Sample records for advanced supersonic cruise

  1. Supersonic Cruise Technology

    NASA Technical Reports Server (NTRS)

    Mclean, F. Edward

    1985-01-01

    The history and status of supersonic cruise research is covered. The early research efforts of the National Advisory Committee for Aeronautics and efforts during the B-70 and SST phase are included. Technological progress made during the NASA Supersonic Cruise Research and Variable Cycle Engine programs are presented. While emphasis is on NASA's contributions to supersonic cruise research in the U.S., also noted are developments in England, France, and Russia. Written in nontechnical language, this book presents the most critical technology issues and research findings.

  2. An economic study of an advanced technology supersonic cruise vehicle

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Williams, L. J.

    1975-01-01

    A description is given of the methods used and the results of an economic study of an advanced technology supersonic cruise vehicle. This vehicle was designed for a maximum range of 4000 n.mi. at a cruise speed of Mach 2.7 and carrying 292 passengers. The economic study includes the estimation of aircraft unit cost, operating cost, and idealized cash flow and discounted cash flow return on investment. In addition, it includes a sensitivity study on the effects of unit cost, manufacturing cost, production quantity, average trip length, fuel cost, load factor, and fare on the aircraft's economic feasibility.

  3. Preliminary design of a supersonic cruise aircraft high-pressure turbine

    NASA Technical Reports Server (NTRS)

    Aceto, L. D.; Calderbank, J. C.

    1983-01-01

    Development of the supersonic cruise aircraft engine continued in this National Aeronautics and Space Administration (NASA) sponsored Pratt and Whitney program for the Preliminary Design of an Advanced High-Pressure Turbine. Airfoil cooling concepts and the technology required to implement these concepts received particular emphasis. Previous supersonic cruise aircraft mission studies were reviewed and the Variable Stream Control Engine (VSCE) was chosen as the candidate or the preliminary turbine design. The design was evaluated for the supersonic cruise mission. The advanced technology to be generated from these designs showed benefits in the supersonic cruise application and subsonic cruise application. The preliminary design incorporates advanced single crystal materials, thermal barrier coatings, and oxidation resistant coatings for both the vane and blade. The 1990 technology vane and blade designs have cooled turbine efficiency of 92.3 percent, 8.05 percent Wae cooling and a 10,000 hour life. An alternate design with 1986 technology has 91.9 percent efficiency and 12.43 percent Wae cooling at the same life. To achieve these performance and life results, technology programs must be pursued to provide the 1990's technology assumed for this study.

  4. Overview of NASA's Supersonic Cruise Efficiency - Propulsion Research

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2009-01-01

    The research in Supersonic Cruise Efficiency Propulsion (SCE-P) Technical Challenge area of NASA's Supersonics project is discussed. The research in SCE-P is being performed to enable efficient supersonic flight over land. Research elements in this area include: Advance Inlet Concepts, High Performance/Wider Operability Fan and Compressor, Advanced Nozzle Concepts, and Intelligent Sensors/Actuators. The research under each of these elements is briefly discussed.

  5. Systems integration studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1975-01-01

    Technical progress in each of the disciplinary research areas affecting the design of supersonic cruise aircraft is discussed. The NASA AST/SCAR Program supported the integration of these technical advances into supersonic cruise aircraft configuration concepts. While the baseline concepts reflect differing design philosophy, all reflect a level of economic performance considerably above the current foreign aircraft as well as the former U.S. SST. Range-payload characteristics of the study configurating show significant improvement, while meeting environmental goals such as takeoff and landing noise and upper atmospheric pollution.

  6. Progress in supersonic cruise aircraft technology

    NASA Technical Reports Server (NTRS)

    Driver, C.

    1978-01-01

    The supersonic cruise aircraft research program identified significant improvements in the technology areas of propulsion, aerodynamics, structures, takeoff and landing procedures, and advanced configuration concepts. Application of these technology areas to a commercial aircraft is discussed. An advanced SST family of aircraft which may be environmentally acceptable, have flexible range-payload capability, and be economically viable is projected.

  7. Advanced supersonic propulsion study, phase 3

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.

    1976-01-01

    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.

  8. Development and analysis of a STOL supersonic cruise fighter concept

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Foss, W. E., Jr.; Morris, S. J., Jr.; Walkley, K. B.; Swanson, E. E.; Robins, A. W.

    1984-01-01

    The application of advanced and emerging technologies to a fighter aircraft concept is described. The twin-boom fighter (TBF-1) relies on a two dimensional vectoring/reversing nozzle to provide STOL performance while also achieving efficient long range supersonic cruise. A key feature is that the propulsion package is placed so that the nozzle hinge line is near the aircraft center-of-gravity to allow large vector angles and, thus, provide large values of direct lift while minimizing the moments to be trimmed. The configurations name is derived from the long twin booms extending aft of the engine to the twin vertical tails which have a single horizontal tail mounted atop and between them. Technologies utilized were an advanced engine (1985 state-of-the-art), superplastic formed/diffusion bonded titanium structure, advanced controls/avionics/displays, supersonic wing design, and conformal weapons carriage. The integration of advanced technologies into this concept indicate that large gains in takeoff and landing performance, maneuver, acceleration, supersonic cruise speed, and range can be acieved relative to current fighter concepts.

  9. Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency

    NASA Technical Reports Server (NTRS)

    Castner, Raymond

    2011-01-01

    The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  10. Design feasibility of an advanced technology supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rowe, W. T.

    1976-01-01

    Research and development programs provide confidence that technology is in-hand to design an economically attractive, environmentally sound supersonic cruise aircraft for commercial operations. The principal results of studies and tests are described including those which define the selection of significant design features. These typically include the results of: (1) wind-tunnel tests, both subsonic and supersonic, (2) propulsion performance and acoustic tests on noise suppressors, including forward-flight effects, (3) studies of engine/airframe integration, which lead to the selection of engine cycles/sizes to meet future market, economic, and social requirements; and (4) structural testing.

  11. Fundamental Aeronautics Program: Overview of Propulsion Work in the Supersonic Cruise Efficiency Technical Challenge

    NASA Technical Reports Server (NTRS)

    Castner, Ray

    2012-01-01

    The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  12. Supersonic cruise vehicle research/business jet

    NASA Technical Reports Server (NTRS)

    Kelly, R. J.

    1980-01-01

    A comparison study of a GE-21 variable propulsion system with a Multimode Integrated Propulsion System (MMIPS) was conducted while installed in small M = 2.7 supersonic cruise vehicles with military and business jet possibilities. The 1984 state of the art vehicles were sized to the same transatlantic range, takeoff distance, and sideline noise. The results indicate the MMIPS would result in a heavier vehicle with better subsonic cruise performance. The MMIPS arrangement with one fan engine and two satellite turbojet engines would not be appropriate for a small supersonic business jet because of design integration penalties and lack of redundancy.

  13. Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Payne, L.

    1977-01-01

    Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.

  14. The NASA research program on propulsion for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Weber, R. J.

    1975-01-01

    The objectives and status of the propulsion portion of a program aimed at advancing the technology and establishing a data base appropriate for the possible future development of supersonic cruise aircraft are reviewed. Research related to exhaust nozzles, combustors, and inlets that is covered by the noise, pollution, and dynamics programs is described.

  15. Supersonic Cruise Research 1979, part 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Aerodynamics, stability and control, propulsion, and environmental factors of the supersonic cruise aircraft are discussed. Other topics include airframe structures and materials, systems integration, and economics.

  16. Engine/airframe compatibility studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology assessment studies were conducted to provide an updated technology base from which an advanced supersonic cruise aircraft can be produced with a high probability of success. An assessment of the gains available through the application of advanced technologies in aerodynamics, propulsion, acoustics, structures, materials, and active controls is developed. The potential market and range requirements as well as economic factors including payload, speed, airline operating costs, and airline profitability are analyzed. The conceptual design of the baseline aircraft to be used in assessing the technology requirements is described.

  17. Advanced supersonic propulsion study, phases 3 and 4. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Allan, R. D.; Joy, W.

    1977-01-01

    An evaluation of various advanced propulsion concepts for supersonic cruise aircraft resulted in the identification of the double-bypass variable cycle engine as the most promising concept. This engine design utilizes special variable geometry components and an annular exhaust nozzle to provide high take-off thrust and low jet noise. The engine also provides good performance at both supersonic cruise and subsonic cruise. Emission characteristics are excellent. The advanced technology double-bypass variable cycle engine offers an improvement in aircraft range performance relative to earlier supersonic jet engine designs and yet at a lower level of engine noise. Research and technology programs required in certain design areas for this engine concept to realize its potential benefits include refined parametric analysis of selected variable cycle engines, screening of additional unconventional concepts, and engine preliminary design studies. Required critical technology programs are summarized.

  18. Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1984-01-01

    A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.

  19. Supersonic cruise aircraft research: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.

    1980-01-01

    This bibliography, with abstracts, consists of 69 publications arranged in chronological order. The material may be useful to those interested in supersonic cruise fighter/penetrator/interceptor airplanes. Two pertinent conferences on military supercruise aircraft are considered as single items; one contains 37 papers and the other 29 papers. In addition, several related bibliographies are included which cover supersonic civil aircraft and military aircraft studies at the Langley Research Center. There is also an author index.

  20. A study of altitude-constrained supersonic cruise transport concepts

    NASA Technical Reports Server (NTRS)

    Tice, David C.; Martin, Glenn L.

    1992-01-01

    The effect of restricting maximum cruise altitude on the mission performance of two supersonic transport concepts across a selection of cruise Mach numbers is studied. Results indicate that a trapezoidal wing concept can be competitive with an arrow wing depending on the altitude and Mach number constraints imposed. The higher wing loading of trapezoidal wing configurations gives them an appreciably lower average cruise altitude than the lower wing loading of the arrow wing configurations, and this advantage increases as the maximum allowable cruise altitude is reduced.

  1. Supersonic Cruise Research 1979, part 2. [airframe structures and materials, systems integration, economic analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Advances in airframe structure and materials technology for supersonic cruise aircraft are reported with emphasis on titanium and composite structures. The operation of the Concorde is examined as a baseline for projections into the future. A market survey of U.S. passenger attitudes and preferences, the impact of advanced air transport technology and the integration of systems for the advanced SST and for a smaller research/business jet vehicle are also discussed.

  2. Advanced Noise Abatement Procedures for a Supersonic Business Jet

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.

    2017-01-01

    Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.

  3. Advanced supersonic technology and its implications for the future

    NASA Technical Reports Server (NTRS)

    Driver, C.

    1979-01-01

    A brief overview of the NASA Supersonic Cruise Research (SCR) program is presented. The SCR program has identified significant improvements in the areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements tend to overcome most of the problems which led to the cancellation of the National SST program. They offer the promise of an advanced SST family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. The areas of technology addressed by the SCR program have direct application to advanced military aircraft and to supersonic executive aircraft.

  4. Minimum energy, liquid hydrogen supersonic cruise vehicle study

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization.

  5. Propulsive-lift concepts for improved low-speed performance of supersonic cruise arrow-wing configurations

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1976-01-01

    Low-aspect-ratio highly swept arrow-wing supersonic aircraft possess high levels of aerodynamic efficiency at supersonic cruising speeds, however, their inherently poor low-speed lift characteristics require design constraints that compromise supersonic performance. The data discussed in this paper were obtained in wind tunnel tests with supersonic crusing configurations, in which propulsive-lift concepts were used to improve low-speed performance. The data show that the increased low-speed lift provided by propulsive-lift permits reduction of both wing size and installed thrust. This yields a batter engine/airframe match for improved supersonic cruise efficiency and range, while still providing acceptable take-off field lengths.

  6. Exhaust Nozzles for Propulsion Systems with Emphasis on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1990-01-01

    This compendium summarizes the contributions of the NASA-Lewis and its contractors to supersonic exhaust nozzle research from 1963 to 1985. Two major research and technology efforts sponsored this nozzle research work; the U.S. Supersonic Transport (SST) Program and the follow-on Supersonic Cruise Research (SCR) Program. They account for two generations of nozzle technology: the first from 1963 to 1971, and the second from 1971 to 1985. First, the equations used to calculate nozzle thrust are introduced. Then the general types of nozzles are presented, followed by a discussion of those types proposed for supersonic aircraft. Next, the first-generation nozzles designed specifically for the Boeing SST and the second-generation nozzles designed under the SCR program are separately reviewed and then compared. A chapter on throttle-dependent afterbody drag is included, since drag has a major effect on the off-design performance of supersonic nozzles. A chapter on the performance of supersonic dash nozzles follows, since these nozzles have similar design problems, Finally, the nozzle test facilities used at NASA-Lewis during this nozzle research effort are identified and discussed. These facilities include static test stands, a transonic wind tunnel, and a flying testbed aircraft. A concluding section points to the future: a third generation of nozzles designed for a new era of high speed civil transports to produce even greater advances in performance, to meet new noise rules, and to ensure the continuity of over two decades of NASA research.

  7. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  8. Preliminary study of optimum ductburning turbofan engine cycle design parameters for supersonic cruising

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1978-01-01

    The effect of turbofan engine overall pressure ratio, fan pressure ratio, and ductburner temperature rise on the engine weight and cruise fuel consumption for a mach 2.4 supersonic transport was investigated. Design point engines, optimized purely for the supersonic cruising portion of the flight where the bulk of the fuel is consumed, are considered. Based on constant thrust requirements at cruise, fuel consumption considerations would favor medium by pass ratio engines (1.5 to 1.8) of overall pressure ratio of about 16. Engine weight considerations favor low bypass ratio (0.6 or less) and low wverall pressure ratio (8). Combination of both effects results in bypass ratios of 0.6 to 0.8 and overall pressure ratio of 12 being the overall optimum.

  9. Advanced Technology Transport Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1973-06-21

    A researcher examines an Advanced Technology Transport model installed in the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Advanced Technology Transport concept was a 200-person supersonic transport aircraft that could cruise at Mach 0.9 to 0.98 with low noise and pollution outputs. General Electric and Pratt and Whitney responded to NASA Lewis’ call to design a propulsion system for the aircraft. The integration of the propulsion system with the airframe was one of the greatest challenges facing the designers of supersonic aircraft. The aircraft’s flow patterns and engine nacelles could significantly affect the performance of the engines. NASA Lewis researchers undertook a study of this 0.30-scale model of the Advanced Technology Transport in the 8- by 6-foot tunnel. The flow-through nacelles were located near the rear of the fuselage during the initial tests, seen here, and then moved under the wings for ensuing runs. Different engine cowl shapes were also analyzed. The researchers determined that nacelles mounted at the rear of the aircraft produced more efficient airflow patterns during cruising conditions at the desired velocities. The concept of the Advanced Technology Transport, nor any other US supersonic transport, has ever come to fruition. The energy crisis, environmental concerns, and inadequate turbofan technology of the 1970s were among the most significant reasons.

  10. The role of finite-difference methods in design and analysis for supersonic cruise

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1976-01-01

    Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.

  11. Low-speed aerodynamic characteristics from wind-tunnel tests of a large-scale advanced arrow-wing supersonic-cruise transport concept

    NASA Technical Reports Server (NTRS)

    Smith, P. M.

    1978-01-01

    Tests have been conducted to extend the existing low speed aerodynamic data base of advanced supersonic-cruise arrow wing configurations. Principle configuration variables included wing leading-edge flap deflection, wing trailing-edge flap deflection, horizontal tail effectiveness, and fuselage forebody strakes. A limited investigation was also conducted to determine the low speed aerodynamic effects due to slotted training-edge flaps. Results of this investigation demonstrate that deflecting the wing leading-edge flaps downward to suppress the wing apex vortices provides improved static longitudinal stability; however, it also results in significantly reduced static directional stability. The use of a selected fuselage forebody strakes is found to be effective in increasing the level of positive static directional stability. Drooping the fuselage nose, which is required for low-speed pilot vision, significantly improves the later-directional trim characteristics.

  12. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 2: Sections 7 through 11

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The materials and advanced producibility methods that offer potential structural mass savings in the design of the primary structure for a supersonic cruise aircraft are identified and reported. A summary of the materials and fabrication techniques selected for this analytical effort is presented. Both metallic and composite material systems were selected for application to a near-term start-of-design technology aircraft. Selective reinforcement of the basic metallic structure was considered as the appropriate level of composite application for the near-term design.

  13. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  14. Cooperative airframe/propulsion control for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Berry, D. T.

    1974-01-01

    Interactions between propulsion systems and flight controls have emerged as a major control problem on supersonic cruise aircraft. This paper describes the nature and causes of these interactions and the approaches to predicting and solving the problem. Integration of propulsion and flight control systems appears to be the most promising solution if the interaction effects can be adequately predicted early in the vehicle design. Significant performance, stability, and control improvements may be realized from a cooperative control system.

  15. Feasibility and benefits of laminar flow control on supersonic cruise airplanes

    NASA Technical Reports Server (NTRS)

    Powell, A. G.; Agrawal, S.; Lacey, T. R.

    1989-01-01

    An evaluation was made of the applicability and benefits of laminar flow control (LFC) technology to supersonic cruise airplanes. Ancillary objectives were to identify the technical issues critical to supersonic LFC application, and to determine how those issues can be addressed through flight and wind-tunnel testing. Vehicle types studied include a Mach 2.2 supersonic transport configuration, a Mach 4.0 transport, and two Mach 2-class fighter concepts. Laminar flow control methodologies developed for subsonic and transonic wing laminarization were extended and applied. No intractible aerodynamic problems were found in applying LFC to airplanes of the Mach 2 class, even ones of large size. Improvements of 12 to 17 percent in lift-drag ratios were found. Several key technical issues, such as contamination avoidance and excresence criteria were identified. Recommendations are made for their resolution. A need for an inverse supersonic wing design methodology is indicated.

  16. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 1: Sections 1 through 6

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The structural approach best suited for the design of a Mach 2.7 arrow-wing supersonic cruise aircraft was investigated. Results, procedures, and principal justification of results are presented. Detailed substantiation data are given. In general, each major analysis is presented sequentially in separate sections to provide continuity in the flow of the design concepts analysis effort. In addition to the design concepts evaluation and the detailed engineering design analyses, supporting tasks encompassing: (1) the controls system development; (2) the propulsion-airframe integration study; and (3) the advanced technology assessment are presented.

  17. Noise and economic characteristics of an advanced blended supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.; Grantham, W. D.; Neubauer, M. J., Jr.

    1982-01-01

    Noise and economic characteristics were obtained for an advanced supersonic transport concept that utilized wing body blending, a double bypass variable cycle engine, superplastically formed and diffusion bonded titanium in both the primary and secondary structures, and an alternative interior arrangement that provides increased seating capacity. The configuration has a cruise Mach number of 2.62, provisions for 290 passengers, a mission range of 8.19 Mm (4423 n.mi.), and an average operating cruise lift drag ratio of 9.23. Advanced operating procedures, which have the potential to reduce airport community noise, were explored by using a simulator. Traded jet noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and advanced takeoff operational procedures, respectively. A new method for predicting lateral attenuation was utilized in obtaining these jet noise levels.

  18. Real-time testing of titanium sheet and extrusion coupon specimens subjected to Mach 2.7 supersonic cruise aircraft wing stresses and temperatures

    NASA Technical Reports Server (NTRS)

    Lunde, T.

    1977-01-01

    The accuracy of three accelerated flight-by-flight test methods for material selection, and fatigue substantiation of supersonic cruise aircraft structure was studied. The real time stresses and temperatures applied to the specimens were representative of the service conditions in the lower surface of a Mach 2.7 supersonic cruise aircraft wing root structure. Each real time flight lasted about 65 minutes, including about one hour at (500 F) in the cruise condition. Center notched coupon specimens from six titanium materials were tested: mill-annealed, duplex-annealed, and triplex-annealed Ti-8Al-1Mo-1V sheets; mill-annealed Ti-8Al-1Mo-1V extrusion; mill-annealed Ti-6Al-4V sheet; and solution-treated and aged Ti-6Al-4V extrusion. For duplex-annealed Ti-8Al-1Mo-1V sheet, specimens with single spotweld were also tested. The test results were studied in conjunction with other related data from the literature for: material selection, structural fabrication, fatigue resistance of supersonic cruise aircraft structure, and fatigue test acceleration procedures for supersonic cruise aircraft.

  19. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. [Lewis 8 by 6-foot supersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1980-01-01

    Wind tunnel tests were conducted to evaluate the aerodynamic performance of a coannular exhaust nozzle for a proposed variable stream control supersonic propulsion system. Tests were conducted with two simulated configurations differing primarily in the fan duct flowpaths: a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.

  20. Evaluation of structural design concepts for an arrow-wing supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1977-01-01

    An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach 2.7 arrow wing supersonic cruise aircraft. Concepts were evaluated considering near term start of design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low profile convex beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with boron polyimide composites. The fuselage shell consists of hat stiffened skin and frame construction of titanium alloy 6Al-4V. A summary of the study effort is presented, and a discussion of the overall logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design are included.

  1. Low-speed wind-tunnel test of a STOL supersonic-cruise fighter concept

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Riley, Donald R.

    1988-01-01

    A wind-tunnel investigation was conducted to examine the low-speed static stability and control characteristics of a 0.10 scale model of a STOL supersonic cruise fighter concept. The concept, referred to as a twin boom fighter, was designed as a STOL aircraft capable of efficient long range supersonic cruise. The configuration name is derived from the long twin booms extending aft of the engine to the twin vertical tails which support a high center horizontal tail. The propulsion system features a two dimensional thrust vectoring exhaust nozzle which is located so that the nozzle hinge line is near the aircraft center of gravity. This arrangement is intended to allow large thrust vector angles to be used to obtain significant values of powered lift, while minimizing pitching moment trim changes. Low speed stability and control information was obtained over an angle of attack range including the stall. A study of jet induced power effects was included.

  2. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.

  3. Performance potential of air turbo-ramjet employing supersonic through-flow fan

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1989-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.

  4. Study of metallic structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1977-01-01

    A structural design study was made, to assess the relative merits of various metallic structural concepts and materials for an advanced supersonic aircraft cruising at Mach 2.7. Preliminary studies were made to ensure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, select structural concepts and materials, and define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology. Criteria, analysis methods, and results are presented. The effect on design methods of using the computerized structural design system was appraised, and recommendations are presented concerning further development of design tools, development of materials and structural concepts, and research on basic technology.

  5. Effect of emerging technology on a convertible, business/interceptor, supersonic-cruise jet

    NASA Technical Reports Server (NTRS)

    Beissner, F. L., Jr.; Lovell, W. A.; Robins, A. W.; Swanson, E. E.

    1986-01-01

    This study was initiated to assess the feasibility of an eight-passenger, supersonic-cruise long range business jet aircraft that could be converted into a military missile carrying interceptor. The baseline passenger version has a flight crew of two with cabin space for four rows of two passenger seats plus baggage and lavatory room in the aft cabin. The ramp weight is 61,600 pounds with an internal fuel capacity of 30,904 pounds. Utilizing an improved version of a current technology low-bypass ratio turbofan engine, range is 3,622 nautical miles at Mach 2.0 cruise and standard day operating conditions. Balanced field takeoff distance is 6,600 feet and landing distance is 5,170 feet at 44,737 pounds. The passenger section from aft of the flight crew station to the aft pressure bulkhead in the cabin was modified for the interceptor version. Bomb bay type doors were added and volume is sufficient for four advanced air-to-air missiles mounted on a rotary launcher. Missile volume was based on a Phoenix type missile with a weight of 910 pounds per missile for a total payload weight of 3,640 pounds. Structural and equipment weights were adjusted and result in a ramp weight of 63,246 pounds with a fuel load of 30,938 pounds. Based on a typical intercept mission flight profile, the resulting radius is 1,609 nautical miles at a cruise Mach number of 2.0.

  6. Subsonic and supersonic aerodynamic characteristics of a supersonic cruise fighter model with a twisted and cambered wing with 74 deg sweep

    NASA Technical Reports Server (NTRS)

    Morris, O. A.

    1977-01-01

    A wind tunnel investigation has been conducted to determine the longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise fighter configuration with a design Mach number of 2.60. The configuration is characterized by a highly swept arrow wing twisted and cambered to minimize supersonic drag due to lift, twin wing mounted vertical tails, and an aft mounted integral underslung duel-engine pod. The investigation also included tests of the configuration with larger outboard vertical tails and with small nose strakes.

  7. Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program

    NASA Technical Reports Server (NTRS)

    Hoffman, E. L.; Payne, L.; Carter, A. L.

    1975-01-01

    Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.

  8. Bibliography of Supersonic Cruise Research (SCR) program from 1977 to mid-1980

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1980-01-01

    The supersonic cruise research (SCR) program, initiated in July 1972, includes system studies and the following disciplines: propulsion, stratospheric emission impact, structures and materials, aerodynamic performance, and stability and control. In a coordinated effort to provide a sound basis for any future consideration that may be given by the United States to the development of an acceptable commercial supersonic transport, integration of the technical disciplines was undertaken, analytical tools were developed, and wind tunnel, flight, and laboratory investigations were conducted. The present bibliography covers the time period from 1977 to mid-1980. It is arranged according to system studies and the above five SCR disciplines. There are 306 NASA reports and 135 articles, meeting papers, and company reports cited.

  9. Supersonic through-flow fan assessment

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1988-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan engine for supersonic cruise aircraft. It included a mean-line analysis of fans designed to operate with in-flow velocities ranging from subsonic to high supersonic speeds. The fan performance generated was used to estimate the performance of supersonic fan engines designed for four applications: a Mach 2.3 supersonic transport, a Mach 2.5 fighter, a Mach 3.5 cruise missile, and a Mach 5.0 cruise vehicle. For each application an engine was conceptualized, fan performance and engine performance calculated, weight estimates made, engine installed in a hypothetical vehicle, and mission analysis was conducted.

  10. Fatigue of titanium alloys in a supersonic-cruise airplane environment

    NASA Technical Reports Server (NTRS)

    Imig, L. A.

    1976-01-01

    The test programs conducted by several aerospace companies and NASA, summarized in this paper, studied several titanium materials previously identified as having high potential for application to supersonic cruise airplane structures. These studies demonstrate that the temperature (560 K) by itself produced no significant degradation of the materials. However, the fatigue resistance of titanium-alloy structures, in which thermal and loading effects are combined, has been studied insufficiently. The predominant topic for future study of fatigue problems in Mach 3 structures should be the influences of thermal stress particularly, the effects of thermal stress on failure location.

  11. Flying qualities design criteria applicable to supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Chalk, C. R.

    1980-01-01

    A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.

  12. Noise and performance calibration study of a Mach 2.2 supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.; Maglieri, D. J.

    1979-01-01

    The baseline configuration of a Mach 2.2 supersonic cruise concept employing a 1980 - 1985 technology level, dry turbojet, mechanically suppressed engine, was calibrated to identify differences in noise levels and performance as determined by the methodology and ground rules used. In addition, economic and noise information is provided consistent with a previous study based on an advanced technology Mach 2.7 configuration, reported separately. Results indicate that the difference between NASA and manufacturer performance methodology is small. Resizing the aircraft to NASA groundrules results in negligible changes in takeoff noise levels (less than 1 EPNdB) but approach noise is reduced by 5.3 EPNdB as a result of increasing approach speed. For the power setting chosen, engine oversizing resulted in no reduction in traded noise. In terms of summated noise level, a 6 EPNdB reduction is realized for a 5% increase in total operating costs.

  13. Application of advanced computational codes in the design of an experiment for a supersonic throughflow fan rotor

    NASA Technical Reports Server (NTRS)

    Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.

    1987-01-01

    Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.

  14. Aerodynamic Design Opportunities for Future Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.

    2002-01-01

    A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.

  15. Titanium and advanced composite structures for a supersonic cruise arrow wing configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Hoy, J. M.

    1976-01-01

    Structural design studies were made, based on current technology and on an estimate of technology to be available in the mid 1980's, to assess the relative merits of structural concepts and materials for an advanced arrow wing configuration cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, and define an efficient structural arrangement. Material and concept selection, detailed structural analysis, structural design and airplane mass analysis were completed based on current technology. Based on estimated future technology, structural sizing for strength and a preliminary assessment of the flutter of a strength designed composite structure were completed. An advanced computerized structural design system was used, in conjunction with a relatively complex finite element model, for detailed analysis and sizing of structural members.

  16. Bibliography of Supersonic Cruise Aircraft Research (SCAR) Program from 1972 to Mid-1977

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1977-01-01

    This bibliography documents publications of the supersonic cruise aircraft research (SCAR) program that were generated during the first 5 years of effort. The reports are arranged according to systems studies and five SCAR disciplines: propulsion, stratospheric emissions impact, structures and materials, aerodynamic performance, and stability and control. The specific objectives of each discipline are summarized. Annotation is included for all NASA inhouse and low-number contractor reports. There are 444 papers and articles included.

  17. The Edge supersonic transport

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  18. Advanced supersonic technology concept study: Hydrogen fueled configuration

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1974-01-01

    Conceptual designs of hydrogen fueled supersonic transport configurations for the 1990 time period were developed and compared with equivalent technology Jet A-1 fueled vehicles to determine the economic and performance potential of liquid hydrogen as an alternate fuel. Parametric evaluations of supersonic cruise vehicles with varying design and transport mission characteristics established the basis for selecting a preferred configuration which was then studied in greater detail. An assessment was made of the general viability of the selected concept including an evaluation of costs and environmental considerations, i.e., exhaust emissions and sonic boom characteristics. Technology development requirements and suggested implementation schedules are presented.

  19. Jet aircraft emissions during cruise: Present and future

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1975-01-01

    Forecasts of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are compared to cruise emission for present day aircraft. The forecasts are based on: (1) knowledge of emission characteristics of combustors and augmentors; (2) combustion research in emission reduction technology, and (3) trends in projected engine designs for advanced subsonic or supersonic commercial aircraft. Recent progress that was made in the evolution of emissions reduction technology is discussed.

  20. Jet noise and performance comparison study of a Mach 2.55 supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.; Maglieri, D. J.

    1979-01-01

    Data provided by the manufacturer relating to noise and performance of a Mach 2.55 supersonic cruise concept employing a post 1985 technology level, variable cycle engine was used to identify differences in noise levels and performance between the manfacturer and NASA associated with methodology and groundrules. In addition, economic and noise information is provided consistent with a previous study based on an advanced technology Mach 2.7 configuration. The results indicate that the difference between the NASA's and manfacturer's performance methodology is small. Resizing the aircraft to NASA groundrules also results in small changes in flyover, sideline and approach noise levels. For the power setting chosen, engine oversizing resulted in no reduction in traded noise. In terms of summated noise level, a 10 EPNdB reduction is realized for an 8 percent increase in total operating costs. This corresponds to an average noise reduction of 3.3 EPNdB at the three observer positions.

  1. A review of supersonic cruise flight path control experience with the YF-12 aircraft

    NASA Technical Reports Server (NTRS)

    Berry, D. T.; Gilyard, G. B.

    1976-01-01

    Flight research with the YF-12 aircraft indicates that solutions to many handling qualities problems of supersonic cruise are at hand. Airframe/propulsion system interactions in the Dutch roll mode can be alleviated by the use of passive filters or additional feedback loops in the propulsion and flight control systems. Mach and altitude excursions due to atmospheric temperature fluctuations can be minimized by the use of a cruise autothrottle. Autopilot instabilities in the altitude hold mode have been traced to angle of attack-sensitive static ports on the compensated nose boom. For the YF-12, the feedback of high-passed pitch rate to the autopilot resolves this problem. Manual flight path control is significantly improved by the use of an inertial rate of climb display in the cockpit.

  2. The Trojan. [supersonic transport

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Trojan is the culmination of thousands of engineering person-hours by the Cones of Silence Design Team. The goal was to design an economically and technologically viable supersonic transport. The Trojan is the embodiment of the latest engineering tools and technology necessary for such an advanced aircraft. The efficient design of the Trojan allows for supersonic cruise of Mach 2.0 for 5,200 nautical miles, carrying 250 passengers. The per aircraft price is placed at $200 million, making the Trojan a very realistic solution for tomorrows transportation needs. The following is a detailed study of the driving factors that determined the Trojan's super design.

  3. Experimental and analytical investigations to improve low-speed performance and stability and control characteristics of supersonic cruise fighter vehicles

    NASA Technical Reports Server (NTRS)

    Graham, A. B.

    1977-01-01

    Small- and large-scale models of supersonic cruise fighter vehicles were used to determine the effectiveness of airframe/propulsion integration concepts for improved low-speed performance and stability and control characteristics. Computer programs were used for engine/airframe sizing studies to yield optimum vehicle performance.

  4. Accounting for Laminar Run & Trip Drag in Supersonic Cruise Performance Testing

    NASA Technical Reports Server (NTRS)

    Goodsell, Aga M.; Kennelly, Robert A.

    1999-01-01

    An improved laminar run and trip drag correction methodology for supersonic cruise performance testing was derived. This method required more careful analysis of the flow visualization images which revealed delayed transition particularly on the inboard upper surface, even for the largest trip disks. In addition, a new code was developed to estimate the laminar run correction. Once the data were corrected for laminar run, the correct approach to the analysis of the trip drag became evident. Although the data originally appeared confusing, the corrected data are consistent with previous results. Furthermore, the modified approach, which was described in this presentation, extends prior historical work by taking into account the delayed transition caused by the blunt leading edges.

  5. Advanced technology payoffs for future rotorcraft, commuter aircraft, cruise missile, and APU propulsion systems

    NASA Technical Reports Server (NTRS)

    Turk, M. A.; Zeiner, P. K.

    1986-01-01

    In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.

  6. Benefits of advanced propulsion technology for the advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Sabatella, J. A.

    1973-01-01

    Future supersonic transports will have to provide improvement in the areas of economics, range, and emissions relative to the present generation of supersonic transports, as well as meeting or improving upon FAR 36 noise goals. This paper covers the promising propulsion systems including variable-cycle engine concepts for long-range supersonic commercial transport application. The benefits of applying advanced propulsion technology to solve the economic and environmental problems are reviewed. The advanced propulsion technologies covered are in the areas of structures, materials, cooling techniques, aerodynamics, variable engine geometry, jet noise suppressors, acoustic treatment, and low-emission burners. The results of applying the advanced propulsion technology are presented in terms of improvement in overall system takeoff gross weight and return on investment.

  7. Supersonic jet shock noise reduction

    NASA Technical Reports Server (NTRS)

    Stone, J. R.

    1984-01-01

    Shock-cell noise is identified to be a potentially significant problem for advanced supersonic aircraft at takeoff. Therefore NASA conducted fundamental studies of the phenomena involved and model-scale experiments aimed at developing means of noise reduction. The results of a series of studies conducted to determine means by which supersonic jet shock noise can be reduced to acceptable levels for advanced supersonic cruise aircraft are reviewed. Theoretical studies were conducted on the shock associated noise of supersonic jets from convergent-divergent (C-D) nozzles. Laboratory studies were conducted on the influence of narrowband shock screech on broadband noise and on means of screech reduction. The usefulness of C-D nozzle passages was investigated at model scale for single-stream and dual-stream nozzles. The effect of off-design pressure ratio was determined under static and simulated flight conditions for jet temperatures up to 960 K. Annular and coannular flow passages with center plugs and multi-element suppressor nozzles were evaluated, and the effect of plug tip geometry was established. In addition to the far-field acoustic data, mean and turbulent velocity distributions were measured with a laser velocimeter, and shadowgraph images of the flow field were obtained.

  8. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  9. A simulator study for the development and evaluation of operating procedures on a supersonic cruise research transport to minimize airport-community noise

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Deal, P. L.

    1980-01-01

    Piloted-simulator studies were conducted to determine takeoff and landing operating procedures for a supersonic cruise research transport concept that result in predicted noise levels which meet current Federal Aviation Administration (FAA) certification standards. With the use of standard FAA noise certification test procedures, the subject simulated aircraft did not meet the FAA traded-noise-level standards during takeoff and landing. However, with the use of advanced procedures, this aircraft meets the traded-noise-level standards for flight crews with average skills. The advanced takeoff procedures developed involved violating some of the current Federal Aviation Regulations (FAR), but it was not necessary to violate any FAR noise-test conditions during landing approach. Noise contours were also determined for some of the simulated takeoffs and landings in order to indicate the noise-reduction advantages of using operational procedures other than standard.

  10. Advanced Supersonic Technology concept AST-100 characteristics developed in a baseline-update study

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Swanson, E. E.

    1976-01-01

    The advanced supersonic technology configuration, AST-100, is described. The combination of wing thickness reduction, nacelle recontouring for minimum drag at cruise, and the use of the horizontal tail to produce lift during climb and cruise resulted in an increase in maximum lift-to-drag ratio. Lighter engines and lower fuel weight associated with this resizing result in a six percent reduction in takeoff gross weight. The AST-100 takeoff maximum effective perceived noise at the runway centerline and sideline measurement stations was 114.4 decibels. Since 1.5-decibels tradeoff is available from the approach noise, the required engine noise supression is 4.9 decibels. The AST-100 largest maximum overpressure would occur during transonic climb acceleration when the aircraft was at relatively low altitude. Calculated standard +8 C day range of the AST-100, with a 292 passenger payload, is 7348 km (3968 n.mi). Fuel price is the largest contributor to direct operating cost. However, if the AST-100 were flown subsonically (M = 0.9), direct operating costs would increase approximately 50 percent because of time related costs.

  11. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 3: Sections 12 through 14

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.

  12. Investigation of a supersonic cruise fighter model flow field

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Bare, E. A.

