directly applicable to many geologic questions that require analyses of small samples of U and Th, for example. In addition to the description of the technique development, I will present case studies demonstrating the precision and accuracy of the method as applied to real-world samples.

  5. Methods for Quantification of Soil-Transmitted Helminths in Environmental Media: Current Techniques and Recent Advances.

    PubMed

    Collender, Philip A; Kirby, Amy E; Addiss, David G; Freeman, Matthew C; Remais, Justin V

    2015-12-01

    Limiting the environmental transmission of soil-transmitted helminths (STHs), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost-effective methods to detect and quantify STHs in the environment. We review the state-of-the-art of STH quantification in soil, biosolids, water, produce, and vegetation with regard to four major methodological issues: environmental sampling; recovery of STHs from environmental matrices; quantification of recovered STHs; and viability assessment of STH ova. We conclude that methods for sampling and recovering STHs require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping

    NASA Astrophysics Data System (ADS)

    Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung

    2017-08-01

    Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.

  7. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    PubMed

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival.

  8. Synchrotron/crystal sample preparation

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1993-01-01

    The Center for Applied Optics (CAO) of the University of Alabama in Huntsville (UAH) prepared this final report entitled 'Synchrotron/Crystal Sample Preparation' in completion of contract NAS8-38609, Delivery Order No. 53. Hughes Danbury Optical Systems (HDOS) is manufacturing the Advanced X-ray Astrophysics Facility (AXAF) mirrors. These thin-walled, grazing incidence, Wolter Type-1 mirrors, varying in diameter from 1.2 to 0.68 meters, must be ground and polished using state-of-the-art techniques in order to prevent undue stress due to damage or the presence of crystals and inclusions. The effect of crystals on the polishing and grinding process must also be understood. This involves coating special samples of Zerodur and measuring the reflectivity of the coatings in a synchrotron system. In order to gain the understanding needed on the effect of the Zerodur crystals by the grinding and polishing process, UAH prepared glass samples by cutting, grinding, etching, and polishing as required to meet specifications for witness bars for synchrotron measurements and for investigations of crystals embedded in Zerodur. UAH then characterized these samples for subsurface damage and surface roughness and figure.

  9. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  10. The Effects of Sampling Probe Design and Sampling Techniques on Aerosol Measurements

    DTIC Science & Technology

    1975-05-01

    Schematic of Extraction and Sampling System 39 16. Filter Housing 40 17. Theoretical Isokinetic Flow Requirements of the EPA Sampling...from the flow parameters based on a zero-error assumption at isokinetic sampling conditions. Isokinetic , or equal velocity sampling, was...prior to testing the probes. It was also used to measure the flow field adjacent to the probe inlets to determine the isokinetic condition of the

  11. Utilization of advanced calibration techniques in stochastic rock fall analysis of quarry slopes

    NASA Astrophysics Data System (ADS)

    Preh, Alexander; Ahmadabadi, Morteza; Kolenprat, Bernd

    2016-04-01

    In order to study rock fall dynamics, a research project was conducted by the Vienna University of Technology and the Austrian Central Labour Inspectorate (Federal Ministry of Labour, Social Affairs and Consumer Protection). A part of this project included 277 full-scale drop tests at three different quarries in Austria and recording key parameters of the rock fall trajectories. The tests involved a total of 277 boulders ranging from 0.18 to 1.8 m in diameter and from 0.009 to 8.1 Mg in mass. The geology of these sites included strong rock belonging to igneous, metamorphic and volcanic types. In this paper the results of the tests are used for calibration and validation a new stochastic computer model. It is demonstrated that the error of the model (i.e. the difference between observed and simulated results) has a lognormal distribution. Selecting two parameters, advanced calibration techniques including Markov Chain Monte Carlo Technique, Maximum Likelihood and Root Mean Square Error (RMSE) are utilized to minimize the error. Validation of the model based on the cross validation technique reveals that in general, reasonable stochastic approximations of the rock fall trajectories are obtained in all dimensions, including runout, bounce heights and velocities. The approximations are compared to the measured data in terms of median, 95% and maximum values. The results of the comparisons indicate that approximate first-order predictions, using a single set of input parameters, are possible and can be used to aid practical hazard and risk assessment.

  12. Sample flow switching techniques on microfluidic chips.

    PubMed

    Pan, Yu-Jen; Lin, Jin-Jie; Luo, Win-Jet; Yang, Ruey-Jen

    2006-02-15

    This paper presents an experimental investigation into electrokinetically focused flow injection for bio-analytical applications. A novel microfluidic device for microfluidic sample handling is presented. The microfluidic chip is fabricated on glass substrates using conventional photolithographic and chemical etching processes and is bonded using a high-temperature fusion method. The proposed valve-less device is capable not only of directing a single sample flow to a specified output port, but also of driving multiple samples to separate outlet channels or even to a single outlet to facilitate sample mixing. The experimental results confirm that the sample flow can be electrokinetically pre-focused into a narrow stream and guided to the desired outlet port by means of a simple control voltage model. The microchip presented within this paper has considerable potential for use in a variety of applications, including high-throughput chemical analysis, cell fusion, fraction collection, sample mixing, and many other applications within the micro-total-analysis systems field.

  13. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  14. Comparison of rangeland vegetation sampling techniques in the Central Grasslands

    USGS Publications Warehouse

    Stohlgren, T.J.; Bull, K.A.; Otsuki, Yuka

    1998-01-01

    Maintaining native plant diversity, detecting exotic species, and monitoring rare species are becoming important objectives in rangeland conservation. Four rangeland vegetation sampling techniques were compared to see how well they captured local pant diversity. The methods tested included the commonly used Parker transects, Daubenmire transects as modified by the USDA Forest Service, a new transect and 'large quadrat' design proposed by the USDA Agricultural Research Service, and the Modified-Whittaker multi-scale vegetation plot. The 4 methods were superimposed in shortgrass steppe, mixed grass prairie, northern mixed prairie, and tallgrass prairie in the Central Grasslands of the United States with 4 replicates in each prairie type. Analysis of variance tests showed significant method effects and prairie type effects, but no significant method X type interactions for total species richness, the number of native species, the number of species with less than 1 % cover, and the time required for sampling. The methods behaved similarly in each prairie type under a wide variety of grazing regimens. The Parker, large quadrat, and Daubenmire transects significantly underestimated the total species richness and the number of native species in each prairie type, and the number of species with less than 1 % cover in all but the tallgrass prairie type. The transect techniques also consistently missed half the exotic species, including noxious weeds, in each prairie type. The Modified-Whittaker method, which included an exhaustive search for plant species in a 20 x 50 m plot, served as the baseline for species richeness comparisons. For all prairie types, the Modified-Whittaker plot captured an average of 42. (?? 2.4; 1 S.E.) plant species per site compared to 15.9 (?? 1.3), 18.9 (?? 1.2), and 22.8 (?? 1.6) plant species per site using the Parker, large quadrat, and Daubenmire transect methods, respectively. The 4 methods captured most of the dominant species at each site

  15. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    PubMed Central

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407

  16. Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.

