Sample records for advanced solid-state 13c

  1. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  2. Advanced solid-state NMR spectroscopy of natural organic matter.

    PubMed

    Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus

    2017-05-01

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Measuring Long-Range 13C– 13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance [Measuring Long Range 13C– 13C Correlations on Surface under Natural Abundance Using DNP-enhanced Solid-state NMR

    DOE PAGES

    Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek

    2017-10-13

    Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.

  4. Measuring Long-Range 13C– 13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance [Measuring Long Range 13C– 13C Correlations on Surface under Natural Abundance Using DNP-enhanced Solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek

    Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.

  5. Enhancing the resolution of 1H and 13C solid-state NMR spectra by reduction of anisotropic bulk magnetic susceptibility broadening.

    PubMed

    Hanrahan, Michael P; Venkatesh, Amrit; Carnahan, Scott L; Calahan, Julie L; Lubach, Joseph W; Munson, Eric J; Rossini, Aaron J

    2017-10-25

    We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H- 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H- 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H- 13 C

  6. Quantifying the chemical composition of soil organic carbon with solid-state 13C NMR

    NASA Astrophysics Data System (ADS)

    Baldock, J. A.; Sanderman, J.

    2011-12-01

    The vulnerability of soil organic carbon (SOC) to biological decomposition and mineralisation to CO2 is defined at least partially by its chemical composition. Highly aromatic charcoal-like SOC components are more stable to biological decomposition than other forms of carbon including cellulose. Solid-state 13C NMR has gained wide acceptance as a method capable of defining SOC chemical composition and mathematical fitting processes have been developed to estimate biochemical composition. Obtaining accurate estimates depends on an ability to quantitatively detect all carbon present in a sample. Often little attention has been paid to defining the proportion of organic carbon present in a soil that is observable in solid-state 13C NMR analyses of soil samples. However, if such data is to be used to inform carbon cycling studies, it is critical that quantitative assessments of SOC observability be undertaken. For example, it is now well established that a significant discrimination exists against the detection of the low proton content polyaromatic structures typical of charcoal using cross polarisation 13C NMR analyses. Such discrimination does not exist where direct polarisation analyses are completed. In this study, the chemical composition of SOC as defined by cross polarisation and direct polarisation13C NMR analyses will be compared for Australian soils collected from under a diverse range of agricultural managements and climatic conditions. Results indicate that where significant charcoal C contents exist, it is highly under-represented in the acquired CP spectra. For some soils, a discrimination against alkyl carbon was also evident. The ability to derive correction factors to compensate for such discriminations will be assessed and presented.

  7. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    PubMed

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  9. Cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectroscopic study of chlorophyll a in the solid state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.E.; Spencer, R.B.; Burger, V.T.

    1984-01-01

    Solid-state cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectra have been recorded on chlorophyll a-water aggregates, methyl pyrochlorophyllide a, and methyl pyropheophorbide a. Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid-state spectra. 18 references, 2 figures, 1 table.

  10. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  11. Determination of Multiple φ-Torsion Angles in Proteins by Selective and Extensive 13C Labeling and Two-Dimensional Solid-State NMR

    NASA Astrophysics Data System (ADS)

    Hong, Mei

    1999-08-01

    We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive 13C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective 13C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-13C]glucose preferentially labels the ends of the side chains, while [2-13C]glycerol labels the Cα of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles φ simultaneously, using an isotropic-anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively 13C labeled protein were performed using 15N-13C 2D correlation spectroscopy. From the time dependence of the 15N-13C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective 13C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.

  12. The role of solid state 13 C NMR spectroscopy in studies of the nature of native celluloses

    Treesearch

    R.H. Atalla; D.L. VanderHart

    1999-01-01

    Published spectroscopic observations pertaining to the crystal structure of native celluloses are reviewed for the purpose of defining our current level of understanding about crystalline polymorphism in these materials. Emphasis is placed on observations from solid state 13 C nuclear magnetic resonance (NMR), which first led to the postulate that most native,...

  13. Solid-state and solution /sup 13/C NMR in the conformational analysis of methadone-hydrochloride and related narcotic analgesics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumner, S.C.J.

    1986-01-01

    Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemicmore » mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.« less

  14. Advances in Solid State Physics

    NASA Astrophysics Data System (ADS)

    Kramer, Bernhard

    The present volume 45 of Advances in Solid-State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft in the World Year of Physics 2005, the Einstein Year, which was held from 4 - 11 March 2005 in Berlin, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The book presents, to some extent, the status of the field of solid-state physics in 2005 not only in Germany but also internationally.

  15. CP/MAS /sup 13/C NMR spectroscopic study of chlorophyll a in the solid state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.E.; Spencer, R.B.; Burger, V.T.

    1983-09-01

    Solid-state cross-polarization, magic-angle sample spinning carbon-13 nuclear magnetic resonance spectra have been recorded on chlorophyll a- water aggregates, methyl pyrochlorophyllide a and methyl pyropheophorbide a (derivatives that lack a phytyl chain). Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid state spectra.

  16. 13C-13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination

    NASA Astrophysics Data System (ADS)

    Ishii, Yoshitaka

    2001-05-01

    A technique is presented to recouple homonuclear dipolar couplings between dilute spin pairs such as 13C-13C systems under very fast magic angle spinning (MAS) in solid-state nuclear magnetic resonance (NMR) spectroscopy. The presented technique, finite pulse rf driven recoupling (fpRFDR), restores homonuclear dipolar interactions based on constructive usage of finite pulse-width effects in a phase- and symmetry-cycled π-pulse train in which a rotor-synchronous π pulse is applied every rotation period. The restored effective dipolar interaction has the form of a zero-quantum dipolar Hamiltonian for static solids, whose symmetry in spin space is different from that obtained by conventional rf driven recoupling (RFDR) techniques. It is demonstrated that the efficiency of recoupling by fpRFDR is not strongly dependent on chemical shift differences or resonance offsets in contrast to previous recoupling methods under very fast MAS. To realize distance measurements without effects of spin relaxation, a constant-time version of fpRFDR (CT-fpRFDR) is introduced, in which the effective evolution period is varied by refocusing dipolar evolution with a rotor-synchronized solid echo while the total recoupling period is kept constant. From CT-fpRFDR experiments at a spinning speed of 30.3 kHz in a field of 17.6 T, the 13C-13C distance of [1-13C]Ala-[1-13C]Gly-Gly was determined to be 3.27 Å, which agrees well with the value of 3.20 Å obtained by x-ray diffraction. Also, two-dimensional (2D) 13C/13C chemical-shift correlation NMR spectrum in a field of 9.4 T was obtained with fpRFDR for fibrils of the segmentally 13C- and 15N-labeled Alzheimer's β-Amyloid fragments, Aβ16-22 (residues 16-22 taken from the 40-residue Aβ peptide) in which Leu-17 through Ala-21 are uniformly 13C- and 15N-labeled. Most 13C resonances for the main chain as well as for the side chains are assigned based on 2D 13C/13C chemical-shift correlation patterns specific to amino-acid types. Examination

  17. Solid-state selective (13)C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls.

    PubMed

    Foston, Marcus; Katahira, Rui; Gjersing, Erica; Davis, Mark F; Ragauskas, Arthur J

    2012-02-15

    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a (13)C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. (13)C spin diffusion time constants (T(SD)) were extracted using a two-site spin diffusion theory developed for (13)C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated (13)C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances ∼0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

  18. A Molecular Budget for a Peatland Based Upon 13C Solid-State Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Moody, Catherine S.; Worrall, Fred; Clay, Gareth D.; Burt, Tim P.; Apperley, David C.; Rose, Rob

    2018-02-01

    Peatlands can accumulate organic matter into long-term carbon (C) storage within the soil profile. This study used solid-state 13C nuclear magnetic resonance (13C-NMR) to investigate the transit of organic C through a peatland ecosystem to understand the molecular budget that accompanies the long-term accumulation of C. Samples of biomass, litter, peat soil profile, particulate organic matter, and dissolved organic matter (DOM) were taken from the Moor House National Nature Reserve, a peat-covered catchment in northern England where both the dry matter and C budget for the ecosystem were known. The results showed that: The interpretation of the 13C-NMR spectra shows that polysaccharides are preferentially removed through the ecosystem, while lignin components are preferentially retained and come to dominate the organic matter accumulated at depth in the profile. The DOM is derived from the oxidation of both biomass and the degradation of lignin, while the particulate organic matter is derived from erosion of the peat profile. The DOM is differentiated by its proportion of oxidized functional groups and not by its aromatic content. The changes in functionality leading to DOM production suggest side chain oxidation resulting in C-C cleavage/depolymerisation of lignin, a common reaction within white rot fungi. The 13C-NMR budget shows that O-alkyl functional groups are disproportionately lost between primary production and accumulation in the deep peat, while C-alkyl functional groups are disproportionately preserved. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 93% polysaccharide-derived carbon and 7% lignin-derived carbon.

  19. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, X.; Mastalerz, Maria; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.

    2011-01-01

    Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption. ?? 2011 Elsevier B.V.

  20. Advanced solid-state NMR spectroscopy of natural organic matter

    USDA-ARS?s Scientific Manuscript database

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially the systematic approach to NOM characterization, and their ...

  1. 2-Octyl thiophene based three ring mesogens: solid state (13)C NMR and XRD investigations.

    PubMed

    Veeraprakash, B; Lobo, Nitin P; Narasimhaswamy, T; Mandal, A B

    2015-08-14

    2-Octyl thiophene based three-ring mesogens namely 4-n-alkoxyphenyl 4-(5-n-octyl-2-thienyl)benzoates are synthesized by employing palladium acetate based direct arylation. The alkoxy terminal is varied with even carbons from C2 to C14 and enantiotropic polymesomorphism is noticed for all the homologs. Accordingly, phase sequence consisting of nematic, smectic A, smectic C and smectic B is seen for mesogens with terminal chains C6, C8, C10 and C12 on cooling the isotropic phase. For mesogens with C2, C4, C8 and C10 terminal alkoxy chains, the mesophase assignment from hot-stage optical microscopy and differential scanning calorimetry is further confirmed by variable temperature powder X-ray diffraction measurements. The appearance of smectic B phase is established by noticing sharp and intense peaks in both small-angle and wide-angle regions. For a representative mesogen, i.e. T10, high-resolution solid-state (13)C NMR investigations are carried out in all the phases, viz. nematic, smectic A, smectic C and smectic B phases. The orientational order parameters calculated from (13)C-(1)H dipolar couplings from 2D SAMPI-4 experiments are found to be 0.44, 0.67, 0.73 and 0.79 in nematic, smectic A, smectic C and smectic B mesophases for the center phenyl ring respectively. Remarkably, the thiophene order parameter in all mesophases is found to be higher than that of phenyl rings and is explained by considering the molecular shape, which has a terminal bend. Further, the mesogens are found to be photoemissive in chloroform solution with an emission band at ∼410 nm.

  2. Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR

    PubMed Central

    2015-01-01

    We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368

  3. 13C and 19F solid-state NMR and X-ray crystallographic study of halogen-bonded frameworks featuring nitrogen-containing heterocycles.

    PubMed

    Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L

    2017-03-01

    Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P2 1 /c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 13 H 9 N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 12 H 8 N 2 , and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 8 H 12 N 2 . 13 C and 19 F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19 F to 13 C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1 H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13 C and 19 F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.

  4. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    USGS Publications Warehouse

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  5. Molecular composition of recycled organic wastes, as determined by solid-state 13C NMR and elemental analyses.

    PubMed

    Eldridge, S M; Chen, C R; Xu, Z H; Nelson, P N; Boyd, S E; Meszaros, I; Chan, K Y

    2013-11-01

    Using solid state (13)C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characterization of pyrogenic organic matter by 2-dimenstional HETeronucleus CORelation solid-state 13C NMR (HETCOR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    During the last years, increasing evidences are provided that the common view of charcoal as a polyaromatic network is too much simplified. Experiments with model compounds indicated that it represents a heterogeneous mixture of thermally altered biomacromolecules with N, O and likely also S substitutions as common features. If produced from a N-rich feedstock, the so called black nitrogen (BN) has to be considered as an integral part of the aromatic charcoal network. In order to study this network one-dimensional (1D) solid-state nuclear magnetic resonance (NMR) spectroscopy is often applied. However, this technique suffers from broad resonance lines and low resolution. Applying 2D techniques can help but until recently, this was unfeasible for natural organic matter (NOM) due to sensitivity problems and the high complexity of the material. On the other hand, during the last decade, the development of stronger magnetic field instruments and advanced pulse sequences has put them into reach for NOM research. Although 2D NMR spectroscopy has many different applications, all pulse sequences are based on the introduction of a preparation time during which the magnetization of a spin system is adjusted into a state appropriate to whatever properties are to be detected in the indirect dimension. Then, the spins are allowed to evolve with the given conditions and after their additional manipulation during a mixing period the modulated magnetization is detected. Assembling several 1D spectra with incrementing evolution time creates a data set which is two-dimensional in time (t1, t2). Fourier transformation of both dimensions leads to a 2D contour plot correlating the interactions detected in the indirect dimension t1 with the signals detected in the direct dimension t2. The so called solid-state heteronuclear correlation (HETCOR) NMR spectroscopy represents a 2D technique allows the determination which protons are interacting with which carbons. In the present work this

  7. Preparation of Mo-Re-C samples containing Mo7Re13C with the β-Mn-type structure by solid state reaction of planetary-ball-milled powder mixtures of Mo, Re and C, and their crystal structures and superconductivity

    NASA Astrophysics Data System (ADS)

    Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota

    2017-01-01

    Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.

  8. NMR crystallography to probe the breathing effect of the MIL-53(Al) metal-organic framework using solid-state NMR measurements of 13C-27Al distances.

    PubMed

    Giovine, Raynald; Volkringer, Christophe; Trébosc, Julien; Amoureux, Jean Paul; Loiseau, Thierry; Lafon, Olivier; Pourpoint, Frédérique

    2017-03-01

    The metal-organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H 2 O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of 13 C magnetization under 13 C- 27 Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between 13 C and 27 Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM-RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these 13 C- 27 Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, 13 C-{ 27 Al} SFAM-RESPDOR experiments allow an estimation of the average distance between the free ligands and the 27 Al nuclei of the framework.

  9. XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses.

    PubMed

    Meza-Contreras, Juan C; Manriquez-Gonzalez, Ricardo; Gutiérrez-Ortega, José A; Gonzalez-Garcia, Yolanda

    2018-05-22

    The production and crystallinity of 13 C bacterial cellulose (BC) was examined in static culture of Komagataeibacter xylinus with different chemical and physical stimuli: the addition of NaCl or cloramphenicol as well as exposure to a magnetic field or to UV light. Crystalline BC biosynthesized under each stimulus was studied by XRD and solid state 13 C NMR analyses. All treatments produced BC with enhanced crystallinity over 90% (XRD) and 80% (NMR) compared to the control (83 and 76%, respectively) or to Avicel (77 and 62%, respectively). The XRD data indicated that the crystallite size was 80-85 Å. Furthermore, changes on the allomorphs (I α and I β ) ratio tendency of BC samples addressed to the stimuli were estimated using the C4 signal from 13 C NMR data. These results showed a decrease of the allomorph I α (3%) when BC was biosynthesized with UV light and chloramphenicol compared to control (58.79%). In contrast, the BC obtained with NaCl increased up to 60.31% of the I α allomorph ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Structural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.

    2010-01-01

    Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP

  11. Spin-lattice relaxation of 13C in solid amino acids using the CP-MAS technique

    NASA Astrophysics Data System (ADS)

    Naito, A.; Ganapathy, S.; Akasaka, K.; McDowell, C. A.

    It is shown by a simple application of relaxation theory that the 13C magnetization decays nonexponentially, in principle, in the CP-MAS experiment because of the distribution of the spin-lattice relaxation times; however, the deviation from the exponential decay is quite small. The transient Overhauser effect also contributes appreciably to the nonexponential decay of the 13C magnetization when the protons are not saturated during the 13C T1 measurements and the correlation time of the group rotational motion satisfies the condition, ω2τc2 ≦ 1. It is shown by both experiment and theory that the transient Overhauser effect in the solid state is much smaller than that expected for the liquid state. The 13C spin-lattice relaxation times of L-alanine, deutero- L-alanine, glycine, and L-serine were determined for the individual carbon atoms. The experimentally obtained 13C T1 values agree well with calculated ones, showing that the CH 3 group rotation provides the main source of the relaxation in alanine, while the NH 3+ group motion plays an important role for the relaxation in glycine and serene.

  12. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR

    USDA-ARS?s Scientific Manuscript database

    Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...

  14. Dynamic pictures of membrane proteins in two-dimensional crystal, lipid bilayer and detergent as revealed by site-directed solid-state 13C NMR.

    PubMed

    Saitô, Hazime

    2004-11-01

    We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.

  15. Solid-state NMR characterization of cross-linking in EPDM/PP blends from 1H-13C polarization transfer dynamics.

    PubMed

    Aluas, Mihaela; Filip, Claudiu

    2005-05-01

    A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.

  16. A solid-state [sup 13]C NMR study of the molecular motion of ethylene adsorbed on a silver surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianxin Wang; Ellis, P.D.

    1993-01-13

    The reorientation of ethylene on a silver catalyst surface has been studied by solid-state [sup 13]C NMR. The static cross-polarization spectra at different temperatures have been measured. Different jump site models are proposed to simulate the experimental results. It was found that the models involving a low number of jump sites are more sensitive to the experimental details. By comparison of the simulated and experimental results, the 6- and 4-site jump models are chosen as the most satisfactory model to fit the experimental spectra. On the basis of this representation, the activation energy derived for the jump process is 4.3more » kJ/mol. From the simulated results, it was concluded that the symmetry axis for the motion of the ethylene at low temperatures ([minus]173 to ca. [minus]45[degrees]C) is perpendicular to the plane of the ethylene molecule. At higher temperatures motion about other axes is initiated such that at room temperature a nearly isotropically averaged [sup 13]C shielding tensor is observed. 20 refs., 9 figs.« less

  17. NMR crystallography of campho[2,3-c]pyrazole (Z' = 6): combining high-resolution 1H-13C solid-state MAS NMR spectroscopy and GIPAW chemical-shift calculations.

    PubMed

    Webber, Amy L; Emsley, Lyndon; Claramunt, Rosa M; Brown, Steven P

    2010-09-30

    (1)H-(13)C two-dimensional magic-angle spinning (MAS) solid-state NMR correlation spectra, recorded with the MAS-J-HMQC experiment, are presented for campho[2,3-c]pyrazole. For each (13)C moiety, there are six resonances associated with the six distinct molecules in the asymmetric unit cell (Z' = 6). The one-bond C-H correlations observed in the 2D (1)H-(13)C MAS-J-HMQC spectra allow the experimental determination of the (1)H and (13)C chemical shifts associated with the separate CH, CH(2), and CH(3) groups. (1)H and (13)C chemical shifts calculated by using the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach are presented. Calculations for the whole unit cell (12 × 29 = 348 atoms, with geometry optimization of all atoms) allow the assignment of the experimental (1)H and (13)C chemical shifts to the six distinct molecules. The calculated chemical shifts for the full crystal structure are compared with those for isolated molecules as extracted from the geometry-optimized crystal structure. In this way, the effect of intermolecular interactions on the observed chemical shifts is quantified. In particular, the calculations are sufficiently precise to differentiate the small (<1 ppm) differences between the (1)H chemical shifts of the six resonances associated with each distinct CH or CH(2) moiety.

  18. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Wilson, M.A.; Hatcher, P.G.

    1988-01-01

    Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. ?? 1988.

  19. Solid-state NMR studies of form I of atorvastatin calcium.

    PubMed

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  20. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies.

    PubMed

    Behera, Sudhanshu S; Ray, Ramesh C

    2016-05-01

    Lignocellulose is the most plentiful non-food biomass and one of the most inexhaustible renewable resources on the planet, which is an alternative sustainable energy source for the production of second generation biofuels. Lignocelluloses are composed of cellulose, hemicellulose and lignin, in which the sugar polymers account for a large portion of the biomass. Cellulases belong to the glycoside hydrolase family and catalyze the hydrolysis of glyosidic linkages depolymerizing cellulose to fermentable sugars. They are multi-enzymatic complex proteins and require the synergistic action of three key enzymes: endoglucanase (E.C. 3.2.1.4), exoglucanase (E.C. 3.2.1.176) (E.C. 3.2.1.91) and β-glucosidase (E.C. 3.2.1.21) for the depolymerization of cellulose to glucose. Solid state fermentation, which holds growth of microorganisms on moist solid substrates in the absence of free flowing water, has gained considerable attention of late due its several advantages over submerged fermentation. The review summarizes the critical analysis of recent literature covering production of cellulase in solid state fermentation using advance technologies such as consolidated bioprocessing, metabolic engineering and strain improvement, and circumscribes the strategies to improve the enzyme yield. Copyright © 2016. Published by Elsevier B.V.

  1. Facile solid-state synthesis of Ni@C nanosheet-assembled hierarchical network for high-performance lithium storage

    NASA Astrophysics Data System (ADS)

    Gu, Jinghe; Li, Qiyun; Zeng, Pan; Meng, Yulin; Zhang, Xiukui; Wu, Ping; Zhou, Yiming

    2017-08-01

    Micro/nano-architectured transition-metal@C hybrids possess unique structural and compositional features toward lithium storage, and are thus expected to manifest ideal anodic performances in advanced lithium-ion batteries (LIBs). Herein, we propose a facile and scalable solid-state coordination and subsequent pyrolysis route for the formation of a novel type of micro/nano-architectured transition-metal@C hybrid (i.e., Ni@C nanosheet-assembled hierarchical network, Ni@C network). Moreover, this coordination-pyrolysis route has also been applied for the construction of bare carbon network using zinc salts instead of nickel salts as precursors. When applied as potential anodic materials in LIBs, the Ni@C network exhibits Ni-content-dependent electrochemical performances, and the partially-etched Ni@C network manifests markedly enhanced Li-storage performances in terms of specific capacities, cycle life, and rate capability than the pristine Ni@C network and carbon network. The proposed solid-state coordination and pyrolysis strategy would open up new opportunities for constructing micro/nano-architectured transition-metal@C hybrids as advanced anode materials for LIBs.

  2. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  3. Advanced Solid State Lighting for Human Evaluation Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Holbert, Eirik

    2015-01-01

    Lighting intensity and color have a significant impact on human circadian rhythms. Advanced solid state lighting was developed for the Advanced Exploration System (AES) Deep Space Habitat(DSH) concept demonstrator. The latest generation of assemblies using the latest commercially available LED lights were designed for use in the Bigelow Aerospace Environmental Control and Life Support System (ECLSS) simulator and the University of Hawaii's Hawaii Space Exploration Analog and Simulation (Hi-SEAS) habitat. Agreements with both these organizations will allow the government to receive feedback on the lights and lighting algorithms from long term human interaction.

  4. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. Copyright © 2012 Wiley Periodicals, Inc.

  5. Solid-state NMR detection of 14N-13C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.

    PubMed

    Middleton, David A

    2011-02-01

    Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary structure, alignment and registration of β-strands within amyloid fibrils and identify the tertiary and quaternary contacts defining the packing of the β-sheet layers. Detection of (14)N-(13)C dipolar couplings may provide potentially useful additional structural constraints on β-sheet packing within amyloid fibrils but has not until now been exploited for this purpose. Here a frequency-selective, transfer of population in double resonance SSNMR experiment is used to detect a weak (14)N-(13)C dipolar coupling in amyloid-like fibrils of the peptide H(2)N-SNNFGAILSS-COOH, which was uniformly (13)C and (15)N labelled across the four C-terminal amino acids. The (14)N-(13)C interatomic distance between leucine and asparagine side groups is constrained between 2.4 and 3.8 Å, which allows current structural models of the β-spine arrangement within the fibrils to be refined. This procedure could be useful for the general structural analysis of other proteins in condensed phases and environments, such as biological membranes. Copyright © 2011 John Wiley & Sons, Ltd.

  6. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1.

    PubMed

    Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E

    2013-01-21

    Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.

  7. Solid-state 11B and 13C NMR, IR, and X-ray crystallographic characterization of selected arylboronic acids and their catechol cyclic esters.

    PubMed

    Oh, Se-Woung; Weiss, Joseph W E; Kerneghan, Phillip A; Korobkov, Ilia; Maly, Kenneth E; Bryce, David L

    2012-05-01

    Nine arylboronic acids, seven arylboronic catechol cyclic esters, and two trimeric arylboronic anhydrides (boroxines) are investigated using (11)B solid-state NMR spectroscopy at three different magnetic field strengths (9.4, 11.7, and 21.1 T). Through the analysis of spectra of static and magic-angle spinning samples, the (11)B electric field gradient and chemical shift tensors are determined. The effects of relaxation anisotropy and nutation field strength on the (11)B NMR line shapes are investigated. Infrared spectroscopy was also used to help identify peaks in the NMR spectra as being due to the anhydride form in some of the arylboronic acid samples. Seven new X-ray crystallographic structures are reported. Calculations of the (11)B NMR parameters are performed using cluster model and periodic gauge-including projector-augmented wave (GIPAW) density functional theory (DFT) approaches, and the results are compared with the experimental values. Carbon-13 solid-state NMR experiments and spectral simulations are applied to determine the chemical shifts of the ipso carbons of the samples. One bond indirect (13)C-(11)B spin-spin (J) coupling constants are also measured experimentally and compared with calculated values. The (11)B/(10)B isotope effect on the (13)C chemical shift of the ipso carbons of arylboronic acids and their catechol esters, as well as residual dipolar coupling, is discussed. Overall, this combined X-ray, NMR, IR, and computational study provides valuable new insights into the relationship between NMR parameters and the structure of boronic acids and esters. Copyright © 2012 John Wiley & Sons, Ltd.

  8. The effectiveness of 1H decoupling in the 13C MAS NMR of paramagnetic solids: An experimental case study incorporating copper(II) amino acid complexes

    NASA Astrophysics Data System (ADS)

    Willans, Mathew J.; Sears, Devin N.; Wasylishen, Roderick E.

    2008-03-01

    The use of continuous-wave (CW) 1H decoupling has generally provided little improvement in the 13C MAS NMR spectroscopy of paramagnetic organic solids. Recent solid-state 13C NMR studies have demonstrated that at rapid magic-angle spinning rates CW decoupling can result in reductions in signal-to-noise and that 1H decoupling should be omitted when acquiring 13C MAS NMR spectra of paramagnetic solids. However, studies of the effectiveness of modern 1H decoupling sequences are lacking, and the performance of such sequences over a variety of experimental conditions must be investigated before 1H decoupling is discounted altogether. We have studied the performance of several commonly used advanced decoupling pulse sequences, namely the TPPM, SPINAL-64, XiX, and eDROOPY sequences, in 13C MAS NMR experiments performed under four combinations of the magnetic field strength (7.05 or 11.75 T), rotor frequency (15 or 30 kHz), and 1H rf-field strength (71, 100, or 140 kHz). The effectiveness of these sequences has been evaluated by comparing the 13C signal intensity, linewidth at half-height, LWHH, and coherence lifetimes, T2', of the methine carbon of copper(II) bis( DL-alanine) monohydrate, Cu(ala) 2·H 2O, and methylene carbon of copper(II) bis( DL-2-aminobutyrate), Cu(ambut) 2, obtained with the advanced sequences to those obtained without 1H decoupling, with CW decoupling, and for fully deuterium labelled samples. The latter have been used as model compounds with perfect 1H decoupling and provide a measure of the efficiency of the 1H decoupling sequence. Overall, the effectiveness of 1H decoupling depends strongly on the decoupling sequence utilized, the experimental conditions and the sample studied. Of the decoupling sequences studied, the XiX sequence consistently yielded the best results, although any of the advanced decoupling sequences strongly outperformed the CW sequence and provided improvements over no 1H decoupling. Experiments performed at 7.05 T demonstrate

  9. Preparation of Mo-Re-C samples containing Mo{sub 7}Re{sub 13}C with the β-Mn-type structure by solid state reaction of planetary-ball-milled powder mixtures of Mo, Re and C, and their crystal structures and superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh-ishi, Katsuyoshi, E-mail: oh-ishi@kc.chuo-u.ac.jp; Nagumo, Kenta; Tateishi, Kazuya

    Mo-Re-C compounds containing Mo{sub 7}Re{sub 13}C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo{sub 7}Re{sub 13}C with the β-Mn structure using the solid state method. Almost single-phase Mo{sub 7}Re{sub 13}C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with amore » pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K. - Graphical abstract: Temperature dependence of the magnetic susceptibility measured under 10 Oe for the superconducting PBM-T samples without Fe element and non-superconducting PBM-S with Fe element. The inset is the enlarged view of the data for the PBM-S sample.« less

  10. Advanced Solid State Lighting for AES Deep Space Hab Project

    NASA Technical Reports Server (NTRS)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  11. Gastric emptying of solids in children: reference values for the (13) C-octanoic acid breath test.

    PubMed

    Hauser, B; Roelants, M; De Schepper, J; Veereman, G; Caveliers, V; Devreker, T; De Greef, E; Vandenplas, Y

    2016-10-01

    (99m) Technetium scintigraphy ((99m) TS) is the 'gold standard' for measuring gastric emptying (GE), but it is associated with a radiation exposure. For this reason, the (13) C-octanoic acid breath test ((13) C-OBT) was developed for measuring GE of solids. The objective of this study was to determine normal values for gastric half-emptying time (t1/2 GE) of solids in healthy children. Gastric emptying of a standardized solid test meal consisting of a pancake evaluated with (99m) TS and (13) C-OBT was compared in 22 children aged between 1 and 15 years with upper gastrointestinal symptoms. Subsequently, the (13) C-OBT was used to determine normal values for GE of the same solid test meal in 120 healthy children aged between 1 and 17 years. The results showed a significant correlation (r = 0.748, p = 0.0001) between t1/2 GE measured with both techniques in the group of children with upper gastrointestinal symptoms. In the group of healthy children, mean t1/2 GE was 157.7 ± 54.0 min (range 71-415 min), but t1/2 GE decreased with age between 1 and 10 years and remained stable afterward. There was no influence of gender, weight, height, body mass index, and body surface area on t1/2 GE. Normal values for GE of solids measured with the (13) C-OBT using a standardized methodology were determined in healthy children. We propose to use this method and corresponding reference ranges to study GE of solids in children with gastrointestinal problems. © 2016 John Wiley & Sons Ltd.

  12. (1)H-(13)C Hetero-nuclear dipole-dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins.

    PubMed

    Wu, Chin H; Das, Bibhuti B; Opella, Stanley J

    2010-02-01

    (13)C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure (1)H-(13)C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the (1)H-(13)C hetero-nuclear dipolar interactions of (13)C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of (13)C(3) labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Advances in Theory of Solid-State Nuclear Magnetic Resonance.

    PubMed

    Mananga, Eugene S; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa

    Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence.

  15. A Mo-95 and C-13 Solid-state NMR and Relativistic DFT Investigation of Mesitylenetricarbonylmolybdenum(0) -a Typical Transition Metal Piano-stool Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryce, David L.; Wasylishen, Roderick E.

    2002-06-21

    The chemical shift (CS) and electric field gradient (EFG) tensors in the piano-stool compound mesitylenetricarbonylmolybdenum(0), 1, have been investigated via {sup 95}Mo and {sup 13}C solid-state magic-angle spinning (MAS) NMR as well as relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) calculations. Molybdenum-95 (I = 5/2) MAS NMR spectra acquired at 18.8 T are dominated by the anisotropic chemical shift interaction ({Omega} = 775 {+-} 30 ppm) rather than the 2nd-order quadrupolar interaction (C{sub Q} = -0.96 {+-} 0.15 MHz), an unusual situation for a quadrupolar nucleus. ZORA-DFT calculations of the {sup 95}Mo EFG and CS tensors are in agreementmore » with the experimental data. Mixing of appropriate occupied and virtual d-orbital dominated MOs in the region of the HOMO-LUMO gap are shown to be responsible for the large chemical shift anisotropy. The small, but non-negligible, {sup 95}Mo quadrupolar interaction is discussed in terms of the geometry about Mo. Carbon-13 CPMAS spectra acquired at 4.7 T demonstrate the crystallographic and magnetic nonequivalence of the twelve {sup 13}C nuclei in 1, despite the chemical equivalence of some of these nuclei in isotropic solutions. The principal components of the carbon CS tensors are determined via a Herzfeld-Berger analysis, and indicate that motion of the mesitylene ring is slow compared to a rate which would influence the carbon CS tensors (i.e. tens of {micro}s). ZORA-DFT calculations reproduce the experimental carbon CS tensors accurately. Oxygen-17 EFG and CS tensors for 1 are also calculated and discussed in terms of existing experimental data for related molybdenum carbonyl compounds. This work provides an example of the information available from combined multi-field solid-state multinuclear magnetic resonance and computational investigations of transition metal compounds, in particular the direct study of quadrupolar transition metal nuclei with relatively small magnetic

  16. Solid state ionics: a Japan perspective

    PubMed Central

    Yamamoto, Osamu

    2017-01-01

    Abstract The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term ‘solid state ionics’ was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1–xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm–1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm–1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology. PMID:28804526

  17. Solid state ionics: a Japan perspective

    NASA Astrophysics Data System (ADS)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  18. Solid-state NMR and IR for the analysis of pharmaceutical solids: polymorphs of fosinopril sodium.

    PubMed

    Brittain, H G; Morris, K R; Bugay, D E; Thakur, A B; Serajuddin, A T

    1993-01-01

    The two polymorphic modifications of fosinopril sodium have been characterized as to their differences in melting behaviour, powder X-ray diffraction patterns, Fourier transform infrared spectra (FTIR), and solid-state 31P- and 13C-NMR spectra. The polymorphs were found to be enantiotropically related based upon melting point, heat of fusion, and solution mediated transformation data. Analysis of the solid-state FTIR and 13C-NMR data indicated that the environment of the acetal side chain of fosinopril sodium differed in two polymorphs, and that there might be cis-trans isomerization about the C6-N peptide bond. These conformational differences are postulated as the origin of the observed polymorphism.

  19. Determination of the three-dimensional structure of oligosaccharides in the solid state from experimental 13C NMR data and ab initio chemical shift surfaces.

    PubMed

    Sergeyev, Ivan; Moyna, Guillermo

    2005-05-02

    A novel method for the determination of the three-dimensional (3D) structure of oligosaccharides in the solid state using experimental 13C NMR data is presented. The approach employs this information, combined with 13C chemical shift surfaces (CSSs) for the glycosidic bond carbons in the generation of NMR pseudopotential energy functions suitable for use as constraints in molecular modeling simulations. Application of the method to trehalose, cellobiose, and cellotetraose produces 3D models that agree remarkably well with the reported X-ray structures, with phi and psi dihedral angles that are within 10 degrees from the ones observed in the crystals. The usefulness of the approach is further demonstrated in the determination of the 3D structure of the cellohexaose, an hexasaccharide for which no X-ray data has been reported, as well as in the generation of accurate structural models for cellulose II and amylose V6.

  20. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid-state

  1. Prediction of recrystallization behavior of troglitazone/polyvinylpyrrolidone solid dispersion by solid-state NMR.

    PubMed

    Ito, Atsutoshi; Watanabe, Tomoyuki; Yada, Shuichi; Hamaura, Takeshi; Nakagami, Hiroaki; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2010-01-04

    The purpose of this study was to elaborate the relationship between the (13)C CP/MAS NMR spectra and the recrystallization behavior during the storage of troglitazone solid dispersions. The solid dispersions were prepared by either the solvent method or by co-grinding. The recrystallization behavior under storage conditions at 40 degrees C/94% RH was evaluated by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. Solid dispersions prepared by the solvent method or by prolonged grinding brought about inhibition of the nucleation and the nuclei growth at the same time. No differences in the PXRD profiles were found in the samples prepared by the co-grinding and solvent methods, however, (13)C CP/MAS NMR showed significant differences in the spectra. The correlation coefficients using partial least square regression analysis between the PXRD profiles and the apparent nuclei-growth constant or induction period to nucleation were 0.1305 or 0.6350, respectively. In contrast, those between the (13)C CP/MAS NMR spectra and the constant or the period were 0.9916 or 0.9838, respectively. The (13)C CP/MAS NMR spectra had good correlation with the recrystallization kinetic parameters evaluated by the KJMA equation. Consequently, solid-state NMR was judged to be a useful tool for the prediction of the recrystallization behavior of solid dispersions.

  2. Composite-pulse and partially dipolar dephased multiCP for improved quantitative solid-state 13C NMR

    NASA Astrophysics Data System (ADS)

    Duan, Pu; Schmidt-Rohr, Klaus

    2017-12-01

    Improved multiple cross polarization (multiCP) pulse sequences for quickly acquiring quantitative 13C NMR spectra of organic solids are presented. Loss of 13C magnetization due to imperfect read-out and storage pulses in multiCP has been identified as a significant mechanism limiting polarization enhancement for 13C sites with weak couplings to 1H. This problem can be greatly reduced by composite 90° pulses with non-orthogonal phases that flip the magnetization onto the spin-lock field and back to the longitudinal direction for the 1H repolarization period; the observed loss is <3% for over ±10 kHz resonance offset and up to 20% flip-angle error. This composite-pulse multiCP (ComPmultiCP) sequence consistently provides performance superior to that of conventional multiCP, without any trade-off. The longer total CP time enabled by the composite pulses allows for a wider amplitude ramp during CP, which decreases the sensitivity to Hartmann-Hahn mismatch by a factor of two, with a <7% root-mean-square deviation within a 1-dB range for Boc-alanine. In samples with very short T1ρ, under-polarization of non-protonated carbons can be compensated by slight dipolar dephasing of CHn signals resulting from relatively weak decoupling during the Hahn spin echo period before detection. Quantitative spectra have been obtained by ComPmultiCP for low-crystallinity branched polyethylene at 4.5 kHz MAS, and in combination with partial dipolar dephasing for soil organic matter at 14 kHz MAS.

  3. On the problem of resonance assignments in solid state NMR of uniformly 15N, 13C-labeled proteins

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2015-04-01

    Determination of accurate resonance assignments from multidimensional chemical shift correlation spectra is one of the major problems in biomolecular solid state NMR, particularly for relative large proteins with less-than-ideal NMR linewidths. This article investigates the difficulty of resonance assignment, using a computational Monte Carlo/simulated annealing (MCSA) algorithm to search for assignments from artificial three-dimensional spectra that are constructed from the reported isotropic 15N and 13C chemical shifts of two proteins whose structures have been determined by solution NMR methods. The results demonstrate how assignment simulations can provide new insights into factors that affect the assignment process, which can then help guide the design of experimental strategies. Specifically, simulations are performed for the catalytic domain of SrtC (147 residues, primarily β-sheet secondary structure) and the N-terminal domain of MLKL (166 residues, primarily α-helical secondary structure). Assuming unambiguous residue-type assignments and four ideal three-dimensional data sets (NCACX, NCOCX, CONCA, and CANCA), uncertainties in chemical shifts must be less than 0.4 ppm for assignments for SrtC to be unique, and less than 0.2 ppm for MLKL. Eliminating CANCA data has no significant effect, but additionally eliminating CONCA data leads to more stringent requirements for chemical shift precision. Introducing moderate ambiguities in residue-type assignments does not have a significant effect.

  4. Natural Abundance 15 N and 13 C Solid-State NMR Chemical Shifts: High Sensitivity Probes of the Halogen Bond Geometry.

    PubMed

    Cerreia Vioglio, Paolo; Catalano, Luca; Vasylyeva, Vera; Nervi, Carlo; Chierotti, Michele R; Resnati, Giuseppe; Gobetto, Roberto; Metrangolo, Pierangelo

    2016-11-14

    Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a versatile characterization technique that can provide a plethora of information complementary to single crystal X-ray diffraction (SCXRD) analysis. Herein, we present an experimental and computational investigation of the relationship between the geometry of a halogen bond (XB) and the SSNMR chemical shifts of the non-quadrupolar nuclei either directly involved in the interaction ( 15 N) or covalently bonded to the halogen atom ( 13 C). We have prepared two series of X-bonded co-crystals based upon two different dipyridyl modules, and several halobenzenes and diiodoalkanes, as XB-donors. SCXRD structures of three novel co-crystals between 1,2-bis(4-pyridyl)ethane, and 1,4-diiodobenzene, 1,6-diiodododecafluorohexane, and 1,8-diiodohexadecafluorooctane were obtained. For the first time, the change in the 15 N SSNMR chemical shifts upon XB formation is shown to experimentally correlate with the normalized distance parameter of the XB. The same overall trend is confirmed by density functional theory (DFT) calculations of the chemical shifts. 13 C NQS experiments show a positive, linear correlation between the chemical shifts and the C-I elongation, which is an indirect probe of the strength of the XB. These correlations can be of general utility to estimate the strength of the XB occurring in diverse adducts by using affordable SSNMR analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Phospholamban and its Phosphorylated Form Interact Differently with Lipid Bilayers: A 31P, 2H and 13C Solid-State NMR Spectroscopic Study

    PubMed Central

    Abu-Baker, Shadi; Lorigan, Gary A.