    1985-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to survey the flow field around a model of a supersonic cruise fighter configuration. Local values of angle of attack, side flow, Mach number, and total pressure ratio were measured with a single multi-holed probe in three survey areas on a model previously used for nacelle/nozzle integration investigations. The investigation was conducted at Mach numbers of 0.6, 0.9, and 1.2, and at angles of attack from 0 deg to 10 deg. The purpose of the investigation was to provide a base of experimental data with which theoretically determined data can be compared. To that end the data are presented in tables as well as graphically, and a complete description of the model geometry is included as fuselage cross sections and wing span stations. Measured local angles of attack were generally greater than free stream angle of attack above the wing and generally smaller below. There were large spanwise local angle-of-attack and side flow gradients above the wing at the higher free stream angles of attack.

  13. Methods for comparative evaluation of propulsion system designs for supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Tyson, R. M.; Mairs, R. Y.; Halferty, F. D., Jr.; Moore, B. E.; Chaloff, D.; Knudsen, A. W.

    1976-01-01

    The propulsion system comparative evaluation study was conducted to define a rapid, approximate method for evaluating the effects of propulsion system changes for an advanced supersonic cruise airplane, and to verify the approximate method by comparing its mission performance results with those from a more detailed analysis. A table look up computer program was developed to determine nacelle drag increments for a range of parametric nacelle shapes and sizes. Aircraft sensitivities to propulsion parameters were defined. Nacelle shapes, installed weights, and installed performance was determined for four study engines selected from the NASA supersonic cruise aircraft research (SCAR) engine studies program. Both rapid evaluation method (using sensitivities) and traditional preliminary design methods were then used to assess the four engines. The method was found to compare well with the more detailed analyses.

  14. Variable cycle engines for advanced supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Kozlowski, H.

    1975-01-01

    Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.

  15. Preliminary design of a supersonic Short-Takeoff and Vertical-Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A preliminary study of a supersonic short takeoff and vertical landing (STOVL) fighter is presented. Three configurations (a lift plus lift/cruise concept, a hybrid fan vectored thrust concept, and a mixed flow vectored thrust concept) were initially investigated with one configuration selected for further design analysis. The selected configuration, the lift plus lift/cruise concept, was successfully integrated to accommodate the powered lift short takeoff and vertical landing requirements as well as the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capability using the lift plus lift/cruise engine concept seems a viable option for the next generation fighter.

  16. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated aeroynamic data book 1

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    Tabulated data from wind tunnel tests conducted to evaluate the aerodynamic performance of an advanced coannular exhaust nozzle for a future supersonic propulsion system are presented. Tests were conducted with two test configurations: (1) a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and (2) an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At takeoff conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less. Data are provided through test run 25.

  17. Conceptual study of an advanced supersonic technology transport (AST-107) for transpacific range using low-bypass-ratio turbofan engines

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.; Foss, W. E., Jr.; Neubauer, M. J., Jr.

    1980-01-01

    An advanced supersonic technology configuration concept designated the AST-107, using a low bypass ratio turbofan engine, is described and analyzed. The aircraft had provisions for 273 passengers arranged five abreast. The cruise Mach number was 2.62. The mission range for the AST-107 was 8.48 Mm (4576 n.mi.) and an average lift drag ratio of 9.15 during cruise was achieved. The available lateral control was not sufficient for the required 15.4 m/s (30 kt) crosswind landing condition, and a crosswind landing gear or a significant reduction in dihedral effect would be necessary to meet this requirement. The lowest computed noise levels, including a mechanical suppressor noise reduction of 3 EPNdB at the flyover and sideline monitoring stations, were 110.3 EPNdB (sideline noise), 113.1 EPNdB (centerline noise) and 110.5 EPNdB (approach noise).

  18. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    NASA Technical Reports Server (NTRS)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  19. Effect of wing-tip dihedral on the longitudinal and lateral aerodynamic characteristics of a supersonic cruise configuration at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Washburn, K. E.; Gloss, B. B.

    1976-01-01

    Force and moment data studies were conducted to determine the effect of wing-tip dihedral on the longitudinal and lateral aerodynamic characteristics of a supersonic cruise fighter configuration. Oil flow studies were also performed to investigate the model surface flow. Three models were tested: a flat (0 deg dihedral) wing tip, a dihedral, and an anhedral wing tip. The tests were conducted at the NASA Langley high-speed 7- by 10-foot wind tunnel.

  20. The impact of emerging technologies on an advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  1. Surface pressure data for a supersonic-cruise airplane configuration at Mach numbers of 2.30, 2.96, 3.30

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.; Corlett, W. A.; Collins, I. K.

    1979-01-01

    The tabulated results of surface pressure tests conducted on the wing and fuselage of an airplane model in the Langley Unitary Plan wind tunnel are presented without analysis. The model tested was that of a supersonic-cruise airplane with a highly swept arrow-wing planform, two engine nacelles mounted beneath the wing, and outboard vertical tails. Data were obtained at Mach numbers of 2.30, 2.96, and 3.30 for angles of attack from -4 deg to 12 deg. The Reynolds number for these tests was 6,560,000 per meter.

  2. Supersonic Cruise/Transonic Maneuver Wing Section Development Study.

    DTIC Science & Technology

    1980-06-01

    duct. The inlet is contoured to fit the blended forebody and results in a high-aspect-ratio, minimum height duct which facilitates clearance of the...following. Most of the changes were directed toward reducing the supersonic wave drag. The winglet was removed to reduce supersonic volume and camber...drag and skin friction drag. The primary function of the winglet was to provide directional stability at high angles of attack. Analysis of the HiMAT

  3. Wide range operation of advanced low NOx combustors for supersonic high-altitude aircraft gas turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.

    1977-01-01

    An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.

  4. Transonic Investigation of Two-Dimensional Nozzles Designed for Supersonic Cruise

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Deere, Karen A.

    2015-01-01

    An experimental and computational investigation has been conducted to determine the off-design uninstalled drag characteristics of a two-dimensional convergent-divergent nozzle designed for a supersonic cruise civil transport. The overall objectives were to: (1) determine the effects of nozzle external flap curvature and sidewall boattail variations on boattail drag; (2) develop an experimental data base for 2D nozzles with long divergent flaps and small boattail angles and (3) provide data for correlating computational fluid dynamic predictions of nozzle boattail drag. The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.80 to 1.20 at nozzle pressure ratios up to 9. Three-dimensional simulations of nozzle performance were obtained with the computational fluid dynamics code PAB3D using turbulence closure and nonlinear Reynolds stress modeling. The results of this investigation indicate that excellent correlation between experimental and predicted results was obtained for the nozzle with a moderate amount of boattail curvature. The nozzle with an external flap having a sharp shoulder (no curvature) had the lowest nozzle pressure drag. At a Mach number of 1.2, sidewall pressure drag doubled as sidewall boattail angle was increased from 4deg to 8deg. Reducing the height of the sidewall caused large decreases in both the sidewall and flap pressure drags. Summary

  5. Aerodynamic characteristics at Mach numbers from 0.6 to 2.16 of a supersonic cruise fighter configuration with a design Mach number of 1.8

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.

    1977-01-01

    An investigation was made in the Langley 8-foot transonic tunnel and the Langley Unitary Plan wind tunnel, over a Mach number range of 0.6 to 2.16, to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic-cruise fighter. The configuration, which is designed for efficient cruise at Mach number 1.8, is a twin-engine tailless arrow-wing concept with a single rectangular inlet beneath the fuselage and outboard vertical tails and ventral fins. It had untrimmed values of lift-drage ratio ranging from 10 at subsonic speeds to 6.4 at the design Mach number. The configuration was statically stable both longitudinally and laterally.

  6. Preliminary Sizing and Performance Evaluation of Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Fetterman, D. E., Jr.

    1976-01-01

    The basic processes of a method that performs sizing operations on a baseline aircraft and determines their subsequent effects on aerodynamics, propulsion, weights, and mission performance are described. The input requirements of the associated computer program are defined and its output listings explained. Results obtained by applying the method to an advanced supersonic technology concept are discussed. These results include the effects of wing loading, thrust-to-weight ratio, and technology improvements on range performance, and possible gains in both range and payload capability that become available through growth versions of the baseline aircraft. The results from an in depth contractual study that confirm the range gain predicted for a particular wing loading, thrust-to-weight ratio combination are also included.

  7. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  8. Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.

  9. Contracts, grants and funding summary of supersonic cruise research and variable-cycle engine technology programs, 1972 - 1982

    NASA Technical Reports Server (NTRS)

    Hoffman, S.; Varholic, M. C.

    1983-01-01

    NASA-SCAR (AST) program was initiated in 1972 at the direct request of the Executive Office of the White House and Congress following termination of the U.S. SST program. The purpose of SCR was to conduct a focused research and technology program on those technology programs which contributed to the SST termination and, also, to provide an expanded data base for future civil and military supersonic transport aircraft. Funding for the Supersonic Cruise Research (SCR) Program was initiated in fiscal year 1973 and terminated in fiscal year 1981. The program was implemented through contracts and grants with industry, universities, and by in-house investigations at the NASA/OAST centers. The studies included system studies and five disciplines: propulsion, stratospheric emissions impact, materials and structures, aerodynamic performance, and stability and control. The NASA/Lewis Variable-Cycle Engine (VCE) Component Program was initiated in 1976 to augment the SCR program in the area of propulsion. After about 2 years, the title was changed to VCE Technology program. The total number of contractors and grantees on record at the AST office in 1982 was 101 for SCR and 4 for VCE. This paper presents a compilation of all the contracts and grants as well as the funding summaries for both programs.

  10. Supersonic wings with significant leading-edge thrust at cruise

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Carlson, H. W.; Mack, R. J.

    1980-01-01

    Experimental/theoretical correlations are presented which show that significant levels of leading edge thrust are possible at supersonic speeds for certain planforms which match the theoretical thrust distribution potential with the supporting airfoil geometry. The analytical process employed spanwise distribution of both it and/or that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated.

  11. Noise suppression due to annulus shaping of an inverted-velocity-profile coaxial nozzle. [supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J.; Vonglahn, U.

    1980-01-01

    An inverted velocity profile coaxial nozzle for use with supersonic cruise aircraft produces less jet noise than an equivalent conical nozzle. Furthermore, decreasing the annulus height (increasing radius ratio with constant flow) results in further noise reduction benefits. The annulus shape (height) was varied by an eccentric mounting of the annular nozzle with respect to a conical core nozzle. Acoustic measurements were made in the flyover plane below the narrowest portion of the annulus and at 90 deg and 180 deg from this point. The model-scale spectra are scaled up to engine size (1.07 m diameter) and the perceived noise levels for the eccentric and baseline concentric inverted velocity profile coaxial nozzles are compared over a range of operating conditions. The implications of the acoustic benefits derived with the eccentric nozzle to practical applications are discussed.

  12. Supersonic wings with significant leading-edge thrust at cruise

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Carlson, H. W.; Mack, R. J.

    1980-01-01

    Experimental/theoretical correlations are presented which show that significant levels of leading-edge thrust are possible at supersonic speeds for certain planforms having the geometry to support the theoretical thrust-distribution potential. The new analytical process employed provides not only the level of leading-edge thrust attainable but also the spanwise distribution of both it and that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated.

  13. Feasibility of Supersonic Aircraft Concepts for Low-Boom and Flight Trim Constraints

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2015-01-01

    This paper documents a process for analyzing whether a particular supersonic aircraft configuration layout and a given cruise condition are feasible to achieve a trimmed low-boom design. This process was motivated by the need to know whether a particular configuration at a given cruise condition could be reshaped to satisfy both low-boom and flight trim constraints. Without such a process, much effort could be wasted on shaping a configuration layout at a cruise condition that could never satisfy both low-boom and flight trim constraints simultaneously. The process helps to exclude infeasible configuration layouts with minimum effort and allows a designer to develop trimmed low-boom concepts more effectively. A notional low-boom supersonic demonstrator concept is used to illustrate the analysis/design process.

  14. Application of sonic-boom minimization concepts in supersonic transport design

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Barger, R. L.; Mack, R. J.

    1973-01-01

    The applicability of sonic boom minimization concepts in the design of large supersonic transport airplanes capable of a 2500-nautical-mile range at a cruise Mach number of 2.7 is considered. Aerodynamics, weight and balance, and mission performance as well as sonic boom factors, have been taken into account. The results indicate that shock-strength nominal values of somewhat less than 48 newtons/sq m during cruise are within the realm of possibility. Because many of the design features are in direct contradiction to presently accepted design practices, further study of qualified airplane design teams is required to ascertain sonic boom shock strength levels actually attainable for practical supersonic transports.

  15. Advancing Supersonic Retropropulsion Using Mars-Relevant Flight Data: An Overview

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Sforzo, Brandon; Campbell, Charles H.

    2017-01-01

    Advanced robotic and human missions to Mars require landed masses well in excess of current capabilities. One approach to safely land these large payloads on the Martian surface is to extend the propulsive capability currently required during subsonic descent to supersonic initiation velocities. However, until recently, no rocket engine had ever been fired into an opposing supersonic freestream. In September 2013, SpaceX performed the first supersonic retropropulsion (SRP) maneuver to decelerate the entry of the first stage of their Falcon 9 rocket. Since that flight, SpaceX has continued to perform SRP for the reentry of their vehicle first stage, having completed multiple SRP events in Mars-relevant conditions in July 2017. In FY 2014, NASA and SpaceX formed a three-year public-private partnership centered upon SRP data analysis. These activities focused on flight reconstruction, CFD analysis, a visual and infrared imagery campaign, and Mars EDL design analysis. This paper provides an overview of these activities undertaken to advance the technology readiness of Mars SRP.

  16. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet - results from the EU-project SCENIC

    NASA Astrophysics Data System (ADS)

    Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.

    2007-05-01

    The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emissions scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g. economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft. However, model differences are smaller when comparing the different options for a supersonic fleet. The base scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, lead in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm²in 2050, with an uncertainty between 9 and 29 mWUnstructured Grid Euler Method Assessment for Longitudinal and Lateral/Directional Aerodynamic Performance Analysis of the HSR Technology Concept Airplane at Supersonic Cruise Speed

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a High Speed Civil Transport (HSCT) configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at M (sub infinity) = 2.4 for a range of angles-of-attack and sideslip. Although all the present computations are performed for the complete TCA configuration, appropriate assumptions derived from the fundamental supersonic aerodynamic principles have been made to extract aerodynamic predictions to complement the experimental data obtained from a 1.675%-scaled truncated (aft fuselage/empennage components removed) TCA model. The validity of the computational results, derived from the latter assumptions, are thoroughly addressed and discussed in detail. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex flow structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics for the truncated TCA configuration are shown to correlate very well with the corresponding wind-tunnel data across the examined range of angles-of-attack and sideslip. The complementary computational results for the longitudinal and lateral/directional performance characteristics for the complete TCA configuration are also presented along with the aerodynamic effects due to empennage components. Results are also presented to assess the computational method performance, solution sensitivity to grid refinement, and solution convergence characteristics.

  17. Control of propulsion systems for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Hiller, K. W.; Drain, D. I.

    1976-01-01

    The propulsion control requirements of supersonic aircraft are presented. Integration of inlet, engine, and airframe controls is discussed. The application of recent control theory developments to propulsion control design is described. Control component designs for achieving reliable, responsive propulsion control are also discussed.

  18. Supersonic through-flow fan engine and aircraft mission performance

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C.; Maldonado, Jaime J.

    1989-01-01

    A study was made to evaluate potential improvement to a commercial supersonic transport by powering it with supersonic through-flow fan turbofan engines. A Mach 3.2 mission was considered. The three supersonic fan engines considered were designed to operate at bypass ratios of 0.25, 0.5, and 0.75 at supersonic cruise. For comparison a turbine bypass turbojet was included in the study. The engines were evaluated on the basis of aircraft takeoff gross weight with a payload of 250 passengers for a fixed range of 5000 N.MI. The installed specific fuel consumption of the supersonic fan engines was 7 to 8 percent lower than that of the turbine bypass engine. The aircraft powered by the supersonic fan engines had takeoff gross weights 9 to 13 percent lower than aircraft powered by turbine bypass engines.

  19. Final Report for the Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program

    NASA Technical Reports Server (NTRS)

    Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig

    2010-01-01

    The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight

  1. Physiologically tolerable decompression profiles for supersonic transport type certification.

    DOT National Transportation Integrated Search

    1970-07-01

    The Supersonic Transport represents a quantum step in civil aeronautics. It will cruise at altitudes having low ambient gaseous pressures far exceeding human capacities for compensatory respiration. In consideration of this evolutionary step, tentati...

  2. The challenges and opportunities of supersonic transport propulsion technology

    NASA Technical Reports Server (NTRS)

    Strack, William C.; Morris, Shelby J., Jr.

    1988-01-01

    The major challenges confronting the propulsion community for civil supersonic transport applications are identified: high propulsion system efficiency at both supersonic and subsonic cruise conditions, low-cost fuel with adequate thermal stability at high temperatures, low noise cycles and exhaust systems, low emission combustion systems, and low drag installations. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful airplane that satisfies environmental constraints.

  3. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet - results from the EU-project SCENIC

    NASA Astrophysics Data System (ADS)

    Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.

    2007-10-01

    The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29

  4. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    NASA Astrophysics Data System (ADS)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  5. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  6. Preliminary design of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Borchers, Paul; Gomer, Charlie; Henderson, Dean; Jacobs, Tavis; Lawson, Todd; Peterson, Eric; Ross, Tweed, III; Bellmard, Larry

    1990-01-01

    The preliminary design study of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter is presented. A brief historical survey of powered lift vehicles was presented, followed by a technology assessment of the latest supersonic STOVL engine cycles under consideration by industry and government in the U.S. and UK. A survey of operational fighter/attack aircraft and the modern battlefield scenario were completed to develop, respectively, the performance requirements and mission profiles for the study. Three configurations were initially investigated with the following engine cycles: a hybrid fan vectored thrust cycle, a lift+lift/cruise cycle, and a mixed flow vectored thrust cycle. The lift+lift/cruise aircraft configuration was selected for detailed design work which consisted of: (1) a material selection and structural layout, including engine removal considerations, (2) an aircraft systems layout, (3) a weapons integration model showing the internal weapons bay mechanism, (4) inlet and nozzle integration, (5) an aircraft suckdown prediction, (6) an aircraft stability and control analysis, including a takeoff, hover, and transition control analysis, (7) a performance and mission capability study, and (8) a life cycle cost analysis. A supersonic fighter aircraft with STOVL capability with the lift+lift/cruise engine cycle seems a viable option for the next generation fighter.

  7. Preliminary noise tradeoff study of a Mach 2.7 cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.; Maglieri, D. J. (Editor); Raney, J. P. (Editor)

    1979-01-01

    NASA computer codes in the areas of preliminary sizing and enroute performance, takeoff and landing performance, aircraft noise prediction, and economics were used in a preliminary noise tradeoff study for a Mach 2.7 design supersonic cruise concept. Aerodynamic configuration data were based on wind-tunnel model tests and related analyses. Aircraft structural characteristics and weight were based on advanced structural design methodologies, assuming conventional titanium technology. The most advanced noise prediction techniques available were used, and aircraft operating costs were estimated using accepted industry methods. The 4-engines cycles included in the study were based on assumed 1985 technology levels. Propulsion data was provided by aircraft manufacturers. Additional empirical data is needed to define both noise reduction features and other operating characteristics of all engine cycles under study. Data on VCE design parameters, coannular nozzle inverted flow noise reduction and advanced mechanical suppressors are urgently needed to reduce the present uncertainties in studies of this type.

  8. An assessment of the effect of supersonic aircraft operations on the stratospheric ozone content

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.; Whitten, R. C.; Turco, R. P.; Capone, L. A.

    1978-01-01

    An assessment of the potential effect on stratospheric ozone of an advanced supersonic transport operations is presented. This assessment, which was undertaken because of NASA's desire for an up-to-date evaluation to guide programs for the development of supersonic technology and improved aircraft engine designs, uses the most recent chemical reaction rate data. From the results of the present assessment it would appear that realistic fleet sizes should not cause concern with regard to the depletion of the total ozone overburden. For example, the NOx emission of one type designed to cruise at 20 km altitude will cause the ozone overburden to increase by 0.03% to 0.12%, depending upon which vertical transport is used. These ozone changes can be compared with the predictions of a 1.74% ozone decrease (for 100 Large SST's flying at 20 km) made in 1974 by the FAA's Climatic Impact Assessment Program.

  9. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  10. Analytical screening of low emissions, high performance duct burners for supersonic cruise aircraft engines

    NASA Technical Reports Server (NTRS)

    Lohmann, R. A.; Riecke, G. T.

    1977-01-01

    An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs.

  11. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2000-01-01

    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  12. Aerodynamic design and analysis of the AST-204, AST-205, and AST-206 blended wing-fuse large supersonic transport configuration concepts

    NASA Technical Reports Server (NTRS)

    Martin, G. L.; Walkley, K. B.

    1980-01-01

    The aerodynamic design and analysis of three blended wing-fuselage supersonic cruise configurations providing four, five, and six abreast seating was conducted using a previously designed supersonic cruise configuration as the baseline. The five abreast configuration was optimized for wave drag at a Mach number of 2.7. The four and six abreast configurations were also optimized at Mach 2.7, but with the added constraint that the majority of their structure be common with the five abreast configuration. Analysis of the three configurations indicated an improvement of 6.0, 7.5, and 7.7 percent in cruise lift-to-drag ratio over the baseline configuration for the four, five, and six abreast configurations, respectively.

  13. Supersonic airplane study and design

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1993-01-01

    A supersonic airplane creates shocks which coalesce and form a classical N-wave on the ground, forming a double bang noise termed sonic boom. A recent supersonic commercial transport (the Concorde) has a loud sonic boom (over 100 PLdB) and low aerodynamic performance (cruise lift-drag ratio 7). To enhance the U.S. market share in supersonic transport, an airframer's market risk for a low-boom airplane has to be reduced. Computational fluid dynamics (CFD) is used to design airplanes to meet the dual constraints of low sonic boom and high aerodynamic performance. During the past year, a research effort was focused on three main topics. The first was to use the existing design tools, developed in past years, to design one of the low-boom wind-tunnel configurations (Ames Model 3) for testing at Ames Research Center in April 1993. The second was to use a Navier-Stokes code (Overflow) to support the Oblique-All-Wing (OAW) study at Ames. The third was to study an optimization technique applied on a Haack-Adams body to reduce aerodynamic drag.

  14. Conceptual Design of a Supersonic Business Jet Propulsion System

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2002-01-01

    NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent

  15. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    NASA Technical Reports Server (NTRS)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  16. Aerodynamic characteristics of a fixed arrow-wing supersonic cruise aircraft at Mach numbers of 2.30, 2.70, and 2.95. [Langley Unitary Plan wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Morris, O. A.; Fuller, D. E.; Watson, C. B.

    1978-01-01

    Tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30. 2.70, and 2.95 to determine the performance, static stability, and control characteristics of a model of a fixed-wing supersonic cruise aircraft with a design Mach Number of 2.70 (SCAT 15-F-9898). The configuration had a 74 deg swept warped wing with a reflexed trailing edge and four engine nacelles mounted below the reflexed portion of the wing. A number of variations in the basic configuration were investigated; they included the effect of wing leading edge radius, the effect of various model components, and the effect of model control deflections.

  17. Parametric Study of a Mach 2.4 Transport Engine with Supersonic Through-Flow Rotor and Supersonic Counter-Rotating Diffuser (SSTR/SSCRD)

    NASA Technical Reports Server (NTRS)

    Tran, Donald H.

    2004-01-01

    A parametric study is conducted to evaluate a mixed-flow turbofan equipped with a supersonic through-flow rotor and a supersonic counter-rotating diffuser (SSTR/SSCRD) for a Mach 2.4 civil transport. Engine cycle, weight, and mission analyses are performed to obtain a minimum takeoff gross weight aircraft. With the presence of SSTR/SSCRD, the inlet can be shortened to provide better pressure recovery. For the same engine airflow, the inlet, nacelle, and pylon weights are estimated to be 73 percent lighter than those of a conventional inlet. The fan weight is 31 percent heavier, but overall the installed engine pod weight is 11 percent lighter than the current high-speed civil transport baseline conventional mixed-flow turbofan. The installed specific fuel consumption of the supersonic fan engine is 2 percent higher than that of the baseline turbofan at supersonic cruise. Finally, the optimum SSTR/SSCRD airplane meets the FAR36 Stage 3 noise limit and is within 7 percent of the baseline turbofan airplane takeoff gross weight over a 5000-n mi mission.

  18. Computational Analysis of a Low-Boom Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2011-01-01

    A low-boom supersonic inlet was designed for use on a conceptual small supersonic aircraft that would cruise with an over-wing Mach number of 1.7. The inlet was designed to minimize external overpressures, and used a novel bypass duct to divert the highest shock losses around the engine. The Wind-US CFD code was used to predict the effects of capture ratio, struts, bypass design, and angles of attack on inlet performance. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center. Test results showed that the inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a stable operating range much larger than that of an engine. Predictions generally compared very well with the experimental data, and were used to help interpret some of the experimental results.

  19. Three-dimensional viscous design methodology for advanced technology aircraft supersonic inlet systems

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.

    1983-01-01

    A broad program to develop advanced, reliable, and user oriented three-dimensional viscous design techniques for supersonic inlet systems, and encourage their transfer into the general user community is discussed. Features of the program include: (1) develop effective methods of computing three-dimensional flows within a zonal modeling methodology; (2) ensure reasonable agreement between said analysis and selective sets of benchmark validation data; (3) develop user orientation into said analysis; and (4) explore and develop advanced numerical methodology.

  20. Computational analysis of blunt, thin airfoil sections at supersonic and subsonic speeds

    NASA Astrophysics Data System (ADS)

    Goodsell, Aga Myung

    The past decade has brought renewed interest in commercial supersonic aircraft design. Recent wing designs have included regions of low sweep resulting in supersonic leading edges at cruise. Thin biconvex sections are used in those regions to minimize wave drag and skin-friction drag. However, airfoil sections with sharp leading edges exhibit poor aerodynamic behavior at subsonic flight conditions. Blunt leading edges may improve performance by delaying the onset of separation at subsonic and transonic speeds. Their disadvantage is that they increase both wave drag, due to the formation of a detached bow wave, and skin-friction drag, from a loss of laminar flow. The effect of adding bluntness to a 4%-thick biconvex section was investigated using computational analysis tools. The aerodynamic performance of biconvex sections with circular leading edges was computed at supersonic, transonic, and takeoff conditions. At supersonic cruise, the increase in wave drag due to bluntness is a function of Mach number and leading-edge diameter. Some of the drag penalty is offset by the suction created downstream of the circular leading edge. The possibility of further drag reduction was explored with the development of a semi-analytical method to design blunt airfoil shapes which minimize wave drag. The effect on the transition location was evaluated using linear stability analyses of laminar boundary-layer profiles and the eN method. The analysis showed that laminar boundary layers on blunt airfoil sections are considerably less stable to Tollmien-Schlichting waves than that on a sharp biconvex. At transonic speeds, the results suggest a possible improvement in the lift-to-drag ratio over a limited range of angles of attack. At the takeoff condition, slight blunting of the leading edge does improve the lift-to-drag ratio at low angles of attack, but has little effect on maximum lift. It is concluded that the benefit of a blunt leading edge at off-design conditions is not

  1. Study of structural design concepts for an arrow wing supersonic transport configuration, volume 1. Tasks 1 and 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A structural design study was made, based on a 1975 level of technology, to assess the relative merits of structural concepts and materials for an advanced supersonic transport cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, to integrate the propulsion system with the airframe, to select structural concepts and materials, and to define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology and for use in future studies of aerostructural trades, and application of advanced technology. Criteria, analysis methods, and results are presented.

  2. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 3: Graphical data book 1

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    A graphical presentation of the aerodynamic data acquired during coannular nozzle performance wind tunnel tests is given. The graphical data consist of plots of nozzle gross thrust coefficient, fan nozzle discharge coefficient, and primary nozzle discharge coefficient. Normalized model component static pressure distributions are presented as a function of primary total pressure, fan total pressure, and ambient static pressure for selected operating conditions. In addition, the supersonic cruise configuration data include plots of nozzle efficiency and secondary-to-fan total pressure pumping characteristics. Supersonic and subsonic cruise data are given.

  3. Supersonic propulsion technology. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.

    1979-01-01

    Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.

  4. Computational methods in the prediction of advanced subsonic and supersonic propeller induced noise: ASSPIN users' manual

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1992-01-01

    This document describes the computational aspects of propeller noise prediction in the time domain and the use of high speed propeller noise prediction program ASSPIN (Advanced Subsonic and Supersonic Propeller Induced Noise). These formulations are valid in both the near and far fields. Two formulations are utilized by ASSPIN: (1) one is used for subsonic portions of the propeller blade; and (2) the second is used for transonic and supersonic regions on the blade. Switching between the two formulations is done automatically. ASSPIN incorporates advanced blade geometry and surface pressure modelling, adaptive observer time grid strategies, and contains enhanced numerical algorithms that result in reduced computational time. In addition, the ability to treat the nonaxial inflow case has been included.

  5. Study of the impact of cruise speed on scheduling and productivity of commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Bond, E. Q.; Carroll, E. A.; Flume, R. A.

    1977-01-01

    A comparison is made between airplane productivity and utilization levels derived from commercial airline type schedules which were developed for two subsonic and four supersonic cruise speed aircraft. The cruise speed component is the only difference between the schedules which are based on 1995 passenger demand forecasts. Productivity-to-speed relationships were determined for the three discrete route systems: North Atlantic, Trans-Pacific, and North-South America. Selected combinations of these route systems were also studied. Other areas affecting the productivity-to-speed relationship such as aircraft design range and scheduled turn time were examined.

  6. A Potent Vector: Assessing Chinese Cruise Missile Developments

    DTIC Science & Technology

    2014-01-01

    altitude of 7 meters and perform terminal maneuvers to reduce the target’s point defense systems effectiveness. The Sunburn is reported to have a...it combines a subsonic, low-altitude ap- proach with a supersonic terminal attack conducted by a separating sprint vehicle. The 3M54E’s cruise...and Yuan 101 sea-skimming sprint vehicle that travels the last 20 km to the target at a speed of Mach 2.9. The 3M54E ASCM has a 200- kg semi-armor

  7. Design and analysis of a supersonic penetration/maneuvering fighter

    NASA Technical Reports Server (NTRS)

    Child, R. D.

    1975-01-01

    The design of three candidate air combat fighters which would cruise effectively at freestream Mach numbers of 1.6, 2.0, and 2.5 while maintaining good transonic maneuvering capability, is considered. These fighters were designed to deliver aerodynamically controlled dogfight missiles at the design Mach numbers. Studies performed by Rockwell International in May 1974 and guidance from NASA determined the shape and size of these missiles. The principle objective of this study is the aerodynamic design of the vehicles; however, configurations are sized to have realistic structures, mass properties, and propulsion systems. The results of this study show that air combat fighters in the 15,000 to 23,000 pound class would cruise supersonically on dry power and still maintain good transonic maneuvering performance.

  8. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Mark, L.

    1982-01-01

    Conceptual designs and analyses were conducted on two V/STOL supersonic fighter/attack aircraft. These aircraft feature low footprint temperature and pressure thrust augmenting ejectors in the wings for vertical lift, combined with a low wing loading, low wave drag airframe for outstanding cruise and supersonic performance. Aerodynamic, propulsion, performance, and mass properties were determined and are presented for each aircraft. Aerodynamic and Aero/Propulsion characteristics having the most significant effect on the success of the up and away flight mode were identified, and the certainty with which they could be predicted was defined. A wind tunnel model and test program are recommended to resolve the identified uncertainties.

  9. Fan Noise for a Concept Commercial Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Stephens, David B.

    2017-01-01

    NASA is currently studying a commercial supersonic transport (CST) aircraft that could carry 35+ passengers at Mach 1.6+ with a 4000+nm range. The aircraft should also meet environmental goals for sonic boom, airport noise and emissions at cruise. With respect to airport noise, considerable effort has been put into predicting the noise due to the jet exhaust. This report describes an internal NASA effort to consider the contribution of fan noise to the overall engine noise of this class of aircraft.

  10. Optimization of fixed-range trajectories for supersonic transport aircraft

    NASA Astrophysics Data System (ADS)

    Windhorst, Robert Dennis

    1999-11-01

    This thesis develops near-optimal guidance laws that generate minimum fuel, time, or direct operating cost fixed-range trajectories for supersonic transport aircraft. The approach uses singular perturbation techniques to time-scale de-couple the equations of motion into three sets of dynamics, two of which are analyzed in the main body of this thesis and one of which is analyzed in the Appendix. The two-point-boundary-value-problems obtained by application of the maximum principle to the dynamic systems are solved using the method of matched asymptotic expansions. Finally, the two solutions are combined using the matching principle and an additive composition rule to form a uniformly valid approximation of the full fixed-range trajectory. The approach is used on two different time-scale formulations. The first holds weight constant, and the second allows weight and range dynamics to propagate on the same time-scale. Solutions for the first formulation are only carried out to zero order in the small parameter, while solutions for the second formulation are carried out to first order. Calculations for a HSCT design were made to illustrate the method. Results show that the minimum fuel trajectory consists of three segments: a minimum fuel energy-climb, a cruise-climb, and a minimum drag glide. The minimum time trajectory also has three segments: a maximum dynamic pressure ascent, a constant altitude cruise, and a maximum dynamic pressure glide. The minimum direct operating cost trajectory is an optimal combination of the two. For realistic costs of fuel and flight time, the minimum direct operating cost trajectory is very similar to the minimum fuel trajectory. Moreover, the HSCT has three local optimum cruise speeds, with the globally optimum cruise point at the highest allowable speed, if range is sufficiently long. The final range of the trajectory determines which locally optimal speed is best. Ranges of 500 to 6,000 nautical miles, subsonic and supersonic mixed

  11. Aerodynamic characteristics of a supersonic cruise airplane configuration at Mach numbers of 2.30, 2.96, and 3.30. [Langley Unitary Plan wind tunnel test

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.; Fournier, R. H.

    1979-01-01

    An investigation was made in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30, 2.96, and 3.30 to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise airplane. The configuration, with a design Mach number of 3.0, has a highly swept arrow wing with tip panels of lesser sweep, a fuselage chine, outboard vertical tails, and outboard engines mounted in nacelles beneath the wings. For wind tunnel test conditions, a trimmed value above 6.0 of the maximum lift-drag ratio was obtained at the design Mach number. The configuration was statically stable, both longitudinally and laterally. Data are presented for variations of vertical-tail roll-out and toe-in and for various combinations of components. Some roll control data are shown as are data for the various sand grit sizes used in fixing the boundary layer transition location.

  12. A Generalized Framework for Constrained Design Optimization of General Supersonic Configurations Using Adjoint Based Sensitivity Derivatives

    NASA Technical Reports Server (NTRS)

    Karman, Steve L., Jr.

    2011-01-01

    The Aeronautics Research Mission Directorate (ARMD) sent out an NASA Research Announcement (NRA) for proposals soliciting research and technical development. The proposed research program was aimed at addressing the desired milestones and outcomes of ROA (ROA-2006) Subtopic A.4.1.1 Advanced Computational Methods. The second milestone, SUP.1.06.02 Robust, validated mesh adaptation and error quantification for near field Computational Fluid Dynamics (CFD), was addressed by the proposed research. Additional research utilizing the direct links to geometry through a CAD interface enabled by this work will allow for geometric constraints to be applied and address the final milestone, SUP2.07.06 Constrained low-drag supersonic aerodynamic design capability. The original product of the proposed research program was an integrated system of tools that can be used for the mesh mechanics required for rapid high fidelity analysis and for design of supersonic cruise vehicles. These Euler and Navier-Stokes volume grid manipulation tools were proposed to efficiently use parallel processing. The mesh adaptation provides a systematic approach for achieving demonstrated levels of accuracy in the solutions. NASA chose to fund only the mesh generation/adaptation portion of the proposal. So this report describes the completion of the proposed tasks for mesh creation, manipulation and adaptation as it pertains to sonic boom prediction of supersonic configurations.

  13. Overview of Experimental Capabilities - Supersonics

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2007-01-01

    This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.

  14. Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah Augusta Umberger

    2010-01-01

    Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows

  15. Evaluation of a ducted-fan power plant designed for high output and good cruise fuel economy

    NASA Technical Reports Server (NTRS)

    Behun, M; Rom, F E; Hensley, R V

    1950-01-01

    Theoretical analysis of performance of a ducted-fan power plant designed both for high-output, high-altitude operation at low supersonic Mach numbers and for good fuel economy at lower fight speeds is presented. Performance of ducted fan is compared with performance (with and without tail-pipe burner) of two hypothetical turbojet engines. At maximum power, the ducted fan has propulsive thrust per unit of frontal area between thrusts obtained by turbojet engines with and without tail-pipe burners. At cruise, the ducted fan obtains lowest thrust specific fuel consumption. For equal maximum thrusts, the ducted fan obtains cruising flight duration and range appreciably greater than turbojet engines.

  16. Supersonic aerodynamic characteristics of an advanced F-16 derivative aircraft configuration

    NASA Technical Reports Server (NTRS)

    Fox, Mike C.; Forrest, Dana K.

    1993-01-01

    A supersonic wind tunnel investigation was conducted in the NASA Langley Unitary Plan Wind Tunnel on an advanced derivative configuration of the United States Air Force F-16 fighter. Longitudinal and lateral directional force and moment data were obtained at Mach numbers of 1.60 to 2.16 to evaluate basic performance parameters and control effectiveness. The aerodynamic characteristics for the F-16 derivative model were compared with the data obtained for the F-16C model and also with a previously tested generic wing model that features an identical plan form shape and similar twist distribution.