    PubMed

    Murphy, James D; Chang, Daniel T; Abelson, Jon; Daly, Megan E; Yeung, Heidi N; Nelson, Lorene M; Koong, Albert C

    2012-02-15

    Radiotherapy may improve the outcome of patients with pancreatic cancer but at an increased cost. In this study, the authors evaluated the cost-effectiveness of modern radiotherapy techniques in the treatment of locally advanced pancreatic cancer. A Markov decision-analytic model was constructed to compare the cost-effectiveness of 4 treatment regimens: gemcitabine alone, gemcitabine plus conventional radiotherapy, gemcitabine plus intensity-modulated radiotherapy (IMRT); and gemcitabine with stereotactic body radiotherapy (SBRT). Patients transitioned between the following 5 health states: stable disease, local progression, distant failure, local and distant failure, and death. Health utility tolls were assessed for radiotherapy and chemotherapy treatments and for radiation toxicity. SBRT increased life expectancy by 0.20 quality-adjusted life years (QALY) at an increased cost of $13,700 compared with gemcitabine alone (incremental cost-effectiveness ratio [ICER] = $69,500 per QALY). SBRT was more effective and less costly than conventional radiotherapy and IMRT. An analysis that excluded SBRT demonstrated that conventional radiotherapy had an ICER of $126,800 per QALY compared with gemcitabine alone, and IMRT had an ICER of $1,584,100 per QALY compared with conventional radiotherapy. A probabilistic sensitivity analysis demonstrated that the probability of cost-effectiveness at a willingness to pay of $50,000 per QALY was 78% for gemcitabine alone, 21% for SBRT, 1.4% for conventional radiotherapy, and 0.01% for IMRT. At a willingness to pay of $200,000 per QALY, the probability of cost-effectiveness was 73% for SBRT, 20% for conventional radiotherapy, 7% for gemcitabine alone, and 0.7% for IMRT. The current results indicated that IMRT in locally advanced pancreatic cancer exceeds what society considers cost-effective. In contrast, combining gemcitabine with SBRT increased clinical effectiveness beyond that of gemcitabine alone at a cost potentially acceptable by

  17. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    PubMed

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  18. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of < 20 %. While these could be explained as IPR by ice break-up, for INP their IN-ability pathway is less clear. After removal of the contamination artifacts, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH

  19. Sampling hydrometeors in clouds in-situ - the replicator technique

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Löffler, Mareike; Griesche, Hannes; Bühl, Johannes; Stratmann, Frank; Schmitt, Carl; Dirksen, Ruud; Reichardt, Jens; Wolf, Veronika; Kuhn, Thomas; Prager, Lutz; Seifert, Patric

    2017-04-01

    For the examination of ice crystals in clouds, concerning their number concentrations, sizes and shapes, often instruments mounted on fast flying aircraft are used. One related disadvantage is possible shattering of the ice crystals on inlets, which has been improved with the introduction of the "Korolev-tip" and by accounting for inter-arrival times (Korolev et al., 2013, 2015), but additionally, the typically fast flying aircraft allow only for a low spatial resolution. Alternative sampling methods have been introduced as e.g., a replicator by Miloshevich & Heymsfield (1997) and an in-situ imager by by Kuhn & Heymsfield (2016). They both sample ice crystals onto an advancing stripe while ascending on a balloon, conserving the ice crystals either in formvar for later off-line analysis under a microscope (Miloshevich & Heymsfield, 1997) or imaging them upon their impaction on silicone oil (Kuhn & Heymsfield, 2016), both yielding vertical profiles for different ice crystal properties. A measurement campaign was performed at the Lindenberg Meteorological Observatory of the German Meteorological Service (DWD) in Germany in October 2016, during which both types of instruments were used during balloon ascents, while ground-based Lidar and cloud-radar measurements were performed simultaneously. The two ice particle sondes were operated by people from the Lulea University of Technology and from TROPOS, where the latter one was made operational only recently. Here, we will show first results of the TROPOS replicator on ice crystals sampled during one ascent, for which the collected ice crystals were analyzed off-line using a microscope. Literature: Korolev, A., E. Emery, and K. Creelman (2013), Modification and tests of particle probe tips to mitigate effects of ice shattering, J. Atmos. Ocean. Tech., 30, 690-708, 2013. Korolev, A., and P. R. Field (2015), Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud

  20. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection.

    PubMed

    Rostami, Ali; Karanis, Panagiotis; Fallahi, Shirzad

    2018-06-01

    Toxoplasmosis is worldwide distributed zoonotic infection disease with medical importance in immunocompromised patients, pregnant women and congenitally infected newborns. Having basic information on the traditional and new developed methods is essential for general physicians and infectious disease specialists for choosing a suitable diagnostic approach for rapid and accurate diagnosis of the disease and, consequently, timely and effective treatment. We conducted English literature searches in PubMed from 1989 to 2016 using relevant keywords and summarized the recent advances in diagnosis of toxoplasmosis. Enzyme-linked immunosorbent assay (ELISA) was most used method in past century. Recently advanced ELISA-based methods including chemiluminescence assays (CLIA), enzyme-linked fluorescence assay (ELFA), immunochromatographic test (ICT), serum IgG avidity test and immunosorbent agglutination assays (ISAGA) have shown high sensitivity and specificity. Recent studies using recombinant or chimeric antigens and multiepitope peptides method demonstrated very promising results to development of new strategies capable of discriminating recently acquired infections from chronic infection. Real-time PCR and loop-mediated isothermal amplification (LAMP) are two recently developed PCR-based methods with high sensitivity and specificity and could be useful to early diagnosis of infection. Computed tomography, magnetic resonance imaging, nuclear imaging and ultrasonography could be useful, although their results might be not specific alone. This review provides a summary of recent developed methods and also attempts to improve their sensitivity for diagnosis of toxoplasmosis. Serology, molecular and imaging technologies each has their own advantages and limitations which can certainly achieve definitive diagnosis of toxoplasmosis by combining these diagnostic techniques.

  1. Improved symbol rate identification method for on-off keying and advanced modulation format signals based on asynchronous delayed sampling

    NASA Astrophysics Data System (ADS)

    Cui, Sheng; Jin, Shang; Xia, Wenjuan; Ke, Changjian; Liu, Deming

    2015-11-01

    Symbol rate identification (SRI) based on asynchronous delayed sampling is accurate, cost-effective and robust to impairments. For on-off keying (OOK) signals the symbol rate can be derived from the periodicity of the second-order autocorrelation function (ACF2) of the delay tap samples. But it is found that when applied this method to advanced modulation format signals with auxiliary amplitude modulation (AAM), incorrect results may be produced because AAM has significant impact on ACF2 periodicity, which makes the symbol period harder or even unable to be correctly identified. In this paper it is demonstrated that for these signals the first order autocorrelation function (ACF1) has stronger periodicity and can be used to replace ACF2 to produce more accurate and robust results. Utilizing the characteristics of the ACFs, an improved SRI method is proposed to accommodate both OOK and advanced modulation formant signals in a transparent manner. Furthermore it is proposed that by minimizing the peak to average ratio (PAPR) of the delay tap samples with an additional tunable dispersion compensator (TDC) the limited dispersion tolerance can be expanded to desired values.

  2. Automated Broad-Range Molecular Detection of Bacteria in Clinical Samples

    PubMed Central

    Hoogewerf, Martine; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2016-01-01

    Molecular detection methods, such as quantitative PCR (qPCR), have found their way into clinical microbiology laboratories for the detection of an array of pathogens. Most routinely used methods, however, are directed at specific species. Thus, anything that is not explicitly searched for will be missed. This greatly limits the flexibility and universal application of these techniques. We investigated the application of a rapid universal bacterial molecular identification method, IS-pro, to routine patient samples received in a clinical microbiology laboratory. IS-pro is a eubacterial technique based on the detection and categorization of 16S-23S rRNA gene interspace regions with lengths that are specific for each microbial species. As this is an open technique, clinicians do not need to decide in advance what to look for. We compared routine culture to IS-pro using 66 samples sent in for routine bacterial diagnostic testing. The samples were obtained from patients with infections in normally sterile sites (without a resident microbiota). The results were identical in 20 (30%) samples, IS-pro detected more bacterial species than culture in 31 (47%) samples, and five of the 10 culture-negative samples were positive with IS-pro. The case histories of the five patients from whom these culture-negative/IS-pro-positive samples were obtained suggest that the IS-pro findings are highly clinically relevant. Our findings indicate that an open molecular approach, such as IS-pro, may have a high added value for clinical practice. PMID:26763956