    2008-01-01

    Phospholamban (PLB) is a 52-amino acid integral membrane protein that helps to regulate the flow of Ca2+ ions in cardiac muscle cells. Recent structural studies on the PLB pentamer and the functionally active monomer (AFA-PLB) debate whether its cytoplasmic domain, in either the phosphorylated or dephosphorylated states, is α-helical in structure as well as whether it associates with the lipid head groups [Oxenoid, K. (2005) Proc Natl. Acad. Sci. USA 102, 10870–10875, Karim, C. B. (2004) Proc. Natl. Acad. Sci. USA 101, 14437–14442, Andronesi, C.A. (2005) J. Am. Chem. Soc. 127, 12965–12974, Li, J. (2003) Biochemistry 42, 10674–10682, Metcalfe, E. E. (2005) Biochemistry 44, 4386–4396, Clayton, J. C. (2005) Biochemistry 44, 17016–17026]. Comparing the secondary structure of the PLB pentamer and its phosphorylated form (P-PLB) as well as their interaction with the lipid bilayer is crucial in order to understand its regulatory function. Therefore, in this study, the full-length wild-type (WT)-PLB and P-PLB were incorporated into 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) phospholipid bilayers and studied utilizing solid-state NMR spectroscopy. The analysis of the 2H and 31P solid-state NMR data of PLB and P-PLB in POPC multilamellar vesicles (MLVs) indicates that a direct interaction takes place between both proteins and the phospholipid head groups. However, the interaction of P-PLB with POPC bilayers was less significant when compared to PLB. Moreover, the secondary structure using 13C=O site-specific isotopically labeled Ala15-PLB and Ala15-P-PLB in POPC bilayers suggests that this residue, located in the cytoplasmic domain, is a part of an α-helical structure for both PLB and P-PLB. PMID:17073452

  6. Solid-state 13C NMR studies of a large fossil gymnosperm from the Yallourn Open Cut, Latrobe Valley, Australia

    USGS Publications Warehouse

    Bates, A.L.; Hatcher, P.G.

    1989-01-01

    A series of samples taken from the cross section of a 3-m-diameter fossilized gymnospermous log (Araucariaceae) in the Yallourn Seam of the Australian brown coals was examined by solid state 13C nuclear magnetic resonance to delineate chemical changes related to the combined processes of peatification and coalification. The results show that cellulosic materials were degraded and lost on the periphery of the log, however, the degree of such degradation in the central core is substantially less. The lignin is uniformly altered by coalification reactions to a macromolecular substance displaying decreased aryl ether linkages but significantly greater amounts of carbon linkages compared to modern lignin. Changes in the methoxyl carbon contents of lignin in cross section reveal demethylation reactions, but these do not appear to be related to degree of carbon linking. Both the degredation of cellulosic materials and demethylation of lignin appear to be early diagenetic processes occurring during peatification independently of the coalification reactions. ?? 1989.

  7. Synthesis of D-[U-{sup 13}C]Glucal, D-[U-{sup 13}C] Galactal, and L-[U-{sup 13}C]Fucose for NMR structure studies of oligosaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Unkefer, C.J.; Silks, L.A. III

    1996-12-31

    The role of carbohydrates is well recognized in a variety of important biological phenomena such as cell surface recognition. Recent advances in carbohydrate chemistry, including the development of solid phase synthesis methods, have helped to provide significant quantities of material by offering general protocols for synthesis of well-defined, pure material. However, the study of the solution structure of oligosaccharides by nuclear magnetic resonance techniques have been hampered by the lack of enriched {sup 13}C material. In an effort to help alleviate this situation, we have been interested in the construction of the title compounds from a single economical carbon source,more » D-[U-{sup 13}C]glucose. Details of the syntheses will be provided.« less

  8. GIPAW (gauge including projected augmented wave) and local dynamics in 13C and 29Si solid state NMR: the study case of silsesquioxanes (RSiO1.5)8.

    PubMed

    Gervais, Christel; Bonhomme-Coury, Laure; Mauri, Francesco; Babonneau, Florence; Bonhomme, Christian

    2009-08-28

    Octameric silsesquioxanes (RSiO(1.5))(8) are versatile and interesting nano building blocks, suitable for the synthesis of nanocomposites with controlled porosity. In this paper, we revisit the (29)Si and (13)C solid state NMR spectroscopy for this class of materials, by using GIPAW (gauge including projected augmented wave) first principles calculations [Pickard & Mauri, Phys. Rev. B, 2001, 63, 245101]. Full tensorial data, including the chemical shift anisotropies (CSA) and the absolute orientation of the corresponding principal axes systems (PAS), were calculated. Subsequent averaging of the calculated tensors (due to fast reorientation of the R groups around the Si-C bonds) allowed for the interpretation of the strong reduction of CSA and dipolar couplings for these derivatives. Good agreement was observed between the averaged calculated data and the experimental parameters. Interesting questions related to the interplay between X-ray crystallography and solid state NMR are raised and will be emphasized.

  9. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  10. Distinct solvent- and temperature-dependent packing arrangements of anti-parallel β-sheet polyalanines studied with solid-state 13C NMR and MD simulation.

    PubMed

    Kametani, Shunsuke; Tasei, Yugo; Nishimura, Akio; Asakura, Tetsuo

    2017-08-09

    Polyalanine (polyA) sequences are well known as the simplest sequence that naturally forms anti-parallel β-sheets and constitute a key element in the structure of spider and wild silkworm silk fibers. We have carried out a systematic analysis of the packing of anti-parallel β-sheets for (Ala) n , n = 5, 6, 7 and 12, using primarily 13 C solid-state NMR and MD simulation. HFIP and TFA are frequently used as the dope solvents for recombinant silks, and polyA was solidified from both HFIP and TFA solutions by drying. An analysis of Ala Cβ peaks in the 13 C CP/MAS NMR spectra indicated that polyA from HFIP was mainly rectangular but polyA from TFA was mainly staggered. The transition from the rectangular to the staggered arrangement in (Ala) 6 was observed for the first time from the change in the Ala Cβ peak through heat treatment at 200 °C for 4 h. The removal of the bound water was confirmed by thermal analysis. This transition could be reproduced by MD simulation of (Ala) 6 molecules at 200 °C after removal of the bound water molecules. In this way, the origin of the stability of the different packing arrangements of polyA was clarified.

  11. Structure of N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide by combined X-ray powder diffraction, 13C solid-state NMR and molecular modelling.

    PubMed

    Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu

    2010-12-01

    The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.

  12. Optimized Spectral Editing of 13C MAS NMR Spectra of Rigid Solids Using Cross-Polarization Methods

    NASA Astrophysics Data System (ADS)

    Sangill, R.; Rastrupandersen, N.; Bildsoe, H.; Jakobsen, H. J.; Nielsen, N. C.

    Combinations of 13C magic-angle spinning (MAS) NMR experiments employing cross polarization (CP), cross polarization-depolarization (CPD), and cross polarization-depolarization-repolarization are analyzed quantitatively to derive simple and general procedures for optimized spectral editing of 13C CP/MAS NMR spectra of rigid solids by separation of the 13C resonances into CH n subspectra ( n = 0, 1, 2, and 3). Special attention is devoted to a differentiation by CPD/MAS of CH and CH 2 resonances since these groups behave quite similarly during spin lock under Hartmann-Hahn match and are therefore generally difficult to distinguish unambiguously. A general procedure for the design of subexperiments and linear combinations of their spectra to provide optimized signal-to-noise ratios for the edited subspectra is described. The technique is illustrated by a series of edited 13C CP/MAS spectra for a number of rigid solids ranging from simple organic compounds (sucrose and l-menthol) to complex pharmaceutical products (calcipotriol monohydrate and vitamin D 3) and polymers (polypropylene, polyvinyl alcohol, polyvinyl chloride, and polystyrene).

  13. Environmental performance evaluation of an advanced-design solid-state television camera

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.

  14. Quantitative (13)C Solid-State NMR Spectra by Multiple-Contact Cross-polarization for Drug Delivery: From Active Principles to Excipients and Drug Carriers.

    PubMed

    Saïdi, Fadila; Taulelle, Francis; Martineau, Charlotte

    2016-08-01

    In this contribution, we present an analysis of the main parameters influencing the efficiency of the (1)H → (13)C multiple-contact cross-polarization nuclear magnetic resonance (NMR) experiment in the context of solid pharmaceutical materials. Using the optimum experimental conditions, quantitative (13)C NMR spectra are then obtained for porous metal-organic frameworks (potential drug carriers) and for components present in drug formulations (active principle ingredient and excipients, amorphous or crystalline). Finally, we show that mixtures of components can also be quantified with this method and, hence, that it represents an ideal tool for quantification of pharmaceutical formulations by (13)C cross-polarization under magic-angle spinning NMR in the industry as it is robust and easy to set up, much faster than direct (13)C polarization and is efficient for samples at natural abundance. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Solid State Research

    DTIC Science & Technology

    1999-02-23

    pumped at frequencies up to 5.5 kHz (with 10-W pumping). At high pulse repetition rates the radius of the beam waist decreases to ~60 jum, owing to...1998) A 1.3-GHz SOI CMOS Test Chip for R. Berger Low-Power High -Speed Pulse W. G. Lyons Processing A. M. Soares IEEE J. Solid-State Circuits...Goodhue D. E. Mull J. M. Rossler Y. Royter C.G.Fonstad* /. Vac. Sei. Technol. Modeling the Microwave Impedance of High -Tc Long Josephson

  16. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids.

    PubMed

    Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M

    2013-06-13

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.

  17. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan

    Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less

  18. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid

    DOE PAGES

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...

    2016-09-02

    Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less

  19. Quantitative solid-state 13C nuclear magnetic resonance spectrometric analyses of wood xylen: effect of increasing carbohydrate content

    USGS Publications Warehouse

    Bates, A.L.; Hatcher, P.G.

    1992-01-01

    Isolated lignin with a low carbohydrate content was spiked with increasing amounts of alpha-cellulose, and then analysed by solid-state 13C nuclear magnetic resonance (NMR) using cross-polarization with magic angle spinning (CPMAS) and dipolar dephasing methods in order to assess the quantitative reliability of CPMAS measurement of carbohydrate content and to determine how increasingly intense resonances for carbohydrate carbons affect calculations of the degree of lignin's aromatic ring substitution and methoxyl carbon content. Comparisons were made of the carbohydrate content calculated by NMR with carbohydrate concentrations obtained by phenol-sulfuric acid assay and by the calculation from the known amounts of cellulose added. The NMR methods used in this study yield overestimates for carbohydrate carbons due to resonance area overlap from the aliphatic side chain carbons of lignin. When corrections are made for these overlapping resonance areas, the NMR results agree very well with results obtained by other methods. Neither the calculated methoxyl carbon content nor the degree of aromatic ring substitution in lignin, both calculated from dipolar dephasing spectra, change with cellulose content. Likewise, lignin methoxyl content does not correlate with cellulose abundance when measured by integration of CPMAS spectra. ?? 1992.

  20. Proceedings of the Army Symposium on Solid Mechanics. Advances in Solid Mechanics for Design and Analysis Held at Newport, Rhode Island on 1-3 October 1984.

    DTIC Science & Technology

    1984-10-01

    Proceedings of the Army Symposium on Solid Mechanics, 1984 - Advances in Solid Mechanics for Design and Analysis, held at Newport, Rhode Island, 1-3...aie not to he construed as an official Department of the Army position, unless so designated by othei * author/id documents. Menton of any trade names...Starting with the 1972 meeting, papers have been solicited from in-house and contract researchers and designers for the Navy, Air Force, and other

  1. Optimisation of dynamic nuclear polarisation of [1-13C] pyruvate by addition of gadolinium-based contrast agents

    NASA Astrophysics Data System (ADS)

    Friesen-Waldner, Lanette; Chen, Albert; Mander, Will; Scholl, Timothy J.; McKenzie, Charles A.

    2012-10-01

    Dynamic nuclear polarisation (DNP) of carbon-13 (13C) enriched endogenous compounds provides a novel means for magnetic resonance imaging and spectroscopy of biological processes. Adding small amounts of gadolinium-based contrast agents (GBCAs) to the 13C-enriched substrate matrix increases the amount of hyperpolarisation that can be achieved, but also may decrease the longitudinal relaxation time (T1) of the 13C nucleus in solution. This study examined the effects of five different GBCA at concentrations of 0.5, 1, 2, and 3 mM on [1-13C]-enriched pyruvic acid. It was found that contrast agents with an open chain structure (Gadobenate dimeglumine, Gadopentetate dimeglumine, Gadodiamide) caused the largest enhancement (up to 82%) in solid state polarisation relative to solutions without GBCA. In the liquid state, T1 of pyruvate decreased by as much as 62% and polarisation was much lower (70%) relative to solutions without GBCA added. Conversely, for GBCA with macrocyclic structures (Gadoterate meglumine, Gadoteridol), the solid state polarisation enhancement was only slightly less than the open chain GBCA, but enhanced polarisation was retained much better in the liquid state with minimal decrease in T1 (25% at the highest GBCA concentrations). Near maximum polarisation in the solid state was obtained at a GBCA concentration of 2 mM, with a higher concentration of 3 mM producing minimal improvement. These results indicate that the macrocyclic contrast agents provide the best combination of high solid state and liquid state polarisations with minimal loss of T1 in experiments with hyperpolarised 13C-enriched pyruvate. This suggests that macrocyclic contrast agents should be the GBCA of choice for maximising signal in experiments with hyperpolarised 13C-enriched pyruvate, particularly for in vivo measurements where shortened substrate T1 is especially problematic.

  2. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids

    PubMed Central

    2013-01-01

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493

  3. Distinguishing tautomerism in the crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide using DFT-D calculations and {sup 13}C solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaozhou; Bond, Andrew D.; Johansson, Kristoffer E.

    2014-08-01

    The crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide contains an imine tautomer, rather than the previously reported amine tautomer. The tautomers can be distinguished using dispersion-corrected density functional theory calculations and by comparison of calculated and measured {sup 13}C solid-state NMR spectra. The crystal structure of the title compound, C{sub 11}H{sub 13}N{sub 3}O{sub 2}S{sub 2}, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated {sup 13}C solid-state NMR spectra [Hangan et al. (2010 ▶). Acta Cryst. B66, 615–621]. The mol@@ecule is tautomeric, and was reported as an aminemore » tautomer [systematic name: N-(5-ethyl-1,3,4-thia@@diazol-2-yl)-p-toluene@@sulfonamide], rather than the correct imine tautomer. The protonation site on the mol@@ecule’s 1,3,4-thia@@diazole ring is indicated by the inter@@molecular contacts in the crystal structure: N—H⋯O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable inter molecular inter@@actions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported qu@@anti@@tative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the {sup 13}C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured {sup 13}C SS-NMR spectrum.« less

  4. Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Zhang, Dechao; Zhang, Long; Yang, Kun; Wang, Hongqiang; Yu, Chuang; Xu, Di; Xu, Bo; Wang, Li-Min

    2017-10-25

    Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO 4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO 4 /Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.

  5. 13C CP MAS NMR and GIAO-CHF calculations of coumarins.

    PubMed

    Zolek, Teresa; Paradowska, Katarzyna; Wawer, Iwona

    2003-01-01

    13C cross-polarization magic-angle spinning NMR spectra were recorded for a series of solid coumarins. Ab initio calculations of shielding constants were performed with the use of GIAO-CHF method. The combined CPMAS NMR and theoretical approach was successful in characterizing solid-state conformations of coumarins; a relationship sigma (ppm) = -1.032 xdelta + 205.28 (R(2) = 0.9845) can be used to obtain structural information for coumarins, for which solid-state NMR or crystal structure data are not available. Copyright 2002 Elsevier Science (USA)

  6. Mastering the interface for advanced all-solid-state lithium rechargeable batteries

    PubMed Central

    Li, Yutao; Zhou, Weidong; Chen, Xi; Lü, Xujie; Cui, Zhiming; Xin, Sen; Xue, Leigang; Jia, Quanxi; Goodenough, John B.

    2016-01-01

    A solid electrolyte with a high Li-ion conductivity and a small interfacial resistance against a Li metal anode is a key component in all-solid-state Li metal batteries, but there is no ceramic oxide electrolyte available for this application except the thin-film Li-P oxynitride electrolyte; ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites in a short time. Here, we introduce a solid electrolyte LiZr2(PO4)3 with rhombohedral structure at room temperature that has a bulk Li-ion conductivity σLi = 2 × 10−4 S⋅cm−1 at 25 °C, a high electrochemical stability up to 5.5 V versus Li+/Li, and a small interfacial resistance for Li+ transfer. It reacts with a metallic lithium anode to form a Li+-conducting passivation layer (solid-electrolyte interphase) containing Li3P and Li8ZrO6 that is wet by the lithium anode and also wets the LiZr2(PO4)3 electrolyte. An all-solid-state Li/LiFePO4 cell with a polymer catholyte shows good cyclability and a long cycle life. PMID:27821751

  7. Solid-state 13C NMR studies of dissolved organic matter in pore waters from different depositional environments

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.

    1987-01-01

    Dissolved organic matter (DOM) in pore waters from sediments of a number of different depositional environments was isolated by ultrafiltration using membranes with a nominal molecular weight cutoff of 500. This > 500 molecular weight DOM represents 70-98% of the total DOM in these pore waters. We determined the gross chemical structure of this material using both solid-state 13C nuclear magnetic resonance spectroscopy and elemental analysis. Our results show that the DOM in these pore waters appears to exist as two major types: one type dominated by carbohydrates and paraffinic structures and the second dominated by paraffinic and aromatic structures. We suggest that the dominance of one or the other structural type of DOM in the pore water depends on the relative oxidizing/reducing nature of the sediments as well as the source of the detrital organic matter. Under dominantly anaerobic conditions carbohydrates in the sediments are degraded by bacteria and accumulate in the pore water as DOM. However, little or no degradation of lignin occurs under these conditions. In contrast, sediments thought to be predominantly aerobic in character have DOM with diminished carbohydrate and enhanced aromatic character. The aromatic structures in the DOM from these sediments are thought to arise from the degradation of lignin. The large amounts of paraffinic structures in both types of DOM may be due to the degradation of unidentified paraffinic materials in algal or bacterial remains. ?? 1987.

  8. Identifying oil/marine snow associations in mesocosm simulations of the Deepwater Horizon oil spill event using solid-state 13C NMR spectroscopy.

    PubMed

    Hatcher, Patrick G; Obeid, Wassim; Wozniak, Andrew S; Xu, Chen; Zhang, Saijin; Santschi, Peter H; Quigg, Antonietta

    2018-01-01

    The Deepwater Horizon oil spill stimulated the release of marine snow made up of dead/living plankton/bacteria and their exopolymeric polysaccharide substances (EPS), termed marine oil snow (MOS), promoting rapid removal of oil from the water column into sediments near the well site. Mesocosm simulations showed that Macondo surrogate oil readily associates with the marine snow. Quantitative solid-state 13 C NMR readily distinguishes this oil from naturally formed marine snow and reveals that adding the dispersant Corexit enhances the amount of oil associated with the MOS, thus contributing to rapid removal from the water column. Solvent extraction of MOS removes the oil-derived compounds for analysis by one and two-dimensional GC/MS and evaluation of potential transformations they undergo when associated with the EPS. The results reveal that the oil associated with EPS is subjected to rapid transformation, in a matter of days, presumably by bacteria and fungi associated with EPS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Complete (1)H resonance assignment of beta-maltose from (1)H-(1)H DQ-SQ CRAMPS and (1)H (DQ-DUMBO)-(13)C SQ refocused INEPT 2D solid-state NMR spectra and first principles GIPAW calculations.

    PubMed

    Webber, Amy L; Elena, Bénédicte; Griffin, John M; Yates, Jonathan R; Pham, Tran N; Mauri, Francesco; Pickard, Chris J; Gil, Ana M; Stein, Robin; Lesage, Anne; Emsley, Lyndon; Brown, Steven P

    2010-07-14

    A disaccharide is a challenging case for high-resolution (1)H solid-state NMR because of the 24 distinct protons (14 aliphatic and 10 OH) having (1)H chemical shifts that all fall within a narrow range of approximately 3 to 7 ppm. High-resolution (1)H (500 MHz) double-quantum (DQ) combined rotation and multiple pulse sequence (CRAMPS) solid-state NMR spectra of beta-maltose monohydrate are presented. (1)H-(1)H DQ-SQ CRAMPS spectra are presented together with (1)H (DQ)-(13)C correlation spectra obtained with a new pulse sequence that correlates a high-resolution (1)H DQ dimension with a (13)C single quantum (SQ) dimension using the refocused INEPT pulse-sequence element to transfer magnetization via one-bond (13)C-(1)H J couplings. Compared to the observation of only a single broad peak in a (1)H DQ spectrum recorded at 30 kHz magic-angle spinning (MAS), the use of DUMBO (1)H homonuclear decoupling in the (1)H DQ CRAMPS experiment allows the resolution of distinct DQ correlation peaks which, in combination with first-principles chemical shift calculations based on the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach, enables the assignment of the (1)H resonances to the 24 distinct protons. We believe this to be the first experimental solid-state NMR determination of the hydroxyl OH (1)H chemical shifts for a simple sugar. Variable-temperature (1)H-(1)H DQ CRAMPS spectra reveal small increases in the (1)H chemical shifts of the OH resonances upon decreasing the temperature from 348 K to 248 K.

  10. Solid State Ionics Advanced Materials for Emerging Technologies

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    SiO[symbol]) ceramics via solid state sintering of Zr)[symbol] and SiO[symbol] and the effect of dopants on the zircon yield / U. Dhanayake, B. S. B. Karunaratne. Preparation and properties of vanadium doped ZnTe cermet thin films / M. S. Hossain, R. Islam, K. A. Khan. Dynamical properties and electronic structure of lithium-ion conductor / M. Kobayashi ... [et al.]. Cuprous ion conducting Montmorillonite-Polypyrrole nanocomposites / D. M. M. Krishantha ... [et al.]. Frequency dependence of conductivity studies on a newly synthesized superionic solid solution/mixed system: [0.75AgI: 0.25AgCl] / R. K. Nagarch, R. Kumar. Diffuse X-ray and neutron scattering from Powder PbS / X. Lian ... [et al.]. Electron affinity and work function of Pyrolytic MnO[symbol] thin films prepared from Mn(C[symbol]H[symbol]O[symbol])[symbol].4H[symbol]) / A. K. M. Farid Ul Islam, R. Islam, K. A. Khan. Crystal structure and heat capacity of Ba[symbol]Ca[symbol]Nb[symbol]O[symbol] / T. Shimoyama ... [et al.]. XPS and impedance investigations on amorphous vanadium oxide thin films / M. Kamalanathan ... [et al.]. Sintering and mixed electronic-ionic conducting properties of La[symbol]Sr[symbol]NiO[symbol] derived from a polyaminocarboxylate complex precursor / D.-P. Huang ... [et al.]. Preparation and characteristics of ball milled MgH[symbol] + M (M= Fe, VF[symbol] and FeF[symbol]) nanocomposites for hydrogen storage / N. W. B. Balasooriya, Ch. Poinsignon. Structural studies of oxysulfide glasses by X-ray diffraction and molecular dynamics simulation / R. Prasada Rao, M. Seshasayee, J. Dheepa. Synthesis, sintering and oxygen ionic conducting properties of Bi[symbol]V[symbol]Cu[symbol]O[symbol] / F. Zhang ... [et al.]. Synthesis and transport characteristics of PbI[symbol]-Ag[symbol]O-Cr[symbol]O[symbol] superioninc system / S. A. Suthanthiraraj, V. Mathew. Electronic conductivity of La[symbol]Sr[symbol]Ga[symbol]Mg[symbol]Co[symbol]O[symbol] electrolytes / K. Yamaji ... [et al.] -- pt. II. Electrode materials

  11. First Solid-state Cooling Below 100K

    DTIC Science & Technology

    2015-03-13

    Seth Melgaard, Denis Seletskiy, Alexander Albrecht, and Mansoor Sheik- Bahae Advances in material purity and laser light absorption offer new possi...all- solid-state cryocooler. Denis Seletskiy University of Konstanz Konstanz, Germany Alexander Albrecht and Mansoor Sheik- Bahae University of New...Unterschied von Lumineszenz- und Tem- peraturstrahlung, Z. Phys. 57, p. 739, 1929. 3. R. I . Epstein,M. I . Buchwald, B. C. Edwards, T. R. Gosnell, and

  12. Effects of varying water adsorption on a Cu3(BTC)2 metal-organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy.

    PubMed

    Gul-E-Noor, Farhana; Jee, Bettina; Pöppl, Andreas; Hartmann, Martin; Himsl, Dieter; Bertmer, Marko

    2011-05-07

    The process of water adsorption on a dehydrated Cu(3)(BTC)(2) (copper (II) benzene 1,3,5-tricarboxylate) metal-organic framework (MOF) was studied with (1)H and (13)C solid-state NMR. Different relative amounts of water (0.5, 0.75, 1, 1.5, 2, and 5 mole equivalents with respect to copper) were adsorbed via the gas phase. (1)H and (13)C MAS NMR spectra of dehydrated and water-loaded Cu(3)(BTC)(2) samples gave evidence on the structural changes due to water adsorption within the MOF material as well as information on water dynamics. The analysis of (1)H spinning sideband intensities reveals differences in the (1)H-(63/65)Cu hyperfine coupling between dehydrated and water-loaded samples. The investigation was continued for 60 days to follow the stability of the Cu(3)(BTC)(2) network under humid conditions. NMR data reveal that Cu(3)(BTC)(2) decomposes quite fast with the decomposition being different for different water contents. This journal is © the Owner Societies 2011

  13. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  14. Protein-nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR.

    PubMed

    Wiegand, Thomas; Liao, Wei-Chih; Ong, Ta Chung; Däpp, Alexander; Cadalbert, Riccardo; Copéret, Christophe; Böckmann, Anja; Meier, Beat H

    2017-11-01

    DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein-DNA and protein-ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein-DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31 P- 13 C polarization-transfer experiments followed by the recording of a 2D 13 C- 13 C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.

  15. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeff; Schneider, Judy; Walker, Bryant

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including titanium and its alloys. Thus solid state joining processes, such as friction stir welding (FSWing) and a patented modification termed thermal stir welding (TSWing), are being pursued as alternatives to produce robust structures more amenable to high pressure applications. Unlike the FSWing process where the tool is used to heat the workpiece, TSWing utilizes an induction coil to preheat the material prior to stirring thus minimizing the burden on the weld tool and thereby extending its life. This study reports on the initial results of using a hybrid (H)-TSW process to join commercially pure, 1.3cm thick panels of titanium (CP Ti) Grade 2.

  16. 1H, 13C, 15N NMR analysis of sildenafil base and citrate (Viagra) in solution, solid state and pharmaceutical dosage forms.

    PubMed

    Wawer, Iwona; Pisklak, Maciej; Chilmonczyk, Zdzisław

    2005-08-10

    Sildenafil citrate (SC) (Viagra) and sildenafil base in pure form are easily and unequivocally characterized by multinuclear NMR spectroscopy. Analysis of chemical shifts indicates that: (i) N6-H forms intramolecular hydrogen bonds, (ii) N25 is protonated in the salt and (iii) intermolecular OH...N hydrogen bonds involving N2 and N4 are present in the solid sildenafil citrate. 13C CPMAS NMR method has been proposed for the identification and quantitation of Viagra in its pharmaceutical formulations.

  17. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies.

    PubMed

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively (13)C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Conducting Reflective, Hands-On Research with Advanced Characterization Instruments: A High-Level Undergraduate Practical Exploring Solid-State Polymorphism

    ERIC Educational Resources Information Center

    Coles, S. J.; Mapp, L. K.

    2016-01-01

    An undergraduate practical exercise has been designed to provide hands-on, instrument-based experience of advanced characterization techniques. A research experience approach is taken, centered around the concept of solid-state polymorphism, which requires a detailed knowledge of molecular and crystal structure to be gained by advanced analytical…

  19. Application and Reliability of Solid-State NMR in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2010-05-01

    For the characterization of soil organic matter, a suite of analytical approaches are available. Chemical degradative methods involve an extraction scheme with which the soluble part of the mixture is isolated and analyzed by colorimetrical or chromatographic means. Macromolecular structures can be subjected to thermolytic or combined thermochemolytic degradation. Because secondary reactions (rearrangement, cracking, hydrogenation and polymerization) in a heterogeneous mixture cannot be excluded, it is obvious that conclusions regarding the original structure in the macromolecular phase have to be drawn with caution. A powerful alternative represents solid-state nuclear magnetic resonance (NMR) spectroscopy, allowing the examination of the bulk sample without major pre-treatment In environmental sciences, this technique mostly involves the isotope 13C to study the chemical composition of organic matter in soils, sediments or compost to study the temporal development of humic material or chemical alterations due to variation in environmental parameters. Due to its low sensibility solid-state 15N NMR studies on such samples are only found occasionally. The emphasis of solid-state NMR spectroscopy is not only to determine the gross chemical composition of the material under study via a chemical shift assignment but also a quantitative correlation between the different signal intensities and the relative contribution of the respective C or N types to the total organic C or N content. However, despite increasing popularity, this approach is still viewed as mysterious techniques, in particular with respect to quantification. Accordingly, the purpose of this review is to give a short overview on the possibilities and limitations of this technique in environmental science and in particular for the study of soil organic matter. In general, solid-state 13C NMR spectra of soil organic matter are obtained with the cross polarization magic angle spinning (CPMAS) technique. This

  20. Biological degradation of tannins in sericea lespedeza (Lespedeza cuneata) by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus analyzed by solid-state 13C nuclear magnetic resonance spectroscopy.

    PubMed Central

    Gamble, G R; Akin, D E; Makkar, H P; Becker, K

    1996-01-01

    Leaves of sericea lespedeza exhibit a high proportion of condensed tannin, resulting in poor forage quality. The white rot fungi Ceriporiopsis subvermispora and Cyathus sterocoreus are known to preferentially degrade lignin in a variety of plants and were evaluated for their ability to degrade condensed tannin from sericea leaves with the aim of improving digestibility. Relative levels of condensed tannin, cutin, pectin, and cellulose were monitored as a function of fungal treatment by solid-state cross-polarization and magic angle spinning 13C nuclear magnetic resonance spectroscopy. Total soluble phenolics, soluble tannins, and soluble and insoluble proanthocyanidin levels in fungus-treated and control samples were measured by established chemical techniques. Results indicate that both species of fungus preferentially degrade condensed tannin and that C. subvermispora is markedly superior to C. stercoreus in this capacity. PMID:8837414

  1. Advances in solid-state NMR of cellulose.

    PubMed

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates

    PubMed Central

    Capozzi, Andrea; Cheng, Tian; Boero, Giovanni; Roussel, Christophe; Comment, Arnaud

    2017-01-01

    Hyperpolarization via dynamic nuclear polarization (DNP) is pivotal for boosting magnetic resonance imaging (MRI) sensitivity and dissolution DNP can be used to perform in vivo real-time 13C MRI. The type of applications is however limited by the relatively fast decay time of the hyperpolarized spin state together with the constraint of having to polarize the 13C spins in a dedicated apparatus nearby but separated from the MRI magnet. We herein demonstrate that by polarizing 13C with photo-induced radicals, which can be subsequently annihilated using a thermalization process that maintains the sample temperature below its melting point, hyperpolarized 13C-substrates can be extracted from the DNP apparatus in the solid form, while maintaining the enhanced 13C polarization. The melting procedure necessary to transform the frozen solid into an injectable solution containing the hyperpolarized 13C-substrates can therefore be performed ex situ, up to several hours after extraction and storage of the polarized solid. PMID:28569840

  3. Quantitative (13)C MultiCP solid-state NMR as a tool for evaluation of cellulose crystallinity index measured directly inside sugarcane biomass.

    PubMed

    Bernardinelli, Oigres Daniel; Lima, Marisa Aparecida; Rezende, Camila Alves; Polikarpov, Igor; deAzevedo, Eduardo Ribeiro

    2015-01-01

    The crystallinity index (CI) is often associated with changes in cellulose structure after biological and physicochemical pretreatments. While some results obtained with lignocellulosic biomass demonstrate a progressive increase in the CI as a function of pretreatments, it is also shown that the CI can significantly vary depending on the choice of the measurement method. Besides, the influence of the CI on the recalcitrance of biomass has been controversial for a long time, but the most recent results tend to point out that the efficiency of pretreatments in reducing the recalcitrance is not clearly correlated with the decrease of the CI. Much of this controversy is somewhat associated with the inability to distinguish between the CI of the cellulose inside the biomass and the CI of the full biomass, which contains other amorphous components such as lignin and hemicellulose. Cross polarization by multiple contact periods (Multi-CP) method was used to obtain quantitative (13)C solid-state nuclear magnetic resonance (ssNMR) spectra of sugarcane bagasse biomass submitted to two-step pretreatments and/or enzymatic hydrolysis. By comparing the dipolar filtered Multi-CP (13)C NMR spectra of untreated bagasse samples with those of samples submitted to acid pretreatment, we show that a 1% H2SO4-assisted pretreatment was very effective in removing practically all the hemicellulose signals. This led us to propose a spectral editing procedure based on the subtraction of MultiCP spectra of acid-treated biomass from that of the extracted lignin, to obtain a virtually pure cellulose spectrum. Based on this idea, we were able to evaluate the CI of the native cellulose inside the sugarcane bagasse biomass. The results show the validity of the proposed method as a tool for evaluating the variations in the CI of the cellulose inside biomasses of similar kinds. Despite a clear increase in the CI of biomass as measured by X-ray diffraction, no significant variations were observed in

  4. Solid-state reaction of iron on β-SiC

    NASA Astrophysics Data System (ADS)

    Kaplan, R.; Klein, P. H.; Addamiano, A.

    1985-07-01

    The solid-state reaction between Fe and β-SiC has been studied using Auger-electron and electron-energy-loss spectroscopies and ion sputter profiling. Fe films from submonolayer coverage to 1000 Å thickness were grown in ultrahigh vacuum, and annealed at temperatures up to 550 °C. Auger line-shape changes occurred even for initial Fe coverage at 190 °C, indicating substantial bond alteration in the SiC substrate. A 1000-Å film was largely consumed by reaction with Si and C diffused from the substrate during a 500 °C anneal, and exhibited both Fe silicide and carbide throughout most of its original volume and free C present as graphite primarily at the surface. As an aid in identifying the reaction products studied in this work, Auger line shapes were first determined for the SiLVV peak in Fe silicide and for the CKLL transition in Fe carbide.

  5. Solid-state lithium battery

    DOEpatents

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  6. Continued advances in high brightness fiber-coupled laser modules for efficient pumping of fiber and solid-state lasers

    NASA Astrophysics Data System (ADS)

    Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.

    2018-02-01

    Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.

  7. Effect of cultural conditions on antrodin C production by basidiomycete Antrodia camphorata in solid-state fermentation.

    PubMed

    Xia, Yongjun; Wang, Yuanlong; Zhang, Bobo; Xu, Ganrong; Ai, Lianzhong

    2014-01-01

    Antrodia camphorata is a medicinal fungus and antrodin C is one of the main bioactive components of A. camphorata in the submerged fermentation (SmF). To optimize the culture conditions, the factors influencing the production of antrodin C by A. camphorata under solid-state fermentation (SSF) were investigated in this study. Different solid substrates and external nitrogen sources were tested for their efficiency in producing antrodin C. The response surface methodology was applied to evaluate the influence of several variables, namely, the concentrations of soybean meal, initial moisture content, and inoculum density on antrodin C production in solid-state fermentation. The experimental results show that the optimum fermentation medium for antrodin C production by A. camphorata was composed of 0.578 g soybean meal, 0.05 g Na2 HPO4 , 0.05 g MgSO4 for 100 g rice, with 51.83% initial moisture content, 22 day culture time, 28 °C culture temperature, and 35.54% inoculum density. At optimized conditions, 6,617.36 ± 92.71 mg kg(-1) yield of antrodin C was achieved. Solid-state fermentation is one good cultural method to improve the production of antrodin C by A. camphorata. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  8. Solid State Nuclear Magnetic Resonance Studies of the Murchison Organic Macromolecule

    NASA Technical Reports Server (NTRS)

    Cody, G. D., III; Alexander, C. M. OD.; Tera, F.

    2001-01-01

    We have used high speed H-1 (DEPTH) and C-13 (VACP MAS-slow spinning) solid state NMR to determine the contributions of protonated vs non-protonated carbon in the Murchison Macromolecule. Additional information is contained in the original extended abstract.

  9. Solid State Research, 1980:1.

    DTIC Science & Technology

    1980-02-15

    ESD-TR-79-325 H 1 Solid State Research 1980 Prepared under Electronic Systems Division Contract FI%28-80-C-0002 by Lincoln Laboratory MASSkCHIISETTS...it is no longer needed. MASSACHUSETTS IN*STITUTE OF TECHNOLOGY LINCOLN LABORATORY V SOLID STATE RESEARCH QUARTERLY TECHNICAL SUMMARY REPORT I NOVEMBER...January 1990. The topics covered a-e Solid State Device Research , Quantum Electronics, Materials Rese.rch, Microelec- tronics, and Analog Device

  10. Photoswitchable Sn-Cyt c Solid-State Devices.

    PubMed

    Nakamaru, Satoshi; Scholz, Frank; Ford, William E; Goto, Yoshio; von Wrochem, Florian

    2017-06-01

    Electron transfer across proteins plays an important role in many biological processes, including those relevant for the conversion of solar photons to chemical energy. Previous studies demonstrated the generation of photocurrents upon light irradiation in a number of photoactive proteins, such as photosystem I or bacteriorhodopsin. Here, it is shown that Sn-cytochrome c layers act as reversible and efficient photoelectrochemical switches upon integration into large-area solid-state junctions. Photocurrents are observed both in the Soret band (λ = 405 nm) and in the Q band (λ = 535 nm), with current on/off ratios reaching values of up to 25. The underlying modulation in charge-transfer rate is attributed to a hole-transport channel created by the photoexcitation of the Sn-porphyrin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, Jeff; Schneider, Judy

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including Titanium and its alloys. Solid state joining processes are being pursued as an alternative process to produce robust structures more amenable to high pressure applications. Various solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature to avoid detrimental changes to the microstructure. The work presented in this presentation investigates the feasibility of joining various titanium alloys using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set ]up and welding techniques will be discussed leading to the challenges experienced. Mechanical property data will also be presented.

  12. Identifying guanosine self assembly at natural isotopic abundance by high-resolution 1H and 13C solid-state NMR spectroscopy.

    PubMed

    Webber, Amy L; Masiero, Stefano; Pieraccini, Silvia; Burley, Jonathan C; Tatton, Andrew S; Iuga, Dinu; Pham, Tran N; Spada, Gian Piero; Brown, Steven P

    2011-12-14

    By means of the (1)H chemical shifts and the proton-proton proximities as identified in (1)H double-quantum (DQ) combined rotation and multiple-pulse spectroscopy (CRAMPS) solid-state NMR correlation spectra, ribbon-like and quartet-like self-assembly can be identified for guanosine derivatives without isotopic labeling for which it was not possible to obtain single crystals suitable for diffraction. Specifically, characteristic spectral fingerprints are observed for dG(C10)(2) and dG(C3)(2) derivatives, for which quartet-like and ribbon-like self-assembly has been unambiguously identified by (15)N refocused INADEQUATE spectra in a previous study of (15)N-labeled derivatives (Pham, T. N.; et al. J. Am. Chem. Soc.2005, 127, 16018). The NH (1)H chemical shift is observed to be higher (13-15 ppm) for ribbon-like self-assembly as compared to 10-11 ppm for a quartet-like arrangement, corresponding to a change from NH···N to NH···O intermolecular hydrogen bonding. The order of the two NH(2)(1)H chemical shifts is also inverted, with the NH(2) proton closest in space to the NH proton having a higher or lower (1)H chemical shift than that of the other NH(2) proton for ribbon-like as opposed to quartet-like self-assembly. For the dG(C3)(2) derivative for which a single-crystal diffraction structure is available, the distinct resonances and DQ peaks are assigned by means of gauge-including projector-augmented wave (GIPAW) chemical shift calculations. In addition, (14)N-(1)H correlation spectra obtained at 850 MHz under fast (60 kHz) magic-angle spinning (MAS) confirm the assignment of the NH and NH(2) chemical shifts for the dG(C3)(2) derivative and allow longer range through-space N···H proximities to be identified, notably to the N7 nitrogens on the opposite hydrogen-bonding face. © 2011 American Chemical Society

  13. Structural analysis of geochemical samples by solid-state nuclear magnetic resonance spectrometry. Role of paramagnetic material

    USGS Publications Warehouse

    Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.

    1987-01-01

    An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.

  14. Recent advances and challenges for diode-pumped solid-state lasers as an inertial fusion energy driver candidate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, S.A.; Beach, R.J.; Bibeau, C.

    We discuss how solid-state laser technology can serve in the interests of fusion energy beyond the goals of the National Ignition Facility (NIF), which is now being constructed to ignite a deuterium-tritium target to fusion conditions in the laboratory for the first time. We think that advanced solid-state laser technology can offer the repetition-rate and efficiency needed to drive a fusion power plant, in contrast to the single-shot character of NIF. As discuss below, we propose that a gas-cooled, diode-pumped Yb:S-FAP laser can provide a new paradigm for fusion laser technology leading into the next century.

  15. Solid-State Nuclear Power

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  16. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    PubMed

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  17. Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.

    PubMed

    Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier

    2016-09-01

    Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state 13C NMR and solution 31P NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    LIU, S. S.; Zhu, Y.; Meng, W.; Wu, F.

    2016-12-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state 13C NMR and solution 31P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.

  19. Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy.

    PubMed

    Ferro, Monica; Castiglione, Franca; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea

    2017-01-01

    Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1 H fast MAS NMR and 13 C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13 C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13 C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles.

  20. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  1. Effects of rotational states on the c / a ratio in solid hydrogens

    DOE PAGES

    Strzhemechny, Mikhail A.; Hemley, Russell J.