  17. Design and testing of an oblique all-wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Lee, Christopher A.

    1994-01-01

    This report describes the preliminary design of an Oblique All-Wing (OAW) supersonic transport and a corresponding wind-tunnel model that was tested in the NASA Ames 9- by 7-Foot supersonic wind tunnel. The main goal was the determination of the cruise performance (lift/drag ratio) of a realistically configured OAW. To achieve an acceptable level of realism, it was necessary to consider many issues of design practicality such as the need for a viable propulsion system, adequate control surfaces, landing gear, provisions for 450 passengers, and fuel to fly 5,000 nautical miles. The aircraft had to be stable, structurally sound, and needed to fit into airports across the world. Support was directed primarily towards integration of the propulsion system, however, there were notable contributions to many aspects of the configuration design, wind tunnel model, and wind tunnel test.

  18. A Supersonic Business-Jet Concept Designed for Low Sonic Boom

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2003-01-01

    Ongoing human-response studies of sonic-boom noise indicated that a previous level of 1.0 psf might still be too annoying. This led to studies of a Supersonic Business Jet (SBJ), which might generate lower, more acceptable ground overpressures. To determine whether methods for designing a High Speed Civil Transport (HSCT) could be successfully applied, a SBJ concept was designed at the langley Research Center. It would cruise at Mach 2, carry 10 passengers for 4000 nautical miles, and generate a 0.50 psf or less on the ground under the flight path at start of cruise. Results indicated that a 10-passenger, low-boom SBJ design was just as technically demanding as a 300-passenger, low-boom HSCT design. In this report, the sources of these technical problems are identified, and ideas for addressing them are discussed.

  19. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-70-1). 3: A comparison between characteristics predicted from wind-tunnel measurements and those measured in flight

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.; Peterson, J. B., Jr.; Daugherty, J. C.

    1980-01-01

    A program was undertaken by NASA to evaluate the accuracy of a method for predicting the aerodynamic characteristics of large supersonic cruise airplanes. This program compared predicted and flight-measured lift, drag, angle of attack, and control surface deflection for the XB-70-1 airplane for 14 flight conditions with a Mach number range from 0.76 to 2.56. The predictions were derived from the wind-tunnel test data of a 0.03-scale model of the XB-70-1 airplane fabricated to represent the aeroelastically deformed shape at a 2.5 Mach number cruise condition. Corrections for shape variations at the other Mach numbers were included in the prediction. For most cases, differences between predicted and measured values were within the accuracy of the comparison. However, there were significant differences at transonic Mach numbers. At a Mach number of 1.06 differences were as large as 27 percent in the drag coefficients and 20 deg in the elevator deflections. A brief analysis indicated that a significant part of the difference between drag coefficients was due to the incorrect prediction of the control surface deflection required to trim the airplane.

  20. Summary of Lift and Lift/Cruise Fan Powered Lift Concept Technology

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L.

    1993-01-01

    A summary is presented of some of the lift and lift/cruise fan technology including fan performance, fan stall, ground effects, ingestion and thrust loss, design tradeoffs and integration, control effectiveness and several other areas related to vertical short takeoff and landing (V/STOL) aircraft conceptual design. The various subjects addressed, while not necessarily pertinent to specific short takeoff/vertical landing (STOVL) supersonic designs being considered, are of interest to the general field of lift and lift/cruise fan aircraft designs and may be of importance in the future. The various wind tunnel and static tests reviewed are: (1) the Doak VZ-4 ducted fan, (2) the 0.57 scale model of the Bell X-22 ducted fan aircraft, (3) the Avrocar, (4) the General Electric lift/cruise fan, (5) the vertical short takeoff and landing (V/STOL) lift engine configurations related to ingestion and consequent thrust loss, (6) the XV-5 and other fan-in-wing stall consideration, (7) hybrid configurations such as lift fan and lift/cruise fan or engines, and (8) the various conceptual design studies by air-frame contractors. Other design integration problems related to small and large V/STOL transport aircraft are summarized including lessons learned during more recent conceptual design studies related to a small executive V/STOL transport aircraft.

  1. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Gulfstream Aerospace Corporation (Gulfstream) Supersonic Acoustic Signature Simulator (SASSII) that will be... advances in supersonic technology, and for the FAA, the National Aeronautics and Space Administration (NASA... demonstrate the ``Gulfstream Whisper'', the aerospace company's latest effort to provide a solution to the...

  2. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III; Friedlander, David

    2017-01-01

    NASA and industry partners desire to reintroduce commercial supersonic airliners to the air transportation system. There are a number of technical challenges that must be overcome by future commercial supersonic airliners to make them viable solutions in society. NASA is specifically concerned with the challenges of reducing boom during supersonic cruise, maximizing range, and reducing airport community noise to acceptable levels. Concepts for commercial supersonic transports, such as the concept aircraft by Lockheed Martin pictured in Figure 1, place the engine nozzles in close proximity to wing and tail surfaces. However, the effects of noise shielding and noise radiation are not fully understood for installed propulsion systems. A series of acoustic tests were conducted on the NASA Glenn Research Centers Nozzle Acoustic Test Rig (NATR) to address the challenge of reducing airport community noise, which is often dominated by jet noise. To best represent the conceptual aircraft in the acoustic tests, noise measurements were taken of the jet in close proximity of simulated aerodynamic surfaces, not simply of an isolated jet.

  3. High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.

    2007-01-01

    Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.

  4. Parametric Inlet Tested in Glenn's 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Davis, David O.; Solano, Paul A.

    2005-01-01

    The Parametric Inlet is an innovative concept for the inlet of a gas-turbine propulsion system for supersonic aircraft. The concept approaches the performance of past inlet concepts, but with less mechanical complexity, lower weight, and greater aerodynamic stability and safety. Potential applications include supersonic cruise aircraft and missiles. The Parametric Inlet uses tailored surfaces to turn the incoming supersonic flow inward toward an axis of symmetry. The terminal shock spans the opening of the subsonic diffuser leading to the engine. The external cowl area is smaller, which reduces cowl drag. The use of only external supersonic compression avoids inlet unstart--an unsafe shock instability present in previous inlet designs that use internal supersonic compression. This eliminates the need for complex mechanical systems to control unstart, which reduces weight. The conceptual design was conceived by TechLand Research, Inc. (North Olmsted, OH), which received funding through NASA s Small-Business Innovation Research program. The Boeing Company (Seattle, WA) also participated in the conceptual design. The NASA Glenn Research Center became involved starting with the preliminary design of a model for testing in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10 10 SWT). The inlet was sized for a speed of Mach 2.35 while matching requirements of an existing cold pipe used in previous inlet tests. The parametric aspects of the model included interchangeable components for different cowl lip, throat slot, and sidewall leading-edge shapes and different vortex generator configurations. Glenn researchers used computational fluid dynamics (CFD) tools for three-dimensional, turbulent flow analysis to further refine the aerodynamic design.

  5. Development of the NASA-Ames low disturbance supersonic wind tunnel for transition research up to Mach 2.5

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive aerodynamic features of this new quiet tunnel will be a low-disturbance settling chamber, laminar boundary layers on the nozzle walls and steady supersonic diffuser flow. Furthermore, this new wind tunnel will operate continuously at uniquely low compression ratios (less than unity). This feature allows an existing non-specialist compressor to be used as a major part of the drive system. In this paper, we highlight activities associated with drive system development, the establishment of natural laminar flow on the test section walls, and instrumentation development for transition detection. Experimental results from an 1/8th-scale model of the supersonic wind tunnel are presented and discussed in association with theoretical predictions. Plans are progressing to build the full-scale wind tunnel by the end of 1993.

  6. Jet Noise Modeling for Supersonic Business Jet Application

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  7. NASA F-16XL supersonic laminar flow control program overview

    NASA Technical Reports Server (NTRS)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  8. Advanced Ignition in Supersonic Airflow by Tunable Plasma System

    NASA Astrophysics Data System (ADS)

    Firsov, A. A.; Dolgov, E. V.; Leonov, S. B.; Yarantsev, D. A.

    2017-10-01

    The plasma-based technique was studied for ignition and flameholding in a supersonic airflow in different laboratories for a long time. It was shown that flameholding of gaseous and liquid hydrocarbon fuel is feasible by means of surface DC discharge without employing mechanical flameholders in a supersonic combustion chamber. However, a high power consumption may limit application of this method in a real apparatus. This experimental and computational work explores a distributed plasma system, which allows reducing the total energy consumption and extending the life cycle of the electrode system. Due to the circuit flexibility, this approach may be potentially enriched with feedbacks for design of a close loop control system.

  9. Airframe-integrated propulsion system for hypersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Huber, P. W.

    1978-01-01

    The paper describes a new hydrogen-burning airframe-integrated scramjet concept which offers good potential for efficient hypersonic cruise vehicles. The characteristics of the engine which assure good performance are extensive engine-airframe integration, fixed geometry, low cooling, and control of heat release in the supersonic combustor by mixed modes of fuel injection from the combustor entrance. The present paper describes the concept and presents results from inlet tests, direct-connect combustor tests, and tests of two subscale boiler-plate research engines currently underway under conditions which simulate flight at Mach 4 and 7. It is concluded that this engine concept has the potential for high thrust and efficiency, low drag and weight, low cooling requirement, and application to a wide range of vehicle sizes.

  10. The common case study: Lockheed design of a supersonic cruise vehicle

    NASA Technical Reports Server (NTRS)

    Clauss, J. S., Jr.; Hays, A. P.; Wilson, J. R.

    1978-01-01

    The objective was to compare the characteristics of SSTs designed for the same mission by Lockheed, McDonnell Douglas, British Aerospace (U.K.), Aerospatiale (France), and the USSR. This comparison was to be used to calibrate parametric design studies of the tradeoff between SST direct operating cost (DOC) and noise levels at the FAR 36 certification points. The guidelines for this common case study were to design an aircraft with the following mission: payload 23 247 kg (51 250 lbm), range - 7000 km (3780 n. mi.), and cruise Mach number - 2.2. Field length was constrained to 3505 m (11 500 ft). Other airfield constraints and fuel reserves were also specified, but no noise constraints were applied.

  11. Wing planform effects at supersonic speeds for an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1984-01-01

    Four advanced fighter configurations, which differed in wing planform and airfoil shape, were investigated in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Supersonic data were obtained on the four uncambered wings, which were each attached to a single fighter fuselage. The fuselage geometry varied in cross-sectional shape and had two side-mounted, flow-through, half-axisymmetric inlets. Twin vertical tails were attached to the fuselage. The four planforms tested were a 65 deg delta wing, a combination of a 20 deg trapezoidal wing and a 45 deg horizontal tail, a 70 deg/30 deg cranked wing, and a 70 deg/66 deg crank wing, where the angle values refer to the leading-edge sweep angle of the lifting-surface planform. Planform effects on a single fuselage representative of an advanced fighter aircraft were studied. Results show that the highly swept cranked wings exceeded the aerodynamic performance levels, at low lift coefficients, of the 65 deg delta wing and the 20 deg trapezoidal wing at trimmed and untrimmed conditions.

  12. Sensitivity of transport aircraft performance and economics to advanced technology and cruise Mach number

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1974-01-01

    Sensitivity data for advanced technology transports has been systematically collected. This data has been generated in two separate studies. In the first of these, three nominal, or base point, vehicles designed to cruise at Mach numbers .85, .93, and .98, respectively, were defined. The effects on performance and economics of perturbations to basic parameters in the areas of structures, aerodynamics, and propulsion were then determined. In all cases, aircraft were sized to meet the same payload and range as the nominals. This sensitivity data may be used to assess the relative effects of technology changes. The second study was an assessment of the effect of cruise Mach number. Three families of aircraft were investigated in the Mach number range 0.70 to 0.98: straight wing aircraft from 0.70 to 0.80; sweptwing, non-area ruled aircraft from 0.80 to 0.95; and area ruled aircraft from 0.90 to 0.98. At each Mach number, the values of wing loading, aspect ratio, and bypass ratio which resulted in minimum gross takeoff weight were used. As part of the Mach number study, an assessment of the effect of increased fuel costs was made.

  13. Cruise noise measurements of a scale model advanced ducted propulsor

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Hughes, Christopher E.; Bock, Lawrence A.; Hall, David G.

    1993-01-01

    A scale model Advanced Ducted Propulsor (ADP) was tested in NASA Lewis Research Center's 8- by 6-Foot Wind Tunnel to obtain acoustic data at cruise conditions. The model, designed and manufactured by Pratt & Whitney Division of United Technologies, was tested with three inlet lengths. The model has 16 rotor blades and 22 stator vanes, which results in a cut-on condition with respect to rotor-stator interaction noise. Comparisons of the noise directivity of the ADP with that of a previously tested high-speed, unducted propeller showed that the ADP peak blade passing tone was about 30 dB below that of the propeller, and therefore, should not present a cabin or enroute noise problem. The maximum blade passing tone first increased with increasing helical tip Mach number, peaked, and then decreased at a higher Mach number. The ADP tests with the shortest inlet showed more noise in the inlet arc than did tests with either of the other two inlet lengths.

  14. CMO: Cruise Metadata Organizer for JAMSTEC Research Cruises

    NASA Astrophysics Data System (ADS)

    Fukuda, K.; Saito, H.; Hanafusa, Y.; Vanroosebeke, A.; Kitayama, T.

    2011-12-01

    JAMSTEC's Data Research Center for Marine-Earth Sciences manages and distributes a wide variety of observational data and samples obtained from JAMSTEC research vessels and deep sea submersibles. Generally, metadata are essential to identify data and samples were obtained. In JAMSTEC, cruise metadata include cruise information such as cruise ID, name of vessel, research theme, and diving information such as dive number, name of submersible and position of diving point. They are submitted by chief scientists of research cruises in the Microsoft Excel° spreadsheet format, and registered into a data management database to confirm receipt of observational data files, cruise summaries, and cruise reports. The cruise metadata are also published via "JAMSTEC Data Site for Research Cruises" within two months after end of cruise. Furthermore, these metadata are distributed with observational data, images and samples via several data and sample distribution websites after a publication moratorium period. However, there are two operational issues in the metadata publishing process. One is that duplication efforts and asynchronous metadata across multiple distribution websites due to manual metadata entry into individual websites by administrators. The other is that differential data types or representation of metadata in each website. To solve those problems, we have developed a cruise metadata organizer (CMO) which allows cruise metadata to be connected from the data management database to several distribution websites. CMO is comprised of three components: an Extensible Markup Language (XML) database, an Enterprise Application Integration (EAI) software, and a web-based interface. The XML database is used because of its flexibility for any change of metadata. Daily differential uptake of metadata from the data management database to the XML database is automatically processed via the EAI software. Some metadata are entered into the XML database using the web

  15. Supersonic market and economic analyses

    NASA Technical Reports Server (NTRS)

    Rochte, L. S.

    1980-01-01

    Advanced supersonic transport markets of the free world were projected for the period 1985 to 2004. Passenger traffic volume and airplane range and seat capacity requirements were estimated for Mach 2.2 service by international regional area market areas and by city pairs within and between these areas. Market factors and traffic factors examined include variable loads, growth rates, supersonic transport market shares, and schedule frequencies considering the different makeup of passenger traffic and individual city pairs. Direct, indirect, and total operating costs and yield levels were economically analyzed for first class and full fare economy class traffic.

  16. Summary and recent results from the NASA advanced High Speed Propeller Research Program

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Mikkelson, D. C.

    1982-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. The current status of the NASA research program on high-speed propeller aerodynamics, acoustics, and aeroelastics is described. Recent wind tunnel results for five 8- to 10-blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing near-field cruise noise by dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some initial lifting line results are compared with propeller force and probe data. Some initial laser velocimeter measurements of the flow field velocities of an 8-bladed 45 deg swept propeller are shown. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequate predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds. Potential large gains in propeller efficiency of 7 to 11 percent at Mach 0.8 may be possible with advanced counter-rotation propellers.

  17. Multiaxis control power from thrust vectoring for a supersonic fighter aircraft model at Mach 0.20 to 2.47

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bare, E. Ann

    1987-01-01

    The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.

  18. The effects on cruise drag of installing long-duct refan-engine nacelles on the McDonnell Douglas DC-8-50 and -61

    NASA Technical Reports Server (NTRS)

    Callaghan, J. T.; Donelson, J. E.; Morelli, J. P.

    1973-01-01

    A high-speed wind tunnel test was conducted to determine the effect on cruise performance of installing long-duct refan-engine nacelles on the DC-8-50 and -61 models. Drag data and wing/pylon/nacelle channel pressure data are presented. At a typical cruise condition there exists a very small interference drag penalty of less than one-percent of total cruise data for the Refan installation. Pressure data indicate that some supersonic flow is present in the inboard channel of the inboard refan nacelle installation, but it is not sufficient to cause any wave drag on boundary layer separation. One pylon modification, which takes the form of pylon bumps, was tested. It resulted in a drag penalty, because its design goal of eliminating shock-related interference drag was not required and the bump thus became a source of additional parasite drag.

  19. Design philosophy of long range LFC transports with advanced supercritical LFC airfoils. [laminar flow control

    NASA Technical Reports Server (NTRS)

    Pfenninger, Werner; Vemuru, Chandra S.

    1988-01-01

    The achievement of 70 percent laminar flow using modest boundary layer suction on the wings, empennage, nacelles, and struts of long-range LFC transports, combined with larger wing spans and lower span loadings, could make possible an unrefuelled range halfway around the world up to near sonic cruise speeds with large payloads. It is shown that supercritical LFC airfoils with undercut front and rear lower surfaces, an upper surface static pressure coefficient distribution with an extensive low supersonic flat rooftop, a far upstream supersonic pressure minimum, and a steep subsonic rear pressure rise with suction or a slotted cruise flap could alleviate sweep-induced crossflow and attachment-line boundary-layer instability. Wing-mounted superfans can reduce fuel consumption and engine tone noise.

  20. Inlet flowfield investigation. Part 2: Computation of the flow about a supercruise forebody at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Paynter, G. C.; Salemann, V.; Strom, E. E. I.

    1984-01-01

    A numerical procedure which solves the parabolized Navier-Stokes (PNS) equations on a body fitted mesh was used to compute the flow about the forebody of an advanced tactical supercruise fighter configuration in an effort to explore the use of a PNS method for design of supersonic cruise forebody geometries. Forebody flow fields were computed at Mach numbers of 1.5, 2.0, and 2.5, and at angles-of-attack of 0 deg, 4 deg, and 8 deg. at each Mach number. Computed results are presented at several body stations and include contour plots of Mach number, total pressure, upwash angle, sidewash angle and cross-plane velocity. The computational analysis procedure was found reliable for evaluating forebody flow fields of advanced aircraft configurations for flight conditions where the vortex shed from the wing leading edge is not a dominant flow phenomenon. Static pressure distributions and boundary layer profiles on the forebody and wing were surveyed in a wind tunnel test, and the analytical results are compared to the data. The current status of the parabolized flow flow field code is described along with desirable improvements in the code.

  1. Variable-cycle engines for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Willis, E.

    1976-01-01

    Progress and the current status of the Variable Cycle Engine (VCE) study are reviewed with emphasis placed on the impact of technology advancements and design specifications. A large variety of VCE concepts are also examined.

  2. Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equivalent-Area Targets

    NASA Technical Reports Server (NTRS)

    Li, Wu; Rallabhand, Sriam

    2011-01-01

    A promising path for developing a low-boom configuration is a multifidelity approach that (1) starts from a low-fidelity low-boom design, (2) refines the low-fidelity design with computational fluid dynamics (CFD) equivalent-area (Ae) analysis, and (3) improves the design with sonic-boom analysis by using CFD off-body pressure distributions. The focus of this paper is on the third step of this approach, in which the design is improved with sonic-boom analysis through the use of CFD calculations. A new inverse design process for off-body pressure tailoring is formulated and demonstrated with a low-boom supersonic configuration that was developed by using the mixed-fidelity design method with CFD Ae analysis. The new inverse design process uses the reverse propagation of the pressure distribution (dp/p) from a mid-field location to a near-field location, converts the near-field dp/p into an equivalent-area distribution, generates a low-boom target for the reversed equivalent area (Ae,r) of the configuration, and modifies the configuration to minimize the differences between the configuration s Ae,r and the low-boom target. The new inverse design process is used to modify a supersonic demonstrator concept for a cruise Mach number of 1.6 and a cruise weight of 30,000 lb. The modified configuration has a fully shaped ground signature that has a perceived loudness (PLdB) value of 78.5, while the original configuration has a partially shaped aft signature with a PLdB of 82.3.

  3. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  4. Advanced Vehicle Concepts and Implications for NextGen

    NASA Technical Reports Server (NTRS)

    Blake, Matt; Smith, Jim; Wright, Ken; Mediavilla Ricky; Kirby, Michelle; Pfaender, Holger; Clarke, John-Paul; Volovoi, Vitali; Dorbian, Christopher; Ashok, Akshay; hide

    2010-01-01

    This report presents the results of a major NASA study of advanced vehicle concepts and their implications for the Next Generation Air Transportation System (NextGen). Comprising the efforts of dozens of researchers at multiple institutions, the analyses presented here cover a broad range of topics including business-case development, vehicle design, avionics, procedure design, delay, safety, environmental impacts, and metrics. The study focuses on the following five new vehicle types: Cruise-efficient short takeoff and landing (CESTOL) vehicles Large commercial tiltrotor aircraft (LCTRs) Unmanned aircraft systems (UAS) Very light jets (VLJs) Supersonic transports (SST). The timeframe of the study spans the years 2025-2040, although some analyses are also presented for a 3X scenario that has roughly three times the number of flights as today. Full implementation of NextGen is assumed.

  5. Advanced Low NO Sub X Combustors for Supersonic High-Altitude Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.

    1975-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NO sub x, of three advanced aircraft combustor concepts at a simulated, high altitude cruise condition. The three combustor designs, all members of the lean reaction, premixed family, are the Jet Induced Circulation (JIC) combustor, the Vortex Air Blast (VAB) combustor, and a catalytic combustor. They were rig tested in the form of reverse flow can combustors in the 0.127 m. (5.0 in.) size range. Various configuration modifications were applied to each of the initial JIC and VAB combustor model designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NO sub x level of 1.1 gm NO2/kg fuel with essentially 100% combustion efficiency at the simulated cruise combustor condition of 50.7 N/sq cm (5 atm), 833 K (1500 R) inlet pressure and temperature respectively and 1778 K (3200 R) outlet temperature on Jet-A1 fuel. Early tests on the catalytic combustor were unsuccessful due to a catalyst deposition problem and were discontinued in favor of the JIC and VAB tests. In addition emissions data were obtained on the JIC and VAB combustors at low combustor inlet pressure and temperatures that indicate the potential performance at engine off-design conditions.

  6. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application

    NASA Technical Reports Server (NTRS)

    Kerr, James R.; Haskins, James F.

    1987-01-01

    Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.

  7. Development and Testing of a New Family of Supersonic Decelerators

    NASA Technical Reports Server (NTRS)

    Clark, Ian G.; Adler, Mark; Rivellini, Tommaso P.

    2013-01-01

    The state of the art in Entry, Descent, and Landing systems for Mars applications is largely based on technologies developed in the late 1960's and early 1970's for the Viking Lander program. Although the 2011 Mars Science Laboratory has made advances in EDL technology, these are predominantly in the areas of entry (new thermal protection systems and guided hypersonic flight) and landing (the sky crane architecture). Increases in entry mass, landed mass, and landed altitude beyond MSL capabilities will require advances predominantly in the field of supersonic decelerators. With this in mind, a multi-year program has been initiated to advance three new types of supersonic decelerators that would enable future large-robotic and human-precursor class missions to Mars.

  8. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  9. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2

    NASA Technical Reports Server (NTRS)

    Morgenstern, John; Buonanno, Michael; Yao, Jixian; Murugappan, Mugam; Paliath, Umesh; Cheung, Lawrence; Malcevic, Ivan; Ramakrishnan, Kishore; Pastouchenko, Nikolai; Wood, Trevor; hide

    2015-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR) and Stanford University, executed a 19 month program responsive to the NASA sponsored "N+2 Supersonic Validation: Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period" contract. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies necessary to realize a supersonic vehicle capable of meeting the N+2 environmental and performance goals. The N+2 program is aligned with NASA's Supersonic Project and is focused on providing system level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight. The N+2 environmental and performance goals are outlined in the technical paper, AIAA-2014-2138 (Ref. 1) along with the validated N+2 Phase 2 results. Our Phase 2 efforts built upon our Phase 1 studies (Ref. 2) and successfully demonstrated the ability to design and test realistic configurations capable of shaped sonic booms over the width of the sonic boom carpet. Developing a shaped boom configuration capable of meeting the N+2 shaped boom targets is a key goal for the N+2 program. During the LM Phase 1 effort, LM successfully designed and tested a shaped boom trijet configuration (1021) capable of achieving 85 PLdB under track (forward and aft shock) and up to 28 deg off-track at Mach 1.6. In Phase 2 we developed a refined configuration (1044-2) that extended the under 85 PLdB sonic boom level over the entire carpet of 52 deg off-track at a cruise Mach number of 1.7. Further, the loudness level of the configuration throughout operational conditions calculates to an average of 79 PLdB. These calculations rely on propagation employing Burger's (sBOOM) rounding methodology, and there are indications that the configuration average loudness would actually be 75 PLdB. We also added

  10. Infections on Cruise Ships.

    PubMed

    Kak, Vivek

    2015-08-01

    The modern cruise ship is a small city on the seas, with populations as large as 5,000 seen on large ships. The growth of the cruise ship industry has continued in the twenty-first century, and it was estimated that nearly 21.3 million passengers traveled on cruise ships in 2013, with the majority of these sailing from North America. The presence of large numbers of individuals in close proximity to each other facilitates transmission of infectious diseases, often through person-to-person spread or via contaminated food or water. An infectious agent introduced into the environment of a cruise ship has the potential to be distributed widely across the ship and to cause significant morbidity. The median cruise ship passenger is over 45 years old and often has chronic medical problems, so it is important that, to have a safe cruise ship experience, any potential for the introduction of an infecting agent as well as its transmission be minimized. The majority of cruise ship infections involve respiratory and gastrointestinal infections. This article discusses infectious outbreaks on cruise ships and suggests preventative measures for passengers who plan to travel on cruise ships.

  11. Wide range operation of advanced low NOx aircraft gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  12. Flight Flutter Testing of Supersonic Interceptors

    NASA Technical Reports Server (NTRS)

    Dublin, M.; Peller, R.

    1975-01-01

    A summary is presented of experiences in connection with flight flutter testing of supersonic interceptors. The planning and operational aspects involved are described along with the difficulties encountered, and the correlation between measurement and theory. Recommendations for future research and development to advance the science of flight flutter testing are included.

  13. High Altitude Supersonic Decelerator Test Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark

    2013-01-01

    The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.

  14. Near-Field Acoustic Power Level Analysis of F31/A31 Open Rotor Model at Simulated Cruise Conditions, Technical Report II

    NASA Technical Reports Server (NTRS)

    Sree, Dave

    2015-01-01

    Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.

  15. An analysis of the impact of cabin floor angle restrictions on L/D for a typical supersonic transport

    NASA Technical Reports Server (NTRS)

    Radkey, R. L.

    1974-01-01

    High floor angles at cruise have been identified as a significant problem facing airline and public acceptance of a supersonic transport. In order to explore the relationship between cruise performances and floor angle, four related wing-fuselage design and integration studies have been conducted. The studies were: (1) a fuselage camber study in which perturbations in the fuselage camber distribution were examined with a baseline wing, (2) a wing optimization study in which wings were optimized for minimum drag at C sub L's less than the design C sub L. These wings were optimized as wing planform camber surfaces alone and evaluated with a baseline fuselage, (3) a second wing optimization study in which wings were optimized for minimum drag at C sub L's less than the design C sub L but for this study the wings were optimized in the presence of the baseline fuselage, and (4) a third wing optimization study in which wings were optimized for minmum drag subject to C sub M constraints designed to produce more positive C sub MO's, thereby reducing trim drag. The studies indicated that it was not possible to both improve the aircraft cruise L/D and substantially reduce the cruise floor angle. The studies did indicate that the cruise floor angle could be reduced by reducing the fuselage incidence relative to the wing, but the reduction in floor angle was accompanied by a substantial reduction in L/D.

  16. Axisymmetric Calculations of a Low-Boom Inlet in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Hirt, Stefanie M.; Reger, Robert

    2011-01-01

    This paper describes axisymmetric CFD predictions made of a supersonic low-boom inlet with a facility diffuser, cold pipe, and mass flow plug within wind tunnel walls, and compares the CFD calculations with the experimental data. The inlet was designed for use on a small supersonic aircraft that would cruise at Mach 1.6, with a Mach number over the wing of 1.7. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center in the fall of 2010 to demonstrate the performance and stability of a practical flight design that included a novel bypass duct. The inlet design is discussed here briefly. Prior to the test, CFD calculations were made to predict the performance of the inlet and its associated wind tunnel hardware, and to estimate flow areas needed to throttle the inlet. The calculations were done with the Wind-US CFD code and are described in detail. After the test, comparisons were made between computed and measured shock patterns, total pressure recoveries, and centerline pressures. The results showed that the dual-stream inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a large stable operating range. Predicted core recovery agreed well with the experiment but predicted bypass recovery and maximum capture ratio were high. Calculations of offdesign performance of the inlet along a flight profile agreed well with measurements and previous calculations.

  17. Supersonic compressor

    DOEpatents

    Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA

    2008-02-26

    A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.

  18. Active Control of Supersonic Impinging Jets Using Supersonic Microjets

    DTIC Science & Technology

    2005-01-01

    Impinging Jets using Supersonic Microjets 5b. GRANT NUMBER F49620-03-1-0017 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Farrukh Alvi 5e. TASK...investigation on the use of microjets for the control of supersonic impinging jets was conducted under this research program. Supersonic impinging...aircraft structures and the landing surfaces. Prior research has shown that microjets , placed around the main jet periphery, are very effective in

  19. Facts about Noroviruses on Cruise Ships

    MedlinePlus

    ... Cruise Tips for Healthy Cruising Related Resources Cruise Ship Inspection Scores & Information Inspection Scores Cruise Line Directory ... Variances About Inspections Facts About Noroviruses on Cruise Ships Recommend on Facebook Tweet Share Compartir Noroviruses People ...

  20. A review of NASA's propulsion programs for aviation

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Johnson, H. W.; Weber, R. J.

    1978-01-01

    A review of five NASA engine-oriented propulsion programs of major importance to civil aviation are presented and discussed. Included are programs directed at exploring propulsion system concepts for (1) energy conservation subsonic aircraft (improved current turbofans, advanced turbofans, and advanced turboprops); (2) supersonic cruise aircraft (variable cycle engines); (3) general aviation aircraft (improved reciprocating engines and small gas turbines); (4) powered lift aircraft (advanced turbofans); and (5) advanced rotorcraft.

  1. Augmentor emissions reduction technology program. [for turbofan engines

    NASA Technical Reports Server (NTRS)

    Colley, W. C.; Kenworthy, M. J.; Bahr, D. W.

    1977-01-01

    Technology to reduce pollutant emissions from duct-burner-type augmentors for use on advanced supersonic cruise aircraft was investigated. Test configurations, representing variations of two duct-burner design concepts, were tested in a rectangular sector rig at inlet temperature and pressure conditions corresponding to takeoff, transonic climb, and supersonic cruise flight conditions. Both design concepts used piloted flameholders to stabilize combustion of lean, premixed fuel/air mixtures. The concepts differed in the flameholder type used. High combustion efficiency (97%) and low levels of emissions (1.19 g/kg fuel) were achieved. The detailed measurements suggested the direction that future development efforts should take to obtain further reductions in emission levels and associated improvements in combustion efficiency over an increased range of temperature rise conditions.

  2. Cruise Speed Sensitivity Study for Transonic Truss Braced Wing

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.

    2017-01-01

    NASA's investment and research in aviation has led to new technologies and concepts that make aircraft more efficient and environmentally friendly. One aircraft design operational concept is the reduction of cruise speed to reduce fuel burned during a mission. Although this is not a new idea, it was used by all of the contractors involved in a 2008 NASA sponsored study that solicited concept and technology ideas to reduce environmental impacts for future subsonic passenger transports. NASA is currently improving and building new analysis capabilities to analyze advanced concepts. To test some of these new capabilities, a transonic truss braced wing configuration was used as a test case. This paper examines the effects due to changes in the design cruise speed and other tradeoffs in the design space. The analysis was baselined to the Boeing SUGAR High truss braced wing concept. An optimization was run at five different design cruise Mach numbers. These designs are compared to provide an initial assessment space and the parameters that should be considered when selecting a design cruise speed. A discussion of the design drivers is also included. The results show that the wing weight in the current analysis has more influence on the takeoff gross weight than expected. This effect caused lower than expected wing sweep angle values for higher cruise speed designs.

  3. The US Cruise Ship Industry.

    ERIC Educational Resources Information Center

    Miller, Willis H.

    1985-01-01

    The cruise ship industry relates directly to many features of the natural and cultural environments. The U.S. cruise ship industry is analyzed. Discusses the size of the industry, precruise passenger liners, current cruise ships, cruise regions and routes, ports of call, major ports, passengers, and future prospects. (RM)

  4. Development of longitudinal handling qualities criteria for large advanced supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Sudderth, R. W.; Bohn, J. G.; Caniff, M. A.; Bennett, G. R.

    1975-01-01

    Longitudinal handling qualities criteria in terms of airplane response characteristics were developed. The criteria cover high speed cruise maneuvering, landing approach, and stall recovery. Data substantiating the study results are reported.

  5. Ground-based and in-flight simulator studies of low-speed handling characteristics of two supersonic cruise transport concepts

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Nguyen, L. T.; Deal, P. L.; Neubauer, M. J.; Smith, P. M.; Gregory, F. D.

    1978-01-01

    Conventional and powered lift concepts for supersonic approach and landing tasks are considered. Results indicated that the transport concepts had unacceptable low-speed handling qualities with no augmentation, and that in order to achieve satisfactory handling qualities, considerable augmentation was required. The available roll-control power was acceptable for the powered-lift concept.

  6. Advanced Turboprop Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1979-08-21

    NASA Lewis Research Center researcher, John S. Sarafini, uses a laser doppler velocimeter to analyze a Hamilton Standard SR-2 turboprop design in the 8- by 6-Foot foot Supersonic Wind Tunnel. Lewis researchers were analyzing a series of eight-bladed propellers in their wind tunnels to determine their operating characteristics at speeds up to Mach 0.8. The program, which became the Advanced Turboprop (ATP), was part of a NASA-wide Aircraft Energy Efficiency Program undertaken to reduce aircraft fuel costs by 50 percent. The ATP concept was different from the turboprops in use in the 1950s. The modern versions had at least eight blades and were swept back for better performance. Bell Laboratories developed the laser doppler velocimeter technology in the 1960s to measure velocity of transparent fluid flows or vibration motion on reflective surfaces. Lewis researchers modified the device to measure the flow field of turboprop configurations in the transonic speed region. The modifications were necessary to overcome the turboprop’s vibration and noise levels. The laser beam was split into two beams which were crossed at a specific point. This permits researchers to measure two velocity components simultaneously. This data measures speeds both ahead and behind the propeller blades. Researchers could use this information as they sought to advance flow fields and to verify computer modeling codes.

  7. Supersonic aerodynamic characteristics of conformal carriage monoplanar circular missile configurations with low-profile quadriform tail fins

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel tests were conducted on monoplanar circular missile configurations with low-profile quadriform tail fins to provide an aerodynamic data base to study and evaluate air-launched missile candidates for efficient conformal carriage on supersonic-cruise-type aircraft. The tests were conducted at Mach numbers from 1.70 to 2.86 for a constant Reynolds number per foot of 2,000,000. Selected test results are presented to show the effects of tail-fin dihedral angle, wing longitudinal and vertical location, and nose-body strakes on the static longitudinal and lateral-directional aerodynamic stability and control characteristics.

  8. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1995-01-01

    Low-disturbance or 'quiet' wind tunnels are now considered an essential part of meaningful boundary layer transition research. Advances in Supersonic Laminar Flow Control (SLFC) technology for swept wings depends on a better understanding of the receptivity of the transition phenomena to attachment-line contamination and cross-flows. This need has provided the impetus for building the Laminar Flow Supersonic Wind Tunnel (LFSWT) at NASA-Ames, as part of the NASA High Speed Research Program (HSRP). The LFSWT was designed to provide NASA with an unequaled capability for transition research at low supersonic Mach numbers (<2.5). The following are the objectives in support of the new Fluid Mechanic Laboratory (FML) quiet supersonic wind tunnel: (I) Develop a unique injector drive system using the existing FML indraft compressor; (2) Develop an FML instrumentation capability for quiet supersonic wind tunnel evaluation and transition studies at NASA-Ames; (3) Determine the State of the Art in quiet supersonic wind tunnel design; (4) Build and commission the LFSWT; (5) Make detailed flow quality measurements in the LFSWT; (6) Perform tests of swept wing models in the LFSWT in support of the NASA HSR program; and (7) Provide documentation of research progress.

  9. Performance potential of an advanced technology Mach 3 turbojet engine installed on a conceptual high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Morris, Shelby J., Jr.; Geiselhart, Karl A.; Coen, Peter G.