  3. Advanced hyphenated chromatographic-mass spectrometry in mycotoxin determination: current status and prospects.

    PubMed

    Li, Peiwu; Zhang, Zhaowei; Hu, Xiaofeng; Zhang, Qi

    2013-01-01

    Mass spectrometric techniques are essential for advanced research in food safety and environmental monitoring. These fields are important for securing the health of humans and animals, and for ensuring environmental security. Mycotoxins, toxic secondary metabolites of filamentous fungi, are major contaminants of agricultural products, food and feed, biological samples, and the environment as a whole. Mycotoxins can cause cancers, nephritic and hepatic diseases, various hemorrhagic syndromes, and immune and neurological disorders. Mycotoxin-contaminated food and feed can provoke trade conflicts, resulting in massive economic losses. Risk assessment of mycotoxin contamination for humans and animals generally depends on clear identification and reliable quantitation in diversified matrices. Pioneering work on mycotoxin quantitation using mass spectrometry (MS) was performed in the early 1970s. Now, unambiguous confirmation and quantitation of mycotoxins can be readily achieved with a variety hyphenated techniques that combine chromatographic separation with MS, including liquid chromatography (LC) or gas chromatography (GC). With the advent of atmospheric pressure ionization, LC-MS has become a routine technique. Recently, the co-occurrence of multiple mycotoxins in the same sample has drawn an increasing amount of attention. Thus, modern analyses must be able to detect and quantitate multiple mycotoxins in a single run. Improvements in tandem MS techniques have been made to achieve this purpose. This review describes the advanced research that has been done regarding mycotoxin determination using hyphenated chromatographic-MS techniques, but is not a full-circle survey of all the literature published on this topic. The present work provides an overview of the various hyphenated chromatographic-MS-based strategies that have been applied to mycotoxin analysis, with a focus on recent developments. The use of chromatographic-MS to measure levels of mycotoxins, including

  4. Comparative study of glass tube and mist chamber sampling techniques for the analysis of gaseous carbonyl compounds

    NASA Astrophysics Data System (ADS)

    François, Stéphanie; Perraud, Véronique; Pflieger, Maryline; Monod, Anne; Wortham, Henri

    In this work, glass tube and mist chamber sampling techniques using 2,4-dinitrophenylhydrazine as derivative agent for the analysis of gaseous carbonyl compounds are compared. Trapping efficiencies of formaldehyde, acetaldehyde, propionaldehyde, acetone, acrolein, glyoxal, crotonaldehyde, benzaldehyde, butyraldehyde and valeraldehyde are experimentally determined using a gas-phase generator. In addition to generalise our results to all atmospheric gaseous compounds and derivative agents, theoretical trapping efficiencies and enrichment factors are expressed taking into account mechanisms involved in the two kinds of traps. Theoretical and experimental results show that, as expected, the trapping efficiencies of the glass tube depend mainly on solubility of compounds. The results provide new information and better understanding of phenomena occurring in the mist chamber and the ability of this sampler to concentrate the samples. Hence, the mist chamber is the more convenient sampling method when the trapping is associated to a fast derivatisation of the compounds and the glass tube technique must be used to trap atmospheric compounds without simultaneous derivatisation.

  5. Advanced applications of numerical modelling techniques for clay extruder design

    NASA Astrophysics Data System (ADS)

    Kandasamy, Saravanakumar

    Ceramic materials play a vital role in our day to day life. Recent advances in research, manufacture and processing techniques and production methodologies have broadened the scope of ceramic products such as bricks, pipes and tiles, especially in the construction industry. These are mainly manufactured using an extrusion process in auger extruders. During their long history of application in the ceramic industry, most of the design developments of extruder systems have resulted from expensive laboratory-based experimental work and field-based trial and error runs. In spite of these design developments, the auger extruders continue to be energy intensive devices with high operating costs. Limited understanding of the physical process involved in the process and the cost and time requirements of lab-based experiments were found to be the major obstacles in the further development of auger extruders.An attempt has been made herein to use Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) based numerical modelling techniques to reduce the costs and time associated with research into design improvement by experimental trials. These two techniques, although used widely in other engineering applications, have rarely been applied for auger extruder development. This had been due to a number of reasons including technical limitations of CFD tools previously available. Modern CFD and FEA software packages have much enhanced capabilities and allow the modelling of the flow of complex fluids such as clay.This research work presents a methodology in using Herschel-Bulkley's fluid flow based CFD model to simulate and assess the flow of clay-water mixture through the extruder and the die of a vacuum de-airing type clay extrusion unit used in ceramic extrusion. The extruder design and the operating parameters were varied to study their influence on the power consumption and the extrusion pressure. The model results were then validated using results from

  6. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities.

    PubMed

    Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J; Waghorn, Garry C; Janssen, Peter H

    2013-01-01

    Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data

  7. Effect of DNA Extraction Methods and Sampling Techniques on the Apparent Structure of Cow and Sheep Rumen Microbial Communities

    PubMed Central

    Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J.; Waghorn, Garry C.; Janssen, Peter H.

    2013-01-01

    Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data

  8. Advances in radiotherapy techniques and delivery for non-small cell lung cancer: benefits of intensity-modulated radiation therapy, proton therapy, and stereotactic body radiation therapy

    PubMed Central

    Diwanji, Tejan P.; Mohindra, Pranshu; Vyfhuis, Melissa; Snider, James W.; Kalavagunta, Chaitanya; Mossahebi, Sina; Yu, Jen; Feigenberg, Steven

    2017-01-01

    The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement. PMID:28529896

  9. Faster the better: a reliable technique to sample anopluran lice in large hosts.

    PubMed

    Leonardi, María Soledad

    2014-06-01

    Among Anoplura, the family Echinophthiriidae includes those species that infest mainly the pinnipeds. Working with large hosts implies methodological considerations as the time spent in the sampling, and the way in that the animal is restrained. Previous works on echinophthiriids combined a diverse array of analyses including field counts of lice and in vitro observations. To collect lice, the authors used forceps, and each louse was collected individually. This implied a long manipulation time, i.e., ≈60 min and the need to physically and/or chemically immobilize the animal. The present work described and discussed for the first a sample technique that minimized the manipulation time and also avoiding the use of anesthesia. This methodology implied combing the host's pelage with a fine-tooth plastic comb, as used in the treatment of human pediculosis, and keeping the comb with the lice retained in a Ziploc® bag with ethanol. This technique was used successfully in studies of population dynamic, habitat selection, and transmission pattern, being a reliable methodology. Lice are collected entirely and are in a good condition to prepare them for mounting for studying under light or scanning electron microscopy. Moreover, the use of the plastic comb protects from damaging taxonomically important structures as spines being also recommended to reach taxonomic or morphological goals.

  10. Variation of surface water spectral response as a function of in situ sampling technique

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Hodgson, Michael E.

    1988-01-01

    Tests were carried out to determine the spectral variation contributed by a particular sampling technique. A portable radiometer was used to measure the surface water spectral response. Variation due to the reflectance of objects near the radiometer (i.e., the boat side) during data acquisition was studied. Consideration was also given to the variation due to the temporal nature of the phenomena (i.e., wave activity).

  11. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    DOE PAGES

    Hess, Nancy J.; Pasa-Tolic, Ljiljana; Bailey, Vanessa L.; ...

    2017-04-12

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  12. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  13. Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy

    2013-01-01

    Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited

  14. Joint use of over- and under-sampling techniques and cross-validation for the development and assessment of prediction models.

    PubMed

    Blagus, Rok; Lusa, Lara

    2015-11-04

    Prediction models are used in clinical research to develop rules that can be used to accurately predict the outcome of the patients based on some of their characteristics. They represent a valuable tool in the decision making process of clinicians and health policy makers, as they enable them to estimate the probability that patients have or will develop a disease, will respond to a treatment, or that their disease will recur. The interest devoted to prediction models in the biomedical community has been growing in the last few years. Often the data used to develop the prediction models are class-imbalanced as only few patients experience the event (and therefore belong to minority class). Prediction models developed using class-imbalanced data tend to achieve sub-optimal predictive accuracy in the minority class. This problem can be diminished by using sampling techniques aimed at balancing the class distribution. These techniques include under- and oversampling, where a fraction of the majority class samples are retained in the analysis or new samples from the minority class are generated. The correct assessment of how the prediction model is likely to perform on independent data is of crucial importance; in the absence of an independent data set, cross-validation is normally used. While the importance of correct cross-validation is well documented in the biomedical literature, the challenges posed by the joint use of sampling techniques and cross-validation have not been addressed. We show that care must be taken to ensure that cross-validation is performed correctly on sampled data, and that the risk of overestimating the predictive accuracy is greater when oversampling techniques are used. Examples based on the re-analysis of real datasets and simulation studies are provided. We identify some results from the biomedical literature where the incorrect cross-validation was performed, where we expect that the performance of oversampling techniques was heavily

  15. Selected translations of the Russian literature on the electrogeochemical sampling technique called CHIM (chastichnoe izvlechennye metallov)

    USGS Publications Warehouse

    Bloomstein, Edward I.; Bloomstein, Eleana; Hoover, D.B.; Smith, D.B.