    2015-04-08

    We propose an approach to the problem of lattice distortions at low temperatures and ambient pressure in the solid hydrogens in their rotational ground states that explicitly accounts for the molecular nature of the constituent particles. The model is based on the idea that the second-order rotation-related correction to the ground-state energy depends on the lattice parameters. The calculated ground-state rotation-related contributions, δ gs = c/a–(8/3) 1/2, are negative for all species, amounting to about –1.5×10 –5 for H 2 and D 2, whereas for HD this contribution is about –0.6×10 –3, which is roughly 50 times larger. This substantialmore » difference stems from the fact that the rotational dynamics in the homonuclear solids and in HD differ appreciably. Furthermore, the approach can be generalized to high pressures.« less

  2. Solid-state NMR and computational studies of 4-methyl-2-nitroacetanilide.

    PubMed

    Harris, Robin K; Ghi, Phuong Y; Hammond, Robert B; Ma, Cai Yun; Roberts, Kevin J; Yates, Jonathan R; Pickard, Chris J

    2006-03-01

    Studies on the solid-state structure of two polymorphs of 4-methyl-2-nitroacetanilide (MNA) were conducted using magic-angle spinning (13)C, (15)N and (1)H NMR spectroscopy, together with first-principles computations of NMR shielding (including use of a program that takes explicit account of the translational symmetry inherent in crystalline structures). The effects on (13)C chemical shifts of side-chain rotations have been explored. Information derived from these studies was then incorporated within a systematic space-search methodology for elucidation of trial crystallographic structures from powder XRD.

  3. Nanoscale solid-state cooling: a review.

    PubMed

    Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali

    2016-09-01

    The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.

  4. 6-Aminopenicillanic acid revisited: A combined solid state NMR and in silico refinement

    NASA Astrophysics Data System (ADS)

    Aguiar, Daniel Lima Marques de; San Gil, Rosane Aguiar da Silva; Alencastro, Ricardo Bicca de; Souza, Eugenio Furtado de; Borré, Leandro Bandeira; Vaiss, Viviane da Silva; Leitão, Alexandre Amaral

    2016-09-01

    13C/15N (experimental and ab initio) solid-state NMR was used to achieve an affordable way to improve hydrogen refinement of 6-aminopenicillanic acid (6-APA) structure. The lattice effect on the isotropic chemical shifts was probed by using two different magnetic shielding calculations: isolated molecules and periodic crystal structure. The electron density difference maps of optimized and non-optimized structures were calculated in order to investigate the interactions inside the 6-APA unit cell. The 13C and 15N chemical shifts assignments were unambiguously stablished. In addition, some of the literature 13C resonances ambiguities could be properly solved.

  5. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    NASA Astrophysics Data System (ADS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sham, Tsun-Kong; Sun, Xueliang

    2014-12-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10-8 S cm-1 at 323 K with ˜0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10-8 S cm-1 at 26 °C (299 K).

  6. Gas chromatography and isotope ratio mass spectrometry of Pinot Noir wine volatile compounds (δ13C) and solid residues (δ13C, δ15N) for the reassessment of vineyard water-status.

    PubMed

    Spangenberg, Jorge E; Vogiatzaki, Maria; Zufferey, Vivian

    2017-09-29

    This paper describes a novel approach to reassess the water status in vineyards based on compound-specific isotope analysis (CSIA) of wine volatile organic compounds (δ 13 C VOC/VPDB ) and bulk carbon and nitrogen isotopes, and the C/N molar ratios of the wine solid residues (δ 13 C SR/VPDB , δ 15 N SR/Air-N2 ). These analyses link gas chromatography/combustion and elemental analysis to isotope ratio mass spectrometry (GC/C/IRMS, EA/IRMS). Field-grown cultivars of Pinot Noir grapevines were exposed during six growing seasons (2009-2014) to controlled soil water availability, while maintaining identical the other environmental variables and agricultural techniques. Wines were produced from the grapes by the same oenological protocol. This permitted for the assessment of the effects in the biochemistry of wines solely induced by the changes in the plant-soil water status. This mimicked the more recurrent and prolonged periods of soil water deficiency due to climate changes. Water stress in grapevine was assessed by the measurement of the predawn leaf water potential (Ψ pd ) and the stable carbon isotope composition of the berry sugars during harvest (must sugars). For quantitation purposes and the normalization of the measured stable carbon isotope ratios of the VOCs, the wine samples were spiked with three standard compounds with known concentration and δ 13 C VPDB values. VOCs were extracted by liquid-liquid extraction and analyzed by gas chromatography/flame ionization detection (GC/FID), gas chromatography/mass spectrometry (GC/MS), and GC/C/IRMS. δ 13 C values were obtained for eighteen VOCs. The solid residues were obtained by freeze-drying wine aliquots and were analyzed for their C and N content and isotope composition by EA/IRMS. All the isotopic ratios (δ 13 C SR , δ 15 N SR , δ 13 C VOC ) are highly correlated with the Ψ pd values, indicating that the proposed gas chromatography and isotope ratio mass spectrometry approach is a useful tool to

  7. Recording 13C-15N HMQC 2D sparse spectra in solids in 30 s

    NASA Astrophysics Data System (ADS)

    Kupče, Ēriks; Trébosc, Julien; Perrone, Barbara; Lafon, Olivier; Amoureux, Jean-Paul

    2018-03-01

    We propose a dipolar HMQC Hadamard-encoded (D-HMQC-Hn) experiment for fast 2D correlations of abundant nuclei in solids. The main limitation of the Hadamard methods resides in the length of the encoding pulses, which results from a compromise between the selectivity and the sensitivity due to losses. For this reason, these methods should mainly be used with sparse spectra, and they profit from the increased separation of the resonances at high magnetic fields. In the case of the D-HMQC-Hn experiments, we give a simple rule that allows directly setting the optimum length of the selective pulses, versus the minimum separation of the resonances in the indirect dimension. The demonstration has been performed on a fully 13C,15N labelled f-MLF sample, and it allowed recording the build-up curves of the 13C-15N cross-peaks within 10 min. However, the method could also be used in the case of less sensitive samples, but with more accumulations.

  8. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.

  9. Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2006-01-01

    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  10. Designing dipolar recoupling and decoupling experiments for biological solid-state NMR using interleaved continuous wave and RF pulse irradiation.

    PubMed

    Bjerring, Morten; Jain, Sheetal; Paaske, Berit; Vinther, Joachim M; Nielsen, Niels Chr

    2013-09-17

    Rapid developments in solid-state NMR methodology have boosted this technique into a highly versatile tool for structural biology. The invention of increasingly advanced rf pulse sequences that take advantage of better hardware and sample preparation have played an important part in these advances. In the development of these new pulse sequences, researchers have taken advantage of analytical tools, such as average Hamiltonian theory or lately numerical methods based on optimal control theory. In this Account, we focus on the interplay between these strategies in the systematic development of simple pulse sequences that combines continuous wave (CW) irradiation with short pulses to obtain improved rf pulse, recoupling, sampling, and decoupling performance. Our initial work on this problem focused on the challenges associated with the increasing use of fully or partly deuterated proteins to obtain high-resolution, liquid-state-like solid-state NMR spectra. Here we exploit the overwhelming presence of (2)H in such samples as a source of polarization and to gain structural information. The (2)H nuclei possess dominant quadrupolar couplings which complicate even the simplest operations, such as rf pulses and polarization transfer to surrounding nuclei. Using optimal control and easy analytical adaptations, we demonstrate that a series of rotor synchronized short pulses may form the basis for essentially ideal rf pulse performance. Using similar approaches, we design (2)H to (13)C polarization transfer experiments that increase the efficiency by one order of magnitude over standard cross polarization experiments. We demonstrate how we can translate advanced optimal control waveforms into simple interleaved CW and rf pulse methods that form a new cross polarization experiment. This experiment significantly improves (1)H-(15)N and (15)N-(13)C transfers, which are key elements in the vast majority of biological solid-state NMR experiments. In addition, we demonstrate how

  11. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  12. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  13. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  14. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  15. Solution and solid-state effects on NMR chemical shifts in sesquiterpene lactones: NMR, X-ray, and theoretical methods.

    PubMed

    Dračínský, Martin; Buděšínský, Miloš; Warżajtis, Beata; Rychlewska, Urszula

    2012-01-12

    Selected guaianolide type sesquiterpene lactones were studied combining solution and solid-state NMR spectroscopy with theoretical calculations of the chemical shifts in both environments and with the X-ray data. The experimental (1)H and (13)C chemical shifts in solution were successfully reproduced by theoretical calculations (with the GIAO method and DFT B3LYP 6-31++G**) after geometry optimization (DFT B3LYP 6-31 G**) in vacuum. The GIPAW method was used for calculations of solid-state (13)C chemical shifts. The studied cases involved two polymorphs of helenalin, two pseudopolymorphs of 6α-hydroxydihydro-aromaticin and two cases of multiple asymmetric units in crystals: one in which the symmetry-independent molecules were connected by a series of hydrogen bonds (geigerinin) and the other in which the symmetry-independent molecules, deprived of any specific intermolecular interactions, differed in the conformation of the side chain (badkhysin). Geometrically different molecules present in the crystal lattices could be easily distinguished in the solid-state NMR spectra. Moreover, the experimental differences in the (13)C chemical shifts corresponding to nuclei in different polymorphs or in geometrically different molecules were nicely reproduced with the GIPAW calculations.

  16. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses

    NASA Astrophysics Data System (ADS)

    Benner, Ronald; Hatcher, Patrick G.; Hedges, John I.

    1990-07-01

    Changes in the chemical composition of mangrove ( Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed.

  17. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses

    USGS Publications Warehouse

    Benner, R.; Hatcher, P.G.; Hedges, J.I.

    1990-01-01

    Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.

  18. A data base of ASAS digital imagery. [Advanced Solid-state Array Spectroradiometer

    NASA Technical Reports Server (NTRS)

    Irons, James R.; Meeson, Blanche W.; Dabney, Philip W.; Kovalick, William M.; Graham, David W.; Hahn, Daniel S.

    1992-01-01

    The Advanced Solid-State Array Spectroradiometer (ASAS) is an airborne, off-nadir tilting, imaging spectroradiometer that acquires digital image data for 29 spectral bands in the visible and near-infrared. The sensor is used principally for studies of the bidirectional distribution of solar radiation scattered by terrestial surfaces. ASAS has acquired data for a number of terrestial ecosystem field experiments and investigators have received over 170 radiometrically corrected, multiangle, digital image data sets. A database of ASAS digital imagery has been established in the Pilot Land Data System (PLDS) at the NASA/Goddard Space Flight Center to provide access to these data by the scientific community. ASAS, its processed data, and the PLDS are described, together with recent improvements to the sensor system.

  19. Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy

    PubMed Central

    Ferro, Monica; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco

    2017-01-01

    Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1H fast MAS NMR and 13C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles. PMID:28228859

  20. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 1, Side-chain 13C-enriched DHP ([alpha], [beta], and [gamma]-13C)

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing has been studied using side-chain ([alpha], [beta], and [gamma]) 13C-enriched DHP (dehydrogenation polymer) and quantitative solution state 13C NMR spectroscopy. The DHP was formed from 13C-enriched coniferin using an enzymatic system consisting of [beta]-glucosidase, glucose oxidase, and peroxidase in a pH 6 buffer solution. The DHP was applied...

  1. Current status of solid-state lithium batteries employing solid redox polymerization cathodes

    NASA Astrophysics Data System (ADS)

    Visco, S. J.; Doeff, M. M.; Dejonghe, L. C.

    1991-03-01

    The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to nonaqueous liquid electrolytes implies low power densities for solid state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10(exp -4)/ohm cm at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid state batteries in the realm of practical devices, it is clear that solid state batteries using such polymeric separators will be thin film devices. Fortunately, thin film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost-competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin film solid state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes.

  2. Conformational study of 13C-enriched fibroin in the solid state, using the cross polarization nuclear magnetic resonance method.

    PubMed

    Fujiwara, T; Kobayashi, Y; Kyogoku, Y; Kataoka, K

    1986-01-05

    Silk fibroin with the alanyl carboxyl carbon enriched with 13C was obtained by giving a diet containing 13C-enriched alanine to the larvae of Bombyx mori and Antheraea pernyi at the fifth instar. Sericin-free fibroin fibers were prepared from cocoons, and gut was made from the liquid silk in the gland. The final 13C content was about 13%. Cross polarization/magic angle sample spinning spectra at 25 MHz and 75 MHz were measured for each sample at different orientations. Spectra were simulated using the principal values and orientations of the shielding tensor in the alanine crystal. The results indicate that the beta-structure of the fibroin may be a little more flattened than the typical pleated sheet beta-structure.

  3. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China

    USDA-ARS?s Scientific Manuscript database

    Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...

  4. The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture.

    PubMed

    Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya

    2016-07-01

    Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.

  5. Solid-State Lithium Conductors for Lithium Metal Batteries Based on Electrospun Nanofiber/Plastic Crystal Composites.

    PubMed

    Zhou, Yundong; Wang, Xiaoen; Zhu, Haijin; Yoshizawa-Fujita, Masahiro; Miyachi, Yukari; Armand, Michel; Forsyth, Maria; Greene, George W; Pringle, Jennifer M; Howlett, Patrick C

    2017-08-10

    Organic ionic plastic crystals (OIPCs) are a class of solid-state electrolytes with good thermal stability, non-flammability, non-volatility, and good electrochemical stability. When prepared in a composite with electrospun polyvinylidene fluoride (PVdF) nanofibers, a 1:1 mixture of the OIPC N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ([C 2 mpyr][FSI]) and lithium bis(fluorosulfonyl)imide (LiFSI) produced a free-standing, robust solid-state electrolyte. These high-concentration Li-containing electrolyte membranes had a transference number of 0.37(±0.02) and supported stable lithium symmetric-cell cycling at a current density of 0.13 mA cm -2 . The effect of incorporating PVdF in the Li-containing plastic crystal was investigated for different ratios of PVdF and [Li][FSI]/[C 2 mpyr][FSI]. In addition, Li|LiNi 1/3 Co 1/3 Mn 1/3 O 2 cells were prepared and cycled at ambient temperature and displayed a good rate performance and stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Advanced Solid Rocket Motor case design status

    NASA Technical Reports Server (NTRS)

    Palmer, G. L.; Cash, S. F.; Beck, J. P.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) case design aimed at achieving a safer and more reliable solid rocket motor for the Space Shuttle system is considered. The ASRM case has a 150.0 inch diameter, three equal length segment, and 9Ni-4CO-0.3C steel alloy. The major design features include bolted casebolted case joints which close during pressurization, plasma arc welded factory joints, integral stiffener for splash down and recovery, and integral External Tank attachment rings. Each mechanical joint has redundant and verifiable o-ring seals.

  7. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods.

    PubMed

    Nakazawa, Yasumoto; Asakura, Tetsuo

    2003-06-18

    Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.

  8. A New All Solid State Approach to Gaseous Pollutant Detection

    NASA Technical Reports Server (NTRS)

    Brown, V.; Tamstorf, K.

    1971-01-01

    Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.

  9. Solid-State Photochemistry as a Formation Mechanism for Titan's Stratospheric C4N2 Ice Clouds

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-01-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 per centimeter ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  10. Modular nonvolatile solid state recorder (MONSSTR) update

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.; Small, Martin B.; Beams, Tom

    2001-12-01

    Solid state recorders have begun replacing traditional tape recorders in fulfilling the requirement to record images on airborne platforms. With the advances in electro-optical, IR, SAR, Multi and Hyper-spectral sensors and video recording requirements, solid state recorders have become the recorder of choice. Solid state recorders provide the additional storage, higher sustained bandwidth, less power, less weight and smaller footprint to meet the current and future recording requirements. CALCULEX, Inc., manufactures a non-volatile flash memory solid state recorder called the MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used to record images from many different digital sensors on high performance aircraft such as the RF- 4, F-16 and the Royal Air Force Tornado. MONSSTR, with its internal multiplexer, is also used to record instrumentation data. This includes multiple streams of PCM and multiple channels of 1553 data. Instrumentation data is being recorded by MONSSTR systems in a range of platforms including F-22, F-15, F-16, Comanche Helicopter and US Navy torpedos. MONSSTR can also be used as a cockpit video recorder. This paper will provide an update of the MONSSTR.

  11. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.

    Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less

  12. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

    DOE PAGES

    Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.; ...

    2017-04-10

    Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less

  13. Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.

    PubMed

    Pindelska, Edyta; Sokal, Agnieszka; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Kolodziejski, Waclaw

    2014-11-01

    In this work, three polycrystalline materials containing co-crystals of theophylline with malonic, maleic, and glutaric acids were studied using (13)C, (15)N and (1)H solid-state NMR and FT-IR spectroscopy. The NMR assignments were supported by gauge including projector augmented waves (GIPAW) calculations of chemical shielding, performed using X-ray determined geometry. The experimental (13)C cross polarization/magic angle spinning (CP/MAS) NMR results and the calculated isotropic chemical shifts were in excellent agreement. A rapid and convenient method for theophylline co-crystals crystal structure analysis has been proposed for co-crystals, which are potentially new APIs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A robust heteronuclear dipolar recoupling method comparable to TEDOR for proteins in magic-angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengfeng; Li, Jianping; Chen, Yanke; Xie, Huayong; Yang, Jun

    2017-12-01

    In this letter, we propose a robust heteronuclear dipolar recoupling method for proteins in magic-angle spinning (MAS) solid-state NMR. This method is as simple, robust and efficient as the well-known TEDOR in the aspect of magnetization transfer between 15N and 13C. Deriving from our recent band-selective dual back-to-back pulses (DBP) (Zhang et al., 2016), this method uses new phase-cycling schemes to realize broadband DBP (Bro-DBP). For broadband 15N-13C magnetization transfer (simultaneous 15N → 13C‧ and 15N → 13Cα), Bro-DBP has almost the same 15N → 13Cα efficiency while offers 30-40% enhancement on 15N → 13C‧ transfer, compared to TEDOR. Besides, Bro-DBP can also be used as a carbonyl (13C‧)-selected method, whose 15N → 13C‧ efficiency is up to 1.7 times that of TEDOR and is also higher than that of band-selective DBP. The performance of Bro-DBP is demonstrated on the N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (fMLF) peptide and the U-13C, 15N labeled β1 immunoglobulin binding domain of protein G (GB1) microcrystalline protein. Since Bro-DBP is as robust, simple and efficient as TEDOR, we believe it is very useful for protein studies in MAS solid-state NMR.

  15. Compression selective solid-state chemistry

    NASA Astrophysics Data System (ADS)

    Hu, Anguang

    Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.

  16. The Rotational Spectrum of Singly and Doubly 13C-SUBSTITUTED Dimethylether

    NASA Astrophysics Data System (ADS)

    Koerber, Monika; Endres, Christian P.; Lewen, Frank; Giesen, Thomas F.; Schlemmer, Stephan; Pohl, Roland; Klein, Axel

    2010-06-01

    Dimethylether (DME) is a nearly prolate asymmetric top with two internal rotors (methyl groups) which undergo periodic large amplitude motions and show a complicated torsional splitting of each rotational energy level. Due to its complex spectrum and its high abundance in hot cores such as Orion KL or Sagittarius B2 at temperatures exceeding 100 K, DME is very prominent in astronomical line surveys and contributes to spectral line confusion of such sources. The interpretation of astronomical observations therefore depends on the knowledge of accurate rest frequencies and reliable intensities. Precise predictions for the ground state of DME's main isotopologue are now available up to 2.1 THz In contrast, very little is known about 13C-substituted DME. Only a few data are available on singly 13C-substituted DME, 12CH_3O13CH_3. However, no data are available on doubly 13C-substituted DME, (13CH_3)_2O, yet. While in (13CH_3)_2O the two internal rotating methyl groups are equivalent and the splitting of rotational energy levels into four substates is comparable to the main isotopologue, singly 13C-substituted DME has two non-equivalent internal rotors resulting in torsional splitting of rotational energy levels into five substates. The purpose of our new laboratory measurements is to extend the knowledge on the astrophysically relevant species 12CH_3O13CH_3. To analyze the complicated spectrum resulting from a 13C-enriched sample of DME, containing all different 13C-substituted species as well as the main isotopologue, also precise data on doubly 13C-substituted DME are inevitable. We performed measurements in the frequency region 35-120 GHz using an all solid state spectrometer. Rotational as well as torsional parameters have been obtained for (13CH_3)_2O as well as 12CH_3O13CH_3 by fitting the assigned transitions to an effective rotational Hamiltonian introduced by Peter Groner. C. Comito et al., Astrophys. J. Suppl. Ser. 156, 127-167 (2005) C. P. Endres et al

  17. Solid-State Powered X-band Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Mohamed A.K.; Nann, Emilio A.; Dolgashev, Valery A.

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple testmore » cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.« less

  18. Solid state amorphization kinetic of alpha lactose upon mechanical milling.

    PubMed

    Caron, Vincent; Willart, Jean-François; Lefort, Ronan; Derollez, Patrick; Danède, Florence; Descamps, Marc

    2011-11-29

    It has been previously reported that α-lactose could be totally amorphized by ball milling. In this paper we report a detailed investigation of the structural and microstructural changes by which this solid state amorphization takes place. The investigations have been performed by Powder X-ray Diffraction, Solid State Nuclear Magnetic Resonance ((13)C CP-MAS) and Differential Scanning Calorimetry. The results reveal the structural complexity of the material in the course of its amorphization so that it cannot be considered as a simple mixture made of a decreasing crystalline fraction and an increasing amorphous fraction. Heating this complexity can give rise to a fully nano-crystalline material. The results also show that chemical degradations upon heating are strongly connected to the melting process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Racemic crystals of trolox derivatives compared to their chiral counterparts: Structural studies using solid-state NMR, DFT calculations and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wałejko, P.; Paradowska, K.; Szeleszczuk, Ł.; Wojtulewski, S.; Baj, A.

    2018-03-01

    Trolox C (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) is a water-soluble vitamin E analogue that is available in enantiomeric forms R or S. Enantiomerically pure Trolox 1, its derivatives 2, 3 (R and S enantiomers) and racemic forms 1-3 were studied using solid-state 13C cross-polarisation (CP) magic angle spinning (MAS) NMR (13C CPMAS NMR). Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of the shielding constants supported the assignment of 13C resonances in the solid-state NMR spectra. For the 13C CPMAS NMR spectra of 1, resonances of pure enantiomers were significantly broader than those of the racemic R/S form. In order to explain these effects, five of the available crystal structures were analysed (1R/S, 3R/S, 2S and the newly measured 2R/S and 3S). Cyclic dimers with one R and one S enantiomer linked by two OHsbnd Odbnd C2b hydrogen bonds were formed in 1R/S. Similar hydrogen-bonded dimers were present in 3S but not in 3R/S, in which interactions are water-mediated. A comparison of X-ray diffraction, CPMAS NMR data and the DFT GIPAW calculations of racemic forms and pure enantiomers was conducted for the first time. Our results, particularly the solid-state NMR data, were discussed in relation to Wallach's rule, that the racemic crystal appears as more ordered than its chiral counterpart.

  20. Headspace solid phase microextraction--GC/C-IRMS for delta13CVPDB measurements of mono-aromatic hydrocarbons using EA-IRMS calibration.

    PubMed

    Ebongué, Véronique Woule; Geypens, Benny; Berglund, Michael; Taylor, Philip

    2009-03-01

    This work aims at comparing the delta(13)C(VPDB) of mono-aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene isomers (BTEX) measured by elemental analyser (EA)-isotope ratio mass spectrometer (IRMS) with the delta(13)C(VPDB) measured on the same compounds by headspace solid phase microextraction - GC/C-IRMS (hSPME - GC/C-IRMS) with the final goal of using these compounds as internal standards on the latter system. The EA-IRMS measurements were done using calcium and lithium carbonate isotopic reference materials: NBS19 and L-SVEC for establishing the delta(13)C(VPDB) scale. The EA-IRMS measurements with helium dilution of a set of five reference materials (USGS40, USGS41, IAEA-CH-6, IAEA-CH-3 and IAEA-601) show systematic bias of 1 per thousand relative to their assigned values. This bias due to the dilution mechanism in the used ConfloII interface device could not be avoided. As the selected hydrocarbons: BTEX could not be analysed by EA-IRMS without helium dilution, their delta(13)C(VPDB) must be corrected from this observed bias using an external calibration. The CO(2) gas calibrated using EA-IRMS without helium dilution, was used as an in-house reference for the delta(13)C(VPDB) measurements of the BTEX by the hSPME - GC/C-IRMS system. The comparison made between the delta(13)C(VPDB) measured on the same BTEX compounds by EA-IRMS (with external calibration) and by hSPME - GC/C-IRMS techniques showed good agreement.

  1. Solid-State Quantum Refrigeration

    DTIC Science & Technology

    2013-03-01

    i n a l Te c h n... i c a l Re p o r t Name of Grantee: Northwestern University Grant Title: Solid-State Quantum Refrigeration Grant #: FA9550-09-1...200 -150 -100 -50 0 Anglewavelength b a c k c o u p lin g i n to th e w a v e g u id e l o s s ( d B ) Figure 8. results of a) percentage

  2. Powder X-ray diffraction, infrared and 13C NMR spectroscopic studies of the homologous series of some solid-state zinc(II) and sodium(I) n-alkanoates

    NASA Astrophysics Data System (ADS)

    Nelson, Peter N.; Taylor, Richard A.

    2015-03-01

    A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state 13C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc > 8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.

  3. Deuterium and carbon-13 NMR of the solid polymorphism of benzenehexoyl hexa-n-hexanoate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lifshitz, E.; Goldfarb,, D.; Vega, S.

    Deuterium and carbon-13 NMR of specifically labeled benzenehexoyl hexa-n-hexanoate in the various solid-state phases are reported. The spectra exhibit dynamic line shapes which change discontinuously at the phase transitions. The results are interpreted in terms of sequential melting of the side chains on going from the low-temperature solid phases IV, III, etc., toward the liquid. In phase IV the molecules are very nearly static, except for fast rotation of the methyl groups about their C/sub 3/ axes. The results in phase III were quantitatively interpreted in terms of a two-site isomerization process involving simultaneous rotation by 95/sup 0/ about C/submore » 1/-C/sub 2/ and transition from gtg to g'g't (or equivalently g'tg' to ggt) for the rest of the chain. The specific rate of this reaction at 0/sup 0/C is approx. 10/sup 5/s/sup -1/. In phase II additional chain isomerization processes set-in which were, however, not analyzed quantitatively. Further motional modes, involving reorientation of whole chains about their C/sup ar/-O bonds, appear on going to phase I. In all solid phases the benzene ring remains static.« less

  4. Cationic copper (I) complexes with bulky 1,4-diaza-1,3-butadiene ligands - Synthesis, solid state structure and catalysis

    NASA Astrophysics Data System (ADS)

    Anga, Srinivas; Kottalanka, Ravi K.; Pal, Tigmansu; Panda, Tarun K.

    2013-05-01

    We report the full characterization of two glyoxal-based ligands N,N bis(diphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh2, 1) and more bulky N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh3, 2) by the condensation reaction of glyoxal and diphenylmethanamine and triphenyl-methanamine respectively. The copper (I) complex of composition [Cu(DADPh2)2]PF6 (3) having two neutral bidentate N,N bis(diphenyl-methyl)-1,4-diaza-1,3-butadiene ligand was prepared by the reaction of [Cu(CH3CN)4]PF6 and 1 in 1:2 ratio in dichloromethane. In a similar reaction with N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (2) and [Cu(CH3CN)4]PF6 in dichloromethane yielded corresponding heteroleptic copper (I) complex [Cu(DADPh3)(CH3CN)2]PF6 (4). Another copper (I) complex [Cu(DADPh2)(PPh3)]PF6 (5) can also be obtained by the one pot reaction involving ligand 1, [Cu(CH3CN)4]PF6 and triphenylphosphine. Solid state structures of all the five compounds were established by single crystal X-ray diffraction analysis. The solid state structures of the copper complexes 3-5 reveal a distorted tetrahedral geometry around the copper (I) centers. The copper complexes 3-5 were tested as catalysts for the coupling reaction of o-iodophenol and phenyl acetylene and it was observed that complex 4 exhibits the highest catalytic activity.

  5. Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C NMR Spectroscop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Hu, Jian Z.; Hoyt, David W.

    2010-03-11

    Ex situ solid state NMR was used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration (GCS) using a model silicate mineral forsterite (Mg2SiO4)+supercriticalCO2 with and without H2O. Run conditions were 80 C and 96 atm. 29Si NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce dissolved Mg2+, and mono- and oligomeric hydroxylated silica species. Surface hydrolysis products contain only Q0 (Si(OH)4) and Q1(Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to lessmore » than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. 29Si NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. 13C MAS NMR identified a possible reaction intermediate as (MgCO3)4-Mg(OH)2-5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed.« less

  6. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    PubMed

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  7. Rovibrational constants of the ground state and v8 = 1 state of 13C2HD3 by high-resolution FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ng, L. L.; Tan, T. L.

    2016-06-01

    The Fourier transform infrared (FTIR) spectrum of the c-type ν8 band of 13C2HD3 was recorded for the first time at a unapodized resolution of 0.0063 cm-1 in the wavenumber region of 830-1000 cm-1. Through the fitting of a total of 1057 assigned infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation, rovibrational constants for the upper state (v8 = 1) up to five quartic centrifugal distortion terms were derived for the first time with a root-mean-square (rms) deviation of 0.00073 cm-1. The band center of ν8 of 13C2HD3 was found to be 913.011021(55) cm-1. Ground state rovibrational constants up to five quartic terms of 13C2HD3 were also determined from a fit of 453 ground state combination-differences from the present infrared measurements with an rms deviation of 0.00072 cm-1 for the first time. The uncertainty of the measured infrared lines was estimated to be ±0.0012 cm-1. From the ground state rotational constants, the inertial defect of 13C2HD3 was calculated to be 0.06973(16) uÅ2, showing the high planarity of the molecule.

  8. Monitoring Cocrystal Formation via In Situ Solid-State NMR.

    PubMed

    Mandala, Venkata S; Loewus, Sarel J; Mehta, Manish A

    2014-10-02

    A detailed understanding of the mechanism of organic cocrystal formation remains elusive. Techniques that interrogate a reacting system in situ are preferred, though experimentally challenging. We report here the results of a solid-state in situ NMR study of the spontaneous formation of a cocrystal between a pharmaceutical mimic (caffeine) and a coformer (malonic acid). Using (13)C magic angle spinning NMR, we show that the formation of the cocrystal may be tracked in real time. We find no direct evidence for a short-lived, chemical shift-resolved amorphous solid intermediate. However, changes in the line width and line center of the malonic acid methylene resonance, in the course of the reaction, provide subtle clues to the mode of mass transfer that underlies cocrystal formation.

  9. Recent advances in efficient long-life, eye-safe solid state and CO2 lasers for laser radar applications

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Buoncristiani, A. M.; Brockman, P.; Bair, C. H.; Schryer, D. R.; Upchurch, B. T.; Wood, G. M.

    1989-01-01

    The key problems in the development of eye-safe solid-state lasers are discussed, taking into account the energy transfer mechanisms between the complicated energy level manifolds of the Tm, Ho, Er ion dopants in hosts with decreasing crystal fields such as YAG or YLF. Optimization of energy transfer for efficient lasing through choice of dopant concentration, power density, crystal field and temperature is addressed. The tailoring of energy transfer times to provide efficient energy extraction for short pulses used in DIAL and Doppler lidar is considered. Recent advances in Pt/SnO2 oxide catalysts and other noble metal/metal oxide combinations for CO2 lasers are discussed. Emphasis is given to the dramatic effects of small quantities of H2O vapor for increasing the activity and lifetime of Pt/SnO2 catalysts and to increased lifetime operation with rare isotope (C-12)(O-18)2 lasing mixtures.

  10. A review of lithium and non-lithium based solid state batteries

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam

    2015-05-01

    Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.

  11. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations Part II: CP kinetics and relaxation analysis.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Millimeter and submillimeter wave spectra of 13C-glycolaldehydes

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Motiyenko, R. A.; Margulès, L.; Huet, T. R.

    2013-01-01

    Context. Glycolaldehyde (CH2OHCHO) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. Astronomical surveys of interstellar molecules, such as those available with the very sensitive ALMA telescope, require preliminary laboratory investigations of the microwave and submillimeter-wave spectra of molecular species including new isotopologs - to identify these in the interstellar media. Aims: To achieve the detection of the 13C isotopologs of glycolaldehyde in the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. Methods: The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945 GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with an accuracy of 30 kHz up to 700 GHz and of 50 kHz above 700 GHz. We analyzed the spectra with a standard Watson Hamiltonian. Results: About 10 000 new lines were identified for each isotopolog. The spectroscopic parameters were determined for the ground- and the three lowest vibrational states up to 945 and 630 GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. Conclusions: The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A96

  13. Litter decomposition over broad spatial and long time scales investigated by advanced solid-state NMR: insight into effects of climate, litter quality, and time

    NASA Astrophysics Data System (ADS)

    Mao, J.; Chen, N.; Harmon, M. E.; Li, Y.; Cao, X.; Chappell, M.

    2012-12-01

    Advanced 13C solid-state NMR techniques were employed to study the chemical structural changes of litter decomposition across broad spatial and long time scales. The fresh and decomposed litter samples of four species (Acer saccharum (ACSA), Drypetes glauca (DRGL), Pinus resinosa (PIRE), and Thuja plicata (THPL)) incubated for up to 10 years at four sites under different climatic conditions (from Arctic to tropical forest) were examined. Decomposition generally led to an enrichment of cutin and surface wax materials, and a depletion of carbohydrates causing overall composition to become more similar compared with original litters. However, the changes of main constituents in the four litters were inconsistent with the four litters following different pathways of decomposition at the same site. As decomposition proceeded, waxy materials decreased at the early stage and then gradually increased in PIRE; DRGL showed a significant depletion of lignin and tannin while the changes of lignin and tannin were relative small and inconsistent for ACSA and THPL. In addition, the NCH groups, which could be associated with either fungal cell wall chitin or bacterial wall petidoglycan, were enriched in all litters except THPL. Contrary to the classic lignin-enrichment hypothesis, DRGL with low-quality C substrate had the highest degree of composition changes. Furthermore, some samples had more "advanced" compositional changes in the intermediate stage of decomposition than in the highly-decomposed stage. This pattern might be attributed to the formation of new cross-linking structures, that rendered substrates more complex and difficult for enzymes to attack. Finally, litter quality overrode climate and time factors as a control of long-term changes of chemical composition.

  14. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1-13 C]Alanine.

    PubMed

    Park, Jae Mo; Khemtong, Chalermchai; Liu, Shie-Chau; Hurd, Ralph E; Spielman, Daniel M

    2017-05-01

    The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD + ]. In this study, we assessed the use of hyperpolarized [1- 13 C]alanine and the subsequent detection of the intracellular products of [1- 13 C]pyruvate and [1- 13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1- 13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. In vivo rat liver spectra showed peaks from [1- 13 C] alanine and the products of [1- 13 C]lactate, [1- 13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/ 13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P < 0.001) consistent with the increased NADH produced by liver metabolism of ethanol to acetaldehyde and then acetate. A decrease in 13 C-bicarbonate production was also noted, potentially reflecting ethanol-induced mitochondrial redox changes. A method to measure in vivo tissue redox using hyperpolarized [1- 13 C]alanine is presented, with the validity of the proposed 13 C-pyruvate/ 13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. The Pythagorean Theorem and the Solid State

    ERIC Educational Resources Information Center

    Kelly, Brenda S.; Splittgerber, Allan G.

    2005-01-01

    Packing efficiency and crystal density can be calculated from basic geometric principles employing the Pythagorean theorem, if the unit-cell structure is known. The procedures illustrated have applicability in courses such as general chemistry, intermediate and advanced inorganic, materials science, and solid-state physics.

  16. Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries

    DOE PAGES

    Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian; ...

    2017-06-09

    Solid state electrolyte systems boasting Li+ conductivity of >10 mS cm -1 at room temperature have opened the potential for developing a solid state battery with power and energy densities that are competitive with conventional liquid electrolyte systems. The primary focus of this review is twofold. First, differences in Li penetration resistance in solid state systems are discussed, and kinetic limitations of the solid state interface are highlighted. Second, technological challenges associated with processing such systems in relevant form factors are elucidated, and architectures needed for cell level devices in the context of product development are reviewed. Specific research vectorsmore » that provide high value to advancing solid state batteries are outlined and discussed.« less

  17. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...

  18. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 13.1008 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service...

  19. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...

  20. Highly Conductive Solid-State Hybrid Electrolytes Operating at Subzero Temperatures.

    PubMed

    Kwon, Taeyoung; Choi, Ilyoung; Park, Moon Jeong

    2017-07-19

    We report a unique, highly conductive, dendrite-inhibited, solid-state polymer electrolyte platform that demonstrates excellent battery performance at subzero temperatures. A design based on functionalized inorganic nanoparticles with interconnected mesopores that contain surface nitrile groups is the key to this development. Solid-state hybrid polymer electrolytes based on succinonitrile (SN) electrolytes and porous nanoparticles were fabricated via a simple UV-curing process. SN electrolytes were effectively confined within the mesopores. This stimulated favorable interactions with lithium ions, reduced leakage of SN electrolytes over time, and improved mechanical strength of membranes. Inhibition of lithium dendrite growth and improved electrochemical stability up to 5.2 V were also demonstrated. The hybrid electrolytes exhibited high ionic conductivities of 2 × 10 -3 S cm -1 at room temperature and >10 -4 S cm -1 at subzero temperatures, leading to stable and improved battery performance at subzero temperatures. Li cells made with lithium titanate anodes exhibited stable discharge capacities of 151 mAh g -1 at temperatures below -10 °C. This corresponds to 92% of the capacity achieved at room temperature (164 mAh g -1 ). Our work represents a significant advance in solid-state polymer electrolyte technology and far exceeds the performance available with conventional polymeric battery separators.

  1. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  2. Triple Resonance Solid State NMR Experiments with Reduced Dimensionality Evolution Periods

    NASA Astrophysics Data System (ADS)

    Astrof, Nathan S.; Lyon, Charles E.; Griffin, Robert G.

    2001-10-01

    Two solid state NMR triple resonance experiments which utilize the simultaneous incrementation of two chemical shift evolution periods to obtain a spectrum with reduced dimensionality are described. The CON CA experiment establishes the correlation of 13Ci-1 to 13Cαi and 15Ni by simultaneously encoding the 13COi-1 and 15Ni chemical shifts. The CAN COCA experiment establishes the correlation 13Cai and 15COi to 13Cαi-1 and 15Ni-1 within a single experiment by simultaneous encoding of the 13Cαi and 15Ni chemical shifts. This experiment establishes sequential amino acid correlations in close analogy to the solution state HNCA experiment. Reduced dimensionality 2D experiments are a practical alternative to recording multiple 3D data sets for the purpose of obtaining sequence-specific resonance assignments of peptides and proteins in the solid state.

  3. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  4. Propellant development for the Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Landers, L. C.; Stanley, C. B.; Ricks, D. W.

    1991-01-01

    The properties of a propellant developed for the NASA Advanced Solid Rocket Motor (ASRM) are described in terms of its composition, performance, and compliance to NASA specifications. The class 1.3 HTPB/AP/A1 propellant employs an ester plasticizer and the content of ballistic solids is set at 88 percent. Ammonia evolution is prevented by the utilization of a neutral bonding agent which allows continuous mixing. The propellant also comprises a bimodal AP blend with one ground fraction, ground AP of at least 20 microns, and ferric oxide to control the burning rate. The propellant's characteristics are discussed in terms of tradeoffs in AP particle size and the types of Al powder, bonding agent, and HTPB polymer. The size and shape of the ballistic solids affect the processability, ballistic properties, and structural properties of the propellant. The revised baseline composition is based on maximizing the robustness of in-process viscosity, structural integrity, and burning-rate tailoring range.

  5. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  6. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  7. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  8. Probing Silica-Biomolecule Interactions by Solid-State NMR and Molecular Dynamics Simulations.

    PubMed

    Brückner, Stephan Ingmar; Donets, Sergii; Dianat, Arezoo; Bobeth, Manfred; Gutiérrez, Rafael; Cuniberti, Gianaurelio; Brunner, Eike

    2016-11-08

    Understanding the molecular interactions between inorganic phases such as silica and organic material is fundamental for chromatographic applications, for tailoring silica-enzyme interactions, and for elucidating the mechanisms of biomineralization. The formation, structure, and properties of the organic/inorganic interface is crucial in this context. Here, we investigate the interaction of selectively 13 C-labeled choline with 29 Si-labeled monosilicic acid/silica at the molecular level. Silica/choline nanocomposites were analyzed by solid-state NMR spectroscopy in combination with extended molecular dynamics (MD) simulations to understand the silica/organic interface. Cross-polarization magic angle spinning (CP MAS)-based NMR experiments like 1 H- 13 C CP-REDOR (rotational-echo double resonance), 1 H- 13 C HETCOR (heteronuclear correlation), and 1 H- 29 Si- 1 H double CP are employed to determine spatial parameters. The measurement of 29 Si- 13 C internuclear distances for selectively 13 C-labeled choline provides an experimental parameter that allows the direct verification of MD simulations. Atomistic modeling using classical MD methodologies is performed using the INTERFACE force field. The modeling results are in excellent agreement with the experimental data and reveal the relevant molecular conformations as well as the nature and interplay of the interactions between the choline cation and the silica surface. Electrostatic interactions and hydrogen bonding are both important and depend strongly on the hydration level as well as the charge state of the silica surface.

  9. Applications of solid-state NMR to membrane proteins.

    PubMed

    Ladizhansky, Vladimir

    2017-11-01

    Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    PubMed

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. Copyright © 2013 John Wiley & Sons, Ltd.

  11. 13C CPMAS NMR studies and DFT calculations of triterpene xylosides isolated from Actaea racemosa

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Paradowska, Katarzyna; Gliński, Jan A.; Wawer, Iwona

    2011-05-01

    13C CPMAS NMR spectra of four triterpene glycosides: cimigenol xyloside ( 1), 26-deoxyactein ( 2), cimicifugoside H-1 ( 3) and 24-acethylhydroshengmanol xyloside ( 4) were recorded and analyzed to characterize their solid-state structure. Experimental data were supported by theoretical calculations of NMR shielding constants with the GIAO/6-31G**-su1 approach. A number of methods for the conformational search and a number of functionals for the DFT calculations were applied to ( 1). The best method was proven to be MMFF or MMFFAQ for the conformational search and the PBE1PBE functional for the DFT calculations. Extra calculations simulating C16 dbnd O⋯HOH hydrogen bond yield the isotropic shielding closer to the experimental solid-state value. For all the compounds CP kinetics parameters were calculated using either the I-S or the I-I*-S model. The analysis of CP kinetics data for methyl groups revealed differences in the T2 time constant for two methyl groups (C29 and C30) linked at C4.

