These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Advanced technology for future regional transport aircraft  

NASA Technical Reports Server (NTRS)

In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

Williams, L. J.

1982-01-01

2

Advanced Transportation Technology - Science Modules  

NSDL National Science Digital Library

With support from the Pennsylvania Department of Education, GREATT and CSATS have developed a number of transportation-related instructional modules suitable for middle and high school. Examples include: Fuel Cells Watch as a reversible fuel cell powers a car using only water! This activity will help demystify the science behind fuel cells and dispel their high-tech aura. Students will make sense of the fuel cell they see operating by learning about hydrolysis and reverse hydrolysis, viewing online animated tutorials, and reading about their history. Chemistry: Multiple Class PeriodsProperties of Metals Who would travel on a bridge that bends under the weight of the automobiles that traverse it? In this activity, students learn the importance of analyzing properties of materials. They learn to use Youngs Modulus of Elasticity equation and devise an experiment to compare the strengths of different types of metals. Physics: Multiple class periods MERC Online Reviewer Comments: The material presents a well documented set of laboratory experiments to illustrate basic concepts for automotive transport systems, although many of these could be used for other purposes.

3

Overview of NASA Advanced Transportation Technologies Program  

NASA Technical Reports Server (NTRS)

A General Overview of NASA Advanced Transportation Technologies Program is presented. The contents include: 1) Center-TRACON Automation System (CTAS) which provides automation tools to assist air traffic controllers in planning and controlling air traffic arriving into major airports; 2) Surface Movement Advisor (SMA) for expediting and optimizing aircraft operations on the airport surface; and 3) Terminal Area Productivity Program (TAP), which is aimed at improving airport throughput in instrument meteorological conditions to match that attainable in clear weather.

Ashford, Rose; Jacobsen, R. A. (Technical Monitor)

1998-01-01

4

Benefits of advanced propulsion technology for the advanced supersonic transport  

NASA Technical Reports Server (NTRS)

Future supersonic transports will have to provide improvement in the areas of economics, range, and emissions relative to the present generation of supersonic transports, as well as meeting or improving upon FAR 36 noise goals. This paper covers the promising propulsion systems including variable-cycle engine concepts for long-range supersonic commercial transport application. The benefits of applying advanced propulsion technology to solve the economic and environmental problems are reviewed. The advanced propulsion technologies covered are in the areas of structures, materials, cooling techniques, aerodynamics, variable engine geometry, jet noise suppressors, acoustic treatment, and low-emission burners. The results of applying the advanced propulsion technology are presented in terms of improvement in overall system takeoff gross weight and return on investment.

Hines, R. W.; Sabatella, J. A.

1973-01-01

5

Application of advanced technologies to future military transports  

NASA Technical Reports Server (NTRS)

Long range military transport technologies are addressed with emphasis of defining the potential benefits of the hybrid laminar flow control (HLFC) concept currently being flight tested. Results of a 1990's global range transport study are presented showing the expected payoff from application of advanced technologies. Technology forecast for military transports is also presented.

Clark, Rodney L.; Lange, Roy H.; Wagner, Richard D.

1990-01-01

6

National Institute for Advanced Transportation Technology ANNUAL REPORT  

E-print Network

National Institute for Advanced Transportation Technology ANNUAL REPORT PREPARED FOR UNIVERSITY) to transportation problems for the state of idaho, the Pacific northwest, and the united States, and to prepare our in the united States. · We are a national leader in developing technology to reduce congestion on arterials

Kyte, Michael

7

National Institute for Advanced Transportation Technology  

E-print Network

and Control Ahmed Abdel-Rahim Michael Dixon Brian Johnson Axel Krings Michael Kyte Paul Oman Richard Wall Richard Wells Center for Clean Vehicle Technology Donald Blackketter Steven Beyerlein Karen R. Den Miller Richard Nielsen Ed Schmeckpeper Technology Transfer Center Doug Moore, Director Bruce Drewes #12

Kyte, Michael

8

National Institute for Advanced Transportation Technology PREPARED FOR UNIVERSITY TRANSPORTATION CENTERS PROGRAM  

E-print Network

National Institute for Advanced Transportation Technology PREPARED FOR UNIVERSITY TRANSPORTATION) to transportation problems for the state of Idaho, the Pacific Northwest, and the United States, and to prepare our in the United States. · We are a national leader in developing technology to reduce congestion on arterials

Kyte, Michael

9

National Institute for Advanced Transportation Technology PREPARED FOR UNIVERSITY TRANSPORTATION CENTERS PROGRAM  

E-print Network

National Institute for Advanced Transportation Technology PREPARED FOR UNIVERSITY TRANSPORTATION) to transportation problems for the state of idaho, the Pacific northwest, and the united States, and to prepare our in the united States. · We are a national leader in developing technology to reduce congestion on arterials

Kyte, Michael

10

National Institute for Advanced Transportation Technology PREPARED FOR UNIVERSITY TRANSPORTATION CENTERS PROGRAM  

E-print Network

1 National Institute for Advanced Transportation Technology PREPARED FOR UNIVERSITY TRANSPORTATION) to transportation problems for the state of Idaho, the Pacific Northwest, and the United States, and to prepare our in the United States. · We are a national leader in developing technology to reduce congestion on arterials

Kyte, Michael

11

Follow-On Technology Requirement Study for Advanced Subsonic Transport  

NASA Technical Reports Server (NTRS)

A study was conducted to define and assess the critical or enabling technologies required for a year 2005 entry into service (EIS) engine for subsonic commercial aircraft, with NASA Advanced Subsonic Transport goals used as benchmarks. The year 2005 EIS advanced technology engine is an Advanced Ducted Propulsor (ADP) engine. Performance analysis showed that the ADP design offered many advantages compared to a baseline turbofan engine. An airplane/ engine simulation study using a long range quad aircraft quantified the effects of the ADP engine on the economics of typical airline operation. Results of the economic analysis show the ADP propulsion system provides a 6% reduction in direct operating cost plus interest, with half the reduction resulting from reduced fuel consumption. Critical and enabling technologies for the year 2005 EIS ADP were identified and prioritized.

Wendus, Bruce E.; Stark, Donald F.; Holler, Richard P.; Funkhouser, Merle E.

2003-01-01

12

Advanced cockpit technology for future civil transport aircraft  

NASA Technical Reports Server (NTRS)

A review is presented of advanced cockpit technology for future civil transport aircraft, covering the present state-of-the-art and major technologies, including flat-panel displays, graphics and pictorial displays. Pilot aiding/automation/human-centered design and imaging sensor/flight systems technology (for low-visibility operations) are also presented. NASA Langley Research Center's recent results in pictorial displays and on future developments in large-screen display technologies are discussed. Major characteristics foreseen for the future high-speed civil transport include fault-tolerant digital avionics and controls/displays with extensive human-centered automation, and unusually clean, uncluttered interface with natural crew interaction via touch, voice/tactile means.

Hatfield, Jack J.; Parrish, Russell V.

1990-01-01

13

Advanced Air Transportation Technologies Project, Final Document Collection  

NASA Technical Reports Server (NTRS)

This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

Mogford, Richard H.; Wold, Sheryl (Editor)

2008-01-01

14

Fixed Wing Project: Technologies for Advanced Air Transports  

NASA Technical Reports Server (NTRS)

The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

2014-01-01

15

The impact of emerging technologies on an advanced supersonic transport  

NASA Technical Reports Server (NTRS)

The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

Driver, C.; Maglieri, D. J.

1986-01-01

16

Human factors of advanced technology (glass cockpit) transport aircraft  

NASA Technical Reports Server (NTRS)

A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

Wiener, Earl L.

1989-01-01

17

Assessment of the impact of advanced air-transport technology  

NASA Technical Reports Server (NTRS)

The long term prospects for commercial supersonic transportation appear attractive enough to keep supersonic research active and reasonably healthy. On the other hand, the uncertainties surrounding an advanced supersonic transport, (AST) specifically fuel price, fuel availability and noise, are too significant to warrant an accelerated research and development program until they are better resolved. It is estimated that an AST could capture about $50 billion (1979 dollars) of the potential $150 billion in sales up to the year 2010.

Maxwell, R. L.; Dickinson, L. V., Jr.

1981-01-01

18

Study of the application of advanced technologies to long range transport aircraft. Volume 2: Advanced technology program recommendations  

NASA Technical Reports Server (NTRS)

The benefits of the application of advanced technology to future transport aircraft were investigated. The noise reduction goals established by the CARD (Civil Aviation Research and Development) study for the 1981-1985 time period can be satisfied. Reduced terminal area and airway congestion can result from use of advanced on-board systems and operating procedures. The use of advanced structural design concepts can result in greatly reduced gross weight and improved operating economics. The full potential of these benefits can be realized in a 1985 airplane by implementing a research and development program that is funded to an average level of approximately $55 million per year over a ten year period.

1972-01-01

19

An advanced concept secondary power systems study for an advanced transport technology aircraft  

NASA Technical Reports Server (NTRS)

The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

1972-01-01

20

Technology requirements for advanced earth orbital transportation systems. Volume 2: Summary report  

NASA Technical Reports Server (NTRS)

The results of efforts to identify the technology requirements for advanced earth orbital transportation systems are reported. Topics discussed include: (1) design and definition of performance potential of vehicle systems, (2) advanced technology assessment, and (3) extended performance. It is concluded that the horizontal take-off concept is the most feasible system considered.

Hepler, A. K.; Bangsund, E. L.

1978-01-01

21

Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion  

SciTech Connect

This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

Per F. Peterson

2010-03-01

22

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

ScienceCinema

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2013-05-29

23

An assessment of advanced displays and controls technology applicable to future space transportation systems  

NASA Technical Reports Server (NTRS)

The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

Hatfield, Jack J.; Villarreal, Diana

1990-01-01

24

An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment  

NASA Technical Reports Server (NTRS)

The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

Sallee, G. P.

1973-01-01

25

NATIONAL INSTITUTE FOR ADVANCED TRANSPORTATION TECHNOLOGY FUNDING PERIOD JULY 1, 2005 THROUGH JUNE 30, 2006 -FY05  

E-print Network

1 NATIONAL INSTITUTE FOR ADVANCED TRANSPORTATION TECHNOLOGY FUNDING PERIOD JULY 1, 2005 THROUGH JUNE 30, 2006 - FY05 PREPARED FOR UNIVERSITY TRANSPORTATION CENTERS PROGRAM RESEARCH AND INNOVATIVE TECHNOLOGY U.S. DEPARTMENT OF TRANSPORTATION ANNUAL REPORT #12;2 Cover photo: Rendering of NIATT's planned

Kyte, Michael

26

Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology  

NASA Technical Reports Server (NTRS)

This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

Chiaramonte, Francis P.; Joshi, Jitendra A.

2004-01-01

27

Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm  

NASA Technical Reports Server (NTRS)

This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

2013-01-01

28

Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements  

NASA Technical Reports Server (NTRS)

Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

1972-01-01

29

Application of pneumatic lift and control surface technology to advanced transport aircraft  

NASA Technical Reports Server (NTRS)

The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be predicted performance of advanced transports resulting from these devices. Suggestions will be presented for additional innovative high-payoff research leading to further confirmation of these concepts and their application to advanced efficient commercial transport aircraft.

Englar, Robert J.

1996-01-01

30

Technology requirements for advanced earth orbital transportation systems. Volume 3: Summary report - dual mode propulsion  

NASA Technical Reports Server (NTRS)

The impact of dual-mode propulsion on cost-effective technology requirements for advanced earth-orbital transportation systems is considered. Additional objectives were to determine the advantages of the best dual mode concept relative to the LO2/LH2 concept of the basic study. Normal technology requirements applicable to horizontal take-off and landing single-stage-to-orbit systems utilizing dual mode rocket propulsion were projected to the 1985 time period. These technology projections were then incorporated in a vehicle parametric design analysis for two different operational concepts of a dual mode propulsion system. The resultant performance, weights and costs of each concept were compared. The selected propulsion concept was evaluated to confirm the parametric trending/scaling of weights and to optimize the configuration.

Hepler, A. K.; Bangsund, E. L.

1978-01-01

31

Application of Advanced Technologies to Small, Short-haul Air Transports  

NASA Technical Reports Server (NTRS)

A study was conducted of the application of advanced technologies to small, short-haul transport aircraft. A three abreast, 30 passenger design for flights of approximately 100 nautical miles was evaluated. Higher wing loading, active flight control, and a gust alleviation system results in improved ride quality. Substantial savings in fuel and direct operating cost are forecast. An aircraft of this configuration also has significant benefits in forms of reliability and operability which should enable it to sell a total of 450 units through 1990, of which 80% are for airline use.

Adcock, C.; Coverston, C.; Knapton, B.

1980-01-01

32

National Institute for Advanced Transportation Technology A N N U A L R E P O R T A U G U S T 2 0 0 2  

E-print Network

1 National Institute for Advanced Transportation Technology A N N U A L R E P O R T · A U G U S T 2 TRANSPORTATION CENTERS PROGRAM RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION U.S. DEPARTMENT OF TRANSPORTATION #12;2 Theme: Advanced Transportation Technology M I S S I O N Our mission is to work with industry, government

Kyte, Michael

33

Advanced Range Technologies  

NASA Technical Reports Server (NTRS)

Historically, the majority of the total life cycle cost for any complex system is attributed to operational and support activities. Therefore, a primary strategy for reducing life cycle costs should be to develop and infuse spaceport technologies in future space transportation systems. Advanced technologies will benefit current and future spaceports on the earth, moon, Mars, and beyond

Nelson, Richard A.

2000-01-01

34

A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology  

NASA Technical Reports Server (NTRS)

A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

1998-01-01

35

Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters  

NASA Technical Reports Server (NTRS)

Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

Gregory, J. W.

1975-01-01

36

Performance potential of an advanced technology Mach 3 turbojet engine installed on a conceptual high-speed civil transport  

NASA Technical Reports Server (NTRS)

The performance of an advanced technology conceptual turbojet optimized for a high-speed civil aircraft is presented. This information represents an estimate of performance of a Mach 3 Brayton (gas turbine) cycle engine optimized for minimum fuel burned at supersonic cruise. This conceptual engine had no noise or environmental constraints imposed upon it. The purpose of this data is to define an upper boundary on the propulsion performance for a conceptual commercial Mach 3 transport design. A comparison is presented demonstrating the impact of the technology proposed for this conceptual engine on the weight and other characteristics of a proposed high-speed civil transport. This comparison indicates that the advanced technology turbojet described could reduce the gross weight of a hypothetical Mach 3 high-speed civil transport design from about 714,000 pounds to about 545,000 pounds. The aircraft with the baseline engine and the aircraft with the advanced technology engine are described.

Morris, Shelby J., Jr.; Geiselhart, Karl A.; Coen, Peter G.

1989-01-01

37

Advanced Technology Subsonic Transport Study: N+3 Technologies and Design Concepts  

NASA Technical Reports Server (NTRS)

Conceptual Research Corporation, the Science of the Possible, has completed a two-year study of concepts and technologies for future airliners in the 180-passenger class. This NASA-funded contract was primarily focused on the ambitious goal of a 70 percent reduction in fuel consumption versus the market-dominating Boeing 737-800. The study is related to the N+3 contracts awarded in 2008 by NASA s Aeronautics Research Mission Directorate to teams led by Boeing, GE Aviation, MIT, and Northrop Grumman, but with more modest goals and funding. CRC s contract featured a predominant emphasis on propulsion and fuel consumption, but since fuel consumption depends upon air vehicle design as much as on propulsion technology, the study included notional vehicle design, analysis, and parametric studies. Other NASA goals including NOx and noise reduction are of long-standing interest but were not highlighted in this study, other than their inclusion in the propulsion system provided to CRC by NASA. The B-737-800 was used as a benchmark, parametric tool, and design point of departure. It was modeled in the RDS-Professional aircraft design software then subjected to extensive parametric variations of parasitic drag, drag-due-to-lift, specific fuel consumption, and unsized empty weight. These studies indicated that the goal of a 70 percent reduction in fuel consumption could be attained with roughly a 30 percent improvement in all four parameters. The results were then fit to a Response Surface and coded for ease of use in subsequent trade studies. Potential technologies to obtain such savings were identified and discussed. More than 16 advanced concept designs were then prepared, attempting to investigate almost every possible emerging concept for application to this class airliner. A preliminary assessment of these concepts was done based on their total wetted area after design normalization of trimmed maximum lift. This assessment points towards a Tailless Airliner concept which was designed and analyzed in some detail. To make it work, a retracting canard and an all-moving chin rudder were employed, along with the use of the Active Aeroelastic Wing technology. Results indicate that a 60 percent savings in fuel burn may be credibly attained, but this depends upon a lot of technology maturation, concept development, and risk reduction. This should be expected-such a dramatic reduction in fuel consumption is a "game changer" in the world of commercial aviation. It won t be easy.

Raymer, Daniel P.; Wilson, Jack; Perkins, H. Douglas; Rizzi, Arthur; Zhang, Mengmeng; RamirezPuentes, Alfredo

2011-01-01

38

Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Program review  

NASA Technical Reports Server (NTRS)

This report summarizes the Integrated Application of Active Controls (IAAC) Technology to an Advanced Subsonic Transport Project, established as one element of the NASA/Boeing Energy Efficient Transport Technology Program. The performance assessment showed that incorporating ACT into an airplane designed to fly approximately 200 passengers approximately 2,000 nmi could yield block fuel savings from 6 to 10 percent at the design range. The principal risks associated with incorporating these active control functions into a commercial airplane are those involved with the ACT system implementation. The Test and Evaluation phase of the IAAC Project focused on the design, fabrication, and test of a system that implemented pitch axis fly-by-wire, pitch axis augmentation, and wing load alleviation. The system was built to be flight worthy, and was planned to be experimentally flown on the 757. The system was installed in the Boeing Digital Avionics Flight Controls Laboratory (DAFCL), where open loop hardware and software tests, and a brief examination of a direct drive valve (DDV) actuation concept were accomplished. The IAAC Project has shown that ACT can be beneficially incorporated into a commercial transport airplane. Based on the results achieved during the testing phase, there appears to be no fundamental reason(s) that would preclude the commercial application of ACT, assuming an appropriate development effort is included.

1986-01-01

39

CTOL Transport Technology, 1978. [conferences  

NASA Technical Reports Server (NTRS)

Technology associated with advanced conventional takeoff and landing transport aircraft is discussed. Topics covered include: advanced aerodynamics and active controls; operations and safety; and advanced systems. Emphasis is placed on increased energy efficiency.

1978-01-01

40

High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems  

NASA Technical Reports Server (NTRS)

Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In addition, the temperature dependence of the coil's resistance was measured from 77 to 300 K. Following this series of tests, the coil was transported to NHMFL facilities in Los Alamos, NM, and pulsed to 2 T using an existing capacitor bank pulse generator. The coil was completely successful in producing the desired field without damage to the windings.

Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)

2001-01-01

41

Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System  

NASA Technical Reports Server (NTRS)

The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.

Frazzini, R.; Vaughn, D.

1975-01-01

42

Application of advanced technologies to small, short-haul transport aircraft (STAT)  

NASA Technical Reports Server (NTRS)

The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length.

Kraus, E. F.; Mall, O. D.; Awker, R. W.; Scholl, J. W.

1982-01-01

43

Potential impacts of advanced aerodynamic technology on air transportation system productivity  

NASA Technical Reports Server (NTRS)

Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

Bushnell, Dennis M. (editor)

1994-01-01

44

Application of advanced technologies to derivatives of current small transport aircraft  

NASA Technical Reports Server (NTRS)

Mission requirements of the derivative design were the same as the baseline to readily identify the advanced technology benefits achieved. Advanced technologies investigated were in the areas of propulsion, structures and aerodynamics and a direct operating cost benefit analysis conducted to identify the most promising. Engine improvements appear most promising and combined with propeller, airfoil, surface coating and composite advanced technologies give a 21-25 percent DOC savings. A 17 percent higher acquisition cost is offset by a 34 percent savings in fuel used.

Renze, P. P.; Terry, J. E.

1981-01-01

45

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

1999-10-15

46

Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study  

NASA Technical Reports Server (NTRS)

The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

1982-01-01

47

Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: current and advanced act control system definition study  

SciTech Connect

The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability (2) angle of attack limiting (3) lateral/directional augmented stability (4) gust load alleviation (5) maneuver load control and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

Not Available

1982-04-01

48

Advancing technologies  

Microsoft Academic Search

Attention is given to fast breeder reactors, the design of supersonic transport aircraft, aircraft turbofan design, superconducting d.c. motors and superconducting a.c. generators, fiber-reinforced composites, batteries for electric vehicles, the accuracy of machine tools, self-lubricating materials, polymer engineering, and ultrahigh-speed centrifuges. The emphasis in the papers is on practical applications, e.g., superconducting d.c. generators for ship propulsion, industrial drives or

E. G. Semler

1977-01-01

49

Composite transport wing technology development: Design development tests and advanced structural concepts  

NASA Technical Reports Server (NTRS)

Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

Griffin, Charles F.; Harvill, William E.

1988-01-01

50

Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices  

NASA Technical Reports Server (NTRS)

The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

1981-01-01

51

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

2000-01-30

52

Study of the application of advanced technologies to laminar flow control systems for subsonic transports. Volume 1: Summary  

NASA Technical Reports Server (NTRS)

A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10,186 km (5500 n mi), advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft, analyses were conducted to define maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports, the 200- and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28.2%, reductions in direct operating costs up to 8.4%, and improvements in fuel efficiency, in ssm/lb of fuel, up to 39.4%. Compared to current commercial transports at the design range, the LFC study aircraft demonstrate improvements in fuel efficiency up to 131%. Research and technology requirements requisite to the development of LFC transport aircraft were identified.

Sturgeon, R. F.; Bennett, J. A.; Etchberger, F. R.; Ferrill, R. S.; Meade, L. E.

1976-01-01

53

National Institute for Advanced Transportation Technology A N N U A L R E P O R T A U G U S T 2 0 0 1  

E-print Network

1 National Institute for Advanced Transportation Technology A N N U A L R E P O R T · A U G U S T 2 TRANSPORTATION CENTERS PROGRAM RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION U.S DEPARTMENT OF TRANSPORTATION #12 that will improve the design and operation of transportation vehicles and systems. V i s i o n NIATT is a Center

Kyte, Michael

54

A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel  

NASA Technical Reports Server (NTRS)

The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

1972-01-01

55

Advanced Technology Vehicle Testing  

SciTech Connect

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energys Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01

56

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

This is the second quarterly progress report for Year 3 of the ACTS project. It includes a review of progress made in: (1) Flow Loop development and (2) research tasks during the period of time between Oct 1, 2001 and Dec. 31, 2001. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Collection System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Affonso Lourenco; Evren Ozbayoglu; Lei Zhou

2002-01-30

57

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

This is the fourth quarterly progress report for Year-3 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between April 1, 2002 and June 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Separation System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)''; (c) Research project (Task 9b): ''Study of Foam Flow Behavior Under EPET Conditions''; (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''; (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b); (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S); (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Evren Ozbayoglu; Lei Zhou

2002-07-30

58

Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint  

SciTech Connect

This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

Sparks, W.; Singer, M.

2010-06-01

59

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

This is the first quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between July 1, 2002 and Sept. 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System, (b) New Research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings (Task 12), Viscosity of Foam under EPET (Task 9b). (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk, Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

2002-10-30

60

System and Propagation Availability Analysis for NASA's Advanced Air Transportation Technologies  

NASA Technical Reports Server (NTRS)

This report summarizes the research on the System and Propagation Availability Analysis for NASA's project on Advanced Air Transportation Technologies (AATT). The objectives of the project were to determine the communication systems requirements and architecture, and to investigate the effect of propagation on the transmission of space information. In this report, results from the first year investigation are presented and limitations are highlighted. To study the propagation links, an understanding of the total system architecture is necessary since the links form the major component of the overall architecture. This study was conducted by way of analysis, modeling and simulation on the system communication links. The overall goals was to develop an understanding of the space communication requirements relevant to the AATT project, and then analyze the links taking into consideration system availability under adverse atmospheric weather conditions. This project began with a preliminary study of the end-to-end system architecture by modeling a representative communication system in MATLAB SIMULINK. Based on the defining concepts, the possibility of computer modeling was determined. The investigations continue with the parametric studies of the communication system architecture. These studies were also carried out with SIMULINK modeling and simulation. After a series of modifications, two end-to-end communication links were identified as the most probable models for the communication architecture. Link budget calculations were then performed in MATHCAD and MATLAB for the identified communication scenarios. A remarkable outcome of this project is the development of a graphic user interface (GUI) program for the computation of the link budget parameters in real time. Using this program, one can interactively compute the link budget requirements after supplying a few necessary parameters. It provides a framework for the eventual automation of several computations required in many experimental NASA missions. For the first year of this project, most of the stated objectives were accomplished. We were able to identify probable communication systems architectures, model and analyze several communication links, perform numerous simulation on different system models, and then develop a program for the link budget analysis. However, most of the work is still unfinished. The effect of propagation on the transmission of information in the identified communication channels has not been performed. Propagation effects cannot be studied until the system under consideration is identified and characterized. To study the propagation links, an understanding of the total communications architecture is necessary. It is important to mention that the original project was intended for two years and the results presented here are only for the first year of research. It is prudent therefore that these efforts be continued in order to obtain a complete picture of the system and propagation availability requirements.

Ugweje, Okechukwu C.

2000-01-01

61

Status of advanced turboprop technology  

NASA Technical Reports Server (NTRS)

Research is reviewed in the following areas: turboprop powered transport aircraft; wind tunnel aerodynamic and acoustics tests of model propellers; turboprop maintenance; and wind tunnel tests on airframe-turboprop interactions. Continued development of the technology for advanced turboprop transport was emphasized.

Dugan, J. F.; Miller, B. A.; Sagerser, D. A.

1978-01-01

62

Application of advanced high speed turboprop technology to future civil short-haul transport aircraft design  

NASA Technical Reports Server (NTRS)

With an overall goal of defining the needs and requirements for short-haul transport aircraft research and development, the objective of this paper is to determine the performance and noise impact of short-haul transport aircraft designed with an advanced turboprop propulsion system. This propulsion system features high-speed propellers that have more blades and reduced diameters. Aircraft are designed for short and medium field lengths; mission block fuel and direct operating costs (DOC) are used as performance measures. The propeller diameter was optimized to minimize DOC. Two methods are employed to estimate the weight of the acoustic treatment needed to reduce interior noise to an acceptable level. Results show decreasing gross weight, block fuel, DOC, engine size, and optimum propfan diameter with increasing field length. The choice of acoustic treatment method has a significant effect on the aircraft design.

Conlon, J. A.; Bowles, J. V.

1978-01-01

63

CTOL Transport Technology, 1978. [conferences  

NASA Technical Reports Server (NTRS)

Technology generated by NASA and specifically associated with advanced conventional takeoff and landing transport aircraft is reported. Topics covered include: aircraft propulsion; structures and materials; and laminar flow control.

1978-01-01

64

Advanced composite fuselage technology  

NASA Technical Reports Server (NTRS)

Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and sandwich process development.

Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

1993-01-01

65

Advanced Transportation Video  

NSDL National Science Digital Library

This video provides an overview of the Center for Transportation Technologies and Systems and its research on alternative fuel vehicles and why they have less impact than current fossil fuel-burning cars on the environment.

National Renewable Energy Laboratory (NREL)

66

NC Smart Fleet Initiative is supported in part through the Clean Fuels Advanced Technology project with funding from the NC Department of Transportation.  

E-print Network

with funding from the NC Department of Transportation. Smart Fleet Qualification Levels NCSC (and partnersNC Smart Fleet Initiative is supported in part through the Clean Fuels Advanced Technology project additional Clean Transportation Activities in all three categories: o Education, Outreach, and Promotion o

67

Benefits associated with advanced technologies applied to a high-speed civil transport concept  

NASA Technical Reports Server (NTRS)

Results of a first-order assessment of the mission performance benefits associated with the technology improvements and goals of the Phase II High-Speed Research (HSR) Program are presented. A breakdown of the four major disciplines resulted in the following estimated TOGW savings from the 1990 vehicle: propulsion at 14.3 percent, structures at 11.7 percent, flight-deck systems at 4.0 percent, and aerodynamics at 15.0 percent. Based on 100 percent success of the HSR Phase II proposed technology advancements, the overall combined impact is estimated to result in a 45 percent reduction in TOGW from a 1990 entry-into-service (EIS) date, which could result in a viable 2005 EIS vehicle with an acceptable TOGW that meets Stage III community noise restrictions. Through supersonic laminar flow control and the possible reduction in reserve fuel requirements resulting from synthetic vision capability, the potential exists for an additional 9.6 percent reduction in TOGW.

Ozoroski, L. P.; Shields, E. W.; Fenbert, J. W.; Mcelroy, M. O.

1993-01-01

68

NIST ADVANCED TECHNOLOGY PROGRAM  

EPA Science Inventory

Not-yet-possible technologies are the domain of the National Institute of Standards and Technology (NIST) Advanced Technology Program. The ATP is a unique partnership between government and private industry to accelerate the development of high-risk technologies that promise sign...

69

Advanced Technology Vehicle Program of the Maryland Department of Transportation and Metropolitan Washington Council of Governments  

SciTech Connect

A multi-year Clean Alternative program is designed to integrate low-emission advanced technology vehicles into high mileage/high-fuel-use public and private fleets, which are major contributors to high pollution levels. The primary goal of the program is reduced emissions of nitrogen oxides (NO{sub x}) from on-road vehicles in the Maryland counties surrounding Washington, DC. The program is targeted at fleets operating in Calvert, Charles, Frederick, Montgomery and Prince George's counties. Eligible types of vehicle applications include taxicabs, shuttles, buses, and delivery vans and trucks. Other types may qualify if they meet certain annual fuel-use or mileage criteria. Minimum requirements have been established for participating companies, including size of fleet and age of firm. The first vehicles under this program were placed in service in 1999. The Clean Alternative provides financial incentives to selected qualified firms that purchase original equipment manufacturer (OEM) vehicles or heavy-duty engines that have been certified to Low Emission Vehicle (LEV) emission levels or lower. This program is intended to be flexible and to evolve over time. For instance, in coming years the standards for acceptable emission levels may be tightened. The level of financial incentive will be determined on a case-by-case basis and other types of incentives may be provided in some cases. The range of counties included may be extended in the future or criteria for participation changed to help meet the air quality goals of the region.

Freudberg, Stuart A.

2001-03-31

70

Advanced subsonic transport propulsion  

NASA Technical Reports Server (NTRS)

A brief review of the current NASA Energy Efficient Engine (E(3)) Project is presented. Included in this review are the factors that influenced the design of these turbofan engines and the advanced technology incorporated in them to reduce fuel consumption and improve environmental characteristics. In addition, factors such as the continuing spiral in fuel cost, that could influence future aircraft propulsion systems beyond those represented by the E(3) engines, are also discussed. Advanced technologies that will address these influencing factors and provide viable future propulsion systems are described. The potential importance of other propulsion system types, such as geared fans and turboshaft engines, is presented.

Nored, D. L.; Ciepluch, C. C.; Chamberlain, R.; Meleason, E. T.; Kraft, G. A.

1981-01-01

71

[Advanced Composites Technology Initiatives  

NASA Technical Reports Server (NTRS)

This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.

Julian, Mark R.

2002-01-01

72

Transportation technology program: Strategic plan  

NASA Technical Reports Server (NTRS)

The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.

1991-01-01

73

Advanced subsonic transport propulsion  

NASA Technical Reports Server (NTRS)

Examination of future subsonic commercial aircraft propulsion trends begins with a brief review of the current NASA Energy Efficient Engine (E3) Project. Included in this review are the factors that influenced the design of these turbofan engines and the advanced technology incorporated in them to reduce fuel consumption and improve environmental characteristics. In addition, factors such as the continuing spiral in fuel cost, that could influence future aircraft propulsion systems beyond those represented by the E3 engines, are also discussed. Advanced technologies that will address these influencing factors and provide viable future propulsion systems are described. And finally, the potential importance of other propulsion system types, such as geared fans and turboshaft engines, is presented.

Nored, D. L.; Ciepluch, C. C.; Chamberlin, R.; Meleason, E. T.; Kraft, G. A.

1981-01-01

74

Development of information and market creation mechanisms for promoting advanced energy efficient transportation technologies. Final report to the U.S. Department of Energy  

SciTech Connect

This report summarizes the work undertaken by ACEEE under the U.S. DOE project entitled ''Development of Information and Market Creation Mechanisms for Promoting Advanced Energy Efficient Transportation Technologies.'' A description of completed tasks is given, followed by recommendations and proposed next steps for ACEEE's work in this area.

DeCicco, John; Bradley, John; Richman, Nessa

2000-10-25

75

NC Smart Fleet Initiative is supported in part through the Clean Fuels Advanced Technology project with funding from the NC Department of Transportation.  

E-print Network

with funding from the NC Department of Transportation. NC Smart Fleet Application Instructions DownloadNC Smart Fleet Initiative is supported in part through the Clean Fuels Advanced Technology project.com/wp-content/uploads/NC- Smart-Fleet-Application.xlsm Complete Organization and Application Information · Primary and Secondary

76

NC Smart Fleet Initiative is supported in part through the Clean Fuels Advanced Technology project with funding from the NC Department of Transportation.  

E-print Network

with funding from the NC Department of Transportation. NC Smart Fleet Benefits & Background Become an NC SmartNC Smart Fleet Initiative is supported in part through the Clean Fuels Advanced Technology project Fleet to increase efficiency and reduce emissions. Be recognized for your efforts! NC Smart Fleet

77

Advanced Environmental Monitoring Technologies  

NASA Technical Reports Server (NTRS)

Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

Jan, Darrell

2004-01-01

78

Space Transportation Technology Workshop: Propulsion Research and Technology  

NASA Technical Reports Server (NTRS)

This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

2000-01-01

79

Overview of the Batteries for Advanced Transportation  

E-print Network

· New anodes and cathodes New systems (Li-S, Li-air) New cell designs (bipolar cells) 1-3 years 3Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Venkat Srinivasan of the DOE/EERE FreedomCAR and Vehicle Technologies Program to develop batteries for vehicular applications

Knowles, David William

80

Transportation technology at Sandia  

SciTech Connect

Industrial and military activities in the US produce large amounts of hazardous mixed waste, which includes both radioactive and toxic substances. The already overburdened environment is faced with the task of safely disposing of these complex wastes. A very important aspect of this effort is the safe and economical transportation of radioactive and toxic chemical wastes to projected repositories. Movement of wastes to the repository sites is accomplished by a combination of truck, rail, ship, and air. The DOE directs transportation activities including cask development technology for use in single or multimode transport. Sandia National Laboratories` Transportation Technology programs provide the technology and know-how to support DOE in achieving safe, efficient, and economical packaging and transportation of nuclear and other hazardous waste materials. This brochure describes the Transportation Technology programs and the specialized techniques and capabilities they offer to prospective users.

NONE

1994-12-31

81

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

Stefan Miska; Troy Reed; Ergun Kuru

2004-09-30

82

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

2000-07-30

83

Can advanced technology improve future commuter aircraft  

NASA Technical Reports Server (NTRS)

The short-haul service abandoned by the trunk and local airlines is being picked up by the commuter airlines using small turboprop-powered aircraft. Most of the existing small transport aircraft currently available represent a relatively old technology level. However, several manufacturers have initiated the development of new or improved commuter transport aircraft. These aircraft are relatively conservative in terms of technology. An examination is conducted of advanced technology to identify those technologies that, if developed, would provide the largest improvements for future generations of these aircraft. Attention is given to commuter aircraft operating cost, aerodynamics, structures and materials, propulsion, aircraft systems, and technology integration. It is found that advanced technology can improve future commuter aircraft and that the largest of these improvements will come from the synergistic combination of technological advances in all of the aircraft disciplines. The most important goals are related to improved fuel efficiency and increased aircraft productivity.

Williams, L. J.; Snow, D. B.

1981-01-01

84

Innovative Transportation Technologies  

NSDL National Science Digital Library

Of interest to urban planners, environmentalists, transportation planners, engineers, and others from a variety of disciplines, this University of Washington site provides information on unconventional transportation technologies with an eye to replace cars and trucks with environmentally sound mass transit and freight options. Special attention is therefore paid to non-auto technologies. A few of the innovative transportation designs included here are supported vehicles like the Cabintaxi and suspended vehicles like the Sky Train. While some of the descriptions of these unusual vehicles are on-site, there are also many hyperlinks leading users to external sites containing new and fascinating technology.

Komerska, Richard.; Schneider, Jerry B.

85

Conservation and renewable energy technologies for transportation  

NASA Astrophysics Data System (ADS)

The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the U.S. transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

1990-11-01

86

Advanced gearbox technology  

NASA Technical Reports Server (NTRS)

An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress.

Anderson, N. E.; Cedoz, R. W.; Salama, E. E.; Wagner, D. A.

1987-01-01

87

Advanced structures technology and aircraft safety  

NASA Technical Reports Server (NTRS)

NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.

Mccomb, H. G., Jr.

1983-01-01

88

Outlook for advanced concepts in transport aircraft  

NASA Technical Reports Server (NTRS)

Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports.

Conner, D. W.

1980-01-01

89

Advanced technology lunar telescope  

NASA Technical Reports Server (NTRS)

A new type of telescope pointing system designed specifically for space and lunar applications will be discussed, based upon a prototype advanced technology telescope under investigation. The focus here will be the system of hybrid superconductor magnetic bearings (HSMB) used to provide isolation support and steering functions. HSMB's are combinations of high temperature superconductors, permanent magnets, and coils, being passive (requiring no power), noncontact, and essentially frictionless. These also are well suited to long-term unattended operation in the space environment. The characteristics of these subsystems, their expected behavior under space vacuum, and thermal and radiation environments are discussed.

Wilson, Thomas L.; Chu, Wei-Kan; Chen, Peter C.

1994-01-01

90

Advanced optical instruments technology  

NASA Technical Reports Server (NTRS)

The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William (uw319824)

1992-01-01

91

A review of advanced turboprop transport aircraft  

NASA Astrophysics Data System (ADS)

The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

Lange, Roy H.

92

Technology transfer: Transportation  

NASA Technical Reports Server (NTRS)

The successful application of aerospace technology to problems related to highways and rail and rapid transit systems is described with emphasis on the use of corrosion resistant paints, fire retardant materials, and law enforcement. Possible areas for the use of spinoff from NASA technology by the California State Department of Corrections are identified. These include drug detection, security and warning systems, and the transportation and storage of food. A communication system for emergency services is also described.

Anyos, T.; Christy, L.; Lizak, R.; Wilhelm, J.

1978-01-01

93

Technology transfer-transportation  

NASA Technical Reports Server (NTRS)

The application of aerospace technology to the solution of urban public transportation problems is considered. Data are given on highway and railway systems with particular attention given to safety devices, fuel economy, and measures for profiling railways and highways. The development of streamlined truck bodies, to reduce air drag, and efficient brake systems for light trucks and other vehicles was also dealt with.

Anyos, T.; Lizak, R.; Wilhelm, J.; Hirschberg, K.

1974-01-01

94

Advanced Aerogel Technology  

NASA Technical Reports Server (NTRS)

The JPL Aerogel Laboratory has made aerogels for NASA flight missions, e.g., Stardust, 2003 Mars Exploration Rovers and the 2011 Mars Science Laboratory, as well as NASA research projects for the past 14 years. During that time it has produced aerogels of a range of shapes, sizes, densities and compositions. Research is ongoing in the development of aerogels for future sample capture and return missions and for thermal insulation for both spacecraft and scientific instruments. For the past several years, the JPL Aerogel Laboratory has been developing, producing and testing a new composite material for use as the high temperature thermal insulation in the Advanced Sterling Radioisotope Generator (ASRG) being developed by Lockheed Martin and NASA. The composite is made up of a glass fiber felt, silica aerogel, Titania powder, and silica powder. The oxide powders are included to reduce irradiative heat transport at elevated temperatures. These materials have thermal conductivity values that are the same as the best commercially produced high temperature insulation materials, and yet are 40% lighter. By greatly reducing the amount of oxide powder in the composite, the density, and therefore for the value of the thermal conductivity, would be reduced. The JPL Aerogel Laboratory has experimented with using glass fiber felt, expanded glass fiber felt and loose fibers to add structural integrity to silica aerogels. However, this work has been directed toward high temperature applications. By conducting a brief investigation of the optimal combination of fiber reinforcement and aerogel density, a durable, extremely efficient thermal insulation material for ambient temperature applications would be produced. If a transparent thermal insulation is desired, then aerogel is an excellent candidate material. At typical ambient temperatures, silica aerogel prevents the transport of heat via convection and conduction due to its highly porous nature. To prevent irradiative thermal transport, silica aerogel can be used in conjunction with a transparent polymeric material that blocks infrared radiation. The transparency of silica aerogel is typically greater than 90% for visible wavelengths from 500 nm to 900 nm for a 5 mm long path length.

Jones, Steven

2013-01-01

95

NASA's Advanced Space Transportation Hypersonic Program  

NASA Technical Reports Server (NTRS)

NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

2002-01-01

96

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

2003-09-30

97

Integrated application of active controls (IAAC) technology to an advanced subsonic transport project. Initial ACT configuration design study  

NASA Technical Reports Server (NTRS)

The initial ACT configuration design task of the integrated application of active controls (IAAC) technology project within the Energy Efficient Transport Program is summarized. A constrained application of active controls technology (ACT) resulted in significant improvements over a conventional baseline configuration previously established. The configuration uses the same levels of technology, takeoff gross weight, payload, and design requirements/objectives as the baseline, except for flying qualities, flutter, and ACT. The baseline wing is moved forward 1.68 m. The configuration incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail size), lateral/directional-augmented stability, an angle of attack limiter, wing load alleviation, and flutter mode control. This resulted in a 930 kg reduction in airplane operating empty weight and a 3.6% improvement in cruise efficiency, yielding a 13% range increase. Adjusted to the 3590 km baseline mission range, this amounts to 6% block fuel reduction and a 15.7% higher incremental return on investment, using 1978 dollars and fuel cost.

1980-01-01

98

Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Wing planform study and final configuration selection  

NASA Technical Reports Server (NTRS)

This report summarizes the Wing Planform Study Task and Final Configuration Selection of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology (except for ACT), takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail sizes), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3590 km) (1938 nmi), this amounts to 10% block fuel reduction. Good takeoff performance at high-altitude airports on a hot day was also achieved. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation and begin the required control system development and testing.

1981-01-01

99

Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Wing planform study and final configuration selection  

NASA Technical Reports Server (NTRS)

The Wing Planform Study and Final Configuration Selection Task of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program is documented. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology, takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 44% reduction in horizontal tail size), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3589 km 1938 nmi), this amounts to 10% block-fuel reduction. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation, and begin the required control system development and test.

1981-01-01

100

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

This Quarter has been divided between running experiments and the installation of the drill-pipe rotation system. In addition, valves and piping were relocated, and three viewports were installed. Detailed design work is proceeding on a system to elevate the drill-string section. Design of the first prototype version of a Foam Generator has been finalized, and fabrication is underway. This will be used to determine the relationship between surface roughness and ''slip'' of foams at solid boundaries. Additional cups and rotors are being machined with different surface roughness. Some experiments on cuttings transport with aerated fluids have been conducted at EPET. Theoretical modeling of cuttings transport with aerated fluids is proceeding. The development of theoretical models to predict frictional pressure losses of flowing foam is in progress. The new board design for instrumentation to measure cuttings concentration is now functioning with an acceptable noise level. The ultrasonic sensors are stable up to 190 F. Static tests with sand in an annulus indicate that the system is able to distinguish between different sand concentrations. Viscometer tests with foam, generated by the Dynamic Test Facility (DTF), are continuing.

Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

2003-07-30

101

Technology benefits for very large subsonic transports  

NASA Technical Reports Server (NTRS)

Results are presented for a study conducted at the NASA Langley Research Center which examined the effects of advanced technologies on the performance and size of very large, long-range subsonic transports. The study was performed using the Flight Optimization System (FLOPS). a multidisciplinary system of computer programs for conceptual and preliminary design and evaluation of advanced aircraft concepts. A four-engine, baseline configuration representative of existing transport technology was defined having a payload of 412 passengers plus baggage and a design range of 7300 nmi. New 600, 800 and 1000-passenger advanced transport concepts were then developed and compared to the baseline configuration. The technologies examined include 1995 entry-into-service (ELS) engines, high aspect ratio supercritical wings, composite materials for the wing, fuselage and empennage, and hybrid laminar flow control (HLFC). All operational and regulatory requirements and constraints, such as fuel reserves, balanced field length, and second segment climb gradient were satisfied during the design process. The effect of the advanced technologies on the size, weight and performance of the advanced transport concepts are presented. In addition, the sensitivity of the takeoff gross weight of the advanced transport concepts to increases in design range and payload, and designing for stretch capability are also discussed.

Arcara, Philip C., Jr.; Bartlett, Dennis W.; Mcgraw, Marvin E., Jr.; Geiselhart, Karl A.

1993-01-01

102

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

Experiments on the flow loop are continuing. Improvements to the software for data acquisition are being made as additional experience with three-phase flow is gained. Modifications are being made to the Cuttings Injection System in order to improve control and the precision of cuttings injection. The design details for a drill-pipe Rotation System have been completed. A US Patent was filed on October 28, 2002 for a new design for an instrument that can generate a variety of foams under elevated pressures and temperatures and then transfer the test foam to a viscometer for measurements of viscosity. Theoretical analyses of cuttings transport phenomena based on a layered model is under development. Calibrations of two nuclear densitometers have been completed. Baseline tests have been run to determine wall roughness in the 4 different tests sections (i.e. 2-in, 3-in, 4-in pipes and 5.76-in by 3.5-in annulus) of the flow loop. Tests have also been conducted with aerated fluids at EPET conditions. Preliminary experiments on the two candidate aqueous foam formulations were conducted which included rheological tests of the base fluid and foam stability reports. These were conducted after acceptance of the proposal on the Study of Cuttings Transport with Foam Under Elevated Pressure and Elevated Temperature Conditions. Preparation of a test matrix for cuttings-transport experiments with foam in the ACTF is also under way. A controller for instrumentation to measure cuttings concentration and distribution has been designed that can control four transceivers at a time. A prototype of the control circuit board was built and tested. Tests showed that there was a problem with radiated noise. AN improved circuit board was designed and sent to an external expert to verify the new design. The new board is being fabricated and will first be tested with static water and gravel in an annulus at elevated temperatures. A series of viscometer tests to measure foam properties have begun using foam generated by the Dynamic Test Facility (DTF). Investigation of techniques to measure foam quality and size, size distribution and shape of bubbles is continuing.

Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

2003-04-30

103

Advanced stitching technology  

NASA Technical Reports Server (NTRS)

In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.

Scardino, Frank L.

1992-01-01

104

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

Final design of the mast was completed (Task 5). The mast is consisting of two welded plate girders, set next to each other, and spaced 14-inches apart. Fabrication of the boom will be completed in two parts solely for ease of transportation. The end pivot connection will be made through a single 2-inch diameter x 4 feet-8 inch long 316 SS bar. During installation, hard piping make-ups using Chiksan joints will connect the annular section and 4-inch return line to allow full movement of the mast from horizontal to vertical. Additionally, flexible hoses and piping will be installed to isolate both towers from piping loads and allow recycling operations respectively. Calibration of the prototype Foam Generator Cell has been completed and experiments are now being conducted. We were able to generate up to 95% quality foam. Work is currently underway to attach the Thermo-Haake RS300 viscometer and install a view port with a microscope to measure foam bubble size and bubble size distribution. Foam rheology tests (Task 13) were carried out to evaluate the rheological properties of the proposed foam formulation. After successful completion of the first foam test, two sets of rheological tests were conducted at different foam flow rates while keeping other parameters constant (100 psig, 70F, 80% quality). The results from these tests are generally in agreement with the previous foam tests done previously during Task 9. However, an unanticipated observation during these tests was that in both cases, the frictional pressure drop in 2 inch pipe was lower than that in the 3 inch and 4 inch pipes. We also conducted the first foam cuttings transport test during this quarter. Experiments on aerated fluids without cuttings have been completed in ACTF (Task 10). Gas and liquid were injected at different flow rates. Two different sets of experiments were carried out, where the only difference was the temperature. Another set of tests was performed, which covered a wide range of pressure and temperature. Several parameters were measured during these tests including differential pressure and mixture density in the annulus. Flow patterns during the aerated fluids test have been observed through the view port in the annulus and recorded by a video camera. Most of the flow patterns were slug flow. Further increase in gas flow rate changed the wavy flow pattern to slug flow. At this stage, all of the planned cuttings transport tests have been completed. The results clearly show that temperature significantly affects the cuttings transport efficiency of aerated muds, in addition to the liquid flow rate and gas liquid ratio (GLR). Since the printed circuit board is functioning (Task 11) with acceptable noise level we were able to conduct several tests. We used the newly designed pipe test section to conduct tests. We tested to verify that we can distinguish between different depths of sand in a static bed of sand in the pipe section. The results indicated that we can distinguish between different sand levels. We tested with water, air and a mix of the two mediums. Major modifications (installation of magnetic flow meter, pipe fittings and pipelines) to the dynamic bubble characterization facility (DTF, Task 12) were completed. An Excel program that allows obtaining the desired foam quality in DTF was developed. The program predicts the foam quality by recording the time it takes to pressurize the loop with nitrogen.

Stefan Miska; Nicholas Takach; Kaveh Ashenayi

2004-01-31

105

Conceptual study of an advanced supersonic technology transport (AST-107) for transpacific range using low-bypass-ratio turbofan engines  

NASA Technical Reports Server (NTRS)

An advanced supersonic technology configuration concept designated the AST-107, using a low bypass ratio turbofan engine, is described and analyzed. The aircraft had provisions for 273 passengers arranged five abreast. The cruise Mach number was 2.62. The mission range for the AST-107 was 8.48 Mm (4576 n.mi.) and an average lift drag ratio of 9.15 during cruise was achieved. The available lateral control was not sufficient for the required 15.4 m/s (30 kt) crosswind landing condition, and a crosswind landing gear or a significant reduction in dihedral effect would be necessary to meet this requirement. The lowest computed noise levels, including a mechanical suppressor noise reduction of 3 EPNdB at the flyover and sideline monitoring stations, were 110.3 EPNdB (sideline noise), 113.1 EPNdB (centerline noise) and 110.5 EPNdB (approach noise).

Morris, S. J., Jr.; Foss, W. E., Jr.; Neubauer, M. J., Jr.

1980-01-01

106

Space Transportation Systems Technologies  

NASA Technical Reports Server (NTRS)

This document is the final report by the Science Applications International Corporation (SAIC) on contracted support provided to the National Aeronautics and Space Administration (NASA) under Contract NAS8-99060, 'Space Transportation Systems Technologies'. This contract, initiated by NASA's Marshall Space Flight Center (MSFC) on February 8, 1999, was focused on space systems technologies that directly support NASA's space flight goals. It was awarded as a Cost-Plus-Incentive-Fee (CPIF) contract to SAIC, following a competitive procurement via NASA Research Announcement, NRA 8-21. This NRA was specifically focused on tasks related to Reusable Launch Vehicles (RLVs). Through Task Area 3 (TA-3), "Other Related Technology" of this NRA contract, SAIC extensively supported the Space Transportation Directorate of MSFC in effectively directing, integrating, and setting its mission, operations, and safety priorities for future RLV-focused space flight. Following an initially contracted Base Year (February 8, 1999 through September 30, 1999), two option years were added to the contract. These were Option Year 1 (October 1, 1999 through September 30, 2000) and Option Year 2 (October 1, 2000 through September 30, 2001). This report overviews SAIC's accomplishments for the Base Year, Option Year 1, and Option Year 2, and summarizes the support provided by SAIC to the Space Transportation Directorate, NASA/MSFC.

Laue, Jay H.

2001-01-01

107

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

We have tested the loop elevation system. We raised the mast to approximately 25 to 30 degrees from horizontal. All went well. However, while lowering the mast, it moved laterally a couple of degrees. Upon visual inspection, severe spalling of the concrete on the face of the support pillar, and deformation of the steel support structure was observed. At this time, the facility is ready for testing in the horizontal position. A new air compressor has been received and set in place for the ACTS test loop. A new laboratory has been built near the ACTS test loop Roughened cups and rotors for the viscometer (RS300) were obtained. Rheologies of aqueous foams were measured using three different cup-rotor assemblies that have different surface roughness. The relationship between surface roughness and foam rheology was investigated. Re-calibration of nuclear densitometers has been finished. The re-calibration was also performed with 1% surfactant foam. A new cuttings injection system was installed at the bottom of the injection tower. It replaced the previous injection auger. A mechanistic model for cuttings transport with aerated mud has been developed. Cuttings transport mechanisms with aerated water at various conditions were experimentally investigated. A total of 39 tests were performed. Comparisons between the model predictions and experimental measurements show a satisfactory agreement. Results from the ultrasonic monitoring system indicated that we could distinguish between different sand levels. We also have devised ways to achieve consistency of performance by securing the sensors in the caps in exactly the same manner as long as the sensors are not removed from the caps. A preliminary test was conducted on the main flow loop at 100 gpm flow rate and 20 lb/min cuttings injection rate. The measured bed thickness using the ultrasonic method showed a satisfactory agreement with nuclear densitometer readings. Thirty different data points were collected after the test section was put into liquid holdup mode. Readings indicated 2.5 to 2.7 inches of sand. The corresponding nuclear densitometers readings were between 2.5 and 3.1 inches. Lab tests were conducted to check an on-line viewing system. Sharp images were obtained through a CCD camera with the use of a ring light or fiber light. A prototype device for measuring the average bubble size for the foam generator-viscometer was constructed from a 1/2 inch fitting. The new windowed cell has been received and installed on the ACTF Bubble Characterization Cart.

