The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances
Rönnberg, Jerker; Lunner, Thomas; Zekveld, Adriana; Sörqvist, Patrik; Danielsson, Henrik; Lyxell, Björn; Dahlström, Örjan; Signoret, Carine; Stenfelt, Stefan; Pichora-Fuller, M. Kathleen; Rudner, Mary
2013-01-01
Working memory is important for online language processing during conversation. We use it to maintain relevant information, to inhibit or ignore irrelevant information, and to attend to conversation selectively. Working memory helps us to keep track of and actively participate in conversation, including taking turns and following the gist. This paper examines the Ease of Language Understanding model (i.e., the ELU model, Rönnberg, 2003; Rönnberg et al., 2008) in light of new behavioral and neural findings concerning the role of working memory capacity (WMC) in uni-modal and bimodal language processing. The new ELU model is a meaning prediction system that depends on phonological and semantic interactions in rapid implicit and slower explicit processing mechanisms that both depend on WMC albeit in different ways. It is based on findings that address the relationship between WMC and (a) early attention processes in listening to speech, (b) signal processing in hearing aids and its effects on short-term memory, (c) inhibition of speech maskers and its effect on episodic long-term memory, (d) the effects of hearing impairment on episodic and semantic long-term memory, and finally, (e) listening effort. New predictions and clinical implications are outlined. Comparisons with other WMC and speech perception models are made. PMID:23874273
A Review of Theoretical and Empirical Advancements
ERIC Educational Resources Information Center
Wang, Mo; Henkens, Kene; van Solinge, Hanna
2011-01-01
In this article, we review both theoretical and empirical advancements in retirement adjustment research. After reviewing and integrating current theories about retirement adjustment, we propose a resource-based dynamic perspective to apply to the understanding of retirement adjustment. We then review empirical findings that are associated with…
Theoretical models of neural circuit development.
Simpson, Hugh D; Mortimer, Duncan; Goodhill, Geoffrey J
2009-01-01
Proper wiring up of the nervous system is critical to the development of organisms capable of complex and adaptable behaviors. Besides the many experimental advances in determining the cellular and molecular machinery that carries out this remarkable task precisely and robustly, theoretical approaches have also proven to be useful tools in analyzing this machinery. A quantitative understanding of these processes can allow us to make predictions, test hypotheses, and appraise established concepts in a new light. Three areas that have been fruitful in this regard are axon guidance, retinotectal mapping, and activity-dependent development. This chapter reviews some of the contributions made by mathematical modeling in these areas, illustrated by important examples of models in each section. For axon guidance, we discuss models of how growth cones respond to their environment, and how this environment can place constraints on growth cone behavior. Retinotectal mapping looks at computational models for how topography can be generated in populations of neurons based on molecular gradients and other mechanisms such as competition. In activity-dependent development, we discuss theoretical approaches largely based on Hebbian synaptic plasticity rules, and how they can generate maps in the visual cortex very similar to those seen in vivo. We show how theoretical approaches have substantially contributed to the advancement of developmental neuroscience, and discuss future directions for mathematical modeling in the field. PMID:19427515
Theoretical Foundation for Weld Modeling
NASA Technical Reports Server (NTRS)
Traugott, S.
1986-01-01
Differential equations describe physics of tungsten/inert-gas and plasma-arc welding in aluminum. Report collects and describes necessary theoretical foundation upon which numerical welding model is constructed for tungsten/inert gas or plasma-arc welding in aluminum without keyhole. Governing partial differential equations for flow of heat, metal, and current given, together with boundary conditions relevant to welding process. Numerical estimates for relative importance of various phenomena and required properties of 2219 aluminum included
Polymer-brush lubrication: a review of recent theoretical advances.
Kreer, T
2016-04-13
This review compiles recent theoretical advances to describe compressive and shear forces of polymer-brush bilayers, which consist of two opposing brushes in contact. Such model systems for polymer-brush lubrication are frequently used as a benchmark to gain insight into biological problems, e.g., synovial joint lubrication. Based on scaling theory, I derive conformational and collective properties of polymer-brush bilayers in equilibrium and out-of-equilibrium situations, such as shear forces in the linear and nonlinear response regimes of stationary shear and under non-stationary shear. Furthermore, I discuss the influence of macromolecular inclusions and electrostatic interactions on polymer-brush lubrication. Comparisons to alternative analytical approaches, experiments and numerical results are performed. Special emphasis is given to methods for simulating polymer-brush bilayers using molecular dynamics simulations. PMID:27029521
Theoretical Models of Generalized Quasispecies.
Wagner, Nathaniel; Atsmon-Raz, Yoav; Ashkenasy, Gonen
2016-01-01
Theoretical modeling of quasispecies has progressed in several directions. In this chapter, we review the works of Emmanuel Tannenbaum, who, together with Eugene Shakhnovich at Harvard University and later with colleagues and students at Ben-Gurion University in Beersheva, implemented one of the more useful approaches, by progressively setting up various formulations for the quasispecies model and solving them analytically. Our review will focus on these papers that have explored new models, assumed the relevant mathematical approximations, and proceeded to analytically solve for the steady-state solutions and run stochastic simulations . When applicable, these models were related to real-life problems and situations, including changing environments, presence of chemical mutagens, evolution of cancer and tumor cells , mutations in Escherichia coli, stem cells , chromosomal instability (CIN), propagation of antibiotic drug resistance , dynamics of bacteria with plasmids , DNA proofreading mechanisms, and more. PMID:26373410
Propagation studies using a theoretical ionosphere model
NASA Technical Reports Server (NTRS)
Lee, M.
1973-01-01
The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.
Theoretical model of ``fuzz'' growth
NASA Astrophysics Data System (ADS)
Krasheninnikov, Sergei; Smirnov, Roman
2012-10-01
Recent more detailed experiments on tungsten irradiation with low energy helium plasma, relevant to the near-wall plasma conditions in magnetic fusion reactor like ITER, demonstrated (e.g. see Ref. 1) a very dramatic change in both surface morphology and near surface material structure of the samples. In particular, it was shown that a long (mm-scale) and thin (nm-scale) fiber-like structures filled with nano-bubbles, so-called ``fuzz,'' start to grow. In this work theoretical model of ``fuzz'' growth [2] describing the main features observed in experiments is presented. This model, based on the assumption of enhancement of creep of tungsten containing significant fraction of helium atoms and clusters. The results of the MD simulations [3] support this idea and demonstrate a strong reduction of the yield strength for all temperature range. They also show that the ``flow'' of tungsten strongly facilitates coagulation of helium clusters and the formation of nano-bubbles.[4pt] [1] M. J. Baldwin, et al., J. Nucl. Mater. 390-391 (2009) 885;[0pt] [2] S. I. Krasheninnikov, Physica Scripta T145 (2011) 014040;[0pt] [3] R. D. Smirnov and S. I. Krasheninnikov, submitted to J. Nucl. Materials.
Theoretical models for supercritical fluid extraction.
Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan
2012-08-10
For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. PMID:22560346
NASA Technical Reports Server (NTRS)
Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek
2015-01-01
Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.
ADVANCED CHEMISTRY BASINS MODEL
William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang
2004-05-01
The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.
APPRENTICESHIP--A THEORETICAL MODEL.
ERIC Educational Resources Information Center
DUFTY, NORMAN F.
AN INQUIRY INTO RECRUITMENT OF APPRENTICES TO SKILLED TRADES IN WESTERN AUSTRALIA INDICATED LITTLE CORRELATION BETWEEN THE NUMBER OF NEW APPRENTICES AND THE LEVEL OF INDUSTRIAL EMPLOYMENT OR THE TOTAL NUMBER OF APPRENTICES. THIS ARTICLE ATTEMPTS TO OUTLINE A MATHEMATICAL MODEL OF AN APPRENTICESHIP SYSTEM AND DISCUSS ITS IMPLICATIONS. THE MODEL, A…
Theoretical Modelling of Hot Stars
NASA Astrophysics Data System (ADS)
Najarro, F.; Hillier, D. J.; Figer, D. F.; Geballe, T. R.
1999-06-01
Recent progress towards model atmospheres for hot stars is discussed. A new generation of NLTE wind blanketed models, together with high S/N spectra of the hot star population in the central parsec, which are currently being obtained, will allow metal abundance determinations (Fe, Si, Mg, Na, etc). Metallicity studies of hot stars in the IR will provide major constraints not only on the theory of evolution of massive stars but also on our efforts to solve the puzzle of the central parsecs of the Galaxy. Preliminary results suggest that the metallicity of the Pistol Star is 3 times solar, thus indicating strong chemical enrichment of the gas in the Galactic Center.
Theoretical Modeling of Interstellar Chemistry
NASA Technical Reports Server (NTRS)
Charnley, Steven
2009-01-01
The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.
Theoretical models of helicopter rotor noise
NASA Technical Reports Server (NTRS)
Hawkings, D. L.
1978-01-01
For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.
Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier
2013-02-19
Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of
Dimensions of Black Suicide: A Theoretical Model.
ERIC Educational Resources Information Center
Davis, Robert; Short, James F., Jr.
This paper develops a theoretical model of sucide, based on the theory of "external restraints" proposed by previous researchers, A.F. Henry and J.F. Short, Jr., and applies the model to a study of black suicides in Orleans Parish, Louisiana. The focus of the study is on the complexity of relationships between dimensions of black suicide and the…
Hybrid quantum teleportation: A theoretical model
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira
2014-12-04
Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.
Advanced Production Planning Models
JONES,DEAN A.; LAWTON,CRAIG R.; KJELDGAARD,EDWIN A.; WRIGHT,STEPHEN TROY; TURNQUIST,MARK A.; NOZICK,LINDA K.; LIST,GEORGE F.