    1990-01-01

    As part of our research into new methods for the assessment of mineral deposits, the U.S. Geological Survey has recently begun investigation of the CHIM method. As part of our studies, translation of a Russian manual on the CHIM methodology and eight articles from the Russian literature were transit ted to provide background for our own research. The translations were done by Earth Science Translation Services of Albuquerque, New Mexico, and are presented as received, without editing on our part. Below is a bibliography of the translated articles.For approximately the past 20 years Russian geoscientists have been applying an electrogeochemical sampling technique given the Russian acronym CHIM, derived from Chastichnoe Izvlechennye Metallov which translates as "partial extraction of metals". In this technique a direct current is introduced into the earth through collector electrodes similar to "porous pots" used in electrical geophysical applications. The solution in the cathode is dilute nitric acid, and current is passed through the cathode for times ranging from 6 hours to 48 hours or more. Electrical connections to the nitric acid are made through an inner conductor that is typically spectroscopically pure graphite. At the cathode, mobile cations collect on the graphite or in the nitric acid solution, both of which serve as the geochemical sampling media. These media are then analyzed by appropriate methods for the ions of interest. In most applications of the CHIM method only mobile cations are sampled, although Russian literature does refer to collection of anions as well. More recently the CHIM method has been applied by the Peoples Republic of China and the Indian Geological Survey.The literature indicates that the method has advantages over other geochemical sampling techniques by providing increased sensitivity to the metals being searched for, especially where deposits are covered by substantial overburden. In some cases success has been claimed with

  16. Typology of perceived family functioning in an American sample of patients with advanced cancer.

    PubMed

    Schuler, Tammy A; Zaider, Talia I; Li, Yuelin; Hichenberg, Shira; Masterson, Melissa; Kissane, David W

    2014-08-01

    Poor family functioning affects psychosocial adjustment and the occurrence of morbidity following bereavement in the context of a family's coping with advanced cancer. Family functioning typologies assist with targeted family-centered assessment and intervention to offset these complications in the palliative care setting. Our objective was to identify the number and nature of potential types in an American palliative care patient sample. Data from patients with advanced cancer (N = 1809) screened for eligibility for a larger randomized clinical trial were used. Cluster analyses determined whether patients could be classified into clinically meaningful and coherent groups, based on similarities in their perceptions of family functioning across the cohesiveness, expressiveness, and conflict resolution subscales of the Family Relations Index. Patients' reports of perceived family functioning yielded a model containing five meaningful family types. Cohesiveness, expressiveness, and conflict resolution appear to be useful dimensions by which to classify patient perceptions of family functioning. "At risk" American families may include those we have called hostile, low-communicating, and less-involved. Such families may benefit from adjuvant family-centered psychosocial services, such as family therapy. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  17. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  18. Sinonasal microbiome sampling: a comparison of techniques.

    PubMed

    Bassiouni, Ahmed; Cleland, Edward John; Psaltis, Alkis James; Vreugde, Sarah; Wormald, Peter-John

    2015-01-01

    The role of the sino-nasal microbiome in CRS remains unclear. We hypothesized that the bacteria within mucosal-associated biofilms may be different from the more superficial-lying, free-floating bacteria in the sinuses and that this may impact on the microbiome results obtained. This study investigates whether there is a significant difference in the microbiota of a sinonasal mucosal tissue sample versus a swab sample. Cross-sectional study with paired design. Mucosal biopsy and swab samples were obtained intra-operatively from the ethmoid sinuses of 6 patients with CRS. Extracted DNA was sequenced on a Roche-454 sequencer using 16S-rRNA gene targeted primers. Data were analyzed using QIIME 1.8 software package. At a maximum subsampling depth of 1,100 reads, the mean observed species richness was 33.3 species (30.6 for swab, versus 36 for mucosa; p > 0.05). There was no significant difference in phylogenetic and non-phylogenetic alpha diversity metrics (Faith's PD_Whole_Tree and Shannon's index) between the two sampling methods (p > 0.05). The type of sample also had no significant effect on phylogenetic and non-phylogenetic beta diversity metrics (Unifrac and Bray-Curtis; p > 0.05). We observed no significant difference between the microbiota of mucosal tissue and swab samples. This suggests that less invasive swab samples are representative of the sinonasal mucosa microbiome and can be used for future sinonasal microbiome studies.

  19. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key stepmore » in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).« less

  20. Determination of uranium isotopes in food and environmental samples by different techniques: a comparison.

    PubMed

    Forte, M; Rusconi, R; Margini, C; Abbate, G; Maltese, S; Badalamenti, P; Bellinzona, S

    2001-01-01

    The uranium concentration in 59 samples of bottled and tap water, mainly from northern Italy, was measured by different techniques. Results obtained by inductively coupled plasma mass spectrometry (ICP-MS), semiconductor alpha spectrometry and low level liquid scintillation counting with alpha/beta discrimination (LSC) have been compared. High resolution gamma spectrometry and semiconductor alpha spectrometry have been used to analyse uranium in a variety of organic and inorganic samples. Isotopic secular equilibrium in the 238U series may be lacking or hidden by auto-absorption phenomena, so caution should be used in evaluating gamma spectrometry data. Alpha spectrometry has also been used to ascertain the possible pollution from depleted uranium in the environment.

  1. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples.

    PubMed

    Ötles, Semih; Kartal, Canan

    2016-01-01

    Solid-Phase Extraction (SPE) is a sample preparation method that is practised on numerous application fields due to its many advantages compared to other traditional methods. SPE was invented as an alternative to liquid/liquid extraction and eliminated multiple disadvantages, such as usage of large amount of solvent, extended operation time/procedure steps, potential sources of error, and high cost. Moreover, SPE can be plied to the samples combined with other analytical methods and sample preparation techniques optionally. SPE technique is a useful tool for many purposes through its versatility. Isolation, concentration, purification and clean-up are the main approaches in the practices of this method. Food structures represent a complicated matrix and can be formed into different physical stages, such as solid, viscous or liquid. Therefore, sample preparation step particularly has an important role for the determination of specific compounds in foods. SPE offers many opportunities not only for analysis of a large diversity of food samples but also for optimization and advances. This review aims to provide a comprehensive overview on basic principles of SPE and its applications for many analytes in food matrix.

  2. Amorphous and liquid samples structure and density measurements at high pressure - high temperature using diffraction and imaging techniques

    NASA Astrophysics Data System (ADS)

    Guignot, N.; King, A.; Clark, A. N.; Perrillat, J. P.; Boulard, E.; Morard, G.; Deslandes, J. P.; Itié, J. P.; Ritter, X.; Sanchez-Valle, C.