Stefan Miska; Nicholas Takach; Kaveh Ashenayi

2004-07-31

108

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect

ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with water under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic drilling fluids. Initial calibration tests have been conducted by using water. Currently, the base oil of the Petrobras synthetic drilling fluid is being tested. Foam flow experiments have been conducted. Currently, more experiments are being conducted while data are being analyzed to characterize the rheology of the foam. Cuttings transport experiments have been conducted using air, water and cuttings. Preliminary results have shown that it may not be possible to avoid cuttings bed deposition under any practical combination of air and water flow rates. Foam stability analyses have been conducted. Effects of salt and oil concentration on the foam stability have been investigated. A software for controlling the data sampling and data storage during cuttings monitoring process have been developed.

Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu; Sri Suresh Kumar Thiroveedhula

2000-04-30

109

HyperTransport Technology: Simplifying System Design  

NSDL National Science Digital Library

HyperTransport technology is an architecture that allows data transfer between chips in excess of ten gigabytes per second. This white paper from Advanced Micro Devices (AMD), released in October 2002, considers the potential of HyperTransport in designing an input/ output bus for a microprocessor. The technology, while accommodating high speed demands, requires relatively little power, making it ideal for a wide range of applications. The report outlines the advantages of HyperTransport technology over other bus designs, concluding that it can be easier to implement while having superior performance at a lower cost.

2002-01-01

110

Recent advances in FCC technology  

Microsoft Academic Search

Although the fluid catalytic cracking (FCC) process has been commercially established for over 60 years, the technology continues to evolve to meet new challenges. This paper presents examples of recent FCC technology advances through integrated R&D programs that bridge understanding in process science and engineering practice in which Shell Global Solutions11Shell Global Solutions is a network of independent technology companies

Ye-Mon Chen

2006-01-01

111

SCANNING THE TECHNOLOGY Scanning Advanced  

E-print Network

, the automobile. Automobile manufacturers have begun replacing bulky hydraulic or mechanical parts with electronicSCANNING THE TECHNOLOGY Scanning Advanced Automobile Technology BY HAMID GHARAVI National Institute of electrical, electronics, software, and other relevant technologies that shape the modern automobile. Some

112

Advanced Communications Technology Satellite (ACTS)  

Microsoft Academic Search

The authors provide an overview of the NASA Advanced Communications Technology Satellite (ACTS) and discuss the value of the technology for future communication systems. The high-risk technologies selected for ACTS were those having the potential to dramatically enhance the capabilities of the satellite communications industry. This experimental satellite, which is scheduled to be launched in 1992, will furnish very small

R. T. Gedney; R. J. Schertler

1989-01-01

113

Advanced Technology Composite Fuselage - Manufacturing  

NASA Technical Reports Server (NTRS)

The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

1997-01-01

114

Advanced Modular Inverter Technology Development  

SciTech Connect

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04

115

Small transport aircraft technology  

NASA Technical Reports Server (NTRS)

Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

Williams, L. J.

1983-01-01

116

Technology transfer: Transportation  

NASA Technical Reports Server (NTRS)

Standard Research Institute (SRI) has operated a NASA-sponsored team for four years. The SRI Team is concentrating on solving problems in the public transportation area and on developing methods for decreasing the time gap between the development and the marketing of new technology and for aiding the movement of knowledge across industrial, disciplinary, and regional boundaries. The SRI TAT has developed a methodology that includes adaptive engineering of the aerospace technology and commercialization when a market is indicated. The SRI Team has handled highway problems on a regional rather than a state basis, because many states in similar climatic or geologic regions have similar problems. Program exposure has been increased to encompass almost all of the fifty states.

Anyos, T.; Lizak, R.; Merrifield, D.

1973-01-01

117

Partnership for Advancing Technologies in Housing (PATH)  

NSF Publications Database

... Technology Systems Interactions and Whole House Approaches PATH?s mission is to advance technology ... technology arena. Far reaching exploratory research that can lead to breakthrough technologies and ...

118

New advances in erectile technology  

PubMed Central

New discoveries and technological advances in medicine are rapid. The role of technology in the treatment of erectile dysfunction (ED) will be widened and more options will be available in the years to come. These erectile technologies include external penile support devices, penile vibrators, low intensity extracorporeal shockwave, tissue engineering, nanotechnology and endovascular technology. Even for matured treatment modalities for ED, such as vacuum erectile devices and penile implants, there is new scientific information and novel technology available to improve their usage and to stimulate new ideas. We anticipate that erectile technologies may revolutionize ED treatment and in the very near future ED may become a curable condition. PMID:24489605

Stein, Marshall J.; Lin, Haocheng

2014-01-01

119

Advanced interdisciplinary technologies  

NASA Technical Reports Server (NTRS)

The following topics are presented in view graph form: (1) breakthrough trust (space research and technology assessment); (2) bionics (technology derivatives from biological systems); (3) biodynamics (modeling of human biomechanical performance based on anatomical data); and (4) tethered atmospheric research probes.

Anderson, John L.

1990-01-01

120

Advanced Materials Technology  

NASA Technical Reports Server (NTRS)

Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner.

Blankenship, C. P. (compiler); Teichman, L. A. (compiler)

1982-01-01

121

Solving problems with advanced technology  

Microsoft Academic Search

Ten Years of Air Force experience has demonstrated that advanced NDE makes a quantum improvement in these areas. In NDE, as in many other industrial process control applications the trend is clearly to computers, information technology (IT), and matching of materials with testing methods. This leaves only the strategic decisions to the human. The inspection and information management technologies are

Douglas A. Froom; William E. Larsen; Eugene F. Kasper

1999-01-01

122

Advanced clean coal technologies  

Microsoft Academic Search

In this paper, the author argues that, although coal may be an interim solution, the development of technologies providing effective use of coal is important to bridge the gap between present and future energy supply situations

S. Azuhata

2001-01-01

123

Ceramic Technology for Advanced Heat Engines Project  

SciTech Connect

The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

Not Available

1990-08-01

124

Advances in FIV vaccine technology  

PubMed Central

Advances in vaccine technology are occurring in the molecular techniques used to develop vaccines and in the assessment of vaccine efficacy, allowing more complete characterization of vaccine-induced immunity correlating to protection. FIV vaccine development has closely mirrored and occasionally surpassed the development of HIV-1 vaccine, leading to first licensed technology. This review will discuss technological advances in vaccine designs, challenge infection assessment, and characterization of vaccine immunity in the context of the protection detected with prototype and commercial dual-subtype FIV vaccines and in relation to HIV-1. PMID:18295907

Uhl, Elizabeth W.; Martin, Marcus; Coleman, James K.; Yamamoto, Janet K.

2008-01-01

125

Future Space Transportation Technology: Prospects and Priorities  

NASA Technical Reports Server (NTRS)

The Transportation Working Group (TWG) was chartered by the NASA Exploration Team (NEXT) to conceptualize, define, and advocate within NASA the space transportation architectures and technologies required to enable the human and robotic exploration and development of space envisioned by the NEXT. In 2002, the NEXT tasked the TWG to assess exploration space transportation requirements versus current and prospective Earth-to-Orbit (ETO) and in-space transportation systems, technologies, and research, in order to identify investment gaps and recommend priorities. The result was a study now being incorporated into future planning by the NASA Space Architect and supporting organizations. This paper documents the process used to identify exploration space transportation investment gaps, as well as the group's recommendations for closing these gaps and prioritizing areas of future investment for NASA work on advanced propulsion systems.

Billie, Matt; Reed, Lisa; Harris, David

2003-01-01

126

RITA Office of Research, Development and Technology This month: Rutgers' Center for Advanced Infrastructure and Transportation | February 2013  

E-print Network

. The high-resolution 3-D output will help officials in these municipalities and others Superstorm Sandy Li Tier I University Transportation Center, recognized the unique opportunity provided by Hurricane Sandy prepare for and recover from future extreme weather events. On October 29, 2012, Hurricane Sandy landed

Neimark, Alexander V.

127

Advanced Air Bag Technology Assessment  

NASA Technical Reports Server (NTRS)

As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the proximity of the occupants to the airbag module; (5) the deployment time, which includes the time to sense the need for deployment, the inflator response parameters, the air bag response, and the reliability of the air bag. The requirements for an advanced air bag technology is discussed. These requirements includes that the system use information related to: (1) the crash severity; (2) the status of belt usage; (3) the occupant category; and (4) the proximity to the air bag to adjust air bag deployment. The parameters for the response of the air bag are: (1) deployment time; (2) inflator parameters; and (3) air bag response and reliability. The state of occupant protection advanced technology is reviewed. This review includes: the current safety restraint systems, and advanced technology characteristics. These characteristics are summarized in a table, which has information regarding the technology item, the potential, and an date of expected utilization. The use of technology and expertise at NASA centers is discussed. NASA expertise relating to sensors, computing, simulation, propellants, propulsion, inflatable systems, systems analysis and engineering is considered most useful. Specific NASA technology developments, which were included in the study are: (1) a capacitive detector; (2) stereoscopic vision system; (3) improved crash sensors; (4) the use of the acoustic signature of the crash to determine crash severity; and (5) the use of radar antenna for pre-crash sensing. Information relating to injury risk assessment is included, as is a summary of the areas of the technology which requires further development.

Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.

1998-01-01

128

Advanced Communications Technology Satellite (ACTS)  

NASA Technical Reports Server (NTRS)

The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

Gedney, Richard T.; Schertler, Ronald J.

1989-01-01

129

Technology: Manufacturing, Transportation, Construction, Communication.  

ERIC Educational Resources Information Center

The technology-based student activities in this curriculum resource book are intended to be incorporated into any industrial arts/technology education program. The activities are classified according to one of four technological systems--construction, communications, manufacturing, and transportation. Within the four parts of the guide, individual

North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

130

Ceramic technology for advanced heat engines project  

SciTech Connect

The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

Not Available

1990-09-01

131

Ceramic technology for Advanced Heat Engines Project  

SciTech Connect

Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

Johnson, D.R.

1991-07-01

132

Advanced Technological Education Television (ATETV)  

NSDL National Science Digital Library

The Advanced Technological Education Television (ATETV.org) project is a web-based video series and interactive network designed to connect students and professionals with careers in advanced technology. Created under the guidance of a National Advisory Board with resources from the AACC, ATE National Centers, ATE projects and industry, ATETV aims to show how ATE is relevant to the modern workplace and to attract students to this growing field. ATETV features 48 video episodes that air weekly and highlight ATE success stories from community colleges and ATE programs nationwide. Its outreach efforts -- at ATETV.org and on social networking sites like Facebook and Twitter -- aim to connect employers in industry and government with the high-tech workforce of tomorrow. ATETV extends student learning beyond the classroom walls and provides a window into careers and workplace skills.

2009-09-30

133

SP-100 Advanced Technology Program  

NASA Technical Reports Server (NTRS)

The goal of the triagency SP-100 Program is to develop long-lived, compact, lightweight, survivable nuclear reactor space power systems for application to the power range 50 kWe to 1 MWe. The successful development of these systems should enable or significantly enhance many of the future NASA civil and commercial missions. The NASA SP-100 Advanced Technology Program strongly augments the parallel SP-100 Ground Engineering System Development program and enhances the chances for success of the overall SP-100 program. The purpose of this paper is to discuss the key technical elements of the Advanced Technology Program and the progress made in the initial year and a half of the project.

Sovie, Ronald J.

1987-01-01

134

SP-100 advanced technology program  

SciTech Connect

The goal of the triagency SP-100 Program is to develop long-lived, compact, lightweight, survivable nuclear reactor space power systems for application to the power range 50 kWe to 1 MWe. The successful development of these systems should enable or significantly enhance many of the future NASA civil and commercial missions. The NASA SP-100 Advanced Technology Program strongly augments the parallel SP-100 Ground Engineering System Development program and enhances the chances for success of the overall SP-100 program. The purpose of this paper is to discuss the key technical elements of the Advanced Technology Program and the progress made in the initial year and a half of the project.

Sovie, R.J.

1987-01-01

135

Recent advances in flue gas desulfurization technologies  

Microsoft Academic Search

Recent advances in flue gas desulfurization (FGD) technologies are reported. The technological advances include conventional wet FGD system improvements, advanced wet FGD system development, spray dryer system operations, technologies for furnace sorbent injections, post-combustion dry technologies, combined SO\\/NO technologies, and several emerging FGD technologies. In addition, progress of by-product utilization that affects the operating cost of FGD systems is described.

1991-01-01

136

Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study, volume 1  

NASA Technical Reports Server (NTRS)

An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.

Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

1981-01-01

137

Center for Advanced Computational Technology  

NASA Technical Reports Server (NTRS)

The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

Noor, Ahmed K.

2000-01-01

138

Technology transfer: Transportation  

NASA Technical Reports Server (NTRS)

The application of NASA derived technology in solving problems related to highways, railroads, and other rapid systems is described. Additional areas/are identified where space technology may be utilized to meet requirements related to waterways, law enforcement agencies, and the trucking and recreational vehicle industries.

Anyos, T.; Brown, I.; Lizak, R.; Loomis, A.; Wilhelm, J.

1977-01-01

139

Advanced thermal management technologies for defense electronics  

NASA Astrophysics Data System (ADS)

Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro- and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.

Bloschock, Kristen P.; Bar-Cohen, Avram

2012-05-01

140

Advanced Communications Technology Satellite (ACTS)  

NASA Technical Reports Server (NTRS)

The NASA Advanced Communications Technology Satellite (ACTS) provides high risk technologies having the potential to dramatically enhance the capabilities of the satellite communications industry. This experimental satellite, which will be launched by NASA in 1993, will furnish the technology necessary for providing a range of services. Utilizing the ACTS very-high-gain-hopping spot-beam antennas with on-board routing and processing, Very Small Aperture Terminal (VSAT) digital networks which provide on-demand, full-mesh-convectivity 1.544-MBPS services with only a single hop can be established. The high-gain spot-beam antenna at Ka-band permits wide area, flexible networks providing high data rate services between modest-size earth terminals.

Plecity, Mark S.; Nall, Mark E.

1991-01-01

141

Advances in lens implant technology  

PubMed Central

Cataract surgery is one of the oldest and the most frequent outpatient clinic operations in medicine performed worldwide. The clouded human crystalline lens is replaced by an artificial intraocular lens implanted into the capsular bag. During the last six decades, cataract surgery has undergone rapid development from a traumatic, manual surgical procedure with implantation of a simple lens to a minimally invasive intervention increasingly assisted by high technology and a broad variety of implants customized for each patients individual requirements. This review discusses the major advances in this field and focuses on the main challenge remaining the treatment of presbyopia. The demand for correction of presbyopia is increasing, reflecting the global growth of the ageing population. Pearls and pitfalls of currently applied methods to correct presbyopia and different approaches under investigation, both in lens implant technology and in surgical technology, are discussed. PMID:23413369

Kampik, Anselm; Dexl, Alois K.; Zimmermann, Nicole; Glasser, Adrian; Baumeister, Martin; Kohnen, Thomas

2013-01-01

142

Appliance Standards and Advanced Technologies  

NASA Astrophysics Data System (ADS)

Energy efficiency has long been considered one of the most effective and least costly means of reducing national energy demand. The U.S. Department of Energy runs the appliances and commercial equipment standards program, which sets federal mandatory minimum efficiency levels for many residential appliances, commercial equipment, and lighting products. The Department uses an engineering-economic analysis approach to determine appropriate standard levels that are technologically feasible and economically justified (i.e., a net positive economic benefit to consumers and the nation as a whole). The program has been very successful and has significantly reduced national energy consumption. Efficiency is also a renewable resource, with many new, even more efficient technologies continuously replacing older ones. There are many promising advanced technologies on the horizon today that could dramatically reduce appliance and commercial equipment energy use even further.

Desroches, Louis-Benoit

2011-11-01

143

Advances in SIS receiver technology  

NASA Technical Reports Server (NTRS)

Significant advances in SIS receiver technology since the last Asilomar meeting include: superconductor materials, integrated inductive tuning elements, and planar mounting structures. The effect of these advances is to push the upper frequency operating limit from about 600 to 1500 GHz, and to enhance the feasibility of focal plane arrays of heterodyne receivers. A fundamental high frequency operating limit of SIS mixers is set by the superconducting energy gap. A practical limitation for high frequency operation of SIS junctions is their parasitic capacitance and resistance. The performance of the mixer will be degraded by the Resistor-Capacitor rolloff. Several designs were reported for inductive elements integrated on the same substrate as the SIS junctions to tune out the bulk junction capacitance. Most millimeter SIS-based heterodyne receivers have used waveguide coupling structures. Technology has advanced to the state where programs that have a high probability of success can be defined to produce arrays of SIS receivers for frequencies as high as 1500 GHz.

Frerking, M. A.

1988-01-01

144

Advances in Genome Biology & Technology  

SciTech Connect

This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

2007-12-01

145

CIVIL INFRASTRUCTURE ADVANCED SENSING TECHNOLOGIES AND ADVANCED REPAIR MATERIALS  

E-print Network

CIVIL INFRASTRUCTURE ADVANCED SENSING TECHNOLOGIES AND ADVANCED REPAIR MATERIALS Systems, Dams, Levees, Bridges, Roads and Highways" is within the Critical National Need area of civil infrastructure. This topic was selected from a larger set of challenges in civil infrastructure where

Magee, Joseph W.

146

Using advanced technologies to reduce motor vehicle greenhouse gas emissions  

Microsoft Academic Search

This paper quantifies the potential reduction in US greenhouse gas emissions that could be achieved by using advanced-technology motor vehicles and low-emission bio-fuels. These two approaches are compared to a variety of other approaches to reduce transportation sector emissions. It is concluded that only strong fiscal measures can produce emission reductions as large as are available from advanced-technology vehicles and

Carmen Difiglio

1997-01-01

147

A methodology for hypersonic transport technology planning  

NASA Technical Reports Server (NTRS)

A systematic procedure by which the relative economic value of technology factors affecting design, configuration, and operation of a hypersonic cruise transport can be evaluated is discussed. Use of the methodology results in identification of first-order economic gains potentially achievable by projected advances in each of the definable, hypersonic technologies. Starting with a baseline vehicle, the formulas, procedures and forms which are integral parts of this methodology are developed. A demonstration of the methodology is presented for one specific hypersonic vehicle system.

Repic, E. M.; Olson, G. A.; Milliken, R. J.

1973-01-01

148

Advances in traction drive technology  

NASA Technical Reports Server (NTRS)

Traction drives are traced from early uses as main transmissions in automobiles at the turn of the century to modern, high-powered traction drives capable of transmitting hundreds of horsepower. Recent advances in technology are described which enable today's traction drive to be a serious candidate for off-highway vehicles and helicopter applications. Improvements in materials, traction fluids, design techniques, power loss and life prediction methods will be highlighted. Performance characteristics of the Nasvytis fixed-ratio drive are given. Promising future drive applications, such as helicopter main transmissions and servo-control positioning mechanisms are also addressed.

Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.

1983-01-01

149

Advanced Artificial Intelligence Technology Testbed  

NASA Technical Reports Server (NTRS)

The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

Anken, Craig S.

1993-01-01

150

Center for Advanced Spatial Technologies  

NSDL National Science Digital Library

The Center for Advanced Spatial Technologies (CAST) at the University of Arkansas is dedicated to applications in Geographic Information Systems (GIS), remote sensing, digital photogrammetry and interoperability, and Global Positioning Systems (GPS). This enormous site contains a wide range of research activities in spatial technologies as applied to the disciplines of environmental studies, archaeology, historical preservation, landscape architecture, urban and rural planning, spatial statistics, and data development. Within the Reports and Publications section, the Arkansas Gap Analysis Program (GAP) final report is available (in HTML and .pdf formats) and, though the work itself was completed in 1998, the report provides excellent information on biodiversity assessment and land-cover mapping (For the national Gap Analysis Program Website, see the September 17, 1997 Scout Report for Science & Engineering). Each of the research areas of the site contains documentation of projects and links to related sites.

2005-12-07

151

Advanced Mirror & Modelling Technology Development  

NASA Technical Reports Server (NTRS)

The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

2014-01-01

152

Transportation and Technology American Ideals  

E-print Network

1 East Transportation and Technology 2 East American Ideals 3 East American Wars and Politics ATM Level West Simulator Rides American PresidencyFirst Ladies Gunboat Philadelphia Price of Freedom Open American History and Culture GalleryWelcome Center Flag Hall Star-Spangled Banner Closed for Renovation

Mathis, Wayne N.

153

Advances in solar thermal electricity technology  

Microsoft Academic Search

Various advanced solar thermal electricity technologies are reviewed with an emphasis on new technology and new market approaches.In single-axis tracking technology, the conventional parabolic trough collector is the mainstream established technology and is under continued development but is soon to face competition from two linear Fresnel reflector (LFR) technologies, the CLFR and Solarmundo. A Solarmundo prototype has been built in

D. Mills

2004-01-01

154

Maricopa Advanced Technology Education Center  

NSDL National Science Digital Library

There is a great deal of interest in the world of educational development in the growing fields of the semiconductor business, and the Maricopa Advanced Technology Center (MATEC) has been involved in this area of research since 1994. The Center is a division of the Maricopa Community Colleges in Arizona, and they are primarily interested in assisting students and faculty who wish to keep abreast of the evolving skills needed in this area, along with developments in the electronics and automated manufacturing industries. Most visitors will want to take a look at the "Curriculum Development" area, which features samples of their work, including illustrative animations, annual reports, and information about the skill standards that inform the basis of each educational activity created at the Center. Additionally, the "Education & Career Opportunities" section contains a virtual presentation titled "Working in the Semiconductor Manufacturing Industry", which will be of use to those considering a career in this area.

155

Important Advances In Technology: Echocardiography  

PubMed Central

Echocardiography has evolved over the past 45 years from a simple M-mode tracing to an array of technologies that include two-dimensional imaging, pulsed and continuous wave spectral Doppler, color flow and tissue Doppler, and transesophageal echocardiography. Together, these modalities provide a comprehensive anatomic and functional evaluation of cardiac chambers and valves, pericardium, and ascending and descending aorta. The switch from analog to digital signal processing revolutionized the field of ultrasound, resulting in improved image resolution, smaller instrumentation that allows bedside evaluation and diagnosis of patients, and digital image storage for more accurate quantification and comparison with previous studies. It also opened the door for new advances such as harmonic imaging, automated border detection and quantification, 3-dimensional imaging, and speckle tracking. This article offers an overview of some newer developments in echocardiography and their promising applications.

Nagueh, Sherif F.; Quiones, Miguel A.

2014-01-01

156

NASA technology program for future civil air transports  

NASA Technical Reports Server (NTRS)

An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

Wright, H. T.

1983-01-01

157

Micromachining technology for advanced weapon systems  

SciTech Connect

An overview of planned uses for polysilicon surface-micromachining technology in advanced weapon systems is presented. Specifically, this technology may allow consideration of fundamentally new architectures for realization of surety component functions.

Sniegowski, J.J.

1996-12-31

158

COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES  

EPA Science Inventory

The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

159

Advanced Technology Composite Fuselage: Program Overview  

NASA Technical Reports Server (NTRS)

The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; Fredrikson, H. G.; Olson, J. T.; Backman, B. F.

1997-01-01

160

Small Aircraft Transportation System Concept and Technologies  

NASA Technical Reports Server (NTRS)

This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

2005-01-01

161

AGT (Advanced Gas Turbine) technology project  

NASA Technical Reports Server (NTRS)

An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated; (7) Small turbine engine aerodynamic and mechanical design capability has been initiated; and (8) An infrastructure of manpower, facilities, materials, and fabrication capabilities has been established which is available for continued development of ceramic component technology in gas turbine and other heat engines.

1988-01-01

162

Advanced Refrigerator/Freezer Technology Development Project  

NASA Technical Reports Server (NTRS)

The Advanced Refrigerator/Freezer (R/F) Technology Development Project was initiated in 1994, on the basis of recommendations of a team of NASA Scientists and engineers, who assessed the need for advanced technology to support future life and biomedical sciences space flight missions. The project, which was cofunded by NASA's Office of Aerospace Technology and Life and Biomedical Sciences & Applications Division, has two phases. In the Phase I Advanced R/F Technology Assessment, candidate technologies were identified and ranked, on the basis of a combination of their effect on system performance and their risk of developmental success. In Phase II Technology Development, the advanced technologies with the highest combined ranking, which could be accomplished within the budgetary constraints, were pursued. The effort has been mainly by contract, with a modest in-house effort at the NASA Lewis Research Center. Oceaneering Space Systems (OSS) of Houston, Texas, was selected as the prime contractor for both contract phases.

Cairelli, James E.; Geng, Steven M.

1999-01-01

163

Recent Advances in Chamber Science and Technology  

E-print Network

Recent Advances in Chamber Science and Technology Mohamed Abdou April 8, 2002ISFNT-6 San Diego, USA;HYLIFE-II ALPS/APEX NSTX Li module Liquid Wall Science & Technology are being Advanced in Several MFE temperatures Flinabe is an attractive alternative to flibe because it has low melting point (240-310 C

California at Los Angeles, University of

164

Teacher development in advanced educational technology  

Microsoft Academic Search

Advanced educational technology promises to improve science teaching and learning. To achieve the posited outcomes, however, teachers must have access to, know how to, have the skills to, and want to use the proposed advanced educational technologies in their teaching. In response, for the past eight years with support from the National Science Foundation, BSCS has conductedENLIST Micros a

James D. Ellis

1992-01-01

165

Teacher development in advanced educational technology  

Microsoft Academic Search

Advanced educational technology promises to improve science teaching and learning. To achieve the posited outcomes, however, teachers must have access to, know how to, have the skills to, and want to use the proposed advanced educational technologies in their teaching. In response, for the past eight years with support from the National Science Foundation, BSCS has conducted ENLIST Micros ---

James D. Ellis

1992-01-01

166

Advancing Excellence in Information Technology at the  

E-print Network

. Gulachek, Senior Director, Strategy Management, OIT #12;Goals · Support and advance academic prioritiesAdvancing Excellence in Information Technology at the University of Minnesota March 20, 2010 #12 that advances academic priorities is imperative. · Proposed: Highly Coordinated Model ­ The IT directors serve

Minnesota, University of

167

Technological advances in powered wheelchairs.  