2000-12-01
>This report describes the innovative modeling approach developed as a result of a 3-year Laboratory Directed Research and Development project. The overall goal of this project was to provide an effective suite of solvers for advanced production planning at facilities in the nuclear weapons complex (NWC). We focused our development activities on problems related to operations at the DOE's Pantex Plant. These types of scheduling problems appear in many contexts other than Pantex--both within the NWC (e.g., Neutron Generators) and in other commercial manufacturing settings. We successfully developed an innovative and effective solution strategy for these types of problems. We have tested this approach on actual data from Pantex, and from Org. 14000 (Neutron Generator production). This report focuses on the mathematical representation of the modeling approach and presents three representative studies using Pantex data. Results associated with the Neutron Generator facility will be published in a subsequent SAND report. The approach to task-based scheduling described here represents a significant addition to the literature for large-scale, realistic scheduling problems in a variety of production settings.
Advanced Chemistry Basins Model
William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang
2002-11-10
The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.
Hybrid rocket engine, theoretical model and experiment
NASA Astrophysics Data System (ADS)
Chelaru, Teodor-Viorel; Mingireanu, Florin
2011-06-01
The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.
Structural Tailoring of Advanced Turboprops (STAT). Theoretical manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1992-01-01
This manual describes the theories in the Structural Tailoring of Advanced Turboprops (STAT) computer program, which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analyses include an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution (1-p) forced response life prediction capability. The STAT constraints include blade stresses, blade resonances, flutter, tip displacements, and a 1-P forced response life fraction. The STAT variables include all blade internal and external geometry parameters needed to define a composite material blade. The STAT objective function is dependent upon a blade baseline definition which the user supplies to describe a current blade design for cost optimization or for the tailoring of an aeroelastic scale model.
Simple theoretical models for composite rotor blades
NASA Technical Reports Server (NTRS)
Valisetty, R. R.; Rehfield, L. W.
1984-01-01
The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.
Theoretical modeling for the stereo mission
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Burlaga, L. F.; Kaiser, M. L.; Ng, C. K.; Reames, D. V.; Reiner, M. J.; Gombosi, T. I.; Lugaz, N.; Manchester, W.; Roussev, I. I.; Zurbuchen, T. H.; Farrugia, C. J.; Galvin, A. B.; Lee, M. A.; Linker, J. A.; Mikić, Z.; Riley, P.; Alexander, D.; Sandman, A. W.; Cook, J. W.; Howard, R. A.; Odstrčil, D.; Pizzo, V. J.; Kóta, J.; Liewer, P. C.; Luhmann, J. G.; Inhester, B.; Schwenn, R. W.; Solanki, S. K.; Vasyliunas, V. M.; Wiegelmann, T.; Blush, L.; Bochsler, P.; Cairns, I. H.; Robinson, P. A.; Bothmer, V.; Kecskemety, K.; Llebaria, A.; Maksimovic, M.; Scholer, M.; Wimmer-Schweingruber, R. F.
2008-04-01
We summarize the theory and modeling efforts for the STEREO mission, which will be used to interpret the data of both the remote-sensing (SECCHI, SWAVES) and in-situ instruments (IMPACT, PLASTIC). The modeling includes the coronal plasma, in both open and closed magnetic structures, and the solar wind and its expansion outwards from the Sun, which defines the heliosphere. Particular emphasis is given to modeling of dynamic phenomena associated with the initiation and propagation of coronal mass ejections (CMEs). The modeling of the CME initiation includes magnetic shearing, kink instability, filament eruption, and magnetic reconnection in the flaring lower corona. The modeling of CME propagation entails interplanetary shocks, interplanetary particle beams, solar energetic particles (SEPs), geoeffective connections, and space weather. This review describes mostly existing models of groups that have committed their work to the STEREO mission, but is by no means exhaustive or comprehensive regarding alternative theoretical approaches.
Theoretical models for polarimetric radar clutter
NASA Technical Reports Server (NTRS)
Borgeaud, M.; Shin, R. T.; Kong, J. A.
1987-01-01
The Mueller matrix and polarization covariance matrix are described for polarimetric radar systems. The clutter is modeled by a layer of random permittivity, described by a three-dimensional correlation function, with variance, and horizontal and vertical correlation lengths. This model is applied, using the wave theory with Born approximations carried to the second order, to find the backscattering elements of the polarimetric matrices. It is found that 8 out of 16 elements of the Mueller matrix are identically zero, corresponding to a covariance matrix with four zero elements. Theoretical predictions are matched with experimental data for vegetation fields.
Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling
Danon, Yaron; Nazarewicz, Witold; Talou, Patrick
2013-02-18
This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implement innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.
A Theoretical Model of Water and Trade
NASA Astrophysics Data System (ADS)
Dang, Q.; Konar, M.; Reimer, J.; Di Baldassarre, G.; Lin, X.; Zeng, R.
2015-12-01
Water is an essential factor of agricultural production. Agriculture, in turn, is globalized through the trade of food commodities. In this paper, we develop a theoretical model of a small open economy that explicitly incorporates water resources. The model emphasizes three tradeoffs involving water decision-making that are important yet not always considered within the existing literature. One tradeoff focuses on competition for water among different sectors when there is a shock to one of the sectors only, such as trade liberalization and consequent higher demand for the product. A second tradeoff concerns the possibility that there may or may not be substitutes for water, such as increased use of sophisticated irrigation technology as a means to increase crop output in the absence of higher water availability. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using products. A number of propositions are proven. For example, while trade liberalization tends to increase water use, increased pressure on water supplies can be moderated by way of a tax that is derivable with observable economic phenomena. Another example is that increased riskiness of water availability tends to cause water users to use less water than would be the case under profit maximization. These theoretical model results generate hypotheses that can be tested empirically in future work.
Requirements for theoretical models of outflows
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.
1988-01-01
Recent observational and theoretical investigations of astrophysical mass outflows are reviewed, with a focus on the basic physical principles. Specific limitations on the observational data and their interpretation are listed and discussed. Modeling problems considered include the role of the critical point in determining the mass-loss rate and terminal velocity, the physical processes controlling density at the critical point, the possible coexistence of multiple mass-loss mechanisms, time scales, instabilities and phase changes, multiphase atmospheres and winds, the definition of geometries, the role of the environment, explosive transient events, stochastic phenomena, mode-mode coupling and damping processes, departures from ionization equilibrium, and nonthermal phenomena.
A theoretical model of water and trade
NASA Astrophysics Data System (ADS)
Dang, Qian; Konar, Megan; Reimer, Jeffrey J.; Di Baldassarre, Giuliano; Lin, Xiaowen; Zeng, Ruijie
2016-03-01
Water is an essential input for agricultural production. Agriculture, in turn, is globalized through the trade of agricultural commodities. In this paper, we develop a theoretical model that emphasizes four tradeoffs involving water-use decision-making that are important yet not always considered in a consistent framework. One tradeoff focuses on competition for water among different economic sectors. A second tradeoff examines the possibility that certain types of agricultural investments can offset water use. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using commodities. The fourth tradeoff concerns how variability in water supplies influences farmer decision-making. We show conditions under which trade liberalization affect water use. Two policy scenarios to reduce water use are evaluated. First, we derive a target tax that reduces water use without offsetting the gains from trade liberalization, although important tradeoffs exist between economic performance and resource use. Second, we show how subsidization of water-saving technologies can allow producers to use less water without reducing agricultural production, making such subsidization an indirect means of influencing water use decision-making. Finally, we outline conditions under which riskiness of water availability affects water use. These theoretical model results generate hypotheses that can be tested empirically in future work.
Theoretical Models of the Galactic Bulge
NASA Astrophysics Data System (ADS)
Shen, Juntai; Li, Zhao-Yu
Near infrared images from the COBE satellite presented the first clear evidence that our Milky Way galaxy contains a boxy shaped bulge. Recent years have witnessed a gradual paradigm shift in the formation and evolution of the Galactic bulge. Bulges were commonly believed to form in the dynamical violence of galaxy mergers. However, it has become increasingly clear that the main body of the Milky Way bulge is not a classical bulge made by previous major mergers, instead it appears to be a bar seen somewhat end-on. The Milky Way bar can form naturally from a precursor disc and thicken vertically by the internal firehose/buckling instability, giving rise to the boxy appearance. This picture is supported by many lines of evidence, including the asymmetric parallelogram shape, the strong cylindrical rotation (i.e., nearly constant rotation regardless of the height above the disc plane), the existence of an intriguing X-shaped structure in the bulge, and perhaps the metallicity gradients. We review the major theoretical models and techniques to understand the Milky Way bulge. Despite the progresses in recent theoretical attempts, a complete bulge formation model that explains the full kinematics and metallicity distribution is still not fully understood. Upcoming large surveys are expected to shed new light on the formation history of the Galactic bulge.
A theoretical model for airborne radars
NASA Astrophysics Data System (ADS)
Faubert, D.
1989-11-01
This work describes a general theory for the simulation of airborne (or spaceborne) radars. It can simulate many types of systems including Airborne Intercept and Airborne Early Warning radars, airborne missile approach warning systems etc. It computes the average Signal-to-Noise ratio at the output of the signal processor. In this manner, one obtains the average performance of the radar without having to use Monte Carlo techniques. The model has provision for a waveform without frequency modulation and one with linear frequency modulation. The waveform may also have frequency hopping for Electronic Counter Measures or for clutter suppression. The model can accommodate any type of encounter including air-to-air, air-to-ground (look-down) and rear attacks. It can simulate systems with multiple phase centers on receive for studying advanced clutter or jamming interference suppression techniques. An Airborne Intercept radar is investigated to demonstrate the validity and the capability of the model.
Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts
Shuets, G.
2004-05-21
Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.
Observational and theoretical advances in cosmological foreground emission
NASA Astrophysics Data System (ADS)
Stevenson, Matthew A.
Observational and theoretical work towards the separation of foreground emission from the cosmic microwave background is described. The bulk of this work is in the design, construction, and commissioning of the C-Band All-Sky Survey (C-BASS), an experiment to produce a template of the Milky Way Galaxy's polarized synchrotron emission. Theoretical work is the derivation of an analytical approximation to the emission spectrum of spinning dust grains. The performance of the C-BASS experiment is demonstrated through a preliminary, deep survey of the North Celestial Pole region. A comparison to multiwavelength data is performed, and the thermal and systematic noise properties of the experiment are explored. The systematic noise has been minimized through careful data processing algorithms, implemented both in the experiment's Field Programmable Gate Array (FPGA) based digital backend and in the data analysis pipeline. Detailed descriptions of these algorithms are presented. The analytical function of spinning dust emission is derived through the application of careful approximations, with each step tested against numerical calculations. This work is intended for use in the parameterized separation of cosmological foreground components and as a framework for interpreting and comparing the variety of anomalous microwave emission observations.
A Theoretical Model of Water and Trade
NASA Astrophysics Data System (ADS)
Dang, Qian; Zeng, Ruije; Ling, Xiaowen; Di Baldassarre, Giuliano; Konar, Megan
2014-05-01
Water is an essential factor of agricultural production. Agriculture, in turn, is globalized through the trade of food commodities. There is an extensive literature detailing the direct and local relationships between water and agricultural production. Here, we expand upon this important literature to understand how the globalized food economy interacts with water resources. In particular, we seek to understand the following questions: What is the impact of agricultural trade on water resources? How do water resources impact agricultural trade? Thus, we aim to explore the bidirectional feedbacks between water resources and food trade, using a socio-hydrologic framework. To do this, we develop a theoretical model of international trade that explicitly incorporates water resources.
Advanced Chemistry Basins Model
Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun
2003-02-13
The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.
Advanced Turbulence Modeling Concepts
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing
2005-01-01
The ZCET program developed at NASA Glenn Research Center is to study hydrogen/air injection concepts for aircraft gas turbine engines that meet conventional gas turbine performance levels and provide low levels of harmful NOx emissions. A CFD study for ZCET program has been successfully carried out. It uses the most recently enhanced National combustion code (NCC) to perform CFD simulations for two configurations of hydrogen fuel injectors (GRC- and Sandia-injector). The results can be used to assist experimental studies to provide quick mixing, low emission and high performance fuel injector designs. The work started with the configuration of the single-hole injector. The computational models were taken from the experimental designs. For example, the GRC single-hole injector consists of one air tube (0.78 inches long and 0.265 inches in diameter) and two hydrogen tubes (0.3 inches long and 0.0226 inches in diameter opposed at 180 degree). The hydrogen tubes are located 0.3 inches upstream from the exit of the air element (the inlet location for the combustor). To do the simulation, the single-hole injector is connected to a combustor model (8.16 inches long and 0.5 inches in diameter). The inlet conditions for air and hydrogen elements are defined according to actual experimental designs. Two crossing jets of hydrogen/air are simulated in detail in the injector. The cold flow, reacting flow, flame temperature, combustor pressure and possible flashback phenomena are studied. Two grid resolutions of the numerical model have been adopted. The first computational grid contains 0.52 million elements, the second one contains over 1.3 million elements. The CFD results have shown only about 5% difference between the two grid resolutions. Therefore, the CFD result obtained from the model of 1.3-million grid resolution can be considered as a grid independent numerical solution. Turbulence models built in NCC are consolidated and well tested. They can handle both coarse and
NASA Technical Reports Server (NTRS)
Wang, James M.
1991-01-01
The aeroelastic stability of a shaft-fixed bearingless rotor is analyzed in wind-tunnel tests for a wide range of operating conditions in order to determine whether such a system could be made aeroelastically stable without incorporating auxiliary dampers. The model rotor and blade properties are determined and used as an input to a bearingless-rotor analysis. Theoretical predictions are compared with experimental results in hover and forward flights. The analysis predicts the lag mode damping satisfactorily for collective pitch between 5 deg and 10 deg; however, the quasi-steady linear aerodynamic modeling overpredicts the damping values for higher collective pitch settings. It is noted that soft blade pitch links improve aeroelastic stability in hover and at low advance ratio.
Explaining Facial Imitation: A Theoretical Model
Meltzoff, Andrew N.; Moore, M. Keith
2013-01-01
A long-standing puzzle in developmental psychology is how infants imitate gestures they cannot see themselves perform (facial gestures). Two critical issues are: (a) the metric infants use to detect cross-modal equivalences in human acts and (b) the process by which they correct their imitative errors. We address these issues in a detailed model of the mechanisms underlying facial imitation. The model can be extended to encompass other types of imitation. The model capitalizes on three new theoretical concepts. First, organ identification is the means by which infants relate parts of their own bodies to corresponding ones of the adult’s. Second, body babbling (infants’ movement practice gained through self-generated activity) provides experience mapping movements to the resulting body configurations. Third, organ relations provide the metric by which infant and adult acts are perceived in commensurate terms. In imitating, infants attempt to match the organ relations they see exhibited by the adults with those they feel themselves make. We show how development restructures the meaning and function of early imitation. We argue that important aspects of later social cognition are rooted in the initial cross-modal equivalence between self and other found in newborns. PMID:24634574
Experimental and theoretical advances in prosody: A review
Wagner, Michael; Watson, Duane G.
2011-01-01
Research on prosody has recently become an important focus in various disciplines, including Linguistics, Psychology, and Computer Science. This article reviews recent research advances on two key issues: prosodic phrasing and prosodic prominence. Both aspects of prosody are influenced by linguistic factors such as syntactic constituent structure, semantic relations, phonological rhythm, pragmatic considerations, and also by processing factors such as the length, complexity or predictability of linguistic material. Our review summarizes recent insights into the production and perception of these two components of prosody and their grammatical underpinnings. While this review only covers a subset of a broader set of research topics on prosody in cognitive science, they are representative of a tendency in the field toward a more interdisciplinary approach. PMID:22096264
CAM Modalities Can Stimulate Advances in Theoretical Biology
2005-01-01
Most complementary medicine is distinguished by not being supported by underlying theory accepted by Western science. However, for those who accept their validity, complementary and alternative medicine (CAM) modalities offer clues to understanding physiology and medicine more deeply. Ayurveda and vibrational medicine are stimulating new approaches to biological regulation. The new biophysics can be integrated to yield a single consistent theory, which may well underly much of CAM—a true ‘physics of physick’. The resulting theory seems to be a new, fundamental theory of health and etiology. It suggests that many CAM approaches to health care are scientifically in advance of those based on current Western biology. Such theories may well constitute the next steps in our scientific understanding of biology itself. If successfully developed, these ideas could result in a major paradigm shift in both biology and medicine, which will benefit all interested parties—consumers, health professionals, scientists, institutions and governments. PMID:15841271
Information-Theoretic Perspectives on Geophysical Models
NASA Astrophysics Data System (ADS)
Nearing, Grey
2016-04-01
practice of science (except by Gong et al., 2013, whose fundamental insight is the basis for this talk), and here I offer two examples of practical methods that scientists might use to approximately measure ontological information. I place this practical discussion in the context of several recent and high-profile experiments that have found that simple out-of-sample statistical models typically (vastly) outperform our most sophisticated terrestrial hydrology models. I offer some perspective on several open questions about how to use these findings to improve our models and understanding of these systems. Cartwright, N. (1983) How the Laws of Physics Lie. New York, NY: Cambridge Univ Press. Clark, M. P., Kavetski, D. and Fenicia, F. (2011) 'Pursuing the method of multiple working hypotheses for hydrological modeling', Water Resources Research, 47(9). Cover, T. M. and Thomas, J. A. (1991) Elements of Information Theory. New York, NY: Wiley-Interscience. Cox, R. T. (1946) 'Probability, frequency and reasonable expectation', American Journal of Physics, 14, pp. 1-13. Csiszár, I. (1972) 'A Class of Measures of Informativity of Observation Channels', Periodica Mathematica Hungarica, 2(1), pp. 191-213. Davies, P. C. W. (1990) 'Why is the physical world so comprehensible', Complexity, entropy and the physics of information, pp. 61-70. Gong, W., Gupta, H. V., Yang, D., Sricharan, K. and Hero, A. O. (2013) 'Estimating Epistemic & Aleatory Uncertainties During Hydrologic Modeling: An Information Theoretic Approach', Water Resources Research, 49(4), pp. 2253-2273. Jaynes, E. T. (2003) Probability Theory: The Logic of Science. New York, NY: Cambridge University Press. Nearing, G. S. and Gupta, H. V. (2015) 'The quantity and quality of information in hydrologic models', Water Resources Research, 51(1), pp. 524-538. Popper, K. R. (2002) The Logic of Scientific Discovery. New York: Routledge. Van Horn, K. S. (2003) 'Constructing a logic of plausible inference: a guide to cox's theorem
Lee, S; Dimenna, R; Tamburello, D
2011-02-14
height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?