    2016-12-01

    Determination of the density and structure of liquids such as iron alloys, silicates and carbonates is a key to understand deep Earth structure and dynamics. X-ray diffraction provided by large synchrotron facilities gives excellent results as long as the signal scattered from the sample can be isolated from its environment. Different techniques already exist; we present here the implementation and the first results given by the combined angle- and energy-dispersive structural analysis and refinement (CAESAR) technique introduced by Wang et al. in 2004, that has never been used in this context. It has several advantages in the study of liquids: 1/ the standard energy-dispersive technique (EDX), fast and compatible with large multi-anvil presses frames, is used for fast analysis free of signal pollution from the sample environment 2/ some limitations of the EDX technique (homogeneity of the sample, low resolution) are irrelevant in the case of liquid signals, others (wrong intensities, escape peaks artifacts, background subtraction) are solved by the CAESAR technique 3/ high Q data (up to 15 A-1 and more) can be obtained in a few hours (usually less than 2). We present here the facilities available on the PSICHE beamline (SOLEIL synchrotron, France) and a few results obtained using a Paris-Edinburgh (PE) press and a 1200 tons load capacity multi-anvil press with a (100) DIA compression module. X-ray microtomography, used in conjunction with a PE press featuring rotating anvils (RotoPEc, Philippe et al., 2013) is also very effective, by simply measuring the 3D volume of glass or liquid spheres at HPHT, thus providing density. This can be done in conjunction with the CAESAR technique and we illustrate this point. Finally, absorption profiles can be obtained via imaging techniques, providing another independent way to measure the density of these materials. References Y. Wang et al., A new technique for angle-dispersive powder diffraction using an energy

  3. Issues in the analyze of low content gold mining samples by fire assay technique

    NASA Astrophysics Data System (ADS)

    Cetean, Valentina

    2016-04-01

    The classic technique analyze of samples with low gold content - below 0.1 g/t (=100 ppb = parts per billion), either ore or gold sediments, involves the preparation of sample by fire assay extraction, followed by the chemical attack with aqua regia (hydrochloric and nitric acid) and measuring the gold content by atomic absorption spectrometry or inductively coupled mass spectrometry. The issues raised by this analysis are well known for the world laboratories, commercial or research ones. The author's knowledge regarding this method of determining the gold content, accumulated in such laboratory from Romania (with more than 40 years of experience, even if not longer available from 2014) confirms the obtaining of reliable results required a lot of attention, amount of work and the involving of an experienced fire assayer specialist. The analytical conclusion for a research laboratory is that most reliable and statistically valid results are till reached for samples with more than 100 ppb gold content; the degree of confidence below this value is lower than 90%. Usually, for samples below 50 ppb, it does not exceed 50-70 %, unless without very strictly control of each stage, that involve additional percentage of hours allocated for successive extracting tests and knowing more precisely the other compounds that appear in the sample (Cu, Sb, As, sulfur / sulphides, Te, organic matter, etc.) or impurities. The most important operation is the preparation, namely: - grinding and splitting of sample (which can cause uneven distribution of gold flakes in the double samples for analyzed); - pyro-metallurgical recovery of gold = fire assay stage, involving the more precise temperature control in furnace during all stages (fusion and cupellation) and adjusting of the fire assay flux components to produce a successful fusion depending of the sample matrix and content; - reducing the sample weight to decrease the amount of impurities that can be concentrated in the lead button

  4. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 1. An Advanced Protocol for Molecular Dynamics Simulations and Collision Cross-Section Calculation.

    PubMed

    Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J Valentine, Stephen

    2017-05-01

    Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed. Graphical Abstract ᅟ.

  5. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 1. An Advanced Protocol for Molecular Dynamics Simulations and Collision Cross-Section Calculation

    NASA Astrophysics Data System (ADS)

    Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J. Valentine, Stephen

    2017-05-01

    Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed.

  6. Incorporation of Multiwalled Carbon Nanotubes into High Temperature Resin Using Dry Mixing Techniques

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Delozier, Donavon M.; Working, Dennis C.; Siochi, Emilie J.; Connell, John W.

    2006-01-01

    As part of an ongoing effort to develop multifunctional advanced composites, blends of PETI330 and multiwalled carbon nanotubes (MWNTs) were prepared and characterized. Dry mixing techniques were employed and the maximum loading level of the MWNT chosen was based primarily on its effect on melt viscosity. The PETI330/ MWNT mixtures were prepared at concentrations ranging from 3 to 25 wt %. The resulting powders were characterized for homogeneity, thermal and rheological properties and extrudability as continuous fibers. Based on the characterization results, samples containing 10, 15 and 20 wt % MWNTs were chosen for more comprehensive evaluation. Samples were also prepared using in situ polymerization and solution mixing techniques and their properties were compared with the ball-mill prepared samples. The preparation and characterization of PETI330/ MWNT nanocomposites are discussed herein.

  7. A comparison of cover calculation techniques for relating point-intercept vegetation sampling to remote sensing imagery

    USDA-ARS?s Scientific Manuscript database

    Accurate and timely spatial predictions of vegetation cover from remote imagery are an important data source for natural resource management. High-quality in situ data are needed to develop and validate these products. Point-intercept sampling techniques are a common method for obtaining quantitativ...

  8. Technique for bone volume measurement from human femur head samples by classification of micro-CT image histograms.

    PubMed

    Marinozzi, Franco; Bini, Fabiano; Marinozzi, Andrea; Zuppante, Francesca; De Paolis, Annalisa; Pecci, Raffaella; Bedini, Rossella

    2013-01-01

    Micro-CT analysis is a powerful technique for a non-invasive evaluation of the morphometric parameters of trabecular bone samples. This elaboration requires a previous binarization of the images. A problem which arises from the binarization process is the partial volume artifact. Voxels at the external surface of the sample can contain both bone and air so thresholding operates an incorrect estimation of volume occupied by the two materials. The aim of this study is the extraction of bone volumetric information directly from the image histograms, by fitting them with a suitable set of functions. Nineteen trabecular bone samples were extracted from femoral heads of eight patients subject to a hip arthroplasty surgery. Trabecular bone samples were acquired using micro-CT Scanner. Hystograms of the acquired images were computed and fitted by Gaussian-like functions accounting for: a) gray levels produced by the bone x-ray absorption, b) the portions of the image occupied by air and c) voxels that contain a mixture of bone and air. This latter contribution can be considered such as an estimation of the partial volume effect. The comparison of the proposed technique to the bone volumes measured by a reference instrument such as by a helium pycnometer show the method as a good way for an accurate bone volume calculation of trabecular bone samples.

  9. Development and application of mass spectrometric techniques for ultra-trace determination of 236U in environmental samples-A review.

    PubMed

    Bu, Wenting; Zheng, Jian; Ketterer, Michael E; Hu, Sheng; Uchida, Shigeo; Wang, Xiaolin

    2017-12-01

    Measurements of the long-lived radionuclide 236 U are an important endeavor, not only in nuclear safeguards work, but also in terms of using this emerging nuclide as a tracer in chemical oceanography, hydrology, and actinide sourcing. Depending on the properties of a sample and its neutron irradiation history, 236 U/ 238 U ratios from different sources vary significantly. Therefore, this ratio can be treated as an important fingerprint for radioactive source identification, and in particular, affords a definitive means of discriminating between naturally occurring U and specific types of anthropogenic U. The development of mass spectrometric techniques makes it possible to determine ultra-trace levels of 236 U in environmental samples. In this paper, we review the current status of mass spectrometric approaches for determination of 236 U in environmental samples. Various sample preparation methods are summarized and compared. The mass spectrometric techniques emphasized herein are thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS). The strategies or principles used by each technique for the analysis of 236 U are described. The performances of these techniques in terms of abundance sensitivity and detection limit are discussed in detail. To date, AMS exhibits the best capability for ultra-trace determinations of 236 U. The levels and behaviors of 236 U in various environmental media are summarized and discussed as well. Results suggest that 236 U has an important, emerging role as a tracer for geochemical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  11. Advance of RNA interference technique in Hemipteran insects.

    PubMed

    Li, Jie; Wang, Xiaoping; Wang, Manqun; Ma, Weihua; Hua, Hongxia

    2012-07-24

    RNA interference (RNAi) suppressed the expression of the target genes by post transcriptional regulation and the double-stranded RNA (dsRNA) mediated gene silencing has been a conserved mechanism in many eukaryotes, which prompted RNAi to become a valuable tool for unveiling the gene function in many model insects. Recent research attested that RNAi technique can be also effective in downregulation target genes in Hemipteran insects. In this review, we collected the researches of utilizing RNAi technique in gene functional analysis in Hemipteran insects, highlighted the methods of dsRNA/siRNA uptake by insects and discussed the knock-down efficiency of these techniques. Although the RNA interference technique has drawbacks and obscure points, our primary goal of this review is try to exploit it for further discovering gene functions and pest control tactic in the Hemipteran insects. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  12. An Efficient Referencing And Sample Positioning System To Investigate Heterogeneous Substances With Combined Microfocused Synchrotron X-ray Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangenberg, Thomas; Goettlicher, Joerg; Steininger, Ralph

    2009-01-29

    A referencing and sample positioning system has been developed to transfer object positions measured with an offline microscope to a synchrotron experimental station. The accuracy should be sufficient to deal with heterogeneous samples on micrometer scale. Together with an online fluorescence mapping visualisation the optical alignment helps to optimize measuring procedures for combined microfocused X-ray techniques.