PubMed

During the last 40 years, there have been revolutionary advances in power wheelchairs. These unique wheelchair systems, designed for the physically immobile patient, have become extremely diversified, allowing the user to achieve different positions, including tilt, recline, and, more recently, passive standing. Because of this wide diversity of powered wheelchair products, there is a growing realization of the need for certification of wheeled mobility suppliers. Legislation in Tennessee (Consumer Protection Act for Wheeled Mobility) passed in 2003 will ensure that wheeled mobility suppliers must have Assistive Technology Supplier certification and maintain their continuing education credits when fitting individuals in wheelchairs for long-term use. Fifteen other legislative efforts are currently underway in general assemblies throughout the US. Manufacturers, dealers, hospitals, and legislators are working toward the ultimate goal of passing federal legislation delineating the certification process of wheeled mobility suppliers. The most recent advance in the design of powered wheelchairs is the development of passive standing positions. The beneficial effects of passive standing have been documented by comprehensive scientific studies. These benefits include reduction of seating pressure, decreased bone demineralization, increased bladder pressure, enhanced orthostatic circulatory regulation, reduction in muscular tone, decrease in upper extremity muscle stress, and enhanced functional status in general. In February 2003, Permobil, Inc., introduced the powered Permobil Chairman 2K Stander wheelchair, which can tilt, recline, and stand. Other companies are now manufacturing powered wheelchairs that can achieve a passive standing position. These wheelchairs include the Chief SR Powerchair, VERTRAN, and LifeStand Compact. Another new addition to the wheelchair industry is the iBOT, which can elevate the user to reach cupboards and climb stairs but has no passive standing capabilities. In addition, the physically immobile patient must be seated on an ERGODYNAMIC Seating System 2000, which is inflated by the alternating pressure compressor 8080. This seating system has a deep center seam between the two ischial-support chambers, which provides a recess for the coccyx. The pre-ischial crossbar compartment inflates during each cycle to prevent the pelvis from slipping forward. It is essential that the physician of the immobile patient order two ERGODYNAMIC Seating Systems 2000 because the patient must have an additional seating system in the case one leaks. Moreover, two compressors are necessary because each compressor must be serviced after 2500 hours of use. For the protection of the consumer, these pressure relief systems must be supplied and serviced by a Certified Rehabilitation Technology Supplier such as Wheelchair Works Inc. Despite the indisputable scientific evidence of the medical benefits of passive standing for the immobile user, few individuals have access to these revolutionary wheelchairs. Consequently, it is mandatory that the medical community, headed by specialists in physical and occupational therapy as well as rehabilitation medicine, CRTS, and manufacturers collaborate in a national education campaign to convince Medicare/Medicaid and all commercial insurance companies to approve immediately these assisted technologies. This program is essential so that the physically immobilized patient can achieve the undisputed physical benefits of passive standing. PMID:15099188

Edlich, Richard F; Nelson, Kenneth P; Foley, Marni L; Buschbacher, Ralph M; Long, William B; Ma, Eva K

2004-01-01

168

Benefits of advanced technology in industrial cogeneration  

NASA Technical Reports Server (NTRS)

This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.

Barna, G. J.; Burns, R. K.

1979-01-01

169

Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project-longitudinal handling qualities study of a relaxed-stability airplane  

NASA Technical Reports Server (NTRS)

The results of a piloted simulation of longitudinal handling qualities of an airplane with relaxed static stability are described. This task was performed under the Integrated Application of Active Controls (IAAC) Technology Project within the NASA Energy Efficient Transport Program. A representative medium range transport airplane, the Boeing Model 757, was simulated. Evaluations were made of the unaugmented airplane and of the airplane with an Essential Pitch Augmented Stability (PAS) System and with a Primary PAS System at various center of gravity (cg) conditions. Level 2 pilot ratings were attained with cg locations aft to about 57% mean aerodynamic chord (MAC) or 6% aft of the neutral point for unaugmented landing approach. For Mach = 0.80, unaugmented cruise Level 2 ratings were attained to 47% MAC or 5% forward of the maneuver point. The augmented airplane model provided handling qualities close to or within the Level 1 boundary at all cg locations for both Essential and Primary PAS. Analyses of the test conditions when compared with existing handling qualities criteria based on classical unaugmented airplane characteristics agreed well with the pilot ratings. The unaugmented results are comparable to those reported by both the Douglas Aircraft Company and Lockheed California Company from simulation investigations of transport configurations with roughly similar dimensional and mass characteristics.

1983-01-01

170

Development of Advanced Ceramic Manufacturing Technology  

Microsoft Academic Search

Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain

Pujari

2001-01-01

171

Advanced Manufacturing Office (Formerly Industrial Technologies Program)  

E-print Network

, and out-of-the-autoclave composite manufacturing. Develop and demonstrate pervasive materials technologiesAdvanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie Link EERE Department of Energy Brief to: Hydrogen and Fuel Cell Technologies Manufacturing R&D Workshop

172

Advanced technologies for Mission Control Centers  

NASA Technical Reports Server (NTRS)

Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

Dalton, John T.; Hughes, Peter M.

1991-01-01

173

Advanced laptop and small personal computer technology  

NASA Technical Reports Server (NTRS)

Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

Johnson, Roger L.

1991-01-01

174

Advanced Technology Composite Fuselage-Structural Performance  

NASA Technical Reports Server (NTRS)

Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.

Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.

1997-01-01

175

Advanced Technology Composite Fuselage - Materials and Processes  

NASA Technical Reports Server (NTRS)

The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

1997-01-01

176

Applications of advanced transport aircraft in developing countries  

NASA Technical Reports Server (NTRS)

Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

1978-01-01

177

Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems  

NASA Technical Reports Server (NTRS)

Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.

Dexter, H. B. (editor); Davis, J. G., Jr. (editor)

1979-01-01

178

Technological advances in the hemostasis laboratory.  

PubMed

Automation is conventionally defined as the use of machines, control systems, and information technologies to optimize productivity. Although automation is now commonplace in several areas of diagnostic testing, especially in clinical chemistry and immunochemistry, the concept of extending this process to hemostasis testing has only recently been advanced. The leading drawbacks are still represented by the almost unique biological matrix because citrated plasma can only be used for clotting assays and few other notable exceptions, and by the highly specific pretreatment of samples, which is particularly distinct to other test systems. Despite these important limitations, a certain degree of automation is also now embracing hemostasis testing. The more relevant developments include the growing integration of routine hemostasis analyzers with track line systems and workcells, the development of specific instrumentation tools to enhance reliability of testing (i.e., signal detection with different technologies to increase test panels, plasma indices for preanalytical check of interfering substances, failure patterns sensors for identifying insufficient volume, clots or bubbles, cap-piercing for enhancing operator safety, automatic reflex testing, automatic redilution of samples, and laser barcode readers), preanalytical features (e.g., positive identification, automatic systems for tube(s) labeling, transillumination devices), and postphlebotomy tools (pneumatic tube systems for reducing turnaround time, sample transport boxes for ensuring stability of specimens, monitoring systems for identifying unsuitable conditions of transport). Regardless of these important innovations, coagulation/hemostasis testing still requires specific technical and clinical expertise, not only in terms of measurement procedures but also for interpreting and then appropriately utilizing the derived information. Thus, additional and special caution has to be used when designing projects of automation that include coagulation/hemostasis testing because peculiar and particular requirements must be taken into account. PMID:24443219

Lippi, Giuseppe; Plebani, Mario; Favaloro, Emmanuel J

2014-03-01

179

10 CFR 611.3 - Advanced technology vehicle.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Advanced technology vehicle. 611.3 Section...ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE...General 611.3 Advanced technology vehicle. In order to...

2010-01-01

180

Costs and Benefits of Advanced Aeronautical Technology  

NASA Technical Reports Server (NTRS)

Programs available from COSMIC used to evaluate economic feasibility of applying advanced aeronautical technology to civil aircraft of future. Programs are composed of three major models: Fleet Accounting Module, Airframe manufacturer Module, and Air Carrier Module.

Bobick, J. C.; Denny, R. E.

1983-01-01

181

Rail Transportation Program (RTP) Michigan Technological University  

E-print Network

Contact us Rail Transportation Program (RTP) Michigan Technological University 1400 Townsend Drive Houghton, MI 49931 (906) 487-3547 Email: rail@mtu.edu www.cee.mtu.edu/railroad RTP Director Pasi Lautala. RailTransportationProgram #12;Transportation Institute The Rail Transportation Program The Rail

182

Technology and Educating Seniors about Advance Directives.  

ERIC Educational Resources Information Center

Advance directives allow individuals to maintain control of their health care should they become unable to communicate. To benefit from them, adults need to be educated about their purpose and use, advanced medical technology, and end-of-life decision making. (SK)

Molloy, D. W.; Stiller, A. K.; Russo, R.

2000-01-01

183

Transportation Technology: Rail Transport and Logistics  

ERIC Educational Resources Information Center

Transportation can simply be defined as the movement of goods, services, and people from one location to another. Without an efficient means to transport goods from place to place, the economy would be nothing like it is today. Throughout the history of the United States, American railroads have paved the way toward creating a nation of great

Lang, Aaron B.

2011-01-01

184

Innovative advances in LED technology  

Microsoft Academic Search

An overview of the rapid progress in the developments of the inorganic light emitting diode (LED) technology is presented. Innovative structures and designs of the device have led to dramatic improvements of the performance in LED technology, groundbreaking performance records are being reported constantly. This article summaries the recent progress of the high brightness LEDs, and describes the LED structures

F. K. Yam; Z. Hassan

2005-01-01

185

Advanced secondary power system for transport aircraft  

NASA Technical Reports Server (NTRS)

A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

1985-01-01

186

Advanced Refrigerator/Freezer Technology Development. Technology Assessment  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.

Gaseor, Thomas; Hunter, Rick; Hamill, Doris

1996-01-01

187

Application of advanced technologies to small, short-haul aircraft  

NASA Technical Reports Server (NTRS)

The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

1978-01-01

188

Preliminary assessment of industrial needs for an advanced ocean technology  

NASA Technical Reports Server (NTRS)

A quick-look review of selected ocean industries is presented for the purpose of providing NASA OSTA with an assessment of technology needs and market potential. The size and growth potential, needs and problem areas, technology presently used and its suppliers, are given for industries involved in deep ocean mining, petrochemicals ocean energy conversion. Supporting services such as ocean bottom surveying; underwater transportation, data collection, and work systems; and inspection and diving services are included. Examples of key problem areas that are amenable to advanced technology solutions are included. Major companies are listed.

Mourad, A. G.; Maher, K. M.; Balon, J. E.; Coyle, A. G.; Henkener, J. A.

1979-01-01

189

Assurance Technology Challenges of Advanced Space Systems  

NASA Technical Reports Server (NTRS)

The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

Chern, E. James

2004-01-01

190

Advanced Robotics Minimally invasive surgery (MIS) and robotics technologies have  

E-print Network

Advanced Robotics Minimally invasive surgery (MIS) and robotics technologies have revolutionized robot technologies for clinical use, researchers and clinicians at Canadian Surgical Technologies & Advanced Robotics (CSTAR) are setting international standards for surgical technology, treatment innovation

Denham, Graham

191

NCI Workshop- Advanced Technologies in Radiation Oncology  

Cancer.gov

Push the basic science- it is the basis for how technology works and can enhance technological advances, Help lead in a good-for-society agenda (e.g. CDRP program and others), Provide role models for mentoring and doing the right thing, Keep the best interests of patients ahead of institution (and self) interests.

192

Technological Advances and the Study of Reading.  

ERIC Educational Resources Information Center

Recent technological advances in neuroanatomy and neurophysiology have unearthed structural and functional patterns in the brain that can be associated with severe reading disabilities. As a response, this paper examines several computer-driven technologies whose capabilities shed light on brain-related issues germane to reading, with the intent

Henk, William A.

193

TECHcitement: Advances in Technological Education, 2007  

ERIC Educational Resources Information Center

This publication presents the following nine articles: (1) ATE [Advanced Technological Education] Readies Technicians for International Competition; (2) Technicians in Demand Worldwide; (3) Accreditation Board for Engineering and Technology Endorses International Protocols for Technicians; (4) Entrepreneurial Educator Creates InnovaBio to Meet

Patton, Madeline

2007-01-01

194

One Micron Laser Technology Advancements at GSFC  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

Heaps, William S.

2010-01-01

195

Achieving Competitive Advantages of Advanced Manufacturing Technology  

Microsoft Academic Search

Change is an essential business trait. Manufacturing particularly is transforming at an unprecedented pace. Adopting effective management practices, capable of keeping pace with the changing technological environment, is particularly important to success in global markets. Manufacturers employing advanced manufacturing technology (AMT) are often more flexible than their traditional counter-parts since AMT permits the integration of product design and production processes.

Jack S. Cook; Laura L. Cook

1994-01-01

196

Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments  

NASA Technical Reports Server (NTRS)

The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

1992-01-01

197

Creative Expressions in Advanced Technological Education  

NSDL National Science Digital Library

The ATETV project delivers web-based videos to connect students to careers in advanced technology. This episode of ATETV looks at Architectural Technology, Rapid Prototyping, and Geospatial Technology programs. The video shows the amount of real world experience the students obtain, as well as giving a general background on the programs themselves. It can be viewed whole, or in three segments: "Drawing on a New Career," "Rapid Prototypers: Inventors of New Technology," and "Pointing the Way with Computer Mapping Technology." The running time for the full episode is 8:15.

2010-07-27

198

Miniature Heat Transport System for Nanosatellite Technology  

NASA Technical Reports Server (NTRS)

The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an eclipse. The Mini-HTS would transport the beat from these components to a radiator during their operational modes, and it would be shutdown during non-operational or eclipse modes. Shutdown of the Mini-HTS would be accomplished with small heaters and has been successfully demonstrated on numerous occasions, both in the lab and on flight experiments. Efforts are now underway to miniaturize two-phase heat transport systems for the Nanosatellite project, with potential application to other small satellite programs. 'ne goal of this project is to design, build, and test miniature heat transport systems (MHTS) that would demonstrate the feasibility of a small Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP).

Douglas, Donya M,

1999-01-01

199

Advanced Monopropellant Thruster Technology Tested  

NASA Technical Reports Server (NTRS)

A new family of environmentally friendly, low-freezing-point, high-density monopropellants is being developed under a NASA Glenn technology program. New monopropellant technology would greatly benefit a range of small (<100 kg) satellites and spacecraft missions. These monopropellants are mixtures of hydroxylammonium nitrate (HAN), fuel, and water. Primex Aerospace Company, under contract to the NASA Glenn Research Center at Lewis Field, tested a 1-lbf thruster using a HAN-based monopropellant formulation. Over 8000 sec of total test time was accumulated on a single thruster using the blowdown duty cycle typical of state-of-the-art monopropellant systems.

Reed, Brian D.

2000-01-01

200

Evaluation of undeveloped rocket engine cycle applications to advanced transportation  

NASA Technical Reports Server (NTRS)

Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

1990-01-01

201

Advances in Technology To Realize  

E-print Network

long-term radioactivity · Meeting these simultaneous demands in the multiple-field, intense fusion and tritium research, and systems studies Pipe-Gun Pellet Injector #12;6 Technology program supports all-state power supplies 75%cooling for divertor, vacuum vessel, ... Blanket/shield 20%; limiters Pellet injector

202

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-05-15

203

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-09-30

204

Plasma Heating: An Advanced Technology  

NASA Technical Reports Server (NTRS)

The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

1994-01-01

205

Road transport technology and climate change mitigation  

E-print Network

Road transport technology and climate change mitigation DR DAVID HOWEY, DR ROBIN NORTH AND DR and 2050 will strongly influence the extent of climate change by the end of this century1 . transport alone was responsible for around 23% of global energy-related Co2 emissions in 20072 . transport emissions could become

206

Advanced technologies for remote sensing imaging applications  

SciTech Connect

Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

Wood, L.L.

1993-06-07

207

Modern Imaging Technology: Recent Advances  

SciTech Connect

This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

Welch, Michael J.; Eckelman, William C.

2004-06-18

208

DOE/JPL advanced thermionic technology program  

NASA Technical Reports Server (NTRS)

Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.

1979-01-01

209

Technological advances for studying human behavior  

NASA Technical Reports Server (NTRS)

Technological advances for studying human behavior are noted in viewgraph form. It is asserted that performance-aiding systems are proliferating without a fundamental understanding of how they would interact with the humans who must control them. Two views of automation research, the hardware view and the human-centered view, are listed. Other viewgraphs give information on vital elements for human-centered research, a continuum of the research process, available technologies, new technologies for persistent problems, a sample research infrastructure, the need for metrics, and examples of data-link technology.

Roske-Hofstrand, Renate J.

1990-01-01

210

Evaluation of advanced bladder technology  

NASA Technical Reports Server (NTRS)

Research conducted during this period is reported. Studies presented include: (1) diffusion and permeation of CO2, O2, N2, and NO2 through polytetra fluoroethylene; (2) diffusion, permeation and solubility of simple gases (CO2, O2, N2, CH4, C2H6, C3H8, and C2H4) through a copolymer of hexafluoro propylene and tetrafluoro ethylene (FEP); (3) viscous flow and diffusion of gases throug small apertures; (4) diffusion and permeation of O2, N2, CO2, CH4, C2H6, and C3H8 through nitroso rubber; and (5) results of gas transport studies with carborane siloxane, nitroso rubber, silicone membrane, krytox coating on teflon, and FEP coated glass cloth. Publications generated under this program are listed.

Christensen, M. V.; Pasternak, R. A.

1972-01-01

211

76 FR 59659 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public...

2011-09-27

212

78 FR 292 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public...

2013-01-03

213

76 FR 29195 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public...

2011-05-20

214

75 FR 106 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public...

2010-01-04

215

75 FR 60082 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public...

2010-09-29

216

77 FR 32570 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public...

2012-06-01

217

78 FR 29704 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public...

2013-05-21

218

77 FR 59592 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public...

2012-09-28

219

78 FR 57839 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public...

2013-09-20

220

77 FR 3232 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public...

2012-01-23

221

Transportation Beyond 2000: Technologies Needed for Engineering Design  

NASA Technical Reports Server (NTRS)

The purpose of the workshop was to acquaint the staff of the NASA Langley Research Center with the broad spectrum of transportation challenges and concepts foreseen within the next 20 years. The hope is that material presented at the workshop and contained in this document will stimulate innovative high-payoff research directed towards the efficiency of future transportation systems. The workshop included five sessions designed to stress the factors that will lead to a revolution in the way we will travel in the 21st century. The first session provides the historical background and a general perspective for future transportation, including emerging transportation alternatives such as working at a distance. Personal travel is the subject of Session Two. The third session looks at mass transportation, including advanced rail vehicles, advanced commuter aircraft, and advanced transport aircraft. The fourth session addresses some of the technologies required for the above revolutionary transportation systems to evolve. The workshop concluded with a wrap-up panel discussion, Session Five. The topics presented herein all have viable technical components and are at a stage in their development that, with sufficient engineering research, one or more of these could make a significant impact on transportation and our social structure.

Huebner, Lawrence D. (Compiler); Asbury, Scott C. (Compiler); Lamar, John E. (Compiler); McKinley, Robert E., Jr. (Compiler); Scott, Robert C. (Compiler); Small, William J. (Compiler); Torres, Abel O. (Compiler)

1996-01-01

222

Transportation Beyond 2000: Technologies Needed for Engineering Design  

NASA Technical Reports Server (NTRS)

The purpose of the workshop was to acquaint the staff of the NASA Langley Research Center with the broad spectrum of transportation challenges and concepts foreseen within the next 20 years. The hope is that the material presented at the workshop and contained in this document will stimulate innovative high-payoff research directed towards the efficiency of future transportation systems. The workshop included five sessions designed to stress the factors that will lead to a revolution in the way we will travel in the 21st century. The first session provides the historical background and a general perspective for future transportation, including emerging transportation alternatives such as working at a distance. Personal travel is the subject of Session Two. The third session looks at mass transportation, including advanced rail vehicles, advanced commuter aircraft, and advanced transport aircraft. The fourth session addresses some of the technologies required for the above revolutionary transportation systems to evolve. The workshop concluded with a wrap-up panel discussion, Session Five. The topics presented herein all have viable technical components and are at a stage in their development that, with sufficient engineering research, one or more of these could make a significant impact on transportation and our social structure.

Huebner, Lawrence D. (Compiler); Asbury, Scott C. (Compiler); Lamar, John E. (Compiler); McKinley, Robert E., Jr. (Compiler); Scott, Robert C. (Compiler); Small, William J. (Compiler); Torres, Abel O. (Compiler)

1996-01-01

223

Advanced neutral-beam technology  

SciTech Connect

Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described.

Berkner, K.H.

1980-09-01

224

Advances in multiphoton microscopy technology  

PubMed Central

Multiphoton microscopy has enabled unprecedented dynamic exploration in living organisms. A significant challenge in biological research is the dynamic imaging of features deep within living organisms, which permits the real-time analysis of cellular structure and function. To make progress in our understanding of biological machinery, optical microscopes must be capable of rapid, targeted access deep within samples at high resolution. In this Review, we discuss the basic architecture of a multiphoton microscope capable of such analysis and summarize the state-of-the-art technologies for the quantitative imaging of biological phenomena. PMID:24307915

Hoover, Erich E.; Squier, Jeff A.

2013-01-01

225

Space platform advanced technology study  

NASA Technical Reports Server (NTRS)

Current and past space platform and power module studies were utilized to point the way to areas of development for mechanical devices that will be required for the ultimate implementation of a platform erected and serviced by the Shuttle/Orbiter. The study was performed in accordance with a study plan which included: a review of space platform technology; orbiter berthing system requirements; berthing latch interface requirements, design, and model fabrication; berthing umbilical interface requirements and design; adaptive end effector design and model fabrication; and adaptive end effector requirements.

Burns, G.

1981-01-01

226

Advanced RF Front End Technology  

NASA Astrophysics Data System (ADS)

The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.

Herman, M. I.; Valas, S.; Katehi, L. P. B.

2001-01-01

227

Advanced nuclear energy analysis technology.  

SciTech Connect

A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems.

Gauntt, Randall O.; Murata, Kenneth K.; Romero, Vicente Jose; Young, Michael Francis; Rochau, Gary Eugene

2004-05-01

228

Research on advanced photovoltaic manufacturing technology  

SciTech Connect

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01

229

Advanced Technology Lifecycle Analysis System (ATLAS)  

NASA Technical Reports Server (NTRS)

Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is satisfied with the system configurations, technology portfolios, and deployment strategies, he or she can present the concepts to a team, which will conduct a detailed, discipline-oriented analysis within a CEE. An analog to this approach is the music industry where a songwriter creates the lyrics and music before entering a recording studio.

O'Neil, Daniel A.; Mankins, John C.

2004-01-01

230

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01

231

Advancing Autonomous Operations Technologies for NASA Missions  

NASA Technical Reports Server (NTRS)

This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

Cruzen, Craig; Thompson, Jerry Todd

2013-01-01

232

Advancing Autonomous Operations Technologies for NASA Missions  

NASA Technical Reports Server (NTRS)

This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

Cruzen, Craig; Thompson, Jerry T.

2013-01-01

233

Technologic advances in psychiatric nursing.  

PubMed

This is an exciting time to be involved with the care of patients with mental illness. More and more information about what is happening in the brain when mental illness develops is becoming available. Even more important, however, clinicians need not be seduced by the secrets of the brain being discovered. Psychiatric nurses must remember that patients have real and frightening experiences. They alone must learn to adapt and function with their symptoms of mental illness. To the degree that clinicians become enamored of the science and technology, they may lose their empathy with the human experience of mental illness [11]. Nurses, who help people respond to their illnesses, must engage the science with curiosity and engage the person with empathy. PMID:12712664

Bostrom, Andrea C

2003-03-01

234

FIEA Advancing Wood Technology Forest Industry Engineering Scholarship  

E-print Network

FIEA ­ Advancing Wood Technology Forest Industry Engineering Scholarship Forest Industry Privacy Declaration. NO LATE APPLICATIONS WILL BE ACCEPTED #12; FIEA ­ Advancing Wood Technology's the principal vehicle for technology transfer for forestry and wood products companies. Through a range

Hickman, Mark

235

Advanced technology and confidentiality in hand surgery.  

PubMed

Advanced technology has the potential to improve the quality of care for our patients, but it also poses new challenges, especially in maintaining patient confidentiality. The Health Insurance Portability and Accountability Act and the newly enacted Health Information Technology for Economic and Clinical Health Act provide certain guidelines governing patients' medical record confidentiality. This article discusses the other new challenges facing hand surgeons, such as the use of social media, telemedicine, e-mails, and the Internet. PMID:25189686

Naam, Nash H; Sanbar, Sandy

2015-01-01

236

Advanced Civil Transport Simulator Cockpit View  

NASA Technical Reports Server (NTRS)

The Advanced Civil Transport Simulator (ACTS) is a futuristic aircraft cockpit simulator designed to provide full-mission capabilities for researching issues that will affect future transport aircraft flight stations and crews. The objective is to heighten the pilots situation awareness through improved information availability and ease of interpretation in order to reduce the possibility of misinterpreted data. The simulators five 13-inch Cathode Ray Tubes are designed to display flight information in a logical easy-to-see format. Two color flat panel Control Display Units with touch sensitive screens provide monitoring and modification of aircraft parameters, flight plans, flight computers, and aircraft position. Three collimated visual display units have been installed to provide out-the-window scenes via the Computer Generated Image system. The major research objectives are to examine needs for transfer of information to and from the flight crew; study the use of advanced controls and displays for all-weather flying; explore ideas for using computers to help the crew in decision making; study visual scanning and reach behavior under different conditions with various levels of automation and flight deck-arrangements.

1992-01-01

237

Advanced MCT technologies in France  

NASA Astrophysics Data System (ADS)

In this paper we present an overview of the very recent developments of the HgCdTe infrared detector technology developed by CEA-LETI and industrialized by Sofradir in France. Today Sofradir uses in production for more than 15years a very mature, reproducible, well mastered and fully understood, planar n on p ion implanted technology. This process that allows very high yields to be achieved in all infrared bands from SWIR to LWIR uses the very conventional approach of LPE growth of MCT on lattice-matched CdZnTe substrates. Progress in this field is continuous from 20years and has recently leaded to the fabrication of high performance VLWIR FPA (320x256 with cut off wavelengths as high as 20?m). Moreover, thanks to the design of the epitaxial structure and to the substrate removal step MCT FPAs present the unique features to have very high quantum efficiency (above 70%) from the cut off wavelength down to the UV. This effect, which opens new application fields, was recently demonstrated in SWIR 320x256 FPAs with cut off wavelength of 2.5?m. Very high quality FPAs (1280x1024) with pitches as small as 15?m have already been demonstrated last year using the MBE growth of MWIR MCT epilayers on 4 inches germanium substrates, n on p ion implanted photodiodes and the hot welding indium bump hybridization technique. At the same time, with the MBE growth, bicolor and dual band FPAs which uses more complex multi hetero-junctions architectures (both 4 layers npn and 'pseudo planar' structures and extrinsically doped MCT layers) were fabricated with formats of 320x256 and pitches as small as 25?m. A very new area of development concerns avalanche photodiodes (APD) made with MCT. This semiconductor presents a unique feature among all the over semiconductors. Extremely high avalanche gains can be obtained on n on p photodiodes without absolutely any noise excess (F(K)=1): MCT APDs act as perfect amplifiers. These results open new interesting fields of investigation for low flux applications and fast detectors (including hyper spectral imaging and active imaging).

Destefanis, Grard; Tribolet, Philippe

2007-04-01

238

Terminal area considerations for an advanced CTOL transport aircraft  

NASA Technical Reports Server (NTRS)

Projected future conditions at large urban airports were used to identify design objectives for a long-haul, advanced transport airplane introduced for operation in the mid-1980s. Operating constraints associated with airport congestion and aircraft noise and emissions were of central interest. In addition, some of the interaction of these constraints with aircraft fuel usage were identified. The study allowed for advanced aircraft design features consistent with the future operating period. A baseline 200 passenger airplane design was modified to comply with design requirements imposed by terminal area constraints. Specific design changes included: (1) modification of engine arrangement; wing planform; (2) drag and spoiler surfaces; (3) secondary power systems; (4) brake and landing gear characteristics; and (5) the aircraft avionics. These changes, based on exploratory design estimates and allowing for technology advance, were judged to enable the airplane to: reduce wake turbulence; handle steeper descent paths with fewer limitation due to engine characteristics; reduce runway occupancy times; improve community noise contours; and reduce the total engine emittants deposited in the terminal area. The penalties to airplane performance and operating cost associated with improving the terminal area characteristics of the airplane were assessed. Finally, key research problems requiring solution in order to validate the assumed advanced airplane technology were identified.