Lee, S; Richard Dimenna, R; David Tamburello, D
2008-11-13
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and
Assessing a Theoretical Model on EFL College Students
ERIC Educational Resources Information Center
Chang, Yu-Ping
2011-01-01
This study aimed to (1) integrate relevant language learning models and theories, (2) construct a theoretical model of college students' English learning performance, and (3) assess the model fit between empirically observed data and the theoretical model proposed by the researchers of this study. Subjects of this study were 1,129 Taiwanese EFL…
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1986-01-01
A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.
Theoretical Models of Parental HIV Disclosure: A Critical Review
Qiao, Shan; Li, Xiaoming; Stanton, Bonita
2012-01-01
This review critically examined three major theoretical models related to parental HIV disclosure (i.e., the Four-Phase Model, the Disclosure Decision Making Model, and the Disclosure Process Model), and the existing studies that could provide empirical support to these models or their components. For each model, we briefly reviewed its theoretical background, described its components and or mechanisms, and discussed its strengths and limitations. The existing empirical studies supported most theoretical components in these models. However, hypotheses related to the mechanisms proposed in the models have not yet tested due to a lack of empirical evidence. This review also synthesized alternative theoretical perspectives and new issues in disclosure research and clinical practice that may challenge the existing models. The current review underscores the importance of including components related to social and cultural contexts in theoretical frameworks, and calls for more adequately designed empirical studies in order to test and refine existing theories and to develop new ones. PMID:22866903
Theoretical Models and QSRR in Retention Modeling of Eight Aminopyridines.
Tumpa, Anja; Kalinić, Marko; Jovanović, Predrag; Erić, Slavica; Rakić, Tijana; Jančić-Stojanović, Biljana; Medenica, Mirjana
2016-03-01
In this article, retention modeling of eight aminopyridines (synthesized and characterized at the Faculty of Pharmacy) in reversed-phase high performance liquid chromatography (RP-HPLC) was performed. No data related to their retention in the RP-HPLC system were found. Knowing that, it was recognized as very important to describe their retention behavior. The influences of pH of the mobile phase and the organic modifier content on the retention factors were investigated. Two theoretical models for the dependence of retention factor of organic modifier content were tested. Then, the most reliable and accurate prediction of log k was created, testing multiple linear regression model-quantitative structure-retention relationships (MLR-QSRR) and support vector regression machine-quantitative structure-retention relationships (SVM-QSRR). Initially, 400 descriptors were calculated, but four of them (POM, log D, M-SZX/RZX and m-RPCG) were included in the models. SVM-QSRR performed significantly better than the MLR model. Apart from aminopyridines, four structurally similar substances (indapamide, gliclazide, sulfamethoxazole and furosemide) were followed in the same chromatographic system. They were used as external validation set for the QSRR model (it performed well within its applicability domain, which was defined using a bounding box approach). After having described retention of eight aminopyridines with both theoretical and QSRR models, further investigations in this field can be conducted. PMID:26590237
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1987-01-01
A dynamic rain attenuation prediction model is developed for use in obtaining the temporal characteristics, on time scales of minutes or hours, of satellite communication link availability. Analagous to the associated static rain attenuation model, which yields yearly attenuation predictions, this dynamic model is applicable at any location in the world that is characterized by the static rain attenuation statistics peculiar to the geometry of the satellite link and the rain statistics of the location. Such statistics are calculated by employing the formalism of Part I of this report. In fact, the dynamic model presented here is an extension of the static model and reduces to the static model in the appropriate limit. By assuming that rain attenuation is dynamically described by a first-order stochastic differential equation in time and that this random attenuation process is a Markov process, an expression for the associated transition probability is obtained by solving the related forward Kolmogorov equation. This transition probability is then used to obtain such temporal rain attenuation statistics as attenuation durations and allowable attenuation margins versus control system delay.
Advanced Modeling of Micromirror Devices
NASA Technical Reports Server (NTRS)
Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.
1995-01-01
The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.
Advanced Mirror & Modelling Technology Development
NASA Technical Reports Server (NTRS)
Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl
2014-01-01
The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.
Empathy and Child Neglect: A Theoretical Model
ERIC Educational Resources Information Center
De Paul, Joaquin; Guibert, Maria
2008-01-01
Objective: To present an explanatory theory-based model of child neglect. This model does not address neglectful behaviors of parents with mental retardation, alcohol or drug abuse, or severe mental health problems. In this model parental behavior aimed to satisfy a child's need is considered a helping behavior and, as a consequence, child neglect…
NASA Astrophysics Data System (ADS)
Gheorghiu, M.; Bratu, D.; Olaru, A.; Polonschii, C.; Gheorghiu, E.
2013-04-01
In spite of recent advancement of novel optical and electrical techniques, availability of non-invasive, label-free methods to assess membrane potential of living cells is still an open issue. The theory linking membrane potential to the low frequency α dispersion exhibited by suspensions of spherical shelled particles (presenting a net charge distribution on the inner side of the shell) has been pioneered in our previous studies with emphasis on the permittivity spectra. We now report on both theoretical and experimental aspects showing that whereas α dispersion is related to a rather large variation exhibited by the permittivity spectrum the decrement presented by impedance magnitude spectrum is either extremely small, or occurs (for large cells) at very low frequencies (~mHz) explaining the lack of experimental bioimpedance data on the matter. Based on the microscopic model we indicate that an appropriate design of the experiment may enable access to membrane potential as well as to other relevant parameters when investigating living cells and charged lipid vesicles. We discuss the effect on the low frequency of permittivity and impedance spectra of: I. Parameters pertaining to cell membrane i.e. (i) membrane potential, (ii) size of the cells/vesicles, (iii) conductivity; II. Conductivity of the outer medium. A novel measuring set-up has recently been developed within the International Centre of Biodynamics allowing for sensitive low frequency (~10mHz) four point (bio)impedance assays. Its capability to test theoretical predictions is reported as well. The far reaching implications of this study applicability for life sciences (noninvasive access to the dynamics of relevant cell parameters) as well as for biosensing applications, e.g. assess the cytotoxicity of a wide range of stimuli, will be outlined.
Modeling Tool Advances Rotorcraft Design
NASA Technical Reports Server (NTRS)
2007-01-01
Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.
A theoretical model to study melting of metals under pressure
NASA Astrophysics Data System (ADS)
Kholiya, Kuldeep; Chandra, Jeewan
2015-10-01
On the basis of the thermal equation-of-state a simple theoretical model is developed to study the pressure dependence of melting temperature. The model is then applied to compute the high pressure melting curve of 10 metals (Cu, Mg, Pb, Al, In, Cd, Zn, Au, Ag and Mn). It is found that the melting temperature is not linear with pressure and the slope dTm/dP of the melting curve decreases continuously with the increase in pressure. The results obtained with the present model are also compared with the previous theoretical and experimental data. A good agreement between theoretical and experimental result supports the validity of the present model.
Information-Theoretic Perspectives on Geophysical Models
NASA Astrophysics Data System (ADS)
Nearing, Grey
2016-04-01
To test any hypothesis about any dynamic system, it is necessary to build a model that places that hypothesis into the context of everything else that we know about the system: initial and boundary conditions and interactions between various governing processes (Hempel and Oppenheim, 1948, Cartwright, 1983). No hypothesis can be tested in isolation, and no hypothesis can be tested without a model (for a geoscience-related discussion see Clark et al., 2011). Science is (currently) fundamentally reductionist in the sense that we seek some small set of governing principles that can explain all phenomena in the universe, and such laws are ontological in the sense that they describe the object under investigation (Davies, 1990 gives several competing perspectives on this claim). However, since we cannot build perfect models of complex systems, any model that does not also contain an epistemological component (i.e., a statement, like a probability distribution, that refers directly to the quality of of the information from the model) is falsified immediately (in the sense of Popper, 2002) given only a small number of observations. Models necessarily contain both ontological and epistemological components, and what this means is that the purpose of any robust scientific method is to measure the amount and quality of information provided by models. I believe that any viable philosophy of science must be reducible to this statement. The first step toward a unified theory of scientific models (and therefore a complete philosophy of science) is a quantitative language that applies to both ontological and epistemological questions. Information theory is one such language: Cox' (1946) theorem (see Van Horn, 2003) tells us that probability theory is the (only) calculus that is consistent with Classical Logic (Jaynes, 2003; chapter 1), and information theory is simply the integration of convex transforms of probability ratios (integration reduces density functions to scalar
Models of the Bilingual Lexicon and Their Theoretical Implications for CLIL
ERIC Educational Resources Information Center
Heine, Lena
2014-01-01
Although many advances have been made in recent years concerning the theoretical dimensions of content and language integrated learning (CLIL), research still has to meet the necessity to come up with integrative models that adequately map the interrelation between content and language learning in CLIL contexts. This article will suggest that…
Theoretical Modeling of Amphiphilic Self-Assembly
NASA Astrophysics Data System (ADS)
Gunn, John Robert
1992-01-01
Mixtures of oil, water, and surfactant exhibit a number of complex phases and interesting properties. In an effort to provide a detailed statistical mechanical understanding of these systems, the following models have been developed. A microscopic model of lyotropic systems is presented in which amphiphile and water molecules are described by simple intermolecular potentials which correctly include important excluded volume effects and the relative energy scales in the system. A constant-temperature molecular dynamics study in which the divergence of the pressure tensor is constrained to zero is discussed. Preliminary calculations on the order parameters and dynamical observables of the model are reported. To explore the phase diagram further, a three -component lattice model with unit-vector orientations at the lattice sites is introduced. The model describes ternary mixtures of oil, water, and amphiphile, and in particular the microemulsion phase. The phase diagram of the model is derived using mean-field theory and simulation. It is shown that the results of Monte Carlo simulations of sufficiently large systems show remarkable agreement with experiment. In particular, the present model reproduces the mesoscopic order of the microemulsion phase. The structure of the microemulsion is understood in terms of the liquid -crystalline phases adjacent to it on the phase diagram, and the nature of the phase transitions that occur between them. The behaviour of the system when the ratio of oil to water is changed is investigated and the percolation threshold is described. The amphiphilic film is also discussed in the context of a simple surface model. We then present an algorithm for carrying out time-dependent canonical Monte Carlo simulations using this model. Sample calculations are carried out for the 2-dimensional Ising model for which the exact partition function is known. Our method reproduces the results of standard Monte Carlo simulations with comparable accuracy
THEORETICAL BASIS FOR MODELING ELEMENT CYCLING
A biophysical basis for modeling element cycling is described. The scheme consists of element cycles, organisms necessary to completely catalyze all the component reactions, and higher organisms as structurally complex systems and as subsystems of more complex ecosystems, all to ...