  13. Sample selection and preservation techniques for the Mars sample return mission

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow

    1988-01-01

    It is proposed that a miniaturized electron spin resonance (ESR) spectrometer be developed as an effective, nondestructivew sample selection and characterization instrument for the Mars Rover Sample Return mission. The ESR instrument can meet rover science payload requirements and yet has the capability and versatility to perform the following in situ Martian sample analyses: (1) detection of active oxygen species, and characterization of Martian surface chemistry and photocatalytic oxidation processes; (2) determination of paramagnetic Fe(3+) in clay silicate minerals, Mn(2+) in carbonates, and ferromagnetic centers of magnetite, maghemite and hematite; (3) search for organic compounds in the form of free radicals in subsoil, and detection of Martian fossil organic matter likely to be associated with carbonate and other sedimentary deposits. The proposed instrument is further detailed.

  14. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    NASA Astrophysics Data System (ADS)

    Dahing, Lahasen@Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie

    2014-09-01

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm3 and 15×15×15 cm3 were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  15. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples.

    PubMed

    Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T; Jiménez, María S; Pérez-Arantegui, Josefina; Castillo, Juan R

    2016-01-21

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for

  16. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive

  17. Laparoscopic Pelvic Exenteration for Locally Advanced Rectal Cancer, Technique and Short-Term Outcomes.

    PubMed

    Pokharkar, Ashish; Kammar, Praveen; D'souza, Ashwin; Bhamre, Rahul; Sugoor, Pavan; Saklani, Avanish

    2018-05-09

    Since last two decades minimally invasive techniques have revolutionized surgical field. In 2003 Pomel first described laparoscopic pelvic exenteration, since then very few reports have described minimally invasive approaches for total pelvic exenteration. We report the 10 cases of locally advanced rectal adenocarcinoma which were operated between the periods from March 1, 2017 to November 11, 2017 at the Tata Memorial Hospital, Mumbai. All male patients had lower rectal cancer with prostate involvement on magnetic resonance imaging (MRI). One female patient had uterine and fornix involvement. All perioperative and intraoperative parameters were collected retrospectively from prospectively maintained electronic data. Nine male patients with diagnosis of nonmetastatic locally advanced lower rectal adenocarcinoma were selected. All patients were operated with minimally invasive approach. All patients underwent abdominoperineal resection with permanent sigmoid stoma. Ileal conduit was constructed with Bricker's procedure through small infraumbilical incision (4-5 cm). Lateral pelvic lymph node dissection was done only when postchemoradiotherapy MRI showed enlarged pelvic nodes. All 10 patients received neoadjuvant chemo radiotherapy, whereas 8 patients received additional neoadjuvant chemotherapy. Mean body mass index was 21.73 (range 19.5-26.3). Mean blood loss was 1000 mL (range 300-2000 mL). Mean duration of surgery was 9.13 hours (range 7-13 hours). One patient developed paralytic ileus, which was managed conservatively. One patient developed intestinal obstruction due to herniation of small intestine behind the left ureter and ileal conduit. The same patient developed acute pylonephritis, which was managed with antibiotics. Mean postoperative stay was 14.6 days (range 9-25 days). On postoperative histopathology, all margins were free of tumor in all cases. Minimally invasive approaches can be used safely for total pelvic exenteration in locally advanced

  18. An Accurate Scatter Measurement and Correction Technique for Cone Beam Breast CT Imaging Using Scanning Sampled Measurement (SSM) Technique.

    PubMed

    Liu, Xinming; Shaw, Chris C; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C; Kappadath, S Cheenu

    2006-02-28

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images.Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  19. Use of EO-1 Advanced Land Imager (ALI) multispectral image data and real-time field sampling for water quality mapping in the Hirfanlı Dam Lake, Turkey.

    PubMed

    Kavurmacı, Murat; Ekercin, Semih; Altaş, Levent; Kurmaç, Yakup

    2013-08-01

    This paper focuses on the evaluation of water quality variations in Hirfanlı Water Reservoir, which is one of the most important water resources in Turkey, through EO-1 (Earth Observing-1) Advanced Land Imager (ALI) multispectral data and real-time field sampling. The study was materialized in 20 different sampling points during the overpass of the EO-1 ALI sensor over the study area. A multi-linear regression technique was used to explore the relationships between radiometrically corrected EO-1 ALI image data and water quality parameters: chlorophyll a, turbidity, and suspended solids. The retrieved and verified results show that the measured and estimated values of water quality parameters are in good agreement (R (2) >0.93). The resulting thematic maps derived from EO-1 multispectral data for chlorophyll a, turbidity, and suspended solids show the spatial distribution of the water quality parameters. The results indicate that the reservoir has average nutrient values. Furthermore, chlorophyll a, turbidity, and suspended solids values increased at the upstream reservoir and shallow coast of the Hirfanlı Water Reservoir.

  20. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  1. A novel technique: Carbon dioxide gas-assisted total peritonectomy, diaphragm and intestinal meso stripping in open surgery for advanced ovarian cancer (Çukurova technique).

    PubMed

    Khatib, Ghanim; Guzel, Ahmet Baris; Gulec, Umran Kucukgoz; Vardar, Mehmet Ali

    2017-09-01

    Most of the ovarian cancers are diagnosed at advanced stages. As peritoneal carcinomatosis increases, especially when it extends to the diaphragm and intestinal mesos, probability of obtaining complete cytoreduction is reduced. Complete cytoreduction (residue zero: R0) is one of the main factors affecting survival [1-3]. Here we present a novel technique of stripping the peritoneal surfaces as a part of cytoreductive surgery in such cases. A 55year-old woman diagnosed with peritoneal carcinomatosis was considered appropriate for primary cytoreduction after assessment of her thorax-abdominopelvic tomography, which revealed resectable intra-abdominal disease. Upon laparotomy, omental cake adherent to pelvis-filling mass, disseminated implants on the diaphragm, meso of the descending colon and small intestine were observed. The mass invaded the rectosigmoid colon, uterus, adnexa and the bladder resulting in frozen pelvis. Palpable retroperitoneal pelvic and para-aortic lymph nodes were detected. On the other side, stomach, anti-mesenteric surfaces and mesentery root of the small bowel were tumor-free. Hence, upon these perioperative and preoperative imaging findings, complete cytoreduction was thought to be achievable. Therefore, primary cytoreduction was performed. Total omentectomy, hysterectomy with bilateral salpingo-oophorectomy, rectosigmoid low anterior resection and retroperitoneal lymphadenectomy were performed. With the assistance of an injector needle connected to the insufflator tube (as in laparoscopic surgery), carbon dioxide gas was blown into the right retroperitoneal area and subsequently peritoneum was rapidly stripped up to the right diaphragm. The same procedure was then applied to the diaphragm and meso of the bowels, respectively. Owing to this technique, total stripping of all involved peritoneal surfaces was clearly facilitated and R0 goal was reached. Gas insufflation caused convenient detachment of the peritoneal surfaces along their

  2. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  3. [Techniques and strategy of pathological sampling in the diagnostic and therapeutic management of lung cancer].