Sussman, M. B.

1975-01-01

239

TECHcitement: Advances in Technological Education, 2004  

ERIC Educational Resources Information Center

This edition of "TECHcitement" contains the following articles: (1) ATE Program Leads to Student Success; (2) Doing Whatever It Takes for Aquaculture; (3) The Bridge to Biotech; (4) Girls See What They Can Do With Technology at Camp; (5) Students Advancing Solutions to Business Problems; (6) CREATE Recreates Technical Education in California; (7)

American Association of Community Colleges (NJ1), 2004

2004-01-01

240

Advanced FCC flue gas desulfurization technology  

Microsoft Academic Search

In the past only two processes were commercially available to reduce Fluid Catalytic Cracking (FCC) SOX emissions. These were hydrodesulfurization of the feed and scrubbing of the flue gas. Both methods require large capital investments. Katalistiks International, Inc. has developed a more advanced method of FCC SOX emission control utilizing newly developed magnesium aluminate spinel technology.

J. Powell; W. Letzsch; R. M. Benslay; K. C. Chuang; R. Bartek

1988-01-01

241

Advances in technologies and study design.  

PubMed

The initial draft sequence of the human genome was the proving ground for significant technological advancements, and its completion has ushered in increasingly sophisticated tools and ever-increasing amounts of data. Often, this combination has multiplicative effects such as stimulating research groups to consider subsequent experiments of at least equal if not greater complexity or employ advanced technologies. As applied to the fields of nutrigenetics and nutrigenomics, these advances in technology and experimental design allow researchers to probe the biological, biochemical, and physiological mechanisms underpinning the response to micro- and macronutrients, along with downstream health effects. It is becoming ever more apparent that effects on gene expression as a consequence of genetic variation and perturbations to cellular and physiological systems are an important cornerstone of nutrigenomics and nutrigenetics research. A critical, near-term objective, however, must be to determine where and how nutrients and their metabolites augment or disrupt the genetic variation-gene expression axis. Downstream effects on protein and metabolite measures are also seen with growing regularity as vital components to this research. Thus, this chapter reviews the scope of recent progress and innovation in genomics and associated technologies as well as study designs as applied to nutrigenomics and nutrigenetics research and provides concrete examples of the application of those advancements in genomics-oriented nutrition research. PMID:22656372

Parnell, Laurence D

2012-01-01

242

TECHcitement: Advances in Technological Education, 2006  

ERIC Educational Resources Information Center

This publication includes 13 articles: (1) ATE [Advanced Technological Education] Attuned to Global Competition; (2) Materials Science Center Supplies Information on Often-Overlooked Field; (3) CSEC [Cyber Security Education Consortium] Builds Corps of Cyber Technicians; (4) KCTCS [Kentucky Community and Technical College System] Is U.S. Partner

American Association of Community Colleges (NJ1), 2006

2006-01-01

243

Advanced technology for packaged cogeneration systems  

Microsoft Academic Search

A growing number of commercial and institutional energy users have applied cogeneration systems of less than 1MWe capacity, but the market has generally been limited to those whose price differential between electricity and natural gas justified the comparatively high capital costs. More research in advanced energy conversion technology is needed before a broad penetration is possible. Packaged cogeneration systems, standardized

Kostrzewa

1985-01-01

244

TECHcitement: Advances in Technology Education, 2008  

ERIC Educational Resources Information Center

This publication presents the following articles: (1) Advanced Technological Education (ATE) Develops Student Recruitment and Retention Strategies; (2) Marketer Advises Tech Educators Appeal to Teens' Emotions, Desires to Do Something Important; (3) Digital Bridge Academy Gets At-Risk Students on Paths to Knowledge-Based Careers; (4) Project

Patton, Madeline

2008-01-01

245

ADVANCED TECHNOLOGY PROGRAM INFORMATION INFRASTRUCTURE FOR HEALTHCARE  

E-print Network

ADVANCED TECHNOLOGY PROGRAM INFORMATION INFRASTRUCTURE FOR HEALTHCARE: Case Studies from a Focused for funding during the first two competitions of the ATP's Information Infrastructure for Healthcare (IIH for funding during the first two competitions of the ATP Information Infrastructure for Healthcare (IIH

246

Advanced Technological Education Survey 2009 Fact Sheet  

ERIC Educational Resources Information Center

This fact sheet summarizes data gathered in the 2009 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by The Evaluation Center at Western Michigan University, this was the tenth annual survey of ATE projects and centers. Included here are statistics about the program's grantees and

Wingate, Lori; Gullickson, Arlen

2009-01-01

247

Advanced Technological Education Survey 2012 Fact Sheet  

ERIC Educational Resources Information Center

This fact sheet summarizes data gathered in the 2012 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the thirteenth annual survey of ATE projects

Wingate, Lori; Smith, Corey; Westine, Carl; Gullickson, Arlen

2012-01-01

248

Advanced Technological Education Survey 2010 Fact Sheet  

ERIC Educational Resources Information Center

This fact sheet summarizes data gathered in the 2010 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the eleventh annual survey of ATE projects and

Wingate, Lori; Westine, Carl; Gullickson, Arlen

2010-01-01

249

Advanced Technological Education Survey 2011 Fact Sheet  

ERIC Educational Resources Information Center

This fact sheet summarizes data gathered in the 2011 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the twelfth annual survey of ATE projects and

Wingate, Lori; Westine, Carl; Gullickson, Arlen

2011-01-01

250

Advanced Turbine Technology Applications Project (ATTAP)  

NASA Technical Reports Server (NTRS)

Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.

1989-01-01

251

Advanced technologies for perimeter intrusion detection sensors  

SciTech Connect

The development of integrated circuit fabrication techniques and the resulting devices have contributed more to the advancement of exterior intrusion detectors and alarm assessment devices than any other technology. The availability of this technology has led to the improvements in and further development of smaller more powerful computers, microprocessors, solid state memories, solid state cameras, thermal imagers, low-power lasers, and shorter pulse width and higher frequency electronic circuitry. This paper presents information on planning a perimeter intrusion detection system, identifies the site characteristics that affect its performance, and describes improvements to perimeter intrusion detection sensors and assessment devices that have been achieved by using integrated circuit technology.

Williams, J.D.

1995-03-01

252

Elderly people's interaction with advanced technology.  

PubMed

Aging of population is an inevitable process by which the number of elderly people is increasing. Rapid development of information and communication technology (ICT) is changing basic needs of elderly people; therefore society should ensure opportunities for elderly to learn and use ICT in a way to manage their daily life activities and in this way enable them participation in the information and knowledge society. The purpose of the study was to find out whether elderly are acquainted with the advanced technology and to what extent they use it or they desire to use it. Within the single point study we interviewed 100 randomly selected elderly people from different geographical regions in Slovenia. Results showed the differences in the use of advanced technology by Slovenian regions; therefore in the future activities should be focused on organizing promotional and demonstrational activities including ICT courses to increase elderly's motivation for ICT interaction. PMID:24943518

Blaun, Helena; Voner, Janez; Kokol, Peter; Saranto, Kaija; Rissanen, Sari

2014-01-01

253

Robotics Technology Development Program Cross Cutting and Advanced Technology  

SciTech Connect

Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy`s complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems.

Harrigan, R.W.; Horschel, D.S.

1994-04-01

254

Advanced computer technology - An aspect of the Terminal Configured Vehicle program. [air transportation capacity, productivity, all-weather reliability and noise reduction improvements  

NASA Technical Reports Server (NTRS)

NASA is conducting a Terminal Configured Vehicle program to provide improvements in the air transportation system such as increased system capacity and productivity, increased all-weather reliability, and reduced noise. A typical jet transport has been equipped with highly flexible digital display and automatic control equipment to study operational techniques for conventional takeoff and landing aircraft. The present airborne computer capability of this aircraft employs a multiple computer simple redundancy concept. The next step is to proceed from this concept to a reconfigurable computer system which can degrade gracefully in the event of a failure, adjust critical computations to remaining capacity, and reorder itself, in the case of transients, to the highest order of redundancy and reliability.

Berkstresser, B. K.

1975-01-01

255

Pathways of Transport Protein Evolution: Recent Advances  

PubMed Central

We herein report recent advances in our understanding of transport protein evolution. The Drug-Metabolite Transporter (DMT) superfamily (TC# 2.A.7) arose from a 2TMS precursor to give 4TMS proteins which then added one and duplicated to give 10. The proposed pathway is 2 > 4 > 5 > 10. This superfamily provides a rare example where all proposed topological intermediates in this evolutionary pathway have been identified in current protein databases. Another family, the Oligopeptide Transporter (OPT) family (TC# 2.A.67), also started with a 2 TMS peptide precursor, but it followed the pathway: Only 16 and 17 TMS OPT family members have been identified in current databases. The TRIC family of K+ channels, characterized in animals, arose via the pathway: where the seventh TMS was added c-terminally to the 6 TMS precursor that resulted from a 3 TMS duplication. Surprisingly, animal TRIC channels proved to have numerous 7 TMS homologues in prokaryotes, none of which had been identified previously. We found that two families of integral membrane proteins gave rise to multiple current topological types. Members of the SdpC killer factor immunity protein family, SdpI (TC# 9.A.32) probably arose via the pathway: while members of the Heme Handling Protein (HHP) Family (TC# 9.B.14) arose via the pathway: Predictions are also made for an evolutionary pathway giving rise to the seven topological types of P-type ATPases so far identified in the P-ATPase superfamily. Finally, the ubiquitous CDF carriers (TC# 1.A.4) of 6TMSs probably gave rise to CRAC channels of 4TMSs by loss of the first two TMSs an unusual example of retroevolution. PMID:21194372

Lam, Vincent H.; Lee, Jong-Hoon; Silverio, Abe; Chan, Henry; Gomolplitinant, Kenny M.; Povolotsky, Tatyana L.; Orlova, Ekaterina; Sun, Eric I.; Welliver, Carl H.; Saier, Milton H.

2014-01-01

256

An airline study of advanced technology requirements for advanced high speed commercial engines. 3: Propulsion system requirements  

NASA Technical Reports Server (NTRS)

The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 3 effort cover the requirements and objectives for future aircraft propulsion systems. These requirements reflect the results of the Task 1 and 2 efforts and serve as a baseline for future evaluations, specification development efforts, contract/purchase agreements, and operational plans for future subsonic commercial engines. This report is divided into five major sections: (1) management objectives for commercial propulsion systems, (2) performance requirements for commercial transport propulsion systems, (3) design criteria for future transport engines, (4) design requirements for powerplant packages, and (5) testing.

Sallee, G. P.

1973-01-01

257

On the Pulse of Technological Advances  

NSDL National Science Digital Library

The ATETV project delivers web-based videos to connect students to careers in advanced technology. In this episode of ATETV, industry partnerships, architectural technology, and underwater robotics are discussed. Community colleges provide hands-on education with a direct link to what is going on in industry. Such technical programs tailor their curriculum so that students gain an understanding of what is involved in working in the field. These programs are also at the forefront in emerging technologies such as remotely operated vehicles, and provide the employees of the future with a strong educational foundation. The episode can be watched in full or through the three segments: âPioneering in the Fuel Cell Industry,â âAdvances in Architectural Technology Add Up to Green Buildings,â and âThe Many Applications of Underwater Robotics.â Running time for the full episode of this streaming video is 9:26.

2010-07-28

258

Leaf Evolution and Development: Advancing Technologies, Advancing Understanding  

NSDL National Science Digital Library

Classical morphological studies of plant development have provided a sound basis for recent advances in molecular and computational tools for understanding how leaves become leaves. Research on mutants in model organisms has identified networks of genes that are involved in the development of leaves. Mutant analyses and gene expression studies have also revealed epigenetic phenomena that regulate leaf development. Such techniques are still invaluable to developmental biology, and these techniques are continuing to be enhanced. Each new technique or species studied appears to reveal further levels of complexity in the regulation of leaf development. Only by drawing together evidence from numerous techniques and comparative studies of a wide array of species will we understand how such diversity of plant form has arisen. In this article we do not provide a comprehensive review of our current understanding of leaf development, but rather a glimpse at how advances in technologies facilitated that understanding.

Sarah Wyatt (Ohio University; )

2009-01-01

259

Advanced core technology: Key to subsonic propulsion benefits  

NASA Technical Reports Server (NTRS)

A study was conducted to identify the potential performance benefits and key technology drivers associated with advanced cores for subsonic high bypass turbofan engines. Investigated first were the individual sensitivities of varying compressor efficiency, pressure ratio and bleed (turbine cooling); combustor pressure recovery; and turbine efficiency and inlet temperature on thermal efficiency and core specific power output. Then, engine cycle and mission performance benefits were determined for systems incorporating all potentially achievable technology advancements. The individual thermodynamic sensitivities are shown over a range of turbine temperatures (at cruise) from 2900 to 3500 R and for both constant (current technology) and optimum (maximum thermal efficiency) overall pressure ratios. It is seen that no single parameter alone will provide a large increase in core thermal efficiency, which is the thermodynamic parameter of most concern for transport propulsion. However, when all potentially achievable advancements are considered, there occurs a synergism that produces significant cycle and mission performance benefits. The nature of these benefits are presented along with the technology challenges.

Glassman, Arthur J.; Snyder, Christopher A.; Knip, Gerald, Jr.

1989-01-01

260

Advanced core technology - Key to subsonic propulsion benefits  

NASA Technical Reports Server (NTRS)

A study was conducted to identify the potential performance benefits and key technology drivers associated with advanced cores for subsonic high bypass turbofan engines. Investigated first were the individual sensitivities of varying compressor efficiency, pressure ratio and bleed (turbine cooling); combustor pressure recovery; and turbine efficiency and inlet temperature on thermal efficiency and core specific power output. Then, engine cycle and mission performance benefits were determined for systems incorporating all potentially achievable technology advancements. The individual thermodynamic sensitivities are shown over a range of turbine temperatures (at cruise) from 2900 to 3500 R and for both constant (current technology) and optimum (maximum thermal efficiency) overall pressure ratios. It is seen that no single parameter alone will provide a large increase in core thermal efficiency, which is the thermodynamic parameter of most concern for transport propulsion. However, when all potentially achievable advancements are considered, there occurs a synergism that produces significant cycle and mission performance benefits. The nature of these benefits are presented along with the technology challenges.

Glassman, Arthur J.; Snyder, Christopher A.; Knip, Gerald, Jr.

1989-01-01

261

Advanced rotorcraft technology: Task force report  

NASA Technical Reports Server (NTRS)

The technological needs and opportunities related to future civil and military rotorcraft were determined and a program plan for NASA research which was responsive to the needs and opportunities was prepared. In general, the program plan places the primary emphasis on design methodology where the development and verification of analytical methods is built upon a sound data base. The four advanced rotorcraft technology elements identified are aerodynamics and structures, flight control and avionic systems, propulsion, and vehicle configurations. Estimates of the total funding levels that would be required to support the proposed program plan are included.

1978-01-01

262

Second NASA Advanced Composites Technology Conference  

NASA Technical Reports Server (NTRS)

The conference papers are presented. The Advanced Composite Technology (ACT) Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. These papers will also be included in the Ninth Conference Proceedings to be published by the Federal Aviation Administration as a separate document.

Davis, John G., Jr. (compiler); Bohon, Herman L. (compiler)

1992-01-01

263

Personnel screening with advanced multistatic imaging technology  

NASA Astrophysics Data System (ADS)

Personnel screening is demanded nowadays for securing air traffic as well as critical infrastructures. The millimeter-waves are able to penetrate clothes and detect concealed objects, making them an attractive choice for security screening. Imaging methods based on multistatic architecture can ensure high quality imagery in terms of resolution and dynamic range. Following the advances in semiconductor technology, fully electronic solutions delivering real-time imaging are becoming feasible. Furthermore, the continuously increasing capabilities of digital signal processing units allow for the utilization of digital-beamforming techniques for image reconstruction, thus offering new opportunities for imaging systems to use sophisticated operation modes. Based on these modern technologies, an advanced realization addressing personnel screening in E-band with planar multistatic sparse array design is demonstrated.

Ahmed, Sherif S.

2013-05-01

264

Advanced manufacturing: Technology and international competitiveness  

SciTech Connect

Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

Tesar, A.

1995-02-01

265

Changing Student Lives Through Advanced Technological Education  

NSDL National Science Digital Library

In this lesson designed for professional development, learn about rapidly emerging fields in advanced technology that your students may find of interest when considering a career. You will watch videos, explore interactive activities, and answer content-related questions to gain insights into the various industries that use advanced technology, the kinds of people working in or training for these jobs, and the skills and education needed to succeed. Then you will research ATE programs in your area that align with your studentsâ interests and inquire about internships and other firsthand experiences high school students may use to evaluate possible career pathways. The lesson is accompanied standards alignment and users who sign up for a free account can save the resource to a folder to be used again later.

2012-05-24

266

Advances in resist technology and processing V  

SciTech Connect

These proceedings discuss the technology and processing advances made in the resist materials. The topics included are: Mid-UV photoresists combining chemical amplification and dissolution inhibition; new photoactive compounds for deep-UV lithography; contrast-enhancement materials for mid-UV applications; materials for CMOS and bipolar circuits; effects of ion bombardment in oxygen plasma etching; silicone-based positive photoresist; and ion-etching properties of polysilane polysilane copolymers.

MacDonald, S.A.

1988-01-01

267

Advanced Oxidation Technology for Pulp Mill Effluent  

E-print Network

than 50% for a high grade chemical pulp. The difference (l-yield) is the water soluble extractives found in the process wash waters. These wash water streams are further processed to recover the wood extractives and process chemicals when...ADVANCED OXIDATION TECHNOLOGY FOR PULP MILL EFFLUENT J. ROBERT HART, MANAGER, EPRI PULP & PAPER OFFICE, ATLANTA, GA ABSTRACT The composition of effluent from various pulping processes can exhibit a wide range of physical and chemical...

Hart, J. R.

268

Man-machine interface requirements - advanced technology  

NASA Technical Reports Server (NTRS)

Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

Remington, R. W.; Wiener, E. L.

1984-01-01

269

Medical technology advances from space research  

NASA Technical Reports Server (NTRS)

Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

Pool, S. L.

1972-01-01

270

Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate  

NASA Technical Reports Server (NTRS)

The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

Cohen, A.

1985-01-01

271

I-5/Gilman advanced technology bridge project  

NASA Astrophysics Data System (ADS)

The UCSD led I-5/Gilman Advanced Technology Bridge Project will design and construct a fully functional traffic bridge of advanced composite materials across Interstate 5 in La Jolla, California. Its objective is to demonstrate the use of advanced composite technologies developed by the aerospace industry in commercial applications to increase the life expectancy of new structures and for the rehabilitation of aging infrastructure components. The structure will be a 450 ft long, 60 ft wide cable-stayed bridge supported by a 150 ft A-frame pylon with two vehicular lanes, two bicycle lanes, pedestrian walkways and utility tunnels. The longitudinal girders and pylon will be carbon fiber shells filled with concrete. The transverse deck system will consist of hollow glass/carbon hybrid tubes and a polypropylene fiber reinforced concrete deck with an arch action. Selected cables will be composite. The bridge's structural behavior will be monitored to determine how advanced composite materials perform in civil infrastructure applications. The bridge will be instrumented to obtain performance and structural health data in real time and, where possible, in a remote fashion. The sensors applied to the bridge will include electrical resistance strain gages, fiberoptic Bragg gratings and accelerometers.

Lanza di Scalea, Francesco; Karbhari, Vistasp M.; Seible, Frieder

2000-04-01

272

Further advances in autostereoscopic technology at Dimension Technologies Inc.  

NASA Astrophysics Data System (ADS)

Dimension Technologies is currently one of three companies offering autostereoscopic displays for sale and one of several which are actively pursuing advances to the technology. We have devised a new autostereoscopic imaging technique which possesses several advantages over previously explored methods. We are currently manufacturing autostereoscopic displays based on this technology, as well as vigorously pursuing research and development toward more advanced displays. During the past year, DTI has made major strides in advancing its LCD based autostereoscopic display technology. DTI has developed a color product -- a stand alone 640 X 480 flat panel LCD based 3-D display capable of accepting input from IBM PC and Apple MAC computers or TV cameras, and capable of changing from 3-D mode to 2-D mode with the flip of a switch. DTI is working on development of a prototype second generation color product that will provide autostereoscopic 3-D while allowing each eye to see the full resolution of the liquid crystal display. And development is also underway on a proof-of-concept display which produces hologram-like look-around images visible from a wide viewing angle, again while allowing the observer to see the full resolution of the display from all locations. Development of a high resolution prototype display of this type has begun.

Eichenlaub, Jesse B.

1992-06-01

273

Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan  

NASA Technical Reports Server (NTRS)

An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.

1983-01-01

274

Space Station technology testbed: 2010 deep space transport  

NASA Technical Reports Server (NTRS)

A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and telepresence/kinetic processes), (3) subsystem tests of advanced nuclear power, nuclear propulsion and communication systems (using boom extensions, remote station-keeping platforms and mobile EVA crew and robots), and (4) logistics support (crew and equipment) and command and control of deep space transport assembly, maintenance, and refueling (using a station-keeping platform).

Holt, Alan C.

1993-01-01

275

Advanced Education and Technology Business Plan, 2010-13  

ERIC Educational Resources Information Center

This paper presents the business plan of the Ministry of Advanced Education and Technology for 2010 to 2013. Advanced Education and Technology supports the advanced learning system by providing funding for advanced learning providers, coordinating and approving programs of study at public institutions, licensing and approving programs at private

Alberta Advanced Education and Technology, 2010

2010-01-01

276

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

Hugh W. Rimmer

2004-05-12

277

National Advanced Drilling and Excavation Technologies Program  

SciTech Connect

The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

None

1993-06-15

278

JPL Advanced Thermal Control Technology Roadmap - 2008  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

Birur, Gaj

2008-01-01

279

Aeronautical technology 2000: A projection of advanced vehicle concepts  

NASA Technical Reports Server (NTRS)

The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

1985-01-01

280

Institute for Software Technology Ad anced RoboticsAdvanced Robotics  

E-print Network

Institute for Software Technology Ad anced RoboticsAdvanced Robotics Assignment 2 Gerald Steinbauer Institute for Software Technology Gerald Steinbauer 1 Advanced Robotics-Assignment 1 #12;Institute Gerald Steinbauer 2 Advanced Robotics-Assignment 1 #12;Institute for Software Technology Assignment

281

Institute for Software Technology Ad anced RoboticsAdvanced Robotics  

E-print Network

Institute for Software Technology Ad anced RoboticsAdvanced Robotics Dependability/Robustness Gerald Steinbauer Institute for Software Technology Gerald Steinbauer 1 Advanced Robotics ­ Dependability Steinbauer 2 Advanced Robotics ­ Dependability/Robustness © NASA/JPL #12;Institute for Software Technology

282

Humanities, Arts, Science, and Technology Advanced Collaboratory  

NSDL National Science Digital Library

The Humanities, Arts, Science, and Technology Advanced Collaboratory (HASTAC) is a consortium of humanists, artists, scientists, social scientists, and engineers from universities across the country, committed to new forms of cross-collaboration in order to promote creative uses of technology. It is a network of networks, located at the intersection of technology, engineering, and computing on one hand, and the humanities, arts and social sciences on the other. The HASTAC web site features information on the consortium's projects, including tools for multimedia archiving and social interaction, gaming environments for teaching, educational programs in information science and information studies, virtual museums, and many others. There are also news items, event announcements, and information for organizations who wish to join the consortium.

2006-05-18

283

Transportation technology quick reference file  

SciTech Connect

This publication is a collection of items written by different authors on subjects relating to the transportation of radioactive materials. The purpose of the document is to meet the continuing need for information on specific subjects for dissemination to the public at their request. The subjects included were selected on the basis of the questions most often asked about radioactive materials and their transportation. Additional subjects are being considered and will be included in the future. The loose-leaf notebook format is used to facilitate the updating of this material. The data used in many of the papers represent the best available at time of publication and will be updated as more current information becomes available.

Shepherd, E.W. (ed.)

1981-05-01

284

Propellantless Propulsion Technologies for In-Space Transportation  

NASA Technical Reports Server (NTRS)

In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 or 3 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will be described. Results of recent earth-based technology demonstrations and space tests will also be discussed.

Johnson, Les; Cook, Stephen (Technical Monitor)

2001-01-01

285

RAND: Transportation, Space, and Technology Program  

NSDL National Science Digital Library

The RAND Corporation decided to consolidate the work of RAND Public Safety and Justice, the RAND Homeland Security Center, and RAND Science and Technology units to create a single Infrastructure, Safety and Environment (ISE) research unit. This website describes the Transportation, Space, and Technology program that is part of this unit. The program, which conducts research on "new technologies and their implications for the nation and the world," focuses on transportation systems and regulation, ports, space exploration, information and telecommunications technologies and regulation, federal research and development allocation, and social implications of emerging technologies. Posted here are reports, news releases and other documents highlighting its projects. Recent reports include a study that "finds airliner anti-missile systems too expensive and unreliable" and which concludes that "radio frequency identification reduces workplace privacy." From here, visitors can also learn more about the other programs and centers within the Infrastructure, Safety and Environment research unit.

286

A methodology for boost-glide transport technology planning  

NASA Technical Reports Server (NTRS)

A systematic procedure is presented by which the relative economic value of technology factors affecting design, configuration, and operation of boost-glide transport can be evaluated. Use of the methodology results in identification of first-order economic gains potentially achievable by projected advances in each of the definable, hypersonic technologies. Starting with a baseline vehicle, the formulas, procedures and forms which are integral parts of this methodology are developed. A demonstration of the methodology is presented for one specific boost-glide system.

Repic, E. M.; Olson, G. A.; Milliken, R. J.

1974-01-01

287

Advanced space transportation systems, BARGOUZIN booster  

NASA Astrophysics Data System (ADS)

In the framework of Advanced Space Transportation Systems Studies sponsored by CNES in 2006, a study called "BARGOUZIN" was performed by a joint team led by ASTRIUM ST and TSNIIMASH. Beyond these leaders, the team comprised MOLNIYA, DASSAULT AVIATION and SNECMA as subcontractors. The "BARGOUZIN" concept is a liquid fuelled fly-back booster (LFBB), mounted on the ARIANE 5 central core stage in place of the current solid rocket booster. The main originality of the concept lies in the fact that the "BARGOUZIN" features a cluster of VULCAIN II engines, similar to the one mounted on the central core stage of ARIANE 5. An astute permutation strategy, between the booster engines and central core engine is expected to lead to significant cost reductions. The following aspects were addressed during the preliminary system study: engine number per booster trade-off/abort scenario analysis, aerodynamic consolidation, engine reliability, ascent controllability, ground interfaces separation sequence analysis, programmatics. These topics will be briefly presented and synthesized in this paper, giving an overview of the credibility of the concept.