    1989-01-01

    The performance of an advanced technology conceptual turbojet optimized for a high-speed civil aircraft is presented. This information represents an estimate of performance of a Mach 3 Brayton (gas turbine) cycle engine optimized for minimum fuel burned at supersonic cruise. This conceptual engine had no noise or environmental constraints imposed upon it. The purpose of this data is to define an upper boundary on the propulsion performance for a conceptual commercial Mach 3 transport design. A comparison is presented demonstrating the impact of the technology proposed for this conceptual engine on the weight and other characteristics of a proposed high-speed civil transport. This comparison indicates that the advanced technology turbojet described could reduce the gross weight of a hypothetical Mach 3 high-speed civil transport design from about 714,000 pounds to about 545,000 pounds. The aircraft with the baseline engine and the aircraft with the advanced technology engine are described.

  10. The aerodynamics of supersonic parachutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, C.W.

    1987-06-01

    A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlationsmore » of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.« less

  11. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  12. Variable-cycle engines for supersonic cruising aircraft

    NASA Technical Reports Server (NTRS)

    Willis, E. A.; Welliver, A. D.

    1976-01-01

    The paper reviews the evolution and current status of selected recent variable-cycle engine (VCE) studies and describes how the results are influenced by airplane requirements. The engine/airplane studies are intended to identify promising VCE concepts, simplify their designs and identify the potential benefits in terms of aircraft performance. This includes range, noise, emissions, and the time and effort it may require to ensure technical readiness of sufficient depth to satisfy reasonable economic, performance, and environmental constraints. A brief overview of closely-related, on-going technology programs in acoustics and exhaust emissions is presented. It is shown that realistic technology advancements in critical areas combined with well matched aircraft and selected VCE concepts can lead to significantly improved economic and environmental performance relative to first-generation SST predictions.

  13. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application, phase 1

    NASA Technical Reports Server (NTRS)

    Kerr, J. R.; Haskins, J. F.

    1980-01-01

    Implementation of metal and resin matrix composites into supersonic vehicle usage is contingent upon accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive service data, laboratory replication of the flight service will provide the most rapid method of documenting the airworthiness of advanced composite systems. A program in progress to determine the time temperature stress capabilities of several high temperature composite materials includes thermal aging, environmental aging, fatigue, creep, fracture, and tensile tests as well as real time flight simulation exposure. The program has two parts. The first includes all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continues these tests up to 50,000 cumulative hours. Results are presented of the 10,000 hour phase, which has now been completed.

  14. RTJ-303: Variable geometry, oblique wing supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Antaran, Albert; Belete, Hailu; Dryzmkowski, Mark; Higgins, James; Klenk, Alan; Rienecker, Lisa

    1992-01-01

    This document is a preliminary design of a High Speed Civil Transport (HSCT) named the RTJ-303. It is a 300 passenger, Mach 1.6 transport with a range of 5000 nautical miles. It features four mixed-flow turbofan engines, variable geometry oblique wing, with conventional tail-aft control surfaces. The preliminary cost analysis for a production of 300 aircraft shows that flyaway cost would be 183 million dollars (1992) per aircraft. The aircraft uses standard jet fuel and requires no special materials to handle aerodynamic heating in flight because the stagnation temperatures are approximately 130 degrees Fahrenheit in the supersonic cruise condition. It should be stressed that this aircraft could be built with today's technology and does not rely on vague and uncertain assumptions of technology advances. Included in this report are sections discussing the details of the preliminary design sequence including the mission to be performed, operational and performance constraints, the aircraft configuration and the tradeoffs of the final choice, wing design, a detailed fuselage design, empennage design, sizing of tail geometry, and selection of control surfaces, a discussion on propulsion system/inlet choice and their position on the aircraft, landing gear design including a look at tire selection, tip-over criterion, pavement loading, and retraction kinematics, structures design including load determination, and materials selection, aircraft performance, a look at stability and handling qualities, systems layout including location of key components, operations requirements maintenance characteristics, a preliminary cost analysis, and conclusions made regarding the design, and recommendations for further study.

  15. Investigations for Supersonic Transports at Transonic and Supersonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. Melissa B.; Owens, Lewis R.; Wahls, Richard A.

    2007-01-01

    Several computational studies were conducted as part of NASA s High Speed Research Program. Results of turbulence model comparisons from two studies on supersonic transport configurations performed during the NASA High-Speed Research program are given. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Results are presented for both transonic conditions at Mach 0.90 and supersonic conditions at Mach 2.48. A feature of these two studies was the availability of higher Reynolds number wind tunnel data with which to compare the computational results. The transonic wind tunnel data was obtained in the National Transonic Facility at NASA Langley, and the supersonic data was obtained in the Boeing Polysonic Wind Tunnel. The computational data was acquired using a state of the art Navier-Stokes flow solver with a wide range of turbulence models implemented. The results show that the computed forces compare reasonably well with the experimental data, with the Baldwin-Lomax with Degani-Schiff modifications and the Baldwin-Barth models showing the best agreement for the transonic conditions and the Spalart-Allmaras model showing the best agreement for the supersonic conditions. The transonic results were more sensitive to the choice of turbulence model than were the supersonic results.

  16. Travelers' Health: Cruise Ship Travel

    MedlinePlus

    ... Motion Sickness ). PRECAUTIONS FOR CRUISE SHIP TRAVELERS Pretravel Evaluate the type and length of the planned cruise ... Peake DE, Gray CL, Ludwig MR, Hill CD. Descriptive epidemiology of injury and illness among cruise ship ...

  17. Unique research challenges for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.; Morris, E. K., Jr.

    1988-01-01

    Market growth and technological advances are expected to lead to a generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research were identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.

  18. Unique research challenges for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.; Morris, Charles E. K., Jr.

    1987-01-01

    Market growth and technological advances are expected to lead to a generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research were identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.

  19. Advanced missile technology. A review of technology improvement areas for cruise missiles. [including missile design, missile configurations, and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Cronvich, L. L.; Liepman, H. P.

    1979-01-01

    Technology assessments in the areas of aerodynamics, propulsion, and structures and materials for cruise missile systems are discussed. The cruise missiles considered cover the full speed, altitude, and target range. The penetrativity, range, and maneuverability of the cruise missiles are examined and evaluated for performance improvements.

  20. Low-speed static and dynamic force tests of a generic supersonic cruise fighter configuration

    NASA Technical Reports Server (NTRS)

    Hahne, David E.

    1989-01-01

    Static and dynamic force tests of a generic fighter configuration designed for sustained supersonic flight were conducted in the Langley 30- by 60-foot tunnel. The baseline configuration had a 65 deg arrow wing, twin wing mounted vertical tails and a canard. Results showed that control was available up to C sub L,max (maximum lift coefficient) from aerodynamic controls about all axes but control in the pitch and yaw axes decreased rapidly in the post-stall angle-of-attack region. The baseline configuration showed stable lateral-directional characteristics at low angles of attack but directional stability occurred near alpha = 25 deg as the wing shielded the vertical tails. The configuration showed positive effective dihedral throughout the test angle-of-attack range. Forced oscillation tests indicated that the baseline configuration had stable damping characteristics about the lateral-directional axes.

  1. Turbulence Model Comparisons for Supersonic Transports at Transonic and Supersonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.

    2003-01-01

    Results of turbulence model comparisons from two studies on supersonic transport configurations performed during the NASA High-speed Research program are given. Results are presented for both transonic conditions at Mach 0.90 and supersonic conditions at Mach 2.48. A feature of these two studies was the availability of higher Reynolds number wind tunnel data with which to compare the computational results. The transonic wind tunnel data was obtained in the National Transonic Facility at NASA Langley, and the supersonic data was obtained in the Boeing Polysonic Wind Tunnel. The computational data was acquired using a state of the art Navier-Stokes flow solver with a wide range of turbulence models implemented. The results show that the computed forces compare reasonably well with the experimental data, with the Baldwin- Lomax with Degani-Schiff modifications and the Baldwin-Barth models showing the best agreement for the transonic conditions and the Spalart-Allmaras model showing the best agreement for the supersonic conditions. The transonic results were more sensitive to the choice of turbulence model than were the supersonic results.

  2. Velocity field measurements on high-frequency, supersonic microactuators

    NASA Astrophysics Data System (ADS)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  3. Supersonic laminar flow control research

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1994-01-01

    The objective of the research is to understand supersonic laminar flow stability, transition, and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of supersonic laminar flow with distributed heating and cooling on active control will be studied. The primary tasks of the research applying to the NASA/Ames Proof of Concept (POC) Supersonic Wind Tunnel and Laminar Flow Supersonic Wind Tunnel (LFSWT) nozzle design with laminar flow control are as follows: (1) predictions of supersonic laminar boundary layer stability and transition, (2) effects of wall heating and cooling for supersonic laminar flow control, and (3) performance evaluation of POC and LFSWT nozzles design with wall heating and cooling effects applying at different locations and various length.

  4. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    NASA Technical Reports Server (NTRS)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the

  5. A comparison of arrow, trapezoidal and M wing concepts using a Mach 2 supersonic cruise transport mission

    NASA Technical Reports Server (NTRS)

    Martin, Glenn L.; Tice, David C.; Marcum, Don C., Jr.; Seidel, Jonathan A.

    1991-01-01

    The present analytic study of the potential performance of SST configurations radically differing from arrow-winged designs in lifting surface planform geometry gives attention to trapezoidal-wing and M-wing configurations; the trapezoidal wing is used as the baseline in the performance comparisons. The design mission was all-supersonic (Mach 2), carrying 248 passengers over a 5500 nautical-mile range. Design constraints encompassed approach speed, TO&L field length, and engine-out second-segment climb and missed-approach performance. Techniques for improving these configurations are discussed.

  6. Jig-Shape Optimization of a Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2018-01-01

    A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least-squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on an in-house object-oriented optimization tool. During the numerical optimization procedure, a design jig-shape is determined by the baseline jig-shape and basis functions. A total of 12 symmetric mode shapes of the cruise-weight configuration, rigid pitch shape, rigid left and right stabilator rotation shapes, and a residual shape are selected as sixteen basis functions. After three optimization runs, the trim shape error distribution is improved, and the maximum trim shape error of 0.9844 inches of the starting configuration becomes 0.00367 inch by the end of the third optimization run.

  7. Design and Analysis Tool for External-Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2012-01-01

    A computational tool named SUPIN has been developed to design and analyze external-compression supersonic inlets for aircraft at cruise speeds from Mach 1.6 to 2.0. The inlet types available include the axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced Busemann inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flowfield is divided into parts to provide a framework for the geometry and aerodynamic modeling and the parts are defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick analysis. SUPIN provides inlet geometry in the form of coordinates and surface grids useable by grid generation methods for higher-fidelity computational fluid dynamics (CFD) analysis. SUPIN is demonstrated through a series of design studies and CFD analyses were performed to verify some of the analysis results.

  8. A Computational/Experimental Study of Two Optimized Supersonic Transport Designs and the Reference H Baseline

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Baker, Timothy J.; Hicks, Raymond M.; Reuther, James J.

    1999-01-01

    Two supersonic transport configurations designed by use of non-linear aerodynamic optimization methods are compared with a linearly designed baseline configuration. One optimized configuration, designated Ames 7-04, was designed at NASA Ames Research Center using an Euler flow solver, and the other, designated Boeing W27, was designed at Boeing using a full-potential method. The two optimized configurations and the baseline were tested in the NASA Langley Unitary Plan Supersonic Wind Tunnel to evaluate the non-linear design optimization methodologies. In addition, the experimental results are compared with computational predictions for each of the three configurations from the Enter flow solver, AIRPLANE. The computational and experimental results both indicate moderate to substantial performance gains for the optimized configurations over the baseline configuration. The computed performance changes with and without diverters and nacelles were in excellent agreement with experiment for all three models. Comparisons of the computational and experimental cruise drag increments for the optimized configurations relative to the baseline show excellent agreement for the model designed by the Euler method, but poorer comparisons were found for the configuration designed by the full-potential code.

  9. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  10. The impact of materials technology and operational constraints on the economics of cruise speed selection

    NASA Technical Reports Server (NTRS)

    Clauss, J. S., Jr.; Bruckman, F. A.; Horning, D. L.; Johnston, R. H.; Werner, J. V.

    1981-01-01

    Six material concepts at Mach 2.0 and three material concepts at Mach 2.55 were proposed. The resulting evaluations, based on projected development, production, and operating costs, indicate that aircraft designs with advanced composites as the primary material ingredient have the lowest fare premiums at both Mach 2.0 and 2.55. Designs having advanced metallics as the primary material ingredient are not economical. Advanced titanium, employing advanced manufacturing methods such as SFF/DB, requires a fare premium of about 30 percent at both Mach 2.0 and 2.55. Advanced aluminum, usable only at the lower Mach number, requires a fare premium of 20 percent. Cruise speeds in the Mach 2.0-2.3 regime are preferred because of the better economics and because of the availability of two material concepts to reduce program risk - advanced composites and advanced aluminums. This cruise speed regime also avoids the increase in risk associated with the more complex inlets and airframe systems and higher temperature composite matrices required at the higher Mach numbers typified by Mach 2.55.

  11. Characteristics of Control Laws Tested on the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Moulin, Boris; Ritz, Erich; Chen, P. C.; Roughen, Kevin M.; Perry, Boyd

    2012-01-01

    The Semi-Span Supersonic Transport (S4T) is an aeroelastically scaled wind-tunnel model built to test active controls concepts for large flexible supersonic aircraft in the transonic flight regime. It is one of several models constructed in the 1990's as part of the High Speed Research (HSR) Program. Control laws were developed for the S4T by M4 Engineering, Inc. and by Zona Technologies, Inc. under NASA Research Announcement (NRA) contracts. The model was tested in the NASA-Langley Transonic Dynamics Tunnel (TDT) four times from 2007 to 2010. The first two tests were primarily for plant identification. The third entry was used for testing control laws for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression. Whereas the third entry only tested FS subcritically, the fourth test demonstrated closed-loop operation above the open-loop flutter boundary. The results of the third entry are reported elsewhere. This paper reports on flutter suppression results from the fourth wind-tunnel test. Flutter suppression is seen as a way to provide stability margins while flying at transonic flight conditions without penalizing the primary supersonic cruise design condition. An account is given for how Controller Performance Evaluation (CPE) singular value plots were interpreted with regard to progressing open- or closed-loop to higher dynamic pressures during testing.

  12. Coannular plug nozzle noise reduction and impact of exhaust system designs

    NASA Technical Reports Server (NTRS)

    Lee, R.

    1976-01-01

    Reducing the noise generated by high velocity jets has confronted engine designers and acoustics workers alike for the past fifteen years. Some of the jet noise suppressor configurations that are investigated are shown. With the exception of the early CJ-805 daisy suppressor nozzle which found successful application on the Convair 990 airplane, the others were developmental hardware at different stages of the effort in the past eight years - all aiming at potential supersonic cruise aircraft applications. Some significant progress was made as the result of work supported by NASA and FAA in the past two to three years. This work pertains to the concept demonstration and scale model testing of coannular plug nozzles with inverted velocity profile, and to the preliminary study of its application to advanced variable cycle engines (VCE) appropriate for supersonic cruise aircraft.

  13. A supersonic fan equipped variable cycle engine for a Mach 2.7 supersonic transport

    NASA Technical Reports Server (NTRS)

    Tavares, T. S.

    1985-01-01

    The concept of a variable cycle turbofan engine with an axially supersonic fan stage as powerplant for a Mach 2.7 supersonic transport was evaluated. Quantitative cycle analysis was used to assess the effects of the fan inlet and blading efficiencies on engine performance. Thrust levels predicted by cycle analysis are shown to match the thrust requirements of a representative aircraft. Fan inlet geometry is discussed and it is shown that a fixed geometry conical spike will provide sufficient airflow throughout the operating regime. The supersonic fan considered consists of a single stage comprising a rotor and stator. The concept is similar in principle to a supersonic compressor, but differs by having a stator which removes swirl from the flow without producing a net rise in static pressure. Operating conditions peculiar to the axially supersonic fan are discussed. Geometry of rotor and stator cascades are presented which utilize a supersonic vortex flow distribution. Results of a 2-D CFD flow analysis of these cascades are presented. A simple estimate of passage losses was made using empirical methods.

  14. Expanding the Natural Laminar Flow Boundary for Supersonic Transports

    NASA Technical Reports Server (NTRS)

    Lynde, Michelle N.; Campbell, Richard L.

    2016-01-01

    A computational design and analysis methodology is being developed to design a vehicle that can support significant regions of natural laminar flow (NLF) at supersonic flight conditions. The methodology is built in the CDISC design module to be used in this paper with the flow solvers Cart3D and USM3D, and the transition prediction modules BLSTA3D and LASTRAC. The NLF design technique prescribes a target pressure distribution for an existing geometry based on relationships between modal instability wave growth and pressure gradients. The modal instability wave growths (both on- and off-axes crossflow and Tollmien-Schlichting) are balanced to produce a pressure distribution that will have a theoretical maximum NLF region for a given streamwise wing station. An example application is presented showing the methodology on a generic supersonic transport wingbody configuration. The configuration has been successfully redesigned to support significant regions of NLF (approximately 40% of the wing upper surface by surface area). Computational analysis predicts NLF with transition Reynolds numbers (ReT) as high as 36 million with 72 degrees of leading-edge sweep (?LE), significantly expanding the current boundary of ReT - ?LE combinations for NLF. This NLF geometry provides a total drag savings of 4.3 counts compared to the baseline wing-body configuration (approximately 5% of total drag). Off-design evaluations at near-cruise and low-speed, high-lift conditions are discussed, as well as attachment line contamination/transition concerns. This computational NLF design effort is a part of an ongoing cooperative agreement between NASA and JAXA researchers.

  15. Wind-Tunnel Results of Advanced High-Speed Propellers at Takeoff, Climb, and Landing Mach Numbers

    NASA Technical Reports Server (NTRS)

    Stefko, George L.; Jeracki, Robert J.

    1985-01-01

    Low-speed wind-tunnel performance tests of two advanced propellers have been completed at the NASA Lewis Research Center as part of the NASA Advanced Turboprop Program. The 62.2 cm (24.5 in.) diameter adjustable-pitch models were tested at Mach numbers typical of takeoff, initial climbout, and landing speeds (i.e., from Mach 0.10 to 0.34) at zero angle of attack in the NASA Lewis 10 by 10 Foot Supersonic Wind Tunnel. Both models had eight blades and a cruise-design-point operating condition of Mach 0.80, and 10.668 km (35,000 ft) I.S.A. altitude, a 243.8 m/s (800 ft/sec) tip speed, and a high power loading of 301 kW/sq m (37.5 shp/sq ft). Each model had its own integrally designed area-ruled spinner, but used the same specially contoured nacelle. These features reduced blade-section Mach numbers and relieved blade-root choking at the cruise condition. No adverse or unusual low-speed operating conditions were found during the test with either the straight blade SR-2 or the 45 deg swept SR-3 propeller. Typical efficiencies of the straight and 45 deg swept propellers were 50.2 and 54.9 percent, respectively, at a takeoff condition of Mach 0.20 and 53.7 and 59.1 percent, respectively, at a climb condition of Mach 0.34.

  16. F-15B ACTIVE - First supersonic yaw vectoring flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On Wednesday, April 24, 1996, the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) aircraft achieved its first supersonic yaw vectoring flight at Dryden Flight Research Center, Edwards, California. ACTIVE is a joint NASA, U.S. Air Force, McDonnell Douglas Aerospace (MDA) and Pratt & Whitney (P&W) program. The team will assess performance and technology benefits during flight test operations. Current plans call for approximately 60 flights totaling 100 hours. 'Reaching this milestone is very rewarding. We hope to set some more records before we're through,' stated Roger W. Bursey, P&W's pitch-yaw balance beam nozzle (PYBBN) program manager. A pair of P&W PYBBNs vectored (horizontally side-to-side, pitch is up and down) the thrust for the MDA manufactured F-15 research aircraft. Power to reach supersonic speeds was provided by two high-performance F100-PW-229 engines that were modified with the multi-directional thrust vectoring nozzles. The new concept should lead to significant increases in performance of both civil and military aircraft flying at subsonic and supersonic speeds.

  17. Computer aided design and manufacturing of composite propfan blades for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Thorp, Scott A.; Downey, Kevin M.

    1992-01-01

    One of the propulsion concepts being investigated for future cruise missiles is advanced unducted propfans. To support the evaluation of this technology applied to the cruise missile, a joint DOD and NASA test project was conducted to design and then test the characteristics of the propfans on a 0.55-scale, cruise missile model in a NASA wind tunnel. The configuration selected for study is a counterrotating rearward swept propfan. The forward blade row, having six blades, rotates in a counterclockwise direction, and the aft blade row, having six blades, rotates in a clockwise direction, as viewed from aft of the test model. Figures show the overall cruise missile and propfan blade configurations. The objective of this test was to evaluate propfan performance and suitability as a viable propulsion option for next generation of cruise missiles. This paper details the concurrent computer aided design, engineering, and manufacturing of the carbon fiber/epoxy propfan blades as the NASA Lewis Research Center.

  18. Measured far-field flight noise of a counterrotation turboprop at cruise conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.; Dittmar, James H.

    1989-01-01

    Modern high speed propeller (advanced turboprop) aircraft are expected to operate on 50 to 60 percent less fuel than the 1980 vintage turbofan fleet while at the same time matching the flight speed and performance of those aircraft. Counterrotation turboprop engines offer additional fuel savings by means of upstream propeller swirl recovery. This paper presents acoustic sideline results for a full-scale counterrotation turboprop engine at cruise conditions. The engine was installed on a Boeing 727 aircraft in place of the right-side turbofan engine. Acoustic data were taken from an instrumented Learjet chase plane. Sideline acoustic results are presented for 0.50 and 0.72 Mach cruise conditions. A scale model of the engine propeller was tested in a wind tunnel at 0.72 Mach cruise conditions. The model data were adjusted to flight acquisition conditions and were in general agreement with the flight results.

  19. Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.

    2010-01-01

    Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.

  20. Reynolds Number Effects on Leading Edge Radius Variations of a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.

    2001-01-01

    A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.

  1. The design of two sonic boom wind tunnel models from conceptual aircraft which cruise at Mach numbers of 2.0 and 3.0

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Needleman, Kathy E.

    1990-01-01

    A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.

  2. 43 CFR 5422.1 - Cruise sales.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Cruise sales. 5422.1 Section 5422.1 Public... OF THE INTERIOR FOREST MANAGEMENT (5000) PREPARATION FOR SALE Volume Measurements § 5422.1 Cruise sales. As the general practice, the Bureau will sell timber on a tree cruise basis. ...

  3. 43 CFR 5422.1 - Cruise sales.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Cruise sales. 5422.1 Section 5422.1 Public... OF THE INTERIOR FOREST MANAGEMENT (5000) PREPARATION FOR SALE Volume Measurements § 5422.1 Cruise sales. As the general practice, the Bureau will sell timber on a tree cruise basis. ...

  4. 43 CFR 5422.1 - Cruise sales.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Cruise sales. 5422.1 Section 5422.1 Public... OF THE INTERIOR FOREST MANAGEMENT (5000) PREPARATION FOR SALE Volume Measurements § 5422.1 Cruise sales. As the general practice, the Bureau will sell timber on a tree cruise basis. ...

  5. 43 CFR 5422.1 - Cruise sales.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Cruise sales. 5422.1 Section 5422.1 Public... OF THE INTERIOR FOREST MANAGEMENT (5000) PREPARATION FOR SALE Volume Measurements § 5422.1 Cruise sales. As the general practice, the Bureau will sell timber on a tree cruise basis. ...

  6. Cruise Missile Engines

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Williams International's F107 fanjet engine is used in two types of cruise missiles, Navy-sponsored Tomahawk and the Air Force AGM-86B Air Launched Cruise Missile (ALCM). Engine produces about 600 pounds thrust, is one foot in diameter and weighs only 141 pounds. Design was aided by use of a COSMIC program in calculating airflows in engine's internal ducting, resulting in a more efficient engine with increased thrust and reduced fuel consumption.

  7. Supersonic reacting internal flowfields

    NASA Astrophysics Data System (ADS)

    Drummond, J. P.

    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flowfields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.

  8. Turbofan Volume Dynamics Model for Investigations of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.

    2010-01-01

    A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model

  9. Progress with variable cycle engines

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.

    1980-01-01

    The evaluation of components of an advanced propulsion system for a future supersonic cruise vehicle is discussed. These components, a high performance duct burner for thrust augmentation and a low jet noise coannular exhaust nozzle, are part of the variable stream control engine. An experimental test program involving both isolated component and complete engine tests was conducted for the high performance, low emissions duct burner with excellent results. Nozzle model tests were completed which substantiate the inherent jet noise benefit associated with the unique velocity profile possible of a coannular exhaust nozzle system on a variable stream control engine. Additional nozzle model performance tests have established high thrust efficiency levels at takeoff and supersonic cruise for this nozzle system. Large scale testing of these two critical components is conducted using an F100 engine as the testbed for simulating the variable stream control engine.

  10. Developments in steady and unsteady aerodynamics for use in aeroelastic analysis and design. [for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Bland, S. R.

    1976-01-01

    A review is given of seven research projects which are aimed at improving the generality, accuracy, and computational efficiency of steady and unsteady aerodynamic theory for use in aeroelastic analysis and design. These projects indicate three major thrusts of current research efforts: (1) more realistic representation of steady and unsteady subsonic and supersonic loads on aircraft configurations of general shape with emphasis on structural-design applications, (2) unsteady aerodynamics for application in active-controls analyses, and (3) unsteady aerodynamics for the frequently critical transonic speed range. The review of each project includes theoretical background, description of capabilities, results of application, current status, and plans for further development and use.

  11. Norovirus Transmission on Cruise Ship

    PubMed Central

    Isakbaeva, Elmira T.; Beard, R. Suzanne; Bulens, Sandra N.; Mullins, James; Monroe, Stephan S.; Bresee, Joseph; Sassano, Patricia; Cramer, Elaine H.; Glass, Roger I.

    2005-01-01

    We describe an investigation of a norovirus gastroenteritis outbreak aboard a cruise ship affecting 6 consecutive cruises and the use of sequence analysis to determine modes of virus transmission. Noroviruses (NoV), are the most common cause of infectious acute gastroenteritis and are transmitted feco-orally through food and water, directly from person to person and by environmental contamination (1). These viruses are often responsible for protracted outbreaks in closed settings, such as cruise ships, nursing homes, and hospitals (2,3). PMID:15705344

  12. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    NASA Technical Reports Server (NTRS)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  13. Design and Testing of CO 2 Compression Using Supersonic Shock Wave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, Aaron

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustionmore » technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.« less

  14. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  15. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  16. Wake-Vortex Hazards During Cruise

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  17. Inlet flow field investigation. Part 1: Transonic flow field survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Salemann, V.; Sussman, M. B.

    1984-01-01

    A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.

  18. Reference aircraft for ICAO Working Group E

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The results of an advanced supersonic transport aircraft/engine integration study to be used as a detail preliminary design case to assist in the assessment of noise standards applicable to future supersonic transports are summarized. The design considered reflects the application of the advanced technologies which are projected to be available for program initiation in the 1980-1985 time period. Suppression characteristics included were obtained in simulated forward flight in the Rolls-Royce spin rig using a small scale model. The engine size selected produces a noise no greater than 108 EPNdB at any of the three Far Part 36 (Stage 2) defined measuring points and is sized slightly larger than the optimum cruise size to meet this noise constraint condition.

  19. Cruise Ship Plume Tracking Survey Report

    NASA Astrophysics Data System (ADS)

    2002-09-01

    The U. S. Environmental Protection Agency (EPA) is developing a Cruise Ship Discharge Assessment Report in response to a petition the agency received in March 2000. The petition requested that EPA assess and where necessary control discharges from cruise ships. Comments received during public hearings, in 2000, resulted in the EPA agreeing to conduct a survey to assess the discharge plumes resulting from cruise ships, operating in ocean waters off the Florida coast and to compare the results to the Alaska dispersion models. This survey report describes the daily activities of August 2001 Cruise Ship Plume Tracking Survey, and provides a synopsis of the observations from the survey. It also provides data that can be used to assess dispersion of cruise ship wastewater discharges, while in transit. A description of the survey methods is provided in Section 2. Survey results are presented in Section 3. Findings and conclusions are discussed in Section 4.

  20. A two-dimensional numerical simulation of a supersonic, chemically reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    1988-01-01

    Research has been undertaken to achieve an improved understanding of physical phenomena present when a supersonic flow undergoes chemical reaction. A detailed understanding of supersonic reacting flows is necessary to successfully develop advanced propulsion systems now planned for use late in this century and beyond. In order to explore such flows, a study was begun to create appropriate physical models for describing supersonic combustion, and to develop accurate and efficient numerical techniques for solving the governing equations that result from these models. From this work, two computer programs were written to study reacting flows. Both programs were constructed to consider the multicomponent diffusion and convection of important chemical species, the finite rate reaction of these species, and the resulting interaction of the fluid mechanics and the chemistry. The first program employed a finite difference scheme for integrating the governing equations, whereas the second used a hybrid Chebyshev pseudospectral technique for improved accuracy.

  1. Economic benefits of supersonic overland operation

    NASA Technical Reports Server (NTRS)

    Metwally, Munir

    1992-01-01

    Environmental concerns are likely to impose some restrictions on the next generation of supersonic commercial transport. There is a global concern over the effects of engine emissions on the ozone layer which protects life on Earth from ultraviolet radiation. There is also some concern over community noise. The High Speed Civil Transport (HSCT) must meet at least the current subsonic noise certification standards to be compatible with the future subsonic fleet. Concerns over sonic boom represent another environmental and marketing challenge to the HSCT program. The most attractive feature of the supersonic transport is speed, which offers the traveling public significant time-savings on long range routes. The sonic boom issue represents a major environmental and economic challenge as well. Supersonic operation overland produces the most desirable economic results. However, unacceptable overland sonic boom raise levels may force HSCT to use subsonic speeds overland. These environmental and economic challenges are likely to impose some restrictions on supersonic operation, thus introducing major changes to existing route structures and future supersonic network composition. The current subsonic route structure may have to be altered for supersonic transports to avoid sensitive areas in the stratosphere or to minimize overland flight tracks. It is important to examine the alternative route structure and the impact of these restrictions on the economic viability of the overall supersonic operation. Future market potential for HSCT fleets must be large enough to enable engine and airframe manufacturers to build the plane at a cost that provides them with an attractive return on investment and to sell it at a price that allows the airlines to operate with a reasonable margin of profit. Subsonic overland operation of a supersonic aircraft hinders its economic viability. Ways to increase the market potential of supersonic operation are described.

  2. The Supersonic Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1950-01-01

    An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.

  3. Cruise performance and range prediction reconsidered

    NASA Astrophysics Data System (ADS)

    Torenbeek, Egbert

    1997-05-01

    A unified analytical treatment of the cruise performance of subsonic transport aircraft is derived, valid for gas turbine powerplant installations: turboprop, turbojet and turbofan powered aircraft. Different from the classical treatment the present article deals with compressibility effects on the aerodynamic characteristics. Analytical criteria are derived for optimum cruise lift coefficient and Mach number, with and without constraints on the altitude and engine rating. A simple alternative to the Bréguet range equation is presented which applies to several practical cruising flight techniques: flight at constant altitude and Mach number and stepped cruise/climb. A practical non-iterative procedure for computing mission and reserve fuel loads in the preliminary design stage is proposed.

  4. A higher order panel method for linearized supersonic flow

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Epton, M. A.; Johnson, F. T.; Magnus, A. E.; Rubbert, P. E.

    1979-01-01

    The basic integral equations of linearized supersonic theory for an advanced supersonic panel method are derived. Methods using only linear varying source strength over each panel or only quadratic doublet strength over each panel gave good agreement with analytic solutions over cones and zero thickness cambered wings. For three dimensional bodies and wings of general shape, combined source and doublet panels with interior boundary conditions to eliminate the internal perturbations lead to a stable method providing good agreement experiment. A panel system with all edges contiguous resulted from dividing the basic four point non-planar panel into eight triangular subpanels, and the doublet strength was made continuous at all edges by a quadratic distribution over each subpanel. Superinclined panels were developed and tested on s simple nacelle and on an airplane model having engine inlets, with excellent results.

  5. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  6. A corporate supersonic transport

    NASA Technical Reports Server (NTRS)

    Greene, Randall; Seebass, Richard

    1996-01-01

    This talk address the market and technology for a corporate supersonic transport. It describes a candidate configuration. There seems to be a sufficient market for such an aircraft, even if restricted to supersonic operation over water. The candidate configuration's sonic boom overpressure may be small enough to allow overland operation as well.

  7. Simulations of Wakes and Parachute Environments for Supersonic Flight Test Design

    NASA Astrophysics Data System (ADS)

    Muppidi, Suman; O'Farrell, Clara; van Norman, John; Clark, Ian

    2017-11-01

    NASA's ASPIRE (Advanced Supersonic Parachute Inflation Research and Experiments) project is a risk-reduction activity for a future mission, Mars2020. ASPIRE will investigate the supersonic deployment, inflation and aerodynamics of a full-scale disk-gap-band (DGB) parachute in the wake of a slender body at high altitudes over Earth. The leading slender body has about 1/6-th the diameter of the entry capsule that will use this parachute for descent at Mars. ASPIRE flight test design (targeting, safety and recovery) requires models for deployment, inflation and aerodynamic performance of the parachute. However, there is limited flight and experimental data for supersonic DGBs behind slender bodies. This presentation describes the use of CFD in supplementing the available data to construct a parachute aerodynamics model for ASPIRE. Simulations are used to understand the effects of the leading body on the wake, and on the canopy loads, results of which will be presented. The first flight test is scheduled for September 2017. Comparisons of preliminary test data against the pre-test parachute model will be presented.

  8. Cruise Missile Penaid Nonproliferation: Hindering the Spread of Countermeasures Against Cruise Missile Defenses

    DTIC Science & Technology

    2014-01-01

    this report treats cruise missile penaids and UAV penaids, sometimes called “self-protection” (see La Franchi , 2004), interchangeably. 8 Cruise...Penaid Export Controls 41 2. Anti-Jam Equipment MTCR Item 11.A.3.b.3 (Avionics): Current text: “Receiving equipment for Global Navigation Satellite...subsystems beyond those for global navigation satellite systems to all sensor, navigation, and communications systems, and add “including multi-mode

  9. Historical development of worldwide supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1979-01-01

    Aerodynamic problems in the development of supersonic aircraft, their solutions, and innovative design features are presented. Studies of compressibility, introduction of jets, supersonic phenomena, transonic drag and lift, longitudinal and directional stability, dynamic pressure fields, and advent of the supersonic fighter are discussed. The flight research aircraft such as the Bell X-1 and the Douglas-558, the century series models, reconnaissance aircraft, the multimission tactical fighter, and the current generation fighters such as F-16 and F-18 are described. The SCAT program is considered, along with supersonic developments in Great Britain, France, and USSR. It is concluded that the sonic boom still appears to be an inherent problem of supersonic flight that particularly affects overland commercial flight, and efforts continue for increased efficiency for economic and performance gains and increased safety for military and civilian aircraft.

  10. Gastrointestinal illness on passenger cruise ships, 1975-1978.

    PubMed Central

    Dannenberg, A L; Yashuk, J C; Feldman, R A

    1982-01-01

    Following investigations in 1972-1973 of outbreaks of enteric disease on cruise ships using American ports, a surveillance system was established which required that 24 hours before arrival in port, each ship report the number of persons with diarrheal illness seen by the ship's physician during the cruise. The reported data were found to be reliable; they established a baseline incidence for diarrhea on cruise ships. A significantly high portion of enteric disease outbreaks occurred on vessels that did not pass routine annual or semiannual sanitation inspections. The cruise ship sanitation program, developed with the cooperation of the cruise ship industry and the Centers for Disease Control, appears to have been successful in reducing the overall rate of cruise ship associated outbreaks of enteric illness. PMID:7065338

  11. Debriefing of the medical team after emergencies on cruise ships.

    PubMed

    Dahl, Eilif

    2017-01-01

    Done to improve safety and patient outcome but not to lay blame, debriefings on cruise ships should preferably be conducted as standard practice in the medical facility immediately after all critical events aboard. The key questions to be asked are: What went well, what could have gone better and what must participants do to improve care? Post-debriefing the ship's doctor might have to deal with team members' mental stress resulting both from the event and from debriefing it. Required by most cruise companies, standardised advanced life support courses teach effective high-performance team dynamics. They provide the multinational medical staff with a clearer understanding of the rescue sequence, which again will reduce the risk of mistakes and simplify post-event debriefings. Their systematic approach to the chain of survival is also helpful for post-event debriefings if something went wrong.

  12. Design and analysis issues of integrated control systems for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Mccarty, Craig A.; Feather, John B.; Dykman, John R.; Page, Mark A.; Hodgkinson, John

    1992-01-01

    A study was conducted to identify, rank, and define development plans for the critical guidance and control design and analysis issues as related to economically viable and environmentally acceptable high-speed civil transport. The issues were identified in a multistep process. First, pertinent literature on supersonic cruise aircraft was reviewed, and experts were consulted to establish the fundamental characteristics and problems inherent to supersonic cruise aircraft. Next, the advanced technologies and strategies being pursued for the high-speed civil transport were considered to determine any additional unique control problems the transport may have. Finally, existing technologies and methods were examined to determine their capabilities for the design and analysis of high-speed civil transport control systems and to identify the shortcomings and issues. Three priority levels - mandatory, highly beneficial, and desirable - were established. Within each of these levels, the issues were further ranked. Technology development plans for each issue were defined. Each plan contains a task breakdown and schedule.