    PubMed

    Remmelink, M; Sokolow, Y; Leduc, D

    2015-04-01

    Histopathology is key to the diagnosis and staging of lung cancer. This analysis requires tissue sampling from primary and/or metastatic lesions. The choice of sampling technique is intended to optimize diagnostic yield while avoiding unnecessarily invasive procedures. Recent developments in targeted therapy require increasingly precise histological and molecular characterization of the tumor. Therefore, pathologists must be economical with tissue samples to ensure that they have the opportunity to perform all the analyses required. More than ever, good communication between clinician, endoscopist or surgeon, and pathologist is essential. This is necessary to ensure that all participants in the process of lung cancer diagnosis collaborate to ensure that the appropriate number and type of biopsies are performed with the appropriate tissue sampling treatment. This will allow performance of all the necessary analyses leading to a more precise characterization of the tumor, and thus the optimal treatment for patients with lung cancer. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  4. Investigation of advanced phase-shifting projected fringe profilometry techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu

    1999-11-01

    The phase-shifting projected fringe profilometry (PSPFP) technique is a powerful tool in the profile measurements of rough engineering surfaces. Compared with other competing techniques, this technique is notable for its full-field measurement capacity, system simplicity, high measurement speed, and low environmental vulnerability. The main purpose of this dissertation is to tackle three important problems, which severely limit the capability and the accuracy of the PSPFP technique, with some new approaches. Chapter 1 provides some background information of the PSPFP technique including the measurement principles, basic features, and related techniques is briefly introduced. The objectives and organization of the thesis are also outlined. Chapter 2 gives a theoretical treatment to the absolute PSPFP measurement. The mathematical formulations and basic requirements of the absolute PSPFP measurement and its supporting techniques are discussed in detail. Chapter 3 introduces the experimental verification of the proposed absolute PSPFP technique. Some design details of a prototype system are discussed as supplements to the previous theoretical analysis. Various fundamental experiments performed for concept verification and accuracy evaluation are introduced together with some brief comments. Chapter 4 presents the theoretical study of speckle- induced phase measurement errors. In this analysis, the expression for speckle-induced phase errors is first derived based on the multiplicative noise model of image- plane speckles. The statistics and the system dependence of speckle-induced phase errors are then thoroughly studied through numerical simulations and analytical derivations. Based on the analysis, some suggestions on the system design are given to improve measurement accuracy. Chapter 5 discusses a new technique combating surface reflectivity variations. The formula used for error compensation is first derived based on a simplified model of the detection process

  5. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    PubMed

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparison of competing segmentation standards for X-ray computed topographic imaging using Lattice Boltzmann techniques

    NASA Astrophysics Data System (ADS)

    Larsen, J. D.; Schaap, M. G.

    2013-12-01

    Recent advances in computing technology and experimental techniques have made it possible to observe and characterize fluid dynamics at the micro-scale. Many computational methods exist that can adequately simulate fluid flow in porous media. Lattice Boltzmann methods provide the distinct advantage of tracking particles at the microscopic level and returning macroscopic observations. While experimental methods can accurately measure macroscopic fluid dynamics, computational efforts can be used to predict and gain insight into fluid dynamics by utilizing thin sections or computed micro-tomography (CMT) images of core sections. Although substantial effort have been made to advance non-invasive imaging methods such as CMT, fluid dynamics simulations, and microscale analysis, a true three dimensional image segmentation technique has not been developed until recently. Many competing segmentation techniques are utilized in industry and research settings with varying results. In this study lattice Boltzmann method is used to simulate stokes flow in a macroporous soil column. Two dimensional CMT images were used to reconstruct a three dimensional representation of the original sample. Six competing segmentation standards were used to binarize the CMT volumes which provide distinction between solid phase and pore space. The permeability of the reconstructed samples was calculated, with Darcy's Law, from lattice Boltzmann simulations of fluid flow in the samples. We compare simulated permeability from differing segmentation algorithms to experimental findings.

  7. A Multi-Decadal Sample Return Campaign Will Advance Lunar and Solar System Science and Exploration by 2050

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Lawrence, S. J.

    2017-01-01

    There have been 11 missions to the Moon this century, 10 of which have been orbital, from 5 different space agencies. China became the third country to successfully soft-land on the Moon in 2013, and the second to successfully remotely operate a rover on the lunar surface. We now have significant global datasets that, coupled with the 1990s Clementine and Lunar Prospector missions, show that the sample collection is not representative of the lithologies present on the Moon. The M3 data from the Indian Chandrayaan-1 mission have identified lithologies that are not present/under-represented in the sample collection. LRO datasets show that volcanism could be as young as 100 Ma and that significant felsic complexes exist within the lunar crust. A multi-decadal sample return campaign is the next logical step in advancing our understanding of lunar origin and evolution and Solar System processes.

  8. The OSIRIS-REx Sample Return Mission from Asteroid Bennu

    NASA Astrophysics Data System (ADS)

    Lauretta, Dante; Clark, Benton

    2016-07-01

    The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security‒Regolith Explorer (OSIRIS-REx) mission is to return and analyze a sample of pristine regolith from asteroid 101955 Bennu, a primitive carbonaceous asteroid and also a potentially hazardous near-Earth object. Returned samples are expected to contain primitive ancient Solar System materials formed in planetary, nebular, interstellar, and circumstellar environments. In addition, the OSIRIS-REx mission will obtain valuable information on sample context by imaging the sample site; characterize its global geology; map global chemistry and mineralogy; investigate dynamic history by measuring the Yarkovsky effect; and advance asteroid astronomy by characterizing surface properties for direct comparison with ground-based telescopic observations of the entire asteroid population. Following launch in September 2016, the spacecraft will encounter Bennu in August 2018, then embark on a systematic study of geophysical and morphological characteristics of this ~500-meter-diameter object, including a systematic search for satellites and plumes. For determination of context, composition, and sampleability of various candidate sites, advanced instruments for remote global observations include OVIRS (visible to mid-IR spectrometric mapper), OTES (mid- to far-IR mineral and thermal emission mapper), OLA (mapping laser altimeter), and a suite of scientific cameras (OCAMS) with sub-cm pixel size from low-altitude Reconnaissance passes. A unique sample acquisition mechanism (SAM) capable of collecting up to one liter of regolith under ideal conditions (abundant small particulates < 2 cm) is expected to obtain at least 60 g of bulk regolith as well as surface grains on contact pads for analysis upon return to Earth. Using touch-and-go (TAG), a few seconds of contact is adequate for the gas-driven collection technique to acquire sample. This TAGSAM system has been developed and

  9. Statistical Analysis Techniques for Small Sample Sizes

    NASA Technical Reports Server (NTRS)

    Navard, S. E.

    1984-01-01

    The small sample sizes problem which is encountered when dealing with analysis of space-flight data is examined. Because of such a amount of data available, careful analyses are essential to extract the maximum amount of information with acceptable accuracy. Statistical analysis of small samples is described. The background material necessary for understanding statistical hypothesis testing is outlined and the various tests which can be done on small samples are explained. Emphasis is on the underlying assumptions of each test and on considerations needed to choose the most appropriate test for a given type of analysis.

  10. Bricklaying Curriculum: Advanced Bricklaying Techniques. Instructional Materials. Revised.

    ERIC Educational Resources Information Center

    Turcotte, Raymond J.; Hendrix, Laborn J.

    This curriculum guide is designed to assist bricklaying instructors in providing performance-based instruction in advanced bricklaying. Included in the first section of the guide are units on customized or architectural masonry units; glass block; sills, lintels, and copings; and control (expansion) joints. The next two units deal with cut,…

  11. A New Technique for Measuring Concentration Dependence of Self and Collective Diffusivity by using a Single Sample

    NASA Astrophysics Data System (ADS)

    Sirorattanakul, Krittanon; Shen, Chong; Ou-Yang, Daniel

    Diffusivity governs the dynamics of interacting particles suspended in a solvent. At high particle concentration, the interactions between particles become non-negligible, making the values of self and collective diffusivity diverge and concentration-dependent. Conventional methods for measuring this dependency, such as forced Rayleigh scattering, fluorescence correlation spectroscopy (FCS), and dynamic light scattering (DLS) require preparation of multiple samples. We present a new technique to measure this dependency by using only a single sample. Dielectrophoresis (DEP) is used to create concentration gradient in the solution. Across this concentration distribution, we use FCS to measure the concentration-dependent self diffusivity. Then, we switch off DEP to allow the particles to diffuse back to equilibrium. We obtain the time series of concentration distribution from fluorescence microscopy and use them to determine the concentration-dependent collective diffusivity. We compare the experimental results with computer simulations to verify the validity of this technique. Time and spatial resolution limits of FCS and imaging are also analyzed to estimate the limitation of the proposed technique. NSF DMR-0923299, Lehigh College of Arts and Sciences Undergraduate Research Grant, Lehigh Department of Physics, Emulsion Polymers Institute.