  12. Sensitizing solid state nuclear magnetic resonance of dilute nuclei by spin-diffusion assisted polarization transfers.

    PubMed

    Lupulescu, Adonis; Frydman, Lucio

    2011-10-07

    Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics

  13. A theoretical perspective on the accuracy of rotational resonance (R 2)-based distance measurements in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Ramachandran, Ramesh

    2010-03-01

    The application of solid-state NMR methodology for bio-molecular structure determination requires the measurement of constraints in the form of 13C-13C and 13C-15N distances, torsion angles and, in some cases, correlation of the anisotropic interactions. Since the availability of structurally important constraints in the solid state is limited due to lack of sufficient spectral resolution, the accuracy of the measured constraints become vital in studies relating the three-dimensional structure of proteins to its biological functions. Consequently, the theoretical methods employed to quantify the experimental data become important. To accentuate this aspect, we re-examine analytical two-spin models currently employed in the estimation of 13C-13C distances based on the rotational resonance (R 2) phenomenon. Although the error bars for the estimated distances tend to be in the range 0.5-1.0 Å, R 2 experiments are routinely employed in a variety of systems ranging from simple peptides to more complex amyloidogenic proteins. In this article we address this aspect by highlighting the systematic errors introduced by analytical models employing phenomenological damping terms to describe multi-spin effects. Specifically, the spin dynamics in R 2 experiments is described using Floquet theory employing two different operator formalisms. The systematic errors introduced by the phenomenological damping terms and their limitations are elucidated in two analytical models and analysed by comparing the results with rigorous numerical simulations.

  14. Rotational spectrum of 13C{2}-methyl formate (HCOO13CH{3}) and detection of the two 13C-methyl formate in Orion

    NASA Astrophysics Data System (ADS)

    Carvajal, M.; Margulès, L.; Tercero, B.; Demyk, K.; Kleiner, I.; Guillemin, J. C.; Lattanzi, V.; Walters, A.; Demaison, J.; Wlodarczak, G.; Huet, T. R.; Møllendal, H.; Ilyushin, V. V.; Cernicharo, J.

    2009-06-01

    Context: Laboratory measurements and analysis of the microwave and millimeter-wave spectra of potential interstellar molecules are a prerequisite for their subsequent identification by radioastronomical techniques. The spectral analysis provides spectroscopic parameters that are used in the assignment procedure of the laboratory spectra, and that also predict the frequencies of transitions not measured in the laboratory with a high degree of precision. Aims: An experimental laboratory study and its theoretical analysis is presented for 13C2-methyl formate (HCOO13CH3) allowing a search for this isotopologue in the Orion molecular cloud. The 13C1-methyl formate (H13COOCH3) molecule was also searched for in this interstellar cloud, using previously published spectroscopic data. Methods: The experimental spectra of 13C2-methyl formate were recorded in the microwave and sub-mm energy ranges (4-20 GHz, 8-80 GHz, 150-700 GHz). The spectra were analyzed using the Rho-Axis Method (RAM), which takes the CH3 internal rotation and the coupling between internal rotation and global rotation into account. Results: Twenty-seven spectroscopic constants of 13C2-methyl formate have been obtained from a fit of 936 transitions of the ground torsional state with a standard (unitless) deviation of 1.08. A prediction of line positions and intensities is also produced. This prediction allowed us to identify 230 13C2-methyl formate lines in the Orion interstellar molecular cloud. We refitted all previously published ground state transitions of the 13C1-methyl formate molecule in order to provide a prediction of its ground state spectrum. 234 lines of 13C1-methyl formate were detected in the Orion interstellar cloud using that prediction. Tables A.1-A.5 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/500/1109

  15. NMR doesn't lie or how solid-state NMR spectroscopy contributed to a better understanding of the nature and function of soil organic matter (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    for organo-mineral interactions. Since decent solid-state NMR spectra cannot be obtained from graphenic components, the successful acquisition of solid-state 13C and 15N NMR spectra of charcoals challenged the well accepted model of their chemical nature. Application of advanced 2D NMR approaches confirmed the new view of charcoal as a heterogeneous material, the composition of which depends upon the feedstock and charring condition. The respective consequences of this alternative for the understanding of C sequestration are still matter of ongoing debates. Although the sensitivity of 15N for NMR spectroscopy is 50 times lower than that of 13C, first solid-state 15N NMR spectra of soils with natural 15N abundance were already published in the 1990's. They clearly identified peptide-like structures as the main organic N form in unburnt soils. However, in spite of their high contribution to SOM, the role of peptides in soils is far from understood. Considering the new technological developments in the field of NMR spectroscopy, this technique will certainly not stop to contribute to unexpected results.

  16. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall*

    PubMed Central

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.

    2015-01-01

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492

  17. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall.

    PubMed

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E

    2015-05-29

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. VizieR Online Data Catalog: The mm and sub-mm spectra of 13C-glycolaldehydes (Haykal+, 2013)

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Motiyenko, R. A.; Margules, L.; Huet, T. R.

    2012-11-01

    To allow the detection of the 13C-isotopologues of glycolaldeh the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with accuracy, better than 30kHz up to 700GHz and 50kHz above. The analysis was performed using a standard Watson Hamiltonian. Around 10000 new lines were identified for each isotopologue. The spectroscopic parameters were determined for the ground and the three lowest vibrational states, respectively up to 945 and 630GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. (2 data files).

  19. The Synthesis of LiMnxFe1−xPO4/C Cathode Material through Solvothermal Jointed with Solid-State Reaction

    PubMed Central

    He, Xiangming; Wang, Jixian; Dai, Zhongjia; Wang, Li; Tian, Guangyu

    2016-01-01

    LiMnxFe1−xPO4/C material has been synthesized through a facile solid-state reaction under the condition of carbon coating, using solvothermal-prepared LiMnPO4 and LiFePO4 as precursors and sucrose as a carbon resource. XRD and element distribution analysis reveal completed solid-state reaction of precursors. LiMnxFe1−xPO4/C composites inherit the morphology of precursors after heat treatment without obvious agglomeration and size increase. LiMnxFe1−xPO4 solid solution forms at low temperature around 350 °C, and Mn2+/Fe2+ diffuse completely within 1 h at 650 °C. The LiMnxFe1−xPO4/C (x < 0.8) composite exhibits a high-discharge capacity of over 120 mAh·g−1 (500 Wh·kg−1) at low C-rates. This paves a way to synthesize the crystal-optimized LiMnxFe1−xPO4/C materials for high performance Li-ion batteries. PMID:28773887

  20. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  1. Humic acids from particulate organic matter in the Saguenay Fjord and the St. Lawrence Estuary investigated by advanced solid-state NMR

    NASA Astrophysics Data System (ADS)

    Mao, J.-D.; Tremblay, L.; Gagné, J.-P.; Kohl, S.; Rice, J.; Schmidt-Rohr, K.

    2007-11-01

    Detailed structural information on two humic acids extracted from two sinking particulate matter samples at a water depth of 20 m in the Saguenay Fjord (F-20-HA) and the St. Lawrence Estuary (E-20-HA) (Canada), was obtained by advanced solid-state NMR. Spectral-editing analyses provided numerous structural details rarely reported in geochemical studies. The NMR data account almost quantitatively for the elemental compositions. The two humic acids were found to be quite similar, consisting of four main structural components: peptides (ca. 39 ± 3% vs. 34 ± 3% of all C for E-20-HA and F-20-HA, respectively); aliphatic chains, 14-20 carbons long (ca. 25 ± 5% vs. 17 ± 5% of all C); aromatic structures (ca. 17 ± 2% vs. 26 ± 2% of all C); and sugar rings (14 ± 2% vs. 15 ± 2% of all C). Peptides were identified by 13C{ 14N} SPIDER NMR, which selects signals of carbons bonded to nitrogen, and by dipolar DEPT, which selects CH-group signals, in particular the NCH band of peptides. The SPIDER spectra also indicate that heterocycles constitute a significant fraction of the aromatic structures. The aliphatic (CH 2) n chains, which are highly mobile, contain at least one double bond per two chains and end in methyl groups. 1H spin diffusion NMR experiments showed that these mobile aliphatic chains are in close (<10 nm) proximity to the other structural components. A major bacterial contribution to these two samples could explain why the samples, which have different dominant organic matter sources (terrestrial vs. marine), are similar to each other as well as to degraded algae and particles from other waters. The NMR data suggest structures containing mobile lipids in close proximity to peptides and carbohydrates (e.g., peptidoglycan) as found in bacterial cell walls. Measured yields of muramic acid and D-amino acids confirmed the presence of bacterial cell wall components in the studied samples.

  2. Solid state high resolution multi-spectral imager CCD test phase

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.

  3. Interaction of S100A13 with C2 domain of receptor for advanced glycation end products (RAGE).

    PubMed

    Rani, Sandhya G; Sepuru, Krishna Mohan; Yu, Chin

    2014-09-01

    S100A13 is involved in several key biological functions like angiogenesis, tumor formation and cell apoptosis. It is a homodimeric protein that belongs to the S100 protein family. S100A13 is co-expressed with acidic fibroblast growth factor (FGF1) and interleukin-1α which are key angiogenesis inducers. The S100 proteins have been shown to be involved in several cellular functions such as calcium homeostasis, cell growth and differentiation dynamic of cytoskeleton. Its biological functions are mainly mediated through the receptor for advanced glycation end products (RAGE) signaling. RAGE is involved in inflammatory processes and is associated with diabetic complications, tumor outgrowth, and neurodegenerative disorders. RAGE induces cellular signaling upon binding of different ligands, such as S100 proteins, glycated proteins, and HMGB1. RAGE signaling is complex, and it depends on the cell type and concentration of the ligand. Molecular level interactions of RAGE and S100 proteins are useful to understand the RAGE signaling diversity. In this report we focus on the molecular level interactions of S100A13 and RAGE C2 domain. The binding between RAGE C2 and S100A13 is moderately strong (Kd~1.3μM). We have solved the solution structure of the S100A13-RAGE C2 complex and pronounce the interface regions in S100A13-RAGE C2 complex which are helpful for drug development of RAGE induced diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A Dose Escalation Study in Adult Patients With Advanced Solid Malignancies

    ClinicalTrials.gov

    2018-06-05

    Advanced Solid Tumors With Alterations of FGFR1, 2 and or 3; Squamous Lung Cancer With FGFR1 Amplification; Bladder Cancer With FGFR3 Mutation or Fusion; Advanced Solid Tumors With FGFR1 Amplication; Advanced Solid Tumors With FGFR2 Amplication; Advanced Solid Tumors With FGFR3 Mutation

  5. Prospective Work for Alma: the Millimeterwave and Submillimeterwave Spectrum of 13C-GLYCOLALDEHYDE

    NASA Astrophysics Data System (ADS)

    Haykal, Imane; Margulès, Laurent; Huet, Therese R.; Motiyenko, Roman; Guillemin, J.-C.

    2011-06-01

    Glycolaldehyde has been identified in interstellar sources. The relative abundance ratios of the three isomers (acetic acid) : (glycolaldehyde) : (methylformate) were estimated . The detection of 13C_1 and 13C_2 isotopomers of methylformate has been recently reported in Orion, as a result of the detailled labororatory spectroscopic study. Therefore the spectroscopy of the 13C isotopomers of glycolaldehyde is investigated in laboratory in order to provide data for an astronomical search. The instrument ALMA will certainly be a good instrument to detect them. Up to now, only the microwave spectra of 13CH_2OH-CHO and of CH_2OH-13CHO have been observed several years ago in the 12-40 GHz range. Spectra of both species are presently recorded in Lille in the 150-950 GHz range with the new submillimetre-wave spectrometer based on harmonic generation of a microwave synthesizer source, using only solid-state devices, and coupled to a cell of 2.2 m length The absolute accuracy of the line positions is better than 30 KHz. The rotational structure of the ground state and of the three first excited vibrational states has been observed. Two 13C enriched samples were used. The analysis is in progress. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) and by the contract ANR-08-BLAN-0054 J. M. Hollis, S. N. Vogel, L. E. Snyder, et al., Astrophys. J. 554(2001) L81 R. A. H. Butler, F. C. De Lucia, D. T Petkie, et al., Astrophys. J. Supp. 134 (2001) 319 M. T. Beltran, C. Codella, S. Viti, R. Niri, R. Cesaroni, Astrophys. J. 690 (2009) L93. M. Carjaval, L. Margulès, B. Tercero et al., Astron. Astrophys. 500 (2009) 1109. K.-M. Marstokk and H. Møllendal, J. Mol. Struct. 16 (1973) 259. R. A. Motiyenko, L. Margulès, E. A. Alekseev et al., J. Mol. Spectrosc. 264 (2010) 94.

  6. Solid state photochemistry of polycarbonates

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Rembaum, A.; Moacanin, J.

    1978-01-01

    The quantum yield of photoFries rearrangement in a polycarbonate film has been analyzed as a function of temperature and humidity on the basis of previously reported (Koyler and Mann, 1977) experimental data. Results indicate that in the homogeneous amorphous phase, photoFries rearrangement is a concerted process proceeding either from the pi star reversed arrow n singlet, in which case it must be subject to considerable self quenching, or from a triplet, presumably the first triplet since the lifetime of higher triplets is expected to be very short in the solid phase. If the parent excited state is the first triplet, chain scission is possibly an independent process, probably occurring from the pi star reversed arrow n singlet. Evidence of chain scission on photodegradation in the solid state includes loss of C-O and C-C bond intensities revealed in the Fourier transform infrared spectra, gel permeation chromotography elution profiles of degraded film samples dissolved in CHCl3, and a decrease in tensile strength and T sub g as photodegradation proceeds. Chain scission is apparently inhibited as photoFries products accumulate.

  7. Method and system for making integrated solid-state fire-sets and detonators

    DOEpatents

    O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.

    1998-03-24

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.

  8. Effect of milling conditions on solid-state amorphization of glipizide, and characterization and stability of solid forms.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Zhai, Yuanming; Wang, Lili; Li, Shanshan; Yan, Jin; Wu, Di; Ma, Xiaoli; Li, Hui

    2016-09-10

    In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A 13C NMR study of the structure of four cinnamic acids and their methyl esters

    NASA Astrophysics Data System (ADS)

    Silva, A. M. S.; Alkorta, I.; Elguero, J.; Silva, V. L. M.

    2001-09-01

    The 13C NMR spectra, both in DMSO solution and in the solid state of four cinnamic acids (p-methoxy, p-hydroxy, p-methyl, p-chloro) and their corresponding methyl esters have been recorded. The two main results in the solid state are: (i) the only significant difference between acids and esters chemical shifts concerns the Cdbnd O group which, on average, appears at 173 ppm in the acids and 168 ppm in the esters; (ii) the signals of the ortho and meta carbons both in the acids and the esters are splitted. The two 'anomalies' disappear in DMSO solution. These observations can be rationalized using simple GIAO/B3LYP/6-31G∗ calculations.

  10. Promises and challenges in solid-state lighting

    NASA Astrophysics Data System (ADS)

    Schubert, Fred

    2010-03-01

    Lighting technologies based on semiconductor light-emitting diodes (LEDs) offer unprecedented promises that include three major benefits: (i) Gigantic energy savings enabled by efficient conversion of electrical energy to optical energy; (ii) Substantial positive contributions to sustainability through reduced emissions of global-warming gases, acid-rain gases, and toxic substances such as mercury; and (iii) The creation of new paradigms in lighting driven by the unique controllability of solid-state lighting sources. Due to the powerful nature of these benefits, the transition from conventional lighting sources to solid-state lighting is virtually assured. This presentation will illustrate the new world of lighting and illustrate the pervasive changes to be expected in lighting, displays, communications, and biotechnology. The presentation will also address the formidable challenges that must be addressed to continue the further advancement of solid-state lighting technology. These challenges offer opportunities for research and innovation. Specific challenges include light management, carrier transport, and optical design. We will present some innovative approaches in order to solve known technical challenges faced by solid-state lighting. These approaches include the demonstration and use of new optical thin-film materials with a continuously tunable refractive index. These approaches also include the use of polarization-matched structures that reduce the polarization fields in GaInN LEDs and the hotly debated efficiency droop, that is, the decreasing LED efficiency at high currents.

  11. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    PubMed Central

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  12. Effect of critical molecular weight of PEO in epoxy/EPO blends as characterized by advanced DSC and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Lu, Shoudong; Sun, Pingchuan; Xue, Gi

    2013-03-01

    The differential scanning calorimetry (DSC) and solid state NMR have been used to systematically study the length scale of the miscibility and local dynamics of the epoxy resin/poly(ethylene oxide) (ER/PEO) blends with different PEO molecular weight. By DSC, we found that the diffusion behavior of PEO with different Mw is an important factor in controlling these behaviors upon curing. We further employed two-dimensional 13C-{1H}PISEMA NMR experiment to elucidate the possible weak interaction and detailed local dynamics in ER/PEO blends. The CH2O group of PEO forms hydrogen bond with hydroxyl proton of cured-ER ether group, and its local dynamics frozen by such interaction. Our finding indicates that molecular weight (Mw) of PEO is a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interaction in these blends.

  13. Solid state recording current meter conversion

    USGS Publications Warehouse

    Cheng, Ralph T.; Wang, Lichen

    1985-01-01

    The authors describe the conversion of an Endeco-174 current meter to a solid-state recording current meter. A removable solid-state module was designed to fit in the space originally occupied by an 8-track tape cartridge. The module contains a CPU and 128 kilobytes of nonvolatile CMOS memory. The solid-state module communicates with any terminal or computer using an RS-232C interface at 4800 baud rate. A primary consideration for conversion was to keep modifications of the current meter to a minimum. The communication protocol was designed to emulate the Endeco tape translation unit, thus the need for a translation unit was eliminated and the original data reduction programs can be used without any modification. After conversion, the data recording section of the current meter contains no moving parts; the storage capacity of the module is equivalent to that of the original tape cartridge.

  14. (13)C NMR Studies, Molecular Order, and Mesophase Properties of Thiophene Mesogens.

    PubMed

    Veeraprakash, B; Lobo, Nitin P; Narasimhaswamy, T

    2015-12-03

    Three-ring mesogens with a core comprising thiophene linked to one phenyl ring directly and to the other via flexible ester are synthesized with terminal alkoxy chains to probe the mesophase properties and find the molecular order. The phenyl thiophene link in the core offers a comparison of the mesophase features with the molecular shape of the mesogen. The synthesized mesogens display enantiotropic polymesomorphism and accordingly nematic, smectic A, smectic C and smectic B mesophases are perceived depending upon the terminal chain length. For some of the homologues, monotropic higher order smectic phases such as smectic F and crystal E are also witnessed. The existence of polymesomorphism are originally observed by HOPM and DSC and further confirmed by powder X-ray diffraction studies. For the C8 homologue, high resolution solid state (13)C NMR spectroscopy is employed to find the molecular structure in the liquid crystalline phase and using the 2D SLF technique, the (13)C-(1)H dipolar couplings are extracted to calculate the order parameter. By comparing the ratio of local order of thiophene as well as phenyl rings, we establish the bent-core shape of the mesogen. Importantly, for assigning the carbon chemical shifts of the core unit of aligned C8 mesogen, the (13)C NMR measured in mesophase of the synthetic intermediate is employed. Thus, the proposed approach addresses the key step in the spectral assignment of target mesogens with the use of (13)C NMR data of mesomorphic intermediate.

  15. Path toward a high-energy solid-state laser

    NASA Astrophysics Data System (ADS)

    Wood, Gary L.; Merkle, Larry D.; Dubinskii, Mark; Zandi, Bahram

    2004-04-01

    Lasers have come a long way since the first demonstration by Maiman of a ruby crystal laser in 1960. Lasers are used as scientific tools as well as for a wide variety of applications for both commercial industry and the military. Today lasers come in all types, shapes and sizes depending on their application. The solid-state laser has some distinct advantages in that it can be rugged, compact, and self contained, making it reliable over long periods of time. With the advent of diode laser pumping a ten times increase in overall laser efficiency has been realized. This significant event, and others, is changing the way solid-state lasers are applied and allows new possibilities. One of those new areas of exploration is the high energy laser. Solid-state lasers for welding are already developed and yield energies in the 0.5 to 6 kilojoule range. These lasers are at the forefront of what is possible in terms of high energy solid-state lasers. It is possible to achieve energies of greater than 100 kJ. These sorts of energies would allow applications, in addition to welding, such as directed energy weapons, extremely remote sensing, power transfer, propulsion, biological and chemical agent neutralization and unexploded and mine neutralization. This article will review these new advances in solid-state lasers and the different paths toward achieving a high energy laser. The advantages and challenges of each approach will be highlighted.

  16. Materials research for passive solar systems: Solid-state phase-change materials

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  17. 13C CP MAS NMR and GIAO-CHF/DFT calculations of flavonoids: Morin, kaempferol, tricin, genistein, formononetin and 3,7-dihydroxyflavone

    NASA Astrophysics Data System (ADS)

    Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona

    2008-02-01

    13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.

  18. Development of an image converter of radical design. [employing solid state electronics towards the production of an advanced engineering model camera system

    NASA Technical Reports Server (NTRS)

    Irwin, E. L.; Farnsworth, D. L.

    1972-01-01

    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.

  19. Snapshots of a solid-state transformation: coexistence of three phases trapped in one crystal

    DOE PAGES

    Aromí, G.; Beavers, C. M.; Sánchez Costa, J.; ...

    2016-01-05

    Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H 2L)](ClO 4) 2·1.5C 3H 6O (bpp = 2,6-bis(pyrazol-3-yl)pyridine; H 2L = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; C 3H 6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner,more » leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. Lastly, the process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.« less

  20. Advances in Solid State Joining of Haynes 230 High Temperature Alloy

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Schneider, Judy; Walker, Bryant

    2010-01-01

    The J-2X engine is being designed for NASA s new class of crew and launch vehicles, the Ares I and Ares V. The J-2X is a LOX/Hydrogen upper stage engine with 294,000 lbs of thrust and a minimum Isp of 448 seconds. As part of the design criteria to meet the performance requirements a large film-cooled nozzle extension is being designed to further expand the hot gases and increases the specific impulse. The nozzle extension is designed using Haynes 230, a nickel-chromium-tungsten-molybdenum superalloy. The alloy was selected for its high strength at elevated temperatures and resistance to hydrogen embrittlement. The nozzle extension is manufactured from Haynes 230 plate spun-forged to form the contour and chemically-milled pockets for weight reduction. Currently fusion welding is being evaluated for joining the panels which are then mechanically etched and thinned to required dimensions for the nozzle extension blank. This blank is then spun formed into the parabolic geometry required for the nozzle. After forming the nozzle extension, weight reduction pockets are chemically milled into the nozzle. Fusion welding of Haynes results in columnar grains which are prone to hot cracking during forming processes. This restricts the ability to use spin forging to produce the nozzle contour. Solid state joining processes are being pursued as an alternative process to produce a structure more amenable to spin forming. Solid state processes have been shown to produce a refined grain structure within the joint regions as illustrated in Figure 1. Solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature. The work presented in this presentation investigates the feasibility of joining the Haynes 230

  1. Microstructural optimization of solid-state sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These

  2. Mechanistic insight into formation and changes of nanoparticles in MgF2 sols evidenced by liquid and solid state NMR.

    PubMed

    Karg, M; Scholz, G; König, R; Kemnitz, E

    2012-02-28

    The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.

  3. 13C NMR and isotopic (δ13C) investigations on modern vegetation samples: a tool to understand the soil organic matter degradation dynamics and preferences

    NASA Astrophysics Data System (ADS)

    Rakshit, Subhadeep; Sanyal, Prasanta; Vardhan Gaur, Harsh

    2015-04-01

    Soil organic carbon, one of the largest reservoirs of carbon, is a heterogeneous mixture of organic compounds with dominant contribution derived from decomposition of plants in various stages. Although general ideas about the processes and mechanisms of soil organic matter (SOM) degradation have been developed, a very few study has linked the SOM with its parent material. In this study we aim to generate reference data set of functional groups from modern vegetation samples (C3 and C4plants) to better understand the degradation dynamics and preferences. The carbon functional groups from modern vegetation samples (eight C3 and nine C4 plants collected from Mohanpur, Nadia, West Bengal, India) were examined by solid state 13C CPMAS NMR spectroscopy. Additionally, isotopic investigations (δ13C) has also been carried out on the modern vegetation samples to understand the relationship of bulk isotopic values to the concentration of functional groups. The major functional groups (alkyl C, O-alkyl C, aromatic C, carbonyl C and aldehyde/ketone) of modern vegetation samples form 16%, 65%, 5%, 14% and 1% respectively in C3 plants. Considerable differences has been observed for C4 plants with average values of alkyl C, O-alkyl C, aromatic C, carbonyl C and aldehyde/ketone are 8%, 83%, 3%, 5% and 1% respectively. The concentration of functional groups from the modern vegetational samples can be considered as reference scale to compare with the 13C NMR data derived from the different soil horizons to understand the SOM degradation dynamics. The δ13CV PDB values of modern vegetation samples plotted against the individual concentration of functional groups shows significant correlation in C4 plants, whereas a lack in correlation has been observed for C3 plants. We assume this difference in relationship of δ13CV PDB values with functional groups of C3 and C4plants can be due to the differences in photosynthesis pathways, the fractionation of CO2 and accumulation of the products

  4. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  5. Oxidation of [U-13 C]glucose in the human brain at 7T under steady state conditions.

    PubMed

    Cheshkov, Sergey; Dimitrov, Ivan E; Jakkamsetti, Vikram; Good, Levi; Kelly, Dorothy; Rajasekaran, Karthik; DeBerardinis, Ralph J; Pascual, Juan M; Sherry, A Dean; Malloy, Craig R

    2017-12-01

    Disorders of brain energy metabolism and neurotransmitter recycling have been implicated in multiple neurological conditions. 13 C magnetic resonance spectroscopy ( 13 C MRS) during intravenous administration of 13 C-labeled compounds has been used to measure turnover rates of brain metabolites. This approach, however, requires prolonged infusion inside the magnet. Proton decoupling is typically required but may be difficult to implement with standard equipment. We examined an alternative approach to monitor glucose metabolism in the human brain. 13 C-enriched glucose was infused in healthy subjects outside the magnet to a steady-state level of 13 C enrichment. Subsequently, the subjects were scanned at 7T for 60 min without 1 H decoupling. Metabolic modeling was used to calculate anaplerosis. Biomarkers of energy metabolism and anaplerosis were detected. The glutamate C5 doublet provided information about glucose-derived acetyl-coenzyme A flux into the tricarboxylic acid (TCA) cycle via pyruvate dehydrogenase, and the bicarbonate signal reflected overall TCA cycle activity. The glutamate C1/C5 ratio is sensitive to anaplerosis. Brain 13 C MRS at 7T provides information about glucose oxidation and anaplerosis without the need of prolonged 13 C infusions inside the scanner and without technical challenges of 1 H decoupling, making it a feasible approach for clinical research. Magn Reson Med 78:2065-2071, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Non-stationary (13)C-metabolic flux ratio analysis.

    PubMed

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.

  7. Tunable solid state lasers for remote sensing; Proceedings of the Conference, Stanford University, CA, October 1-3, 1984

    NASA Technical Reports Server (NTRS)

    Byer, R. L. (Editor); Trebino, R. (Editor); Gustafson, E. K. (Editor)

    1985-01-01

    Papers are presented on solid-state lasers for remote sensing, diode-pumped Nd:YAG lasers, and tunable solid-state-laser systems. Topics discussed include titanium-sapphire tunable laser systems, the performance of slab geometry, and the development of slab lasers. Consideration is given to garnet host solid-state lasers, the growth of lasers and nonlinear materials, and nonlinear frequency conversion and tunable sources.

  8. Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hui; Wang, Tuo; Oehme, Daniel

    Here, the doublet C4 peaks at ~ 85 and ~ 89 ppm in solid-state 13C NMR spectra of native cellulose have been attributed to signals of C4 atoms on the surface (solvent-exposed) and in the interior of microfibrils, designated as sC4 and iC4, respectively. The relative intensity ratios of sC4 and iC4 observed in NMR spectra of cellulose have been used to estimate the degree of crystallinity of cellulose and the number of glucan chains in cellulose microfibrils. However, the molecular structures of cellulose responsible for the specific surface and interior C4 peaks have not been positively confirmed. Using densitymore » functional theory (DFT) methods and structures produced from classical molecular dynamics simulations, we investigated how the following four factors affect 13C NMR chemical shifts in cellulose: conformations of exocyclic groups at C6 ( tg, gt and gg), H 2O molecules H-bonded on the surface of the microfibril, glycosidic bond angles (Φ, Ψ) and the distances between H4 and HO3 atoms. We focus on changes in the δ 13C4 value because it is the most significant observable for the same C atom within the cellulose structure. DFT results indicate that different conformations of the exocyclic groups at C6 have the greatest influence on δ 13C4 peak separation, while the other three factors have secondary effects that increase the spread of the calculated C4 interior and surface peaks.« less

  9. Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study

    DOE PAGES

    Yang, Hui; Wang, Tuo; Oehme, Daniel; ...

    2017-11-02

    Here, the doublet C4 peaks at ~ 85 and ~ 89 ppm in solid-state 13C NMR spectra of native cellulose have been attributed to signals of C4 atoms on the surface (solvent-exposed) and in the interior of microfibrils, designated as sC4 and iC4, respectively. The relative intensity ratios of sC4 and iC4 observed in NMR spectra of cellulose have been used to estimate the degree of crystallinity of cellulose and the number of glucan chains in cellulose microfibrils. However, the molecular structures of cellulose responsible for the specific surface and interior C4 peaks have not been positively confirmed. Using densitymore » functional theory (DFT) methods and structures produced from classical molecular dynamics simulations, we investigated how the following four factors affect 13C NMR chemical shifts in cellulose: conformations of exocyclic groups at C6 ( tg, gt and gg), H 2O molecules H-bonded on the surface of the microfibril, glycosidic bond angles (Φ, Ψ) and the distances between H4 and HO3 atoms. We focus on changes in the δ 13C4 value because it is the most significant observable for the same C atom within the cellulose structure. DFT results indicate that different conformations of the exocyclic groups at C6 have the greatest influence on δ 13C4 peak separation, while the other three factors have secondary effects that increase the spread of the calculated C4 interior and surface peaks.« less

  10. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    NASA Astrophysics Data System (ADS)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  11. Diversity in C-Xanes Spectra Obtained from Carbonaceous Solid Inclusions from Monahans Halite

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Kilcoyne, A. L. D.; Rahman, Z.; Cody, G. D.

    2014-01-01

    Monahans meteorite (H5) contains fluid inclusion- bearing halite (NaCl) crystals [1]. Microthermometry and Raman spectroscopy showed that the fluid in the inclusions is an aqueous brine and they were trapped near 25degC [1]. Their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism [2]. Abundant solid inclusions are also present in the halites. The solid inclusions include abundant and widely variable organics [2]. Analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction and TEM reveal that these grains include macromolecular carbon similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, magnetite, sulfides, lepidocrocite, carbonates, diamond, apatite and possibly the zeolite phillipsite [3]. Here we report organic analyses of these carbonaceous residues in Monahans halite using C-, N-, and O- X-ray absorption near edge structure (XANES). Samples and Methods: Approximately 100 nm-thick sections were extracted with a focused ion beam (FIB) at JSC from solid inclusions from Monahans halite. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory for XANES spectroscopy. Results and Discussion: C-XANES spectra of the solid inclusions show micrometer-scale heterogeneity, indicating that the macromolecular carbon in the inclusions have complex chemical variations. C-XANES features include 284.7 eV assigned to aromatic C=C, 288.4-288.8 eV assigned to carboxyl, and 290.6 eV assigned to carbonate. The carbonyl features obtained by CXANES might have been caused by the FIB used in sample preparation. No specific N-XANES features are observed. The CXANES spectra obtained from several areas in the FIB sections include type 1&2 chondritic IOM like, type 3 chondritic IOM like, and none of the above

  12. Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources

    NASA Astrophysics Data System (ADS)

    Liao, Kang-Shyang; Sutto, Thomas E.; Andreoli, Enrico; Ajayan, Pulickel; McGrady, Karen A.; Curran, Seamus A.

    Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1- n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm -1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li xCoO 2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.

  13. Accurate determination of the fine-structure intervals in the 3P ground states of C-13 and C-12 by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Cooksy, A. L.; Saykally, R. J.; Brown, J. M.; Evenson, K. M.

    1986-01-01

    Accurate values are presented for the fine-structure intervals in the 3P ground state of neutral atomic C-12 and C-13 as obtained from laser magnetic resonance spectroscopy. The rigorous analysis of C-13 hyperfine structure, the measurement of resonant fields for C-12 transitions at several additional far-infrared laser frequencies, and the increased precision of the C-12 measurements, permit significant improvement in the evaluation of these energies relative to earlier work. These results will expedite the direct and precise measurement of these transitions in interstellar sources and should assist in the determination of the interstellar C-12/C-13 abundance ratio.

  14. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE PAGES

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...

    2018-02-15

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

  15. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

  16. Advances in solid state laser technology for space and medical applications

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  17. Model-free estimation of the effective correlation time for C–H bond reorientation in amphiphilic bilayers: {sup 1}H–{sup 13}C solid-state NMR and MD simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Tiago Mendes, E-mail: tiago.ferreira@fkem1.lu.se; Physical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund; Ollila, O. H. Samuli

    2015-01-28

    Molecular dynamics (MD) simulations give atomically detailed information on structure and dynamics in amphiphilic bilayer systems on timescales up to about 1 μs. The reorientational dynamics of the C–H bonds is conventionally verified by measurements of {sup 13}C or {sup 2}H nuclear magnetic resonance (NMR) longitudinal relaxation rates R{sub 1}, which are more sensitive to motional processes with correlation times close to the inverse Larmor frequency, typically around 1-10 ns on standard NMR instrumentation, and are thus less sensitive to the 10-1000 ns timescale motion that can be observed in the MD simulations. We propose an experimental procedure for atomicallymore » resolved model-free estimation of the C–H bond effective reorientational correlation time τ{sub e}, which includes contributions from the entire range of all-atom MD timescales and that can be calculated directly from the MD trajectories. The approach is based on measurements of {sup 13}C R{sub 1} and R{sub 1ρ} relaxation rates, as well as {sup 1}H−{sup 13}C dipolar couplings, and is applicable to anisotropic liquid crystalline lipid or surfactant systems using a conventional solid-state NMR spectrometer and samples with natural isotopic composition. The procedure is demonstrated on a fully hydrated lamellar phase of 1-palmitoyl-2-oleoyl-phosphatidylcholine, yielding values of τ{sub e} from 0.1 ns for the methyl groups in the choline moiety and at the end of the acyl chains to 3 ns for the g{sub 1} methylene group of the glycerol backbone. MD simulations performed with a widely used united-atom force-field reproduce the τ{sub e}-profile of the major part of the acyl chains but underestimate the dynamics of the glycerol backbone and adjacent molecular segments. The measurement of experimental τ{sub e}-profiles can be used to study subtle effects on C–H bond reorientational motions in anisotropic liquid crystals, as well as to validate the C–H bond reorientation dynamics

  18. Testing the limits of sensitivity in a solid-state structural investigation by combined X-ray powder diffraction, solid-state NMR, and molecular modelling.

    PubMed

    Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu

    2011-10-28

    A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. This journal is © the Owner Societies 2011

  19. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  20. Realization of reliable solid-state quantum memory for photonic polarization qubit.

    PubMed

    Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can

    2012-05-11

    Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.

  1. Determination of the δ15N and δ13C of total nitrogen and carbon in solids; RSIL lab code 1832

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplan, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1832 is to determine the δ(15N/14N), abbreviated as δ15N, and the δ(13C/12C), abbreviated as δ13C, of total nitrogen and carbon in a solid sample. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen and carbon in a solid sample into N2 and CO2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines the relative difference in stable nitrogen isotope-amount ratio (15N/14N) of the product N2 gas and the relative difference in stable carbon isotope-amount ratio (13C/12C) of the product CO2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in tin capsules and loaded into a Costech Zero Blank Autosampler on the EA. Under computer control, samples then are dropped into a heated reaction tube that contains an oxidant, where combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction furnace to remove excess oxygen and to convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the IRMS through a Finnigan MAT (now Thermo Scientific) ConFlo II interface. The Finnigan MAT ConFlo II interface is used for introducing not only sample into the IRMS but also N2 and CO2 reference gases and helium for sample dilution. The flash combustion is quantitative; no isotopic fractionation is involved. The IRMS is a Thermo Scientific Delta V CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle; it is capable of measuring mass/charge (m/z) 28, 29, 30 or with a magnet current change 44, 45, 46, simultaneously. The ion beams from these m/z values are as follows: m/z 28 = N2 = 14N/14N; m/z 29 = N2 = 14N/15N primarily; m/z 30 = NO = 14N/16O

  2. Structure of indazole N1-oxide derivatives studied by X-ray, theoretical methods, 1H, 13C, 15N NMR and EI/MS

    NASA Astrophysics Data System (ADS)

    Gerpe, Alejandra; Piro, Oscar E.; Cerecetto, Hugo; González, Mercedes

    2007-12-01

    A series of indazole N1-oxide derivatives has been spectroscopically studied in solution using 1H, 13C, and 15N NMR based on pulsed field gradient selected PFG 1H sbnd X (X = 13C and 15N) gHMQC and gHMBC experiments. Some indazoles were prepared using a new methodology to compare its spectral and structural data with the indazole N1-oxide parent compounds. The 13C resonances of the indazole N1-oxide carbon 3 and 7a demonstrate the N-oxide push-electron capability. The 15N resonances of the indazole N-oxide, nitrogen 1, are near to 30 ppm more shielded than the corresponding values in the indazole heterocycle (deoxygenated form). Moreover, the structures of one indazole and one indazole N-oxide were unambiguously confirmed by X-ray crystallography. The solid state structures were contrasted with the theoretical ones obtained in vacuo at different calculus level. The aromaticity of the derivatives was studied analyzing the H sbnd H coupling constants of indazole's aromatic hydrogens and measuring C sbnd C distances in the solid state. The fragmentation that takes place in EI/MS was gathered for all the indazole N-oxide derivatives and the general fragmentation pattern analyzed.

  3. Design a 10 kJ IS Mather Type Plasma Focus for Solid Target Activation to Produce Short-Lived Radioisotopes 12C(d,n)13N

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Adlparvar, S.; Sheibani, S.; Elahi, M.; Safarien, A.; Farhangi, S.; Zirak, A. R.; Alhooie, S.; Mortazavi, B. N.; Khalaj, M. M.; Khanchi, A. R.; Dabirzadeh, A. A.; Kashani, A.; Zahedi, F.

    2010-10-01

    A 10 kJ (15 kV, 88 μF) IS (Iranian Sun) Mather type plasma focus device has been studied to determine the activity of a compound exogenous carbon solid target through 12C(d,n)13N nuclear reaction. The produced 13N is a short-lived radioisotope with a half-life of 9.97 min and threshold energy of 0.28 MeV. The results indicate that energetic deuterons impinging on the solid target can produce yield of = 6.7 × 10-5 with an activity of A = 6.8 × 104 Bq for one plasma focus shut and A ν = 4 × 105 Bq for 6 shut per mint when the projectile maximum deuterons energy is E max = 3 MeV.

  4. FTIR spectrometer with solid-state drive system

    DOEpatents

    Rajic, Slobodan; Seals, Roland D.; Egert, Charles M.

    1999-01-01

    An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

  5. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.

    PubMed

    Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A

    2018-06-22

    High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.

  6. Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles.

    PubMed

    Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P

    2007-08-01

    Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.

  7. Synthesis, molecular structure and vibrational spectra of 1,3-bis(1-adamantyl)-2-phenylpropan-1,3-diones

    NASA Astrophysics Data System (ADS)

    Babjaková, Eva; Dastychová, Lenka; Hanulíková, Barbora; Kuřitka, Ivo; Nečas, Marek; Vašková, Hana; Vícha, Robert

    2015-04-01

    The interest in the oxo-enol tautomerism of 1,3-dioxo compounds is justified by their usefulness in many synthetic fields. A series of new 1,3-bis(1-adamantyl)propan-1,3-diones with a variably substituted phenyl ring at the C2 position was prepared either by the reaction of an appropriate Grignard reagent with adamatane-1-carbonyl chloride or by SEAr on the unsubstituted 1,3-bis(1-adamantyl)-2-phenylpropan-1,3-dione. In addition to the single crystal X-ray diffraction analysis of three of the prepared compounds, the experimental 1H and 13C NMR, IR and Raman spectroscopic data were assigned and compared to those obtained by DFT computations. In the solid state, the syn-dioxo forms were exclusively observed, which are shown to also predominate in CHCl3 solutions. The analysis of the Hirshfeld surface revealed that H⋯H and O⋯H contacts dominate the intermolecular interactions in the solid state, whereas π⋯π stacking plays a marginal role.

  8. 23 CFR 1.3 - Federal-State cooperation; authority of State highway departments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Federal-State cooperation; authority of State highway departments. 1.3 Section 1.3 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL... with 23 U.S.C. 302, shall be authorized, by the laws of the State, to make final decisions for the...

  9. 23 CFR 1.3 - Federal-State cooperation; authority of State highway departments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Federal-State cooperation; authority of State highway departments. 1.3 Section 1.3 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL... with 23 U.S.C. 302, shall be authorized, by the laws of the State, to make final decisions for the...