  13. Supersonic coal water slurry fuel atomizer

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  14. Engine design considerations for 2nd generation supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    The environmental and economic goals projected for advanced supersonic transports will require revolutionary improvements in propulsion systems. Variable cycle engine concepts that incorporate unique components and advanced technologies show promise in meeting these goals. Pratt & Whitney Aircraft is conducting conceptual design studies of variable cycle engine concepts under NASA sponsorship. This paper reviews some of the design considerations for these engine concepts. Emphasis is placed on jet noise abatement, reduction of emissions, performance improvements, installation considerations, hot-section characteristics and control system requirements. Two representative variable cycle engine concepts that incorporate these basic design considerations are described.

  15. Aerodynamic Shape Optimization of a Dual-Stream Supersonic Plug Nozzle

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Gray, Justin S.; Park, Michael A.; Nielsen, Eric J.; Carlson, Jan-Renee

    2015-01-01

    Aerodynamic shape optimization was performed on an isolated axisymmetric plug nozzle sized for a supersonic business jet. The dual-stream concept was tailored to attenuate nearfield pressure disturbances without compromising nozzle performance. Adjoint-based anisotropic mesh refinement was applied to resolve nearfield compression and expansion features in the baseline viscous grid. Deformed versions of the adapted grid were used for subsequent adjoint-driven shape optimization. For design, a nonlinear gradient-based optimizer was coupled to the discrete adjoint formulation of the Reynolds-averaged Navier- Stokes equations. All nozzle surfaces were parameterized using 3rd order B-spline interpolants and perturbed axisymmetrically via free-form deformation. Geometry deformations were performed using 20 design variables shared between the outer cowl, shroud and centerbody nozzle surfaces. Interior volume grid deformation during design was accomplished using linear elastic mesh morphing. The nozzle optimization was performed at a design cruise speed of Mach 1.6, assuming core and bypass pressure ratios of 6.19 and 3.24, respectively. Ambient flight conditions at design were commensurate with 45,000-ft standard day atmosphere.

  16. Supersonic throughflow fans for high-speed aircraft

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.; Moore, Royce D.

    1990-01-01

    A brief overview is provided of past supersonic throughflow fan activities; technology needs are discussed; the design is described of a supersonic throughflow fan stage, a facility inlet, and a downstream diffuser; and the results are presented from the analysis codes used in executing the design. Also presented is a unique engine concept intended to permit establishing supersonic throughflow within the fan on the runway and maintaining the supersonic throughflow condition within the fan throughout the flight envelope.

  17. Supersonic reacting internal flow fields

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    1989-01-01

    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flow fields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.

  18. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.

  19. Properties of Supersonic Evershed Downflows

    NASA Astrophysics Data System (ADS)

    Esteban Pozuelo, S.; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.

    2016-12-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.

  20. Supersonic cruise research aircraft structural studies: Methods and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Gross, D.; Kurtze, W.; Newsom, J.; Wrenn, G.; Greene, W.

    1981-01-01

    NASA Langley Research Center SCAR in-house structural studies are reviewed. In methods development, advances include a new system of integrated computer programs called ISSYS, progress in determining aerodynamic loads and aerodynamically induced structural loads (including those due to gusts), flutter optimization for composite and metal airframe configurations using refined and simplified mathematical models, and synthesis of active controls. Results given address several aspects of various SCR configurations. These results include flutter penalties on composite wing, flutter suppression using active controls, roll control effectiveness, wing tip ground clearance, tail size effect on flutter, engine weight and mass distribution influence on flutter, and strength and flutter optimization of new configurations. The ISSYS system of integrated programs performed well in all the applications illustrated by the results, the diversity of which attests to ISSYS' versatility.

  1. Conditions for supersonic bent Marshak waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qiang, E-mail: xuqiangxu@pku.edu.cn; Ren, Xiao-dong; Li, Jing

    Supersonic radiation diffusion approximation is an useful method to study the radiation transportation. Considering the 2-d Marshak theory, and an invariable source temperature, conditions for supersonic radiation diffusion are proved to be coincident with that for radiant flux domination in the early time when √(ε)x{sub f}/L≪1. However, they are even tighter than conditions for radiant flux domination in the late time when √(ε)x{sub f}/L≫1, and can be expressed as M>4(1+ε/3)/3 and τ>1. A large Mach number requires the high temperature, while the large optical depth requires the low temperature. Only when the source temperature is in a proper region themore » supersonic diffusion conditions can be satisfied. Assuming a power-low (in temperature and density) opacity and internal energy, for a given density, the supersonic diffusion regions are given theoretically. The 2-d Marshak theory is proved to be able to bound the supersonic diffusion conditions in both high and low temperature regions, however, the 1-d theory only bounds it in low temperature region. Taking SiO{sub 2} and the Au, for example, these supersonic regions are shown numerically.« less

  2. Studies on nonequilibrium phenomena in supersonic chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Chandrasekhar, Rajnish

    1993-01-01

    This study deals with a systematic investigation of nonequilibrium processes in supersonic combustion. The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic flows with nonequilibrium chemistry and thermodynamics, coupled with radiation, for hydrogen-air systems. The explicit, unsplit MacCormack finite-difference scheme is used to advance the governing equations in time, until convergence is achieved. For a basic understanding of the flow physics, premixed flows undergoing finite rate chemical reactions are investigated. Results obtained for specific conditions indicate that the radiative interactions vary substantially, depending on reactions involving HO2 and NO species, and that this can have a noticeable influence on the flowfield. The second part of this study deals with premixed reacting flows under thermal nonequilibrium conditions. Here, the critical problem is coupling of the vibrational relaxation process with the radiative heat transfer. The specific problem considered is a premixed expanding flow in a supersonic nozzle. Results indicate the presence of nonequilibrium conditions in the expansion region of the nozzle. This results in reduction of the radiative interactions in the flowfield. Next, the present study focuses on investigation of non-premixed flows under chemical nonequilibrium conditions. In this case, the main problem is the coupled turbulence-chemistry interaction. The resulting formulation is validated by comparison with experimental data on reacting supersonic coflowing jets. Results indicate that the effect of heat release is to lower the turbulent shear stress and the mean density. The last part of this study proposes a new theoretical formulation for the coupled turbulence-radiation interactions. Results obtained for the coflowing jets experiment indicate that the effect of turbulence is to enhance the radiative interactions.

  3. Coupled Analysis of an Inlet and Fan for a Quiet Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Conners, Timothy R.; Wayman, Thomas R.

    2009-01-01

    A computational analysis of a Gulfstream isentropic external compression supersonic inlet coupled to a Rolls-Royce fan was completed. The inlet was designed for a small, low sonic boom supersonic vehicle with a design cruise condition of M = 1.6 at 45,000 feet. The inlet design included an annular bypass duct that routed flow subsonically around an engine-mounted gearbox and diverted flow with high shock losses away from the fan tip. Two Reynolds-averaged Navier-Stokes codes were used for the analysis: an axisymmetric code called AVCS for the inlet and a 3-D code called SWIFT for the fan. The codes were coupled at a mixing plane boundary using a separate code for data exchange. The codes were used to determine the performance of the inlet/fan system at the design point and to predict the performance and operability of the system over the flight profile. At the design point the core inlet had a recovery of 96 percent, and the fan operated near its peak efficiency and pressure ratio. A large hub radial distortion generated in the inlet was not eliminated by the fan and could pose a challenge for subsequent booster stages. The system operated stably at all points along the flight profile. Reduced stall margin was seen at low altitude and Mach number where flow separated on the interior lips of the cowl and bypass ducts. The coupled analysis gave consistent solutions at all points on the flight profile that would be difficult or impossible to predict by analysis of isolated components.

  4. Coupled Analysis of an Inlet and Fan for a Quiet Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Conners, Timothy R.; Wayman, Thomas R.

    2010-01-01

    A computational analysis of a Gulfstream isentropic external compression supersonic inlet coupled to a Rolls-Royce fan has been completed. The inlet was designed for a small, low sonic boom supersonic vehicle with a design cruise condition of M = 1.6 at 45,000 ft. The inlet design included an annular bypass duct that routed flow subsonically around an engine-mounted gearbox and diverted flow with high shock losses away from the fan tip. Two Reynolds-averaged Navier-Stokes codes were used for the analysis: an axisymmetric code called AVCS for the inlet and a three dimensional (3-D) code called SWIFT for the fan. The codes were coupled at a mixing plane boundary using a separate code for data exchange. The codes were used to determine the performance of the inlet/fan system at the design point and to predict the performance and operability of the system over the flight profile. At the design point the core inlet had a recovery of 96 percent, and the fan operated near its peak efficiency and pressure ratio. A large hub radial distortion generated in the inlet was not eliminated by the fan and could pose a challenge for subsequent booster stages. The system operated stably at all points along the flight profile. Reduced stall margin was seen at low altitude and Mach number where flow separated on the interior lips of the cowl and bypass ducts. The coupled analysis gave consistent solutions at all points on the flight profile that would be difficult or impossible to predict by analysis of isolated components.

  5. A preliminary study of the performance and characteristics of a supersonic executive aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1977-01-01

    The impact of advanced supersonic technologies on the performance and characteristics of a supersonic executive aircraft was studied in four configurations with different engine locations and wing/body blending and an advanced nonafterburning turbojet or variable cycle engine. An M 2.2 design Douglas scaled arrow-wing was used with Learjet 35 accommodations. All four configurations with turbojet engines meet the performance goals of 5926 km (3200 n.mi.) range, 1981 meters (6500 feet) takeoff field length, and 77 meters per second (150 knots) approach speed. The noise levels of of turbojet configurations studied are excessive. However, a turbojet with mechanical suppressor was not studied. The variable cycle engine configuration is deficient in range by 555 km (300 n.mi) but nearly meets subsonic noise rules (FAR 36 1977 edition), if coannular noise relief is assumed. All configurations are in the 33566 to 36287 kg (74,000 to 80,000 lbm) takeoff gross weight class when incorporating current titanium manufacturing technology.

  6. Multifidelity Analysis and Optimization for Supersonic Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory

    2010-01-01

    Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.

  7. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  8. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines. Previously announced in STAR as N83-34947

  9. Streamline curvature in supersonic shear layers

    NASA Technical Reports Server (NTRS)

    Kibens, V.

    1992-01-01

    Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.

  10. Robust predictive cruise control for commercial vehicles

    NASA Astrophysics Data System (ADS)

    Junell, Jaime; Tumer, Kagan

    2013-10-01

    In this paper we explore learning-based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control (PCC) is able to look ahead at future road conditions and solve for a cost-effective course of action. Model- based controllers have been implemented in this field but cannot accommodate many complexities of a dynamic environment which includes changing road and vehicle conditions. In this work, we focus on incorporating a learner into an already successful model- based predictive cruise controller in order to improve its performance. We explore back propagating neural networks to predict future errors then take actions to prevent said errors from occurring. The results show that this approach improves the model based PCC by up to 60% under certain conditions. In addition, we explore the benefits of classifier ensembles to further improve the gains due to intelligent cruise control.

  11. 33 CFR 104.295 - Additional requirements-cruise ships.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ships. 104.295 Section 104.295 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... requirements—cruise ships. (a) At all MARSEC Levels, the owner or operator of a cruise ship must ensure the... cruise ship must ensure that security briefs to passengers about the specific threat are provided. ...

  12. 33 CFR 104.295 - Additional requirements-cruise ships.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ships. 104.295 Section 104.295 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... requirements—cruise ships. (a) At all MARSEC Levels, the owner or operator of a cruise ship must ensure the... cruise ship must ensure that security briefs to passengers about the specific threat are provided. ...

  13. 33 CFR 104.295 - Additional requirements-cruise ships.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ships. 104.295 Section 104.295 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... requirements—cruise ships. (a) At all MARSEC Levels, the owner or operator of a cruise ship must ensure the... cruise ship must ensure that security briefs to passengers about the specific threat are provided. ...

  14. 33 CFR 104.295 - Additional requirements-cruise ships.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ships. 104.295 Section 104.295 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... requirements—cruise ships. (a) At all MARSEC Levels, the owner or operator of a cruise ship must ensure the... cruise ship must ensure that security briefs to passengers about the specific threat are provided. ...

  15. Use of advanced particle methods in modeling space propulsion and its supersonic expansions

    NASA Astrophysics Data System (ADS)

    Borner, Arnaud

    This research discusses the use of advanced kinetic particle methods such as Molecular Dynamics (MD) and direct simulation Monte Carlo (DSMC) to model space propulsion systems such as electrospray thrusters and their supersonic expansions. MD simulations are performed to model an electrospray thruster for the ionic liquid (IL) EMIM--BF4 using coarse-grained (CG) potentials. The model is initially featuring a constant electric field applied in the longitudinal direction. Two coarse-grained potentials are compared, and the effective-force CG (EFCG) potential is found to predict the formation of the Taylor cone, the cone-jet, and other extrusion modes for similar electric fields and mass flow rates observed in experiments of a IL fed capillary-tip-extractor system better than the simple CG potential. Later, one-dimensional and fully transient three-dimensional electric fields, the latter solving Poisson's equation to take into account the electric field due to space charge at each timestep, are computed by coupling the MD model to a Poisson solver. It is found that the inhomogeneous electric field as well as that of the IL space-charge improve agreement between modeling and experiment. The boundary conditions (BCs) are found to have a substantial impact on the potential and electric field, and the tip BC is introduced and compared to the two previous BCs, named plate and needle, showing good improvement by reducing unrealistically high radial electric fields generated in the vicinity of the capillary tip. The influence of the different boundary condition models on charged species currents as a function of the mass flow rate is studied, and it is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the MD simulations with the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with

  16. PROPERTIES OF SUPERSONIC EVERSHED DOWNFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozuelo, S. Esteban; Rubio, L. R. Bellot; Rodríguez, J. de la Cruz, E-mail: sara.esteban@astro.su.se

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes  V zero-crossing wavelengths, and Stokes  V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regionsmore » during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.« less

  17. SPF/DB primary structure for supersonic aircraft (T-38 horizontal stabilizer)

    NASA Technical Reports Server (NTRS)

    Delmundo, A. R.; Mcquilkin, F. T.; Rivas, R. R.

    1981-01-01

    The structural integrity and potential cost savings of superplastic forming/diffusion bonding (SPF/DB) titanium structure for future Supersonic Cruise Research (SCR) and military aircraft primary structure applications was demonstrated. Using the horizontal stabilizer of the T-38 aircraft as a baseline, the structure was redesigned to the existing criteria and loads, using SPF/DB titanium technology. The general concept of using a full-depth sandwich structure which is attached to a steel spindle, was retained. Trade studies demonstrated that the optimum design should employ double-truss, sinewave core in the deepest section of the surface, making a transition to single-truss core in the thinner areas at the leading and trailing edges and at the tip. At the extreme thin edges of the surface, the single-truss core was changed to dot core to provide for gas passages during the SPF/DB process. The selected SPF/DB horizontal stabilizer design consisted of a one-piece SPF/DB sinewave truss core panel, a trunnion fitting, and reinforcing straps. The fitting and the straps were mechanically fastened to the SPF/DB panel.

  18. Supersonic Research Display for Tour

    NASA Image and Video Library

    1946-03-21

    On March 22, 1946, 250 members of the Institute of Aeronautical Science toured the NACA’s Aircraft Engine Research Laboratory. NACA Chairman Jerome Hunsaker and Secretary John Victory were on hand to brief the attendees in the Administration Building before the visited the lab’s test facilities. At each of the twelve stops, researchers provided brief presentations on their work. Topics included axial flow combustors, materials for turbine blades, engine cooling, icing prevention, and supersonic flight. The laboratory reorganized itself in October 1945 as World War II came to an end to address newly emerging technologies such as the jet engine, rockets, and high-speed flight. While design work began on what would eventually become the 8- by 6-Foot Supersonic Wind Tunnel, NACA Lewis quickly built several small supersonic tunnels. These small facilities utilized the Altitude Wind Tunnel’s massive air handling equipment to generate high-speed airflow. The display seen in this photograph was set up in the building that housed the first of these wind tunnels. Eventually the building would contain three small supersonic tunnels, referred to as the “stack tunnels” because of the vertical alignment. The two other tunnels were added to this structure in 1949 and 1951. The small tunnels were used until the early 1960s to study the aerodynamic characteristics of supersonic inlets and exits.

  19. Overview of Supersonic Aerodynamics Measurement Techniques in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On-surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is, therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a ground-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  20. Wind tunnel performance results of swirl recovery vanes as tested with an advanced high speed propeller

    NASA Technical Reports Server (NTRS)

    Gazzaniga, John A.; Rose, Gayle E.

    1992-01-01

    Tests of swirl recovery vanes designed for use in conjunction with advanced high speed propellers were carried out at the NASA Lewis Research Center. The eight bladed 62.23 cm vanes were tested with a 62.23 cm SR = 7A high speed propeller in the NASA Lewis 2.44 x 1.83 m Supersonic Wind Tunnel for a Mach number range of 0.60 to 0.80. At the design operating condition for cruise of Mach 0.80 at an advance ratio of 3.26, the vane contribution to the total efficiency approached 2 percent. At lower off-design Mach numbers, the vane efficiency is even higher, approaching 4.5 percent for the Mach 0.60 condition. Use of the swirl recovery vanes essentially shifts the peak of the high speed propeller efficiency to a higher operating speed. This allows a greater degree of freedom in the selection of rpm over a wider operating range. Another unique result of the swirl recovery vane configuration is their essentially constant torque split between the propeller and the swirl vanes over a wide range of operating conditions for the design vane angle.

  1. Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry

  2. Supersonics Project - Airport Noise Tech Challenge

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2010-01-01

    The Airport Noise Tech Challenge research effort under the Supersonics Project is reviewed. While the goal of "Improved supersonic jet noise models validated on innovative nozzle concepts" remains the same, the success of the research effort has caused the thrust of the research to be modified going forward in time. The main activities from FY06-10 focused on development and validation of jet noise prediction codes. This required innovative diagnostic techniques to be developed and deployed, extensive jet noise and flow databases to be created, and computational tools to be developed and validated. Furthermore, in FY09-10 systems studies commissioned by the Supersonics Project showed that viable supersonic aircraft were within reach using variable cycle engine architectures if exhaust nozzle technology could provide 3-5dB of suppression. The Project then began to focus on integrating the technologies being developed in its Tech Challenge areas to bring about successful system designs. Consequently, the Airport Noise Tech Challenge area has shifted efforts from developing jet noise prediction codes to using them to develop low-noise nozzle concepts for integration into supersonic aircraft. The new plan of research is briefly presented by technology and timelines.

  3. Aerodynamic and performance characterization of supersonic retropropulsion for application to planetary entry and descent

    NASA Astrophysics Data System (ADS)

    Korzun, Ashley M.

    shock layer of a blunt body in supersonic flow. Although numerous wind tunnel tests of relevance to SRP have been conducted, the scope of the work is limited in the freestream conditions and composition, retropropulsion conditions and composition, and configurations and geometries explored. The SRP aerodynamic - propulsive interaction alters the aerodynamic characteristics of the vehicle, and models must be developed that accurately represent the impact of SRP on system mass and performance. Work within this thesis has defined and advanced the state of the art for supersonic retropropulsion. This has been achieved through the application of systems analysis, computational analysis, and analytical methods. The contributions of this thesis include a detailed performance analysis and exploration of the design space specific to supersonic retropropulsion, establishment of the relationship between vehicle performance and the aerodynamic - propulsive interaction, and an assessment of the required fidelity and computational cost in simulating supersonic retropropulsion flowfields, with emphasis on the effort required to develop aerodynamic databases for conceptual design.

  4. A Whitham-Theory Sonic-Boom Analysis of the TU-144 Aircraft at a Mach Number of 2.2

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    . Therefore, an analysis of the Tu-144 was made to obtain predictions of pressure signature shape and shock strengths at cruise conditions so that the range and characteristics of the required pressure gages could be determined well in advance of the tests. Cancellation of the sonic-boom signature measurement part of the tests removed the need for these pressure gages. Since CFD methods would be used to analyze the aerodynamic performance of the Tu-144 and make similar pressure signature predictions, the relatively quick and simple Whitham-theory pressure signature predictions presented in this paper could be used for comparisons. Pressure signature predictions of sonic-boom disturbances from the Tu- 144 aircraft were obtained from geometry derived from a three-view description of the production aircraft. The geometry was used to calculate aerodynamic performance characteristics at supersonic-cruise conditions. These characteristics and Whitham/Walkden sonic-boom theory were employed to obtain F-functions and flow-field pressure signature predictions at a Mach number of 2.2, at a cruise altitude of 61000 feet, and at a cruise weight of 350000 pounds.

  5. Supersonic nonlinear potential analysis

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.

    1984-01-01

    The NCOREL computer code was established to compute supersonic flow fields of wings and bodies. The method encompasses an implicit finite difference transonic relaxation method to solve the full potential equation in a spherical coordinate system. Two basic topic to broaden the applicability and usefulness of the present method which is encompassed within the computer code NCOREL for the treatment of supersonic flow problems were studied. The first topic is that of computing efficiency. Accelerated schemes are in use for transonic flow problems. One such scheme is the approximate factorization (AF) method and an AF scheme to the supersonic flow problem is developed. The second topic is the computation of wake flows. The proper modeling of wake flows is important for multicomponent configurations such as wing-body and multiple lifting surfaces where the wake of one lifting surface has a pronounced effect on a downstream body or other lifting surfaces.

  6. Supersonic compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are providedmore » having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less

  7. A model for 3-D sonic/supersonic transverse fuel injection into a supersonic air stream

    NASA Technical Reports Server (NTRS)

    Bussing, Thomas R. A.; Lidstone, Gary L.

    1989-01-01

    A model for sonic/supersonic transverse fuel injection into a supersonic airstream is proposed. The model replaces the hydrogen jet up to the Mach disk plane and the elliptic parts of the air flow field around the jet by an equivalent body. The main features of the model were validated on the basis of experimental data.

  8. Mars 2001 Cruise Phase Radiation Measurments

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Badhwar, G. D.

    1999-01-01

    Mars 2001 presents an exciting opportunity for advances in radiation risk management of a future human mission to Mars. The mission timing is particularly fortuitous, coming just after solar maxinuun, when there will be a high probability to observe significant solar particle events (SPEs). A major objective of this mission is to characterize the Martian radiation environment to support future human missions to Mars. In addition, the MARIE instruments on the Lander and Orbiter, designed to measure the energetic particle flux at Mars, can be used during the cruise phase to provide multipoint observations of SPEs in the critical region of the heliosphere (1 to 1.5 AU) needed to reduce the in-flight radiation risk to a future Mars-bound crew.

  9. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Peck, R. E.; Schmidt, D. K.

    1993-01-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  10. Epidemiology of gastroenteritis on cruise ships, 2001-2004.

    PubMed

    Cramer, Elaine H; Blanton, Curtis J; Blanton, Lenee H; Vaughan, George H; Bopp, Cheryl A; Forney, David L

    2006-03-01

    The incidence of diarrheal disease among cruise ship passengers declined from 29.2 cases per 100,000 passenger days in 1990 to 16.3 per 100,000 passenger days in 2000. In 2002, the Vessel Sanitation Program of the Centers for Disease Control and Prevention reported 29 outbreaks (3% or more passengers ill) of acute gastroenteritis on cruise ships, an increase from 3 the previous year. This analysis of gastroenteritis on cruise ships, conducted in 2005, details the increase in outbreak incidence rates during 2001 through 2004. Using Gastrointestinal Illness Surveillance System data, investigators evaluated incidence rates of gastroenteritis on cruise ships calling on U.S. ports, carrying 13 or more passengers, by cruise length and reporting region during the study period. The investigators also evaluated the association between inspection scores, and gastroenteritis incidence and the frequency of outbreaks in 2001 through 2004. During the study period, the background and outbreak-associated incidence rates of passengers with acute gastroenteritis per cruise were 25.6 and 85, respectively. Acute gastroenteritis outbreaks per 1000 cruises increased overall from 0.65 in 2001 to 5.46 in 2004; outbreaks increased from 2 in 2001 to a median of 15 per year in 2002-2004. Median ship inspection scores remained relatively constant during the study period (median 95 on a 100-point scale), and were not significantly associated with either gastroenteritis incidence rates (risk ratio, 1.00; 95% confidence interval, 0.98-1.02) or outbreak frequency (Spearman's coefficient, 0.01, p=0.84). Despite good performance on environment health sanitation inspections by cruise ships, the expectation of passenger cases of gastroenteritis on an average 7-day cruise increased from two cases during 1990-2000 to three cases during the study period. This increase, likely attributable to noroviruses, highlights the inability of environmental programs to fully predict and prevent risk factors common

  11. Design of Supersonic Transport Flap Systems for Thrust Recovery at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Mann, Michael J.; Carlson, Harry W.; Domack, Christopher S.

    1999-01-01

    A study of the subsonic aerodynamics of hinged flap systems for supersonic cruise commercial aircraft has been conducted using linear attached-flow theory that has been modified to include an estimate of attainable leading edge thrust and an approximate representation of vortex forces. Comparisons of theoretical predictions with experimental results show that the theory gives a reasonably good and generally conservative estimate of the performance of an efficient flap system and provides a good estimate of the leading and trailing-edge deflection angles necessary for optimum performance. A substantial reduction in the area of the inboard region of the leading edge flap has only a minor effect on the performance and the optimum deflection angles. Changes in the size of the outboard leading-edge flap show that performance is greatest when this flap has a chord equal to approximately 30 percent of the wing chord. A study was also made of the performance of various combinations of individual leading and trailing-edge flaps, and the results show that aerodynamic efficiencies as high as 85 percent of full suction are predicted.

  12. Temperature in subsonic and supersonic radiation fronts measured at OMEGA

    NASA Astrophysics Data System (ADS)

    Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John

    2017-10-01

    Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.

  13. Review and prospect of supersonic business jet design

    NASA Astrophysics Data System (ADS)

    Sun, Yicheng; Smith, Howard

    2017-04-01

    This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.

  14. Studies on Decomposition and Combustion Mechanism of Solid Fuel Rich Propellants

    DTIC Science & Technology

    2010-08-30

    thrust to cruise at supersonic speed. This was followed by the test of large diameter ramjet called burner test vehicle (BTV). Advanced low volume...propellant surface. Vernekar et al (43) found that in pressed AP-Al pellets , maximum burn rate is obtained at intermediate metal content. Jain et al...conjunction with high pressure window strand burner . They found that the propellant combustion was irregular and regression rate varied from 0.3 to 3

  15. Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Steltzner, Adam; Witkowski, Allen; Candler, Graham; Pantano, Carlos

    2009-01-01

    In 2012, the Mars Science Laboratory Mission (MSL) will deploy NASA's largest extra-terrestrial parachute, a technology integral to the safe landing of its advanced robotic explorer on the surface. The supersonic parachute system is a mortar deployed 21.5 m disk-gap-band (DGB) parachute, identical in geometric scaling to the Viking era DGB parachutes of the 1970's. The MSL parachute deployment conditions are Mach 2.3 at a dynamic pressure of 750 Pa. The Viking Balloon Launched Decelerator Test (BLDT) successfully demonstrated a maximum of 700 Pa at Mach 2.2 for a 16.1 m DGB parachute in its AV4 flight. All previous Mars deployments have derived their supersonic qualification from the Viking BLDT test series, preventing the need for full scale high altitude supersonic testing. The qualification programs for Mars Pathfinder, Mars Exploration Rover, and Phoenix Scout Missions were all limited to subsonic structural qualification, with supersonic performance and survivability bounded by the BLDT qualification. The MSL parachute, at the edge of the supersonic heritage deployment space and 33% larger than the Viking parachute, accepts a certain degree of risk without addressing the supersonic environment in which it will deploy. In addition, MSL will spend up to 10 seconds above Mach 1.5, an aerodynamic regime that is associated with a known parachute instability characterized by significant canopy projected area fluctuation and dynamic drag variation. This aerodynamic instability, referred to as "area oscillations" by the parachute community has drag performance, inflation stability, and structural implications, introducing risk to mission success if not quantified for the MSL parachute system. To minimize this risk and as an alternative to a prohibitively expensive high altitude test program, a multi-phase qualification program using computation simulation validated by subscale test was developed and implemented for MSL. The first phase consisted of 2% of fullscale

  16. Measurements of Supersonic Wing Tip Vortices

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James

    1994-01-01

    An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.

  17. Summary of the First High-Altitude, Supersonic Flight Dynamics Test for the Low-Density Supersonic Decelerator Project

    NASA Technical Reports Server (NTRS)

    Clark, Ian G.; Adler, Mark; Manning, Rob

    2015-01-01

    NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.

  18. Cruise noise of counterrotation propeller at angle of attack in wind tunnel

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1986-01-01

    The noise of a counterrotation propeller at angle of attack was measured in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel at cruise conditions. Noise increases of as much as 4 dB were measured at positive angles of attack on the tunnel side wall, which represented an airplane fuselage. These noise increases could be minimized or eliminated by operating the counterrotation propeller with the front propeller turning up-inboard. This would require oppositely rotating propellers on opposite sides of the airplane. Noise analyses at different bandwidths enabled the separate front- and rear-propeller tones, as well as the total noise, at each harmonic to be determined. A simplified noise model was explored to show how the observed circumferential noise patterns of the separate propeller tones might have occurred. The total noise pattern, which represented the sum of the front- and rear-propeller tones at a particular harmonic, showed trends that would be hard to interpret without the separate-tone results. Therefore it is important that counterrotation angle-of-attack noise data be taken in such a manner that the front- and rear-propeller tones can be separated.

  19. Theoretical analysis of linearized acoustics and aerodynamics of advanced supersonic propellers

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1985-01-01

    The derivation of a formula for prediction of the noise of supersonic propellers using time domain analysis is presented. This formula is a solution of the Ffowcs Williams-Hawkings equation and does not have the Doppler singularity of some other formulations. The result presented involves some surface integrals over the blade and line integrals over the leading and trailing edges. The blade geometry, motion and surface pressure are needed for noise calculation. To obtain the blade surface pressure, the observer is moved onto the blade surface and a linear singular integral equation is derived which can be solved numerically. Two examples of acoustic calculations using a computer program are currently under development.

  20. Experiments on free and impinging supersonic microjets

    NASA Astrophysics Data System (ADS)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  1. Low Density Supersonic Decelerator Parachute Decelerator System

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen

    2013-01-01

    The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.

  2. Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.

    2012-01-01

    NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.

  3. Application of laminar flow control to supersonic transport configurations

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Nagel, A. L.

    1990-01-01

    The feasibility and impact of implementing a laminar flow control system on a supersonic transport configuration were investigated. A hybrid laminar flow control scheme consisting of suction controlled and natural laminar flow was developed for a double-delta type wing planform. The required suction flow rates were determined from boundary layer stability analyses using representative wing pressure distributions. A preliminary design of structural modifications needed to accommodate suction through a perforated titanium skin was carried out together with the ducting and systems needed to collect, compress and discharge the suction air. The benefits of reduced aerodynamic drag were weighed against the weight, volume and power requirement penalties of suction system installation in a mission performance and sizing program to assess the net benefits. The study showed a feasibility of achieving significant laminarization of the wing surface by use of a hybrid scheme, leading to an 8.2 percent reduction in the cruise drag. This resulted in an 8.5 percent reduction in the maximum takeoff weight and a 12 percent reduction in the fuel burn after the inclusion of the LFC system installation penalties. Several research needs were identified for a resolution of aerodynamics, structural and systems issues before these potential benefits could be realized in a practical system.

  4. Pdf prediction of supersonic hydrogen flames

    NASA Technical Reports Server (NTRS)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  5. Modeling Combustion in Supersonic Flows

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  6. Supersonic Combustion Research at NASA

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  7. Cruise tap versus handshake: using common sense to reduce hand contamination and germ transmission on cruise ships.

    PubMed

    Dahl, Eilif

    2016-01-01

    A firm handshake is a widely used greeting, but contaminated fingers and palms can also transfer bacteria and virus. Hand sanitation is important to prevent spreading of contagious diseases, but to wash hands properly takes too much time to ensure satisfactory compliance. Banning the handshake from health care settings has been proposed, but an alternative, less contagious form of greeting must be substituted. Cruise ships are particular vulnerable to infectious diseases that are transferred from person to person. The fist bump, common in some subcultures, has become increasing popular as the greeting-of-choice on smaller cruise vessels. To further reduce the contact area, a modification of the fist bump, the 'cruise tap', where only two knuckles briefly touch each other, is recommended.

  8. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  9. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  10. Art concept of Magellan spacecraft in cruise configuration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft cruise configuration is illustrated in this artist concept. With solar panels deployed and having jettisoned the inertial upper stage (IUS), Magellan approaches the sun which it will orbit approximately 1.6 times before encountering Venus. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperture radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best from prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta Aerospace is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during the STS-30 mission.

  11. An algorithm to estimate aircraft cruise black carbon emissions for use in developing a cruise emissions inventory.

    PubMed

    Peck, Jay; Oluwole, Oluwayemisi O; Wong, Hsi-Wu; Miake-Lye, Richard C

    2013-03-01

    To provide accurate input parameters to the large-scale global climate simulation models, an algorithm was developed to estimate the black carbon (BC) mass emission index for engines in the commercial fleet at cruise. Using a high-dimensional model representation (HDMR) global sensitivity analysis, relevant engine specification/operation parameters were ranked, and the most important parameters were selected. Simple algebraic formulas were then constructed based on those important parameters. The algorithm takes the cruise power (alternatively, fuel flow rate), altitude, and Mach number as inputs, and calculates BC emission index for a given engine/airframe combination using the engine property parameters, such as the smoke number, available in the International Civil Aviation Organization (ICAO) engine certification databank. The algorithm can be interfaced with state-of-the-art aircraft emissions inventory development tools, and will greatly improve the global climate simulations that currently use a single fleet average value for all airplanes. An algorithm to estimate the cruise condition black carbon emission index for commercial aircraft engines was developed. Using the ICAO certification data, the algorithm can evaluate the black carbon emission at given cruise altitude and speed.

  12. Cruise ship's doctors - company employees or independent contractors?

    PubMed

    Dahl, Eilif

    2016-01-01

    Traditionally, cruise companies have stated that they are in the transport business but not in the business of providing medical services to passengers. They have claimed not to be able to supervise or control the ship's medical personnel and cruise ship's doctors have therefore mostly been signed on as independent contractors, not employees. A United States court decision from 1988, Barbetta versus S/S Bermuda Star, supported this view and ruled that a ship's owner cannot be held vicariously liable for the negligence of the ship's doctor directed at the ship's passengers. Some years ago a cruise passenger fell and hit his head while boarding a trolley ashore. Hours later he was seen aboard by the ship's doctor, who sent him to a local hospital. He died 1 week later, and his daughter filed a complaint alleging the cruise company was vicariously liable for the purported negligence of the ship's doctor and nurse, under actual or apparent agency theories. A United States district court initially dismissed the case, but in November 2014 the United States Court of Appeals for the Eleventh Circuit disagreed and reversed. From then on independently contracted ship's doctors may be considered de facto employees of the cruise line. The author discusses the employment status of physicians working on cruise ships and reviews arguments for and against the Appellate Court's decision.

  13. Transient bow shock around a cylinder in a supersonic dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, John K.; Merlino, Robert L.

    2013-07-15

    Visual observations of the formation of a bow shock in the transient supersonic flow of a dusty plasma incident on a biased cylinder are presented. The bow shock formed when the advancing front of a streaming dust cloud was reflected by the obstacle. After its formation, the density jump of the bow shock increased as it moved upstream of the obstacle. A physical picture for the formation of the electrohydrodynamic bow shock is discussed.

  14. Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.

    2016-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.

  15. Federated provenance of oceanographic research cruises: from metadata to data

    NASA Astrophysics Data System (ADS)

    Thomas, Rob; Leadbetter, Adam; Shepherd, Adam

    2016-04-01

    The World Wide Web Consortium's Provenance Data Model and associated Semantic Web ontology (PROV-O) have created much interest in the Earth and Space Science Informatics community (Ma et al., 2014). Indeed, PROV-O has recently been posited as an upper ontology for the alignment of various data models (Cox, 2015). Similarly, PROV-O has been used as the building blocks of a data release lifecycle ontology (Leadbetter & Buck, 2015). In this presentation we show that the alignment between different local data descriptions of an oceanographic research cruise can be achieved through alignment with PROV-O and that descriptions of the funding bodies, organisations and researchers involved in a cruise and its associated data release lifecycle can be modelled within a PROV-O based environment. We show that, at a first-order, this approach is scalable by presenting results from three endpoints (the Biological and Chemical Oceanography Data Management Office at Woods Hole Oceanographic Institution, USA; the British Oceanographic Data Centre at the National Oceanography Centre, UK; and the Marine Institute, Ireland). Current advances in ontology engineering, provide pathways to resolving reasoning issues from varying perspectives on implementing PROV-O. This includes the use of the Information Object design pattern where such edge cases as research cruise scheduling efforts are considered. PROV-O describes only things which have happened, but the Information Object design pattern allows for the description of planned research cruises through its statement that the local data description is not the the entity itself (in this case the planned research cruise) and therefore the local data description itself can be described using the PROV-O model. In particular, we present the use of the data lifecycle ontology to show the connection between research cruise activities and their associated datasets, and the publication of those data sets online with Digital Object Identifiers and

  16. Laboratory experiments on active suppression of advanced turboprop noise

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    The noise generated by supersonic tip speed propellers may be a cabin environment problem for future propeller-driven airplanes. Active suppression from speakers inside the airplane cabin has been proposed for canceling out this noise. The potential of active suppression of advanced turboprop noise was tested by using speakers in a rectangular duct. Experiments were first performed with sine wave signals. The results compared well with the ideal cancellation curve of noise as a function of phase angle. Recorded noise signals from subsonic and supersonic tip speed propellers were than used in the duct to deterthe potential for canceling their noise. The subsonic propeller data showed significant cancellations but less than those obtained with the sine wave. The blade-passing-tone cancellation curve for the supersonic propeller was very similar to the subsonic curve, indicating that it is potentially just as easy to cancel supersonic as subsonic propeller blade-passing-tone noise. Propeller duct data from a recorded propeller source and spatial data taken on a propeller-drive airplane showed generally good agreement when compared versus phase angle. This agreement, combined with the similarity of the subsonic and supersonic duct propeller data, indicates that the area of cancellation for advanced supersonic propellers will be similar to that measured on the airplane. Since the area of cancellation on the airplane was small, a method for improving the active noise suppression by using outside speakers is discussed.