Electrochemical phase formation: classical and atomistic theoretical models.
Milchev, Alexander
2016-08-01
The process of electrochemical phase formation at constant thermodynamic supersaturation is considered in terms of classical and atomistic nucleation theories. General theoretical expressions are derived for important thermodynamic and kinetic quantities commenting also upon the correlation between the existing theoretical models and experimental results. Progressive and instantaneous nucleation and growth of multiple clusters of the new phase are briefly considered, too. PMID:27108683
Theoretical outdoor noise propagation models: Application to practical predictions
NASA Astrophysics Data System (ADS)
Tuominen, H. T.; Lahti, T.
1982-02-01
The theoretical calculation approaches for outdoor noise propagation are reviewed. Possibilities for their application to practical engineering calculations are outlined. A calculation procedure, which is a combination and extension of several theoretical models, is described. Calculation examples are compared with the results of some propagation studies.
A Theoretical Framework for Physics Education Research: Modeling Student Thinking
ERIC Educational Resources Information Center
Redish, Edward F.
2004-01-01
Education is a goal-oriented field. But if we want to treat education scientifically so we can accumulate, evaluate, and refine what we learn, then we must develop a theoretical framework that is strongly rooted in objective observations and through which different theoretical models of student thinking can be compared. Much that is known in the…
Theoretical model for forming limit diagram predictions without initial inhomogeneity
NASA Astrophysics Data System (ADS)
Gologanu, Mihai; Comsa, Dan Sorin; Banabic, Dorel
2013-05-01
We report on our attempts to build a theoretical model for determining forming limit diagrams (FLD) based on limit analysis that, contrary to the well-known Marciniak and Kuczynski (M-K) model, does not assume the initial existence of a region with material or geometrical inhomogeneity. We first give a new interpretation based on limit analysis for the onset of necking in the M-K model. Considering the initial thickness defect along a narrow band as postulated by the M-K model, we show that incipient necking is a transition in the plastic mechanism from one of plastic flow in both the sheet and the band to another one where the sheet becomes rigid and all plastic deformation is localized in the band. We then draw on some analogies between the onset of necking in a sheet and the onset of coalescence in a porous bulk body. In fact, the main advance in coalescence modeling has been based on a similar limit analysis with an important new ingredient: the evolution of the spatial distribution of voids, due to the plastic deformation, creating weaker regions with higher porosity surrounded by sound regions with no voids. The onset of coalescence is precisely the transition from a mechanism of plastic deformation in both regions to another one, where the sound regions are rigid. We apply this new ingredient to a necking model based on limit analysis, for the first quadrant of the FLD and a porous sheet. We use Gurson's model with some recent extensions to model the porous material. We follow both the evolution of a homogeneous sheet and the evolution of the distribution of voids. At each moment we test for a potential change of plastic mechanism, by comparing the stresses in the uniform region to those in a virtual band with a larger porosity. The main difference with the coalescence of voids in a bulk solid is that the plastic mechanism for a sheet admits a supplementary degree of freedom, namely the change in the thickness of the virtual band. For strain ratios close to
Theoretical models of synaptic short term plasticity
Hennig, Matthias H.
2013-01-01
Short term plasticity is a highly abundant form of rapid, activity-dependent modulation of synaptic efficacy. A shared set of mechanisms can cause both depression and enhancement of the postsynaptic response at different synapses, with important consequences for information processing. Mathematical models have been extensively used to study the mechanisms and roles of short term plasticity. This review provides an overview of existing models and their biological basis, and of their main properties. Special attention will be given to slow processes such as calcium channel inactivation and the effect of activation of presynaptic autoreceptors. PMID:23626536
Theoretical Model for Nanoporous Carbon Supercapacitors
Sumpter, Bobby G; Meunier, Vincent; Huang, Jingsong
2008-01-01
The unprecedented anomalous increase in capacitance of nanoporous carbon supercapacitors at pore sizes smaller than 1 nm [Science 2006, 313, 1760.] challenges the long-held presumption that pores smaller than the size of solvated electrolyte ions do not contribute to energy storage. We propose a heuristic model to replace the commonly used model for an electric double-layer capacitor (EDLC) on the basis of an electric double-cylinder capacitor (EDCC) for mesopores (2 {50 nm pore size), which becomes an electric wire-in-cylinder capacitor (EWCC) for micropores (< 2 nm pore size). Our analysis of the available experimental data in the micropore regime is confirmed by 1st principles density functional theory calculations and reveals significant curvature effects for carbon capacitance. The EDCC (and/or EWCC) model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size. The new model not only explains the experimental data, but also offers a practical direction for the optimization of the properties of carbon supercapacitors through experiments.
Theoretical Tinnitus Framework: A Neurofunctional Model
Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C. B.; Sani, Siamak S.; Ekhtiari, Hamed; Sanchez, Tanit G.
2016-01-01
Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the “sourceless” sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be
Theoretical Tinnitus Framework: A Neurofunctional Model.
Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C B; Sani, Siamak S; Ekhtiari, Hamed; Sanchez, Tanit G
2016-01-01
Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the "sourceless" sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be
Theoretical models of possible compact nucleosome structures.
Besker, Neva; Anselmi, Claudio; De Santis, Pasquale
2005-04-01
Chromatin structure seems related to the DNA linker length. This paper presents a systematic search of the possible chromatin structure as a function of the linker lengths, starting from three different low-resolution molecular models of the nucleosome. Gay-Berne potential was used to evaluate the relative nucleosome packing energy. Results suggest that linker DNAs, which bridges and orientate nucleosomes, affect both the geometry and the rigidity of the global chromatin structure. PMID:15752596
A theoretical model for whole genome alignment.
Belal, Nahla A; Heath, Lenwood S
2011-05-01
We present a graph-based model for representing two aligned genomic sequences. An alignment graph is a mixed graph consisting of two sets of vertices, each representing one of the input sequences, and three sets of edges. These edges allow the model to represent a number of evolutionary events. This model is used to perform sequence alignment at the level of nucleotides. We define a scoring function for alignment graphs. We show that minimizing the score is NP-complete. However, we present a dynamic programming algorithm that solves the minimization problem optimally for a certain class of alignments, called breakable arrangements. Algorithms for analyzing breakable arrangements are presented. We also present a greedy algorithm that is capable of representing reversals. We present a dynamic programming algorithm that optimally aligns two genomic sequences, when one of the input sequences is a breakable arrangement of the other. Comparing what we define as breakable arrangements to alignments generated by other algorithms, it is seen that many already aligned genomes fall into the category of being breakable. Moreover, the greedy algorithm is shown to represent reversals, besides rearrangements, mutations, and other evolutionary events. PMID:21210739
Theoretical model for plasma opening switch
Baker, L.
1980-07-01
The theory of an explosive plasma switch is developed and compared with the experimental results of Pavlovskii and work at Sandia. A simple analytic model is developed, which predicts that such switches may achieve opening times of approximately 100 ns. When the switching time is limited by channel mixing it scales as t = C(m d/sub 0/)/sup 1/2/P/sub 0//sup 2/P/sub e//sup -5/2/ where m is the foil mass per unit area, d/sub 0/ the channel thickness and P/sub 0/ the channel pressure (at explosive breakout), P/sub e/ the explosive pressure, C a constant of order 10 for c.g.s. units. Thus faster switching times may be achieved by minimizing foil mass and channel pressure, or increasing explosive product pressure, with the scaling exponents as shown suggesting that changes in pressures would be more effective.
Theoretical modelling of epigenetically modified DNA sequences.
Carvalho, Alexandra Teresa Pires; Gouveia, Maria Leonor; Raju Kanna, Charan; Wärmländer, Sebastian K T S; Platts, Jamie; Kamerlin, Shina Caroline Lynn
2015-01-01
We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion-corrected density functional theory (DFT) methods. The same modifications within double-stranded GCG and ACA trimers exhibit rather larger structural effects, when including the sugar-phosphate backbone as well as sodium counterions and implicit aqueous solvation. In particular, changes are observed in the buckle and propeller angles within base pairs and the slide and roll values of base pair steps, but these leave the overall helical shape of DNA essentially intact. The structures so obtained are useful as a benchmark of faster methods, including molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM/MM) methods. We show that previously developed MM parameters satisfactorily reproduce the trimer structures, as do QM/MM calculations which treat bases with dispersion-corrected DFT and the sugar-phosphate backbone with AMBER. The latter are improved by inclusion of all six bases in the QM region, since a truncated model including only the central CG base pair in the QM region is considerably further from the DFT structure. This QM/MM method is then applied to a set of double-stranded DNA heptamers derived from a recent X-ray crystallographic study, whose size puts a DFT study beyond our current computational resources. These data show that still larger structural changes are observed than in base pairs or trimers, leading us to conclude that it is important to model epigenetic modifications within realistic molecular contexts. PMID:26448859
Neighbor intervention: a game-theoretic model.