  10. 23 CFR 1.3 - Federal-State cooperation; authority of State highway departments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Federal-State cooperation; authority of State highway departments. 1.3 Section 1.3 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL... with 23 U.S.C. 302, shall be authorized, by the laws of the State, to make final decisions for the...

  11. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  12. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  13. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations

    PubMed Central

    Wang, Tuo; Yang, Hui; Kubicki, James D.; Hong, Mei

    2017-01-01

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D 13C-13C correlation spectra of uniformly 13C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose 13C chemical shifts differ significantly from the 13C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing and hydrogen bonding from celluloses of other organisms. 2D 13C-13C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Cellulose f and g are well mixed chains on the microfibril surface, cellulose a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal

  14. Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Kanmi; Pruski, Marek

    Two-dimensional through-bond {sup 1}H({sup 13}C) solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse {sup 1}H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of {sup 1}H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N-formyl-l-methionyl-l-leucyl-l-phenylalanine (f-MLF-OH) and brown coal.

  15. Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS

    NASA Astrophysics Data System (ADS)

    Mao, Kanmi; Pruski, Marek

    2009-12-01

    Two-dimensional through-bond 1H{ 13C} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse 1H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of 1H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N- formyl- L-methionyl- L-leucyl- L-phenylalanine (f-MLF-OH) and brown coal.

  16. Solid-state NMR reveals differential carbohydrate utilization in diapausing Culex pipiens

    NASA Astrophysics Data System (ADS)

    Chang, James; Singh, Jugeshwar; Kim, Sungshil; Hockaday, William C.; Sim, Cheolho; Kim, Sung Joon

    2016-11-01

    Culex pipiens is the mosquito that vectors West Nile Virus and other human-pathogenic flavivruses in North America. In response to shortened day length and lower temperatures, female Cx. pipiense prepares for the diapause by actively feeding on carbohydrates to increase the biosynthesis of glycogen and lipid to store energy for overwintering. The effect of feeding different carbohydrates on glycogen and lipid biosynthesis in diapausing mosquitoes was investigated in vivo using 13C solid-state NMR. Diapause-destined adult females and nondiapausing counterparts after adult eclosion were fed with three different carbohydrate sources for 7 days: 1) 10% sucrose, 2) 10% D-[13C6]glucose, and 3) 1% D-[13C6]glucose co-provisioned with 10% sucrose. NMR measurements show that sucrose and glucose are metabolized differently in diapausing mosquitoes. Mosquitoes fed on sucrose primarily accumulate glycogen with increased branching structures, but less of lipids. In contrast, mosquitoes fed exclusively on glucose show accumulation of both glycogen and lipid with increased aliphatic chain length. Glucose is exclusively metabolized for the biosynthesis of triacylglyceride when mosquitoes were co-fed with sucrose. Our findings provide novel insights into the insect carbohydrate metabolism that governs glycogen and lipid biosynthesis during diapause, which is fundamental for the insect survival during inimical environments.

  17. Development of a hybrid microelectronics solid state relay for 2500 volts isolation and minus 120 C to 80 C thermal cycling range

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Riley, T. J.; Janssen, W.

    1973-01-01

    A hybrid microelectronics solid state relay was developed in a TO-116 package for the MINX project. The relay provides 2500 Vdc input to output isolation and operated from a MHTL logic signal to switch a load of 400 Vdc at 2 mA. The relay is designed to operate in space and survive 1000 thermal cycles of 120 C to 80 C. The use of X-rays for failure analysis in small hybrid circuits proved valuable and the applications of vacuum deposited Parylene as a dielectric coating proved extremely valuable.

  18. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    PubMed Central

    Ghosh, Tanushree; Rieger, Jana

    2017-01-01

    Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN) was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h) for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode. PMID:29099804

  19. The decay width of the Z_c(3900) as an axialvector tetraquark state in solid quark-hadron duality

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Zhang, Jun-Xia

    2018-01-01

    In this article, we tentatively assign the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, study the hadronic coupling constants G_{Z_cJ/ψ π }, G_{Z_cη _cρ }, G_{Z_cD \\bar{D}^{*}} with the QCD sum rules in details. We take into account both the connected and disconnected Feynman diagrams in carrying out the operator product expansion, as the connected Feynman diagrams alone cannot do the work. Special attentions are paid to matching the hadron side of the correlation functions with the QCD side of the correlation functions to obtain solid duality, the routine can be applied to study other hadronic couplings directly. We study the two-body strong decays Z_c^+(3900)→ J/ψ π ^+, η _cρ ^+, D^+ \\bar{D}^{*0}, \\bar{D}^0 D^{*+} and obtain the total width of the Z_c^± (3900). The numerical results support assigning the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, and assigning the Z_c^± (3885) to be the meson-meson type axialvector molecular state.

  20. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE PAGES

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi; ...

    2018-02-03

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  1. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  2. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  3. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal. 13.1118 Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General...

  4. [*C]octanoic acid breath test to measure gastric emptying rate of solids.

    PubMed

    Maes, B D; Ghoos, Y F; Rutgeerts, P J; Hiele, M I; Geypens, B; Vantrappen, G

    1994-12-01

    We have developed a breath test to measure solid gastric emptying using a standardized scrambled egg test meal (250 kcal) labeled with [14C]octanoic acid or [13C]octanoic acid. In vitro incubation studies showed that octanoic acid is a reliable marker of the solid phase. The breath test was validated in 36 subjects by simultaneous radioscintigraphic and breath test measurements. Nine healthy volunteers were studied after intravenous administration of 200 mg erythromycin and peroral administration of 30 mg propantheline, respectively. Erythromycin significantly enhanced gastric emptying, while propantheline significantly reduced gastric emptying rates. We conclude that the [*C]octanoic breath test is a promising and reliable test for measuring the gastric emptying rate of solids.

  5. Magnetic field sensors using 13-spin cat states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Stephanie; Karlen, Steven D.; Jones, Jonathan A.

    2010-08-15

    Measurement devices could benefit from entangled correlations to yield a measurement sensitivity approaching the physical Heisenberg limit. Building upon previous magnetometric work using pseudoentangled spin states in solution-state NMR, we present two conceptual advancements to better prepare and interpret the pseudoentanglement resource. We apply these to a 13-spin cat state to measure the local magnetic field with a 12.2 sensitivity increase over an equivalent number of isolated spins.

  6. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    PubMed Central

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592

  7. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    PubMed

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.

  8. Ditechnetium heptoxide revisited: Solid-state, gas-phase, and theoretical studies

    DOE PAGES

    Childs, Bradley C.; Braband, Henrik; Lawler, Keith; ...

    2016-10-04

    Here, ditechnetium heptoxide was synthesized from the oxidation of TcO 2 with O 2 at 450 °C and characterized by single crystal X-ray diffraction (SCXRD), electron impact mass spectrometry (EI-MS) and theoretical methods. Refinement of the structure at 100 K indicates that Tc 2O 7 crystallizes as a molecular solid in the orthorhombic space group Pbca (a = 7.312(3) Å, b = 5.562(2) Å, c = 13.707(5) Å, V = 557.5(3) Å 3). The Tc 2O 7 molecule can be described as corner-sharing TcO4 tetrahedra (Tc---Tc = 3.698(1) Å and Tc-O Bri-Tc = 180.0°). The EI-MS spectrum of Tc 2Omore » 7 consists of both mononuclear and dinuclear species. The main dinuclear species in the gas-phase are Tc 2O 7 (100%) and Tc 2O 5 (56%), while the main mononuclear species are TcO 3 (33.9%) and TcO 2 (42.8%). The difference in the relative intensities of the M 2O 5 (M = Tc, Re) fragments (1.7% for Re) indicate that these Group 7 elements exhibit different gas phase chemistry. The solid-state structure of Tc 2O 7 was investigated by density functional theory (DFT) methods. The optimized structure of the Tc 2O 7 molecule is in good agreement with the experimental one. Simulations indicate that the more favorable geometry for the Tc 2O 7 molecule in the gas-phase is bent (Tc-O Bri-Tc = 156.5°), while linear (Tc-O Bri-Tc = 180.0°) is favored in the solid state.« less

  9. Rechargeable sodium all-solid-state battery

    DOE PAGES

    Zhou, Weidong; Li, Yutao; Xin, Sen; ...

    2017-01-03

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. Furthermore, all-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.

  10. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    PubMed

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. 500-Watt Solid-State RF Power Amplifier AM-7209( )/VRC.

    DTIC Science & Technology

    1983-03-18

    AD-A127 462 580-WRATT SOLID-STATE RF POWER AMPLIFIER AM-7289( )/VRC 1/2 (U) E- SYSTEMS INC ST PETERSBURG FL ECI DIV N HARRIS 18 MAR 83 60-6±289 CECOM...AND DEVELOPMENT TECHNICAL REPORT CECOM-82-C-J23 1 500-WATT SOLID-STATE RF POWER AMPLIFIER AM-7209( )/VRC M. Harris E- SYSTEMS , INC., ECI DIVISION 1502...CONTRACT OR GRANT NUMSER(t) M. Harris DAABO7-82-C-J231 9m PERFORMING ORGANIZATION NAME AND ADDRESS II. PROGRAM ELEMENT. PROJECT TASK E- SYSTEMS , INC

  12. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    PubMed

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  13. Synthetic routes to a nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} evaluated by solid-state {sup 71}Ga NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammann, Blake A.; Marsh, David A.; Ma, Zayd L.

    Solid-state {sup 71}Ga NMR was used to characterize a series of [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} “Ga{sub 13}” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sitesmore » in the corresponding thin films upon gelation and condensation (polymerization) of the Ga{sub 13} clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as {sup 71}Ga. - Graphical abstract: The various synthetic routes and {sup 71}Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15}. - Highlights: • Solid-state {sup 71}Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as {sup 71}Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.« less

  14. Molecular Structure of Humin and Melanoidin via Solid State NMR

    PubMed Central

    Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena

    2011-01-01

    Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective 13C substitution, 1H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogenous network-type polymer in which sugar molecules cross-link the heterocycles. PMID:21456563

  15. Advanced Organic Solid States Materials. Volume 173. Materials Research Society Symposium Proceedings

    DTIC Science & Technology

    1990-08-08

    for their collaboration in synthetic study. We also thank Prof. N. Kasai and Dr. Y. Kai for their collaboration in X - ray crystallographic study. We...substantially with the increasing amount of doping as monitored by the powder x - ray diffraction. After doping the sample was kept for at least one day...physical properties at different oxidation states in solution and in the solid state of tEDTB complexed with TCNQF4. The X ray crystal structure of

  16. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferredmore » to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.« less

  17. First Spectroscopic Studies and Detection in SgrB2 of 13C-DOUBLY Substitued Ethyl Cyanide

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Müller, Holger S. P.; Belloche, Arnaud

    2015-06-01

    Ethyl cyanide (CH_3CH_2CN) is one of the most abundant complex organic molecules in the interstellar medium firstly detected in OMC-1 and Sgr B2 in 1977. The vibrationally excited states are enough populated under ISM conditions and could be detected. Apart from the deuterated ones, all mono-substituted isotopologues of ethyl cyanide (13C and 15N have been detected in the ISM. The detection of isotopologues in the ISM is important: it can give information about the formation process of complex organic molecules, and it is essential to clean the ISM spectra from the lines of known molecules in order to detect new ones. The 12C/13C ratio found in SgrB2: 20-30 suggests that the doubly 13C could be present in the spectral line survey recently obtained with ALMA (EMoCA), but no spectroscopic studies exist up to now. We measured and analyzed the spectra of the 13C-doubly-substitued species up to 1 THz with the Lille solid-state based spectrometer. The spectroscopic results and and the detection of the doubly 13C species in SgrB2 will be presented. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS. Support by the Deutsche Forschungsgemeinschaft via SFB 956, project B3 is acknowledged D.~R.~Johnson, et al., Astrophys.~J. 1977, 218, L370 A.~Belloche, et al., A&A 2013, 559, A47 A.M.~Daly, et al., Astrophys.~J. 2013, 768, 81 K.~Demyk, et al. A&A 2007 466, 255 Margulès, et al. A&A 2009, 493, 565 Belloche et al. 2014, Science, 345, 1584

  18. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states

    NASA Astrophysics Data System (ADS)

    Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.

    2015-12-01

    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  19. Relationship between crystal structure and solid-state properties of pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Sheth, Agam R.

    This thesis strives to understand the structure-property relationships of some pharmaceutical crystals at the molecular level with emphasis on the effect of secondary processing on the solid phase. Using single crystal X-ray diffractometry (SCXRD), the structure of warfarin sodium 2-propanol adduct (W) was established to be a true solvate, contrary to previous reports. Using dynamic water vapor sorption, optical and environmental scanning electron microscopy, SCXRD, powder X-ray diffractometry (PXRD), volume computations and molecular modeling, the effect of relative humidity and temperature on the crystal structure of W was investigated. Ab initio calculations on piroxicam showed that the difference in energy between the two polymorphs, I and II, arises predominantly from the difference between their lattice energies. The detailed hydrogen bonding networks of the two polymorphs are described and compared using graph sets. Despite stabilization of the polymorphs by hydrogen bonds, pair-wise distribution function transforms show a loss of polymorphic memory upon cryogrinding the two polymorphs, leading to a difference in recrystallization behavior between amorphous piroxicam prepared from polymorphs I and II. Structural and solid-state changes of piroxicam polymorphs under mechanical stress were investigated using cryogenic grinding, PXRD, diffuse-reflectance solid-state ultraviolet-visible spectroscopy, 13C solid-state nuclear magnetic resonance spectroscopy, and diffuse-reflectance solid-state Fourier-transform infrared spectroscopy. Intermolecular proton transfer was found to accompany changes in phase and color observed upon cryogrinding the two polymorphs. Model-free and model-fitting studies of the dehydration kinetics of piroxicam monohydrate (PM) showed the dependence of activation energy ( Ea) on both isothermal and non-isothermal heating conditions, and on the fraction of conversion. In the constant-E a region, isothermal dehydration follows the two

  20. The millimeter and sub-millimeter rotational spectrum of triple 13C-substituted ethyl cyanide

    NASA Astrophysics Data System (ADS)

    Pienkina, A. O.; Margulès, L.; Motiyenko, R. A.; Müller, H. S. P.; Guillemin, J.-C.

    2017-05-01

    Context. A recently published astronomical detection of all three doubly 13C-substituted ethyl cyanides toward Sgr B2(N2) motivated us to investigate triple 13C isotopic species that are expected to be also present in the ISM. Aims: We aim to present an experimental study of the rotational spectrum of triple 13C-substituted ethyl cyanide, 13CH313CH213CN, in the frequency range 150-990 GHz. We want to use the determined spectroscopic parameters for searching for 13CH313CH213CN in ALMA data. The main objective of this work is to provide accurate frequency predictions to search for this molecule in the Galactic center source Sagittarius B2(N) and to facilitate its detection in space. Methods: The laboratory rotational spectrum of 13CH313CH213CN has been recorded with the Lille's fast DDS solid-state spectrometer between 150 GHz and 990 GHz. Results: More than 4000 rotational transitions were identified in the laboratory. The quantum numbers reach J = 115 and Ka = 39. Watson's Hamiltonian in the A and S reductions were used to analyze the spectra. Accurate spectroscopic parameters were determined. The rotational spectra of the 13C containing species CH3CH2CN have been assigned, thus allowing the determination of the rotational and centrifugal distortion constants Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A2

  1. Detection of C-13O radio emission from C-13-rich carbon stars

    NASA Technical Reports Server (NTRS)

    Jura, M.; Kahane, C.; Omont, A.

    1988-01-01

    A high ratio of C-13O radio emission in the J = 1-0 rotational line has been detected from three mass-losing carbon stars which optical data indicate have high C-13/C12 ratios. Since chemical fractionation, isotope-dependent photodissociation and opacity in the rotational and vibrational lines may not raise significantly the C-13O ratio above the actual C-13/C-12 ratio in these circumstellar envelopes, the relative abundance of C-13 in these stars might be even greater by perhaps a factor of two than previously believed. About 15 percent of all luminous carbon stars are C-13-rich, and these stars may play a significant role in the enhancement in the C-13/C12 ratio that has occurred during the past 4.6 billion years since the formation of the sun.

  2. Solid-state NMR Study Reveals Collagen I Structural Modifications of Amino Acid Side Chains upon Fibrillogenesis*

    PubMed Central

    De Sa Peixoto, Paulo; Laurent, Guillaume; Azaïs, Thierry; Mosser, Gervaise

    2013-01-01

    In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar, and denatured states using one and two dimensional {1H}-13C solid-state NMR spectroscopy. We interpret 13C chemical shift variations in terms of dihedral angle conformation changes. Our data show that fibrillogenesis increases the side chain and backbone structural complexity. Nevertheless, only three to five rotameric equilibria are found for each amino acid residue, indicating a relatively low structural heterogeneity of collagen upon fibrillogenesis. Using side chain statistical data, we calculate equilibrium constants for a great number of amino acid residues. Moreover, based on a 13C quantitative spectrum, we estimate the percentage of residues implicated in each equilibrium. Our data indicate that fibril formation greatly affects hydroxyproline and proline prolyl pucker ring conformation. Finally, we discuss the implication of these structural data and propose a model in which the attractive force of fibrillogenesis comes from a structural reorganization of 10 to 15% of the amino acids. These results allow us to further understand the self-assembling process and fibrillar structure of collagen. PMID:23341452

  3. Solid-state laser source of narrowband ultraviolet B light for skin disease care with advanced performance

    NASA Astrophysics Data System (ADS)

    Tarasov, Aleksandr A.; Chu, Hong; Buchwald, Kristian

    2015-02-01

    Two years ago we reported about the development of solid state laser source for medical skin treatment with wavelength 310.6 nm and average power 200 mW. Here we describe the results of investigation of the advanced version of the laser, which is a more compact device with increased output power and flat top beam profile. Ti: Sapphire laser, the main module of our source, was modified and optimized such, that UV average power of the device was increased 1.7 times. Fiber optic homogenizer was replaced by articulated arm with diffraction diffuser, providing round spot with flat profile at the skin. We investigated and compare characteristics of Ti: Sapphire lasers with volume Bragg grating and with fused silica transmission grating, which was used first time for Ti: Sapphire laser spectral selection and tuning. Promising performance of last gratings is demonstrated.

  4. Rechargeable Sodium All-Solid-State Battery

    PubMed Central

    2017-01-01

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. All-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C. PMID:28149953

  5. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2

  6. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  7. Carbon solids in oxygen-deficient explosives (LA-UR-13-21151)

    NASA Astrophysics Data System (ADS)

    Peery, Travis

    2013-06-01

    The phase behavior of excess carbon in oxygen-deficient explosives has a significant effect on detonation properties and product equations of state. Mixtures of fuel oil in ammonium nitrate (ANFO) above a stoichiometric ratio demonstrate that even small amounts of graphite, on the order of 5% by mole fraction, can substantially alter the Chapman-Jouget (CJ) state properties, a central ingredient in modeling the products equation of state. Similar effects can be seen for Composition B, which borders the carbon phase boundary between graphite and diamond. Nano-diamond formation adds complexity to the product modeling because of surface adsorption effects. I will discuss these carbon phase issues in our equation of state modeling of detonation products, including our statistical mechanics description of carbon clustering and surface chemistry to properly treat solid carbon formation. This work is supported by the Advanced Simulation and Computing Program, under the NNSA.

  8. Solid-state NMR characterization of copolymers of nylon 11 and nylon 12.

    PubMed

    Johnson, C G; Mathias, L J

    1997-05-01

    Solid-state 13C and 15N NMR spectroscopy, in conjunction with differential scanning calorimetry, wide-angle X-ray diffraction and infrared spectroscopy, were used to characterize a series of nylon 11 and 12 copolymers with mole percentages of nylon 12 monomer of 0, 15, 35, 50, 65, 85, and 100%. Monotonic melting point (Tm) and heat of fusion depressions were observed for the copolymer series with the 65 mol% nylon 12 copolymer having the lowest apparent crystallinity and Tm at 148 degrees C. Solid-state 15N NMR spectra showed a smooth shift of the main peak position for the as-prepared copolymers from 84 ppm for the alpha-form of pure nylon 11 to 89 ppm for the gamma-form of pure nylon 12. Similar behavior was seen for FTIR amide V and VI modes which are also sensitive to the alpha- and gamma-crystal forms. 13C NMR T1 measurements showed that the overall most mobile sample was the 65:35 copolymer. The amide group of the 1:1 copolymer was labelled using 15N-labelled amino acids available through the Gabriel synthesis; an annealed, solution-cast film of this sample showed a T1N value of 349 s, similar to values seen for annealed nylon 11 and nylon 12 homopolymers. The WAXS pattern for the 65 mol% nylon 12 sample showed a sharp peak at 2 theta = 21.3, overlapping a broad peak centered at 2 theta = 21.0. These are consistent with the values seen for gamma-form nylon 12. The 1:1 copolymer (15N labelled) was shown to be polymorphic, like the homopolymers after specific treatments, with a gamma-like phase formed upon solvent casting, and an alpha-like phase dominating for as-polymerized material and precipitated flakes.

  9. Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR.

    PubMed

    Gupta, Sebanti; Tycko, Robert

    2018-02-01

    Recent studies of noncrystalline HIV-1 capsid protein (CA) assemblies by our laboratory and by Polenova and coworkers (Protein Sci 19:716-730, 2010; J Mol Biol 426:1109-1127, 2014; J Biol Chem 291:13098-13112, 2016; J Am Chem Soc 138:8538-8546, 2016; J Am Chem Soc 138:12029-12032, 2016; J Am Chem Soc 134:6455-6466, 2012; J Am Chem Soc 132:1976-1987, 2010; J Am Chem Soc 135:17793-17803, 2013; Proc Natl Acad Sci USA 112:14617-14622, 2015; J Am Chem Soc 138:14066-14075, 2016) have established the capability of solid state nuclear magnetic resonance (NMR) measurements to provide site-specific structural and dynamical information that is not available from other types of measurements. Nonetheless, the relatively high molecular weight of HIV-1 CA leads to congestion of solid state NMR spectra of fully isotopically labeled assemblies that has been an impediment to further progress. Here we describe an efficient protocol for production of segmentally labeled HIV-1 CA samples in which either the N-terminal domain (NTD) or the C-terminal domain (CTD) is uniformly 15 N, 13 C-labeled. Segmental labeling is achieved by trans-splicing, using the DnaE split intein. Comparisons of two-dimensional solid state NMR spectra of fully labeled and segmentally labeled tubular CA assemblies show substantial improvements in spectral resolution. The molecular structure of HIV-1 assemblies is not significantly perturbed by the single Ser-to-Cys substitution that we introduce between NTD and CTD segments, as required for trans-splicing.

  10. Determination of 15N/14N and 13C/12C in Solid and Aqueous Cyanides

    USGS Publications Warehouse

    Johnson, C.A.

    1996-01-01

    The stable isotopic compositions of nitrogen and carbon in cyanide compounds can be determined by combusting aliquots in sealed tubes to form N2 gas and CO2 gas and analyzing the gases by mass spectrometry. Free cyanide (CN-aq + HCNaq) in simple solutions can also be analyzed by first precipitating the cyanide as copper(II) ferrocyanide and then combusting the precipitate. Reproducibility is ??0.5??? or better for both ??15N and ??13C. If empirical corrections are made on the basis of carbon yields, the reproducibility of ??13C can be improved to ??0.2???. The analytical methods described herein are sufficiently accurate and precise to apply stable isotope techniques to problems of cyanide degradation in natural waters and industrial process solutions.

  11. Vapour-induced solid-state C-H bond activation for the clean synthesis of an organopalladium biothiol sensor.

    PubMed

    Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda

    2016-10-27

    Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.

  12. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  13. Production of Cellulolytic and Hemicellulolytic Enzymes From Aureobasidium pulluans on Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Leite, Rodrigo Simões Ribeiro; Bocchini, Daniela Alonso; da Silva Martins, Eduardo; Silva, Dênis; Gomes, Eleni; da Silva, Roberto

    This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme remaining 100% active when incubated at 75°C for 1 h.

  14. Multiple Locations of Peptides in the Hydrocarbon Core of Gel-Phase Membranes Revealed by Peptide 13C to Lipid 2H Rotational-Echo Double-Resonance Solid-State Nuclear Magnetic Resonance

    PubMed Central

    2015-01-01

    Membrane locations of peptides and proteins are often critical to their functions. Solid-state rotational-echo double-resonance (REDOR) nuclear magnetic resonance is applied to probe the locations of two peptides via peptide 13CO to lipid 2H distance measurements. The peptides are KALP, an α-helical membrane-spanning peptide, and HFP, the β-sheet N-terminal fusion peptide of the HIV gp41 fusion protein that plays an important role in HIV–host cell membrane fusion. Both peptides are shown to have at least two distinct locations within the hydrocarbon core of gel-phase membranes. The multiple locations are attributed to snorkeling of lysine side chains for KALP and to the distribution of antiparallel β-sheet registries for HFP. The relative population of each location is also quantitated. To the best of our knowledge, this is the first clear experimental support of multiple peptide locations within the membrane hydrocarbon core. These data are for gel-phase membranes, but the approach should work for liquid-ordered membranes containing cholesterol and may be applicable to liquid-disordered membranes with appropriate additional analysis to take into account protein and lipid motion. This paper also describes the methodological development of 13CO–2H REDOR using the lyophilized I4 peptide that is α-helical and 13CO-labeled at A9 and 2Hα-labeled at A8. The I4 spins are well-approximated as an ensemble of isolated 13CO–2H spin pairs each separated by 5.0 Å with a 37 Hz dipolar coupling. A pulse sequence with rectangular 100 kHz 2H π pulses results in rapid and extensive buildup of REDOR (ΔS/S0) with a dephasing time (τ). The buildup is well-fit by a simple exponential function with a rate of 24 Hz and an extent close to 1. These parameter values reflect nonradiative transitions between the 2H spin states during the dephasing period. Each spin pair spends approximately two-thirds of its time in the 13CO–2H (m = ±1) states and approximately one-third of

  15. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  16. Solid state recorders for airborne reconnaissance

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.

    2003-08-01

    Solid state recorders have become the recorder of choice for meeting airborne ruggedized requirements for reconnaissance and flight test. The cost of solid state recorders have decreased over the past few years that they are now less expense than the traditional high speed tape recorders. CALCULEX, Inc manufactures solid state recorders called MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used on many different platforms such as F/A-22, Global Hawk, F-14, F-15, F-16, U-2, RF-4, and Tornado. This paper will discuss the advantages of using solid state recorders to meet the airborne reconnaissance requirement and the ability to record instrumentation data. The CALCULEX recorder has the ability to record sensor data and flight test data in the same chassis. This is an important feature because it eliminates additional boxes on the aircraft. The major advantages to using a solid state recorder include; reliability, small size, light weight, and power. Solid state recorders also have a larger storage capacity and higher bandwidth capability than other recording devices.

  17. A Phase I Study of Sunitinib plus Bevacizumab in Advanced Solid Tumors

    PubMed Central

    Rini, Brian I.; Garcia, Jorge A.; Cooney, Matthew M.; Elson, Paul; Tyler, Allison; Beatty, Kristi; Bokar, Joseph; Mekhail, Tarek; Bukowski, R.M.; Budd, G. Thomas; Triozzi, Pierre; Borden, Ernest; Ivy, Percy; Chen, Helen X.; Dolwati, Afshin; Dreicer, Robert

    2009-01-01

    Purpose Bevacizumab is an antibody against vascular endothelial growth factor (VEGF); sunitinib is an inhibitor of VEGF and related receptors. The safety and maximum tolerated dose (MTD) of sunitinib plus bevacizumab was assessed in this phase I trial. Experimental Design Patients with advanced solid tumors were treated on a 3+3 trial design. Patients received sunitinib daily (starting dose level 25 mg) for 4 weeks on followed by 2 weeks off and bevacizumab (starting dose level 5 mg/kg) on days 1, 15 and 29 of a 42-day cycle. Dose-limiting toxicities (DLTs) during the first 6-week cycle were used to determine the MTD. Results Thirty-eight patients were enrolled. Pts received a median of 3 cycles of treatment (range, 1–17+). There was one DLT (grade 4 hypertension) at 37.5 mg sunitinib and 5 mg/kg bevacizumab. Grade 3 or greater toxicity was observed in 87% of patients including hypertension (47%), fatigue (24%), thrombocytopenia (18%), proteinuria (13%), and hand-foot syndrome (13%). Dose modifications and delays were common at higher dose levels. No clinical or laboratory evidence of microangiopathic hemolytic anemia was observed. Seven patients had a confirmed RECIST-defined PR (18%; 95% confidence interval: 8–34%). Nineteen of the 32 patients with a post-baseline scan (59%) had at least some reduction in overall tumor burden (median 32%, range 3–73%). Conclusions The combination of sunitinib and bevacizumab in patients with advanced solid tumors is feasible, albeit with toxicity at higher dose levels and requiring dose modification with continued therapy. Anti-tumor activity was observed across multiple solid tumors. PMID:19773375

  18. Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by 2H NMR relaxation and 13C solid state NMR.

    PubMed

    Asakura, Tetsuo; Isobe, Kotaro; Kametani, Shunsuke; Ukpebor, Obehi T; Silverstein, Moshe C; Boutis, Gregory S

    2017-03-01

    The mechanical properties of Bombyx mori silk fibroin (SF), such as elasticity and tensile strength, change remarkably upon hydration. However, the microscopic interaction with water is not currently well understood on a molecular level. In this work, the dynamics of water molecules interacting with SF was studied by 2 H solution NMR relaxation and exchange measurements. Additionally, the conformations of hydrated [3- 13 C]Ala-, [3- 13 C]Ser-, and [3- 13 C]Tyr-SF fibers and films were investigated by 13 C DD/MAS NMR. Using an inverse Laplace transform algorithm, we were able to identify four distinct components in the relaxation times for water in SF fiber. Namely, A: bulk water outside the fiber, B: water molecules trapped weakly on the surface of the fiber, C: bound water molecules located in the inner surface of the fiber, and D: bound water molecules located in the inner part of the fiber were distinguishable. In addition, four components were also observed for water in the SF film immersed in methanol for 30s, while only two components for the film immersed in methanol for 24h. The effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13 C selectively labeled SF, respectively, could be determined independently. Our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. The mechanical properties of Bombyx mori silk fibroin (SF) change remarkably upon hydration. However, the microscopic interaction between SF and water is not currently well understood on a molecular level. We were able to identify four distinct components in the relaxation times for water in SF fiber by 2 H solution NMR relaxation and exchange measurements. In addition, the effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and

  19. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    NASA Astrophysics Data System (ADS)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  20. Analysis of Technology for Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    Over the past few years, considerable advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers, wide bandwidth, semiconductor detectors operating in the near-infrared region. These advances have created new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for measurements of atmospheric winds and aerosol backscattering from a space-based platform. The work performed by the UAH personnel concentrated on design and analyses of solid state pulsed coherent lidar systems capable of measuring atmospheric winds from space, and design and perform laboratory experiments and measurements in support of solid state laser radar remote sensing systems which are to be designed, deployed, and used by NASA to measure atmospheric processes and constituents. A lidar testbed system was designed and analyzed by considering the major space operational and environmental requirements, and its associated physical constraints. The lidar optical system includes a wedge scanner and the compact telescope designed by the UAH personnel. The other major optical components included in the design and analyses were: polarizing beam splitter, routing mirrors, wave plates, signal beam derotator, and lag angle compensator. The testbed lidar optical train was designed and analyzed, and different design options for mounting and packaging the lidar subsystems and components and support structure were investigated. All the optical components are to be mounted in a stress-free and stable manner to allow easy integration and alignment, and long term stability. This lidar system is also intended to be used for evaluating the performance of various lidar subsystems and components that are to be integrated into a flight unit and for demonstrating the integrity of the signal processing algorithms by performing actual atmospheric measurements from a ground station.

  1. Solid-State Nanopore.

    PubMed

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-20

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  2. Solid-State Nanopore

    NASA Astrophysics Data System (ADS)

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-01

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  3. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  4. Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.

    PubMed

    Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing

    2017-08-09

    High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V 2 O 5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V 2 O 5 cathode was significantly decreased from 2.5 × 10 4 to 71 Ω·cm 2 at room temperature and from 170 to 31 Ω·cm 2 at 100 °C. Additionally, the diffusion resistance in the V 2 O 5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm 2 and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V 2 O 5 cathode and garnet solid electrolyte without compromising battery safety or performance.

  5. Synthesisofc-lifepo4 composite by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Rahayu, I.; Hidayat, S.; Noviyanti, A. R.; Rakhmawaty, D.; Ernawati, E.

    2017-02-01

    In this research, the enhancement of LiFePO4 conductivity was conducted by doping method with carbon materials. Carbon-based materials were obtained from the mixture of sucrose, and the precursor of LiH2PO4 and α-Fe2O3 was synthesized by solid state reaction. Sintering temperature was varied at 700°C, 800°C, 900°C and 1,000°C. The result showed that C-LiFePO4 could be synthesized by using solid state reaction method. Based on the XRD and FTIR spectrums, C-LiFePO4 can be identified as the type of crystal, characterized by the appearance of sharp signal on (011), (211) and typical peak of LiFePO4 materials. The result of conductivity measurement from C-LiFePO4 at sintering temperature of 900°C and 1,000°C was 2×10-4 S/cm and 4×10-4S/cm, respectively. The conductivity value at sintering temperature of 700°C and 800°C was very small (<10-6 S/cm), which cannot be measured by the existing equipment.

  6. Ka-Band Wide-Bandgap Solid-State Power Amplifier: Hardware Validation

    NASA Technical Reports Server (NTRS)

    Epp, L.; Khan, P.; Silva, A.

    2005-01-01

    Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solid-state power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents proof-of-concept hardware used to validate power-combining technologies that may enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results in previous articles [1-3] indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. Previous architecture performance analyses and estimates indicate that the proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This combining efficiency would correspond to MMIC requirements of 5- to 10-W output power and >48 percent PAE. In order to validate the performance estimates of the three proposed architectures, measurements of proof-of-concept hardware are reported here.

  7. Solid-state stability studies of 13-cis-retinoic acid and all-trans-retinoic acid using microcalorimetry and HPLC analysis.

    PubMed

    Tan, X; Meltzer, N; Lindebaum, S

    1992-09-01

    The solid-state stabilities of 13-cis-retinoic acid and all-trans-retinoic acid in the presence and absence of oxygen were investigated. The samples were first evaluated using microcalorimetry. The rate laws of different samples under different conditions were deduced from the shapes of the heat flow curves, and the activation energies of the reactions were determined from Arrhenius plots. Under an air atmosphere, the decomposition of 13-cis-retinoic acid is an autocatalytic reaction, while all-trans-retinoic acid undergoes a zero-order process. The degradation of the two compounds at a selected elevated temperature was also determined utilizing HPLC analysis. This technique confirmed the decomposition kinetics. Hence, their half-lives and shelf lives at room temperature could be calculated. Under a nitrogen atmosphere, the microcalorimetric experiment showed a first-order phenomenon for both samples, but HPLC analysis showed no degradation, suggesting that the two samples, in the absence of oxygen, undergo only a physical change.

  8. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua

    2018-06-01

    Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.

  9. Global ocean climatology of the 13C Suess effect and preindustrial δ13C

    NASA Astrophysics Data System (ADS)

    Eide, Marie; Olsen, Are; Ninnemann, Ulysses; Eldevik, Tor; Johannessen, Truls

    2017-04-01

    We present the first observationally based estimate of the full global ocean 13C Suess effect since preindustrial times. This was constructed by using Olsen and Ninnemann's [2010] back-calculation method to calculate the 13C Suess effect with data from 29 cruises spanning the world ocean. We find a strong 13C Suess effect in the upper 1000 m of all basins, with strongest decrease in the Subtropical Gyres of the Northern Hemisphere, where δ13C has decreased by more than 0.8‰ since the industrial revolution. At greater depths, a significant 13C Suess effect can only be detected in the northern parts of the North Atlantic Ocean. The magnitude of the 13C Suess effect is correlated with the concentration of anthropogenic carbon, but their relationship varying strongly between water masses, reflecting the degree to which source waters are equilibrated with the atmospheric 13C Suess effect before sinking. From the 13C Suess effect estimates, we have estimated the preindustrial δ13C13CPI) along the 29 sections. Further, we developed regional multilinear regression equations, which were applied on the World Ocean Atlas data to construct the δ13CPI climatology, which reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values, and we find that in some regions in the high northern latitudes, the gradient in modern ocean δ13C is completely reversed compared to the preindustrial. Maximum δ13CPI, of up to 1.8‰, are found in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and Apparent Oxygen Utilization (AOU) than between δ13C and phosphate that

  10. Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents.

    PubMed

    Zhang, Guishui; Dass, Crispin R; Sumithran, Eric; Di Girolamo, Nick; Sun, Lun-Quan; Khachigian, Levon M

    2004-05-05

    The basic region-leucine zipper protein c-Jun has been linked to cell proliferation, transformation, and apoptosis. However, a direct role for c-Jun in angiogenesis has not been shown. We used human microvascular endothelial cells (HMEC-1) transfected with a DNAzyme targeting the c-Jun mRNA (Dz13), related oligonucleotides, or vehicle in in vitro models of microvascular endothelial cell proliferation, migration, chemoinvasion, and tubule formation, a rat model of corneal neovascularization, and a mouse model of solid tumor growth and vascular endothelial growth factor (VEGF)-induced angiogenesis. All statistical tests were two-sided. Compared with mock-transfected cells, HMEC-1 cells transfected with Dz13 expressed less c-Jun protein and possessed lower DNA-binding activity. Dz13 blocked endothelial cell proliferation, migration, chemoinvasion, and tubule formation. Dz13 inhibited the endothelial cell expression and proteolytic activity of MMP-2, a c-Jun-dependent gene. Dz13 inhibited VEGF-induced neovascularization in the rat cornea compared with vehicle control (Dz13 versus vehicle: 4.0 neovessels versus 30.7 neovessels, difference = 26.7 neovessels; P =.004; area occupied by new blood vessels for Dz13 versus vehicle: 0.35 mm2 versus 1.52 mm2, difference = 1.17 mm2; P =.005) as well as solid melanoma growth in mice (Dz13 versus vehicle at 14 days: 108 mm3 versus 283 mm3, difference = 175 mm3; P =.006) with greatly reduced vascular density (Dz13 versus vehicle: 30% versus 100%, difference = 70%; P<.001). DNAzymes targeting c-Jun may have therapeutic potential as inhibitors of tumor angiogenesis and growth.

  11. A Model of Solid State Gas Sensors

    NASA Astrophysics Data System (ADS)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  12. Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans.

    PubMed

    Jain, Abhiney; Morlok, Charles K; Henson, J Michael

    2013-01-01

    The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.

  13. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  14. Simulation of Solid-State Weld Microstructures in Ti-17 via Thermal and Thermo- Mechanical Exposures

    NASA Astrophysics Data System (ADS)

    Orsborn, Jonathan

    Solid-state welding processes are very important to the advancement of aviation technology; since they enable the joining of dissimilar metals without the additional weight and bulk of fastening systems, the processes can create for stronger and lighter parts to increase payload and efficiency. However, since the processes are not equilibrium, not much is understood about what happens to the materials during the process. During a solid-state weld, the materials being welded are exposed to rapid heating rates, high maximum temperatures, large and varying amounts of deformation, short hold times at temperature, and fast cooling rates. Due to the dynamic nature of the process it is very hard to measure the strains and temperatures experienced by the materials. This work attempted to simulate the microstructures observed in solid-state welds of Ti-5Al-2Sn-2Zr-4Cr-4Mo, or Ti-17. If the microstructures could be replicated in a controlled and repeatable fashion, then perhaps the conditions of the welding process could be indirectly determined. The simulations were performed by rapidly heating Ti-17 specimens, holding them for a very short time, and rapidly cooling. Some of the samples were also subjected to deformation while at high temperatures. The microstructures resulting from the thermal and thermo-mechanical exposures were then compared with microstructures from an actual solid-state weld of Ti-17. It was determined that the presence of untransformed secondary alpha indicates the temperature did not exceed the beta transus of the alloy (˜900 °C), the presence of untransformed primary alpha indicates that the temperature did not exceed ˜1100 °C, homogenized beta grains indicate that the temperature did exceed 1100°C, and the presence of ghost alpha is indicative that the temperature likely exceeded ˜950 °C. These numbers are rough estimates, as time at temperature and heating rate both factor into the process, and shorter times at higher temperatures can

  15. Solid-state modeling of the terahertz spectrum of the high explosive HMX.

    PubMed

    Allis, Damian G; Prokhorova, Darya A; Korter, Timothy M

    2006-02-09

    The experimental solid-state terahertz (THz) spectrum (3-120 cm(-1)) of the beta-crystal form of the high explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been analyzed using solid-state density functional theory calculations. Various density functionals (both generalized gradient approximation and local density approximation) are compared in terms of their abilities to reproduce the experimentally observed solid-state structure and low-frequency vibrational motions. Good-to-excellent agreement between solid-state theory and experiment can be achieved in the THz region where isolated-molecule calculations fail to reproduce the observed spectral features, demonstrating a clear limitation of using isolated-molecule calculations for the assignment of THz frequency motions in molecular solids. The deficiency of isolated-molecule calculations is traced to modification of the molecular structure in the solid state through crystal packing effects and the formation of weak C-H...O hydrogen bonds.