  17. Selected Examples of NACA/NASA Supersonic Flight Research

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Ayers, Theodore G.

    1995-01-01

    The present Dryden Flight Research Center, a part of the National Aeronautics and Space Administration, has a flight research history that extends back to the mid-1940's. The parent organization was a part of the National Advisory Committee for Aeronautics and was formed in 1946 as the Muroc Flight Test Unit. This document describes 13 selected examples of important supersonic flight research conducted from the Mojave Desert location of the Dryden Flight Research Center over a 4 decade period beginning in 1946. The research described herein was either obtained at supersonic speeds or enabled subsequent aircraft to penetrate or traverse the supersonic region. In some instances there accrued from these research efforts benefits which are also applicable at lower or higher speed regions. A major consideration in the selection of the various research topics was the lasting impact they have had, or will have, on subsequent supersonic flight vehicle design, efficiency, safety, and performance or upon improved supersonic research techniques.

  18. BENCAL Cruise Report

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Barlow, Ray; Sessions, Heather; Silulwane, Nonkqubela; Engel, Hermann; Aiken, James; Fishwick, James; Martinez-Vicente, Victor; Morel, Andre

    2003-01-01

    This report documents the scientific activities on board the South African Fisheries Research Ship (FRS) Africana during an ocean color calibration and validation cruise in the Benguela upwelling ecosystem (BEN-CAL), 4-17 October 2002. The cruise, denoted Afncana voyage 170, was staged in the southern Benguela between Cape Town and the Orange River within the region 14-18.5 deg E,29-34 deg S, with 15 scientists participat- ing from seven different international organizations. Uniquely in October 2002, four high-precision ocean color sensors were operational, and these included the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Aqua and Terra spacecraft, the Medium Resolution Imaging Spectrometer (MERIS), and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). SeaWiFS imagery was transmitted daily to the ship to assist in choosing the vessel's course and selecting stations for bio-optical deployments. There were four primary objectives of the cruise. The first was to conduct bio-optical measurements with above- and in-water optical instruments to vicariously calibrate the satellite sensors. The second was to interrelate diverse measurements of the apparent optical properties (AOPs) at satellite sensor wavelengths with inherent optical properties (IOPs) and bio-optically active constituents of seawater such as particles, pigments, and dissolved compounds. The third was to determine the interrelationships between optical properties, phytoplankton pigment composition, photosynthetic rates, and primary production, while the fourth objective was to collect samples for a second pigment round-robin intercalibration experiment. Weather conditions were generally very favorable, and a range of hyperspectral and fixed wavelength AOP instruments were deployed during daylight hours. Various IOP instruments were used to determine the absorption, attenuation, scattering, and backscattering properties of particulate matter and dissolved substances, while

  19. Supersonic shock wave/vortex interaction

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Cattafesta, L.

    1993-01-01

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of

  20. Overview and major characteristics of future aeronautical and space systems

    NASA Technical Reports Server (NTRS)

    Venneri, Samuel L.; Noor, Ahmed K.

    1992-01-01

    A systematic projection is made of prospective materials and structural systems' performance requirements in light of emerging applications. The applications encompass high-speed/long-range rotorcraft, advanced subsonic commercial aircraft, high speed (supersonic) commercial transports, hypersonic aircraft and missiles, extremely high-altitude cruise aircraft and missiles, and aerospace craft and launch vehicles. A tabulation is presented of the materials/structures/dynamics requirements associated with future aerospace systems, as well as the further development needs foreseen in each such case.

  1. Supersonic Dislocation Bursts in Silicon

    DOE PAGES

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; ...

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  2. Supersonic Dislocation Bursts in Silicon

    PubMed Central

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-01-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm−2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon. PMID:27264746

  3. Supersonic Dislocation Bursts in Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  4. Mars Science Laboratory Spacecraft During Cruise, Artist Concept

    NASA Image and Video Library

    2011-10-03

    This is an artist concept of NASA Mars Science Laboratory spacecraft during its cruise phase between launch and final approach to Mars. The spacecraft includes a disc-shaped cruise stage on the left attached to the aeroshell.

  5. Flight calibration of compensated and uncompensated pitot-static airspeed probes and application of the probes to supersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Webb, L. D.; Washington, H. P.

    1972-01-01

    Static pressure position error calibrations for a compensated and an uncompensated XB-70 nose boom pitot static probe were obtained in flight. The methods (Pacer, acceleration-deceleration, and total temperature) used to obtain the position errors over a Mach number range from 0.5 to 3.0 and an altitude range from 25,000 feet to 70,000 feet are discussed. The error calibrations are compared with the position error determined from wind tunnel tests, theoretical analysis, and a standard NACA pitot static probe. Factors which influence position errors, such as angle of attack, Reynolds number, probe tip geometry, static orifice location, and probe shape, are discussed. Also included are examples showing how the uncertainties caused by position errors can affect the inlet controls and vertical altitude separation of a supersonic transport.

  6. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  7. Low-speed wind-tunnel investigation of a large scale advanced arrow-wing supersonic transport configuration with engines mounted above wing for upper-surface blowing

    NASA Technical Reports Server (NTRS)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.

    1976-01-01

    Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  8. Low-speed wind-tunnel tests of a one-tenth-scale model of a blended-arrow advanced supersonic transport. [conducted in Langley full-scale tunnel

    NASA Technical Reports Server (NTRS)

    Lemore, H. C.; Parett, L. P.

    1975-01-01

    Tests were conducted in the Langley full scale tunnel to determine the low-speed aerodynamic characteristics of a 1/10 scale model of a blended-arrow advanced supersonic transport. Tests were made for the clean configuration and a high-lift configuration with several combinations of leading- and trailing-edge flaps deflected for providing improved lift and longitudinal stability in the landing and takeoff modes. The tests were conducted for a range of angles of attack from about -6 deg to 30 deg, sideslip angles from -5 deg to 10 deg, and for Reynolds numbers from 6.78 x 1,000,000 to 13.85 x 1,000,000 corresponding to test velocities of 41 knots to 85 knots, respectively.

  9. Validation of OVERFLOW for Supersonic Retropropulsion

    NASA Technical Reports Server (NTRS)

    Schauerhamer, Guy

    2012-01-01

    The goal is to softly land high mass vehicles (10s of metric tons) on Mars. Supersonic Retropropulsion (SRP) is a potential method of deceleration. Current method of supersonic parachutes does not scale past 1 metric ton. CFD is of increasing importance since flight and experimental data at these conditions is difficult to obtain. CFD must first be validated at these conditions.

  10. Aerodynamic Models for the Low Density Supersonic Declerator (LDSD) Supersonic Flight Dynamics Test (SFDT)

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2015-01-01

    An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.

  11. Method for Estimating the Sonic-Boom Characteristics of Lifting Canard-Wing Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2005-01-01

    A method for estimating the sonic-boom overpressures from a conceptual aircraft where the lift is carried by both a canard and a wing during supersonic cruise is presented and discussed. Computer codes used for the prediction of the aerodynamic performance of the wing, the canard-wing interference, the nacelle-wing interference, and the sonic-boom overpressures are identified and discussed as the procedures in the method are discussed. A canard-wing supersonic-cruise concept was used as an example to demonstrate the application of the method.

  12. Defense Science Board Task Force on Defense Strategies for Advanced Ballistic and Cruise Missile Threats

    DTIC Science & Technology

    2017-01-01

    annual investment of about $2.5 billion. The study also recommended that the Department of Defense enhance its ab ility to perform the kinds of broad...homeland fundamentally change the nature of the problem to one of strategic deterrence and that the spirit of the terms of reference was more...adversary investments in regional, precision attack cruise and ballistic threaten that foundation, investments that have dramatically increased both

  13. Feasibility of supersonic diode pumped alkali lasers: Model calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmashenko, B. D.; Rosenwaks, S.

    The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  14. Supersonic Retropropulsion Flight Test Concepts

    NASA Technical Reports Server (NTRS)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  15. Supersonic laminar-flow control

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Malik, Mujeeb R.

    1987-01-01

    Detailed, up to date systems studies of the application of laminar flow control (LFC) to various supersonic missions and/or vehicles, both civilian and military, are not yet available. However, various first order looks at the benefits are summarized. The bottom line is that laminar flow control may allow development of a viable second generation SST. This follows from a combination of reduced fuel, structure, and insulation weight permitting operation at higher altitudes, thereby lowering sonic boom along with improving performance. The long stage lengths associated with the emerging economic importance of the Pacific Basin are creating a serious and renewed requirement for such a vehicle. Supersonic LFC techniques are discussed.

  16. Construction of the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1948-06-21

    The 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory was the nation’s largest supersonic facility when it began operation in April 1949. The emergence of new propulsion technologies such as turbojets, ramjets, and rockets during World War II forced the NACA and the aircraft industry to develop new research tools. In late 1945 the NACA began design work for new large supersonic wind tunnels at its three laboratories. The result was the 4- by 4-Foot Supersonic Wind Tunnel at Langley Memorial Aeronautical Laboratory, 6- by 6-foot supersonic wind tunnel at Ames Aeronautical Laboratory, and the largest facility, the 8- by 6-Foot Supersonic Wind Tunnel in Cleveland. The two former tunnels were to study aerodynamics, while the 8- by 6 facility was designed for supersonic propulsion. The 8- by 6-Foot Supersonic Wind Tunnel was used to study propulsion systems, including inlets and exit nozzles, combustion fuel injectors, flame holders, exit nozzles, and controls on ramjet and turbojet engines. Flexible sidewalls alter the tunnel’s nozzle shape to vary the Mach number during operation. A seven-stage axial compressor, driven by three electric motors that yield a total of 87,000 horsepower, generates air speeds from Mach 0.36 to 2.0. A section of the tunnel is seen being erected in this photograph.

  17. Supersonic transport vis-a-vis energy savings

    NASA Technical Reports Server (NTRS)

    Cormery, G.

    1979-01-01

    The energy and economic saving modifications in supersonic transportation are studied. Modifications in the propulsion systems and in the aerodynamic configurations of the Concorde aircraft to reduce noise generation and increase fuel efficiency are discussed. The conversion of supersonic aircraft from fuel oils to synthetic fuels is examined.

  18. 10' x 10' Supersonic Wind Tunnel Flexwall

    NASA Image and Video Library

    2015-08-10

    The flexwall section of NASA Glenn’s 10x10 supersonic wind tunnel is made up of two movable flexible steel sidewalls. These powerful hydraulic jacks move the walls in and out to control supersonic air speeds in the test section between Mach 2.0 and 3.5.

  19. Characterization of a low pressure supersonic plasma jet

    NASA Astrophysics Data System (ADS)

    Caldirola, S.; Barni, R.; Riccardi, C.

    2014-11-01

    Plasma assisted supersonic jet deposition (PA-SJD) is a technique which combines a inductively coupled plasma (ICP) with a supersonic jet for the fabrication of thin films having a desired morphology. A reactive argon-oxygen plasma is employed to dissociate an organic precursor (titanium tetra-isopropoxide for TiO2 thin films) in a first vacuum chamber which is connected through a nozzle to a lower pressure chamber. The pressure difference produces a supersonic jet, seeded with nanoparticles. Along the jet the nucleation and aggregation of nanoparticles can be controlled to obtain nanostructured depositions. We report here the results of an analysis performed with a quadrupole mass spectrometer (QMS) which was used to sample neutrals and ions from the jet at different positions along the centerline of the supersonic expansion.

  20. Supersonic combustion engine testbed, heat lightning

    NASA Technical Reports Server (NTRS)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  1. Transonic and supersonic ground effect aerodynamics

    NASA Astrophysics Data System (ADS)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  2. CruiseViewer: SIOExplorer Graphical Interface to Metadata and Archives.

    NASA Astrophysics Data System (ADS)

    Sutton, D. W.; Helly, J. J.; Miller, S. P.; Chase, A.; Clark, D.

    2002-12-01

    We are introducing "CruiseViewer" as a prototype graphical interface for the SIOExplorer digital library project, part of the overall NSF National Science Digital Library (NSDL) effort. When complete, CruiseViewer will provide access to nearly 800 cruises, as well as 100 years of documents and images from the archives of the Scripps Institution of Oceanography (SIO). The project emphasizes data object accessibility, a rich metadata format, efficient uploading methods and interoperability with other digital libraries. The primary function of CruiseViewer is to provide a human interface to the metadata database and to storage systems filled with archival data. The system schema is based on the concept of an "arbitrary digital object" (ADO). Arbitrary in that if the object can be stored on a computer system then SIOExplore can manage it. Common examples are a multibeam swath bathymetry file, a .pdf cruise report, or a tar file containing all the processing scripts used on a cruise. We require a metadata file for every ADO in an ascii "metadata interchange format" (MIF), which has proven to be highly useful for operability and extensibility. Bulk ADO storage is managed using the Storage Resource Broker, SRB, data handling middleware developed at the San Diego Supercomputer Center that centralizes management and access to distributed storage devices. MIF metadata are harvested from several sources and housed in a relational (Oracle) database. For CruiseViewer, cgi scripts resident on an Apache server are the primary communication and service request handling tools. Along with the CruiseViewer java application, users can query, access and download objects via a separate method that operates through standard web browsers, http://sioexplorer.ucsd.edu. Both provide the functionability to query and view object metadata, and select and download ADOs. For the CruiseViewer application Java 2D is used to add a geo-referencing feature that allows users to select basemap images

  3. PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2012-01-01

    While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.

  4. Vertical Takeoff and Landing Vehicle with Increased Cruise Efficiency

    NASA Technical Reports Server (NTRS)

    Langford, William M. (Inventor); Hodges, William T. (Inventor); Laws, Christopher T. (Inventor); Johns, Zachary R. (Inventor); Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Webb, Sandy R. (Inventor)

    2018-01-01

    Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.

  5. An Unmanned Aerial Vehicle Cluster Network Cruise System for Monitor

    NASA Astrophysics Data System (ADS)

    Jiang, Jirong; Tao, Jinpeng; Xin, Guipeng

    2018-06-01

    The existing maritime cruising system mainly uses manned motorboats to monitor the quality of coastal water and patrol and maintenance of the navigation -aiding facility, which has the problems of high energy consumption, small range of cruise for monitoring, insufficient information control and low visualization. In recent years, the application of UAS in the maritime field has alleviated the phenomenon above to some extent. A cluster-based unmanned network monitoring cruise system designed in this project uses the floating small UAV self-powered launching platform as a carrier, applys the idea of cluster, and combines the strong controllability of the multi-rotor UAV and the capability to carry customized modules, constituting a unmanned, visualized and normalized monitoring cruise network to realize the functions of maritime cruise, maintenance of navigational-aiding and monitoring the quality of coastal water.

  6. Review of problems in application of supersonic combustion

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1977-01-01

    The problem of air-breathing engines capable of flying at very high Mach numbers is described briefly. Possible performance of supersonic combustion ramjets is outlined briefly and the supersonic combustion process is described. Two mechanisms of combustion are outlined: one is supersonic combustion controlled by convection process, and the second is controlled by diffusion. The parameters related to the combustion process are discussed in detail. Data and analyses of reaction rates and mixing phenomena are represented; the flame mechanism is discussed, and experimental results are presented.

  7. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  8. Verification and Validation Testing of the Parachute Decelerator System Prior to the First Supersonic Flight Dynamics Test for the Low Density Supersonic Decelerator Program

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Witkowski, Allen

    2015-01-01

    The Parachute Decelerator System (PDS) is comprised of all components associated with the supersonic parachute and its associated deployment. During the Supersonic Flight Dynamics Test (SFDT), for the Low Density Supersonic Decelerators Program, the PDS was required to deploy the supersonic parachute in a defined fashion. The PDS hardware includes three major subsystems that must function together. The first subsystem is the Parachute Deployment Device (PDD), which acts as a modified pilot deployment system. It is comprised of a pyrotechnic mortar, a Kevlar ballute, a lanyard actuated pyrotechnic inflation aid, and rigging with its associated thermal protection material (TPS). The second subsystem is the supersonic parachute deployment hardware. This includes all of the parachute specific rigging that includes the parachute stowage can and the rigging including TPS and bridle stiffeners for bridle management during deployment. The third subsystem is the Supersonic Parachute itself, which includes the main parachute and deployment bags. This paper summarizes the verification and validation of the deployment process, from the initialization of the PDS system through parachute bag strip that was done prior to the first SFDT.

  9. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H. Y.; Hong, J. H.; Jang, J. H.

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in themore » electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.« less

  10. Diarrhea and related factors among passengers on world cruises departing from Japan.

    PubMed

    Yamakawa, Michiyo; Sasai, Megumi; Kasai, Yosuke; Tsuda, Toshihide; Suzuki, Etsuji

    2018-01-25

    Despite growth in the number of cruises worldwide, evidence about diarrhea experienced by cruise ship passengers remains sparse. We investigated rates of diarrhea and related factors among passengers on world cruises departing from Japan. Targeting passengers on five world cruises (n = 4180) from 2012 to 2013 (85-103 travel days), we calculated rates of health seeking behavior for diarrhea by sex, age group, and number of roommates for each cruise. We estimated rate ratios and 95% confidence intervals, using the group aged 20-39 years, women, and 2-4 roommates as referent categories. We found 5.04-6.00 cases per 10,000 person-days in the five cruises, with an elevated number after calling at ports. Older passengers (>60 years) and passengers with fewer roommates had an elevated risk of health seeking behavior for diarrhea, although passengers aged <20 years had an elevated risk on one cruise. After controlling for covariates (including cruise), significant associations remained for passengers aged >60 years and without roommates. Older passengers and passengers with fewer roommates may be more likely to seek medical treatment for diarrhea during travel on a world cruise, and should take preventive measures. Copyright © 2018. Published by Elsevier Ltd.

  11. Staphylococcal food poisoning on a cruise ship.

    PubMed Central

    Waterman, S. H.; Demarcus, T. A.; Wells, J. G.; Blake, P. A.

    1987-01-01

    Two waves of vomiting and/or diarrhoea affected approximately 215 of the 715 passengers on a Caribbean cruise ship. The outbreak was independently associated with eating cream-filled pastries at two separate meals. Staphylococcus aureus phage type 85/+ was isolated from cases and pastry cooks, but not from controls. This is the first well-documented outbreak of staphylococcal food poisoning on a cruise ship. PMID:3678396

  12. Supersonic Injection of Aerated Liquid Jet

    NASA Astrophysics Data System (ADS)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  13. Cruise-ship--associated Legionnaires disease, November 2003-May 2004.

    PubMed

    2005-11-18

    More than 9.4 million passengers traveled on pleasure cruises departing from North American ports in 2004, an increase of 13% since 2003 and 41% since 2001. Cruise ships typically transport closed populations of thousands of persons, often from diverse parts of the world. Travelers are at risk for becoming ill while on board, most commonly from person-to-person spread of viral gastrointestinal illnesses. Certain environmental organisms, such as Legionella spp., pose a risk to vulnerable passengers. During November 2003-May 2004, eight cases of Legionnaires disease (LD) among persons who had recently traveled on cruise ships were reported to CDC. This report describes these cases to raise clinician awareness of the potential for cruise-ship--associated LD and to emphasize the need for identification and reporting of cases to facilitate investigation.

  14. Computation of multi-dimensional viscous supersonic flow

    NASA Technical Reports Server (NTRS)

    Buggeln, R. C.; Kim, Y. N.; Mcdonald, H.

    1986-01-01

    A method has been developed for two- and three-dimensional computations of viscous supersonic jet flows interacting with an external flow. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases associated with supersonic jet flow is presented and compared with other calculations for axisymmetric cases. Demonstration calculations indicate that the computational technique has great promise as a tool for calculating a wide range of supersonic flow problems including jet flow. Finally, a User's Manual is presented for the computer code used to perform the calculations.

  15. First-Order Altitude Effects on the Cruise Efficiency of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.

    2011-01-01

    Aircraft fuel efficiency is a function of many different parameters, including characteristics of the engines, characteristics of the airframe, and the conditions under which the aircraft is operated. For a given vehicle, the airframe and engine characteristics are for the most part fixed quantities and efficiency is primarily a function of operational conditions. One important influence on cruise efficiency is cruise altitude. Various future scenarios have been postulated for cruise altitude, from the freedom to fly at optimum altitudes to altitude restrictions imposed for environmental reasons. This report provides background on the fundamental relationships determining aircraft cruise efficiency and examines the sensitivity of efficiency to cruise altitude. Analytical models of two current aircraft designs are used to derive quantitative results. Efficiency penalties are found to be generally less than 1% when within roughly 2000 ft of the optimum cruise altitude. Even the restrictive scenario of constant altitude cruise is found to result in a modest fuel consumption penalty if the fixed altitude is in an appropriate range.

  16. 33 CFR 104.295 - Additional requirements-cruise ships.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Additional requirements-cruise ships. 104.295 Section 104.295 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARITIME SECURITY: VESSELS Vessel Security Requirements § 104.295 Additional requirements—cruise ships. (a) At all MARSEC...

  17. The future challenge for aeropropulsion

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Bowditch, David N.

    1992-01-01

    NASA's research in aeropropulsion is focused on improving the efficiency, capability, and environmental compatibility for all classes of future aircraft. The development of innovative concepts, and theoretical, experimental, and computational tools provide the knowledge base for continued propulsion system advances. Key enabling technologies include advances in internal fluid mechanics, structures, light-weight high-strength composite materials, and advanced sensors and controls. Recent emphasis has been on the development of advanced computational tools in internal fluid mechanics, structural mechanics, reacting flows, and computational chemistry. For subsonic transport applications, very high bypass ratio turbofans with increased engine pressure ratio are being investigated to increase fuel efficiency and reduce airport noise levels. In a joint supersonic cruise propulsion program with industry, the critical environmental concerns of emissions and community noise are being addressed. NASA is also providing key technologies for the National Aerospaceplane, and is studying propulsion systems that provide the capability for aircraft to accelerate to and cruise in the Mach 4-6 speed range. The combination of fundamental, component, and focused technology development underway at NASA will make possible dramatic advances in aeropropulsion efficiency and environmental compatibility for future aeronautical vehicles.

  18. Further considerations of engine emissions from subsonic aircraft at cruise altitude

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Le Dilosquer, M.; Singh, R.; Rycroft, M. J.

    The most significant man-made sources of pollution of the higher troposphere and lower stratosphere are exhaust emissions from civil subsonic aircraft at cruise altitude (8-12 km). This paper examines such issues by computational modelling of Boeing 747-400 flights during their cruise phase between selected city pairs, for example London to Tokyo. The engine performance, exhaust pollutant prediction, and detailed flight history analysis effects of different Mach numbers and of increasing the cruise altitude from 9.8 to 12.1 km during the flight rather than staying at a constant cruise altitude of 10.5 km are studied in detail. To minimise the overall effects of atmospheric pollution, a Mach number of 0.85 and increasing altitude is the favoured cruise technique.

  19. An outbreak of Cyclospora infection on a cruise ship.

    PubMed

    Gibbs, R A; Nanyonjo, R; Pingault, N M; Combs, B G; Mazzucchelli, T; Armstrong, P; Tarling, G; Dowse, G K

    2013-03-01

    In 2010, an outbreak of cyclosporiasis affected passengers and crew on two successive voyages of a cruise ship that departed from and returned to Fremantle, Australia. There were 73 laboratory-confirmed and 241 suspected cases of Cyclospora infection reported in passengers and crew from the combined cruises. A case-control study performed in crew members found that illness was associated with eating items of fresh produce served onboard the ship, but the study was unable conclusively to identify the responsible food(s). It is likely that one or more of the fresh produce items taken onboard at a south-east Asian port during the first cruise was contaminated. If fresh produce supplied to cruise ships is sourced from countries or regions where Cyclospora is endemic, robust standards of food production and hygiene should be applied to the supply chain.

  20. Descriptive epidemiology of injury and illness among cruise ship passengers.

    PubMed

    Peake, D E; Gray, C L; Ludwig, M R; Hill, C D

    1999-01-01

    To provide information, which can be used in the formation of guidelines concerning medical facilities and staff on cruise ships, on the descriptive epidemiology of the medical conditions encountered by cruise ship physicians. A retrospective descriptive epidemiologic study design was used to evaluate patient physician encounters on cruises originating in a calendar-year period for the 4 ships of a major cruise ship line with cruises originating in the United States. Demographic data regarding sex and age of the passengers on these ships were available for each cruise. We collected information on patient age, sex, chief complaint, diagnoses, treatment, and patient disposition recorded in the patients' medical records in the ships' medical logs. Seven thousand one hundred forty-seven new patient visits occurred in a population of 196,171 passengers and 1,537,298 passenger days; 56.7% of passengers were female, and 60.7% of patients were female; 43.3% of passengers and 39.6% of patients were male. Visits to the ship infirmaries were made for the following reasons: 18.2% of visits were related to injuries, 69.3% were related to medical conditions, and 12.5% were unspecified or other conditions. The most common diagnosis was respiratory tract infection (29.1%); 11% of patients had a serious or potentially life-threatening diagnosis. The most common group of prescription medications prescribed was antibiotics. Many different injuries and illnesses occur on board cruise ships. The spectrum is similar in many respects to the patients presenting to emergency departments. Cruise lines must prepare for the initial treatment and stabilization of patients with serious illnesses or injuries with appropriately qualified and equipped medical personnel and establish procedures for disembarkation of patients to facilities capable of handling such conditions.

  1. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  2. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  3. Cruise control: prevention and management of sexual violence at sea.

    PubMed

    O'Connor, Mike

    2015-03-01

    The drug-related death of Dianne Brimble on the P&O cruise liner Pacific Sky in 2002 triggered a wide-ranging review of the safety on board cruise ships operating in the Australian market. This column assesses the frequency of recent sexual assaults on cruise ships and examines the findings and recommendations of the Brimble inquest, focusing on the Commonwealth government's response to those recommendations. The problem of jurisdiction on flag of convenience registered ships is discussed, with emphasis on a possible co-operative arrangement between Australian police and foreign flag states. It seems likely that the United States and Canadian models of cruise ship regulation to enhance passenger safety will in part be introduced in Australia.

  4. The aeroacoustics of supersonic jets

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; McLaughlin, Dennis K.

    1995-01-01

    This research project was a joint experimental/computational study of noise in supersonic jets. The experiments were performed in a low to moderate Reynolds number anechoic supersonic jet facility. Computations have focused on the modeling of the effect of an external shroud on the generation and radiation of jet noise. This report summarizes the results of the research program in the form of the Masters and Doctoral theses of those students who obtained their degrees with the assistance of this research grant. In addition, the presentations and publications made by the principal investigators and the research students is appended.

  5. Optimum Climb to Cruise Noise Trajectories for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2003-01-01

    By entraining large quantities of ambient air into advanced ejector nozzles, the jet noise of the proposed High Speed Civil Transport (HSCT) is expected to be reduced to levels acceptable for airport-vicinity noise certification. Away from the airport, however, this entrained air is shut off and the engines are powered up from their cutback levels to provide better thrust for the climb to cruise altitude. Unsuppressed jet noise levels propagating to the ground far from the airport are expected to be high. Complicating this problem is the HSCT's relative noise level with respect to the subsonic commercial fleet of 2010, which is expected to be much quieter than it is today after the retirement of older, louder, domestic stage II aircraft by the year 2000. In this study, the classic energy state approximation theory is extended to calculate trajectories that minimize the climb to cruise noise of the HSCT. The optimizer dynamically chooses the optimal altitude velocity trajectory, the engine power setting, and whether the ejector should be stowed or deployed with respect to practical aircraft climb constraints and noise limits.

  6. A second-generation supersonic transport

    NASA Technical Reports Server (NTRS)

    Humphrey, W.; Grayson, G.; Gump, J.; Hutko, G.; Kubicko, R.; Obrien, J.; Orndorff, R.; Oscher, R.; Polster, M.; Ulrich, C.

    1989-01-01

    Ever since the advent of commercial flight vehicles, one goal of designers has been to develop aircraft that can fly faster and carry more passengers than before. After the development of practical supersonic military aircraft, this desire was naturally manifested in a search for a practical supersonic commercial aircraft. The first and, to date, only supersonic civil transport is the Concorde, manufactured by a consortium of British and French aerospace companies. Unfortunately, due to a number of factors, including low passenger capacity and limited range, the Concorde has not been an economic success. It is for this reason that there is considerable interest in developing a design for a supersonic civil transport that addresses some of the inadequacies of the Concorde. For the design of such an aircraft to be feasible in the near term, certain guidelines must be established at the outset. Based upon the experience with the Concorde, whose 100-passenger capacity is not large enough for profitable operation, a minimum capacity of 250 passengers is desired. Second, to date, because of the limited range of the Concorde, supersonic commercial flight has been restricted to trans-Atlantic routes. In order to broaden the potential market, any new design must have the capability of trans-Pacific flight. A summary of the potential markets involved is presented. Also, because of both the cost and complexity involved with actively cooling an entire aircraft, an additional design constraint is that the aircraft as a whole be passively cooled. One additional design constraint is somewhat less quantitative in nature but of great importance nonetheless. Any time a new design is attempted, the tendency is to assume great strides in technology that serve as the basis for actual realization of the design. While it is not always possible to avoid this dependence on 'enabling technology,' since this design is desired for the near term, it is prudent, wherever possible, to rely on

  7. Method and apparatus for starting supersonic compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawlor, Shawn P

    A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypassmore » gas from the convergent inlet via the bypass gas collectors is effectively eliminated.« less

  8. Supersonic Parachute Aerodynamic Testing and Fluid Structure Interaction Simulation

    NASA Astrophysics Data System (ADS)

    Lingard, J. S.; Underwood, J. C.; Darley, M. G.; Marraffa, L.; Ferracina, L.

    2014-06-01

    The ESA Supersonic Parachute program expands the knowledge of parachute inflation and flying characteristics in supersonic flows using wind tunnel testing and fluid structure interaction to develop new inflation algorithms and aerodynamic databases.

  9. Study of Pressure Oscillations in Supersonic Parachute

    NASA Astrophysics Data System (ADS)

    Dahal, Nimesh; Fukiba, Katsuyoshi; Mizuta, Kazuki; Maru, Yusuke

    2018-04-01

    Supersonic parachutes are a critical element of planetary mission whose simple structure, light-weight characteristics together with high ratio of aerodynamic drag makes them the most suitable aerodynamic decelerators. The use of parachute in supersonic flow produces complex shock/shock and wake/shock interaction giving rise to dynamic pressure oscillations. The study of supersonic parachute is difficult, because parachute has very flexible structure which makes obtaining experimental pressure data difficult. In this study, a supersonic wind tunnel test using two rigid bodies is done. The wind tunnel test was done at Mach number 3 by varying the distance between the front and rear objects, and the distance of a bundle point which divides suspension lines and a riser. The analysis of Schlieren movies revealed shock wave oscillation which was repetitive and had large pressure variation. The pressure variation differed in each case of change in distance between the front and rear objects, and the change in distance between riser and the rear object. The causes of pressure oscillation are: interaction of wake caused by front object with the shock wave, fundamental harmonic vibration of suspension lines, interference between shock waves, and the boundary layer of suspension lines.

  10. Investigation of supersonic chemically reacting and radiating channel flow

    NASA Technical Reports Server (NTRS)

    Mani, Mortaza; Tiwari, Surendra N.

    1988-01-01

    The 2-D time-dependent Navier-Stokes equations are used to investigate supersonic flows undergoing finite rate chemical reaction and radiation interaction for a hydrogen-air system. The explicit multistage finite volume technique of Jameson is used to advance the governing equations in time until convergence is achieved. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The multidimensional radiative transfer equations for a nongray model are provided for a general configuration and then reduced for a planar geometry. Both pseudo-gray and nongray models are used to represent the absorption-emission characteristics of the participating species. The supersonic inviscid and viscous, nonreacting flows are solved by employing the finite volume technique of Jameson and the unsplit finite difference scheme of MacCormack. The specified problem considered is of the flow in a channel with a 10 deg compression-expansion ramp. The calculated results are compared with those of an upwind scheme. The problem of chemically reacting and radiating flows are solved for the flow of premixed hydrogen-air through a channel with parallel boundaries, and a channel with a compression corner. Results obtained for specific conditions indicate that the radiative interaction can have a significant influence on the entire flow field.

  11. Development and qualification of the US Cruise Missile Propulsion System

    NASA Astrophysics Data System (ADS)

    Reardon, William H.; Cifone, Anthony J.

    1992-09-01

    This paper provides a description of the very successful Cruise Missile gas turbine propulsion program managed by the United States Department of Defense. The paper contains a summary of the procurement process, the technical and programmatic milestones, issues and challenges, and lessons learned. In the past fifteen years, testing at the Naval Air Propulsion Center has included over 800 cruise engine development and component substantiation efforts spanning the engine specification qualification requirements. This paper provides a detailed account of environmental test techniques used to qualify the F107 family of gas turbine engines which propel the U.S. Cruise Missile. In addition, a missile freestream flight test simulation for the TOMAHAWK Cruise Missile is discussed along with current and future program efforts.

  12. Redundant actuator development study. [flight control systems for supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Ryder, D. R.

    1973-01-01

    Current and past supersonic transport configurations are reviewed to assess redundancy requirements for future airplane control systems. Secondary actuators used in stability augmentation systems will probably be the most critical actuator application and require the highest level of redundancy. Two methods of actuator redundancy mechanization have been recommended for further study. Math models of the recommended systems have been developed for use in future computer simulations. A long range plan has been formulated for actuator hardware development and testing in conjunction with the NASA Flight Simulator for Advanced Aircraft.

  13. Vertical Take-Off and Landing Vehicle with Increased Cruise Efficiency

    NASA Technical Reports Server (NTRS)

    Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Johns, Zachary R. (Inventor); Langford, William M. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Laws, Christopher T. (Inventor); Hodges, William T. (Inventor); Webb, Sandy R. (Inventor)

    2016-01-01

    Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.

  14. User's Manual for Total-Tree Multiproduct Cruise Program

    Treesearch

    Alexander Clark; Thomas M. Burgan; Richard C. Field; Peter E. Dress

    1985-01-01

    This interactive computer program uses standard tree-cruise data to estimate the weight and volume of the total tree, saw logs, plylogs, chipping logs, pulpwood, crown firewood, and logging residue in timber stands.Input is cumulative cruise data for tree counts by d.b.h. and height. Output is in tables: board-foot volume by d.b.h.; total-tree and tree-component...

  15. Sonic and Supersonic Jet Plumes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Naughton, J. W.; Flethcher, D. G.; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.

  16. 33 CFR 105.290 - Additional requirements-cruise ship terminals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Additional requirements-cruise ship terminals. 105.290 Section 105.290 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Additional requirements—cruise ship terminals. At all MARSEC Levels, in coordination with a vessel moored at...

  17. 33 CFR 105.290 - Additional requirements-cruise ship terminals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Additional requirements-cruise ship terminals. 105.290 Section 105.290 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Additional requirements—cruise ship terminals. At all MARSEC Levels, in coordination with a vessel moored at...

  18. 33 CFR 105.290 - Additional requirements-cruise ship terminals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Additional requirements-cruise ship terminals. 105.290 Section 105.290 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Additional requirements—cruise ship terminals. At all MARSEC Levels, in coordination with a vessel moored at...

  19. 33 CFR 105.290 - Additional requirements-cruise ship terminals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Additional requirements-cruise ship terminals. 105.290 Section 105.290 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Additional requirements—cruise ship terminals. At all MARSEC Levels, in coordination with a vessel moored at...

  20. Preliminary supersonic flight test evaluation of performance seeking control

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1993-01-01

    Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.

  1. Gas dynamics of a supersonic radial jet. Part I

    NASA Astrophysics Data System (ADS)

    Kosarev, V. F.; Klinkov, S. V.; Zaikovskii, V. N.; Kundasev, S. G.

    2015-11-01

    The gas dynamics of a supersonic radial jet was studied under conditions close to cold spraying. The jet visualization was performed for exhaustion into submerged space with atmospheric pressure and jet impingement to a target. For the cases of swirled and unswirled supersonic radial jets, the pressure profiles measured by a Pitot tube were taken for different distances from the nozzle outlet and for different widths of supersonic part δ ex = 0.5-2 mm and for prechamber pressure in the range p 0 = 1-2.5 MPa.

  2. 33 CFR 105.290 - Additional requirements-cruise ship terminals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Additional requirements-cruise ship terminals. 105.290 Section 105.290 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARITIME SECURITY: FACILITIES Facility Security Requirements § 105.290 Additional requirements—cruise ship terminals...