Prampolini, Marco; Louaas, Eric; Prel, Yves; Kostromin, Sergey; Panichkin, Nickolay; Sumin, Yuriy; Osin, Mikhail; Iranzo-Greus, David; Rigault, Michel; Beaurain, Andr; Couteau, Jean-Nol

2008-07-01

288

The Advanced Technology Development Center (ATDC)  

NASA Technical Reports Server (NTRS)

NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

Clements, G. R.; Willcoxon, R. (Technical Monitor)

2001-01-01

289

IPIRG programs - advances in pipe fracture technology  

SciTech Connect

This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

1997-04-01

290

Engine Concept Study for an Advanced Single-Aisle Transport  

NASA Technical Reports Server (NTRS)

The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.

2009-01-01

291

Advanced Technology Development for Stirling Convertors  

NASA Technical Reports Server (NTRS)

A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.

Thieme, Lanny G.; Schreiber, Jeffrey G.

2004-01-01

292

Unique Systems Analysis Task 7, Advanced Subsonic Technologies Evaluation Analysis  

NASA Technical Reports Server (NTRS)

To retain a preeminent U.S. position in the aircraft industry, aircraft passenger mile costs must be reduced while at the same time, meeting anticipated more stringent environmental regulations. A significant portion of these improvements will come from the propulsion system. A technology evaluation and system analysis was accomplished under this task, including areas such as aerodynamics and materials and improved methods for obtaining low noise and emissions. Previous subsonic evaluation analyses have identified key technologies in selected components for propulsion systems for year 2015 and beyond. Based on the current economic and competitive environment, it is clear that studies with nearer turn focus that have a direct impact on the propulsion industry s next generation product are required. This study will emphasize the year 2005 entry into service time period. The objective of this study was to determine which technologies and materials offer the greatest opportunities for improving propulsion systems. The goals are twofold. The first goal is to determine an acceptable compromise between the thermodynamic operating conditions for A) best performance, and B) acceptable noise and chemical emissions. The second goal is the evaluation of performance, weight and cost of advanced materials and concepts on the direct operating cost of an advanced regional transport of comparable technology level.

Eisenberg, Joseph D. (Technical Monitor); Bettner, J. L.; Stratton, S.

2004-01-01

293

The Center for Advanced Spatial Technologies  

NSDL National Science Digital Library

The Center for Advanced Spatial Technologies at the University of Arkansas "brings together the considerable expertise of a network of researchers with a long-standing history of GIS development at the University." Visitors of the site will find links to geo-data delivery systems, interactive mapping programs, reports and publications, and a wide array of other geographical information related to the state. One highlight is the newly released GeoStor version 2.0, which allows users "seamless access to digital map data (GeoData) of any area in the state of Arkansas with no subscription fee."

294

Advanced radio over fiber network technologies.  

PubMed

The evolution of wireless communication networks supporting emerging broadband services and applications offers new opportunities for realizing integrated optical and wireless network infrastructures. We report on some of our recent activities investigating advanced technologies for next generation converged optical wireless networks. Developments in Active Antenna Systems, mobile fronthaul architectures, and 60 GHz fiber distributed wireless networks are described. We also discuss the potential for analog radio over fiber distribution links as a viable solution for meeting the capacity requirements of new network architectures. PMID:24104183

Novak, Dalma; Waterhouse, Rod

2013-09-23

295

The Marine Advanced Technology Education Center  

NSDL National Science Digital Library

Working together with a range of partners, including a number of community colleges, the Marine Advanced Technology Education Center (MATE), has created a number of valuable resources that will be useful for those with an interest in this field. The instructional resources are primarily related to those interested in careers in hydrographic surveying, aquaculture technicians, and several other fields. Visitors will appreciate the "Careers, Jobs, Internships" area which features profiles of these fields, current job listings, and other items. The education center is a real find, as it includes learning modules, worksheets, and other informative pedagogical tools for instructors.

296

Advanced Modulation and Coding Technology Conference  

NASA Technical Reports Server (NTRS)

The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions.

1992-01-01

297

Advanced Technology Solar Telescope: a progress report  

NASA Astrophysics Data System (ADS)

The four-meter Advanced Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. Development of a four-meter solar telescope presents many technical challenges (e.g., thermal control of the enclosure, telescope structure and optics). We give a status report of the ATST project (e.g., system design reviews, PDR, Haleakal site environmental impact statement progress) and summarize the design of the major subsystems, including the telescope mount assembly, enclosure, mirror assemblies, wavefront correction, and instrumentation.

Wagner, J.; Rimmele, T. R.; Keil, S.; Hubbard, R.; Hansen, E.; Phelps, L.; Warner, M.; Goodrich, B.; Richards, K.; Hegwer, S.; Kneale, R.; Ditsler, J.

2008-07-01

298

Advanced Technology Solar Telescope project management  

NASA Astrophysics Data System (ADS)

The Advanced Technology Solar Telescope (ATST) has recently received National Science Foundation (NSF) approval to begin the construction process. ATST will be the most powerful solar telescope and the world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. This paper gives an overview of the project, and describes the project management principles and practices that have been developed to optimize both the project's success as well as meeting requirements of the project's funding agency.

Wagner, J.; Hansen, E.; Hubbard, R.; Rimmele, T. R.; Keil, S.

2010-07-01

299

Advanced Technology Solar Telescope optical design  

NASA Astrophysics Data System (ADS)

The Advanced Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. Development of this four-meter off-axis solar telescope has presented many optical design challenges including: support of both Nasmyth and flexible coude lab instrumentation, incorporation of an integrated adaptive optics system, thermal control of optics, and optical alignment of multiple off-axis conics. This paper gives an overview of the optical design, error budgeting, and the performance modeling done to ensure the telescope will satisfy its optical performance requirements.

Hansen, Eric; Price, Ron; Hubbard, Rob

2006-06-01

300

Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion  

NASA Technical Reports Server (NTRS)

A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

Marsik, S. J.; Morea, S. F.

1985-01-01

301

Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion  

NASA Technical Reports Server (NTRS)

A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

Marsik, S. J.; Morea, S. F.

1985-01-01

302

76 FR 2662 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of partially closed...

2011-01-14

303

75 FR 28785 - Visiting Committee on Advanced Technology  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Partially Closed...

2010-05-24

304

Technologies Advance UAVs for Science, Military  

NASA Technical Reports Server (NTRS)

A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

2010-01-01

305

The Advanced Technology Solar Telescope mount assembly  

NASA Astrophysics Data System (ADS)

When constructed on the summit of Haleakala on the island of Maui, Hawaii, the Advanced Technology Solar Telescope (ATST) will be the world's largest solar telescope. The ATST is a unique design that utilizes a state-of-the-art off-axis Gregorian optical layout with five reflecting mirrors delivering light to a Nasmyth instrument rotator, and nine reflecting mirrors delivering light to an instrument suite located on a large diameter rotating coude lab. The design of the telescope mount structure, which supports and positions the mirrors and scientific instruments, has presented noteworthy challenges to the ATST engineering staff. Several novel design solutions, as well as adaptations of existing telescope technologies to the ATST application, are presented in this paper. Also shown are plans for the control system and drives of the structure.

Warner, Mark; Cho, Myung; Goodrich, Bret; Hansen, Eric; Hubbard, Rob; Lee, Joon Pyo; Wagner, Jeremy

2006-06-01

306

Advanced teleoperation: Technology innovations and applications  

NASA Technical Reports Server (NTRS)

The capability to remotely, robotically perform space assembly, inspection, servicing, and science functions would rapidly expand our presence in space, and the cost efficiency of being there. There is considerable interest in developing 'telerobotic' technologies, which also have comparably important terrestrial applications to health care, underwater salvage, nuclear waste remediation and other. Such tasks, both space and terrestrial, require both a robot and operator interface that is highly flexible and adaptive, i.e., capable of efficiently working in changing and often casually structured environments. One systems approach to this requirement is to augment traditional teleoperation with computer assists -- advanced teleoperation. We have spent a number of years pursuing this approach, and highlight some key technology developments and their potential commercial impact. This paper is an illustrative summary rather than self-contained presentation; for completeness, we include representative technical references to our work which will allow the reader to follow up items of particular interest.

Schenker, Paul S.; Bejczy, Antal K.; Kim, Won S.

1994-01-01

307

Humanities, Arts, Science, and Technology Advanced Collaboratory  

NSDL National Science Digital Library

What exactly is a "Humanities, Arts, Science and Technology Advanced Collaboratory" (HASTAC)? It is a "consortium of humanists, artists, social scientists, scientists, and engineers committed to new forms of collaboration across communities and disciplines fostered by creative uses of technology." Anyone is welcome to join HASTAC after registering on the website, and then they will be able to share their work and ideas with others in the community. There is a wide range of topics floating through the virtual ether here, and a good way to get started is by looking at the "Conversations" area. Here visitors will find featured blog posts, recent content updates (like a piece titled "How to Distract Your Kid Into Paying Attention), and information about job opportunities. New visitors should also look over Cathy Davidson's blog, as she has some great observations on a wide range of subjects, including the digital divide, humanities scholarship, and other matters.

308

Advanced Turbine Technology Applications Project (ATTAP)  

NASA Technical Reports Server (NTRS)

This report is the fifth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP), sponsored by the U.S. Department of Energy (DOE). The report was prepared by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, a unit of Allied Signal, Inc. The report includes information provided by Garrett Ceramic Components, and the Norton Advanced Ceramics Company, (formerly Norton/TRW Ceramics), subcontractors to GAPD on the ATTAP. This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. through 31 Dec. 1992. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990's. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fifth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs, and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride materials and processes.

1993-01-01

309

Composites technology for transport primary structure  

NASA Technical Reports Server (NTRS)

The ACT contract activity being performed by the McDonnell Douglas Corporation is divided into two separate activities: one effort by Douglas Aircraft in Long Beach, California with a focus on Transport Primary Wing and Fuselage Structure, and the other effort by McDonnell Aircraft in St. Louis, Missouri with a focus on Advanced Combat Aircraft Center Wing-Fuselage Structure. This presentation is on the Douglas Aircraft Transport Structure portion of the ACT program called ICAPS - Innovative Composite Aircraft Primary Structure.

Chen, Victor; Hawley, Arthur; Klotzsche, Max; Markus, Alan; Palmer, Ray

1991-01-01

310

Advanced Turbine Technology Applications Project (ATTAP)  

NASA Technical Reports Server (NTRS)

This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.

1992-01-01

311

Advanced plasma etch technologies for nanopatterning  

NASA Astrophysics Data System (ADS)

Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

Wise, Rich

2012-03-01

312

Advanced Turbine Technology Applications Project (ATTAP)  

NASA Technical Reports Server (NTRS)

Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

1994-01-01

313

Advanced Technologies for Design Information Verification  

SciTech Connect

This paper discusses several technologies that have the potential to enhance facilities design verification. These approaches have shown promise in addressing the challenges associated with the verification of sub-component geometry and material composition for structures that are not directly accessible for physical inspection. A simple example is a pipe that extends into or through a wall or foundation. Both advanced electromagnetic and acoustic modalities will be discussed. These include advanced radar imaging, transient thermographic imaging, and guided acoustic wave imaging. Examples of current applications are provided. The basic principles and mechanisms of these inspection techniques are presented along with the salient practical features, advantages, and disadvantages of each technique. Other important considerations, such as component geometries, materials, and degree of access are also treated. The importance of, and strategies for, developing valid inspection models are also discussed. Beyond these basic technology adaptation and evaluation issues, important user interface considerations are outlined, along with approaches to quantify the overall performance reliability of the various inspection methods.

Watkins, Michael L.; Sheen, David M.; Rose, Joseph L.; Cumblidge, Stephen E.

2009-07-08

314

Workshop on advanced technologies for planetary instruments  

NASA Technical Reports Server (NTRS)

NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the BMDO technology base, flight programs, and future directions. The working group sessions and the panel discussion synthesized technical and programmatic issues from all the presentations, with a specific goal of assessing the applicability of BMDO technologies to science instrumentation for planetary exploration.

Appleby, J. (editor)

1993-01-01

315

Institute for Software Technology Ad anced RoboticsAdvanced Robotics  

E-print Network

Institute for Software Technology Ad anced RoboticsAdvanced Robotics Knowledge Representation and Decision Making Gerald Steinbauer Institute for Software Technology Gerald Steinbauer 1 Advanced Robotics Making · An Example in ROS Gerald Steinbauer 2 Advanced Robotics - Knowledge Representation and Decision

316

Institute for Software Technology Ad anced RoboticsAdvanced Robotics  

E-print Network

Institute for Software Technology Ad anced RoboticsAdvanced Robotics Multi-Agent Systems/Communication Gerald Steinbauer Institute for Software Technology Gerald Steinbauer 1 Advanced Robotics ­ Multi Gerald Steinbauer 2 Advanced Robotics ­ Multi-Agent Systems/Communication #12;Institute for Software

317

Advanced component technologies for energy-efficient turbofan engines  

NASA Technical Reports Server (NTRS)

A cooperative government-industry effort, the Energy Efficient Engine Project, to develop the advanced technology base for future commercial development of a new generation of more fuel conservative turbofan engines for airline use is described. Engine configurations that are dependent upon technology advances in each major engine component are defined and current design and development of the advanced components are included.

Saunders, N. T.

1980-01-01

318

Small transport aircraft technology propeller study  

NASA Technical Reports Server (NTRS)

A study to define potential benefits of advanced technology propeller for 1985-1990 STAT commuter airplanes was completed. Two baselines, a Convair, 30 passenger, 0.47 Mach number airplane and a Lockheed, 50 passenger, 0.70 Mach number airplane, were selected from NASA-Ames sponsored airframe contracts. Parametric performance, noise level, weight and cost trends for propellers with varying number of blades, activity factor, camber and diameter incorporating blade sweep, tip proplets, advanced composite materials, advanced airfoils, advanced prevision synchrophasing and counter-rotation are presented. The resulting DOC, fuel burned, empty weight and acquisition cost benefits are presented for resizings of the two baseline airplanes. Six-bladed propeller having advanced composite blades, advanced airfoils, tip proplets and advanced prevision synchrophasers provided the maximum DOC improvements for both airplanes. DOC and fuel burned were reduced by 8.3% and 17.0% respectively for the Convair airplane and by 24.9% and 41.2% respectively for the Lockheed airplane. The larger reductions arose from a baseline definition with very heavy fuselage acoustic treatment. An alternate baseline, with a cabin noise 13dB in excess of the objective, was also studied.

Black, B. M.; Magliozzi, B.; Rohrbach, C.

1983-01-01

319

Advanced educational tools for Intelligent Transportation Systems training  

Microsoft Academic Search

With the rapid development and deployment of Intelligent Transportation Systems, there has emerged a significant need for professional development for transportation professionals. Innovations in educational technology provide new ways to deliver on-demand training. Research is underway at Rensselaer, sponsored by the Federal Highway Administration, to explore the development and application of interactive multimedia educational tools for Intelligent Transportation Systems training.

J. L. Adler; William A. Wallace; V. A. Yavuz

2000-01-01

320

Advancements in bipolar VLSI circuits and technologies  

NASA Astrophysics Data System (ADS)

This paper gives an overview on bipolar circuit/device techniques for VLSI logic and memories. Due to their inherent speed advantage over FETs, bipolar circuits are widely used for high-performance masterslice and custom logic and for high-speed static memory arrays. For logic, traditional circuits such as transistor-transistor logic (TTL) and emitter-coupled logic (ECL) are still mainly applied, but also new circuit technologies such as integrated injection logic or merged transistor logic (I2L/MTL) and Schottky transistor logic (STL) or integrated Schottky logic (ISL) have been devised to manage the VLSI technology constraints. For high-speed memory applications such as caches, local stores, or registers, conventional memory cells are increasingly replaced by more advanced memory devices allowing higher bit densities and lower power dissipation. Significant progress can be expected by technology extensions such as dielectric isolation, multilayer metallization, and polysilicon techniques, in addition to shrinking the devices to 1 micron dimensions or below. Some experimental data and projections indicate the strong potentials of bipolar VLSI.

Wiedmann, S. K.

1984-06-01

321

[Advances in peroxide-based decontaminating technologies].  

PubMed

With the boosting demand for eco-friendly decontaminants, great achievements in peroxide-based decontaminating technologies have been made in recent years. These technologies have been applied in countering chemical/biological terrorist attacks, dealing with chemical/biological disasters and destructing environmental pollutants. Recent research advances in alpha-nucleophilic/oxidative reaction mechanisms of peroxide-based decontamination against chemical warfare agents were reviewed, and some classical peroxide-based decontaminants such as aqueous decontaminating solution, decontaminating foam, decontaminating emulsions, decontaminating gels, decontaminating vapors, and some newly developed decontaminating media (e.g., peroxide-based self-decontaminating materials and heterogeneous nano-catalytic decontamination systems) were introduced. However, currently available peroxide-based decontaminants still have some deficiencies. For example, their decontamination efficiencies are not as high as those of chlorine-containing decontaminants, and some peroxide-based decontaminants show relatively poor effect against certain agents. More study on the mechanisms of peroxide-based decontaminants and the interfacial interactions in heterogeneous decontamination media is suggested. New catalysts, multifunctional surfactants, self-decontaminating materials and corrosion preventing technologies should be developed before peroxide-based decontaminants really become true "green" decontaminants. PMID:23914512

Xi, Hai-ling; Zhao, San-ping; Zhou, Wen

2013-05-01

322

Integrated Airframe Technology: The Future of Advanced Composites  

NASA Technical Reports Server (NTRS)

The challenge for advanced composites in integrated airframe technology is that: airframes must provide ever increasing performance at an affordable cost; reduce costs as compared to current airframe technology; and integration of design and manufacturing. The trend in technology is that a gap exists between the potential of advanced composites and our ability to effectively utilize them (cost/weight).

Taggart, David F.

1996-01-01

323

Institute for Software Technology Ad anced RoboticsAdvanced Robotics  

E-print Network

Institute for Software Technology Ad anced RoboticsAdvanced Robotics Human Robot Interaction Gerald Steinbauer Institute for Software Technology Gerald Steinbauer 1 Advanced Robotics ­ Human Robot Interaction #12;Institute for Software Technology Motivation lik t h b t th t· we like to have robots

324

The Complete Picture: "Standards for Technological Literacy" and "Advancing Excellence in Technological Literacy."  

ERIC Educational Resources Information Center

Provides an overview of the "Standards for Technological Literacy: Content for the Study of Technology" (STL) and "Advancing Excellence in Technological Literacy: Student Assessment, Professional Development, and Program Standards" (AETL). Shows how the documents work together to advance the technological literacy of technology educators and K-12

Technology Teacher, 2003

2003-01-01

325

Advanced Single-Aisle Transport Propulsion Design Options Revisited  

NASA Technical Reports Server (NTRS)

Future propulsion options for advanced single-aisle transports have been investigated in a number of previous studies by the authors. These studies have examined the system level characteristics of aircraft incorporating ultra-high bypass ratio (UHB) turbofans (direct drive and geared) and open rotor engines. During the course of these prior studies, a number of potential refinements and enhancements to the analysis methodology and assumptions were identified. This paper revisits a previously conducted UHB turbofan fan pressure ratio trade study using updated analysis methodology and assumptions. The changes incorporated have decreased the optimum fan pressure ratio for minimum fuel consumption and reduced the engine design trade-offs between minimizing noise and minimizing fuel consumption. Nacelle drag and engine weight are found to be key drivers in determining the optimum fan pressure ratio from a fuel efficiency perspective. The revised noise analysis results in the study aircraft being 2 to 4 EPNdB (cumulative) quieter due to a variety of reasons explained in the paper. With equal core technology assumed, the geared engine architecture is found to be as good as or better than the direct drive architecture for most parameters investigated. However, the engine ultimately selected for a future advanced single-aisle aircraft will depend on factors beyond those considered here.

Guynn, Mark D.; Berton, Jeffrey J.; Tong, Michael T.; Haller, William J.

2013-01-01

326

Recent Advances In Spaceborne Precipitation Radar Technology  

NASA Astrophysics Data System (ADS)

Information on global, 3-dimensional distribution of clouds and precipitation are important in our understanding of global water cycle, energy budget, long-term climate variability, and short-term weather. One of the most reliable and effective means to acquire such global information is by spaceborne profiling radars. The on-going NASA/JAXA Tropical Rainfall Measuring Mission (TRMM) is the first spaceborne mission that uses a precipitation radar to acquire three-dimensional rainfall intensity field globally. In its sixth years of in-flight operations, the TRMM radar has provided exciting, new data on the 3-D rain structures for a variety of scientific applications. As a continuing effort to provide new and improved spaceborne atmospheric sensing capabilities, NASA has been developing advanced instruments and technologies for future spaceborne precipitation radars, with the over-arching objectives of making such instruments more capable and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency, Doppler rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a FPGA-based adaptive-scan control, pulse compression, and Doppler spectral processor. It is intended to provide greatly enhanced rainfall profile retrieval accuracy while using only a fraction of the mass of the current TRMM PR. NIS is designed to be a geostationary radar with the intent of providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, light-weight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall. In this paper, an overview of the instrument design concepts and some of the key technologies developed for these advanced atmospheric radars will be presented. The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, for the Earth-Sun System Technology Office and the Global Precipitation Measurement Mission, under contract with the National Aeronautics and Space Administration.

Im, E.; Durden, S. L.

2005-12-01

327

Preparing Your Students for Advanced Technological Education  

NSDL National Science Digital Library

In this lesson designed for professional development, learn about the technical skills and âsoftâ skills used in advanced technology and ways you as a high school teacher might prepare your students for related educational and career pathways. You will watch videos, explore interactive activities, and answer content-related questions to gain insights as to which key competencies students should develop before entering a two-year degree program. Youâll also see how various skills are employed in real-world scenarios and become better prepared yourself to incorporate this information in planning your curriculum.The lesson is accompanied by tandards alignment and users who sign up for a free account can save the resource to a folder.

2012-06-04

328

Advanced Turbine Technology Applications Project (ATTAP)  

NASA Technical Reports Server (NTRS)

This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.

1991-01-01

329

Advanced Technology Solar Telescope: A status report  

NASA Astrophysics Data System (ADS)

Magnetic fields control the inconstant Sun. The key to understanding solar variability and its direct impact on the Earth rests with understanding all aspects of these magnetic fields. The Advanced Technology Solar Telescope (ATST) has been design specifically for magnetic remote sensing. Its collecting area, spatial resolution, scattered light, polarization properties, and wavelength performance all insure ATST will be able to observe magnetic fields at all heights in the solar atmosphere from photosphere to corona. After several years of design efforts, ATST has been approved by the U.S. National Science Foundation to begin construction with a not to exceed cost cap of approximately $298M. Work packages for major telescope components will be released for bid over the next several months. An application for a building permit has been submitted.

Keil, S. L.; Rimmele, T. R.; Wagner, J.; ATST Team

2010-06-01

330

Advanced Vehicle system concepts. [nonpetroleum passenger transportation  

NASA Technical Reports Server (NTRS)

Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

Hardy, K. S.; Langendoen, J. M.

1983-01-01

331

Hazard alerting and situational awareness in advanced air transport cockpits  

NASA Technical Reports Server (NTRS)

Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized.

Hansman, R. John; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

1993-01-01

332

Institute for Advanced Technology in the Humanities  

NSDL National Science Digital Library

While a number of web-based initiatives in the sciences were quick to put their proverbial flag in the sand of the Internet, the humanities took a bit longer in adopting these new technologies. One of the leaders in this field has been the Institute for Advanced Technology in the Humanities at the University of Virginia. Established in 1992, the Institute has created a number of research projects over its history, and many of these fine projects are available here for the consideration of the web-browsing public. Visitors will find interactive projects on the lives of the saints, Leonardo da Vinciâs treatise on painting, and a history of the circus in America. As one might suspect, all of this fine work has also resulted in a number of publications that deal with the process and challenges that are involved in creating such collaborative online projects. Visitors can also browse some of these valuable musings in their publications area.

333

CCSDS - Advancing Spaceflight Technology for International Collaboration  

NASA Technical Reports Server (NTRS)

The Consultative Committee for Space Data Systems (CCSDS) has been developing data and communications standards since 1982, with the objective of providing interoperability for enabling international collaboration for spaceflight missions. As data and communications technology has advanced, CCSDS has progressed to capitalize on existing products when available and suitable for spaceflight, and to develop innovative new approaches when available products fail. The current scope of the CCSDS architecture spans the end-to-end data architecture of a spaceflight mission, with ongoing efforts to develop and standardize cutting-edge technology. This manuscript describes the overall architecture, the position of CCSDS in the standards and international mission community, and some CCSDS processes. It then highlights in detail several of the most interesting and critical technical areas in work right now, and how they support collaborative missions. Special topics include: Delay/Disruption Tolerant Networking (DTN), Asynchronous Message Service (AMS), Multispectral/Hyperspectral Data Compression (MHDC), Coding and Synchronization, Onboard Wireless, Spacecraft Monitor and Control, Navigation, Security, and Time Synchronization/Correlation. Broad international participation in development of CCSDS standards is encouraged.

Kearney, Mike; Kiely, Aaron; Yeh, Penshu; Gerner, Jean-Luc; Calzolari, Gian-Paolo; Gifford, Kevin; Merri, Mario; Weiss, Howard

2010-01-01

334

Advanced Turbine Technology Applications Project (ATTAP)  

NASA Technical Reports Server (NTRS)

The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

1993-01-01

335

Technology advanced mini-eyesafe rangefinder (TAMER)  

NASA Astrophysics Data System (ADS)

The Technology Advanced Mini-Eyesafe Rangefinder (TAMER) module is a portable, lightweight (7 lbs), hand-held, target determination system. This rapid prototype program involved the integration of a Motorola 68360 microprocessor, electronic compass, laser range finder, GPS, 4 PCMCIA expansion slots, 0.7-inch micro display, digital camera, floating point unit, and various communications interfaces. The CPU computes an absolute target position based on laser range to target, C/VAM azimuth and inclination inputs, and absolute GPS position. This target position is automatically formatted into a standard military surveillance report and stored in local non- volatile memory. The operator can attach to a SINCGARS radio or to any RS232 compatible system (e.g., cellular telephone). To facilitate the above functionality, the TAMER system utilizes various power saving strategies including software- geared power reduction, power supply configuration, external device integration, and incorporation of low-power ICs. Additionally, TAMER utilizes state-of-the-art digital image compression technology. This custom image coder is based on wavelet decomposition and trellis-coded quantization (TCQ). The algorithm enables TAMER to transmit useful imagery over its severely disadvantaged wireless link.

Abousleman, Glen P.; Smeed, Bill

1998-08-01

336

Technology Advancement of the Visible Nulling Coronagraph  

NASA Technical Reports Server (NTRS)

The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.

Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve

2010-01-01

337

ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER  

EPA Science Inventory

This paper presents information on two pilot-field applications of advanced oxidation technologies for contaminated groundwater with organics. he two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidation Systems, Inc. of Tucson...

338

ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER  

EPA Science Inventory

This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

339

Maximizing a transport platform through computer technology.  