  16. Time averaging of NMR chemical shifts in the MLF peptide in the solid state.

    PubMed

    De Gortari, Itzam; Portella, Guillem; Salvatella, Xavier; Bajaj, Vikram S; van der Wel, Patrick C A; Yates, Jonathan R; Segall, Matthew D; Pickard, Chris J; Payne, Mike C; Vendruscolo, Michele

    2010-05-05

    Since experimental measurements of NMR chemical shifts provide time and ensemble averaged values, we investigated how these effects should be included when chemical shifts are computed using density functional theory (DFT). We measured the chemical shifts of the N-formyl-L-methionyl-L-leucyl-L-phenylalanine-OMe (MLF) peptide in the solid state, and then used the X-ray structure to calculate the (13)C chemical shifts using the gauge including projector augmented wave (GIPAW) method, which accounts for the periodic nature of the crystal structure, obtaining an overall accuracy of 4.2 ppm. In order to understand the origin of the difference between experimental and calculated chemical shifts, we carried out first-principles molecular dynamics simulations to characterize the molecular motion of the MLF peptide on the picosecond time scale. We found that (13)C chemical shifts experience very rapid fluctuations of more than 20 ppm that are averaged out over less than 200 fs. Taking account of these fluctuations in the calculation of the chemical shifts resulted in an accuracy of 3.3 ppm. To investigate the effects of averaging over longer time scales we sampled the rotameric states populated by the MLF peptides in the solid state by performing a total of 5 micros classical molecular dynamics simulations. By averaging the chemical shifts over these rotameric states, we increased the accuracy of the chemical shift calculations to 3.0 ppm, with less than 1 ppm error in 10 out of 22 cases. These results suggests that better DFT-based predictions of chemical shifts of peptides and proteins will be achieved by developing improved computational strategies capable of taking into account the averaging process up to the millisecond time scale on which the chemical shift measurements report.

  17. Solid State Division progress report for period ending September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasismore » on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.« less

  18. Transition State Geometry Measurements from 13C Isotope Effects. The Experimental Transition State for the Epoxidation of Alkenes with Oxaziridines

    PubMed Central

    Hirschi, Jennifer S.; Takeya, Tetsuya; Hang, Chao; Singleton, Daniel A.

    2009-01-01

    We suggest here and evaluate a methodology for the measurement of specific interatomic distances from a combination of theoretical calculations and experimentally measured 13C kinetic isotope effects. This process takes advantage of a broad diversity of transition structures available for the epoxidation of 2-methyl-2-butene with oxaziridines. From the isotope effects calculated for these transition structures, a theory-independent relationship between the C-O bond distances of the newly forming bonds and the isotope effects is established. Within the precision of the measurement, this relationship in combination with the experimental isotope effects provides a highly accurate picture of the C-O bonds forming at the transition state. The diversity of transition structures also allows an evaluation of the Schramm process for defining transition state geometries based on calculations at non-stationary points, and the methodology is found to be reasonably accurate. PMID:19146405

  19. An extractive removal step optimized for a high-throughput α-cellulose extraction method for δ 13 C and δ 18 O stable isotope ratio analysis in conifer tree rings

    Treesearch

    Wen Lin; Asko Noormets; John S. King; Ge Sun; Steve McNulty; Jean-Christophe Domec; Lucas Cernusak

    2017-01-01

    Stable isotope ratios (δ13C and δ18O) of tree-ring α-cellulose are important tools in paleoclimatology, ecology, plant physiology and genetics. The Multiple Sample Isolation System for Solids (MSISS) was a major advance in the tree-ring α-cellulose extraction methods, offering greater throughput and reduced labor input compared to traditional alternatives. However, the...

  20. Solid State Ultracapacitor

    NASA Technical Reports Server (NTRS)

    Rolin, Terry D.

    2015-01-01

    NASA analyzes, tests, packages, and fabricates electrical, electronic, and electromechanical (EEE) parts used in space vehicles. One area that NASA wishes to advance is energy storage and delivery. Currently, space vehicles use rechargeable batteries that utilize silver zinc or lithium ion electrochemical processes. These current state-of-the-art rechargeable batteries cannot be rapidly charged, contain harmful chemicals, and suffer from early wear-out mechanisms. A solid state ultracapacitor is an EEE part that offers significant advantages over current electrochemical and electrolytic devices. The objective of this research is to develop an internal barrier layer ultracapacitor (IBLC) using novel dielectric materials as a battery replacement with a focus on these advantages: longer life, lower mass-toweight ratio, rapid charging, on-demand pulse power, improved on-pad standby time without maintenance, and environmental friendliness. The approach is unique in two areas. A deposition technique is used that has been shown to produce a more uniformly coated nanoparticle than sol-gel, which has resulted in colossal permittivities. These particles are then distributed in an ink formulation developed at NASA Marshall Space Flight Center (MSFC) and deposited utilizing a 3D aerosol jet technique. This additive manufacturing technique controls layer thickness, resulting in extremely large capacitance and energy density.

  1. Fast-neutron solid-state dosimeter

    DOEpatents

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-07-22

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

  2. Degradation of mangrove tissues by arboreal termites (Nasutitermes acajutlae) and their role in the mangrove C cycle (Puerto Rico): Chemical characterization and organic matter provenance using bulk δ13C, C/N, alkaline CuO oxidation-GC/MS, and solid-state 13C NMR

    NASA Astrophysics Data System (ADS)

    Vane, Christopher H.; Kim, Alexander W.; Moss-Hayes, Vicky; Snape, Colin E.; Diaz, Miguel Castro; Khan, Nicole S.; Engelhart, Simon E.; Horton, Benjamin P.

    2013-08-01

    Arboreal termites are wood decaying organisms that play an important role in the first stages of C cycling in mangrove systems. The chemical composition of Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa leaf, stem, and pneumatophore tissues as well as associated sediments was compared to that of nests of the termite Nasutitermes acajutlae. Nests gave δ13C values of -26.1 to -27.2‰ (±0.1) and C/N of 43.3 (±2.0) to 98.6 (±16.2) which were similar to all stem and pneumatophores but distinct from mangrove leaves or sediments. Organic matter processed by termites yielded lignin phenol concentrations (Λ, lambda) that were 2-4 times higher than stem or pneumatophores and 10-20 times higher than that of leaves or sediments, suggesting that the nests were more resistant to biodegradation than the mangrove vegetation source. 13C NMR revealed that polysaccharide content of mangrove tissues (50-69% C) was higher than that of the nests (46-51% C). Conversely, lignin accounted for 16.2-19.6% C of nest material, a threefold increase relative to living mangrove tissues; a similar increase in aromatic methoxyl content was also observed in the nests. Lipids (aliphatic and paraffinic moieties) were also important but rather variable chemical components of all three mangrove species, representing between 13.5 and 28.3% of the C content. Termite nests contained 3.14 Mg C ha-1 which represents approximately 2% of above ground C storage in mangroves, a value that is likely to increase upon burial due to their refractory chemical composition.

  3. A Saturn-Like Complex Composed of Macrocyclic Oligothiophene and C60 Fullerene: Structure, Stability, and Photophysical Properties in Solution and the Solid State.

    PubMed

    Shimizu, Hideyuki; Park, Kyu Hyung; Otani, Hiroyuki; Aoyagi, Shinobu; Nishinaga, Tohru; Aso, Yoshio; Kim, Dongho; Iyoda, Masahiko

    2018-03-12

    A Saturn-like 1:1 complex composed of macrocyclic oligothiophene E-8T7A and C 60 fullerene (C 60 ) was synthesized to investigate the interaction between macrocyclic oligothiophenes and C 60 in solution and the solid state. Because the Saturn-like 1:1 complex E-8T7A⋅C 60 is mainly stabilized by van der Waals interactions between C 60 and the sulfur atoms of the E-8T7A macrocycle, C 60 is rather weakly incorporated inside the macro-ring in solution. However, in the solid state the Saturn-like 1:1 complex preferentially formed single crystals or nanostructured polymorphs. Interestingly, X-ray analysis and theoretical calculations exhibited hindered rotation of C 60 in the Saturn-like complex due to interactions between C 60 and the sulfur atoms. Furthermore, the photoinduced charge transfer (CT) interaction between E-8T7A and C 60 in solution was investigated by using femtosecond transient absorption (TA) spectroscopy. The ultrafast TA spectral changes in the photoinduced absorption bands were attributed to the CT process in the Saturn-like structure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pharmaceutical Applications of Relaxation Filter-Selective Signal Excitation Methods for ¹⁹F Solid-State Nuclear Magnetic Resonance: Case Study With Atorvastatin in Dosage Formulation.

    PubMed

    Asada, Mamiko Nasu; Nemoto, Takayuki; Mimura, Hisashi

    2016-03-01

    We recently developed several new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state nuclear magnetic resonance (NMR) that allow (13)C signal extraction of the target components from pharmaceuticals. These methods were successful in not only qualification but also quantitation over the wide range of 5% to 100%. Here, we aimed to improve the sensitivity of these methods and initially applied them to (19)F solid-state NMR, on the basis that the fluorine atom is one of the most sensitive NMR-active nuclei. For testing, we selected atorvastatin calcium (ATC), an antilipid BCS class II drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is marketed in crystalline and amorphous forms. Tablets were obtained from 2 generic drug suppliers, and the ATC content occurred mainly as an amorphous form. Using the RFS method with (19)F solid-state NMR, we succeeded in qualifying trace amounts (less than 0.5% w/w level) of crystalline phase (Form I) of ATC in the tablets. RFS methods with (19)F solid-state NMR are practical and time efficient and can contribute not only to the study of pharmaceutical drugs, including those with small amounts of a highly potent active ingredient within a formulated product, but also to the study of fluoropolymers in material sciences. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission guidelines for municipal solid...

  6. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission guidelines for municipal solid...

  7. High Speed Solid State Circuit Breaker

    NASA Technical Reports Server (NTRS)

    Podlesak, Thomas F.

    1993-01-01

    The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.

  8. Two Techniques for Estimating Deglacial Mean-Ocean δ13 C Change from the Same Set of 493 Benthic δ13C Records

    NASA Astrophysics Data System (ADS)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.

    2013-12-01

    The crux of carbon redistribution over the deglaciation centers on the ocean, where the isotopic signature of terrestrial carbon (δ13C terrestrial carbon = -25‰) is observed as a 0.3-0.7‰ shift in benthic foraminiferal δ13C. Deglacial mean-ocean δ13C estimates vary due to different subsets of benthic δ13C data and different methods of weighting the mean δ13C by volume. Here, we present a detailed 1-to-1 comparison of two methods of calculating mean δ13C change and uncertainty estimates using the same set of 493 benthic Cibicidoides spp. δ13C measurements for the LGM and Late Holocene. The first method divides the ocean into 8 regions, and uses simple line fits to describe the distribution of δ13C data for each timeslice over 0.5-5 km depth. With these line fits, we estimate the δ13C value at 100-meter intervals and weight those estimates by the regional volume at each depth slice. The mean-ocean δ13C is the sum of these volume-weighted regional δ13C estimates and the uncertainty of these mean-ocean δ13C estimates is computed using Monte Carlo simulations. The whole-ocean δ13C change is estimated using extrapolated surface- and deep-ocean δ13C estimates, and an assumed δ13C value for the Southern Ocean. This method yields an estimated LGM-to-Holocene change of 0.38×0.07‰ for 0.5-5km and 0.35×0.16‰ for the whole ocean (Peterson et al., 2013, submitted to Paleoceanography). The second method reconstructs glacial and modern δ13C by combining the same data compilation as above with a steady-state ocean circulation model (Gebbie, 2013, submitted to Paleoceanography). The result is a tracer distribution on a 4-by-4 degree horizontal resolution grid with 23 vertical levels, and an estimate of the distribution's uncertainty that accounts for the distinct modern and glacial water-mass geometries. From both methods, we compare the regional δ13C estimates (0.5-5 km), surface δ13C estimates (0-0.5 km), deep δ13C estimates (>5 km), Southern Ocean

  9. Structure of C 14 and B 14 from the C 14 , 15 ( d , He 3 ) B 13 , 14 reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedoor, S.; Wuosmaa, A. H.; Albers, M.

    We have studied the C-14,C-15(d,He-3)B-13,B-14 proton-removing reactions in inverse kinematics. The (d,He-3) reaction probes the proton occupation of the target ground state, and also provides spectroscopic information about the final states in B-13,B-14. The experiments were performed using C-14,C-15 beams from the ATLAS accelerator at Argonne National Laboratory. The reaction products were analyzed with the HELIOS device. Angular distributions were obtained for transitions from both reactions. The C-14-beam data reveal transitions to excited states in B-13 that suggest configurations with protons outside the pi(0p(3/2)) orbital, and some possibility of proton cross-shell 0p-1s0d excitations, in the C-14 ground state. The C-15-beammore » data confirm the existence of a broad 2(-) excited state in B-14. The experimental data are compared to the results of shell-model calculations.« less

  10. Barochemistry: Predictive Solid State Chemistry

    NASA Astrophysics Data System (ADS)

    Yoo, Choong-Shik

    The application of compression energy comparable to that of chemical bonds, but substantially greater than those of defects and grain boundaries in solids allows us to pursue novel concepts of high-pressure chemistry (or barochemistry) in materials development by design. At such extreme pressures, simple molecular solids covert into densely packed extended network structures that can be predicted from first principles. In recent years, a significant number of new materials and novel extended structures have been designed and discovered in highly compressed states of the first- and second- row elemental solids, including Li, C, H2,N2, O2, CO, CO2, and H2O. These extended solids are extremely hard, have high energy density, and exhibit novel electronic and nonlinear optical properties that are superior to other known materials at ambient conditions. However, these materials are often formed at formidable pressures and are highly metastable at ambient conditions; only a few systems have been recovered, limiting the materials within a realm of fundamental scientific discoveries. Therefore, an exciting new research area has emerged on the barochemistry to understand and, ultimately, control the stability, bonding, structure, and properties of low Z extended solids. In this paper, we will present our recent research to develop hybrid low Z extended solids amenable to scale up synthesis and ambient stabilization, utilizing kinetically controlled processes in dense solid mixtures and discuss the governing fundamental principles of barochemistry. This work was performed in support of the NSF (DMR-1203834), DTRA (HDTRA1-12-01-0020), and DARPA (W31P4Q-12-1-0009).

  11. Fabrication of Solid-State Multilayer Glass Capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, Rudeger H. T.; Brown-Shaklee, Harlan James; Casias, Adrian L.

    Alkali-free glasses show immense promise for the development of high-energy density capacitors. The high breakdown strengths on single-layer sheets of glass suggest the potential for improved energy densities over existing state-of-the art polymer capacitors. In this paper, we demonstrate the ability to package thin glass to make solid-state capacitors. Individual layers are bonded using epoxy, leading to capacitors that exhibit stable operation over the temperature range -55 °C to +65 °C. Here, this fabrication approach is scalable and allows for proof testing individual layers prior to incorporation of the stack, providing a blueprint for the fabrication of high-energy density capacitors.

  12. Fabrication of Solid-State Multilayer Glass Capacitors

    DOE PAGES

    Wilke, Rudeger H. T.; Brown-Shaklee, Harlan James; Casias, Adrian L.; ...

    2017-07-31

    Alkali-free glasses show immense promise for the development of high-energy density capacitors. The high breakdown strengths on single-layer sheets of glass suggest the potential for improved energy densities over existing state-of-the art polymer capacitors. In this paper, we demonstrate the ability to package thin glass to make solid-state capacitors. Individual layers are bonded using epoxy, leading to capacitors that exhibit stable operation over the temperature range -55 °C to +65 °C. Here, this fabrication approach is scalable and allows for proof testing individual layers prior to incorporation of the stack, providing a blueprint for the fabrication of high-energy density capacitors.

  13. Glass for Solid State Devices

    NASA Technical Reports Server (NTRS)

    Bailey, R. F.

    1982-01-01

    Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.

  14. Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage.

    PubMed

    Lalli, Daniela; Turano, Paola

    2013-11-19

    Ferritins are intracellular proteins that can store thousands of iron(III) ions as a solid mineral. These structures autoassemble from four-helix bundle subunits to form a hollow sphere and are a prototypical example of protein nanocages. The protein acts as a reservoir, encapsulating iron as ferric oxide in its central cavity in a nontoxic and bioavailable form. Scientists have long known the structural details of the protein shell, owing to very high resolution X-ray structures of the apoform. However, the atomic level mechanism governing the multistep biomineralization process remained largely elusive. Through analysis of the chemical behavior of ferritin mutants, chemists have found the role of some residues in key reaction steps. Using Mössbauer and XAS, they have identified some di-iron intermediates of the catalytic reaction trapped by rapid freeze quench. However, structural information about the iron interaction sites remains scarce. The entire process is governed by a number of specific, but weak, interactions between the protein shell and the iron species moving across the cage. While this situation may constitute a major problem for crystallography, NMR spectroscopy represents an optimal tool to detect and characterize transient species involving soluble proteins. Regardless, NMR analysis of the 480 kDa ferritin represents a real challenge. Our interest in ferritin chemistry inspired us to use an original combination of solution and solid state approaches. While the highly symmetric structure of the homo-24-mer frog ferritin greatly simplifies the spectra, the large protein size hinders the efficient coherence transfer in solution, thus preventing the sequence specific assignments. In contrast, extensive (13)C-spin diffusion makes the solution (13)C-(13)C NOESY experiment our gold standard to monitor protein side chains both in the apoprotein alone and in its interaction with paramagnetic iron species, inducing line broadening on the resonances of

  15. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    PubMed

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  16. Infrared laser spectroscopy of the linear C13 carbon cluster

    NASA Technical Reports Server (NTRS)

    Giesen, T. F.; Van Orden, A.; Hwang, H. J.; Fellers, R. S.; Provencal, R. A.; Saykally, R. J.

    1994-01-01

    The infrared absorption spectrum of a linear, 13-atom carbon cluster (C13) has been observed by using a supersonic cluster beam-diode laser spectrometer. Seventy-six rovibrational transitions were measured near 1809 wave numbers and assigned to an antisymmetric stretching fundamental in the 1 sigma g+ ground state of C13. This definitive structural characterization of a carbon cluster in the intermediate size range between C10 and C20 is in apparent conflict with theoretical calculations, which predict that clusters of this size should exist as planar monocyclic rings.

  17. Automated Visibility & Cloud Cover Measurements with a Solid State Imaging System

    DTIC Science & Technology

    1989-03-01

    GL-TR-89-0061 SIO Ref. 89-7 MPL-U-26/89 AUTOMATED VISIBILITY & CLOUD COVER MEASUREMENTS WITH A SOLID-STATE IMAGING SYSTEM C) to N4 R. W. Johnson W. S...include Security Classification) Automated Visibility & Cloud Measurements With A Solid State Imaging System 12. PERSONAL AUTHOR(S) Richard W. Johnson...based imaging systems , their ics and control algorithms, thus they ar.L discussed sepa- initial deployment and the preliminary application of rately

  18. Correction: All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel.

    PubMed

    Li, Ping; Zhou, Yong; Li, Haijin; Xu, Qinfeng; Meng, Xianguang; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang

    2015-01-31

    Correction for 'All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel' by Ping Li et al., Chem. Commun., 2015, 51, 800-803.

  19. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  20. Compact, diode-pumped, solid-state lasers for next generation defence and security sensors

    NASA Astrophysics Data System (ADS)

    Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.

    2015-06-01

    Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.

  1. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 2, NMR assignments and photoyellowing of aromatic ring 1-, 3-, 4-, and 5-13C DHPs

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing of lignocellulosicmaterials has been studied using 13C-enriched DHP (dehydrogenation polymer), selectively 13C-enriched at positions 1, 3, 4, and 5 in the aromatic ring, and quantitative solution state 13C NMR spectroscopy. The NMR study confirmed the results of previous studies using side-chain labeled DHP, mainly that coniferyl alcohol end...

  2. Solid propulsion advanced concepts

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Shafer, J. I.

    1972-01-01

    The feasibility and application of a solid propulsion powered spacecraft concept to implement high energy missions independent of multiplanetary swingby opportunities are assessed and recommendations offered for future work. An upper stage, solid propulsion launch vehicle augmentation system was selected as the baseline configuration in view of the established program goals of low cost and high reliability. Spacecraft and propulsion system data that characterize mission performance capabilities were generated to serve as the basis for subsequent tradeoff studies. A cost effectiveness model was used for the preliminary feasibility assessment to provide a meaningful comparative effectiveness measure of the various candidate designs. The results substantiated the feasibility of the powered spacecraft concept when used in conjunction with several intermediate-sized launch vehicles as well as the existence of energy margins by which to exploit the attainment of extended mission capabilities. Additionally, in growth option applications, the employment of advanced propulsion systems and alternate spacecraft approaches appear promising.

  3. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  4. Exploration of structure and function in biomolecules through solid-state NMR and computational methods

    NASA Astrophysics Data System (ADS)

    Heider, Elizabeth M.

    Solid-State Nuclear Magnetic Resonance (SSNMR) spectroscopy and quantum mechanical calculations are powerful analysis tools. Leveraged independently, each method yields important nuclear and molecular information. Used in concert, SSNMR and computational techniques provide complementary data about the structure of solids. These methods are particularly useful in characterizing the structures of microcrystalline organic compounds and revealing mechanisms of biological activity. Such applications may possess special relevance in analysis of pharmaceutical products; 90% of all pharmaceuticals are marketed as solids and bioactivity is strongly linked with molecular conformation. Accordingly, this dissertation employs both SSNMR and quantum mechanical computation to study three bioactive molecules: citrinin, two forms of Atrasentan (Abt-627), and paclitaxel (Taxol RTM). First, a computational study is utilized to determine the mechanism for unusual antioxidant activity in citrinin. Here, molecular geometries and bond dissociation enthalpies (BDE) of the citrinin O--H groups are calculated from first principles (ab initio). The total molecular Hamiltonian is determined by approximating the individual contributors to energy including electronic energy and contributions from modes of molecular vibration. This study of citrinin clearly identifies specific reaction sites in the active form, establishing the central role of intramolecular hydrogen bonding in this activity. Notably, it is discovered that citrinin itself is not the active species. Instead, a pair of hydrated Michael addition products of citrinin act as radical scavengers via O--H bond dissociation. Next, two separate compounds of the anticancer drug Abt-627 (form I and form II) are examined via SSNMR. The three principal values of the 13C diagonalized chemical shift tensor are acquired through the high resolution 2D experiment, FIREMAT. Isotropic chemical shift assignments are made utilizing both dipolar

  5. Coherent laser radar at 2 microns using solid-state lasers

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Suni, Paul J. M.; Hale, Charley P.; Hannon, Stephen M.; Magee, James R.; Bruns, Dale L.; Yuen, Eric H.

    1993-01-01

    Coherent laser radar systems using 2-micron Tm- and Tm, Ho-doped solid-state lasers are useful for the remote range-resolved measurement of atmospheric winds, aerosol backscatter, and DIAL measurements of atmospheric water vapor and CO2 concentrations. Recent measurements made with a 2-micron coherent laser radar system, advances in the laser technology, and atmospheric propagation effects on 2-micron coherent lidar performance are described.

  6. All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel.

    PubMed

    Li, Ping; Zhou, Yong; Li, Haijin; Xu, Qinfeng; Meng, Xianguang; Meng, Xiangguang; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang

    2015-01-14

    An all-solid-state Z-scheme system array consisting of an Fe2V4O13 nanoribbon (NR)/reduced graphene oxide (RGO)/CdS nanoparticle grown on the stainless-steel mesh was rationally designed for photoconversion of gaseous CO2 into renewable hydrocarbon fuels (methane: CH4).

  7. Solid-state structure of a Li/F carbenoid: pentafluoroethyllithium.

    PubMed

    Waerder, Benedikt; Steinhauer, Simon; Neumann, Beate; Stammler, Hans-Georg; Mix, Andreas; Vishnevskiy, Yury V; Hoge, Berthold; Mitzel, Norbert W

    2014-10-20

    Lithium carbenoids are versatile compounds for synthesis owing to their intriguing ambiphilic behavior. Although this class of compounds has been known for several years, few solid-state structures exist because of their high reactivity and often low thermal stability. Using cryo X-ray techniques, we were now able to elucidate the first solid-state structure of a Li/F alkyl carbenoid, pentafluoroethyllithium (LiC2F5), finally yielding a prototype for investigating structure-reactivity relationships for this class of molecules. The compound forms a diethyl ether-solvated dimer bridged by a rare C-F-Li link. Complementary NMR spectroscopy studies in solution show dynamic processes and indicate rapid exchange of starting material and product. Theoretical investigations help to understand the formation of the observed unusual structural motif. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Solid-State (13)C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles.

    PubMed

    Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E

    2016-01-11

    Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.

  9. A solid state source of photon triplets based on quantum dot molecules

    PubMed Central

    Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed

    2017-01-01

    Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705

  10. Solid state television camera (CCD-buried channel)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  11. Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2011-06-01

    Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32

  12. Solid State Ionics: from Michael Faraday to green energy-the European dimension.

    PubMed

    Funke, Klaus

    2013-08-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.

  13. Solid State Ionics: from Michael Faraday to green energy—the European dimension

    PubMed Central

    Funke, Klaus

    2013-01-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585

  14. Use of spent mushroom substrate for production of Bacillus thuringiensis by solid-state fermentation.

    PubMed

    Wu, Songqing; Lan, Yanjiao; Huang, Dongmei; Peng, Yan; Huang, Zhipeng; Xu, Lei; Gelbic, Ivan; Carballar-Lejarazu, Rebeca; Guan, Xiong; Zhang, Lingling; Zou, Shuangquan

    2014-02-01

    The aim of this study was to explore a cost-effective method for the mass production of Bacillus thuringiensis (Bt) by solid-state fermentation. As a locally available agroindustrial byproduct, spent mushroom substrate (SMS) was used as raw material for Bt cultivation, and four combinations of SMS-based media were designed. Fermentation conditions were optimized on the best medium and the optimal conditions were determined as follows: temperature 32 degrees C, initial pH value 6, moisture content 50%, the ratio of sieved material to initial material 1:3, and inoculum volume 0.5 ml. Large scale production of B. thuringiensis subsp. israelensis (Bti) LLP29 was conducted on the optimal medium at optimal conditions. High toxicity (1,487 international toxic units/milligram) and long larvicidal persistence of the product were observed in the study, which illustrated that SMS-based solid-state fermentation medium was efficient and economical for large scale industrial production of Bt-based biopesticides. The cost of production of 1 kg of Bt was approximately US$0.075.

  15. High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon.

    PubMed

    Notohara, Hiroo; Urita, Koki; Yamamura, Hideyuki; Moriguchi, Isamu

    2018-06-08

    Extensive research efforts are devoted to development of high performance all-solid-state lithium ion batteries owing to their potential in not only improving safety but also achieving high stability and high capacity. However, conventional approaches based on a fabrication of highly dense electrode and solid electrolyte layers and their close contact interface is not always applicable to high capacity alloy- and/or conversion-based active materials such as SnO 2 accompanied with large volume change in charging-discharging. The present work demonstrates that SnO 2 -embedded nanoporous carbons without solid electrolyte inside the nanopores are a promising candidate for high capacity and stable anode material of all-solid-state battery, in which the volume change reactions are restricted in the nanopores to keep the constant electrode volume. A prototype all-solid-state full cell consisting of the SnO 2 -based anode and a LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 -based cathode shows a good performance of 2040 Wh/kg at 268.6 W/kg based on the anode material weight.

  16. Solid-state graphene formation via a nickel carbide intermediate phase [Nickel carbide (Ni 3C) as an intermediate phase for graphene formation

    DOE PAGES

    Xiong, W; Zhou, Yunshen; Hou, Wenjia; ...

    2015-11-10

    Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni 3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing tomore » the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni 3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni 3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less

  17. Nanoporous adsorption effect on altering Li+ diffusion pathway by a highly ordered porous electrolyte additive for high rate all-solid-state lithium metal batteries.

    PubMed

    Li, Wenwen; Zhang, Sanpei; Wang, Bangrun; Gu, Sui; Xu, Dong; Wang, Jianing; Chen, Chunhua; Wen, Zhaoyin

    2018-06-19

    Solid polymer electrolytes (SPEs) have shown extraordinary promise for all-solid-state lithium metal batteries with high energy density and flexibility but are mainly limited by the low ionic conductivity and their poor stability with lithium metal anode. In this work, we propose a highly ordered porous electrolyte additive derived from SSZ-13 for high-rate all-solid-state lithium metal batteries. The nanoporous adsorption effect provided by the highly ordered porous nanoparticles in the poly (ethylene oxide) (PEO) electrolyte are found to significantly improve the Li + conductivity (1.91×10 -3 S cm -1 at 60°C, 4.43×10 -5 S cm -1 at 20°C) and widen the electrochemical stability window to 4.7 V vs Li + /Li. Meanwhile, the designed PEO-based electrolyte demonstrates enhanced stability with the lithium metal anode. Through systematically increasing Li + diffusion, widening the electrochemical stability window and enhancing the stability of the SSZ-CPE electrolyte, the LiFePO4/SSZ-CPE/Li cell is optimized to deliver high-rate capability and stable cycling performance, which demonstrates great potential for all-solid-state energy storage application.

  18. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  19. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    PubMed

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  20. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.

    PubMed

    Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao

    2018-04-01

    Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  2. Resonant states in 13C and 16,17O at high excitation energy

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Duarte, J. L. M.; Rodrigues, C. L.; Horodynski-Matsushigue, L. B.; Ukita, G. M.; Cappuzzello, F.; Cavallaro, M.; Foti, A.; Agodi, C.; Cunsolo, A.; Carbone, D.; Bondi, M.; De Napoli, M.; Roeder, B. T.; Linares, R.; Lombardo, I.

    2014-12-01

    The 9Be(6Li,d)13C and 12,13C(6Li,d)16,17O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13C and 15-30 keV for 16O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θd = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility.

  3. The HALNA project: Diode-pumped solid-state laser for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Kawashima, T.; Ikegawa, T.; Kawanaka, J.; Miyanaga, N.; Nakatsuka, M.; Izawa, Y.; Matsumoto, O.; Yasuhara, R.; Kurita, T.; Sekine, T.; Miyamoto, M.; Kan, H.; Furukawa, H.; Motokoshi, S.; Kanabe, T.

    2006-06-01

    High-enery, rep.-rated, diode-pumped solid-state laser (DPSSL) is one of leading candidates for inertial fusion energy driver (IFE) and related laser-driven high-field applications. The project for the development of IFE laser driver in Japan, HALNA (High Average-power Laser for Nuclear Fusion Application) at ILE, Osaka University, aims to demonstrate 100-J pulse energy at 10 Hz rep. rate with 5 times diffraction limited beam quality. In this article, the advanced solid-state laser technologies for one half scale of HALNA (50 J, 10 Hz) are presented including thermally managed slab amplifier of Nd:phosphate glass and zig-zag optical geometry, and uniform, large-area diode-pumping.

  4. Metastable State during Melting and Solid-Solid Phase Transition of [CnMim][NO3] (n = 4-12) Ionic Liquids by Molecular Dynamics Simulation.

    PubMed

    Cao, Wudi; Wang, Yanting; Saielli, Giacomo

    2018-01-11

    We simulate the heating process of ionic liquids [C n Mim][NO 3 ] (n = 4, 6, 8, 10, 12), abbreviated as C n , by means of molecular dynamics (MD) simulation starting from a manually constructed triclinic crystal structure composed of polar layers containing anions and cationic head groups and nonpolar regions in between containing cationic alkyl side chains. During the heating process starting from 200 K, each system undergoes first a solid-solid phase transition at a lower temperature, and then a melting phase transition at a higher temperature to an isotropic liquid state (C 4 , C 6 , and C 8 ) or to a liquid crystal state (C 10 and C 12 ). After the solid-solid phase transition, all systems keep the triclinic space symmetry, but have a different set of lattice constants. C 4 has a more significant structural change in the nonpolar regions which narrows the layer spacing, while the layer spacings of other systems change little, which can be qualitatively understood by considering that the contribution of the effective van der Waals interaction in the nonpolar regions (abbreviated as EF1) to free energy becomes stronger with increasing side-chain length, and at the same time the contribution of the effective electrostatic interaction in the polar layers (abbreviated as EF2) to free energy remains almost the same. The melting phase transitions of all systems except C 6 are found to be a two-step process with an intermediate metastable state appeared during the melting from the crystal state to the liquid or liquid crystal state. Because the contribution of EF2 to the free energy is larger than EF1, the metastable state of C 4 has the feature of having higher ordered polar layers and lower ordered side-chain orientation. By contrast, C 8 -C 12 have the feature of having lower ordered polar layers and higher ordered side-chain orientation, because for these systems, the contribution of EF2 to the free energy is smaller than EF1. No metastable state is found for C 6

  5. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  6. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  7. 13C-13C rotational resonance in a transmembrane peptide: A comparison of the fluid and gel phases

    NASA Astrophysics Data System (ADS)

    Langlais, Denis B.; Hodges, Robert S.; Davis, James H.

    1999-05-01

    A comparative study of two doubly 13C labeled amphiphilic transmembrane peptides was undertaken to determine the potential of rotational resonance for measuring internuclear distances through the direct dipolar coupling in the presence of motion. The two peptides, having the sequence acetyl-K2-G-L16-K2-A-amide, differed only in the position of 13C labels. The first peptide, [1-13C]leu11:[α-13C]leu12, had labels on adjacent residues, at the carbonyl of leu11 and the α carbon of leu12. The second, [1-13C]leu8:[α-13\\|C]leu11, was labeled on consecutive turns of the α-helical peptide. The internuclear distance between labeled positions of the first peptide, which for an ideal α helix has a value of 2.48 Å, is relatively independent of internal flexibility or peptide conformational change. The dipolar coupling between these two nuclei is sensitive to motional averaging by molecular reorientation, however, making this peptide ideal for investigating these motions. The internuclear distance between labels on the second peptide has an expected static ideal α-helix value of 4.6 Å, but this is sensitive to internal flexibility. In addition, the dipolar coupling between these two nuclei is much weaker because of their larger separation, making this peptide a much more difficult test of the rotational resonance technique. The dipolar couplings between the labeled nuclei of these two peptides were measured by rotational resonance in the dry peptide powders and in multilamellar dispersions with dimyristoylphosphatidylcholine in the gel phase, at -10 °C, and in the fluid phase, at 40 °C. The results for the peptide having adjacent labels can be readily interpreted in terms of a simple model for the peptide motion. The results for the second peptide show that, in the fluid phase, the motionally averaged dipolar coupling is too small to be measured by rotational resonance. Rotational resonance, rotational echo double resonance, and related techniques can be used to

  8. The effect of gas double-dynamic on mass distribution in solid-state fermentation.

    PubMed

    Chen, Hong-Zhang; Zhao, Zhi-Min; Li, Hong-Qiang

    2014-05-10

    The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. What drives the seasonal pattern of δ13C in the net land-atmosphere CO2 exchange across the United States?

    NASA Astrophysics Data System (ADS)

    Raczka, B. M.; Dlugokencky, E. J.; Ehleringer, J. R.; Lai, C. T.; Pataki, D. E.; Saleska, S. R.; Torn, M. S.; Vaughn, B. H.; Wehr, R. A.; Bowling, D. R.

    2016-12-01

    The seasonal pattern of δ13C of atmospheric CO2 depends upon both local and non-local land-atmosphere exchange and atmospheric transport. It has been suggested that the seasonal pattern is driven primarily from local variation in the δ13C of the net CO2 flux (exchange between vegetation and the atmosphere) as a result of variation of stomatal conductance of the vegetation. Here we study local variation of δ13C of the land-atmosphere exchange at 7 sites across the United States representing forests (Harvard, Howland, Niwot Ridge, Wind River), grasslands (Southern Great Plains, Rannell Prairie) and an urban center (Salt Lake City). Using a simple 2-part mixing model with background corrections we find that the δ13C of the net exchange of CO2 was most enriched at the grassland sites (-18.9 o/oo), and most depleted at the urban site (-29.6 o/oo) due to the contribution of C4 photosynthesis and fossil fuel emissions, respectively. The amplitude of the seasonal cycle was most pronounced at the C3/C4 grassland and the urban sites. In contrast, the forested sites have a reduced seasonal cycle, and remain almost constant during the growing season (0.49 o/oo change). Furthermore, by accounting for relatively fast δ13C variations in non-local sources at Niwot Ridge we find that the seasonal pattern in δ13C of net exchange is eliminated altogether. These results support the idea that a coherent, global seasonal pattern in δ13C of net exchange is influenced by seasonal transitions in C3/C4 grass, and the intensity and seasonal timing of fossil fuel emissions. This will have important implications for studies that use δ13C to constrain large-scale carbon fluxes.

  10. Optofluidic devices with integrated solid-state nanopores

    PubMed Central

    Hawkins, Aaron R.; Schmidt, Holger

    2016-01-01

    This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook. PMID:27046940

  11. Hypermetabolic state in the 7-month-old triple transgenic mouse model of Alzheimer's disease and the effect of lipoic acid: a 13C-NMR study

    PubMed Central

    Sancheti, Harsh; Patil, Ishan; Kanamori, Keiko; Díaz Brinton, Roberta; Zhang, Wei; Lin, Ai-Ling; Cadenas, Enrique

    2014-01-01

    Alzheimer's disease (AD) is characterized by age-dependent biochemical, metabolic, and physiologic changes. These age-dependent changes ultimately converge to impair cognitive functions. This study was carried out to examine the metabolic changes by probing glucose and tricarboxylic acid cycle metabolism in a 7-month-old triple transgenic mouse model of AD (3xTg-AD). The effect of lipoic acid, an insulin-mimetic agent, was also investigated to examine its ability in modulating age-dependent metabolic changes. Seven-month-old 3xTg-AD mice were given intravenous infusion of [1-13C]glucose followed by an ex vivo 13C nuclear magnetic resonance to determine the concentrations of 13C-labeled isotopomers of glutamate, glutamine, aspartate, gamma aminobutyric acid, and N-acetylaspartate. An intravenous infusion of [1-13C]glucose+[1,2-13C]acetate was given for different periods of time to distinguish neuronal and astrocytic metabolism. Enrichments of glutamate, glutamine, and aspartate were calculated after quantifying the total (12C+13C) concentrations by high-performance liquid chromatography. A hypermetabolic state was clearly evident in 7-month-old 3xTg-AD mice in contrast to the hypometabolic state reported earlier in 13-month-old mice. Hypermetabolism was evidenced by prominent increase of 13C labeling and enrichment in the 3xTg-AD mice. Lipoic acid feeding to the hypermetabolic 3xTg-AD mice brought the metabolic parameters to the levels of nonTg mice. PMID:25099753

  12. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  13. Dynamic Structure of Bombolitin II Bound to Lipid Bilayers as Revealed by Solid-state NMR and Molecular-Dynamics Simulation

    PubMed Central

    Toraya, Shuichi; Javkhlantugs, Namsrai; Mishima, Daisuke; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira

    2010-01-01

    Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state 31P and 13C NMR spectroscopy. 31P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (Tc) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the Tc. 13C NMR spectra of site-specifically 13C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers. PMID:21081076

  14. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  15. Solid state and aqueous behavior of uranyl peroxide cage clusters

    NASA Astrophysics Data System (ADS)

    Pellegrini, Kristi Lynn

    Uranyl peroxide cage clusters include a large family of more than 50 published clusters of a variety of sizes, which can incorporate various ligands including pyrophosphate and oxalate. Previous studies have reported that uranyl clusters can be used as a method to separate uranium from a solid matrix, with potential applications in reprocessing of irradiated nuclear fuel. Because of the potential applications of these novel structures in an advanced nuclear fuel cycle and their likely presence in areas of contamination, it is important to understand their behavior in both solid state and aqueous systems, including complex environments where other ions are present. In this thesis, I examine the aqueous behavior of U24Pp 12, as well as aqueous cluster systems with added mono-, di-, and trivalent cations. The resulting solutions were analyzed using dynamic light scattering and ultra-small angle X-ray scattering to evaluate the species in solution. Precipitates of these systems were analyzed using powder X-ray diffraction, X-ray fluorescence spectrometry, and Raman spectroscopy. The results of these analyses demonstrate the importance of cation size, charge, and concentration of added cations on the aqueous behavior of uranium macroions. Specifically, aggregates of various sizes and shapes form rapidly upon addition of cations, and in some cases these aggregates appear to precipitate into an X-ray amorphous material that still contains U24Pp12 clusters. In addition, I probe aggregation of U24Pp12 and U60, another uranyl peroxide cage cluster, in mixed solvent water-alcohol systems. The aggregation of uranyl clusters in water-alcohol systems is a result of hydrogen bonding with polar organic molecules and the reduction of the dielectric constant of the system. Studies of aggregation of uranyl clusters also allow for comparison between the newer uranyl polyoxometalate family and century-old transition metal polyoxometalates. To complement the solution studies of uranyl

  16. NASA's Advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  17. Single Protein Structural Analysis with a Solid-state Nanopore Sensor

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Golovchenko, Jene; McNabb, David

    2005-03-01

    We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.

  18. Criteria to average out the chemical shift anisotropy in solid-state NMR when irradiated with BABA I, BABA II, and C7 radiofrequency pulse sequences.

    PubMed

    Stephane Mananga, Eugene

    2013-01-01

    Floquet-Magnus expansion is used to study the effect of chemical shift anisotropy in solid-state NMR of rotating solids. The chemical shift interaction is irradiated with two types of radiofrequency pulse sequences: BABA and C7. The criteria for the chemical shift anisotropy to be averaged out in each rotor period are obtained. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Solid state microdosimetry.

    PubMed

    Bradley, P D; Rosenfeld, A B; Zaider, M

    2001-09-01

    A review of solid state microdosimetry is presented with an emphasis on silicon-based devices. The historical foundations and basics of microdosimetry are briefly provided. Various methods of experimental regional microdosimetry are discussed to facilitate a comparison with the more recent development of silicon microdosimetry. In particular, the performance characteristics of a proportional gas counter and a silicon microdosimeter are compared. Recent improvements in silicon microdosimetry address the issues of requirement specification, non-spherical shape, tissue equivalence, sensitive volume definition (charge collection complexity) and low noise requirements which have previously impeded the implementation of silicon-based microdosimetry. A prototype based on silicon-on-insulator technology is described along with some example results from clinical high LET radiotherapy facilities. A brief summary of the applications of microdosimetry is included. c2001 Elsevier Science B.V. All rights reserved.