  3. Cruise Report for G1-03-GM, USGS Gas Hydrates Cruise, R/V Gyre, 1-14 May 2003, Northern Gulf of Mexico

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Hart, Patrick E.

    2004-01-01

    This report gives a summary of the field program and instrumentation used on the R/V Gyre in the Gulf of Mexico in May, 2003, to collect multichannel seismic data in support of USGS and Department of Energy gas hydrate studies. Tabulated statistics, metadata, figures and maps are included to show the breadth of data collected and preliminary interpretations made during the field program. Geophysical data collected during this cruise will be released in a separate report. At the start of the cruise, three test lines were run to compare different source configurations in order to optimize data quality for the objectives of the cruise. The source chosen was the 13/13 in3 Generator-Injector (GI) Gun. Following these tests, a total of 101 lines (approximately 1033 km) of 24-channel high-resolution seismic reflection data were collected in the northern Gulf of Mexico. 59 lines (about 600 km) were collected in and around lease block Keathley Canyon 195. An additional 4 lines (85 km) provided a seismic tie between the Keathley Canyon data and USGS multichannel data collected in 1999. About 253 km of data were collected along 35 short lines in and around lease block Atwater Valley 14 on the floor of the Mississippi Canyon. Three lines (53 km) completed the cruise and provided a seismic tie to USGS multichannel data collected in 1998. Two on-board trained marine-mammal observers fulfilled the requirements determined by NOAA/National Marine Fisheries Service to avoid incidental harassment of marine mammals as established in the Marine Mammal Protection Act (MMPA). A total of three species of dolphins were observed during the cruise and one basking shark. No sperm whales were sighted. During the cruise, seismic operations were not delayed or terminated because of marine mammal activity.

  4. An outbreak of viral gastroenteritis on a cruise ship.

    PubMed

    McEvoy, M; Blake, W; Brown, D; Green, J; Cartwright, R

    1996-12-06

    Three hundred and seventy-eight passengers reported gastroenteritis during four cruises in the western Mediterranean on consecutive weeks of 1995. The rate at which cases were reported each day increased on the fourth cruise. The ship's owner commissioned an epidemiological investigation from the PHLS Communicable Disease Surveillance Centre. Cases reported explosive vomiting and diarrhoea, which lasted from 24 hours to five days, and were suggestive of viral gastroenteritis. No food handlers reported illness, but enquiries suggested that some had been ill and treated themselves. No bacterial pathogens were isolated from faecal specimens provided by cases or from water, food, and environmental samples taken from the galley. Small round structured viruses (SRSV) were identified by reverse transcriptase polymerase chain reaction in two faecal specimens and one specimen of vomit from people who became ill during the fourth cruise. SRSV was also identified in one faecal specimen by electron microscopy. Environmental inspection revealed inappropriate food handling, hygiene, and storage. During one 24 hour period no chlorine was detectable in the water. A case control study conducted on the fourth cruise sought details of exposure to various foodstuffs, unbottled water, and various parts of the ship. No significant associations were found between illness and any exposures. The evidence strongly suggested a continuing outbreak of SRSV infection transmitted from person to person. Some passengers remained on board for a second week and could have transmitted their infection to new arrivals. The ship was cleared and disinfected at the end of the fourth cruise in order to interrupt transmission. Fewer than 10 cases presented in each of the fifth and sixth cruises.

  5. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  6. Parachute Decelerator System Performance During the Low Density Supersonic Decelerator Program's First Supersonic Flight Dynamics Test

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Clark, Ian G.; Witkowski, Allen

    2015-01-01

    During the first Supersonic Flight Dynamics Test (SFDT-1) for NASA's Low Density Supersonic Decelerator (LDSD) Program, the Parachute Decelerator System (PDS) was successfully tested. The main parachute in the PDS was a 30.5-meter supersonic Disksail parachute. The term Disksail is derived from the canopy's constructional geometry, as it combined the aspects of a ringsail and a flat circular round (disk) canopy. The crown area of the canopy contained the disk feature, as a large flat circular disk that extended from the canopy's vent down to the upper gap. From this upper gap to the skirt-band the canopy was constructed with characteristics of sails seen in a ringsail. There was a second lower gap present in this sail region. The canopy maintained a nearly 10x forebody diameter trailing distance with 1.7 Do suspension line lengths. During the test, the parachute was deployed at the targeted Mach and dynamic pressure. Although the supersonic Disksail parachute experienced an anomaly during the inflation process, the system was tested successfully in the environment it was designed to operate within. The nature of the failure seen originated in the disk portion of the canopy. High-speed and high-resolution imagery of the anomaly was captured and has been used to aid in the forensics of the failure cause. In addition to the imagery, an inertial measurement unit (IMU) recorded test vehicle dynamics and loadcells captured the bridle termination forces. In reviewing the imagery and load data a number of hypothesizes have been generated in an attempt to explain the cause of the anomaly.

  7. Cruise control.

    PubMed

    Pati, Anita

    2007-09-01

    'I 'd rather have three hours on a beach in Barbados than a week in Wolverhampton,' says nurse Andrea Brown, comparing her previous life in the English midlands to the dream she lives today. Ms Brown has found a way to mix her wanderlust with her love of emergency care by getting a job as a nurse on a luxury cruise ship. Her current tour of duty is on the opulent Cunard liner, Queen Mary 2 (QM2), which she has been aboard for several months.

  8. Chemically reacting supersonic flow calculation using an assumed PDF model

    NASA Technical Reports Server (NTRS)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  9. Dispelling myths about verification of sea-launched cruise missiles.

    PubMed

    Lewis, G N; Ride, S K; Townsend, J S

    1989-11-10

    It is widely believed that an arms control limit on nuclear-armed sea-launched cruise missiles would be nearly impossible to verify. Among the reasons usually given are: these weapons are small, built in nondistinctive industrial facilities, deployed on a variety of ships and submarines, and difficult to distinguish from their conventionally armed counterparts. In this article, it is argued that the covert production and deployment of nuclear-armed sealaunched cruise missiles would not be so straightforward. A specific arms control proposal is described, namely a total ban on nuclear-armed sea-launched cruise missiles. This proposal is used to illustrate how an effective verification scheme might be constructed.

  10. Computation of multi-dimensional viscous supersonic jet flow

    NASA Technical Reports Server (NTRS)

    Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.

    1986-01-01

    A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.

  11. Supersonics Project: Airport Noise Technical Challenge

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2008-01-01

    This presentation gives an overview of the work being done under the Airport Noise Technical Challenge portion of the Supersonics Project in the Fundamental Aeronautics Program. The objective of the Challenge is to provide technology (e.g. low noise nozzle concepts) and engineering tools required for a viable supersonic aircraft. To accomplish this we have activities divided into Prediction, Diagnostics, and Engineering elements. Each of the tasks reviewed here have potential applications to work being done at other flight regimes and other aircraft and are of interest to the Acoustics Technical Working Group.

  12. Mars Science Laboratory Cruise Stage

    NASA Image and Video Library

    2011-11-10

    The cruise stage of NASA Mars Science Laboratory spacecraft is being prepared for final stacking of the spacecraft in this photograph from inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.

  13. Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.

    2018-03-01

    Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.

  14. NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao

    2014-01-01

    Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: 1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and 2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are

  15. NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao

    2014-01-01

    Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: (1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and (2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots

  16. Affordable/Acceptable Supersonic Flight: Is It Near?

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.

    2003-01-01

    The author takes a historical look at supersonic flight and humankind's first encounter with the sonic boom. A review is given from the 1950s to the present of the quest to understand the sonic boom, quantify its disturbance on humans and structures, and minimize its effect through aircraft design and operation. Finally, the author reminds readers that sonic boom is only one factor, though critical, in enabling an economically viable commercial supersonic aircraft.

  17. Preliminary Sizing of 120-Passenger Advanced Civil Rotorcraft Concepts

    NASA Technical Reports Server (NTRS)

    vanAken, Johannes M.; Sinsay, Jeffrey D.

    2006-01-01

    The results of a preliminary sizing study of advanced civil rotorcraft concepts that are capable of carrying 120 passengers over a range of 1,200 nautical miles are presented. The cruise altitude of these rotorcraft is 30,000 ft and the cruise velocity is 350 knots. The mission requires a hover capability, creating a runway independent solution, which might aid in reducing strain on the existing airport infrastructure. Concepts studied are a tiltrotor, a tandem rotor compound, and an advancing blade concept. The first objective of the study is to determine the relative merits of these designs in terms of mission gross weight, engine size, fuel weight, aircraft purchase price, and direct operating cost. The second objective is to identify the enabling technology for these advanced heavy lift civil rotorcraft.

  18. NASA X-Plane Looks To The Future of Supersonic Flight

    NASA Image and Video Library

    2017-10-11

    NASA’s Low Boom Flight Demonstration experimental airplane aims to make supersonic passenger jet travel over land a real possibility by reducing the disruptive sonic boom sound associated with supersonic flight.

  19. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation

    DTIC Science & Technology

    2016-04-30

    AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER...public release. Final Report on Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Grant

  20. An assessment of cruise NOx emissions of short-haul commercial flights

    NASA Astrophysics Data System (ADS)

    Turgut, Enis T.; Usanmaz, Oznur

    2017-12-01

    Cruise NOx emissions of aircraft are an important input parameter for studies investigating climate change due to their ability to alter the concentrations of certain trace gases, such as ozone, methane, and hydroxyl in the atmosphere, and to induce positive radiative forcing. Therefore, it is of importance to minimize estimation errors on NOx emitted from aircraft engines at high altitude. In this study, the cruise NOx emissions of a frequently-used narrow-bodied aircraft type operating domestic flights in Turkey, are quantified based on numerous actual flight, actual emissions and actual meteorological data. The overall average cruise NOx emissions index is found to be ∼10 g/kg fuel. In addition, newly-developed parameters of the aircraft cruise NOx footprint and NOx intensity are calculated to be 0.5 g/pa-NM and ∼60 g/NM, respectively. Regarding the effects of flight parameters on cruise NOx emissions, while there is a distinct increase in NOx parameters with an increase in aircraft mass, this may differ for altitude. The results reveal that the NOx emissions index tends to increase slightly by 1-2%, particularly above 28,000 ft, whereas NOx intensity decreases at a rate of 2.4-2.7% per 2000 ft of cruise altitude increase.

  1. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 2 Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 47 Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. 6. VIEW NORTH, INTERIOR VIEW OF BUILDING 11, SUPERSONIC WIND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW NORTH, INTERIOR VIEW OF BUILDING 11, SUPERSONIC WIND TUNNEL - Naval Surface Warfare Center, Supersonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  4. 78 FR 51728 - Fees for Sanitation Inspections of Cruise Ships

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Fees for Sanitation Inspections of Cruise Ships AGENCY: Centers for Disease Control and Prevention (CDC), Department... prevent and control the introduction, transmission, and spread of gastrointestinal illnesses on cruise...

  5. 77 FR 50511 - Fees for Sanitation Inspections of Cruise Ships

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Fees for Sanitation Inspections of Cruise Ships AGENCY: Centers for Disease Control and Prevention (CDC), Department... prevent and control the introduction, transmission, and spread of gastrointestinal illnesses on cruise...

  6. Supersonic Gas-Liquid Cleaning System

    NASA Technical Reports Server (NTRS)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  7. COMMERCIAL SUPERSONIC TRANSPORT PROGRAM. PHASE II-C REPORT. HIGH STRENGTH STEEL EVALUATION FOR SUPERSONIC AIRCRAFT.

    DTIC Science & Technology

    JET TRANSPORT AIRCRAFT, *AIRFRAMES, SUPERSONIC AIRCRAFT, STEEL , STRUCTURAL PROPERTIES, FRACTURE(MECHANICS), FATIGUE(MECHANICS), STRESS CORROSION...MICROPHOTOGRAPHY, HIGH TEMPERATURE, NICKEL ALLOYS, COBALT ALLOYS, CARBON, BAINITE , COMMERCIAL AIRCRAFT.

  8. Legionella risk assessment in cruise ships and ferries.

    PubMed

    Laganà, Pasqualina; Gambuzza, Maria Elsa; Delia, Santi

    2017-06-12

    Introduction. The increasing development of marine traffic has led to a rise in the incidence of legionellosis among travellers. It occurs in similar environments, especially closed and crowded, and aboard ships Legionella survives and multiplies easily in water pipes, spreading into the environment through air conditioning systems and water distribution points. Although in recent years in the construction of cruise ships preventive measures aimed at curbing the proliferation of Legionella (design, materials, focus on the operation and maintenance of the water system), have been taken account, little or no attention has been paid to small ships which, in many cases, are old and not well maintained. Objective. The aim of the study was to evaluate the frequency and severity of Legionella contamination in ferries and cruise ships in order to adopt more specific control measures. Materials and method. A prevalence study was carried out on 10 ferries and 6 cruise ships docking or in transit across the port of Messina (Sicily, Italy). Water and air samples collected from many critical points were tested for qualitative and quantitative identification of Legionella. Results and conclusions. Legionella pneumophila sg 1 was isolated from the samples of shower and tap water in 7 (70%) of the 10 ferries examined, and in 3 (33%) of the 6 cruise ships examined, and L. pneumophila sg 2-14 in 8 (80%) and 1 (16.7%) of these ships, respectively. No Legionella contamination was found in whirlpool baths, air and ice samples. In conclusion, the data obtained confirm higher levels of Legionella contamination in local ferries and cruise ships, underlining the need to adopt corrective actions more specific for these smaller vessels.

  9. Design of a Low Cost Short Takeoff-vertical Landing Export Fighter/attack Aircraft

    NASA Technical Reports Server (NTRS)

    Belcher, Anne; Bodeker, Dan, III; Miu, Steve; Petro, Laura; Senf, Cary Taylor; Woeltjen, Donald

    1990-01-01

    The design of a supersonic short takeoff and vertical landing (STOVL) aircraft is presented that is suitable for export. An advanced four poster, low bypass turbofan engine is to be used for propulsion. Preliminary aerodynamic analysis is presented covering a determination of CD versus CL, CD versus Mach number, as well as best cruise Mach number and altitude. Component locations are presented and center of gravity determined. Cost minimization is achieved through the use of developed subsystems and standard fabrication techniques using nonexotic materials. Conclusions regarding the viability of the STOVL design are presented.

  10. The Aeroacoustics of Supersonic Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    1994-01-01

    Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.

  11. Experimental Investigation of Supersonic Coplanar Jets within Ejectors

    NASA Technical Reports Server (NTRS)

    Papamoschou, Dimitri

    2001-01-01

    This experimental and theoretical work involved reduction of supersonic jet noise using Mach Wave Elimination (MWE), a method that suppresses noise by means of a gaseous layer that envelops the supersonic jet. Also explored was a new method for mixing enhancement in which an axial, secondary flow enhances mixing in a primary flow. The research is relevant to the advent of future supersonic transports that must adhere to the same take-off and landing restrictions as ordinary subsonic aircraft. To reduce noise, one needs to understand the fundamental fluid mechanics of the jet, namely its turbulent structure and mean-flow characteristics, and to perform high-quality noise measurements. The results generated are applicable to free jets as well as to jets within ejectors.

  12. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.

  13. System-Level Experimental Validations for Supersonic Commercial Transport Aircraft Entering Service in the 2018-2020 Time Period

    NASA Technical Reports Server (NTRS)

    Magee, Todd E.; Wilcox, Peter A.; Fugal, Spencer R.; Acheson, Kurt E.; Adamson, Eric E.; Bidwell, Alicia L.; Shaw, Stephen G.

    2013-01-01

    This report describes the work conducted by The Boeing Company under American Recovery and Reinvestment Act (ARRA) and NASA funding to experimentally validate the conceptual design of a supersonic airliner feasible for entry into service in the 2018 to 2020 timeframe (NASA N+2 generation). The report discusses the design, analysis and development of a low-boom concept that meets aggressive sonic boom and performance goals for a cruise Mach number of 1.8. The design is achieved through integrated multidisciplinary optimization tools. The report also describes the detailed design and fabrication of both sonic boom and performance wind tunnel models of the low-boom concept. Additionally, a description of the detailed validation wind tunnel testing that was performed with the wind tunnel models is provided along with validation comparisons with pretest Computational Fluid Dynamics (CFD). Finally, the report describes the evaluation of existing NASA sonic boom pressure rail measurement instrumentation and a detailed description of new sonic boom measurement instrumentation that was constructed for the validation wind tunnel testing.

  14. NASA/Navy lift/cruise fan. Phase 1: Design summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The initial design of the LCF459 lift/cruise fan system is documented. The LCF459 is a 1.5 meter diameter turbotip lift/cruise fan whose design point pressure ratio is 1.32 at a tip speed of 353 meters per second. The gas source for the tip turbine is the YJ97-GE-100 engine.

  15. Hypersonic engine component experiments in high heat flux, supersonic flow environment

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.

    1993-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Even though progress has been made in the computational understanding of fluid dynamics and the physics/chemistry of high speed flight, there is also a need for experimental facilities capable of providing a high heat flux environment for testing component concepts and verifying/calibrating these analyses. A hydrogen/oxygen rocket engine heat source was developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to fulfill this need. This 'Hot Gas Facility' is capable of providing heat fluxes up to 450 w/sq cm on flat surfaces and up to 5,000 w/sq cm at the leading edge stagnation point of a strut in a supersonic flow stream. Gas temperatures up to 3050 K can also be attained. Two recent experimental programs conducted in this facility are discussed. The objective of the first experiment is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Macrophotographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight. The objective of the second experiment is to assess the capability of cooling a porous surface exposed to a high temperature, high velocity flow environment and to provide a heat transfer data base for a design procedure. Experimental results from transpiration cooled surfaces in a supersonic flow environment are presented.

  16. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen D.

    1991-01-01

    The main objectives of this work is to demonstrate the potential of a cryogenic adaptive nozzle to generate quiet (low disturbance) supersonic flow. A drive system was researched for the Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT) using a pilot tunnel. A supportive effort for ongoing Proof of Concept (PoC) research leading to the design of critical components of the LFSWT was maintained. The state-of-the-art in quiet supersonic wind tunnel design was investigated. A supersonic research capability was developed within the FML.

  17. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  18. Preliminary Investigation of a New Type of Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Ferri, Antonio; Nucci, Louis M

    1952-01-01

    A supersonic inlet with supersonic deceleration of the flow entirely outside of the inlet is considered a particular arrangement with fixed geometry having a central body with a circular annular intake is analyzed, and it is shown theoretically that this arrangement gives high pressure recovery for a large range of Mach number and mass flow and, therefore, is practical for use on supersonic airplanes and missiles. Experimental results confirming the theoretical analysis give pressure recoveries which vary from 95 percent for Mach number 1.33 to 86 percent for number 2.00. These results were originally presented in a classified document of the NACA in 1946.

  19. Cruise report, RV ocean alert cruise A1-98-HW; January 30 through February 23, 1998, Honolulu to Honolulu, Hawaii

    USGS Publications Warehouse

    Gardner, James V.; Hughes-Clarke, John E.

    1998-01-01

    The major objective of cruise A1-98 was to map portions of the insular slopes of Oahu, Kauai, Maui, Molokai, and Hawaii and to survey in detail US Environmental Protection Agency (USEPA) ocean dumping sites using a Simrad EM300 high-resolution multibeam mapping system. The cruise was a jointly funded project between the US Army Corps of Engineers (USCOE), USEPA, and the US Geological Survey (USGS). The USACOE and EPA are interested in these areas because of a series of ocean dump sites off Oahu, Kauai, Maui, and Hawaii (Fig. 1) that require high-resolution base maps for site monitoring purposes. The USGS Coastal and Marine Geology Program has several on-going projects off Oahu and Maui that lack high-precision base maps for a variety of ongoing geological studies. The cruise was conducted under a Cooperative Agreement between the USGS and the Ocean Mapping Group, University of New Brunswick, Canada.

  20. Laminar Flow Supersonic Wind Tunnel primary air injector

    NASA Technical Reports Server (NTRS)

    Smith, Brooke Edward

    1993-01-01

    This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.

  1. Progress on Variable Cycle Engines

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Howlett, R. A.; Lohmann, R. P.

    1979-01-01

    Progress in the development and future requirements of the Variable Stream Control Engine (VSCE) are presented. The two most critical components of this advanced system for future supersonic transports, the high performance duct burner for thrust augmentation, and the low jet coannular nozzle were studied. Nozzle model tests substantiated the jet noise benefit associated with the unique velocity profile possible with a coannular nozzle system on a VSCE. Additional nozzle model performance tests have established high thrust efficiency levels only at takeoff and supersonic cruise for this nozzle system. An experimental program involving both isolated component and complete engine tests has been conducted for the high performance, low emissions duct burner with good results and large scale testing of these two components is being conducted using a F100 engine as the testbed for simulating the VSCE. Future work includes application of computer programs for supersonic flow fields to coannular nozzle geometries, further experimental testing with the duct burner segment rig, and the use of the Variable Cycle Engine (VCE) Testbed Program for evaluating the VSCE duct burner and coannular nozzle technologies.

  2. Design of an advanced flight planning system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1985-01-01

    The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).

  3. 8- by 6-Foot Supersonic Wind Tunnel's Original Design

    NASA Image and Video Library

    1949-07-21

    Aerial view of the 8- by 6-Foot Supersonic Wind Tunnel in its original configuration at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 8- by 6 was the laboratory’s first large supersonic wind tunnel. It was also the NACA’s most powerful supersonic tunnel, and its first facility capable of running an engine at supersonic speeds. The 8- by 6-foot tunnel has been used to study inlets and exit nozzles, fuel injectors, flameholders, exit nozzles, and controls on ramjet and turbojet propulsion systems. The 8- by 6 was originally an open-throat and non-return tunnel. This meant that the supersonic air flow was blown through the test section and out the other end into the atmosphere. In this photograph, the three drive motors in the structure at the left supplied power to the seven-stage axial-flow compressor in the light-colored structure. The air flow passed through flexible walls which were bent to create the desired speed. The test article was located in the 8- by 6-foot stainless steel test section located inside the steel pressure chamber at the center of this photograph. The tunnel dimensions were then gradually increased to slow the air flow before it exited into the atmosphere. The large two-story building in front of the tunnel was used as office space for the researchers.

  4. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  5. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  6. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  7. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...

  8. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...

  9. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...

  10. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...

  11. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...

  12. Investigation of supersonic jets shock-wave structure

    NASA Astrophysics Data System (ADS)

    Zapryagaev, V. I.; Gubanov, D. A.; Kavun, I. N.; Kiselev, N. P.; Kundasev, S. G.; Pivovarov, A. A.

    2017-10-01

    The paper presents an experimental studies overview of the free supersonic jet flow structure Ma = 1.0, Npr = 5, exhausting from a convergent profiled nozzle into a ambient space. Also was observed the jets in the presence of artificial streamwise vortices created by chevrons and microjets located on the nozzle exit. The technique of experimental investigation, schlieren-photographs and schemes of supersonic jets, and Pitot pressure distributions, are presented. A significant effect of vortex generators on the shock-wave structure of the flow is shown.

  13. Turbulent mixing noise from supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Chen, Ping

    1994-01-01

    There is now a substantial body of theoretical and experimental evidence that the dominant part of the turbulent noise of supersonic jets is generated directly by the large turbulence structures/instability waves of the jet flow. Earlier, Tam and Burton provided a description of the physical mechanism by which supersonically traveling instability waves can generate sound efficiently. They used the method of matched asymptotic expansions to construct an instability wave solution which is valid in the far field. The present work is an extension of the theory of Tam and Burton. It is argued that the instability wave spectrum of the jet may be regarded as generated by stochastic white noise excitation at the nozzle lip region. The reason why the excitation has white noise characteristics is that near the nozzle lip region the flow in the jet mixing layer has no intrinsic length and time scales. The present stochastic wave model theory of supersonic jet noise contains a single unknown multiplicative constant. Comparisons between the calculated noise directivities at selected Strouhal numbers and experimental measurements of a Mach 2 jet at different jet temperatures have been carried out. Favorable agreements are found.

  14. Quiet Supersonic Technology (QueSST)

    NASA Image and Video Library

    2017-03-02

    Mechanical technician Dan Pitts prepares a scale model of Lockheed Martin's Quiet Supersonic Technology (QueSST) X-plane preliminary design for its first high-speed wind tunnel tests at NASA's Glenn Research Center.

  15. High-speed civil transport study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A system study of the potential for a high-speed commercial transport has addressed technological, economic, and environmental constraints. Market projections indicate a need for fleets of transports with supersonic or greater cruise speeds by the year 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5,000 to 6,000 nautical miles. The study was initially unconstrained in terms of vehicle characteristic, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene-type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high-speed civil transport; significant advances are required to reduce takeoff gross weight and allow for both economic attractiveness and environmental accepatability. Specific technological requirements were identified to meet these needs.

  16. High-speed civil transport study. Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A system of study of the potential for a high speed commercial transport aircraft addressed technology, economic, and environmental constraints. Market projections indicated a need for fleets of transport with supersonic or greater cruise speeds by the years 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5000 to 6000 nautical miles. The study was initially unconstrained in terms of vehicle characteristics, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high speed civil transport. Significant advances are needed to take off gross weight and allow for both economic attractiveness and environment acceptability. Specific technological requirements were identified to meet these needs.

  17. Computational Fluid Dynamics Modeling of Supersonic Coherent Jets for Electric Arc Furnace Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Alam, Morshed; Naser, Jamal; Brooks, Geoffrey; Fontana, Andrea

    2010-12-01

    Supersonic coherent gas jets are now used widely in electric arc furnace steelmaking and many other industrial applications to increase the gas-liquid mixing, reaction rates, and energy efficiency of the process. However, there has been limited research on the basic physics of supersonic coherent jets. In the present study, computational fluid dynamics (CFD) simulation of the supersonic jet with and without a shrouding flame at room ambient temperature was carried out and validated against experimental data. The numerical results show that the potential core length of the supersonic oxygen and nitrogen jet with shrouding flame is more than four times and three times longer, respectively, than that without flame shrouding, which is in good agreement with the experimental data. The spreading rate of the supersonic jet decreased dramatically with the use of the shrouding flame compared with a conventional supersonic jet. The present CFD model was used to investigate the characteristics of the supersonic coherent oxygen jet at steelmaking conditions of around 1700 K (1427 °C). The potential core length of the supersonic coherent oxygen jet at steelmaking conditions was 1.4 times longer than that at room ambient temperature.

  18. R2R Eventlogger: Community-wide Recording of Oceanographic Cruise Science Events

    NASA Astrophysics Data System (ADS)

    Maffei, A. R.; Chandler, C. L.; Stolp, L.; Lerner, S.; Avery, J.; Thiel, T.

    2012-12-01

    Methods used by researchers to track science events during a science research cruise - and to note when and where these occur - varies widely. Handwritten notebooks, printed forms, watch-keeper logbooks, data-logging software, and customized software have all been employed. The quality of scientific results is affected by the consistency and care with which such events are recorded and integration of multi-cruise results is hampered because recording methods vary widely from cruise to cruise. The Rolling Deck to Repository (R2R) program has developed an Eventlogger system that will eventually be deployed on most vessels in the academic research fleet. It is based on the open software package called ELOG (http://midas.psi.ch/elog/) originally authored by Stefan Ritt and enhanced by our team. Lessons have been learned in its development and use on several research cruises. We have worked hard to find approaches that encourage cruise participants to use tools like the eventlogger. We examine these lessons and several eventlogger datasets from past cruises. We further describe how the R2R Science Eventlogger works in concert with the other R2R program elements to help coordinate research vessels into a coordinated mobile observing fleet. Making use of data collected on different research cruises is enabled by adopting common ways of describing science events, the science instruments employed, the data collected, etc. The use of controlled vocabularies and the practice of mapping these local vocabularies to accepted oceanographic community vocabularies helps to bind shipboard research events from different cruises into a more cohesive set of fleet-wide events that can be queried and examined in a cross-cruise manner. Examples of the use of the eventlogger during multi-cruise oceanographic research programs along with examples of resultant eventlogger data will be presented. Additionally we will highlight the importance of vocabulary use strategies to the success of the

  19. On the axisymmetric stability of heated supersonic round jets

    PubMed Central

    2016-01-01

    We perform an inviscid, spatial stability analysis of supersonic, heated round jets with the mean properties assumed uniform on either side of the jet shear layer, modelled here via a cylindrical vortex sheet. Apart from the hydrodynamic Kelvin–Helmholtz (K–H) wave, the spatial growth rates of the acoustically coupled supersonic and subsonic instability waves are computed for axisymmetric conditions (m=0) to analyse their role on the jet stability, under increased heating and compressibility. With the ambient stationary, supersonic instability waves may exist for any jet Mach number Mj≥2, whereas the subsonic instability waves, in addition, require the core-to-ambient flow temperature ratio Tj/To>1. We show, for moderately heated jets at Tj/To>2, the acoustically coupled instability modes, once cut on, to govern the overall jet stability with the K–H wave having disappeared into the cluster of acoustic modes. Sufficiently high heating makes the subsonic modes dominate the jet near-field dynamics, whereas the supersonic instability modes form the primary Mach radiation at far field. PMID:27274691

  20. Liquid atomization in supersonic flows

    NASA Astrophysics Data System (ADS)

    Missoum, Azzedine

    An experimental investigation of the atomization of a round liquid jet by coaxial, costream injection into a supersonic, Mach 1.5 air flow is reported. Extensive flow visualization was conducted using schlieren/shadowgraph, flash photography, and short duration (ns) laser imaging. The finer details of the jet were revealed when viewed under high magnification with the help of a microscope. The liquid and air pressures were varied individually. Photographic evidence indicates the presence of three regions within the liquid jet: a primary region enclosed by the first shock cell where the primary breakup occurs, a secondary region in which the jet is totally broken because of its interaction with the supersonic wave structure, and a third, subsonic region further downstream. It was found that the breakup mechanism of liquid jets in supersonic airstreams is quite complex. The breakup seems to be initiated by the growth of the turbulent structure on the liquid surface and the subsequent detachment of the three-dimensional structure as fine droplets by the intense shear at the liquid-gas interface. This seems to confirm the boundary layer stripping mechanism. The liquid jet expands into a bubble like formation as it interacts with the first set of waves. Higher liquid injection pressures resulted in higher initial spray angles. The liquid jet displayed a geometry strongly dependent on the pressure distribution resulting from the wave structure present in the supersonic jet. Droplet size and velocity distributions were measured by the P/DPA (Phase/Doppler Particle Analyzer) system. The Sauter Mean Diameter (SMD) was measured at several axial and radial locations at various liquid and air pressures. The SMD shows a decrease with increase in both the air-to-liquid mass flow ratio and the Weber number. The drop size decreased towards the outer edges of the jet. The results lead one to conclude that the coaxial, coflowing configuration is very attractive for atomizing

  1. Acute Gastroenteritis on Cruise Ships - United States, 2008-2014.

    PubMed

    Freeland, Amy L; Vaughan, George H; Banerjee, Shailendra N

    2016-01-15

    From 1990 to 2004, the reported rates of diarrheal disease (three or more loose stools or a greater than normal frequency in a 24-hour period) on cruise ships decreased 2.4%, from 29.2 cases per 100,000 travel days to 28.5 cases (1,2). Increased rates of acute gastroenteritis illness (diarrhea or vomiting that is associated with loose stools, bloody stools, abdominal cramps, headache, muscle aches, or fever) occurred in years that novel strains of norovirus, the most common etiologic agent in cruise ship outbreaks, emerged (3). To determine recent rates of acute gastroenteritis on cruise ships, CDC analyzed combined data for the period 2008-2014 that were submitted by cruise ships sailing in U.S. jurisdiction (defined as passenger vessels carrying ≥13 passengers and within 15 days of arriving in the United States) (4). CDC also reviewed laboratory data to ascertain the causes of acute gastroenteritis outbreaks and examined trends over time. During the study period, the rates of acute gastroenteritis per 100,000 travel days decreased among passengers from 27.2 cases in 2008 to 22.3 in 2014. Rates for crew members remained essentially unchanged (21.3 cases in 2008 and 21.6 in 2014). However, the rate of acute gastroenteritis was significantly higher in 2012 than in 2011 or 2013 for both passengers and crew members, likely related to the emergence of a novel strain of norovirus, GII.4 Sydney (5). During 2008-2014, a total of 133 cruise ship acute gastroenteritis outbreaks were reported, 95 (71%) of which had specimens available for testing. Among these, 92 (97%) were caused by norovirus, and among 80 norovirus specimens for which a genotype was identified, 59 (73.8%) were GII.4 strains. Cruise ship travelers experiencing diarrhea or vomiting should report to the ship medical center promptly so that symptoms can be assessed, proper treatment provided, and control measures implemented.

  2. A generalized theory on the noise generation from supersonic shear layers.

    NASA Technical Reports Server (NTRS)

    Pao, S. P.

    1971-01-01

    A generalization is presented of Phillips' (1960) theory of noise generation by supersonic turbulent shear layers. Both Mach wave radiation and non-Mach wave noise radiation mechanisms are considered. The range of validity of Phillips' theory has been expanded to include the low supersonic and transonic ranges. These generalizations are important not only for their analytical rigor, but also for their prospective applications to practical problems in jet noise prediction and control. The noise generation mechanisms in a supersonic jet are found to differ from those in a subsonic jet. The theory is considered to offer some prospects of answering important questions in supersonic jet noise, such as noise source distribution, mean flow refraction effects, directivity, spectrum, and efficiency of noise radiation.

  3. Experimental Investigation of Combustion Stabilization in Supersonic Flow Using Free Recirculation Zones

    DTIC Science & Technology

    1997-08-01

    NUMBERS Experimental Investigation of Combustion Stabilization in Supersonic Flow Using Free F6170896W0291 Recirculation Zones 6. AUTHOR(S) Dr...stabilization in supersonic flow using free recirculation zones Special contract (SPC-96-4043) with Air Force Office of Scientific Research (AFMC), USA, EOARD...of three quarterly reports and presents experimental results on self-ignition and combustion stabilization in supersonic flow using free

  4. Fluid Structure Interaction of Parachutes in Supersonic Planetary Entry

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita

    2011-01-01

    A research program to provide physical insight into disk-gap-band parachute operation in the supersonic regime on Mars was conducted. The program included supersonic wind tunnel tests, computational fluid dynamics and fluid structure interaction simulations. Specifically, the nature and cause of the "area oscillation" phenomenon were investigated to determine the scale, aerodynamic, and aero-elastic dependence of the supersonic parachute collapse and re-inflation event. A variety of non-intrusive, temporally resolved, and high resolution diagnostic techniques were used to interrogate the flow and generate validation datasets. The results of flow visualization, particle image velocimetry, load measurements, and photogrammetric reconstruction will be presented. Implications to parachute design, use, and verification will also be discussed.

  5. Summary of recent NASA propeller research

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.; Bober, L. J.

    1985-01-01

    Advanced high speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to near 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbofan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eight bladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller nearfield noise data with linear acoustic theory indicate that the theory adequately predicts nearfield noise for subsonic tip speeds, but overpredicts the noise for supersonic tip speeds.

  6. Summary of recent NASA propeller research

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.; Bober, L. J.

    1984-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to near 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbofan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise by about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eightbladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequately predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds.

  7. Fuel-efficient cruise performance model for general aviation piston engine airplanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkinson, R.C.H.

    1982-01-01

    The uses and limitations of typical Pilot Operating Handbook cruise performance data, for constructing cruise performance models suitable for maximizing specific range, are first examined. These data are found to be inadequate for constructing such models. A new model of General Aviation piston-prop airplane cruise performance is then developed. This model consists of two subsystem models: the airframe-propeller-atmosphere subsystem model; and the engine-atmosphere subsystem model. The new model facilitates maximizing specific range; and by virtue of its simplicity and low volume data storage requirements, appears suitable for airborne microprocessor implementation.

  8. Parametric Analyses of Potential Effects on Stratospheric and Tropospheric Ozone Chemistry by a Fleet of Supersonic Business Jets Projected in a 2020 Atmosphere

    NASA Technical Reports Server (NTRS)

    Wey, Chowen (Technical Monitor); Dutta, M.; Patten, K.; Wuebbles, D.

    2004-01-01

    A class of new supersonic aircraft for business purposes is currently under consideration for use starting around 2015 to 2020. These aircraft, which can accommodate about 12 to 13 passengers, will fly at a speed of Mach 1.6 to 2 and are commonly termed as Supersonic Business Jets (SSBJs). A critical issue that needs to be addressed during the conception phase of such aircraft is the potential impact of emissions from such aircraft on the atmosphere especially on stratospheric ozone. Although these SSBJs will be much smaller in size and will have smaller engines than the hypothetical fleets of commercial passenger High Speed Civil Transport (HSCT) aircraft that we have studied previously, they will still emit nitrogen oxides (NOx = NO + NO2), carbon dioxide (CO2), water vapor (H2O) and sulfur, the latter if it is still in the fuel. Thus, it is important to design these SSBJs in a manner so that a projected fleet of these aircraft will not have a significant effect on ozone or on climate. This report analyzes the potential impact of a fleet of SSBJs in a set of parametric analyses that examine the envelope of potential effects on ozone over a range of total fuel burns, emission indices of nitrogen oxides (E.I.(NOx)), and cruise altitudes, using the current version of the UIUC zonally-averaged two-dimensional model of the global atmosphere.

  9. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Tishkoff, Julian M.; Drummond, J. Philip; Edwards, Tim; Nejad, Abdollah S.