PubMed

One of the most recent innovations coalescing computer technology and medical care is the further development of integrated medical component technology coupled with a computer subsystem. One such example is the self-contained patient transport system known as the Life Support for Trauma and Transport (LSTAT(tm)). The LSTAT creates a new transport platform that integrates the most current medical monitoring and therapeutic capabilities with computer processing capacity, creating the first "smart litter". The LSTAT is built around a computer system that is network capable and acts as the data hub for multiple medical devices and utilities, including data, power, and oxygen systems. The system logs patient and device data in a simultaneous, time-synchronized, continuous format, allowing electronic transmission, storage, and electronic documentation. The third-generation LSTAT includes an oxygen system, ventilator, clinical point-of-care blood analyzer, suction, defibrillator, infusion pump, and physiologic monitor, as well as on-board power and oxygen systems. The developers of LSTAT and other developers have the ability to further expand integrative component technology by developing and integrating clinical decision support systems. PMID:12802947

Hudson, Timothy L

2003-01-01

340

2006 James L. Oberstar Forum on Transportation Policy and Technology  

E-print Network

2006 James L. Oberstar Forum on Transportation Policy and Technology Transportation Choices, This report summarizes the fifth James L. Oberstar Forum on Transportation Policy and Technology. Over two days, we examined ways to integrate non- motorized transportation options into our communities and our

Minnesota, University of

341

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20

342

New navigation technology to advance utilization of passenger cars  

SciTech Connect

In a system of ''man-car-road environment'', the automotive traffic needs to recover the functional balance of these three elements in order to advance its utilization. In a broad sense, the navigation technology is a future, key technology for that interest, relieving the driver load and assisting him to easily move to the destination. Particularly, the inertial navigation technology has high possibilities as technology capable of advancing the future automotive utilization.

Tagami, K.; Takahashi, F.; Takahashi, T.

1983-11-01

343

Applications of advanced aerodynamic technology to light aircraft.  

NASA Technical Reports Server (NTRS)

This paper discusses a project for adapting advanced technology, much of it borrowed from the jet transport, to general aviation design practice. The NASA funded portion of the work began in 1969 at the University of Kansas and resulted in a smaller, experimental wing with spoilers and powerful flap systems for a Cessna Cardinal airplane. Some flight data and research pilot comments are presented. The project was expanded in 1972 to include a light twin-engine airplane. For the twin there was the added incentive of a potential increase in single-engine climb performance. The use of a new high-lift Whitcomb airfoil is planned for both the wing and the propellers. Preliminary data on the characteristics of the new airfoil are discussed. The configuration of an experimental wing for a Piper Seneca PA-34 and estimated airplane performance with this wing are discussed.

Crane, H. L.; Mcghee, R. J.; Kohlman, D. L.

1973-01-01

344

Aerospace, Transportation and Advanced Systems Laboratory (ATAS)  

E-print Network

, reverse engineering, information operations and exploitation, and high performance computing and analytics, Ireland. Advanced Concepts Laboratory (ACL) Lon Pringle, Laboratory Director www.gtri.gatech.edu/acl ACL. ACL is a leader in precise radio frequency (RF) and electro-optical/infrared (EO/IR) measurements

Bennett, Gisele

345

Advanced subsonic transport approach noise: The relative contribution of airframe noise  

NASA Technical Reports Server (NTRS)

With current engine technology, airframe noise is a contributing source for large commercial aircraft on approach, but not the major contributor. With the promise of much quieter jet engines with the planned new generation of high-by-pass turbofan engines, airframe noise has become a topic of interest in the advanced subsonic transport research program. The objective of this paper is to assess the contribution of airframe noise relative to the other aircraft noise sources on approach. The assessment will be made for a current technology large commercial transport aircraft and for an envisioned advanced technology aircraft. NASA's Aircraft Noise Prediction Program (ANOPP) will be used to make total aircraft noise predictions for these two aircraft types. Predicted noise levels and areas of noise contours will be used to determine the relative importance of the contributing approach noise sources. The actual set-up decks used to make the ANOPP runs for the two aircraft types are included in appendixes.

Willshire, William L., Jr.; Garber, Donald P.

1992-01-01

346

Single stage, low noise, advanced technology fan. Volume 2: Structural design  

NASA Technical Reports Server (NTRS)

The structural design for a half-scale fan vehicle, which would have application on an advanced transport aircraft, is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec). This mechanical design report describes the fan rotor design and the design of various structures of the vehicle; eg, stators, casings, splitters, seals, adapters, etc.

Schoener, J. L.; Black, G. R.; Roth, R. H.

1976-01-01

347

EarthScope's Transportable Array: Advancing Eastward  

Microsoft Academic Search

EarthScope's Transportable Array has installed more than 200 high-quality broadband seismic stations over the last 3 years in the western US. These stations have a nominal spacing of 70 km and are part of an eventual 400 station array that migrates from west to east at a rate of 18 stations per month. The full 400 stations will be operating

R. W. Busby; F. Vernon; R. L. Newman; L. Astiz

2006-01-01

348

Sensitive oil industry: users of advanced technology  

NASA Astrophysics Data System (ADS)

The oil industry exemplifies mankind's search for resource sin a harsh environment here on the earth. Traditionally, the oil industry has created technological solutions to increasingly difficult exploration, drilling, and production activities as the need has arisen. The depths to which a well must be drilled to produce the finite hydrocarbon resources are increasing and the surface environments during oil and gas activities is the key to success, not information that is hours old or incomplete; but 'real-time' data that responds to the variable environment downhole and allows prediction and prevention. The difference that information makes can be the difference between a successfully drilled well and a blowout that causes permanent damage to the reservoir and may reduce the value of the reserves downhole. The difference that information makes can make the difference between recovering 22 percent of the hydrocarbon reserves in a profitable field and recovering none of the reserves because of an uneconomic bottom line. Sensors of every type are essential in the new oil and gas industry and they must be rugged, accurate, affordable, and long lived. It is not just for the sophisticated majors exploring the very deep waters of the world but for the thousands of independent producers who provide a lion's share of the oil and gas produced in the US domestic market. The Department of Energy has been instrumental in keeping reserves from being lost by funding advancements in sensor technology. Due to sponsorship by the Federal Government, the combined efforts of researchers in the National Laboratories, academic institutions, and industry research centers are producing increasingly accurate tools capable of functioning in extreme conditions with economics acceptable to the accountants of the industry. Three examples of such senors developed with Federal funding are given.

Lindsey, Rhonda P.; Barnes, James L.

1999-01-01

349

Advanced Technology for Isolating Payloads in Microgravity  

NASA Technical Reports Server (NTRS)

One presumption of scientific microgravity research is that while in space disturbances are minimized and experiments can be conducted in the absence of gravity. The problem with this assumption is that numerous disturbances actually occur in the space environment. Scientists must consider all disturbances when planning microgravity experiments. Although small disturbances, such as a human sneeze, do not cause most researchers on earth much concern, in space, these minuscule disturbances can be detrimental to the success or failure of an experiment. Therefore, a need exists to isolate experiments and provide a quiescent microgravity environment. The objective of microgravity isolation is to quantify all possible disturbances or vibrations and then attenuate the transmission of the disturbance to the experiment. Some well-defined vibration sources are: experiment operations, pumps, fans, antenna movements, ventilation systems and robotic manipulators. In some cases, it is possible to isolate the source using simple vibration dampers, shock absorbers and other isolation devices. The problem with simple isolation systems is that not all vibration frequencies are attenuated, especially frequencies less than 0.1 Hz. Therefore, some disturbances are actually emitted into the environment. Sometimes vibration sources are not well defined, or cannot be controlled. These include thermal "creak," random acoustic vibrations, aerodynamic drag, crew activities, and other similar disturbances. On some "microgravity missions," such as the United States Microgravity Laboratory (USML) and the International Microgravity Laboratory (IML) missions, the goal was to create extended quiescent times and limit crew activity during these times. This might be possible for short periods, but for extended durations it is impossible due to the nature of the space environment. On the International Space Station (ISS), vehicle attitude readjustments are required to keep the vehicle in a minimum torque orientation and other experimental activities will occur continually, both inside and outside the station. Since all vibration sources cannot be controlled, the task of attenuating the disturbances is the only realistic alternative. Several groups have independently developed technology to isolate payloads from the space environment. Since 1970, Honeywell's Satellite Systems Division has designed several payload isolation systems and vibration attenuators. From 1987 to 1992, NASA's Lewis Research Center (LeRC) performed research on isolation technology and developed a 6 degree-of-freedom (DOF) isolator and tested the system during 70 low gravity aircraft flight trajectories. Beginning in early 1995, NASA's Marshall Space Flight Center (MSFC) and McDonnell Douglas Aerospace (MDA) jointly developed the STABLE (Suppression of Transient Accelerations By Levitation Evaluation) isolation system. This 5 month accelerated effort produced the first flight of an active microgravity vibration isolation system on STS-73/USML-02 in late October 1995. The Canadian Space Agency developed the Microgravity Vibration Isolation Mount (MIM) for isolating microgravity payloads and this system began operating on the Russian Mir Space Station in May 1996. The Boeing Defense & Space Group, Missiles & Space Division developed the Active Rack Isolation System (ARIS) for isolating payloads in a standard payload rack. ARIS was tested in September 1996 during the STS-79 mission to Mir. Although these isolation systems differ in their technological approach, the objective is to isolate payloads from disturbances. The following sections describe the technologies behind these systems and the different types of hardware used to perform isolation. The purpose of these descriptions is not to detail the inner workings of the hardware but to give the reader an idea of the technology and uses of the hardware components. Also included in the component descriptions is a paragraph detailing some of the advances in isolation technology for that particular component. The final s

Alhorn, Dean C.

1997-01-01

350

Advanced Education and Technology Business Plan, 2009-12  

ERIC Educational Resources Information Center

The Ministry of Advanced Education and Technology consists of the following entities for budget purposes: Department of Advanced Education and Technology, the Access to the Future Fund, Alberta Enterprise Corporation, Alberta Research Council Inc., and iCORE Inc. Achieving the Ministry's goals involves the work and coordination of many

Alberta Advanced Education and Technology, 2009

2009-01-01

351

Sec. Chu Announces the First Auto Loans for Advanced Technologies  

SciTech Connect

Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nations dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

Secretary Chu

2009-07-16

352

Advanced Technological Education Program: 1995 Awards and Activities.  

ERIC Educational Resources Information Center

The Advanced Technological Education (ATE) program promotes exemplary improvement in advanced technological education at the national and regional level through support of curriculum development and program improvement at the undergraduate and secondary school levels, especially for technicians being educated for the high performance workplace of

National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

353

Institute for Software Technology Ad anced RoboticsAdvanced Robotics  

E-print Network

Institute for Software Technology Ad anced RoboticsAdvanced Robotics Organization Gerald Steinbauer Institute for Software Technology Gerald Steinbauer 1 Advanced Robotics - Organization #12;Institute/Grasping 11. 01.6. Human Robot Interaction/Dialog 12 08 6 A li ti12. 08.6. Applications 13. 15

354

Advancing healthcare technology through insight, innovation, and leadership  

E-print Network

Advancing healthcare technology through insight, innovation, and leadership Master of Translational, entrepreneurship, clinical research, and healthcare finance. Gain real-world experience by working for healthcare technology. Those in related fields and/or with additional advanced degrees (MD, PhD, RN, JD, etc

Soloveichik, David

355

Advanced Education and Technology Business Plan, 2008-11  

ERIC Educational Resources Information Center

The Ministry of Advanced Education and Technology's 2008-11 business plan identifies how it plans to work over the next three years to enhance advanced learning opportunities and innovation for all Albertans. Alberta's advanced learning system is composed of public board-governed institutions, the apprenticeship and industry training system,

Alberta Advanced Education and Technology, 2008

2008-01-01

356

Advanced technologies impact on compressor design and development: A perspective  

NASA Technical Reports Server (NTRS)

A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

Ball, Calvin L.

1989-01-01

357

Two on Advances in Educational Technology  

NSDL National Science Digital Library

Advances in technology can help children play and compose music. The first site describes a project of the Centre for Research in IT in Education, which draws from the field of cognitive development, learning styles theory and educational best practice to develop DrumSteps. This tool, available for downloading, enables children to create, manipulate, edit and save original pieces of percussion music. A user-tracking feature allows the teacher or researcher to follow along with student files click-by-click, giving valuable insights into the students' thinking. The Centre is also examining pedagogical issues surrounding a parallel project, which is described on the second site. Toy Symphony is a project of the MIT Media Lab and Media Lab Europe and offers software, which enables children to compose-by-drawing. The bulk of the project, however, develops specially designed Music Toys, which enable children to engage in sophisticated listening, performing and composing activities normally accessible only after years of study. Videos of the workshops, as well as live concerts in which children play alongside some of the world's most accomplished musicians, are also available to download. [VF

358

Advanced Lost Foam Casting Technology - Phase V  

SciTech Connect

Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

Wanliang Sun; Harry E. Littleton; Charles E. Bates

2004-04-29

359

Remote power systems with advanced storage technologies for Alaskan villages  

SciTech Connect

Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes. (We use the term diesel to encompass the fuel, often called heating or fuel oil, of similar or identical properties.)

Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

1997-12-01

360

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

SciTech Connect

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01

361

EarthScope's Transportable Array: Advancing Eastward  

NASA Astrophysics Data System (ADS)

EarthScope's Transportable Array has installed more than 200 high-quality broadband seismic stations over the last 3 years in the western US. These stations have a nominal spacing of 70 km and are part of an eventual 400 station array that migrates from west to east at a rate of 18 stations per month. The full 400 stations will be operating by September 2007. Stations have a residence time of about 2 years before being relocated to the next site. Throughout the continental US, 1623 sites are expected to be occupied. Standardized procedures and protocols have been developed to streamline all aspects of Transportable Array operations, from siting to site construction and installation to equipment purchasing and data archiving. Earned Value Management tools keep facility installation and operation on budget and schedule. A diverse, yet efficient, infrastructure installs and maintains the Transportable Array. Sensors, dataloggers, and other equipment are received and tested by the IRIS PASSCAL Instrument Center and shipped to regional storage facilities. To engage future geoscientists in the project, students are trained to conduct field and analytical reconnaissance to identify suitable seismic station sites. Contract personnel are used for site verification; vault construction; and installation of sensors, power, and communications systems. IRIS staff manages permitting, landowner communications, and station operations and maintenance. Seismic signal quality and metadata are quality-checked at the Array Network Facility at the University of California-San Diego and simultaneously archived at the IRIS Data Management Center in Seattle. Station equipment has been specifically designed for low power, remote, unattended operation and uses diverse two-way IP communications for real-time transmission. Digital cellular services, VSAT satellite, and commercial DSL, cable or wireless transport services are employed. Automatic monitoring of status, signal quality and earthquake event detection as well as operational alarms for low voltage and water intrusion are performed by a robust data acquisition package. This software is coupled with a host of network management tools and display managers operated by the Array Network Facility to allow managers, field personnel, and network operations staff to visualize array performance in real-time and to access historical information for diagnostics. Current data recording proficiency is 99.1%, with real-time telemetry averaging about 91%. EarthScope, IRIS and the USGS are working with regional seismic network operators, both existing and newly formed, to transition some of the Transportable Array stations into regional network assets. Each region has unique circumstances and interested parties are invited to exchange ideas on how this might be accomplished in their area. Contact busby@iris.edu for more information.

Busby, R. W.; Vernon, F.; Newman, R. L.; Astiz, L.

2006-12-01

362

Recent advances in the Mercury Monte Carlo particle transport code  

SciTech Connect

We review recent physics and computational science advances in the Mercury Monte Carlo particle transport code under development at Lawrence Livermore National Laboratory. We describe recent efforts to enable a nuclear resonance fluorescence capability in the Mercury photon transport. We also describe recent work to implement a probability of extinction capability into Mercury. We review the results of current parallel scaling and threading efforts that enable the code to run on millions of MPI processes. (authors)

Brantley, P. S.; Dawson, S. A.; McKinley, M. S.; O'Brien, M. J.; Stevens, D. E.; Beck, B. R.; Jurgenson, E. D.; Ebbers, C. A.; Hall, J. M. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

2013-07-01

363

Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)  

Microsoft Academic Search

An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open

G. D. Sagerman; G. J. Barna; R. K. Burns

1979-01-01

364

Space power systems technology enablement study. [for the space transportation system  

NASA Technical Reports Server (NTRS)

The power system technologies which enable or enhance future space missions requiring a few kilowatts or less and using the space shuttle were assessed. The advances in space power systems necessary for supporting the capabilities of the space transportation system were systematically determined and benefit/cost/risk analyses were used to identify high payoff technologies and technological priorities. The missions that are enhanced by each development are discussed.

Smith, L. D.; Stearns, J. W.

1978-01-01

365

Construction of the Advanced Technology Solar Telescope  

NASA Astrophysics Data System (ADS)

The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.?03 at visible wavelengths and obtain 0.?1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coud laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

Rimmele, T. R.; Keil, S.; McMullin, J.; Knlker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wger, F.; ATST Team

2012-12-01

366

Advanced Technology Solar Telescope Construction: Progress Report  

NASA Astrophysics Data System (ADS)

The 4m Advance Technology Solar Telescope (ATST) on Haleakala will be the most powerful solar telescope and the worlds leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Suns output. The ATST will provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4 m aperture, ATST will resolve magnetic features at their intrinsic scales. A high order adaptive optics system delivers a corrected beam to the initial set of five state-of-the-art, facility class instrumentation located in the coude laboratory facility. Photopheric and chromospheric magnetometry is part of the key mission of four of these instruments. Coronal magnetometry and spectroscopy will be performed by two of these instruments at infrared wavelengths. The ATST project has transitioned from design and development to its construction phase. Site construction is expected to begin in April 2012. The project has awarded design and fabrication contracts for major telescope subsystems. A robust instrument program has been established and all instruments have passed preliminary design reviews or critical design reviews. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the project status of the telescope and discussion of the approach to integrating instruments into the facility. The National Science Foundation (NSF) through the National Solar Observatory (NSO) funds the ATST Project. The NSO is operated under a cooperative agreement between the Association of Universities for Research in Astronomy, Inc. (AURA) and NSF.

Rimmele, Thomas R.; McMullin, J.; Keil, S.; Goode, P.; Knoelker, M.; Kuhn, J.; Rosner, R.; ATST Team

2012-05-01

367

The Advanced Technology Solar Telescope enclosure  

NASA Astrophysics Data System (ADS)

Telescope enclosure design is based on an increasingly standard set of criteria. Enclosures must provide failsafe protection in a harsh environment for an irreplaceable piece of equipment; must allow effective air flushing to minimize local seeing while still attenuating wind-induced vibration of the telescope; must reliably operate so that the dome is never the reason for observatory down time; must provide access to utilities, lifting devices and support facilities; and they must be affordable within the overall project budget. The enclosure for the Advanced Technology Solar Telescope (ATST) has to satisfy all these challenging requirements plus one more. To eliminate so-called external dome seeing, the exterior surfaces of the enclosure must be maintained at or just below ambient air temperature while being subjected to the full solar loading of an observing day. Further complicating the design of the ATST enclosure and support facilities are the environmental sensitivities and high construction costs at the selected site - the summit of Haleakala on the island of Maui, Hawaii. Previous development work has determined an appropriate enclosure shape to minimize solar exposure while allowing effective interior flushing, and has demonstrated the feasibility of controlling the exterior skin temperature with an active cooling system. This paper presents the evolution of the design since site selection and how the enclosure and associated thermal systems have been tailored to the particular climatic and terrain conditions of the site. Also discussed are load-reduction strategies that have been identified through thermal modeling, CFD modeling, and other analyses to refine and economize the thermal control systems.

Phelps, L.; Barr, J.; Dalrymple, N.; Fraser, M.; Hubbard, R.; Wagner, J.; Warner, M.

2006-06-01

368

ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT  

E-print Network

to ARIES-RS that led to plasmas with higher N and . Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high- temperature superconductors, (2 plasmas together with advanced technology (e.g., high-temperature superconductors, high

California at San Diego, University of

369

Advanced Technology Training Program for the Apparel Industry. Final Report.  

ERIC Educational Resources Information Center

A project developed rapid response, advanced technology courses that met the apparel market labor needs of the El Paso (Texas) community. Courses were designed for four options: computerized marker making and pattern grading, computerized front office systems, high technology machinery operation, and high technology machinery mechanics. The

El Paso Community Coll., TX.

370

Advancing Professionalism in Technology Education. 48th Yearbook, 1999.  

ERIC Educational Resources Information Center

This yearbook contains 14 chapters, each by different authors, collected to assist in advancing professionalism within technology education. The 14 chapters are organized in five sections. Section 1: The Need for Professionalism in Technology Education contains "The Need for Professionalism in Technology Education: Challenges for the Future"

Gilberti, Anthony F., Ed.; Rouch, David L., Ed.

371

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING  

SciTech Connect

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL

2010-07-07

372

Advanced information processing system for advanced launch system: Hardware technology survey and projections  

NASA Technical Reports Server (NTRS)

The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

Cole, Richard

1991-01-01

373

Schedule Risks Due to Delays in Advanced Technology Development  

NASA Technical Reports Server (NTRS)

This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

2008-01-01

374

Hydrogen energy for tomorrow: Advanced hydrogen production technologies  

SciTech Connect

The future vision for hydrogen is that it will be cost-effectively produced from renewable energy sources and made available for widespread use as an energy carrier and a fuel. Hydrogen can be produced from water and when burned as a fuel, or converted to electricity, joins with oxygen to again form water. It is a clean, sustainable resource with many potential applications, including generating electricity, heating homes and offices, and fueling surface and air transportation. To achieve this vision, researchers must develop advanced technologies to produce hydrogen at costs competitive with fossil fuels, using sustainable sources. Hydrogen is now produced primarily by steam reforming of natural gas. For applications requiring extremely pure hydrogen, production is done by electrolysis. This is a relatively expensive process that uses electric current to dissociate, or split, water into its hydrogen and oxygen components. Technologies with the best potential for producing hydrogen to meet future demand fall into three general process categories: photobiological, photoelectrochemical, and thermochemical. Photobiological and photoelectrochemical processes generally use sunlight to split water into hydrogen and oxygen. Thermochemical processes, including gasification and pyrolysis systems, use heat to produce hydrogen from sources such as biomass and solid waste.

NONE

1995-08-01

375

New perspectives for ATMS: Advanced technologies in traffic detection  

SciTech Connect

There is a need for advanced traffic management systems (ATMS) on a local and network level to effectively utilize today`s transportation system. An automated operating system, with round the clock incident detection, would help to initiate the required action on time in case of an accident and would minimize the effect of the incident. One of the key elements of ATMS is the vehicle detection unit. The most commonly used inductive loop detectors have a relatively short life span and frequently malfunction. Any maintenance of loop detectors requires road closures. Also, safety of the crew is an issue. An overview of currently available technologies for traffic control and monitoring is presented, with special emphasis on systems that can be installed and maintained without significantly interfering with the traffic. The paper presents the available technologies, provides comparative information about them, and discusses the technical and conceptual problems typically arising during the deployment. The paper describes video detection systems that currently seem to be the most attractive alternative to the traditional intrusive methods. The new perspectives for traffic monitoring and management not available so far are drawn. The typical architecture of these systems is described, and a few popular video systems are presented in some detail. The most critical deployment issues, such as the choice of the equipment, are described, the location of the sensors is discussed, and data transmission problems are considered.

Berka, S.; Lall, B.K. [Portland State Univ., OR (United States). Dept. of Civil Engineering

1998-01-01

376

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky, three at University of Utah, three at Montana Tech, three at New Mexico Tech, and one at the University of Nevada, Reno) by May 17, 2003. These projects are listed by category, along with brief abstracts of their aims and objectives.

Hugh W. Rimmer

2003-11-15

377

Advanced technologies for NASA space programs  

NASA Technical Reports Server (NTRS)

A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.

Krishen, Kumar

1991-01-01

378

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01

379

Advanced technology for America's future in space  

NASA Technical Reports Server (NTRS)

In response to Recommendation 8 of the Augustine Committee Report, NASA's Office of Aeronautics, Exploration and Technology (OAET) developed a proposed 'Integrated Technology Plan for the Civil Space Program' that entails substantial changes in the processes, structure and the content of NASA's space research and technology program. The Space Systems and Technology Advisory Committee (SSTAC, a subcommittee of the NASA Advisory Committee) and several other senior, expert, informed advisory groups conducted a review of NASA's proposed Integrated Technology Plan (ITP). This review was in response to the specific request in Recommendation 8 that 'NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds'. This document, the final report from that review, addresses: (1) summary recommendations; (2) mission needs; (3) the integrated technology plan; (4) summary reports of the technical panels; and (5) conclusions and observations.

1990-01-01

380

An overview of DARPA's advanced space technology program  

NASA Astrophysics Data System (ADS)

The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

Nicastri, E.; Dodd, J.

1993-02-01

381

Beckman Institute FOR ADVANCED SCIENCE AND TECHNOLOGY  

E-print Network

Postdoctoral Fellows Program 52 Funding 2011-2012 55 Contact Information 56 The Beckman Institute for Advanced are covered by the state and its research programs are mainly supported by external funding from the federal

Illinois at Urbana-Champaign, University of

382

47 CFR 51.230 - Presumption of acceptability for deployment of an advanced services loop technology.  

...deployment of an advanced services loop technology. 51.230 Section 51.230 Telecommunication...deployment of an advanced services loop technology. (a) An advanced services loop technology is presumed acceptable for...

2014-10-01

383

47 CFR 51.230 - Presumption of acceptability for deployment of an advanced services loop technology.  

Code of Federal Regulations, 2010 CFR

...deployment of an advanced services loop technology. 51.230 Section 51.230 Telecommunication...deployment of an advanced services loop technology. (a) An advanced services loop technology is presumed acceptable for...

2010-10-01

384

Advanced Microelectronics Technologies for Future Small Satellite Systems  

NASA Technical Reports Server (NTRS)

Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

Alkalai, Leon

1999-01-01

385

Exponential growth, energetic Hubbert cycles, and the advancement of technology  

E-print Network

Exponential growth, energetic Hubbert cycles, and the advancement of technology Tad W. Patzek for the existence of energetic Hubbert cycles and their practical equivalence to the logistic growth curves

Patzek, Tadeusz W.

386

Advanced Platform Systems Technology study. Volume 3: Supporting data  

NASA Technical Reports Server (NTRS)

The overall study effort proceeded from the identification of 106 technology topics to the selection of 5 for detail trade studies. The technical issues and options were evaluated through the trade process. Finally, individual consideration was given to costs and benefits for the technologies identified for advancement. Eight priority technology items were identified for advancement. Supporting data generated during the trade selection and trade study process were presented. Space platform requirements, trade study and cost benefits analysis, and technology advancement planning are advanced. The structured approach used took advantage of a number of forms developed to ensure that a consistent approach was employed by each of the diverse specialists that participated. These forms were an intrinsic part of the study protocol.

1983-01-01

387

Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)  

SciTech Connect

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01

388

Advanced Technology Display House. Volume 2: Energy system design concepts  

NASA Technical Reports Server (NTRS)

The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

Maund, D. H.

1981-01-01

389

Advanced Technology Display House. Volume 1: Project Summary and Procedures  

NASA Technical Reports Server (NTRS)

The Advanced Technology Display House (ATDH) project is described. Tasks are defined in the areas of energy demand, water demand, sewage treatment, electric power, plumbing, lighting, heating, and air conditioning. Energy, water, and sewage systems are defined.