Mesterton-Gibbons, Mike; Sherratt, Tom N
2009-01-21
It has long been argued that a resident may benefit from helping its neighbor defend a territory against a challenger to avoid renegotiating its boundaries with a new and potentially stronger individual. We quantify this theory by exploring games involving challengers, residents and potential allies. In a simplified discrete game with zero variation of fighting strength, helping neighbors is part of an evolutionarily stable strategy (ESS) only if fighting costs are low relative to those of renegotiation. However, if relative fighting costs are high then an interventional ESS remains possible with finite variation of strength. Under these conditions, neighbors may help residents fight off intruders, but only when the resident does not stand a reliable chance of winning alone. We show that neighbor intervention is more likely with low home advantage to occupying a territory, strengths combining synergistically or low probability that an ally will be usurped, amongst other factors. Our parameterized model readily explains occasional intervention in the Australian fiddler crab, including why the ally tended to be larger than both the assisted neighbor and the intruder. Reciprocity is not necessary for this type of cooperation to persist, but also it is by no means inevitable in territorial species. PMID:18977365
A theoretical model of asymmetric wave ripples
Blondeaux, P.; Foti, E.; Vittori, G.
2015-01-01
The time development of ripples under sea waves is investigated by means of the weakly nonlinear stability analysis of a flat sandy bottom subjected to the viscous oscillatory flow that is present in the boundary layer at the bottom of propagating sea waves. Second-order effects in the wave steepness are considered, to take into account the presence of the steady drift generated by the surface waves. Hence, the work of Vittori & Blondeaux (1990 J. Fluid Mech. 218, 19–39 (doi:10.1017/S002211209000091X)) is extended by considering steeper waves and/or less deep waters. As shown by the linear analysis of Blondeaux et al. (2000 Eur. J. Mech. B 19, 285–301 (doi:10.1016/S0997-7546(90)00106-I)), because of the presence of a steady velocity component in the direction of wave propagation, ripples migrate at a constant rate that depends on sediment and wave characteristics. The weakly nonlinear analysis shows that the ripple profile is no longer symmetric with respect to ripple crests and troughs and the symmetry index is computed as a function of the parameters of the problem. In particular, a relationship is determined between the symmetry index and the strength of the steady drift. A fair agreement between model results and laboratory data is obtained, albeit further data and analyses are necessary to determine the behaviour of vortex ripples and to be conclusive. PMID:25512587
A theoretical model of asymmetric wave ripples.
Blondeaux, P; Foti, E; Vittori, G
2015-01-28
The time development of ripples under sea waves is investigated by means of the weakly nonlinear stability analysis of a flat sandy bottom subjected to the viscous oscillatory flow that is present in the boundary layer at the bottom of propagating sea waves. Second-order effects in the wave steepness are considered, to take into account the presence of the steady drift generated by the surface waves. Hence, the work of Vittori & Blondeaux (1990 J. Fluid Mech. 218, 19-39 (doi:10.1017/S002211209000091X)) is extended by considering steeper waves and/or less deep waters. As shown by the linear analysis of Blondeaux et al. (2000 Eur. J. Mech. B 19, 285-301 (doi:10.1016/S0997-7546(90)00106-I)), because of the presence of a steady velocity component in the direction of wave propagation, ripples migrate at a constant rate that depends on sediment and wave characteristics. The weakly nonlinear analysis shows that the ripple profile is no longer symmetric with respect to ripple crests and troughs and the symmetry index is computed as a function of the parameters of the problem. In particular, a relationship is determined between the symmetry index and the strength of the steady drift. A fair agreement between model results and laboratory data is obtained, albeit further data and analyses are necessary to determine the behaviour of vortex ripples and to be conclusive. PMID:25512587
Theoretical and numerical modelling of shocks in dusty plasmas
Eliasson, B.; Shukla, P.K.
2005-10-31
The formation of dust acoustic (DA) and dust ion-acoustic (DIA) shocks are are studied theoretically and numerically by means of simple-wave solutions and a comparison between fluid and kinetic model for DIA waves. A fluid model admits sharp discontinuities at the shock front while the kinetic model involves Landau-damping of the the shock front.
The Psychopathological Model of Mental Retardation: Theoretical and Therapeutic Considerations.
ERIC Educational Resources Information Center
La Malfa, Giampaolo; Campigli, Marco; Bertelli, Marco; Mangiapane, Antonio; Cabras, Pier Luigi
1997-01-01
Describes a new integrated bio-psycho-social model of etiology for mental retardation. Discusses the problems with current models and the ability of the "universe line" model to integrate data from different research areas, especially cognitive and psychopathologic indicators. Addresses implications of this theoretical approach. (Author/CR)
Dynamics in Higher Education Politics: A Theoretical Model
ERIC Educational Resources Information Center
Kauko, Jaakko
2013-01-01
This article presents a model for analysing dynamics in higher education politics (DHEP). Theoretically the model draws on the conceptual history of political contingency, agenda-setting theories and previous research on higher education dynamics. According to the model, socio-historical complexity can best be analysed along two dimensions: the…
Opposition Surge: Lab Studies and Theoretical Models
NASA Astrophysics Data System (ADS)
Nelson, R. M.; Hapke, B. W.; Smythe, W. D.; Hale, A. S.; Piatek, J. L.; Green, J.
The opposition effect, a non-linear intensity increase in the reflectance phase curve with decreasing phase angle, has long been observed in solar system bodies and in laboratory investigations of the angular scattering properties of particulate media[1]. It has been attributed to two processes. One, shadow hiding, is the elimination of shadows mutually cast between the regolith grains as the phase angle decreases[2]. The other is coherent constructive interference between rays of light traveling along identical but opposite paths in multiply scattering media (CBOE). [3,4,5,6]. We report the results of an investigation into the opposition surge of particulate materials of the same particle size and packing density but of differing reflectance. The measurements were made on the long arm goniometer at JPL. The phase angle studied varied from 0.05 to 5o. Samples of Al2O3, diamond, Si4C, and B4C were presented with linearly and circularly polarized light from a laser of wavelength 0.633 µm. The uncompressed, 22-24 µm samples differed widely in reflectance. Many published models of CBOE suggest that as the materials become more absorbing the shape of the phase curve should become more rounded near 0o [7,8 9, 10, 11,12,13]. We find that, regardless of reflectance, the phase curve exhibits increasing slope with decreasing phase angle down to the angular limit of our measurement. It becomes more sharply peaked and does not become rounded. Our measurements of powdered materials, including lunar regolith samples[14,15,16], do not agree with current models of coherent backscatter, which predict a rounding and truncation of the opposition effect peak near zero phase. This lack of rounding is consistent with the hypothesis that very long light paths contribute to the CBOE of particulate materials including planetary regoliths. This work was performed at NASA's JPL under a grant from NASA's Planetary Geology / Geophysics program. References: [1] T. Gehrels, Astrrophys. J. 123
In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances
NASA Astrophysics Data System (ADS)
Atti, Claudio Ciofi degli
2015-08-01
The investigation of in-medium short-range dynamics of nucleons, usually referred to as the study of short-range correlations (SRCs), is a key issue in nuclear and hadronic physics. As a matter of fact, even in the simplified assumption that the nucleus could be described as a system of protons and neutrons interacting via effective nucleon-nucleon (NN) interactions, several non trivial problems arise concerning the description of in-medium (NN short-range dynamics, namely: (i) the behavior of the NN interaction at short inter-nucleon distances in medium cannot be uniquely constrained by the experimental NN scattering phase shifts due to off-shell effects; (ii) by rigorous renormalization group (RG) techniques entire families of phase equivalent interactions differing in the short-range part can be derived; (iii) the in-medium NN interaction may be, in principle, different from the free one; (iv) when the short inter-nucleon separation is of the order of the nucleon size, the question arises of possible effects from quark and gluon degrees of freedom. For more than fifty years, experimental evidence of SRCs has been searched by means of various kinds of nuclear reactions, without however convincing results, mainly because the effects of SRCs arise from non observable quantities, like, e.g., the momentum distributions, and have been extracted from observable cross sections where short- and long-range effects, effects from nucleonic and non nucleonic degrees of freedom, and effects from final state interaction, could not be unambiguously separated out. Recent years, however, were witness of new progress in the field: from one side, theoretical and computational progress has allowed one to solve ab initio the many-nucleon non relativistic Schrödinger equation in terms of realistic NN interactions, obtaining realistic microscopic wave functions, unless the case of parametrized wave functions used frequently in the past, moreover the development of advanced treatments
Testing a Theoretical Model of Immigration Transition and Physical Activity.
Chang, Sun Ju; Im, Eun-Ok
2015-01-01
The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity. PMID:26502554
NASA Technical Reports Server (NTRS)
Wang, James M.; Chopra, Inderjit; Samak, D. K.; Green, Michael; Graham, Todd
1989-01-01
The aeroelastic stability of a shaft-fixed, 1/8th Froude scaled bearingless rotor was investigated in a series of wind tunnel experiments simulating a wide range of operating conditions. A finite element formulation was used to perform a parallel theoretical analysis, with the goal of determining whether a bearingless rotor system could be made aeroelastically stable without the incorporation of auxilliary dampers. A quick estimate of lag mode damping was provided by a refined moving-block analysis implemented in real time which predicted similar damping values. Model rotor and blade properties were also determined, and these properties were used as inputs for a newly refined bearingless rotor analysis. Predicted results were compared with experimental results in hover and forward flight. Results indicated that soft pitch link stiffness increases pitch-lag coupling and stabilizes lag mode stability in hover and at low advance ratios, but destabilizes at higher advance ratios.