    1997-01-01

    The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: (1) examine the current state-of-the-art in hydrocarbon and/or hydrogen fueled scramjet research; (2) define the future direction and needs of basic research in support of scramjet technology; and (3) when appropriate, help transition basic research findings to solve the needs of developmental engineering programs in the area of supersonic combustion and fuels. A series of topical sessions were planned. Opening presentations were designed to focus and encourage group discussion and scientific exchange. The last half-day of the workshop was set aside for group discussion of the issues that were raised during the meeting for defining future research opportunities and directions. The following text attempts to summarize the discussions that took place at the workshop.

  10. General purpose computer program for interacting supersonic configurations: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Crill, W.; Dale, B.

    1977-01-01

    The program ISCON (Interacting Supersonic Configuration) is described. The program is in support of the problem to generate a numerical procedure for determining the unsteady dynamic forces on interacting wings and tails in supersonic flow. Subroutines are presented along with the complete FORTRAN source listing.

  11. Oceanographic Mower Cruise

    NASA Astrophysics Data System (ADS)

    Valencia, J.; Ercilla, G.; Hernández-Molina, F. J.; Casas, D.

    2015-04-01

    The MOWER Cruise has executed a geophysics and geologic expedition in the Gulf of Cádiz (sector adjacent to the Strait of Gibraltar) and west off Portugal, in the framework of the coordinate research project MOWER "Erosive features and associated sandy deposits generated by the Mediterranean Outflow Water (MOW) around Iberia: paleoceanographic, sedimentary & economic implications" (CTM 2012-39599-C03). The main aim of this project is to identify and study the erosional features (terraces and channels) and associated sedimentary deposits (sandy contourites) generated by the Mediterranean Water Masses around the middle continental slope of Iberia (The Mediterranean Outflow Water - MOW - in the Atlantic margins), their Pliocene and Quaternary evolution and their paleoceanographic, sedimentary and economic implications. This objective directly involves the study of alongslope (contourite) processes associated with the MOW and across-slope (turbiditic flows, debris flows, etc.) processes in the sedimentary stacking pattern and evolution of the Iberian margins. The MOWER project and cruise are related to the Integrated Ocean Drilling Program (IODP) Expedition 339 (Mediterranean Outflow). It is also linked and coordinated with CONDRIBER Project "Contourite drifts and associated mass-transport deposits along the SW Iberia margin - implications to slope stability and tsunami hazard assessment" (2013-2015) funded by the Fundação para a Ciência e Tecnologia, Portugal (PTDC/GEO-GEO/4430/2012).

  12. Pilot Deployment of the LDSD Parachute via a Supersonic Ballute

    NASA Technical Reports Server (NTRS)

    Tanner, Christopher L.; O'Farrell, Clara; Gallon, John C.; Clark, Ian G.; Witkowski, Allen; Woodruff, Paul

    2015-01-01

    The Low Density Supersonic Decelerator (LDSD) Project required the use of a pilot system due to the inability to mortar deploy its main supersonic parachute. A mortar deployed 4.4 m diameter supersonic ram-air ballute was selected as the pilot system for its high drag coefficient and stability relative to candidate supersonic parachutes at the targeted operational Mach number of 3. The ballute underwent a significant development program that included the development of a new liquid methanol-based pre-inflation system to assist the ballute inflation process. Both pneumatic and pyrotechnic mortar tests were conducted to verify orderly rigging deployment, bag strip, inflation aid activation, and proper mortar performance. The ballute was iteratively analyzed between fluid and structural analysis codes to obtain aerodynamic and aerothermodynamic estimates as well as estimates of the ballute's structural integrity and shape. The ballute was successfully flown in June 2014 at a Mach number of 2.73 as part of the first LDSD supersonic flight test and performed beyond expectations. Recovery of the ballute indicated that it did not exceed its structural or thermal capabilities. This flight set a historical precedent as it represented the largest ballute to have ever been successfully flown at this Mach number by a NASA entity.

  13. Self-reported stomach upset in travellers on cruise-based and land-based package holidays.

    PubMed

    Launders, Naomi J; Nichols, Gordon L; Cartwright, Rodney; Lawrence, Joanne; Jones, Jane; Hadjichristodoulou, Christos

    2014-01-01

    International travellers are at a risk of infectious diseases not seen in their home country. Stomach upsets are common in travellers, including on cruise ships. This study compares the incidence of stomach upsets on land- and cruise-based holidays. A major British tour operator has administered a Customer Satisfaction Questionnaire (CSQ) to UK resident travellers aged 16 or more on return flights from their holiday abroad over many years. Data extracted from the CSQ was used to measure self-reported stomach upset in returning travellers. From summer 2000 through winter 2008, 6,863,092 questionnaires were completed; 6.6% were from cruise passengers. A higher percentage of land-based holiday-makers (7.2%) reported stomach upset in comparison to 4.8% of cruise passengers (RR = 1.5, p<0.0005). Reported stomach upset on cruises declined over the study period (7.1% in 2000 to 3.1% in 2008, p<0.0005). Over 25% of travellers on land-based holidays to Egypt and the Dominican Republic reported stomach upset. In comparison, the highest proportion of stomach upset in cruise ship travellers were reported following cruises departing from Egypt (14.8%) and Turkey (8.8%). In this large study of self-reported illness both demographic and holiday choice factors were shown to play a part in determining the likelihood of developing stomach upset while abroad. There is a lower cumulative incidence and declining rates of stomach upset in cruise passengers which suggest that the cruise industry has adopted operations (e.g. hygiene standards) that have reduced illness over recent years.

  14. Lateral Reaction Jet Flow Interaction Effects on a Generic Fin-Stabilized Munition in Supersonic Crossflows

    DTIC Science & Technology

    2013-11-01

    freestream conditions ( 0 =300 K). .........22  Table 7. Results from nozzle parameter study, variation with jet gas total temperature (AR=1, M=2.5...end. Two additional supersonic nozzles of AR=2 and AR=8 (figures 3e and 3f) were also investigated, also with a throat diameter of 2.54 mm. The...walls, due to the different flow properties from the gas expansion there. Therefore, the plenum and nozzle exit walls were modeled with an advanced

  15. Career Cruising Impact on the Self Efficacy of Deciding Majors

    ERIC Educational Resources Information Center

    Smother, Anthony William

    2012-01-01

    The purpose of this study was to analyze the impact of "Career Cruising"© on self-efficacy of deciding majors in a university setting. The use of the self-assessment instrument, "Career Cruising"©, was used with measuring the career-decision making self-efficacy in a pre and post-test with deciding majors. The independent…

  16. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 34 Bow Shock Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NASA's F-15B Research Testbed aircraft flies in the supersonic shock wave of a U.S. Navy F-5E as par

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's F-15B Research Testbed aircraft recently flew in the supersonic shock wave of a U.S. Navy F-5E in support of the F-5 Shaped Sonic Boom Demonstration (SSBD) project, part of the Defense Advanced Research Projects Agency's (DARPA) Quiet Supersonic Platform (QSP) program. The flights originated from the NASA Dryden Flight Research Center at Edwards, California. Four flights were flown in order to measure the F-5E's near-field (close-up) sonic boom signature at Mach 1.4, during which more than 50 shockwave patterns were measured at distances as close as 100 feet below the F-5E.

  18. Facility Upgrade/Replacement Tasks ('planned') at the NASA Glenn Research Center 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Giriunas, Julius A.

    2012-01-01

    Facility upgrades and large maintenance tasks needed at the NASA Glenn 10x10 Supersonic Wind Tunnel requires significant planning to make sure implementation proceeds in an efficiently and cost effective manner. Advanced planning to secure the funding, complete design efforts and schedule the installation needs to be thought out years in advance to avoid interference with wind tunnel testing. This presentation describes five facility tasks planned for implementation over the next few years. The main focus of the presentation highlights the efforts on possible replacement of the diesel generator and the rationale behind the effort.

  19. Outbreaks of diarrhoeal illness on passenger cruise ships, 1975-85.

    PubMed Central

    Addiss, D. G.; Yashuk, J. C.; Clapp, D. E.; Blake, P. A.

    1989-01-01

    We reviewed data from the Vessel Sanitation Program (VSP), established by the US Public Health Service in 1975, to describe the epidemiology of shipboard diarrhoeal outbreaks, determine the risk of outbreak-related illness among cruise ship passengers, and evaluate changes in rates and patterns of shipboard diarrhoeal illness since the VSP was implemented. When the programme began, none of the cruise ships passed periodic VSP sanitation inspections; since 1978, more than 50% of ships have met the standard each year. On cruises lasting 3-15 days and having at least 100 passengers, diarrhoeal disease outbreaks investigated by the Centers for Disease Control decreased from 8.1 to 3.0 per 10 million passenger days between 1975-79 and 1980-85. The proportion of outbreaks due to bacterial pathogens (36%) did not change. Seafood cocktail was implicated in 8 of 13 documented food-borne outbreaks. The risk of diarrhoeal disease outbreaks on cruise ships appears to have decreased since implementation of the VSP but has not been eliminated. PMID:2776853

  20. A kernel function method for computing steady and oscillatory supersonic aerodynamics with interference.

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1973-01-01

    The method presented uses a collocation technique with the nonplanar kernel function to solve supersonic lifting surface problems with and without interference. A set of pressure functions are developed based on conical flow theory solutions which account for discontinuities in the supersonic pressure distributions. These functions permit faster solution convergence than is possible with conventional supersonic pressure functions. An improper integral of a 3/2 power singularity along the Mach hyperbola of the nonplanar supersonic kernel function is described and treated. The method is compared with other theories and experiment for a variety of cases.

  1. Supersonic laser spray of aluminium alloy on a ceramic substrate

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Lusquiños, F.; Comesaña, R.; Quintero, F.; Pou, J.

    2007-12-01

    Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry.

  2. Experimental Investigation of Laser-sustained Plasma in Supersonic Argon Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperber, David; Eckel, Hans-Albert; Moessinger, Peter

    Laser-induced energy deposition is widely discussed as a flow control technique in supersonic transportation. In case of thermal laser-plasma upstream of a blunt body, a substantial adaptation of shock wave geometry and magnitude of wave drag is predicted. Related to the research on laser supported detonation, the paper describes the implementation of laser-sustained plasma in a supersonic Argon jet. The stable plasma state is generated by the intersection of a Q-switched Nd:YAG-laser and a continuous wave CO{sub 2}-laser beams, for ignition and maintenance of the plasma respectively. A miniature supersonic Ludwieg tube test facility generates a supersonic jet at velocitiesmore » of Mach 2.1. Modifications of the flow and plasma conditions are investigated and characterized by Schlieren flow visualisation, laser energy transmission and plasma radiation measurements. The results include the discussions of the flow field as well as the required laser and gas parameters.« less

  3. Flow analysis for the nacelle of an advanced ducted propeller at high angle-of-attack and at cruise with boundary layer control

    NASA Technical Reports Server (NTRS)

    Hwang, D. P.; Boldman, D. R.; Hughes, C. E.

    1994-01-01

    An axisymmetric panel code and a three dimensional Navier-Stokes code (used as an inviscid Euler code) were verified for low speed, high angle of attack flow conditions. A three dimensional Navier-Stokes code (used as an inviscid code), and an axisymmetric Navier-Stokes code (used as both viscous and inviscid code) were also assessed for high Mach number cruise conditions. The boundary layer calculations were made by using the results from the panel code or Euler calculation. The panel method can predict the internal surface pressure distributions very well if no shock exists. However, only Euler and Navier-Stokes calculations can provide a good prediction of the surface static pressure distribution including the pressure rise across the shock. Because of the high CPU time required for a three dimensional Navier-Stokes calculation, only the axisymmetric Navier-Stokes calculation was considered at cruise conditions. The use of suction and tangential blowing boundary layer control to eliminate the flow separation on the internal surface was demonstrated for low free stream Mach number and high angle of attack cases. The calculation also shows that transition from laminar flow to turbulent flow on the external cowl surface can be delayed by using suction boundary layer control at cruise flow conditions. The results were compared with experimental data where possible.

  4. WHOI Hawaii Ocean Timeseries Station (WHOTS): WHOTS-3 Mooring Turnaround Cruise Report

    DTIC Science & Technology

    2007-05-01

    ship then maneuvered slowly ahead to allow the buoy to come around to the stem. The winch operator slowly hauled in the slack wire, once the buoy had...Institution and Roger Lukas’ group at the University of Hawaii. The cruise took place between 22 and 29 June 2006. Operations on site were initiated...Griffiths, and a NOAA Hollings Scholar, Terry Smith, participated in the cruise. This report describes the mooring operations , some of the pre-cruise

  5. Contact infection of infectious disease onboard a cruise ship.

    PubMed

    Zhang, Nan; Miao, Ruosong; Huang, Hong; Chan, Emily Y Y

    2016-12-08

    Cruise tourism has become more popular. Long-term personal contact, complex population flows, a lack of medical care facilities, and defective infrastructure aboard most cruise ships is likely to result in the ship becoming an incubator for infectious diseases. In this paper, we use a cruise ship as a research scenario. Taking into consideration personal behavior, the nature and transfer route of the virus across different surfaces, virus reproduction, and disinfection, we studied contact infection of infectious disease on a cruise ship. Using gastroenteritis caused by the norovirus as an example, we analyzed the characteristics of infectious disease propagation based on simulation results under different conditions. We found hand washing are the most important factors affecting virus propagation and passenger infection. It also decides either the total number of virus microorganisms or the virus distribution in different functional areas. The transfer rate between different surfaces is a key factor influencing the concentricity of the virus. A high transfer rate leads to high concentricity. In addition, the risk of getting infected is effectively reduced when the disinfection frequency is above a certain threshold. The efficiency of disinfection of functional areas is determined by total virus number and total contact times of surfaces.

  6. Contact infection of infectious disease onboard a cruise ship

    PubMed Central

    Zhang, Nan; Miao, Ruosong; Huang, Hong; Chan, Emily Y. Y.

    2016-01-01

    Cruise tourism has become more popular. Long-term personal contact, complex population flows, a lack of medical care facilities, and defective infrastructure aboard most cruise ships is likely to result in the ship becoming an incubator for infectious diseases. In this paper, we use a cruise ship as a research scenario. Taking into consideration personal behavior, the nature and transfer route of the virus across different surfaces, virus reproduction, and disinfection, we studied contact infection of infectious disease on a cruise ship. Using gastroenteritis caused by the norovirus as an example, we analyzed the characteristics of infectious disease propagation based on simulation results under different conditions. We found hand washing are the most important factors affecting virus propagation and passenger infection. It also decides either the total number of virus microorganisms or the virus distribution in different functional areas. The transfer rate between different surfaces is a key factor influencing the concentricity of the virus. A high transfer rate leads to high concentricity. In addition, the risk of getting infected is effectively reduced when the disinfection frequency is above a certain threshold. The efficiency of disinfection of functional areas is determined by total virus number and total contact times of surfaces. PMID:27929141

  7. Contact infection of infectious disease onboard a cruise ship

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Miao, Ruosong; Huang, Hong; Chan, Emily Y. Y.

    2016-12-01

    Cruise tourism has become more popular. Long-term personal contact, complex population flows, a lack of medical care facilities, and defective infrastructure aboard most cruise ships is likely to result in the ship becoming an incubator for infectious diseases. In this paper, we use a cruise ship as a research scenario. Taking into consideration personal behavior, the nature and transfer route of the virus across different surfaces, virus reproduction, and disinfection, we studied contact infection of infectious disease on a cruise ship. Using gastroenteritis caused by the norovirus as an example, we analyzed the characteristics of infectious disease propagation based on simulation results under different conditions. We found hand washing are the most important factors affecting virus propagation and passenger infection. It also decides either the total number of virus microorganisms or the virus distribution in different functional areas. The transfer rate between different surfaces is a key factor influencing the concentricity of the virus. A high transfer rate leads to high concentricity. In addition, the risk of getting infected is effectively reduced when the disinfection frequency is above a certain threshold. The efficiency of disinfection of functional areas is determined by total virus number and total contact times of surfaces.

  8. One-dimensional analysis of supersonic two-stage HVOF process

    NASA Astrophysics Data System (ADS)

    Katanoda, Hiroshi; Hagi, Junichi; Fukuhara, Minoru

    2009-12-01

    The one-dimensional calculation of the gas/particle flows of a supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray process was performed. The internal gas flow was solved by numerically integrating the equations of the quasi-one-dimensional flow including the effects of pipe friction and heat transfer. As for the supersonic jet flow, semi-empirical equations were used to obtain the gas velocity and temperature along the center line. The velocity and temperature of the particle were obtained by an one-way coupling method. The material of the spray particle selected in this study is ultra high molecular weight polyethylene (UHMWPE). The temperature distributions in the spherical UHMWPE particles of 50 and 150µm accelerated and heated by the supersonic gas flow was clarified.

  9. Supersonic jet noise generated by large scale instabilities

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Mclaughlin, D. K.; Liu, C. H.

    1982-01-01

    The role of large scale wavelike structures as the major mechanism for supersonic jet noise emission is examined. With the use of aerodynamic and acoustic data for low Reynolds number, supersonic jets at and below 70 thousand comparisons are made with flow fluctuation and acoustic measurements in high Reynolds number, supersonic jets. These comparisons show that a similar physical mechanism governs the generation of sound emitted in he principal noise direction. These experimental data are further compared with a linear instability theory whose prediction for the axial location of peak wave amplitude agrees satisfactorily with measured phased averaged flow fluctuation data in the low Reynolds number jets. The agreement between theory and experiment in the high Reynolds number flow differs as to the axial location for peak flow fluctuations and predicts an apparent origin for sound emission far upstream of the measured acoustic data.

  10. Supersonic investigation of two dimensional hypersonic exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Carboni, Jeanne D.; Shyne, Rickey J.; Leavitt, Laurence D.; Taylor, John G.; Lamb, Milton

    1992-01-01

    An experimental investigation was conducted in the NASA Lewis 10 x 10 ft supersonic Wind Tunnel to determine the performance characteristics of 2D hypersonic exhaust nozzles/afterbodies at low supersonic conditions. Generally, this type of application requires a single expansion ramp nozzle (SERN) that is highly integrated with the airframe of the hypersonic vehicle. At design conditions (hypersonic speeds), the nozzle generally exhibits acceptable performance. At off-design conditions (transonic to mid-supersonic speeds), nozzle performance of a fixed geometry configuration is generally poor. Various 2-D nozzle configurations were tested at off-design conditions from Mach 2.0 to 3.5. Performance data is presented at nozzle pressure ratios from 1 to 35. Jet exhaust was simulated with high-pressure air. To study performance of different geometries, nozzle configurations were varied by interchanging the following model parts: internal upstream contour, expansion ramp, sidewalls, and cowl.

  11. Self-Reported Stomach Upset in Travellers on Cruise-Based and Land-Based Package Holidays

    PubMed Central

    Launders, Naomi J.; Nichols, Gordon L.; Cartwright, Rodney; Lawrence, Joanne; Jones, Jane; Hadjichristodoulou, Christos

    2014-01-01

    Background International travellers are at a risk of infectious diseases not seen in their home country. Stomach upsets are common in travellers, including on cruise ships. This study compares the incidence of stomach upsets on land- and cruise-based holidays. Methods A major British tour operator has administered a Customer Satisfaction Questionnaire (CSQ) to UK resident travellers aged 16 or more on return flights from their holiday abroad over many years. Data extracted from the CSQ was used to measure self-reported stomach upset in returning travellers. Results From summer 2000 through winter 2008, 6,863,092 questionnaires were completed; 6.6% were from cruise passengers. A higher percentage of land-based holiday-makers (7.2%) reported stomach upset in comparison to 4.8% of cruise passengers (RR = 1.5, p<0.0005). Reported stomach upset on cruises declined over the study period (7.1% in 2000 to 3.1% in 2008, p<0.0005). Over 25% of travellers on land-based holidays to Egypt and the Dominican Republic reported stomach upset. In comparison, the highest proportion of stomach upset in cruise ship travellers were reported following cruises departing from Egypt (14.8%) and Turkey (8.8%). Conclusions In this large study of self-reported illness both demographic and holiday choice factors were shown to play a part in determining the likelihood of developing stomach upset while abroad. There is a lower cumulative incidence and declining rates of stomach upset in cruise passengers which suggest that the cruise industry has adopted operations (e.g. hygiene standards) that have reduced illness over recent years. PMID:24427271

  12. Cruise medicine: the dental perspective on health care for passengers during a world cruise.

    PubMed

    Sobotta, Bernhard A J; John, Mike T; Nitschke, Ina

    2008-01-01

    Although more than 100 million passengers have taken a cruise since 1980, it is not known what dental treatment needs occur at sea. The routine dental documentation of a 2-month period at sea on a cruise ship carrying 1,619 passengers was analyzed. The subjects for the study were 57 passengers (3.5% of 1,619), with a mean age of 71 years (+/-9.8 y). Age, gender, number of natural teeth and implants, prosthetic status, diagnosis, treatment performed, percentage of emergency and routine procedures, number of appointments, duration of appointment, time since last visit to the dentist, and cabin category as indicator of socioeconomic status were extracted. Oral health-related quality of life (OHRQoL) was measured using the 14-item Oral Health Impact Profile. Passengers had a mean number of 20 natural teeth plus substantial fixed and removable prosthodontics. Emergency dental treatment accounted for 97% of the chairside time. The three most frequent emergency diagnoses were defective restorations (36%), pulpal disease (20%), and defective prosthesis and caries (both 11.5%). Common emergency therapies provided were complex surgical-prosthodontic rehabilitation, various endodontic treatments, and extractions. Per 1,000 persons/month, passengers required 21.6 emergency plus 2.5 routine appointments; 49% of passengers had seen a dentist within 3 months before going to sea. Passengers do attend their dentist for routine care/checkups before the voyage, yet experience complex dental emergencies. This is due to the presence of a high number of restorations that fail unexpectedly. Some failures are so severe that they would have forced the passenger to abort the cruise had there been no dental service available. The ease of access to quality dental care may explain the relatively low level of perceived problems as characterized by OHRQoL scores.

  13. What Per Cent Cruise?

    Treesearch

    George M. Furnival

    1953-01-01

    Cruising timber is ordinarily a job of sampling, in which the quantity of timber on a tract is estimated from the quantity on a part of the tract. The difficulty is to determine what part (per cent) of the tract should be sampled to attain a given level of accuracy. This article gives a rule-ofthumb that can be applied with fair reliability to most Southern forests....

  14. Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1976-01-01

    Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.

  15. Yet More Visualized JAMSTEC Cruise and Dive Information

    NASA Astrophysics Data System (ADS)

    Tomiyama, T.; Hase, H.; Fukuda, K.; Saito, H.; Kayo, M.; Matsuda, S.; Azuma, S.

    2014-12-01

    Every year, JAMSTEC performs about a hundred of research cruises and numerous dive surveys using its research vessels and submersibles. JAMSTEC provides data and samples obtained during these cruises and dives to international users through a series of data sites on the Internet. The "DARWIN (http://www.godac.jamstec.go.jp/darwin/e)" data site disseminates cruise and dive information. On DARWIN, users can search interested cruises and dives with a combination search form or an interactive tree menu, and find lists of observation data as well as links to surrounding databases. Document catalog, physical sample databases, and visual archive of dive surveys (e. g. in http://www.godac.jamstec.go.jp/jmedia/portal/e) are directly accessible from the lists. In 2014, DARWIN experienced an update, which was arranged mainly for enabling on-demand data visualization. Using login users' functions, users can put listed data items into the virtual basket and then trim, plot and download the data. The visualization tools help users to quickly grasp the quality and characteristics of observation data. Meanwhile, JAMSTEC launched a new data site named "JDIVES (http://www.godac.jamstec.go.jp/jdives/e)" to visualize data and sample information obtained by dive surveys. JDIVES shows tracks of dive surveys on the "Google Earth Plugin" and diagrams of deep-sea environmental data such as temperature, salinity, and depth. Submersible camera images and links to associated databases are placed along the dive tracks. The JDVIES interface enables users to perform so-called virtual dive surveys, which can help users to understand local geometries of dive spots and geological settings of associated data and samples. It is not easy for individual researchers to organize a huge amount of information recovered from each cruise and dive. The improved visibility and accessibility of JAMSTEC databases are advantageous not only for second-hand users, but also for on-board researchers themselves.

  16. Preliminary Investigation of a New Type of Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Ferri, Antonio; Nucci, Louis M

    1946-01-01

    A supersonic inlet with supersonic deceleration of the flow entirely outside of the inlet is considered. A particular arrangement with fixed geometry having a central body with a circular annular intake is analyzed, and it is shown theoretically that this arrangement gives high pressure recovery for a large range of Mach number and mass flow and therefore is practical for use on supersonic airplanes and missiles. For some Mach numbers the drag coefficient for this type of inlet is larger than the drag coefficient for the type of inlet with supersonic compression entirely inside, but the pressure recovery is larger for all flight conditions. The differences in drag can be eliminated for the design Mach number. Experimental results confirm the results of the theoretical analysis and show that pressure recoveries of 95 percent for Mach numbers of 1.33 and 1.52, 92 percent for a Mach number of 1.72, and 86 percent for a Mach number oof 2.10 are possible with the configurations considered. If the mass flow decreases, the total drag coefficient increases gradually and the pressure recovery does not change appreciably.

  17. Gain and temperature in a slit nozzle supersonic chemical oxygen-iodine laser with transonic and supersonic injection of iodine

    NASA Astrophysics Data System (ADS)

    Rosenwaks, Salman; Barmashenko, Boris D.; Bruins, Esther; Furman, Dov; Rybalkin, Victor; Katz, Arje

    2002-05-01

    Spatial distributions of the gain and temperament across the flow were studied for transonic and supersonic schemes of the iodine injection in a slit nozzle supersonic chemical oxygen-iodine laser as a function of the iodine and secondary nitrogen flow rate, jet penetration parameter and gas pumping rate. The mixing efficiency for supersonic injection of iodine is found to be much larger than for transonic injection, the maximum values of the gain being approximately 0.65 percent/cm for both injection schemes. Measurements of the gain distribution as a function of the iodine molar flow rate nI2 were carried out. For transonic injection the optimal value of nI2 at the flow centerline is smaller than that at the off axis location. The temperature is distributed homogeneously across the flow, increasing only in the narrow boundary layers near the walls. Opening a leak downstream of the cavity in order to decease the Mach number results in a decrease of the gain and increase of the temperature. The mixing efficiency in this case is much larger than for closed leak.

  18. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    NASA Technical Reports Server (NTRS)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  19. Ocean Drilling Program: Cruise Information

    Science.gov Websites

    Morgan. Cruise Information The Ocean Drilling Program ended on 30 September 2003 and has been succeeded by the Integrated Ocean Drilling Program (IODP). The U.S. Implementing Organization (IODP-USIO ) (Consortium for Ocean Leadership, Lamont-Doherty Earth Observatory, and Texas A&M University) continues to

  20. A Qualitative Piloted Evaluation of the Tupolev Tu-144 Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Rivers, Robert A.; Jackson, E. Bruce; Fullerton, C. Gordon; Cox, Timothy H.; Princen, Norman H.

    2000-01-01

    Two U.S. research pilots evaluated the Tupolev Tu-144 supersonic transport aircraft on three dedicated flights: one subsonic and two supersonic profiles. The flight profiles and maneuvers were developed jointly by Tupolev and U.S. engineers. The vehicle was found to have unique operational and flight characteristics that serve as lessons for designers of future supersonic transport aircraft. Vehicle subsystems and observed characteristics are described as are flight test planning and ground monitoring facilities. Maneuver descriptions and extended pilot narratives for each flight are included as appendices.

  1. Supersonic Wave Interference Affecting Stability

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.

    1958-01-01

    Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.

  2. Review of V/STOL lift/cruise fan technology

    NASA Technical Reports Server (NTRS)

    Rolls, L. S.; Quigley, H. C.; Perkins, R. G., Jr.

    1976-01-01

    This paper presents an overview of supporting technology programs conducted to reduce the risk in the joint NASA/Navy Lift/Cruise Fan Research and Technology Aircraft Program. The aeronautical community has endeavored to combine the low-speed and lifting capabilities of the helicopter with the high-speed capabilities of the jet aircraft; recent developments have indicated a lift/cruise fan propulsion system may provide these desired characteristics. NASA and the Navy have formulated a program that will provide a research and technology aircraft to furnish viability of the lift/cruise fan aircraft through flight experiences and obtain data on designs for future naval and civil V/STOL aircraft. The supporting technology programs discussed include: (1) design studies for operational aircraft, a research and technology aircraft, and associated propulsion systems; (2) wind-tunnel tests of several configurations; (3) propulsion-system thrust vectoring tests; and (4) simulation. These supporting technology programs have indicated that a satisfactory research and technology aircraft program can be accomplished within the current level of technology.

  3. Numerical simulation of steady supersonic flow. [spatial marching

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Steger, J. L.

    1981-01-01

    A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.

  4. A Level-set based framework for viscous simulation of particle-laden supersonic flows

    NASA Astrophysics Data System (ADS)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-06-01

    Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.

  5. Developing eco-adaptive cruise control systems.

    DOT National Transportation Integrated Search

    2014-01-01

    The study demonstrates the feasibility of two eco-driving applications which reduces vehicle fuel consumption and greenhouse gas emissions. In particular, the study develops an eco-drive system that combines eco-cruise control logic with state-of-the...

  6. Euler analysis comparison with LDV data for an advanced counter-rotation propfan at cruise

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Podboy, Gary G.

    1990-01-01

    A fine mesh Euler solution of the F4/A4 unducted fan (UDF) model flowfield is compared with laser Doppler velocimeter (LDV) data taken in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel. The comparison is made primarily at one axial plane downstream of the front rotor where the LDV particle lag errors are reduced. The agreement between measured and predicted velocities in this axial plane is good. The results show that a dense mesh is needed in the centerbody stagnation region to minimize entropy generation that weakens the aft row passage shock. The predicted radial location of the tip vortex downstream of the front rotor agrees well with the experimental results but the strength is overpredicted. With 40 points per chord line, the integrated performance quantities are nearly converged, but more points are needed to resolve passage shocks and flow field details.

  7. Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.

  8. Investigation of chemically reacting and radiating supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Mani, M.; Tiwari, S. N.

    1986-01-01

    The two-dimensional spatially elliptic Navier-Stokes equations are used to investigate the chemically reacting and radiating supersonic flow of the hydrogen-air system between two parallel plates and in a channel with a ten degree compression-expansion ramp at the lower boundary. The explicit unsplit finite-difference technique of MacCormack is used to advance the governing equations in time until convergence is achieved. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The tangent slab approximation is employed in the radiative flux formation. Both pseudo-gray and nongray models are used to represent the absorption characteristics of the participating species. Results obtained for specific conditions indicate that the radiative interaction can have a significant influence on the flow field.

  9. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System

    NASA Technical Reports Server (NTRS)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon

    2014-01-01

    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  10. A study of air breathing rockets. 3: Supersonic mode combustors

    NASA Astrophysics Data System (ADS)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  11. Participation in the 1996 Arlindo Cruise to the Indonesian Seas

    NASA Technical Reports Server (NTRS)

    Marra, John

    1997-01-01

    The objective of Arlindo-Productivity is to understand the factors responsible for regional differences in the response of phytoplankton and zooplankton to the SE and NW Monsoons in Indonesia. The hypothesis is that an interplay between circulation and shoaling of the nutricline, as a response to the monsoons, regulates productivity in the Indonesian Seas. My o@jective for the cruise in 1996 was to continue our collaboration with Indonesian scientists by conducting a set of hydrographic, primary production and spectral irradiance observations in the Indonesian Seas. This grant paid for shipping, travel and incidental costs associated with participation in the cruise in December, 1996. Ship costs were borne by the Indonesian Institute of Sciences as part of the collaborative effort. A plan for Arlindo in 1996 was agreed upon in March, 1996, by Indonesian scientists together with Arnold Gordon. The plan called for a 20-day physical oceanography and mooring cruise in November, 1996, followed by a 5-day bio-optical cruise. The bio-optical cruise departed from, and returned to, Ambon, and sampled in the Banda Sea. We completed a series of chlorophyll analyses, both a sampling of surface variability and depth profiles in the Banda Sea. We also completed three MER profiles for depth profiles of spectral irradiance. These data have a useful by-product in that they can be used for vicarious calibration of the OCTS sensor aboard the ADEOS satellite. As such, the data has been transmitted to NASDA in Japan for their use.

  12. Dr. Kenneth Plotkins Myriad Contribution to the National Aeronautics and Space Administrations Supersonic Mission

    NASA Technical Reports Server (NTRS)

    Haering, Edward A.

    2017-01-01

    The world as a whole and NASA in particular, owes a large debt of gratitude to Dr. Kenneth Plotkin for his decades of service in the field of sonic boom research and advancement of quiet supersonic transportation. This presentation will highlight the contributions of Dr. Plotkin to a myriad of NASA projects. One of the largest efforts was the assembly and continual improvement of sonic boom propagation software tools, collectively called PCBoom, which allowed the analysis of real and imagined vehicles from Mach cutoff conditions to the hypersonic.

  13. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  14. Characteristics of the advanced supersonic technology AST-105-1 configured for transpacific range with Pratt and Whitney aircraft variable stream control engines

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.

    1979-01-01

    Credence to systems weights and assurance that the noise study AST concept can be balanced were studied. Current titanium structural technology is assumed. A duct-burning turbofan variable stream control engine (VSCE), with noise reduction potential through use of a coannular nozzle was used. With 273 passengers, range of the AST-105-1 for a cruise Mach number of 2.62 is essentially transpacific. Lift-to-drag ratio is slightly higher than for previous AST configurations. It is trimmable over a center-of-gravity range of 4.7m (15.5 ft). Inherent high positive effective dihedral, typical of arrow-wing configurations in high-lift approach, would limit AST-105-1 to operating in crosswinds of 11.6 m/sec (22.4 kt), or less, with 75 percent of available lateral control. Normal power takeoff with cutback results in noise in excess of Federal Aviation Regulation Part 36 but less than for conventional procedure takeoff. Results of advanced (noncertificated) programmed throttle takeoff and approach procedures, not yet optimized, indicate that such can be an important additional method noise reduction.

  15. Cavity-actuated supersonic mixing and combustion control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K.H.; Schadow, K.C.

    1994-11-01

    Compressible shear layers in supersonic jets are quite stable and spread very slowly compared with incompressible shear layers. In this paper, a novel use of a cavity-actuated forcing technique is demonstrated for increasing the spreading rate of compressible shear layers. Periodic modulations were applied to Mach 2.0 reacting and nonreacting jets using the cavities that were attached at the exit of a circular supersonic nozzle. The effect of cavity-actuated forcing was studied as a function of the cavity geometry, in particular, the length and the depth of the cavity. When the cavities were tuned to certain frequencies, large-scale highly coherentmore » structures were produced in the shear layers substantially increasing the growth rate. The cavity excitation was successfully applied to both cold and hot supersonic jets. When applied to cold Mach 2.0 air jets. the cavity-actuated forcing increased the spreading rate of the initial shear layers with the convective Mach number (M[sub C]) of 0.85 by a factor of three. For high-temperature Mach 2.0 jets with M[sub C] of 1.4, a 50% increase in the spreading rate was observed with the forcing. Finally, the cavity-actuated forcing was applied to reacting supersonic jets with ethylene-oxygen afterburning. For this case, the forcing caused a 20%--30% reduction in the afterburning flame length and modified the afterburning intensity significantly. The direction of the modification depended on the characteristics of the afterburning flames. The intensity was reduced with forcing for unstable flames with weak afterburning while it was increased for stable flames with strong afterburning.« less

  16. Design and performance of energy efficient propellers for Mach 0.8 cruise

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Blaha, B. J.; Mitchell, G. A.; Wikete, J. E.

    1977-01-01

    The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of 14 to 40 percent may be realized by the use of an advanced high-speed turboprop. This turboprop must be capable of high efficiency at Mach 0.8 cruise above 9.144 km altitude if it is to compete with turbofan powered commercial aircraft. Several advanced aerodynamic concepts were investigated in recent wind tunnel tests under NASA sponsorship on two propeller models. These concepts included aerodynamically integrated propeller/nacelles, area ruling, blade sweep, reduced blade thickness and power (disk) loadings several times higher than conventional designs. The aerodynamic design methodology for these models is discussed. In addition, some of the preliminary test results are presented which indicate that propeller net efficiencies near 80 percent were obtained for high disk loading propellers operating at Mach 0.8.

  17. Design and performance of energy efficient propellers for Mach 0. 8 cruise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelson, D.C.; Blaha, B.J.; Mitchell, G.A.

    1977-01-01

    The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of 14 to 40 percent may be realized by the use of an advanced high-speed turboprop. This turboprop must be capable of high efficiency at Mach 0.8 cruise above 9.144 km altitude if it is to compete with turbofan powered commercial aircraft. Several advanced aerodynamic concepts were investigated in recent wind tunnel tests under NASA sponsorship on two propeller models. These concepts included aerodynamically integratedmore » propeller/nacelles, area ruling, blade sweep, reduced blade thickness and power (disk) loadings several times higher than conventional designs. The aerodynamic design methodology for these models is discussed. In addition, some of the preliminary test results are presented which indicate that propeller net efficiencies near 80 percent were obtained for high disk loading propellers operating at Mach 0.8.« less

  18. Experimental Supersonic Combustion Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne

    1998-01-01

    Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.

  19. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    NASA Astrophysics Data System (ADS)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  20. 14 CFR 91.819 - Civil supersonic airplanes that do not comply with part 36.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil supersonic airplanes that do not... RULES Operating Noise Limits § 91.819 Civil supersonic airplanes that do not comply with part 36. (a) Applicability. This section applies to civil supersonic airplanes that have not been shown to comply with the...