  20. Modeling an in-register, parallel "iowa" aβ fibril structure using solid-state NMR data from labeled samples with rosetta.

    PubMed

    Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei

    2015-01-06

    Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity

    NASA Astrophysics Data System (ADS)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun

    2017-01-01

    Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C3N4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C3N4/CuS composite exhibits a high visible-light photocatalytic H2-production rate of 57.56 μmol h-1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na2S/Na2SO3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C3N4/CuS composites show the enhanced visible-light photocatalytic H2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C3N4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H2-production activity.

  2. Protecting solid-state spins from a strongly coupled environment

    NASA Astrophysics Data System (ADS)

    Chen, Mo; Calvin Sun, Won Kyu; Saha, Kasturi; Jaskula, Jean-Christophe; Cappellaro, Paola

    2018-06-01

    Quantum memories are critical for solid-state quantum computing devices and a good quantum memory requires both long storage time and fast read/write operations. A promising system is the nitrogen-vacancy (NV) center in diamond, where the NV electronic spin serves as the computing qubit and a nearby nuclear spin as the memory qubit. Previous works used remote, weakly coupled 13C nuclear spins, trading read/write speed for long storage time. Here we focus instead on the intrinsic strongly coupled 14N nuclear spin. We first quantitatively understand its decoherence mechanism, identifying as its source the electronic spin that acts as a quantum fluctuator. We then propose a scheme to protect the quantum memory from the fluctuating noise by applying dynamical decoupling on the environment itself. We demonstrate a factor of 3 enhancement of the storage time in a proof-of-principle experiment, showing the potential for a quantum memory that combines fast operation with long coherence time.

  3. Advanced fusion welding processes, solid state joining and a successful marriage. [production of aerospace structures

    NASA Technical Reports Server (NTRS)

    Miller, F. R.

    1972-01-01

    Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.

  4. Metabolism of Primed, Constant Infusions of [1,2-13C2] Glycine and [1-13C1] Phenylalanine to Urinary Oxalate

    PubMed Central

    Knight, John; Assimos, Dean G.; Callahan, Michael F.; Holmes, Ross P.

    2010-01-01

    Objective Experiments in humans and rodents using oral doses of glycine and phenylalanine have suggested that the metabolism of these amino acids contributes to urinary oxalate excretion. To better define this contribution we have examined the primed, constant infusion of [1-13C1] phenylalanine and [1,2-13C2] glycine in the post-absorptive state in healthy adults. Materials/Methods Subjects were infused for 5 hours, collected hourly urines and had blood drawn every 30 minutes. Ion chromatography/mass spectrometry was used to measure [13C] enrichment in urinary oxalate, glycolate and hippurate, and the enrichment of 13C-amino acids in plasma samples was measured by gas chromatography/mass spectrometry. Results Following infusion with either 6 µmoles/kg/hr [1-13C1] phenylalanine or 6 µmoles/kg/hr [1,2-13C2] glycine, no isotopic glycolate or oxalate was detected in urine. Based on the limits of detection of our ion chromatography/mass spectroscopy method, these data indicate that < 0.7% of the urinary oxalate could be derived from phenylalanine catabolism and < 5% from glycine catabolism. Infusions with high levels of [1,2-13C2] glycine, 60 µmoles/kg/hr, increased mean plasma glycine by 29% and the whole body flux of glycine by 72%. Under these conditions glycine contributed 16.0 ± 1.6% and 16.6 ± 3.2% to urinary oxalate and glycolate excretion, respectively. Experiments using cultured hepatoma cells demonstrated that only at supra-physiological levels (>1mM) did glycine and phenylalanine metabolism increase oxalate synthesis. Conclusions These data suggest glycine and phenylalanine metabolism make only minor contributions to oxalate synthesis and urinary oxalate excretion. PMID:21036374

  5. Microfluidic multiplexing of solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.; Lim, Jong-Min; Karnik, Rohit

    2017-12-01

    Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.

  6. Changes in vegetation phenology are not reflected in atmospheric CO2 and 13 C/12 C seasonality.

    PubMed

    Gonsamo, Alemu; D'Odorico, Petra; Chen, Jing M; Wu, Chaoyang; Buchmann, Nina

    2017-10-01

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO 2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO 2 and 13 C/ 12 C seasonality. Here, we use four CO 2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO 2 and 13 C/ 12 C seasonality. Since the 1960s, the only significant long-term trend of CO 2 and 13 C/ 12 C seasonality was observed at the northern most station, Alert, where the spring CO 2 drawdown dates advanced by 0.65 ± 0.55 days yr -1 , contributing to a nonsignificant increase in length of the CO 2 uptake period (0.74 ± 0.67 days yr -1 ). For Point Barrow station, vegetation phenology changes in well-watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13 C/ 12 C seasonality while the CO 2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13 C depleted plant materials cancels out the 12 C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming-induced increases both in photosynthesis and respiration contribute to the long-term stability of CO 2 and 13 C/ 12 C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak-to-through CO 2 amplitude. As the relative magnitude of the increased

  7. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity.

    PubMed

    Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F

    2012-04-07

    Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.

  8. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  9. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction.

    PubMed

    Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M

    2015-01-01

    Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.

  10. The curved 14C vs. δ13C relationship in dissolved inorganic carbon: A useful tool for groundwater age- and geochemical interpretations

    USGS Publications Warehouse

    Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep

    2014-01-01

    Determination of the 14C content of dissolved inorganic carbon (DIC) is useful for dating of groundwater. However, in addition to radioactive decay, the 14C content in DIC (14CDIC) can be affected by many geochemical and physical processes and numerous models have been proposed to refine radiocarbon ages of DIC in groundwater systems. Changes in the δ13C content of DIC (δ13CDIC) often can be used to deduce the processes that affect the carbon isotopic composition of DIC and the 14C value during the chemical evolution of groundwater. This paper shows that a curved relationship of 14CDIC vs. δ13CDIC will be observed for groundwater systems if (1) the change in δ13C value in DIC is caused by a first-order or pseudo-first-order process, e.g. isotopic exchange between DIC and solid carbonate, (2) the reaction/process progresses with the ageing of the groundwater, i.e. with decay of 14C in DIC, and (3) the magnitude of the rate of change in δ13C of DIC is comparable with that of 14C decay. In this paper, we use a lumped parameter method to derive a model based on the curved relationship between 14CDICand δ13CDIC. The derived model, if used for isotopic exchange between DIC and solid carbonate, is identical to that derived by Gonfiantini and Zuppi (2003). The curved relationship of 14CDIC vs. δ13CDIC can be applied to interpret the age of the DIC in groundwater. Results of age calculations using the method discussed in this paper are compared with those obtained by using other methods that calculate the age of DIC based on adjusted initial radiocarbon values for individual samples. This paper shows that in addition to groundwater age interpretation, the lumped parameter method presented here also provides a useful tool for geochemical interpretations, e.g. estimation of apparent rates of geochemical reactions and revealing the complexity of the geochemical environment.

  11. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Martinez-Ibañez, Maria; Piszcz, Michal; Rodriguez-Martinez, Lide M.; Zhang, Heng; Armand, Michel

    2018-04-01

    Novel solid polymer electrolytes (SPEs), comprising of comb polymer matrix grafted with soft and disordered polyether moieties (Jeffamine®) and lithium bis(fluorosulfonyl)imide (LiFSI) are investigated in all-solid-state lithium metal (Li°) polymer cells. The LiFSI/Jeffamine-based SPEs are fully amorphous at room temperature with glass transitions as low as ca. -55 °C. They show higher ionic conductivities than conventional poly(ethylene oxide) (PEO)-based SPEs at ambient temperature region, and good electrochemical compatibility with Li° electrode. These exceptional properties enable the operational temperature of Li° | LiFePO4 cells to be decreased from an elevated temperature (70 °C) to room temperature. Those results suggest that LiFSI/Jeffamine-based SPEs can be promising electrolyte candidates for developing safe and high performance all-solid-state Li° batteries.

  12. Laser immunotherapy for advanced solid tumors

    NASA Astrophysics Data System (ADS)

    Naylor, Mark; Li, Xiaosong; Hode, Tomas; Alleruzzo, Lu; Raker, Joseph; Lam, Siu Kit; Zhou, Feifan; Chen, Wei

    2017-02-01

    Immunologically oriented therapy (immunotherapy) has arguably proved to be the most effective method for treating advanced melanoma, the prototypical chemotherapy-resistant solid tumor. The efficacy and benefit of immunotherapy for other tumors, including those that are at least partly responsive to chemotherapy, is less well established. Breast cancer, one of the most common of the solid tumors in humans, is partially responsive to traditional chemotherapy. We believe that breast cancer patients, like melanoma patients, will benefit from the application of immunotherapy techniques. Here we review the different forms of laser immunotherapy (LIT), a key type of immunologically oriented therapy, discuss its use in melanoma and in breast cancer, and discuss its potentially pivotal role in the immunotherapy armamentarium.

  13. Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants alpha-tocopherol and quercetin.

    PubMed

    Koontz, John L; Marcy, Joseph E; O'Keefe, Sean F; Duncan, Susan E

    2009-02-25

    Cyclodextrin (CD) complexation procedures are relatively simple processes, but these techniques often require very specific conditions for each individual guest molecule. Variations of the coprecipitation from aqueous solution technique were optimized for the CD complexation of the natural antioxidants alpha-tocopherol and quercetin. Solid inclusion complex products of alpha-tocopherol/beta-CD and quercetin/gamma-CD had molar ratios of 1.7:1, which were equivalent to 18.1% (w/w) alpha-tocopherol and 13.0% (w/w) quercetin. The molar reactant ratios of CD/antioxidant were optimized at 8:1 to improve the yield of complexation. The product yields of alpha-tocopherol/beta-CD and quercetin/gamma-CD complexes from their individual reactants were calculated as 24 and 21% (w/w), respectively. ATR/FT-IR, 13C CP/MAS NMR, TGA, and DSC provided evidence of antioxidant interaction with CD at the molecular level, which indicated true CD inclusion complexation in the solid state. Natural antioxidant/CD inclusion complexes may serve as novel additives in controlled-release active packaging to extend the oxidative stability of foods.

  14. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  15. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  16. 20th International Conference on Solid State Ionics (SSI 20)

    DTIC Science & Technology

    2016-05-20

    Candidate as a Solid Electrolyte for Lithium - Ion Batteries Miriam Botros1, Ruzica Djenadic1, 2, 3 and Horst Hahn1, 2, 3; 1Joint Research Laboratory...Earth and Algae Based Aqueous Binders Make Environmentally Friendly High-Performance Anodes for Lithium - Ion Batteries Muhammad Hasanuzzaman and...Alberta, Canada. C2.22 Electrochemical Properties of All-Solid-State Lithium - Ion Batteries Using Li2CO3-Li3BO3 Electrolyte Toyoki Okumura, Tomonari

  17. The H+n-C5H12/n-C6H14→H2(v',j')+C5H11/C6H13 reactions: State-to-state dynamics and models of energy disposal

    NASA Astrophysics Data System (ADS)

    Picconatto, Carl A.; Srivastava, Abneesh; Valentini, James J.

    2001-03-01

    The rovibrational state distributions for the H2 product of the H+n-C5H12/n-C6H14→H2+C5H11/C6H13 reactions at 1.6 eV collision energy are reported. The results are compared to measurements made on the kinematically and energetically similar H+RH→H2+R (RH=CH4, C2H6, and C3H8) reactions as well as the atom-diatom reactions H+HX→H2+X(HX=HCl, HBr). For the title reactions, as for all the comparison reactions, the product appears in few of the energetically accessible states. This is interpreted as the result of a kinematic constraint on the product translational energy. Characteristic of the H+RH reactions we have previously studied, the title reactions show increasing rotational excitation of the H2 product with increasing vibrational excitation of it, a correlation that gets stronger as the size of the alkane increases. Trends and variations in the product energy disposal are analyzed and explained by a localized reaction model. This model predicates a truncation of the opacity function due to competing reactive sites in the polyatomic alkane reactant, and a relaxation of the otherwise tight coupling of energy and angular momentum conservation, because the polyatomic alkyl radical product is a sink for angular momentum.

  18. The 20 GHz spacecraft IMPATT solid state transmitter

    NASA Technical Reports Server (NTRS)

    Best, T.; Ngan, Y. C.

    1986-01-01

    The engineering development of a solid-state transmitter amplifier operating in the 20-GHz frequency range is described. This effort involved a multitude of disciplines including IMPATT device development, circulator design, multiple-diode circuit design, and amplifier integration and test. The objective was to develop a transmitter amplifier demonstrating the feasibility of providing an efficient, reliable, lightweight solid-state transmitter to be flown on a 30 to 20 GHz communication demonstration satellite. The work was done under contract from NASA/Lewis Research Center for a period of three years. The result was the development of a GaAs IMPACT diode amplifier capable of an 11-W CW output power and a 2-dB bandwidth of 300 MHz. GaAs IMPATT diodes incorporating diamond heatsink and double-Read doping profile capable of 5.3-W CW oscillator output power and 15.5% efficiency were developed. Up to 19% efficiency was also observed for an output power level of 4.4 W. High performance circulators with a 0.2 dB inserting loss and bandwidth of 5 GHz have also been developed. These represent a significant advance in both device and power combiner circuit technologies in K-band frequencies.

  19. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer.

    PubMed

    Tsukasaki, Hirofumi; Mori, Yota; Otoyama, Misae; Yubuchi, So; Asano, Takamasa; Tanaka, Yoshinori; Ohno, Takahisa; Mori, Shigeo; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2018-04-18

    Sulfide-based all-solid-state lithium batteries are a next-generation power source composed of the inorganic solid electrolytes which are incombustible and have high ionic conductivity. Positive electrode composites comprising LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC) and 75Li 2 S·25P 2 S 5 (LPS) glass electrolytes exhibit excellent charge-discharge cycle performance and are promising candidates for realizing all-solid-state batteries. The thermal stabilities of NMC-LPS composites have been investigated by transmission electron microscopy (TEM), which indicated that an exothermal reaction could be attributed to the crystallization of the LPS glass. To further understand the origin of the exothermic reaction, in this study, the precipitated crystalline phase of LPS glass in the NMC-LPS composite was examined. In situ TEM observations revealed that the β-Li 3 PS 4 precipitated at approximately 200 °C, and then Li 4 P 2 S 6 and Li 2 S precipitated at approximately 400 °C. Because the Li 4 P 2 S 6 and Li 2 S crystalline phases do not precipitate in the single LPS glass, the interfacial contact between LPS and NMC has a significant influence on both the LPS crystallization behavior and the exothermal reaction in the NMC-LPS composites.

  20. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    PubMed

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-04

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.

  1. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation

    PubMed Central

    Colla, Luciane Maria; Ficanha, Aline M. M.; Rizzardi, Juliana; Bertolin, Telma Elita; Reinehr, Christian Oliveira; Costa, Jorge Alberto Vieira

    2015-01-01

    Due to the numerous applications of lipases in industry, there is a need to study their characteristics, because lipases obtained from different sources may present different properties. The aim of this work was to accomplish the partial characterization of lipases obtained through submerged fermentation and solid-state fermentation by two species of Aspergillus. Fungal strains were isolated from a diesel-contaminated soil and selected as good lipases producers. Lipases obtained through submerged fermentation presented optimal activities at 37°C and pH 7.2 and those obtained through solid-state fermentation at 35°C and pH 6.0. The enzymes produced by submerged fermentation were more temperature-stable than those obtained by solid-state fermentation, presenting 72% of residual activity after one hour of exposition at 90°C. Lipases obtained through submerged fermentation had 80% of stability in acidic pH and those obtained through solid-state fermentation had stability greater than 60% in alkaline pH. PMID:26180809

  2. THE IMPACT OF MUNICIPAL SOLID WASTE MANAGEMENT ON GREENHOUSE GAS EMISSIONS IN THE UNITED STATES

    EPA Science Inventory

    Technological advancements in United States (U.S.) municipal solid waste (MSW) disposal and a focus on the environmental advantages of integrated MSW management have greatly reduced the environmental impacts of MSW management, including greenhouse gas (GHG) emissions. This study ...

  3. DFT calculations in the assignment of solid-state NMR and crystal structure elucidation of a lanthanum(iii) complex with dithiocarbamate and phenanthroline.

    PubMed

    Gowda, Vasantha; Laitinen, Risto S; Telkki, Ville-Veikko; Larsson, Anna-Carin; Antzutkin, Oleg N; Lantto, Perttu

    2016-12-06

    The molecular, crystal, and electronic structures as well as spectroscopic properties of a mononuclear heteroleptic lanthanum(iii) complex with diethyldithiocarbamate and 1,10-phenanthroline ligands (3 : 1) were studied by solid-state 13 C and 15 N cross-polarisation (CP) magic-angle-spinning (MAS) NMR, X-ray diffraction (XRD), and first principles density functional theory (DFT) calculations. A substantially different powder XRD pattern and 13 C and 15 N CP-MAS NMR spectra indicated that the title compound is not isostructural to the previously reported analogous rare earth complexes with the space group P2 1 /n. Both 13 C and 15 N CP-MAS NMR revealed the presence of six structurally different dithiocarbamate groups in the asymmetric unit cell, implying a non-centrosymmetric packing arrangement of molecules. This was supported by single-crystal X-ray crystallography showing that the title compound crystallised in the triclinic space group P1[combining macron]. In addition, the crystal structure also revealed that one of the dithiocarbamate ligands has a conformational disorder. NMR chemical shift calculations employing the periodic gauge including projector augmented wave (GIPAW) approach supported the assignment of the experimental 13 C and 15 N NMR spectra. However, the best correspondences were obtained with the structure where the atomic positions in the X-ray unit cell were optimised at the DFT level. The roles of the scalar and spin-orbit relativistic effects on NMR shielding were investigated using the zeroth-order regular approximation (ZORA) method with the outcome that already the scalar relativistic level qualitatively reproduces the experimental chemical shifts. The electronic properties of the complex were evaluated based on the results of the natural bond orbital (NBO) and topology of the electron density analyses. Overall, we apply a multidisciplinary approach acquiring comprehensive information about the solid-state structure and the metal

  4. Membrane-entrapped microperoxidase as a 'solid-state' promoter in the electrochemistry of soluble metalloproteins.

    PubMed Central

    Brunori, M; Santucci, R; Campanella, L; Tranchida, G

    1989-01-01

    Immobilization of biological systems in solid matrices is presently of great interest, in view of the many potential advantages associated with both the higher stability of the immobilized macromolecules and the potential utilization for biotechnology. In the present paper the electrochemical behaviour of the undecapeptide from cytochrome c (called microperoxidase) tightly entrapped in cellulose triacetate membrane is reported; its utilization as 'solid-state' promoter in the electrochemistry of soluble metalloproteins is presented. The results obtained indicate that: (i) membrane-entrapped microperoxidase undergoes rapid reversible electron transfer at a glassy carbon electrode; (ii) the electrochemical process is diffusion-controlled; (iii) entrapped microperoxidase acts as 'solid-state' promoter in the electrochemistry of soluble cytochrome c and of azurin. PMID:2557833

  5. Solid-State Water Electrolysis with an Alkaline Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, YJ; Chen, G; Mendoza, AJ

    2012-06-06

    We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cellmore » with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.« less

  6. Solid-state diffusion in amorphous zirconolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.; Dove, M. T.; Trachenko, K.

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also findmore » that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.« less

  7. Zwitterionic metal carboxylate complexes: In solid state

    NASA Astrophysics Data System (ADS)

    Nath, Bhaskar; Kalita, Dipjyoti; Baruah, Jubaraj B.

    2012-07-01

    A flexible dicarboxylic acid having composition [(CH(o-C5H4N)(p-C6H4OCH2CO2H)2] derived from corresponding bis-phenol reacts with various metal(II) acetates such as manganese(II), cobalt(II) and nickel(II) acetate leads to zwtterionic complexes with compositions [CH(o-C5H4N)(p-C6H4OCH2CO2){p-C6H4OCH2CO2M(H2O)5}].6H2O (where M = Mn, Co, Ni). The complexes are characterised by X-ray crystallography. These complexes have chiral center due to unsymmetric structure conferred to the ligand through coordination at only one carboxylate group of the ligand. In solid state these complexes are racemic.

  8. "Solid State" Chemistry in Titan Ice Particles

    NASA Image and Video Library

    2016-09-20

    Scientists from NASA's Cassini mission suggested in a 2016 paper that the appearance of a cloud of dicyanoacetylene (C4N2) ice in Titan's stratosphere may be explained by "solid-state" chemistry taking place inside ice particles. The particles have an inner layer of cyanoacetylene (HC3N) ice coated with an outer layer of hydrogen cyanide (HCN) ice. Left: When a photon of light penetrates the outer shell, it can interact with the HC3N, producing C3N and H. Center: The C3N then reacts with HCN to yield C4N2 and H (shown at right). Another reaction that also yields C4N2 ice and H also is possible, but the researchers think it is less likely. http://photojournal.jpl.nasa.gov/catalog/PIA20715

  9. Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Long; Alamillo, Ricardo; Elliott, William A.

    Liquid-phase processing of molecules using heterogeneous catalysts – an important strategy for obtaining renewable chemicals sustainably from biomass – involves reactions that occur at solid-liquid interfaces. In glucose isomerization catalyzed by basic faujasite zeolites, the catalytic activity depends strongly on the solvent composition: initially, it declines precipitously when water is mixed with a small amount of the organic co-solvent γ-valerolactone (GVL), then recovers as the GVL content increases. Using solid-state 13C NMR spectroscopy, we observed glucose isomers located inside the zeolite pores directly, and followed their transformations into fructose and mannose in real time. At low GVL concentrations, glucose ismore » depleted in the zeolite pores relative to the liquid phase, while higher GVL concentrations in solution drive glucose inside the pores, resulting in up to a 32 enhancement in the local glucose concentration. Although their populations exchange rapidly, molecules present at the reactive interface experience a significantly different environment from the bulk solution.« less

  10. Synthesis and solid-state characterisation of 4-substituted methylidene oxindoles

    PubMed Central

    2013-01-01

    Background 4-substituted methylidene oxindoles are pharmacologically important. Detailed analysis and comparison of all the interactions present in crystal structures is necessary to understand how these structures arise. The XPac procedure allows comparison of complete crystal structures of related families of compounds to identify assemblies that are mainly the result of close-packing as well as networks of directed interactions. Results Five 4-substituted methylidene oxindoles have been synthesized by the Knoevenagel condensation of oxindole with para-substituted aromatic aldehydes and were characterized in the solid state by x-ray crystallography. Hence, the structures of (3E)-3-(4-Bromobenzylidene)-1,3-dihydro-2H-indol-2-one, 3a, (3E)-3-(4-Chlorobenzylidene)-1,3-dihydro-2H-indol-2-one, 3b, (3E)-3-(4-Methoxybenzylidene)-1,3-dihydro-2H-indol-2-one, 3c, (3E)-3-(4-Methylbenzylidene)-1,3-dihydro-2H-indol-2-one, 3d and (3E)-3-(4-Nitrobenzylidene)-1,3-dihydro-2H-indol-2-one, 3e, were elucidated using single crystal X-ray crystallography. Conclusions A hydrogen bonded dimer molecular assembly or supramolecular construct was identified in all the crystal structures examined along with a further four 1D supramolecular constructs which were common to at least two of the family of structures studied. The 1D supramolecular constructs indicate that once the obvious strong interaction is satisfied to form hydrogen bonded dimer it is the conventionally weaker interactions, such as steric bulk and edge-to-face interactions which compete to influence the final structure formation. PMID:24517531

  11. Measurement and significance of the equilibrium reaction C-13/+/ + /C-12/O yields C-12/+/ + /C-13/O for alteration of the C-13/C-12 ratio in interstellar molecules

    NASA Technical Reports Server (NTRS)

    Watson, W. D.; Anicich, V. G.; Huntress, W. T., Jr.

    1976-01-01

    Laboratory measurements using the ion-cyclotron resonance technique yield a rate constant of 2 by 10 to the -10th power cu cm/sec at 300 K for the isotope exchange C-13(+) + (C-12)O yields C-12(+) + (C-13)O. According to the usual ideas about ion-molecule reactions, this rate constant should also be appropriate at temperatures not exceeding about 100 K. Then the observed C-13/C-12 ratio obtained from radio observation of interstellar molecules may be either larger or smaller than the actual value in the interstellar medium by factors of 2 or so. If the ratio is altered from the actual interstellar value, it will not be the same in all molecules, and CO will tend to have the highest value. The chief astronomical uncertainty for the occurrence of this isotope fractionation is the abundance of 'unobservable' molecules which can react rapidly with C(+): e.g., O2, H2O, CO2, and CH4. If their abundance is greater than about one-tenth that of CO, the isotope fractionation will be inhibited.

  12. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    NASA Astrophysics Data System (ADS)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  13. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis

    2007-08-10

    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements asmore » a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.« less

  14. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    PubMed

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Obtaining molecular and structural information from 13C-14N systems with 13C FIREMAT experiments.

    PubMed

    Strohmeier, Mark; Alderman, D W; Grant, David M

    2002-04-01

    The effect of dipolar coupling to 14N on 13C FIREMAT (five pi replicated magic angle turning) experiments is investigated. A method is developed for fitting the 13C FIREMAT FID employing the full theory to extract the 13C-14N dipolar and 13C chemical shift tensor information. The analysis requires prior knowledge of the electric field gradient (EFG) tensor at the 14N nucleus. In order to validate the method the analysis is done for the amino acids alpha-glycine, gamma-glycine, l-alanine, l-asparagine, and l-histidine on FIREMAT FIDs recorded at 13C frequencies of 50 and 100 MHz. The dipolar and chemical shift data obtained with this analysis are in very good agreement with the previous single-crystal 13C NMR results and neutron diffraction data on alpha-glycine, l-alanine, and l-asparagine. The values for gamma-glycine and l-histidine obtained with this new method are reported for the first time. The uncertainties in the EFG tensor on the resultant 13C chemical shift and dipolar tensor values are assessed. (c) 2002 Elsevier Science (USA).

  16. Application of 13C NMR cross-polarization inversion recovery experiments for the analysis of solid dosage forms.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz

    2016-11-20

    Solid-state nuclear magnetic resonance (ssNMR) is a powerful and unique method for analyzing solid forms of the active pharmaceutical ingredients (APIs) directly in their original formulations. Unfortunately, despite their wide range of application, the ssNMR experiments often suffer from low sensitivity and peaks overlapping between API and excipients. To overcome these limitations, the crosspolarization inversion recovery method was successfully used. The differences in the spin-lattice relaxation time constants for hydrogen atoms T1(H) between API and excipients were employed in order to separate and discriminate their peaks in ssNMR spectra as well as to increase the intensity of API signals in low-dose formulations. The versatility of this method was demonstrated by different examples, including the excipients mixture and commercial solid dosage forms (e.g. granules and tablets). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Residual waste from Hanford tanks 241-C-203 and 241-C-204. 1. Solids characterization.

    PubMed

    Krupka, Kenneth M; Schaef, Herbert T; Arey, Bruce W; Heald, Steve M; Deutsch, William I; Lindberg, Michael J; Cantrell, Kirk J

    2006-06-15

    Bulk X-ray diffraction (XRD), synchrotron X-ray microdiffraction (microXRD), and scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDS) were used to characterize solids in residual sludge from single-shell underground waste tanks C-203 and C-204 at the U.S. Department of Energy's Hanford Site in southeastern Washington state. Cejkaite [Na4(UO2)(CO3)3] was the dominant crystalline phase in the C-203 and C-204 sludges. This is one of the few occurrences of cejkaite reported in the literature and may be the first documented occurrence of this phase in radioactive wastes from DOE sites. Characterization of residual solids from water leach and selective extraction tests indicates that cejkaite has a high solubility and a rapid rate of dissolution in water at ambient temperature and that these sludges may also contain poorly crystalline Na2U207 [or clarkeite Na[(UO2)O(OH)](H2O)0-1] as well as nitratine (soda niter, NaNO3), goethite [alpha-FeO(OH)], and maghemite (gamma-Fe2O3). Results of the SEM/EDS analyses indicate that the C-204 sludge also contains a solid that lacks crystalline form and is composed of Na, Al, P, O, and possibly C. Other identified solids include Fe oxides that often also contain Cr and Ni and occur as individual particles, coatings on particles, and botryoidal aggregates; a porous-looking material (or an aggregate of submicrometer particles) that typically contain Al, Cr, Fe, Na, Ni, Si, U, P, O, and C; Si oxide (probably quartz); and Na-Al silicate(s). The latter two solids probably represent minerals from the Hanford sediment, which were introduced into the tank during prior sampling campaigns or other tank operation activities. The surfaces of some Fe-oxide particles in residual solids from the water leach and selective extraction tests appear to have preferential dissolution cavities. If these Fe oxides contain contaminants of concern, then the release of these contaminants into infiltrating water would be limited by the

  18. Solid State Laser Technology Development for Atmospheric Sensing Applications

    NASA Technical Reports Server (NTRS)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  19. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  20. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  1. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  2. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  3. Solid State Lighting Program (Falcon)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioningmore » which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of

  4. High temperature solid state storage cell

    DOEpatents

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  5. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    PubMed

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  6. A reconnaissance study of 13C-13C clumping in ethane from natural gas

    NASA Astrophysics Data System (ADS)

    Clog, Matthieu; Lawson, Michael; Peterson, Brian; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Eiler, John M.

    2018-02-01

    Ethane is the second most abundant alkane in most natural gas reservoirs. Its bulk isotopic compositions (δ13C and δD) are used to understand conditions and progress of cracking reactions that lead to the accumulation of hydrocarbons. Bulk isotopic compositions are dominated by the concentrations of singly-substituted isotopologues (13CH3-12CH3 for δ13C and 12CDH2-12CH3 for δD). However, multiply-substituted isotopologues can bring additional independent constraints on the origins of natural ethane. The 13C2H6 isotopologue is particularly interesting as it can potentially inform the distribution of 13C atoms in the parent biomolecules whose thermal cracking lead to the production of natural gas. This work presents methods to purify ethane from natural gas samples and quantify the abundance of the rare isotopologue 13C2H6 in ethane at natural abundances to a precision of ±0.12 ‰ using a high-resolution gas source mass spectrometer. To investigate the natural variability in carbon-carbon clumping, we measured twenty-five samples of thermogenic ethane from a range of geological settings, supported by two hydrous pyrolysis of shales experiments and a dry pyrolysis of ethane experiment. The natural gas samples exhibit a range of 'clumped isotope' signatures (Δ13C2H6) at least 30 times larger than our analytical precision, and significantly larger than expected for thermodynamic equilibration of the carbon-carbon bonds during or after formation of ethane, inheritance from the distribution of isotopes in organic molecules or different extents of cracking of the source. However we show a relationship between the Δ13C2H6 and the proportion of alkanes in natural gas samples, which we believe can be associated to the extent of secondary ethane cracking. This scenario is consistent with the results of laboratory experiments, where breaking down ethane leaves the residue with a low Δ13C2H6 compared to the initial gas. Carbon-carbon clumping is therefore a new

  7. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Wang, Hao; He, Zhongqi; Guo, Wenjing; Song, Fanhao; Giesy, John P

    2017-01-01

    Forms and labilities of plant-derived organic matters (OMs) including carbon (C) and phosphorus (P) were fundamental for understanding their release, degradation and environmental behaviour in lake ecosystems. Thus, solid 13 C and solution 31 P nuclear magnetic resonance (NMR) spectroscopy were used to characterize biomass of six aquatic plants in Tai Lake, China. The results showed that carbohydrates (61.2% of the total C) were predominant C functional group in the solid 13 C NMR spectra of plant biomass, which may indicate high lability and bioavailability of aquatic plants-derived organic matter in lakes. There was 72.6-103.7% of the total P in aquatic plant biomass extracted by NaOH-EDTA extracts. Solution 31 P NMR analysis of these NaOH-EDTA extracts further identified several molecular species of P including orthophosphate (50.1%), orthophosphate monoesters (46.8%), DNA (1.6%) and pyrophosphate (1.4%). Orthophosphate monoesters included β-glycerophosphate (17.7%), hydrolysis products of RNA (11.7%), α-glycerophosphate (9.2%) and other unknown monoesters (2.1%). Additionally, phytate, the major form of organic P in many lake sediments, was detected in floating plant water poppy. These inorganic P (e.g. orthophosphate and pyrophosphate) and organic P (e.g. diester and its degradation products) identified in plant biomass were all labile and bioavailable P, which would play an important role in recycling of P in lakes. These results increased knowledge of chemical composition and bioavailability of OMs derived from aquatic plants in lakes.

  8. 13C NMR study of the generation of C2- and C3-deuterated lactic acid by tumoral pancreatic islet cells exposed to D-[1-13C]-, D-[2-13C]- and D-[6-13C]-glucose in 2H2O.

    PubMed

    Willem, R; Biesemans, M; Kayser, F; Malaisse, W J

    1994-03-01

    Tumoral pancreatic islet cells of the RIN5mF line were incubated for 120 min in media prepared in 2H2O and containing D-[1-13C]glucose, D-[2-13C]glucose, and D-[6-13C]glucose. The generation of C2- and C3-deuterated lactic acid was assessed by 13C NMR. The interpretation of experimental results suggests that a) the efficiency of deuteration on the C1 of D-fructose 6-phosphate does not exceed about 47% and 4% in the phosphoglucoisomerase and phosphomannoisomerase reactions, respectively; b) approximately 38% of the molecules of D-glyceraldehyde 3-phosphate generated from D-glucose escape deuteration in the sequence of reactions catalyzed by triose phosphate isomerase and aldolase; and c) about 41% of the molecules of pyruvate generated by glycolysis are immediately converted to lactate, the remaining 59% of pyruvate molecules undergoing first a single or double back-and-forth interconversion with L-alanine. It is proposed that this methodological approach, based on high resolution 13C NMR spectroscopy, may provide novel information on the regulation of back-and-forth interconversion of glycolytic intermediates in intact cells as modulated, for instance, by enzyme-to-enzyme tunneling.

  9. Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation.

    PubMed

    Acharya, Bhavik K; Mohana, Sarayu; Jog, Rahul; Divecha, Jyoti; Madamwar, Datta

    2010-10-01

    Pollution caused by distillery spent wash on one hand has stimulated the need to develop new technologies to treat the waste and on the other, forced us to reevaluate the efficient utilization of its nutritive potential for production of various high value compounds. In this study, anaerobically treated distillery spent wash was used for the production of cellulases by Aspergillus ellipticus under solid-state fermentation using wheat straw as a substrate. The interactions between distillery effluent concentration, initial pH, moisture content and inoculum size were investigated and modeled using response surface methodology (RSM) involving Box-Behnken design (BBD). Under optimized conditions, filter paper activity, beta-glucosidase and endo-beta-1,4-glucanase activities were found to be 13.38, 26.68 and 130.92 U/g of substrate respectively. Characterization of endo-beta-1,4-glucanase and beta-glucosidase was done after partial purification by ammonium sulfate fractionation followed by desalting. The partially purified endo-beta-1,4-glucanase and beta-glucosidase showed maximum activity at 60 degrees C. Saccharification studies performed with different lignocellulosic substrates showed that wheat bran was most susceptible to enzymatic hydrolysis. The study suggests that anaerobically treated distillery spent wash can be used as a viable nutrient source for cellulase production under solid-state fermentation by A. ellipticus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. An improved 13C-tracer method for the study of lignin structure and reactions : differential 13C-NMR

    Treesearch

    Noritsugu Terashima; Dmitry Evtuguin; Carlos Pascoal Neto; Jim Parkas; Magnus Paulsson; Ulla Westermark; Sally Ralph; John Ralph

    2003-01-01

    The technique of selective 13C-enrichment of specific carbons in lignin combined with 13C-NMR differential spectrometry between spectra of 13C-enriched and unenriched lignins (Ä13C-NMR) provides definitive information on the structure of the lignin macromolecule. Improvements were made on, (1) specific 13C-enrichment of almost all carbons involved in inter-unit bonds...

  11. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    PubMed

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  12. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  13. Solid State Light Evaluation in the U.S. Lab Mockup

    NASA Technical Reports Server (NTRS)

    Maida, James c.; Bowen, Charles K.; Wheelwright, Chuck

    2009-01-01

    This document constitutes the publication of work performed by the Space Human Factors Laboratory (mail code SF5 at the time) at the Johnson Space Center (JSC) in the months of June and July of 2000. At that time, the Space Human Factors Laboratory was part of the Space Human Factors Branch in the Flight Projects Division of the Space and Life Directorate. This report was originally to be a document for internal consumption only at JSC as it was seen to be only preliminary work for the further development of solid state illumination for general lighting on future space vehicles and the International Space Station (ISS). Due to funding constraints, immediate follow-on efforts were delayed and the need for publication of this document was overcome by other events. However, in recent years and with the development and deployment of a solid state light luminaire prototype on ISS, the time was overdue for publishing this information for general distribution and reference. Solid state lights (SSLs) are being developed to potentially replace the general luminaire assemblies (GLAs) currently in service in the International Space Station (ISS) and included in designs of modules for the ISS. The SSLs consist of arrays of light emitting diodes (LEDs), small solid state electronic devices that produce visible light in proportion to the electrical current flowing through them. Recent progressive advances in electrical power-to-light conversion efficiency in LED technology have allowed the consideration of LEDs as replacements for incandescent and fluorescent light sources in many circumstances, and their inherent advantages in ruggedness, reliability, and life expectancy make them attractive for applications in spacecraft. One potential area of application for the SSLs in the U.S. Laboratory Module of the ISS. This study addresses the suitability of the SSLs as replacements for the GLAs in this application.

  14. Distinguishing polymorphs of the semiconducting pigment copper phthalocyanine by solid-state NMR and Raman spectroscopy.

    PubMed

    Shaibat, Medhat A; Casabianca, Leah B; Siberio-Pérez, Diana Y; Matzger, Adam J; Ishii, Yoshitaka

    2010-04-08

    Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of alpha- and beta-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. (13)C high-resolution SSNMR spectra of alpha- and beta-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. (13)C and (1)H SSNMR relaxation times of alpha- and beta-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs.

  15. Millimeter and submillimeter wave spectra of 13C methylamine

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Margulès, L.; Ilyushin, V. V.; Smirnov, I. A.; Alekseev, E. A.; Halfen, D. T.; Ziurys, L. M.

    2016-03-01

    Context. Methylamine (CH3NH2) is a light molecule of astrophysical interest, which has an intensive rotational spectrum that extends in the submillimeter wave range and far beyond, even at temperatures characteristic for the interstellar medium. It is likely for 13C isotopologue of methylamine to be identified in astronomical surveys, but there is no information available for the 13CH3NH2 millimeter and submillimeter wave spectra. Aims: In this context, to provide reliable predictions of 13CH3NH2 spectrum in millimeter and submillimeter wave ranges, we have studied rotational spectra of the 13C methylamine isotopologue in the frequency range from 48 to 945 GHz. Methods: The spectrum of 13C methylamine was recorded using conventional absorption spectrometers. The analysis of the rotational spectrum of 13C methylamine in the ground vibrational state was performed on the basis of the group-theoretical high-barrier tunneling Hamiltonian that was developed for methylamine. The available multiple observations of the parent methylamine species toward Sgr B2(N) at 1, 2, and 3 mm using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory were used to make a search for interstellar 13CH3NH2. Results: In the recorded spectra, we have assigned 2721 rotational transitions that belong to the ground vibrational state of the 13CH3NH2. These measurements were fitted to the Hamiltonian model that uses 75 parameters to achieve an overall weighted rms deviation of 0.73. On the basis of these spectroscopic results, predictions of transition frequencies in the frequency range up to 950 GHz with J ≤ 50 and Ka ≤ 20 are presented. The search for interstellar 13C methylamine in available observational data was not successful and therefore only an upper limit of 6.5 × 1014 cm-2 can be derived for the column density of 13CH3NH2 toward Sgr B2(N), assuming the same source size, temperature, linewidth, and systemic velocity as for parent methylamine isotopic

  16. Metabolism of uniformly labeled 13C-eicosapentaenoic acid and 13C-arachidonic acid in young and old men.

    PubMed

    Léveillé, Pauline; Chouinard-Watkins, Raphaël; Windust, Anthony; Lawrence, Peter; Cunnane, Stephen C; Brenna, J Thomas; Plourde, Mélanie

    2017-08-01

    Background: Plasma eicosapentaenoic acid (EPA) and arachidonic acid (AA) concentrations increase with age. Objective: The aim of this study was to evaluate EPA and AA metabolism in young and old men by using uniformly labeled carbon-13 ( 13 C) fatty acids. Design: Six young (∼25 y old) and 6 old (∼75 y old) healthy men were recruited. Each participant consumed a single oral dose of 35 mg 13 C-EPA and its metabolism was followed in the course of 14 d in the plasma and 28 d in the breath. After the washout period of ≥28 d, the same participants consumed a single oral dose of 50 mg 13 C-AA and its metabolism was followed for 28 d in plasma and breath. Results: There was a time × age interaction for 13 C-EPA ( P time × age = 0.008), and the shape of the postprandial curves was different between young and old men. The 13 C-EPA plasma half-life was ∼2 d for both young and old men ( P = 0.485). The percentage dose recovered of 13 C-EPA per hour as 13 CO 2 and the cumulative β-oxidation of 13 C-EPA did not differ between young and old men. At 7 d, however, old men had a >2.2-fold higher plasma 13 C-DHA concentration synthesized from 13 C-EPA compared with young men ( P age = 0.03). 13 C-AA metabolism was not different between young and old men. The 13 C-AA plasma half-life was ∼4.4 d in both young and old participants ( P = 0.589). Conclusions: The metabolism of 13 C-AA was not modified by age, whereas 13 C-EPA metabolism was slightly but significantly different in old compared with young men. The higher plasma 13 C-DHA seen in old men may be a result of slower plasma DHA clearance with age. This trial was registered at clinicaltrials.gov as NCT02957188. © 2017 American Society for Nutrition.