  12. SSAGES: Software Suite for Advanced General Ensemble Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian

    Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods, and that facilitates implementation of new techniquesmore » as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite.« less

  13. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  14. Conventional and Advanced Separations in Mass Spectrometry-Based Metabolomics: Methodologies and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyman, Heino M.; Zhang, Xing; Tang, Keqi

    2016-02-16

    Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.

  15. Techniques of adrenal venous sampling in patients with inferior vena cava or renal vein anomalies.

    PubMed

    Endo, Kenji; Morita, Satoru; Suzaki, Shingo; Yamazaki, Hiroshi; Nishina, Yu; Sakai, Shuji

    2018-06-01

    To review the techniques and technical success rate of adrenal venous sampling (AVS) in patients with inferior vena cava (IVC) or renal vein anomalies. The techniques and success rate of AVS in 15 patients with anomalies [8 with double IVC (dIVC), 3 with left IVC (ltIVC), 2 with retroaortic left renal vein (LRV), and 2 with circumaortic LRV] underwent AVS was retrospectively reviewed. Among 11 patients with IVC anomalies, the success rates for sampling the right and left adrenal veins (RAV and LAV) were 81.8 and 90.9%, respectively. In dIVC, the LAV was selected using the following four methods: approaching through the right IVC from the right femoral vein, flipping the LAV catheter tip in the LRV (n = 4) or the interiliac-communicating vein (n = 1), or through the ltIVC from the right (n = 1) or left (n = 2) femoral vein. Among the four patients with LRV anomalies, the success rate was 100% for each adrenal vein. AVS can be successfully performed in patients with anomalies. The key to technical success is understanding the venous anatomy based on pre-procedural CT images and choosing appropriate methods.

  16. X-Ray Micro-Computed Tomography of Apollo Samples as a Curation Technique Enabling Better Research

    NASA Technical Reports Server (NTRS)

    Ziegler, R. A.; Almeida, N. V.; Sykes, D.; Smith, C. L.

    2014-01-01

    X-ray micro-computed tomography (micro-CT) is a technique that has been used to research meteorites for some time and many others], and recently it is becoming a more common tool for the curation of meteorites and Apollo samples. Micro-CT is ideally suited to the characterization of astromaterials in the curation process as it can provide textural and compositional information at a small spatial resolution rapidly, nondestructively, and without compromising the cleanliness of the samples (e.g., samples can be scanned sealed in Teflon bags). This data can then inform scientists and curators when making and processing future sample requests for meteorites and Apollo samples. Here we present some preliminary results on micro-CT scans of four Apollo regolith breccias. Methods: Portions of four Apollo samples were used in this study: 14321, 15205, 15405, and 60639. All samples were 8-10 cm in their longest dimension and approximately equant. These samples were micro-CT scanned on the Nikon HMXST 225 System at the Natural History Museum in London. Scans were made at 205-220 kV, 135-160 microamps beam current, with an effective voxel size of 21-44 microns. Results: Initial examination of the data identify a variety of mineral clasts (including sub-voxel FeNi metal grains) and lithic clasts within the regolith breccias. Textural information within some of the lithic clasts was also discernable. Of particular interest was a large basalt clast (approx.1.3 cc) found within sample 60639, which appears to have a sub-ophitic texture. Additionally, internal void space, e.g., fractures and voids, is readily identifiable. Discussion: It is clear from the preliminary data that micro-CT analyses are able to identify important "new" clasts within the Apollo breccias, and better characterize previously described clasts or igneous samples. For example, the 60639 basalt clast was previously believed to be quite small based on its approx.0.5 sq cm exposure on the surface of the main mass

  17. Optical transmission testing based on asynchronous sampling techniques

    NASA Astrophysics Data System (ADS)

    Mrozek, T.; Perlicki, K.; Wilczewski, G.

    2016-09-01

    This paper presents a method of analysis of images obtained with the Asynchronous Delay Tap Sampling technique, which is used for simultaneous monitoring of a number of phenomena in the physical layer of an optical network. This method allows visualization of results in a form of an optical signal's waveform (characteristics depicting phase portraits). Depending on a specific phenomenon being observed (i.e.: chromatic dispersion, polarization mode dispersion and ASE noise), the shape of the waveform changes. Herein presented original waveforms were acquired utilizing the OptSim 4.0 simulation package. After specific simulation testing, the obtained numerical data was transformed into an image form, that was further subjected to the analysis using authors' custom algorithms. These algorithms utilize various pixel operations and creation of reports each image might be characterized with. Each individual report shows the number of black pixels being present in the specific image segment. Afterwards, generated reports are compared with each other, across the original-impaired relationship. The differential report is created which consists of a "binary key" that shows the increase in the number of pixels in each particular segment. The ultimate aim of this work is to find the correlation between the generated binary keys and the analyzed common phenomenon being observed, allowing identification of the type of interference occurring. In the further course of the work it is evitable to determine their respective values. The presented work delivers the first objective - the ability to recognize interference.

  18. A PCR technique to detect enterotoxigenic and verotoxigenic Escherichia coli in boar semen samples.

    PubMed

    Bussalleu, E; Pinart, E; Yeste, M; Briz, M; Sancho, S; Torner, E; Bonet, S

    2012-08-01

    In semen, bacteria's isolation from a pure culture is complex, laborious and easily alterable by the presence of antibiotics and inhibitors. We developed a PCR technique to detect the presence of the enterotoxigenic (ETEC) and verotoxigenic Escherichia coli (VTEC) (strains with high prevalence in the swine industry) in semen by adapting the protocols developed by Zhang et al. (2007) and Yilmaz et al. (2006). We artificially inoculated extended semen samples at different infective concentrations of bacteria (from 10(2) to 10(8) bacteria ml(-1)) with two enterotoxigenic and verotoxigenic strains, and performed two multiplex and one conventional PCR. This technique proved to be a quick, useful and reliable tool to detect the presence of ETEC and VTEC up to an infective dose of 10(5) bacteria ml(-1) in semen. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Lot quality assurance sampling techniques in health surveys in developing countries: advantages and current constraints.

    PubMed

    Lanata, C F; Black, R E

    1991-01-01

    Traditional survey methods, which are generally costly and time-consuming, usually provide information at the regional or national level only. The utilization of lot quality assurance sampling (LQAS) methodology, developed in industry for quality control, makes it possible to use small sample sizes when conducting surveys in small geographical or population-based areas (lots). This article describes the practical use of LQAS for conducting health surveys to monitor health programmes in developing countries. Following a brief description of the method, the article explains how to build a sample frame and conduct the sampling to apply LQAS under field conditions. A detailed description of the procedure for selecting a sampling unit to monitor the health programme and a sample size is given. The sampling schemes utilizing LQAS applicable to health surveys, such as simple- and double-sampling schemes, are discussed. The interpretation of the survey results and the planning of subsequent rounds of LQAS surveys are also discussed. When describing the applicability of LQAS in health surveys in developing countries, the article considers current limitations for its use by health planners in charge of health programmes, and suggests ways to overcome these limitations through future research. It is hoped that with increasing attention being given to industrial sampling plans in general, and LQAS in particular, their utilization to monitor health programmes will provide health planners in developing countries with powerful techniques to help them achieve their health programme targets.

  20. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques.

    PubMed

    Pindelska, Edyta; Sokal, Agnieszka; Kolodziejski, Waclaw

    2017-08-01

    The main goal of a novel drug development is to obtain it with optimal physiochemical, pharmaceutical and biological properties. Pharmaceutical companies and scientists modify active pharmaceutical ingredients (APIs), which often are cocrystals, salts or carefully selected polymorphs, to improve the properties of a parent drug. To find the best form of a drug, various advanced characterization methods should be used. In this review, we have described such analytical methods, dedicated to solid drug forms. Thus, diffraction, spectroscopic, thermal and also pharmaceutical characterization methods are discussed. They all are necessary to study a solid API in its intrinsic complexity from bulk down to the molecular level, gain information on its structure, properties, purity and possible transformations, and make the characterization efficient, comprehensive and complete. Furthermore, these methods can be used to monitor and investigate physical processes, involved in the drug development, in situ and in real time. The main aim of this paper is to gather information on the current advancements in the analytical methods and highlight their pharmaceutical relevance. Copyright © 2017 Elsevier B.V. All rights reserved.