Advances in Watershed Models and Modeling
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Zhang, F.
2015-12-01
The development of watershed models and their applications to real-world problems has evolved significantly since 1960's. Watershed models can be classified based on what media are included, what processes are dealt with, and what approaches are taken. In term of media, a watershed may include segregated overland regime, river-canal-open channel networks, ponds-reservoirs-small lakes, and subsurface media. It may also include integrated media of all these or a partial set of these as well as man-made control structures. In term of processes, a watershed model may deal with coupled or decoupled hydrological and biogeochemical cycles. These processes include fluid flow, thermal transport, salinity transport, sediment transport, reactive transport, and biota and microbe kinetics. In terms of approaches, either parametric or physics-based approach can be taken. This talk discusses the evolution of watershed models in the past sixty years. The advances of watershed models center around their increasing design capability to foster these segregated or integrated media and coupled or decoupled processes. Widely used models developed by academia, research institutes, government agencies, and private industries will be reviewed in terms of the media and processes included as well as approaches taken. Many types of potential benchmark problems in general can be proposed and will be discussed. This presentation will focus on three benchmark problems of biogeochemical cycles. These three problems, dealing with water quality transport, will be formulated in terms of reactive transport. Simulation results will be illustrated using WASH123D, a watershed model developed and continuously updated by the author and his PhD graduates. Keywords: Hydrological Cycles, Biogeochemical Cycles, Biota Kinetics, Parametric Approach, Physics-based Approach, Reactive Transport.
Theoretical models for the conformations and the protonation of triacetonamine.
Navajas, C C; Montero, L A; La Serna, B
1990-12-01
In this paper we propose theoretical models for the conformations of triacetonamine and protonated triacetonamine (Vincubine, an anticancer chemotherapeutic agent) developed by quantum and molecular mechanics techniques. We discuss the theoretical factors which are involved in the stabilization of the conformations calculated by the MNDO, MM2 and COPEANE methods and show the relative percent abundance of each molecular shape. Graphic representations of the conformers are depicted. PMID:1965442
Culture and Developmental Trajectories: A Discussion on Contemporary Theoretical Models
ERIC Educational Resources Information Center
de Carvalho, Rafael Vera Cruz; Seidl-de-Moura, Maria Lucia; Martins, Gabriela Dal Forno; Vieira, Mauro Luís
2014-01-01
This paper aims to describe, compare and discuss the theoretical models proposed by Patricia Greenfield, Çigdem Kagitçibasi and Heidi Keller. Their models have the common goal of understanding the developmental trajectories of self based on dimensions of autonomy and relatedness that are structured according to specific cultural and environmental…
Theoretical models on prediction of thermal property of nanofluids
NASA Astrophysics Data System (ADS)
Shalimba, Veikko; Skočilasová, Blanka
2014-08-01
This paper deals with theoretical models on prediction of thermo physical properties of iron nanoparticles in base fluid. A high performance of heat transfer fluid has a great influence on the size, weight and cost of heat transfer systems, therefore a high performance heat transfer fluid is very important in many industries. Over the last decades nanofluids have been developed. According to many researchers and publications on nanofluids it is evident that nanofluids are found to exhibit enhanced thermal properties i.e. thermal conductivity etc. Theoretical models for predicting enhanced thermal conductivity have been established. The underlying mechanisms for the enhancement are still debated and not fully understood. In this paper, theoretical analytical models on prediction of thermal conductivity of iron nano particle in base Jatropha oil are discussed. The work arises from the projects which were realized at UJEP, FPTM, department of Machines and Mechanics with cooperation with Polytechnic of Namibia, department of Mechanical Engineering.
A control theoretic model for piloted approach to landing.
NASA Technical Reports Server (NTRS)
Kleinman, D. L.; Baron, S.
1972-01-01
Using manned vehicle systems analysis, a model for manual approach to landing is developed. This model is developed and applied in the specific context of a problem of analytical evaluation of a pictorial display for longitudinal control of glide path errors. This makes it possible to discuss the model in concrete terms, and the availability of experimental data provides opportunities for checking the theoretical results obtained.
Empirical and theoretical models of terrestrial trapped radiation
Panasyuk, M.I.
1996-07-01
A survey of current Skobeltsyn Institute of Nuclear Physics, Moscow State University (INP MSU) empirical and theoretical models of particles (electrons, protons and heavier irons) of the Earth{close_quote}s radiation belts developed to date is presented. Results of intercomparison of the different models as well as comparison with experimental data are reported. Aspects of further development of radiation condition modelling in near-Earth space are discussed. {copyright} {ital 1996 American Institute of Physics.}
Theoretical aspects of an electricity marginal cost model
Oyama, T.
1986-01-01
A separable programming model has been built to estimate electricity marginal costs. The model can be solved by applying linear programming techniques, hence marginal costs are obtained from shadow prices of model's optimal solution. In order to obtain more accurate and more detailed composition of electricity marginal costs, shadow prices are mathematically explained rigorously from model's structural points of view. Theoretical aspects of our electricity marginal cost model are investigated by applying theory of linear programming. Furthermore, various types of mathematical expression are also shown with their interpretation in the real power system.
Theoretical aspects of an electricity marginal cost model
Oyama, T.
1987-05-01
A separable programming model has been built to estimate electricity marginal costs. The model can be solved by applying linear programming techniques, hence marginal costs are obtained from shadow prices of model's optimal solution. In order to obtain more accurate and more detailed composition of electricity marginal costs, shadow prices are mathematically explained rigorously from model's structural points of view. Theoretical aspects of our electricity marginal cost model are investigated by applying theory of linear programming. Furthermore, various types of mathematical expression are also shown with their interpretation in the real power system.
The Theoretical Basis of the Effective School Improvement Model (ESI)
ERIC Educational Resources Information Center
Scheerens, Jaap; Demeuse, Marc
2005-01-01
This article describes the process of theoretical reflection that preceded the development and empirical verification of a model of "effective school improvement". The focus is on basic mechanisms that could be seen as underlying "getting things in motion" and change in education systems. Four mechanisms are distinguished: synoptic rational…
Healing from Childhood Sexual Abuse: A Theoretical Model
ERIC Educational Resources Information Center
Draucker, Claire Burke; Martsolf, Donna S.; Roller, Cynthia; Knapik, Gregory; Ross, Ratchneewan; Stidham, Andrea Warner
2011-01-01
Childhood sexual abuse is a prevalent social and health care problem. The processes by which individuals heal from childhood sexual abuse are not clearly understood. The purpose of this study was to develop a theoretical model to describe how adults heal from childhood sexual abuse. Community recruitment for an ongoing broader project on sexual…
Organizational Learning and Product Design Management: Towards a Theoretical Model.
ERIC Educational Resources Information Center
Chiva-Gomez, Ricardo; Camison-Zornoza, Cesar; Lapiedra-Alcami, Rafael
2003-01-01
Case studies of four Spanish ceramics companies were used to construct a theoretical model of 14 factors essential to organizational learning. One set of factors is related to the conceptual-analytical phase of the product design process and the other to the creative-technical phase. All factors contributed to efficient product design management…
A Generalized Information Theoretical Model for Quantum Secret Sharing
NASA Astrophysics Data System (ADS)
Bai, Chen-Ming; Li, Zhi-Hui; Xu, Ting-Ting; Li, Yong-Ming
2016-07-01
An information theoretical model for quantum secret sharing was introduced by H. Imai et al. (Quantum Inf. Comput. 5(1), 69-80 2005), which was analyzed by quantum information theory. In this paper, we analyze this information theoretical model using the properties of the quantum access structure. By the analysis we propose a generalized model definition for the quantum secret sharing schemes. In our model, there are more quantum access structures which can be realized by our generalized quantum secret sharing schemes than those of the previous one. In addition, we also analyse two kinds of important quantum access structures to illustrate the existence and rationality for the generalized quantum secret sharing schemes and consider the security of the scheme by simple examples.
Electromechanical properties of smart aggregate: theoretical modeling and experimental validation
NASA Astrophysics Data System (ADS)
Wang, Jianjun; Kong, Qingzhao; Shi, Zhifei; Song, Gangbing
2016-09-01
Smart aggregate (SA), as a piezoceramic-based multi-functional device, is formed by sandwiching two lead zirconate titanate (PZT) patches with copper shielding between a pair of solid-machined cylindrical marble blocks with epoxy. Previous researches have successfully demonstrated the capability and reliability of versatile SAs to monitor the structural health of concrete structures. However, the previous works concentrated mainly on the applications of SAs in structural health monitoring; no reasonable theoretical model of SAs was proposed. In this paper, electromechanical properties of SAs were investigated using a proposed theoretical model. Based on one dimensional linear theory of piezo-elasticity, the dynamic solutions of a SA subjected to an external harmonic voltage were solved. Further, the electric impedance of the SA was computed, and the resonance and anti-resonance frequencies were calculated based on derived equations. Numerical analysis was conducted to discuss the effects of the thickness of epoxy layer and the dimension of PZT patch on the fundamental resonance and anti-resonance frequencies as well as the corresponding electromechanical coupling factor. The dynamic solutions based on the proposed theoretical model were further experimentally verified with two SA samples. The fundamental resonance and anti-resonance frequencies of SAs show good agreements in both theoretical and experimental results. The presented analysis and results contribute to the overall understanding of SA properties and help to optimize the working frequencies of SAs in structural health monitoring of civil structures.