Maund, D. H.

1981-01-01

390

Advanced Technological Education Program: 1998 Awards and Activities  

NSF Publications Database

Division of Undergraduate Education Division of Elementary, Secondary, and Informal Education Advanced Technological Education (ATE) Program Awards and Activities Projects Managed by Other NSF Programs and Co-Funded by ATE

391

Study on utilization of advanced composites in fuselage structures of large transports  

NASA Technical Reports Server (NTRS)

The potential for utilizing advanced composites in fuselage structures of large transports was assessed. Six fuselage design concepts were selected and evaluated in terms of structural performance, weight, and manufacturing development and costs. Two concepts were selected that merit further consideration for composite fuselage application. These concepts are: (1) a full depth honeycomb design with no stringers, and (2) an I section stringer stiffened laminate skin design. Weight reductions due to applying composites to the fuselages of commercial and military transports were calculated. The benefits of applying composites to a fleet of military transports were determined. Significant technology issues pertinent to composite fuselage structures were identified and evaluated. Program plans for resolving the technology issues were developed.

Johnson, R. W.; Thomson, L. W.; Wilson, R. D.

1985-01-01

392

Propulsion system studies for an advanced high subsonic, long range jet commercial transport aircraft  

NASA Technical Reports Server (NTRS)

Propulsion system characteristics for a long range, high subsonic (Mach 0.90 - 0.98), jet commercial transport aircraft are studied to identify the most desirable cycle and engine configuration and to assess the payoff of advanced engine technologies applicable to the time frame of the late 1970s to the mid 1980s. An engine parametric study phase examines major cycle trends on the basis of aircraft economics. This is followed by the preliminary design of two advanced mixed exhaust turbofan engines pointed at two different technology levels (1970 and 1985 commercial certification for engines No. 1 and No. 2, respectively). The economic penalties of environmental constraints - noise and exhaust emissions - are assessed. The highest specific thrust engine (lowest bypass ratio for a given core technology) achievable with a single-stage fan yields the best economics for a Mach 0.95 - 0.98 aircraft and can meet the noise objectives specified, but with significant economic penalties. Advanced technologies which would allow high temperature and cycle pressure ratios to be used effectively are shown to provide significant improvement in mission performance which can partially offset the economic penalties incurred to meet lower noise goals. Advanced technology needs are identified; and, in particular, the initiation of an integrated fan and inlet aero/acoustic program is recommended.

1972-01-01

393

What Makes The Advanced Technology Solar Telescope (ATST) So Advanced?  

NASA Astrophysics Data System (ADS)

-- Its the science! While its true that we haven't advanced ground-based solar astronomy by a leap as big as this since Galileo, its the qualitatively new insights that we expect with ATST that drive its design. ATST isn't so much a telescope as much as it is a sensitive magnetometer, and a high dynamic range imaging spectropolarimeter. In this talk we'll try to draw the lines between the questions you've always wanted to ask about the Sun, and this unique optical and infrared instrument.

Kuhn, Jeffrey R.; Rimmele, T.; ATST Design Team

2007-05-01

394

Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation  

SciTech Connect

The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

Liby, Alan L [ORNL; Rogers, Hiram [ORNL

2013-10-01

395

Report on the Workshop on Advancing Assisted Cognition Technology  

E-print Network

Report on the Workshop on Advancing Assisted Cognition Technology for Persons with Traumatic Brain of the Workshop Traumatic Brain Injury (TBI) can impair a variety of cognitive functions, including memory, way to leverage advances in artificial intelligence, hardware and sensors, and human-computer interaction

Kautz, Henry

396

Advanced Education and Technology Business Plan, 2011-14  

ERIC Educational Resources Information Center

Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. Its core businesses are to: (1) provide strategic leadership for Campus Alberta and Alberta Innovates; and (2) engage learners, industry and the community in learning

Alberta Advanced Education and Technology, 2011

2011-01-01

397

ADVANCES IN FILTER AID AND PRECOAT FILTRATION TECHNOLOGY  

Microsoft Academic Search

The use of filter aids and precoat filtration is ubiquitous in a wide number of industries, including chemicals, food processing, pharmaceuticals, mining, municipal (potable) water treatment and waste treatment. World Minerals Inc., the parent company of Celite and Harborlite, and other organizations have recently made major advances in filter aid technology. These advances have now pushed the envelope of performance

Thomas E. Sulpizio

398

Advances in induction-heated plasma torch technology  

NASA Technical Reports Server (NTRS)

Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

Poole, J. W.; Vogel, C. E.

1972-01-01

399

South Carolina Advanced Technological Education National Resource Center (SC ATE)  

NSDL National Science Digital Library

The South Carolina Advanced Technological Education (SC ATE) National Resource Center for Engineering Technology (ET) Education is a resource for two-year colleges and provides access to "materials for recruiting and retaining students, as well as for teaching engineering technology." The website also provides resources for ET students and for businesses and industries seeking to hire engineering technology graduates. Of interest to educators and administrators is a free PDF monograph on the recruitment and retention of engineering technology students and links to web and other resources for teaching engineering technology courses. Students may be interested in SCATE's on-line resources for finding jobs in the ET sector.

2007-06-20

400

Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992  

SciTech Connect

This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

Not Available

1993-03-01

401

Organizational Considerations for Advanced Manufacturing Technology  

ERIC Educational Resources Information Center

In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have

DeRuntz, Bruce D.; Turner, Roger M.

2003-01-01

402

Recent advances in Z-technology architecture  

Microsoft Academic Search

Z-technology utilizes the process of stacking integrated circuits (ICs) to achieve a high degree of packaging density. This technique has been most commonly applied to packaging read out electronics for infrared (IR) focal plane arrays to achieve more signal processing at the detector interface. Irvine Sensor Corporation's (ISC's) standard packaging technology, called HYMOSS (Hybrid Mosaic On Stacked Silicon), has been

David E. Ludwig; Daryl Smetana; Stuart Shanken

1989-01-01

403

Advances in engine emissions control technology  

SciTech Connect

This book is composed of papers presented at the Twelfth Annual Energy-Sources Technology Conference and Exhibition. Topics covered include: Emission control technology for stationary natural gas engines; Environmental aspects of coal-fueled diesel engines; and low emission diesel fuel for 1991-1994.

Chrisman, B. Serve, J.V. (Cooper Industries, Ajax-Superior Division (US))

1989-01-01

404

Future regional transport aircraft market, constraints, and technology stimuli  

NASA Technical Reports Server (NTRS)

This report provides updated information on the current market and operating environment and identifies interlinking technical possibilities for competitive future commuter-type transport aircraft. The conclusions on the market and operating environment indicate that the regional airlines are moving toward more modern and effective fleets with greater passenger capacity and comfort, reduced noise levels, increased speed, and longer range. This direction leads to a nearly 'seamless' service and continued code-sharing agreements with the major carriers. Whereas the benefits from individual technologies may be small, the overall integration in existing and new aircraft designs can produce improvements in direct operating cost and competitiveness. Production costs are identified as being equally important as pure technical advances.

Harvey, W. Don; Foreman, Brent

1992-01-01

405

Advanced composite airframe program: Today's technology  

NASA Technical Reports Server (NTRS)

The Advanced Composite Airframe Program (ACAP) was undertaken to demonstrate the advantages of the application of advanced composite materials and structural design concepts to the airframe structure on helicopters designed to stringent military requirements. The primary goals of the program were the reduction of airframe production costs and airframe weight by 17 and 22 percent respectively. The ACAP effort consisted of a preliminary design phase, detail design, and design support testing, full-scale fabrication, laboratory testing, and a ground/flight test demonstration. Since the completion of the flight test demonstration programs follow-on efforts were initiated to more fully evaluate a variety of military characteristics of the composite airframe structures developed under the original ACAP advanced development contracts. An overview of the ACAP program is provided and some of the design features, design support testing, manufacturing approaches, and the results of the flight test evaluation, as well as, an overview of Militarization Test and Evaluation efforts are described.

Good, Danny E.; Mazza, L. Thomas

1988-01-01

406

Advanced technology nodes, a foundry perspective  

NASA Astrophysics Data System (ADS)

Leading edge foundries need to fulfill a wide range of customer needs and have to deliver state-of-the-art performance processes. Therefore, an innovative but flexible modular technology set up is essential. This paper will show after a brief introduction of foundry challenges in general Global Foundries path towards the 28nm technology. Here, two key elements like high k metal gate process and embedded stressors are discussed. The article is concluded with an outlook on future device scaling from a leading edge foundry's perspective. This look ahead includes recent transistor architecture and process technology trends. More specifically, some challenges of the 20nm technology are discussed. This node will push planar transistor technology to its physical limits. Due to this, subsequent nodes will require substantial innovations in process architecture and device concepts. Two potential device paths are foreseen and compared, i.e. FinFet and ET-SOI-UTBB devices.

Faul, Jrgen; Hoentschel, Jan; Wiatr, Maciej; Horstmann, Manfred

2012-11-01

407

CDMA Technology for Intelligent Transportation Systems  

E-print Network

Scientists and Technologists involved in the development of radar and remote sensing systems all over the world are now trying to involve themselves in saving of manpower in the form of developing a new application of their ideas in Intelligent Transport system(ITS). The world statistics shows that by incorporating such wireless radar system in the car would decrease the world road accident by 8-10% yearly. The wireless technology has to be chosen properly which is capable of tackling the severe interferences present in the open road. A combined digital technology like Spread spectrum along with diversity reception will help a lot in this regard. Accordingly, the choice is for FHSS based space diversity system which will utilize carrier frequency around 5.8 GHz ISM band with available bandwidth of 80 MHz and no license. For efficient design, the radio channel is characterized on which the design is based. Out of two available modes e.g. Communication and Radar modes, the radar mode is providing the conditiona...

Bera, Rabindranath; Sil, Sanjib; Mondal, Dipak; Dhar, Sourav; Kandar, Debdatta

2007-01-01

408

Recent Advances in Solar Cell Technology  

NASA Technical Reports Server (NTRS)

The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

1996-01-01

409

University of California, San Diego: Advanced Energy Technology Group  

NSDL National Science Digital Library

The Advanced Energy Technology Group at University of California, San Diego "focuses on the exploration and application of advanced technologies to improve the economic and environmental attractiveness of emerging energy sources, including fusion, advanced fission, renewables and energy efficiency." The website divides the descriptions of its many projects into four categories: Inertial Fusion Energy, Fusion Power Plant Studies, Laser-Matter Interactions, and Thermal Sciences. In the Library link, visitors can find an archive of material properties, information on upcoming meetings, downloadable presentations, and publications.

410

Advanced High-Temperature Engine Materials Technology Progresses  

NASA Technical Reports Server (NTRS)

The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

1997-01-01

411

A rotor technology assessment of the advancing blade concept  

NASA Technical Reports Server (NTRS)

A rotor technology assessment of the Advancing Blade Concept (ABC) was conducted in support of a preliminary design study. The analytical methodology modifications and inputs, the correlation, and the results of the assessment are documented. The primary emphasis was on the high-speed forward flight performance of the rotor. The correlation data base included both the wind tunnel and the flight test results. An advanced ABC rotor design was examined; the suitability of the ABC for a particular mission was not considered. The objective of this technology assessment was to provide estimates of the performance potential of an advanced ABC rotor designed for high speed forward flight.

Pleasants, W. A.

1983-01-01

412

Antenna technology for advanced mobile communication systems  

NASA Technical Reports Server (NTRS)

The onboard antenna front end is the key subsystem conditioning configuration and performance of mobile communication satellites. The objectives of this paper are to demonstrate this key role and to review L-band satellite antenna technology for earth coverage and regional applications. Multibeam arrays are first discussed, then unfurlable and inflatable reflector antennas are described. These technologies are now qualified in Europe for future mobile systems, for which the optimum choice of antenna technology has been found to be the key to efficient use of spectrum and power resources.

Rammos, Emmanuel; Roederer, Antoine; Rogard, Roger

1988-01-01

413

Application of advanced technology to space automation  

NASA Technical Reports Server (NTRS)

Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits.

Schappell, R. T.; Polhemus, J. T.; Lowrie, J. W.; Hughes, C. A.; Stephens, J. R.; Chang, C. Y.

1979-01-01

414

Advances in battery technology from ALABC projects  

Microsoft Academic Search

Over the last five years, battery research and development lead by research sponsored by the Advanced Lead Acid Battery Consortium (ALABC) has produced dramatic improvements in understanding the performance of lead acid batteries, particularly sealed valve regulated batteries (VRLA) for cycling service. Research into battery grid alloys has led to an understanding of the importance of the chemistry and structure

R. D. Prengaman

1999-01-01

415

Inter-technology Effects in Intelligent Transportation Systems  

E-print Network

the benefits of all technologies together exceed the sum of the benefits of each technology individually · Benefits in terms of change in CS are evaluated to test whether technologies are sub-additive or superInter-technology Effects in Intelligent Transportation Systems By Seshasai Kanchi University

Levinson, David M.

416

Review of advances in combustion technology and biomass cofiring  

Microsoft Academic Search

Advances in combustion technology will be adopted only when they reduce cost and can be implemented with acceptable technical risk. Apart from technical risk, future decisions on new power plants will be principally influenced by trends in fuel cost, the efficiency and capital cost of new generating technologies, and environmental and regulatory policies including possible carbon taxes. The choice of

Everett A. Sondreal; Steven A. Benson; John P. Hurley; Michael D. Mann; John H. Pavlish; Michael L. Swanson; Greg F. Weber; Christopher J. Zygarlicke

2001-01-01

417

BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY  

SciTech Connect

Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

None

1998-04-01

418

Institute for Software Technology Advanced Topics of Artificial Intelligence  

E-print Network

Institute for Software Technology Advanced Topics of Artificial Intelligence - Common Sense Reasoning -Common Sense Reasoning Alexander Felfernig und Gerald Steinbauer Institut für Softwaretechnologie of AI ­ Common Sense Reasoning #12;Institute for Software Technology Motivation "P t i d H t d t t th l

419

They watch and wonder. Public attitudes toward advanced technology  

NASA Technical Reports Server (NTRS)

The relationship of technological development to individual and community response was investigated to provide a general conceptual, as well as empirical basis, for an understanding of the impact of advanced technologies on social life. Results of the surveys are presented in tables and graphs.

Laporte, T.; Metlay, D.

1975-01-01

420

Advanced cooling technology for leading-edge computer products  

Microsoft Academic Search

Cooling technology has been a vital prerequisite for the rapid and continued advancement of computer products, ranging from lap-tops to supercomputers. This paper provides a review of the recent development of cooling technology for computers. Both air cooling and liquid cooling are included. Air cooling is discussed in terms of the advantages of impinging flow. An example of module internal

R. C. Chu

1998-01-01

421

On the Horizon: New Advances in Security Technology  

ERIC Educational Resources Information Center

The worlds of security and technology have been on an intersecting course since the first published account of the use of fingerprint identification made news in 1880 (although unpublished reports suggest its use as early as 1858). In the three and one half years since the September 11 attacks, technological advances across the security field have

Gamble, Cheryl

2005-01-01

422

MentorLinks: Advancing Technological Education, 2008-2010  

ERIC Educational Resources Information Center

MentorLinks, part of the Advancing Technological Education program supported by the National Science Foundation and administered by the American Association of Community Colleges (AACC), provides technical assistance and networking opportunities to improve community college programs that prepare technicians in the science, technology, engineering,

Hause, Ellen M., Ed.

2010-01-01

423

RECENT ADVANCES IN PESTICIDE SPRAY APPLICATION TECHNOLOGY  

Technology Transfer Automated Retrieval System (TEKTRAN)

Applications of pesticides and other production strategies have ensured adequate and high quality food, fiber, floral and nursery crops. To meet the wide variety of canopy structure characteristics, growing circumstances and marketing requirements, high quality of pesticide transport is essential t...

424

Advanced power technology for fusion reactors  

Microsoft Academic Search

This paper assesses the technological and economic feasibility of achieving net electric power from a near-term fusion device by using high efficiency energy conversion technology. A variety of energy conversion\\/reactor blanket schemes have been considered and the best one, an argon topping cycle, steam bottoming cycle coupled to a zirconium oxide-based high temperature blanket, has been selected for conceptual design.

R. T. Taussig; J. F. Zumdieck; H. J. Willenberg; T. S. Vaidyanathan; J. R. Powell

1980-01-01

425

Marine Advanced Technology Education (MATE) Center  

NSDL National Science Digital Library

National consortium of educational institutions and organizations seeking to improve marine technology education. The website has an overview of marine technology with current status and future development, information on careers and educational and professional development opportunities. Some curriculum material is provided with more coming soon. Learn how to make your very own ROV. Additional information on ROV contests, workshops, and cost-associated teacher resources are available.

426

Advanced Transport Operating System (ATOPS) utility library software description  

NASA Technical Reports Server (NTRS)

The individual software processes used in the flight computers on-board the Advanced Transport Operating System (ATOPS) aircraft have many common functional elements. A library of commonly used software modules was created for general uses among the processes. The library includes modules for mathematical computations, data formatting, system database interfacing, and condition handling. The modules available in the library and their associated calling requirements are described.

Clinedinst, Winston C.; Slominski, Christopher J.; Dickson, Richard W.; Wolverton, David A.

1993-01-01

427

Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits  

NASA Technical Reports Server (NTRS)

This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

2005-01-01

428

"ATLAS" Advanced Technology Life-cycle Analysis System  

NASA Technical Reports Server (NTRS)

Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

2004-01-01

429

Advances in zebrafish chemical screening technologies  

PubMed Central

Due to several inherent advantages, zebrafish are being utilized in increasingly sophisticated screens to assess the physiological effects of chemical compounds directly in living vertebrate organisms. Diverse screening platforms showcase these advantages. Morphological assays encompassing basic qualitative observations to automated imaging, manipulation, and data-processing systems provide whole organism to subcellular levels of detail. Behavioral screens extend chemical screening to the level of complex systems. In addition, zebrafish-based disease models provide a means of identifying new potential therapeutic strategies. Automated systems for handling/sorting, high-resolution imaging and quantitative data collection have significantly increased throughput in recent years. These advances will make it easier to capture multiple streams of information from a given sample and facilitate integration of zebrafish at the earliest stages of the drug-discovery process, providing potential solutions to current drug-development bottlenecks. Here we outline advances that have been made within the growing field of zebrafish chemical screening. PMID:23043478

Mathias, Jonathan R; Saxena, Meera T; Mumm, Jeff S

2013-01-01

430

Medical technology advances from space research.  

NASA Technical Reports Server (NTRS)

NASA-sponsored medical R & D programs for space applications are reviewed with particular attention to the benefits of these programs to earthbound medical services and to the general public. Notable among the results of these NASA programs is an integrated medical laboratory equipped with numerous advanced systems such as digital biotelemetry and automatic visual field mapping systems, sponge electrode caps for electroencephalograms, and sophisticated respiratory analysis equipment.

Pool, S. L.

1971-01-01

431

Underground communications and tracking technology advances  

SciTech Connect

As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

Fiscor, S.

2007-03-15

432

DOE planning workshop advanced biomedical technology initiative  

SciTech Connect

The Department of Energy has mad major contributions in the biomedical sciences with programs in medical applications and instrumentation development, molecular biology, human genome, and computational sciences. In an effort to help determine DOE`s role in applying these capabilities to the nation`s health care needs, a planning workshop was held on January 11--12, 1994. The workshop was co-sponsored by the Department`s Office of Energy Research and Defense Programs organizations. Participants represented industry, medical research institutions, national laboratories, and several government agencies. They attempted to define the needs of the health care industry. identify DOE laboratory capabilities that address these needs, and determine how DOE, in cooperation with other team members, could begin an initiative with the goals of reducing health care costs while improving the quality of health care delivery through the proper application of technology and computational systems. This document is a report of that workshop. Seven major technology development thrust areas were considered. Each involves development of various aspects of imaging, optical, sensor and data processing and storage technologies. The thrust areas as prioritized for DOE are: (1) Minimally Invasive Procedures; (2) Technologies for Individual Self Care; (3) Outcomes Research; (4) Telemedicine; (5) Decision Support Systems; (6) Assistive Technology; (7) Prevention and Education.

Not Available

1994-06-01

433

Space Transportation Propulsion Technology Symposium. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

The Space Transportation Propulsion Technology Symposium was held to provide a forum for communication within the propulsion within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.

1991-01-01

434

High-speed civil transport flight- and propulsion-control technological issues  

NASA Technical Reports Server (NTRS)

Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team.

Ray, J. K.; Carlin, C. M.; Lambregts, A. A.

1992-01-01

435

2008 James L. Oberstar Forum on Transportation Policy and Technology  

E-print Network

2008 James L. Oberstar Forum on Transportation Policy and Technology The Next Authorization: Transforming Transportation Policy? A Summary Report #12;June 2008 To the Reader, This report summarizes potential policy directions for the next authorization of the federal transportation act. This forum

Minnesota, University of

436

Recent advances in optical access technologies  

NASA Astrophysics Data System (ADS)

Fiber to the home (FTTH) is now the most popular fixed Internet access service in Japan; it has been attracting far more customers than ADSL since early 2005. Gigabit-capable passive optical networks (PONs) have been proven to be the most promising approach since they realize not only point-to-multipoint bidirectional connections for broadband data communication but also video distribution in a very cost effective manner. This paper first reviews such PON technologies as well as other optical technologies to support the massive deployment of these PONs in terms of further reducing the cost, especially with regard to operation/installation and to further increasing user friendliness towards the full-scale FTTH era. It next discusses possible technical directions for future optical access networks (OANs), and review recent research towards them. Wavelength-division multiplexing (WDM) is one of the important technologies in realizing the future OANs.

Kani, Junichi; Yoshimoto, Naoto; Iwatsuki, Katsumi; Imai, Takamasa

2006-10-01

437

Advanced propulsion for LEO-Moon transport. 2: Tether configurations in the LEO-Moon system  

NASA Technical Reports Server (NTRS)

This brief work discusses a possible application of a tether as a dynamical element in a low Earth orbit (LEO)-Moon transport system, and is a part of the Cal Space study of that transport system. To be specific, that study concentrated on the downward transport of O2 from the Moon to LEO, where it is stored for use as a rocket propellant, thus reducing Earth liftoff mass requirements by a factor of about 8. Moreover, in order to display clearly the role of advanced technology, only one novel technology was introduced at a single node in the transport system, the rest being 'conventional' rocket transport. Tethers were found useful in several different roles: hanging from platforms in lunar orbits, as supports for elevators, spinning in LEO, or spinning in a tether transport orbit, an elliptical orbit with perigee at approximately 600 km. This last use is considered here. Presented are the usefulness of the tether, nature of the tether system, the apparatus needed to support, deploy, and control it, and a discussion of needed developments.

Arnold, J. R.; Thompson, W. B.

1992-01-01

438

Standards Advisor-Advanced Information Technology for Advanced Information Delivery  

NASA Technical Reports Server (NTRS)

Developers of space systems must deal with an increasing amount of information in responding to extensive requirements and standards from numerous sources. Accessing these requirements and standards, understanding them, comparing them, negotiating them and responding to them is often an overwhelming task. There are resources to aid the space systems developer, such as lessons learned and best practices. Again, though, accessing, understanding, and using this information is often more difficult than helpful. This results in space systems that: 1. Do not meet all their requirements. 2. Do not incorporate prior engineering experience. 3. Cost more to develop. 4. Take longer to develop. The NASA Technical Standards Program (NTSP) web site at http://standards.nasa.gov has made significant improvements in making standards, lessons learned, and related material available to space systems developers agency-wide. The Standards Advisor was conceived to take the next steps beyond the current product, continuing to apply evolving information technology that continues to improve information delivery to space systems developers. This report describes the features of the Standards Advisor and suggests a technical approach to its development.

Hawker, J. Scott

2003-01-01

439

Advance Power Technology Demonstration on Starshine 3  

NASA Technical Reports Server (NTRS)

The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

2002-01-01

440

Advanced NDE Technologies for Powder Metal Components  

SciTech Connect

Nondestructive evaluation encompasses numerous technologies that assess materials and determine important properties. This paper demonstrates the applicability of several of these technologies to the field of powder metallurgy. The usual application of nondestructive evaluation is to detect and quantify defects in fully sintered product. But probably its most appealing role is to sense problems earlier in the manufacturing process to avoid making defects at all. Also nondestructive evaluation can be incorporated into the manufacturing processes to monitor important parameters and control the processes to produce defect free product. Nondestructive evaluation can characterize powders, evaluate components in the green state, monitor the sintering process, and inspect the final component.

Martin, P; Haskins, J; Thomas, G; Dolan, K

2003-05-01

441

Advanced Mathematical Thinking in a Technological Workplace.  

ERIC Educational Resources Information Center

Examines the use of mathematics in a computer-aided design and manufacturing setting, whether this mathematics is related to school mathematics, how technicians understand this mathematics, and the role of technology in the technicians' mathematics-related problem solving activities. Focuses on technician's calculations of the interval volume of

Magajna, Zlatan; Monaghan, John

2003-01-01

442

ADVANCING TECHNOLOGY FOR MANAGING MINE WASTES  

EPA Science Inventory

A major challenge exists to remove, neutralize, or recover contaminants from aqueous and solid wastes associated with mining and/or mineral processing activities. o meet this challenge, a center for testing, evaluating, and verifying remedial technologies for application to liqui...

443

Advances in solid oxide fuel cell technology  

Microsoft Academic Search

High temperature solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. These fuel cells provide many advantages over traditional energy conversion systems including high efficiency, reliability, modularity, fuel adaptability, and very low levels of NOx and SOx emissions. Furthermore, because of their high temperature of operation (?1000C), natural gas fuel can be

S. C. Singhal

2000-01-01

444

Advanced Space Radiation Detector Technology Development  

NASA Technical Reports Server (NTRS)

The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

2013-01-01

445

Advanced Space Radiation Detector Technology Development  

NASA Technical Reports Server (NTRS)

The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

2013-01-01

446

Advanced Space Radiation Detector Technology Development  

NASA Technical Reports Server (NTRS)

The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

2013-01-01

447

Energy Conversion Advanced Heat Transport Loop and Power Cycle  

SciTech Connect

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va

Oh, C. H.

2006-08-01

448

Concept for advanced satellite communications and required technologies  

NASA Technical Reports Server (NTRS)

The advanced communications technology satellite (ACTS) program of NASA is aimed at the development of high risk technologies that will enable exploiting higher frequency bands and techniques for improving frequency reuse. The technologies under development include multiple beam spacecraft antennas, on-board switching and processing, RF devices and components and advanced earth stations. The program focus is on the Ka-band (30/20 GHz) as the implementing frequency since it has five times the bandwidth of either the C- or Ku-bands. However, the technology being developed is applicable to other frequency bands as well and will support a wide range of future communications systems required by NASA, other Government agencies and the commercial sector. An overview is presented of an operational 30/20 GHz satellite system that may evolve. How the system addresses service requirements is discussed, and the technology required and being developed is considered. Previously announced in STAR as N83-11210

Ramler, J. R.; Salzman, J. A.

1982-01-01

449