  17. Development of new method of δ13C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry.

    PubMed

    Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing

    2014-11-01

    Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C 1 -C 4 ) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C 5 -C 14 ) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ 13 C signatures determined by SPME-GC/IRMS were in good agreement with the known δ 13 C values of C 5 -C 14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ 13 C values for C 5 -C 14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas. Published by Elsevier B.V.

  18. Solid-state membrane module

    DOEpatents

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  19. Does vapor pressure deficit drive the seasonality of δ 13 C of the net land-atmosphere CO 2 exchange across the United States?: The Influence of VPD on δ 13 C of NEE

    DOE PAGES

    Raczka, B.; Biraud, S. C.; Ehleringer, J. R.; ...

    2017-08-10

    The seasonal pattern of the carbon isotope content (δ 13C) of atmospheric CO 2 depends on local and nonlocal land-atmosphere exchange and atmospheric transport. Previous studies suggested that the δ13C of the net land-atmosphere CO 2 flux (δsource) varies seasonally as stomatal conductance of plants responds to vapor pressure deficit of air (VPD). We studied the variation of δ source at seven sites across the United States representing forests, grasslands, and an urban center. Using a two-part mixing model, we calculated the seasonal δsource for each site after removing background influence and, when possible, removing δ 13C variation of nonlocalmore » sources. Compared to previous analyses, we found a reduced seasonal (March–September) variation in δ source at the forest sites (0.5‰variation). We did not find a consistent seasonal relationship between VPD and δ source across forest (or other) sites, providing evidence that stomatal response to VPD was not the cause of the global, coherent seasonal pattern in δsource. In contrast to the forest sites, grassland and urban sites had a larger seasonal variation in δ source (5‰) dominated by seasonal transitions in C 3/C 4 grass productivity and in fossil fuel emissions, respectively. Our findings were sensitive to the location used to account for atmospheric background variation within the mixing model method that determined δsource. Special consideration should be given to background location depending on whether the intent is to understand site level dynamics or regional scale impacts of land-atmosphere exchange. The seasonal amplitude in δ 13C of land-atmosphere CO 2 exchange (δ source) varied across land cover types and was not driven by seasonal changes in vapor pressure deficit. The largest seasonal amplitudes of δsource were at grassland and urban sites, driven by changes in C 3/C 4 grass productivity and fossil fuel emissions, respectively. Mixing model approaches may incorrectly calculate

  20. Does vapor pressure deficit drive the seasonality of δ 13 C of the net land-atmosphere CO 2 exchange across the United States?: The Influence of VPD on δ 13 C of NEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raczka, B.; Biraud, S. C.; Ehleringer, J. R.

    The seasonal pattern of the carbon isotope content (δ 13C) of atmospheric CO 2 depends on local and nonlocal land-atmosphere exchange and atmospheric transport. Previous studies suggested that the δ13C of the net land-atmosphere CO 2 flux (δsource) varies seasonally as stomatal conductance of plants responds to vapor pressure deficit of air (VPD). We studied the variation of δ source at seven sites across the United States representing forests, grasslands, and an urban center. Using a two-part mixing model, we calculated the seasonal δsource for each site after removing background influence and, when possible, removing δ 13C variation of nonlocalmore » sources. Compared to previous analyses, we found a reduced seasonal (March–September) variation in δ source at the forest sites (0.5‰variation). We did not find a consistent seasonal relationship between VPD and δ source across forest (or other) sites, providing evidence that stomatal response to VPD was not the cause of the global, coherent seasonal pattern in δsource. In contrast to the forest sites, grassland and urban sites had a larger seasonal variation in δ source (5‰) dominated by seasonal transitions in C 3/C 4 grass productivity and in fossil fuel emissions, respectively. Our findings were sensitive to the location used to account for atmospheric background variation within the mixing model method that determined δsource. Special consideration should be given to background location depending on whether the intent is to understand site level dynamics or regional scale impacts of land-atmosphere exchange. The seasonal amplitude in δ 13C of land-atmosphere CO 2 exchange (δ source) varied across land cover types and was not driven by seasonal changes in vapor pressure deficit. The largest seasonal amplitudes of δsource were at grassland and urban sites, driven by changes in C 3/C 4 grass productivity and fossil fuel emissions, respectively. Mixing model approaches may incorrectly calculate

  1. Solid State Sciences Committee Forum

    DTIC Science & Technology

    1992-05-01

    3. REPOT TYPE AND CATES COVERED I Final Report 01 Mar 91-29 Feb 92 4. MrlLE AND SUBTITLE S. FUNOG4 NUMBERS SOLID STATE SCIENCES COMMITTEE FORUM AFOSR...lON IU2EM , Appeved kv pub~e We=% I3. ABSTRACT (MaOimum 200 wovij The 1991 SSSC Forum was conductted under the auspices of the Board on Physics and...Astronomy’s Solid State Sciences Committe (SSSC) and cosponsored with the National Materials Advisory Board (NMAB). The Forum was the culmination of a

  2. 13C-methacetin-breath test compared to also noninvasive biochemical blood tests in predicting hepatic fibrosis and cirrhosis in chronic hepatitis C.

    PubMed

    Dinesen, L; Caspary, W F; Chapman, R W; Dietrich, C F; Sarrazin, C; Braden, B

    2008-09-01

    The (13)C-methacetin-breath test and also several noninvasive blood tests comprising routine laboratory parameters have been proposed to predict fibrosis and cirrhosis in chronic hepatitis C. The aim of the study was to compare the diagnostic accuracy between these tests referring to hepatic histology as gold standard. 96 patients with chronic hepatitis C virus infection underwent percutaneous liver biopsy and the (13)C-methacetin-breath test. The Fibroindex, the aspartate aminotransferase to platelet ratio index , and the aspartate aminotransferase to alanine aminotransferase ratio were used as parameters for the staging of fibrosis. The main endpoint was the area under the characteristic curves for the diagnosis of advanced fibrosis (F3-F4) and cirrhosis (F4) according to the Batts Ludwig criteria. ROC analysis revealed a cut-off <14.6 per thousand best with 92.6% sensitivity and 84.1% specificity for the (13)C-methacetin-breath test, for the Fibroindex >1.82 70.4% sensitivity and 91.3% specificity, for the aspartate aminotransferase to platelet ratio >1.0 a 66.7% sensitivity and 75.4% specificity, and for the aspartate aminotransferase to alanine aminotransferase ratio >1.0 63.0% sensitivity and 59.4% specificity in predicting liver cirrhosis. The areas under the curve for the breath test, the Fibroindex, aspartate aminotransferase to platelet ratio and the aspartate aminotransferase to alanine aminotransferase ratio were 0.958, 0.845, 0.799, and 0.688, respectively, when predicting cirrhosis. For identifying patients with advanced fibrosis, the areas under the curve were 0.827, 0.804, 0.779, and 0.561, respectively. Discordances between Fibroindex (21%), aspartate aminotransferase to platelet ratio (29%) or aspartate aminotransferase to alanine aminotransferase ratio (37.6%) and liver biopsy were significantly more frequent than between (13)C-breath test (11.6%) and liver biopsy (P<0.05). The (13)C-methacetin-breath test is more reliable in predicting advanced

  3. 7Li(15N, 14C)8Be reaction at 81 MeV and 14C + 8Be interaction versus that of 13C + 8Be

    NASA Astrophysics Data System (ADS)

    Rudchik, A. T.; Rudchik, A. A.; Muravynets, L. M.; Kemper, K. W.; Rusek, K.; Koshchy, E. I.; Piasecki, E.; Trzcinska, A.; Pirnak, Val. M.; Ponkratenko, O. A.; Strojek, I.; Stolarz, A.; Plujko, V. A.; Sakuta, S. B.; Siudak, R.; Ilyin, A. P.; Stepanenko, Yu. M.; Shyrma, Yu. O.; Uleshchenko, V. V.

    2018-03-01

    Angular distributions of the 7Li(15N, 14C)8Be reaction were measured at the energy Elab(15N) = 81 MeV. Data for transfer to the ground and first two excited states in 8Be were acquired as well as to the 14C ground and excited states. The reaction data were analyzed within the coupled-reaction-channels (CRC) method. The required 15N + 7Li entrance channel potential was taken from the 15N + 7Li elastic scattering. The 14C + 8Be potential was found by fitting Woods-Saxon form potentials to those generated by double folded real and imaginary potentials in the region of interaction. These generated potentials were then used in the CRC calculations. Proton transfer dominants this reaction, including to the excited states of 8Be. The reaction dependence on the exit channel potential was examined by using the 13C + 8Be potential previously deduced from the 9Be(12C, 13C)8Be reaction and 14C + 8Be from the 13C(9Be, 8Be)14C reaction.

  4. Study of solid state photomultiplier

    NASA Technical Reports Server (NTRS)

    Hays, K. M.; Laviolette, R. A.

    1987-01-01

    Available solid state photomultiplier (SSPM) detectors were tested under low-background, low temperature conditions to determine the conditions producing optimal sensitivity in a space-based astronomy system such as a liquid cooled helium telescope in orbit. Detector temperatures varied between 6 and 9 K, with background flux ranging from 10 to the 13th power to less than 10 to the 6th power photons/square cm-s. Measured parameters included quantum efficiency, noise, dark current, and spectral response. Experimental data were reduced, analyzed, and combined with existing data to build the SSPM data base included herein. The results were compared to analytical models of SSPM performance where appropriate models existed. Analytical models presented here were developed to be as consistent with the data base as practicable. Significant differences between the theory and data are described. Some models were developed or updated as a result of this study.

  5. Realization of an all-solid-state cryocooler using optical refrigeration

    NASA Astrophysics Data System (ADS)

    Meng, Junwei; Albrecht, Alexander R.; Gragossian, Aram; Lee, Eric; Volpi, Azzurra; Ghasemkhani, Mohammadreza; Hehlen, Markus P.; Epstein, Richard I.; Sheik-Bahae, Mansoor

    2018-05-01

    Optical refrigeration of rare-earth-doped solids has reached the boiling point of argon, 87 K, and is expected to cool to that of nitrogen, 77 K, in the near future. This technology is poised to pave the way to compact, reliable, and vibrationfree all-solid-state optical cryocoolers. By attaching the Yb:YLF cooling crystal to a cold finger via a double 90° kink thermal link, we have cooled a silicon temperature sensor to below 151 K. An advanced design of the thermal link and the clamshell surrounding the cooled assembly successfully controlled the flow of heat and radiation to allow cooling of a payload to cryogenic temperatures. Key elements of the design were a low-absorption thermal link material, an optimized thermal link geometry, and a spectrally-selective coating of the clamshell.

  6. A self-forming composite electrolyte for solid-state sodium battery with ultra-long cycle life

    DOE PAGES

    Zhang, Zhizhen; Yang, Xiao -Qing; Zhang, Qinghua; ...

    2016-10-31

    Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. Furthermore, all-solid-state batteries have been plagues by the relatively low ionic conductivity of solid electrolytes and large charge-transfer resistance resulted from solid-solid interfaces between electrode materials and solid electrolytes. Here we report a new design strategy for improving the ionic conductivity of solid electrolyte by self-forming a composite material. An optimized Na + ion conducting composite electrolyte derived from the NASICON structure was successfully synthesized, yielding ultra-high ionic conductivity of 3.4 mS cm –1 at 25°C and 14 ms cmmore » –1 at 80°C.« less

  7. WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/AKT Pathway

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0539 TITLE: WDR26 in Advanced Breast Cancer : A Novel Regulator of the P13K/ AKT Pathway PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER WDR26 in Advanced Breast Cancer : A Novel Regulator of the P13K/AKT Pathway 5b. GRANT NUMBER W81XWH-14-1-0539 5c. PROGRAM...NOTES 14. ABSTRACT The PI3K/AKT pathway is one of the most deregulated pathways in breast cancers (>70%), and a major contributor to tumor progression

  8. WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/AKT Pathway

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0539 TITLE: WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/ AKT Pathway PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/ AKT Pathway 5b. GRANT NUMBER W81XWH-14-1-0539 5c. PROGRAM...growth and metastasis via dysregulation of the PI3K/AKT2 pathway. (months 1-24) Major Goal 1: Assess how WDR26 regulates PI3K/ AKT signaling in

  9. Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production.

    PubMed

    Li, Yangyang; Li, Yu; Zhang, Difang; Li, Guoxue; Lu, Jiaxin; Li, Shuyan

    2016-10-01

    Solid-state anaerobic co-digestion of tomato residues with dairy manure and corn stover was conducted at 20% total solids under 35°C for 45days. Results showed digestion of mixed tomato residues with dairy manure and corn stover improved methane yields. The highest VS reduction (46.2%) and methane yield (415.4L/kg VSfeed) were achieved with the ternary mixtures of 33% corn stover, 54% dairy manure, and 13% tomato residues, lead to a 0.5-10.2-fold higher than that of individual feedstocks. Inhibition of volatile fatty acids (VFAs) to biogas production occurred when more than 40% tomato residues were added. The results indicated that ternary mixtures diluted the inhibitors that would otherwise cause inhibition in the digestion of tomato residues as a mono-feedstock. Copyright © 2016. Published by Elsevier Ltd.

  10. Quasi-Solid-State Single-Atom Transistors.

    PubMed

    Xie, Fangqing; Peukert, Andreas; Bender, Thorsten; Obermair, Christian; Wertz, Florian; Schmieder, Philipp; Schimmel, Thomas

    2018-06-21

    The single-atom transistor represents a quantum electronic device at room temperature, allowing the switching of an electric current by the controlled and reversible relocation of one single atom within a metallic quantum point contact. So far, the device operates by applying a small voltage to a control electrode or "gate" within the aqueous electrolyte. Here, the operation of the atomic device in the quasi-solid state is demonstrated. Gelation of pyrogenic silica transforms the electrolyte into the quasi-solid state, exhibiting the cohesive properties of a solid and the diffusive properties of a liquid, preventing the leakage problem and avoiding the handling of a liquid system. The electrolyte is characterized by cyclic voltammetry, conductivity measurements, and rotation viscometry. Thus, a first demonstration of the single-atom transistor operating in the quasi-solid-state is given. The silver single-atom and atomic-scale transistors in the quasi-solid-state allow bistable switching between zero and quantized conductance levels, which are integer multiples of the conductance quantum G 0  = 2e 2 /h. Source-drain currents ranging from 1 to 8 µA are applied in these experiments. Any obvious influence of the gelation of the aqueous electrolyte on the electron transport within the quantum point contact is not observed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular structure of actein: 13C CPMAS NMR, IR, X-ray diffraction studies and theoretical DFT-GIAO calculations

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Bąk, Joanna; Gliński, Jan A.; Koczorowska, Agnieszka; Wawer, Iwona

    2009-09-01

    Actein is a prominent triterpene glycoside occurring in Actaea racemosa. The triterpene glycosides are believed to be responsible for the estrogenic activity of an extract prepared from this herb. We determined in the crystal structure of actein by X-ray crystallography to be monoclinic P2(1) chiral space group. Refining the disorder, we determined 70% and 30% of contributions of ( S)- and ( R)-actein, respectively. The IR and Raman spectra suggest that actein forms at least four different types of hydrogen bonds. The 13C NMR spectra of actein were recorded both in solution and solid state. The 13C CPMAS spectrum of actein displays multiplet signals, in agreement with the crystallographic data. The NMR shielding constants were calculated for actein using GIAO approach and a variety of basis sets: 6-31G**, 6-311G**, 6-31+G**, cc-pVDZ, cc-pVDZ-su1 and 6-31G**-su1, as well as IGLO approach combined with the IGLO II basis set. The best results (RMSD of 1.6 ppm and maximum error of 3.4 ppm) were obtained with the 6-31G**-su1 basis set. The calculations of the shielding constants are helpful in the interpretation of the 13C CPMAS NMR spectra of actein and actein's analogues.

  12. Modified Reference SPS with Solid State Transmitting Antenna

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.; Sperber, B. R.

    1980-01-01

    The development of solid state microwave power amplifiers for a solar power satellite transmitting antenna is discussed. State-of-the-art power-added efficiency, gain, and single device power of various microwave solid state devices are compared. The GaAs field effect transistors and the Si-bipolar transistors appear potentially feasible for solar power satellite use. The integration of solid state devices into antenna array elements is examined and issues concerning antenna integration and consequent satellite configurations are examined.

  13. 22 CFR 120.13 - United States.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false United States. 120.13 Section 120.13 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.13 United States. United States, when used in the geographical sense, includes the several states, the...

  14. 22 CFR 120.13 - United States.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false United States. 120.13 Section 120.13 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.13 United States. United States, when used in the geographical sense, includes the several states, the...

  15. 22 CFR 120.13 - United States.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false United States. 120.13 Section 120.13 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.13 United States. United States, when used in the geographical sense, includes the several states, the...

  16. 22 CFR 120.13 - United States.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false United States. 120.13 Section 120.13 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.13 United States. United States, when used in the geographical sense, includes the several states, the...

  17. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid

  18. 7 CFR 63.13 - United States.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false United States. 63.13 Section 63.13 Agriculture... IMPROVEMENT CENTER General Provisions Definitions § 63.13 United States. United States means collectively the... possessions of the United States. Board of Directors ...

  19. 7 CFR 63.13 - United States.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false United States. 63.13 Section 63.13 Agriculture... IMPROVEMENT CENTER General Provisions Definitions § 63.13 United States. United States means collectively the... possessions of the United States. Board of Directors ...

  20. 7 CFR 63.13 - United States.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false United States. 63.13 Section 63.13 Agriculture... IMPROVEMENT CENTER General Provisions Definitions § 63.13 United States. United States means collectively the... possessions of the United States. Board of Directors ...

  1. 7 CFR 63.13 - United States.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false United States. 63.13 Section 63.13 Agriculture... IMPROVEMENT CENTER General Provisions Definitions § 63.13 United States. United States means collectively the... possessions of the United States. Board of Directors ...

  2. One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.

  3. Solid-state proton conductors

    NASA Astrophysics Data System (ADS)

    Jewulski, J. R.; Osif, T. L.; Remick, R. J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.

  4. Monitoring ssDNA Binding to the DnaB Helicase from Helicobacter pylori by Solid-State NMR Spectroscopy.

    PubMed

    Wiegand, Thomas; Cadalbert, Riccardo; Gardiennet, Carole; Timmins, Joanna; Terradot, Laurent; Böckmann, Anja; Meier, Beat H

    2016-11-02

    DnaB helicases are bacterial, ATP-driven enzymes that unwind double-stranded DNA during DNA replication. Herein, we study the sequential binding of the "non-hydrolysable" ATP analogue AMP-PNP and of single-stranded (ss) DNA to the dodecameric DnaB helicase from Helicobacter pylori using solid-state NMR. Phosphorus cross-polarization experiments monitor the binding of AMP-PNP and DNA to the helicase. 13 C chemical-shift perturbations (CSPs) are used to detect conformational changes in the protein upon binding. The helicase switches upon AMP-PNP addition into a conformation apt for ssDNA binding, and AMP-PNP is hydrolyzed and released upon binding of ssDNA. Our study sheds light on the conformational changes which are triggered by the interaction with AMP-PNP and are needed for ssDNA binding of H. pylori DnaB in vitro. They also demonstrate the level of detail solid-state NMR can provide for the characterization of protein-DNA interactions and the interplay with ATP or its analogues. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. SIMPSON: a general simulation program for solid-state NMR spectroscopy.

    PubMed

    Bak, M; Rasmussen, J T; Nielsen, N C

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basically, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments. Copyright 2000 Academic Press.

  6. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  7. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  8. Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Suk, Jungdon; Lee, Yu Hwa; Kim, Do Youb; Kim, Dong Wook; Cho, Song Yun; Kim, Ji Man; Kang, Yongku

    2016-12-01

    We developed highly promising solid polymer electrolytes (SPEs) based on a novel cross-linker containing star-shaped phosphazene with poly(ethylene oxide) (PEO) branches with very high ionic conductivity (7.6 × 10-4 S cm-1), improved mechanical stability, and good electrochemical stability for all-solid-state lithium batteries. In particular, allyl groups were introduced at the ends of the cross-linker in order to overcome the easy self-polymerization of existing cross-linking acrylate end groups. A novel semi-interpenetrating network (semi-IPN) SPE was prepared by in-situ radical polymerization of a precursor solution containing lithium salt, poly(ethylene glycol) dimethyl ether as a plasticizer, and a mixture of pentaerythritol tetrakis(3-mercaptopropionate) and a synthesized hexakis(allyloxy)cyclotriphosphazene (thiol-ene PAL) as the cross-linker. Batteries employing LiFePO4 as the cathode, lithium foil as the anode, and the SPE thin film as the electrolyte were assembled and tested. At ambient temperature, the initial discharge capacity was 147 mAh/g at 0.1 °C and 132 mAh/g at 0.5 °C, and 97% of the capacity was retained at the 100th cycle. All-solid-state pouch-package lithium cells assembled with the SPEs exhibited stable electrochemical performance, even under a severely wrinkled state. These outstanding properties of SPEs based on thiol-ene PAL demonstrate feasibility for practical battery applications with improved reliability and safety.

  9. Coordinated garbage collection for raid array of solid state disks

    DOEpatents

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  10. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  11. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  12. High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology.

    PubMed

    Fan, Xiulin; Yue, Jie; Han, Fudong; Chen, Ji; Deng, Tao; Zhou, Xiuquan; Hou, Singyuk; Wang, Chunsheng

    2018-04-24

    Room-temperature all-solid-state Na-S batteries (ASNSBs) using sulfide solid electrolytes are a promising next-generation battery technology due to the high energy, enhanced safety, and earth abundant resources of both sodium and sulfur. Currently, the sulfide electrolyte ASNSBs are fabricated by a simple cold-pressing process leaving with high residential stress. Even worse, the large volume change of S/Na 2 S during charge/discharge cycles induces additional stress, seriously weakening the less-contacted interfaces among the solid electrolyte, active materials, and the electron conductive agent that are formed in the cold-pressing process. The high and continuous increase of the interface resistance hindered its practical application. Herein, we significantly reduce the interface resistance and eliminate the residential stress in Na 2 S cathodes by fabricating Na 2 S-Na 3 PS 4 -CMK-3 nanocomposites using melting-casting followed by stress-release annealing-precipitation process. The casting-annealing process guarantees the close contact between the Na 3 PS 4 solid electrolyte and the CMK-3 mesoporous carbon in mixed ionic/electronic conductive matrix, while the in situ precipitated Na 2 S active species from the solid electrolyte during the annealing process guarantees the interfacial contact among these three subcomponents without residential stress, which greatly reduces the interfacial resistance and enhances the electrochemical performance. The in situ synthesized Na 2 S-Na 3 PS 4 -CMK-3 composite cathode delivers a stable and highly reversible capacity of 810 mAh/g at 50 mA/g for 50 cycles at 60 °C. The present casting-annealing strategy should provide opportunities for the advancement of mechanically robust and high-performance next-generation ASNSBs.

  13. Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy

    PubMed Central

    2013-01-01

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976

  14. Multinuclear Solid-State Magnetic Resonance as a Sensitive Probe of Structural Changes upon the Occurrence of Halogen Bonding in Co-crystals.

    PubMed

    Widdifield, Cory M; Cavallo, Gabriella; Facey, Glenn A; Pilati, Tullio; Lin, Jingxiang; Metrangolo, Pierangelo; Resnati, Giuseppe; Bryce, David L

    2013-09-02

    Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well-developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear ((13)C, (14/15)N, (19)F, and (127)I) solid-state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen-bonded co-crystalline product materials. Single-crystal X-ray diffraction (XRD) structures of three novel co-crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N(+)(CH2)10N(+)(CH3)3][2 I(-)]) and different para-dihalogen-substituted benzene moieties (i.e., p-C6X2Y4, X=Br, I; Y=H, F) are presented. (13)C and (15)N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co-crystal complexes in the solid state. Long-range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using (14)N NMR spectroscopy, with a systematic decrease in the (14)N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at (127)I solid-state NMR spectroscopy experiments are presented and variable-temperature (19)F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge-including projector augmented-wave (GIPAW) or relativistic zeroth-order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR

  15. Solid state, CCD-buried channel, television camera study and design

    NASA Technical Reports Server (NTRS)

    Hoagland, K. A.; Balopole, H.

    1976-01-01

    An investigation of an all solid state television camera design, which uses a buried channel charge-coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array was utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a design which addresses the program requirements for a deliverable solid state TV camera.

  16. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    PubMed Central

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201

  17. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    NASA Astrophysics Data System (ADS)

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.

  18. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR.

    PubMed

    Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. Published by Elsevier Inc.

  19. Comparison of 13C Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy for estimating humification and aromatization of soil organic matter

    NASA Astrophysics Data System (ADS)

    Rogers, K.; Cooper, W. T.; Hodgkins, S. B.; Verbeke, B. A.; Chanton, J.

    2017-12-01

    Solid state direct polarization 13C NMR spectroscopy (DP-NMR) is generally considered the most quantitatively reliable method for soil organic matter (SOM) characterization, including determination of the relative abundances of carbon functional groups. These functional abundances can then be used to calculate important soil parameters such as degree of humification and extent of aromaticity that reveal differences in reactivity or compositional changes along gradients (e.g. thaw chronosequence in permafrost). Unfortunately, the 13C NMR DP-NMR experiment is time-consuming, with a single sample often requiring over 24 hours of instrument time. Alternatively, solid state cross polarization 13C NMR (CP-NMR) can circumvent this problem, reducing analyses times to 4-6 hours but with some loss of quantitative reliability. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) is a quick and relatively inexpensive method for characterizing solid materials, and has been suggested as an alternative to NMR for analysis of soil organic matter and determination of humification (HI) and aromatization (AI) indices. However, the quantitative reliability of ATR-FTIR for SOM analyses has never been verified, nor have any ATR-FTIR data been compared to similar measurements by NMR. In this work we focused on FTIR vibrational bands that correspond to the three functional groups used to calculate HI and AI values: carbohydrates (1030 cm-1), aromatics (1510, 1630 cm-1), and aliphatics (2850, 2920 cm-1). Data from ATR-FTIR measurements were compared to analogous quantitation by DP- and CP-NMR using peat samples from Sweden, Minnesota, and North Carolina. DP- and CP-NMR correlate very strongly, although the correlations are not always 1:1. Direct comparison of relative abundances of the three functional groups determined by NMR and ATR-FTIR yielded satisfactory results for carbohydrates (r2= 0.78) and aliphatics (r2=0.58), but less so for aromatics (r2= 0

  20. Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte

    NASA Astrophysics Data System (ADS)

    Yu, Shicheng; Mertens, Andreas; Gao, Xin; Gunduz, Deniz Cihan; Schierholz, Roland; Benning, Svenja; Hausen, Florian; Mertens, Josef; Kungl, Hans; Tempel, Hermann; Eichel, Rüdiger-A.

    2016-09-01

    A ceramic solid-state electrolyte of lithium aluminum titanium phosphate with the composition of Li1.3Al0.3Ti1.7(PO4)3 (LATP) was synthesized by a sol-gel method using a pre-dissolved Ti-source. The annealed LATP powders were subsequently processed in a binder-free dry forming method and sintered under air for the pellet preparation. Phase purity, density, microstructure as well as ionic conductivity of the specimen were characterized. The highest density (2.77gṡcm-3) with an ionic conductivity of 1.88×10-4 Sṡcm-1 (at 30∘C) was reached at a sintering temperature of 1100∘C. Conductivity of LATP ceramic electrolyte is believed to be significantly affected by both, the AlPO4 secondary phase content and the ceramic electrolyte microstructure. It has been found that with increasing sintering temperature, the secondary-phase content of AlPO4 increased. For sintering temperatures above 1000∘C, the secondary phase has only a minor impact, and the ionic conductivity is predominantly determined by the microstructure of the pellet, i.e. the correlation between density, porosity and particle size. In that respect, it has been demonstrated, that the conductivity increases with increasing particle size in this temperature range and density.

  1. Liquid- and solid-state high-resolution NMR methods for the investigation of aging processes of silicone breast implants.

    PubMed

    Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina

    2003-01-01

    To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition. Copyright 2002 Elsevier Science Ltd.

  2. Solid state laser technology - A NASA perspective

    NASA Technical Reports Server (NTRS)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  3. Quantitative comparison of structure and dynamics of elastin following three isolation schemes by 13C solid state NMR and MALDI mass spectrometry.

    PubMed

    Papaioannou, A; Louis, M; Dhital, B; Ho, H P; Chang, E J; Boutis, G S

    2015-05-01

    Methods for isolating elastin from fat, collagen, and muscle, commonly used in the design of artificial elastin based biomaterials, rely on exposing tissue to harsh pH levels and temperatures that usually denature many proteins. At present, a quantitative measurement of the modifications to elastin following isolation from other extracellular matrix constituents has not been reported. Using magic angle spinning (13)C NMR spectroscopy and relaxation methodologies, we have measured the modification in structure and dynamics following three known purification protocols. Our experimental data reveal that the (13)C spectra of the hydrated samples appear remarkably similar across the various purification methods. Subtle differences in the half maximum widths were observed in the backbone carbonyl suggesting possible structural heterogeneity across the different methods of purification. Additionally, small differences in the relative signal intensities were observed between purified samples. Lyophilizing the samples results in a reduction of backbone motion and reveals additional differences across the purification methods studied. These differences were most notable in the alanine motifs indicating possible changes in cross-linking or structural rigidity. The measured correlation times of glycine and proline moieties are observed to also vary considerably across the different purification methods, which may be related to peptide bond cleavage. Lastly, the relative concentration of desmosine cross-links in the samples quantified by MALDI mass spectrometry is reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  5. Solid state electrolyte composites based on complex hydrides and metal doped fullerenes/fulleranes for batteries and electrochemical applications

    DOEpatents

    Zidan, Ragaiy; Teprovich, Jr., Joseph A.; Colon-Mercado, Hector R.; Greenway, Scott D.

    2018-05-01

    A LiBH4--C60 nanocomposite that displays fast lithium ionic conduction in the solid state is provided. The material is a homogenous nanocomposite that contains both LiBH4 and a hydrogenated fullerene species. In the presence of C60, the lithium ion mobility of LiBH4 is significantly enhanced in the as prepared state when compared to pure LiBH4. After the material is annealed the lithium ion mobility is further enhanced. Constant current cycling demonstrated that the material is stable in the presence of metallic lithium electrodes. The material can serve as a solid state electrolyte in a solid-state lithium ion battery.

  6. An advanced model framework for solid electrolyte intercalation batteries.

    PubMed

    Landstorfer, Manuel; Funken, Stefan; Jacob, Timo

    2011-07-28

    Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011

  7. Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex

    PubMed Central

    Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru

    2015-01-01

    The development of high energy–density lithium-ion secondary batteries as storage batteries in vehicles is attracting increasing attention. In this study, high-voltage bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex were prepared, and the performance of the device was evaluated. Via the successful production of double-layered and triple-layered high-voltage devices, it was confirmed that these stacked batteries operated properly without any internal short-circuits of a single cell within the package: Their plateau potentials (6.7 and 10.0 V, respectively) were two and three times that (3.4 V) of the single-layered device, respectively. Further, the double-layered device showed a capacity retention of 99% on the 200th cycle at 0.5 C, which is an indication of good cycling properties. These results suggest that bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex could readily produce a high voltage of 10 V. PMID:25746860

  8. Monolithic solid-state lasers for spaceflight

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  9. Progress and prospect on failure mechanisms of solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei

    2018-07-01

    By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.

  10. Noninvasive Measurement of Murine Hepatic Acetyl-CoA 13C-Enrichment Following Overnight Feeding with 13C-Enriched Fructose and Glucose

    PubMed Central

    Carvalho, Filipa; Duarte, Joao; Simoes, Ana Rita; Cruz, Pedro F.; Jones, John G.

    2013-01-01

    The 13C-isotopomer enrichment of hepatic cytosolic acetyl-CoA of overnight-fed mice whose drinking water was supplemented with [U-13C]fructose, and [1-13C]glucose and p-amino benzoic acid (PABA) was quantified by 13C NMR analysis of urinary N-acetyl-PABA. Four mice were given normal chow plus drinking water supplemented with 5% [1-13C]glucose, 2.5% [U-13C]fructose, and 2.5% fructose (Solution 1) overnight. Four were given chow and water containing 17.5% [1-13C]glucose, 8.75% [U-13C]fructose and 8.75% fructose (Solution 2). PABA (0.25%) was present in both studies. Urinary N-acetyl-PABA was analyzed by 13C NMR. In addition to [2-13C]- and [1,2-13C]acetyl isotopomers from catabolism of [U-13C]fructose and [1-13C]glucose to acetyl-CoA, [1-13C]acetyl was also found indicating pyruvate recycling activity. This precluded precise estimates of [1-13C]glucose contribution to acetyl-CoA while that of [U-13C]fructose was unaffected. The fructose contribution to acetyl-CoA from Solutions 1 and 2 was 4.0 ± 0.4% and 10.6 ± 0.6%, respectively, indicating that it contributed to a minor fraction of lipogenic acetyl-CoA under these conditions. PMID:23841082

  11. Assignment for the Infrared Spectrum of Solid Sodium Propionate from Low-Temperature Measurements in Combination with 13C Isotopic Shifts

    NASA Astrophysics Data System (ADS)

    Kakihana, Masato; Nagumo, Tadashi

    1987-05-01

    The infrared spectra of CH3CH2COONa and its 13C-labeled modifications (1-13C, 2-13C, and 3-13C) suspended in KBr disks were measured in the region 4000 -200 cm-1 at room temperature and liquid nitrogen temperature. Overlapping complex band contours appeared in some regions of the room temperature spectrum, most notably in the region 1500 -1350 cm-1, where 5 fundamentals having contributions from the methyl deformation, methylene bending, and carboxylate stretching modes should occur. In contrast to this, excellent resolution was reached at the low temperature, from which all 22 fundamentals expected in the whole spectral region investigated were detected. A complete assignment of the fundamentals is proposed mainly on the basis of the characteristic isotopic shifts of the three 13C substituted sodium propionate species. A fair number of the fundamentals were found to feature coupled modes having contributions from several group vibrations.

  12. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    PubMed Central

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  13. The C-12/C-13 Ratio as a Chemistry Indicator

    NASA Technical Reports Server (NTRS)

    Wirstroem, Eva; Geppert, Wolf; Persson, Carina; Charnley, Steven

    2011-01-01

    Isotopic ratios of elements are considered powerful tools, e.g. in tracing the origin of solar system body materials, or the degree of nucleosynthesis processing throughout the Galaxy. In interstellar molecules, some isotopic ratios like H/D and C-12/C-13 can also be used as indicators of their chemical origin. Isotope fractionation in gas-phase chemical reactions and gas-dust interaction makes observations of the ratio between C-12 and C-13 isotopologues suitable to distinguish between different formation scenarios. We will present observations of the C-12/C-13 ratio in methanol and formaldehyde towards a sample of embedded, massive young stellar objects. In relation to this we also present results from theoretical modeling showing the usefulness of the C-12/C-13 ratio as a chemistry indicator.

  14. [2,4-13C2]-β-Hydroxybutyrate Metabolism in Human Brain

    PubMed Central

    Pan, Jullie W.; de Graaf, Robin A.; Petersen, Kitt F.; Shulman, Gerald I.; Hetherington, Hoby P.; Rothman, Douglas L.

    2010-01-01

    Summary Infusions of [2,4-13C2]-β-hydroxybutyrate and 1H–13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of β-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the β-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 ± 0.24 mmol/L (four volunteers), the apparent tissue β-hydroxybutyrate concentration reached 0.18 ± 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 ± 1.71%, whereas 13C-4-glutamine was 5.68 ± 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the β-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 ± 0.009 mmol · kg−1 · min−1, and accounts for 6.4 ± 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood–brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  15. The 12C/13C Isotopic Ratio In Titan's Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Achterberg, R. K.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Irwin, P. G.; Cassini CIRS Team

    2007-10-01

    Isotopic ratios in planetary atmospheres are of considerable interest, yielding insights both about currently occurring processes, and also the formation and early evolution of the body. Before Cassini, ground-based measurements of Titan's 12C/13C in HCN showed no firm evidence of deviation from the terrestrial inorganic standard (88.9) - albeit with large error bars of 20% - contrasting the enrichment in nitrogen (15N/14N≈4.5 terrestrial). Since 2004, the Composite Infrared Spectrometer (CIRS) instrument on Cassini has recorded spectra of Titan's stratosphere globally, including the emissions of multiple isotopologues for certain hydrocarbons. We selected spectra for analysis from four flybys (T4, T12, T19, T22), covering five latitudes from 65°S to 71°N. By means of a radiative transfer code and inversion scheme, we have first modeled the ν4 band of 12CH4 at 1304 cm-1 to retrieve stratospheric temperatures, and subsequently the emissions of 13CH4, 12C2H2, 13C12CH2, 12C2H6 and 13C12CH6. Our results indicate 12C/13C = 81.2±2.0 for all three species combined over all five latitudes, in excellent agreement with the Huygens GCMS value of 12CH4/13CH4 = 82.3±1.0 (Niemann et al. 2005), some 9% lower than terrestrial inorganic, and lower than in ethane on Saturn (91 (-13) (+26)) and Jupiter (99 (-23) (+43)) (Sada et al. 1996). No latitude variation was detected, however the 12C/13C in the C2 species (83.9±3.1 in acetylene, 89.9±7.2 in ethane) were consistently higher than in methane (78.0±2.7) after considering random errors. Although it is possible that this is a real chemical or physical (condensation) effect, it is more likely due to systematic errors in our temperature profile, as our spectra do not yield independent temperature information at 10 mbar where the emissions of 13C12CH2 and 13C12CH6 originate, and we default to the Huygens probe temperatures. In future, this problem may be resolved by modeling CIRS limb spectra.

  16. Metabolic flux analysis using 13C peptide label measurements

    USDA-ARS?s Scientific Manuscript database

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  17. Phase I study of single-agent ribociclib in Japanese patients with advanced solid tumors.

    PubMed

    Doi, Toshihiko; Hewes, Becker; Kakizume, Tomoyuki; Tajima, Takeshi; Ishikawa, Norifumi; Yamada, Yasuhide

    2018-01-01

    The cyclin D-CDK4/6-INK4-Rb pathway is frequently dysregulated in cancers. Ribociclib, an orally available, selective CDK4/6 inhibitor, showed preliminary clinical activity in a phase I study in the USA and Europe for patients with solid tumors and lymphomas. The present study aimed to determine the single-agent maximum tolerated dose (MTD) and recommended dose for expansion (RDE) in Japanese patients with advanced solid tumors. Ribociclib safety, tolerability, pharmacokinetic profile, and preliminary antitumor activity were also assessed. Japanese patients with solid tumors that had progressed on prior therapies received escalating doses of single-agent ribociclib on a 3-weeks-on/1-week-off schedule. Treatment continued until the development of toxicity or disease progression. A dose escalation was planned for patients with esophageal cancer. In the dose-escalation phase, 4 patients received 400 mg ribociclib and 13 patients received 600 mg ribociclib. Four patients experienced dose-limiting toxicities, 3 of whom were in the 600 mg group. The RDE was declared to be 600 mg, and the MTD was not determined. The most frequent adverse events were hematologic and gastrointestinal. Four patients achieved stable disease at the 600 mg dose; no patients achieved complete or partial response. All patients discontinued the study, the majority due to disease progression. No patients discontinued due to adverse events. Dose escalation was not pursued due to lack of observed efficacy in esophageal cancer. At the RDE of 600 mg/d on a 3-weeks-on/1-week-off schedule, ribociclib showed acceptable safety and tolerability profiles in Japanese patients with advanced solid tumors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  18. Solid-State Devices.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine Corps enlisted personnel with the principles of solid-state devices and their functions. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  19. Following Glycolysis Using 13C NMR: An Experiment Adaptable to Different Undergraduate Levels

    NASA Astrophysics Data System (ADS)

    Mega, T. L.; Carlson, C. B.; Cleary, D. A.

    1997-12-01

    This paper describes a laboratory exercise where the glycolysis of [1-13C] glucose under anaerobic conditions was followed using 13C NMR spectroscopy. The exercise is described in terms of its suitability for a variety of different undergraduate levels, although the emphasis in this paper is on its use in a n advanced chemistry laboratory course. The kinetics of the loss of glucose and the production of ethanol were investigated and found not to fit simple first or second order kinetics. In addition, the relative reaction rates of the two anomeric forms of glucose were analyzed, and it was determined that the a anomeric form reacted faster than the β anomeric form. Using proton-coupled 13C NMR, some of the metabolites were identified including ethanol (major) and glycerol (minor). Reaction and spectroscopic details are included.

  20. Modeling solid-state transformations occurring in dissolution testing.

    PubMed

    Laaksonen, Timo; Aaltonen, Jaakko

    2013-04-15

    Changes in the solid-state form can occur during dissolution testing of drugs. This can often complicate interpretation of results. Additionally, there can be several mechanisms through which such a change proceeds, e.g. solvent-mediated transformation or crystal growth within the drug material itself. Here, a mathematical model was constructed to study the dissolution testing of a material, which undergoes such changes. The model consisted of two processes: the recrystallization of the drug from a supersaturated liquid state caused by the dissolution of the more soluble solid form and the crystal growth of the stable solid form at the surface of the drug formulation. Comparison to experimental data on theophylline dissolution showed that the results obtained with the model matched real solid-state changes and that it was able to distinguish between cases where the transformation was controlled either by solvent-mediated crystallization or solid-state crystal growth. Copyright © 2013 Elsevier B.V. All rights reserved.