DEVELOPMENT OF THE ADVANCED UTILITY SIMULATION MODEL
The paper discusses the development of the Advanced Utility Simulation Model (AUSM), developed for the National Acid Precipitation Assessment Program (NAPAP), to forecast air emissions of pollutants from electric utilities. USM integrates generating unit engineering detail with d...
Recent theoretical advances in analysis of AIRS/AMSU sounding data
NASA Astrophysics Data System (ADS)
Susskind, Joel
2007-04-01
The AIRS Science Team Version 5.0 retrieval algorithm will become operational at the Goddard DAAC in early 2007 in the near real-time analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments are: 1) the development and implementation of a very accurate Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave CO II channel observations in the spectral region 700 cm -1 to 750 cm -1 are used exclusively for cloud clearing purposes, while shortwave CO II channels in the spectral region 2195 cm -1 to 2395 cm -1 are used for temperature sounding purposes. The new methodology is described briefly and results are shown, including comparison with those using AIRS Version 4, as well as a forecast impact experiment assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System.
Chemical Kinetic Modeling of Advanced Transportation Fuels
PItz, W J; Westbrook, C K; Herbinet, O
2009-01-20
Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.
Advancements in engineering turbulence modeling
NASA Technical Reports Server (NTRS)
Shih, T.-H.
1991-01-01
Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.
Liu, Guokui
2015-03-21
Photon upconversion in rare earth activated phosphors involves multiple mechanisms of electronic transitions. Stepwise optical excitation, energy transfer, and various nonlinear and collective light-matter interaction processes act together to convert low-energy photons into short-wavelength light emission. Upconversion luminescence from nanomaterials exhibits additional size and surface dependencies. A fundamental understanding of the overall performance of an upconversion system requires basic theories on the spectroscopic properties of solids containing rare earth ions. This review article surveys the recent progress in the theoretical interpretations of the spectroscopic characteristics and luminescence dynamics of photon upconversion in rare earth activated phosphors. The primary aspects of upconversion processes, including energy level splitting, transition probability, line broadening, non-radiative relaxation and energy transfer, are covered with an emphasis on interpreting experimental observations. Theoretical models and methods for analyzing nano-phenomena in upconversion are introduced with detailed discussions on recently reported experimental results. PMID:25286989
A sequential decision-theoretic model for medical diagnostic system.
Li, Aiping; Jin, Songchang; Zhang, Lumin; Jia, Yan
2015-01-01
Although diagnostic expert systems using a knowledge base which models decision-making of traditional experts can provide important information to non-experts, they tend to duplicate the errors made by experts. Decision-Theoretic Model (DTM) is therefore very useful in expert system since they prevent experts from incorrect reasoning under uncertainty. For the diagnostic expert system, corresponding DTM and arithmetic are studied and a sequential diagnostic decision-theoretic model based on Bayesian Network is given. In the model, the alternative features are categorized into two classes (including diseases features and test features), then an arithmetic for prior of test is provided. The different features affect other features weights are also discussed. Bayesian Network is adopted to solve uncertainty presentation and propagation. The model can help knowledge engineers model the knowledge involved in sequential diagnosis and decide evidence alternative priority. A practical example of the models is also presented: at any time of the diagnostic process the expert is provided with a dynamically updated list of suggested tests in order to support him in the decision-making problem about which test to execute next. The results show it is better than the traditional diagnostic model which is based on experience. PMID:26410326
A theoretical model for lunar surface material thermal conductivity.
NASA Technical Reports Server (NTRS)
Khader, M. S.; Vachon, R. I.
1973-01-01
This paper presents a theoretical thermal conductivity model for the uppermost layer of lunar surface material under the lunar vacuum environment. The model assumes that the lunar soil can be simulated by spherical particles in contact with each other and that the effective thermal conductivity is a function of depth, temperature, porosity, particle dimension, and mechanical-thermal properties of the solid particles. Two modes of heat transport are considered, conduction and radiation - with emphasis on the contact resistance between particles. The model gives effective conductivity values that compare favorably with the experimental data from lunar surface samples obtained on Apollo 11 and 12 missions.
Modeling of Spacecraft Advanced Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Benfield, Michael P. J.; Belcher, Jeremy A.
2004-01-01
This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.
Structure of plant photosystem I revealed by theoretical modeling.
Jolley, Craig; Ben-Shem, Adam; Nelson, Nathan; Fromme, Petra
2005-09-30
Photosystem (PS) I is a large membrane protein complex vital for oxygenic photosynthesis, one of the most important biological processes on the planet. We present an "atomic" model of higher plant PSI, based on theoretical modeling using the recent 4.4 angstroms x-ray crystal structure of PSI from pea. Because of the lack of information on the amino acid side chains in the x-ray structural model and the high cofactor content in this system, novel modeling techniques were developed. Our model reveals some important structural features of plant PSI that were not visible in the crystal structure, and our model sheds light on the evolutionary relationship between plant and cyanobacterial PSI. PMID:15955818
NASA Astrophysics Data System (ADS)
Mori, Tadashi; Inoue, Yoshihisa
The chiroptical properties, such as electronic and vibrational circular dichroism and optical rotation, of planar chiral cyclophanes have attracted much attention in recent years. Although the chemistry of cyclophanes has been extensively explored for more than 60 years, the studies on chiral cyclophanes are rather limited. Experimentally, the use of chiral stationary phases in HPLC becomes more popular and facilitates the enantiomer separation of chiral cyclophanes of interest. Almost all chiral cyclophanes can be readily separated, in analytical and preparative scales, most typically on a Daicel OD type column, which is based on cellulose tris(3,5-dimethylphenylcarbamate). The CD spectra of chiral cyclophanes are unique in their fairly large, significantly coupled Cotton effects observed in all the 1 B b, 1 L a, and 1 L b band regions. Theoretically, the time-dependent density functional theory, or TD-DFT, method becomes a cost-efficient, yet accurate, theoretical method to reproduce the electronic circular dichroisms and the absorption spectra of a variety of cyclophanes. The direct comparison of the experimental CD spectra with the theoretical ones readily leads to the unambiguous assignment of the absolute configuration of cyclophanes. In addition, the analysis of configuration interaction and molecular orbitals allows detailed interpretation of the electronic transitions and Cotton effects in the UV and CD spectra. Through the study of the CD spectra of chiral cyclophanes as model systems, the effects of intra- and intermolecular interactions on the chiroptical properties of molecules can be explored, and the results thus obtained are valuable in comprehensively elucidating the structure-chiroptical property relationship. In this review the recent progress in experimental and theoretical investigations of the electronic CD spectra of chiral cyclophanes is discussed.
Gopnik, Alison
2012-09-28
New theoretical ideas and empirical research show that very young children's learning and thinking are strikingly similar to much learning and thinking in science. Preschoolers test hypotheses against data and make causal inferences; they learn from statistics and informal experimentation, and from watching and listening to others. The mathematical framework of probabilistic models and Bayesian inference can describe this learning in precise ways. These discoveries have implications for early childhood education and policy. In particular, they suggest both that early childhood experience is extremely important and that the trend toward more structured and academic early childhood programs is misguided. PMID:23019643
Model Standards Advance the Profession
ERIC Educational Resources Information Center
Journal of Staff Development, 2011
2011-01-01
Leadership by teachers is essential to serving the needs of students, schools, and the teaching profession. To that end, the Teacher Leadership Exploratory Consortium has developed Teacher Leader Model Standards to codify, promote, and support teacher leadership as a vehicle to transform schools for the needs of the 21st century. The Teacher…
Advanced Space Shuttle simulation model
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1982-01-01
A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.
Modeling Advance Life Support Systems
NASA Technical Reports Server (NTRS)
Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan
1996-01-01
Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.
Micromechanical modeling of advanced materials
Silling, S.A.; Taylor, P.A.; Wise, J.L.; Furnish, M.D.
1994-04-01
Funded as a laboratory-directed research and development (LDRD) project, the work reported here focuses on the development of a computational methodology to determine the dynamic response of heterogeneous solids on the basis of their composition and microstructural morphology. Using the solid dynamics wavecode CTH, material response is simulated on a scale sufficiently fine to explicitly represent the material`s microstructure. Conducting {open_quotes}numerical experiments{close_quotes} on this scale, the authors explore the influence that the microstructure exerts on the material`s overall response. These results are used in the development of constitutive models that take into account the effects of microstructure without explicit representation of its features. Applying this methodology to a glass-reinforced plastic (GRP) composite, the authors examined the influence of various aspects of the composite`s microstructure on its response in a loading regime typical of impact and penetration. As a prerequisite to the microscale modeling effort, they conducted extensive materials testing on the constituents, S-2 glass and epoxy resin (UF-3283), obtaining the first Hugoniot and spall data for these materials. The results of this work are used in the development of constitutive models for GRP materials in transient-dynamics computer wavecodes.
A theoretical model for smoking prevention studies in preteen children.
McGahee, T W; Kemp, V; Tingen, M
2000-01-01
The age of the onset of smoking is on a continual decline, with the prime age of tobacco use initiation being 12-14 years. A weakness of the limited research conducted on smoking prevention programs designed for preteen children (ages 10-12) is a well-defined theoretical basis. A theoretical perspective is needed in order to make a meaningful transition from empirical analysis to application of knowledge. Bandura's Social Cognitive Theory (1977, 1986), the Theory of Reasoned Action (Ajzen & Fishbein, 1980), and other literature linking various concepts to smoking behaviors in preteens were used to develop a model that may be useful for smoking prevention studies in preteen children. PMID:12026266
Theoretical model for plasma expansion generated by hypervelocity impact
Ju, Yuanyuan; Zhang, Qingming Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei; Gong, Zizheng
2014-09-15
The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e}) ∝ v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.
Accurate mask model for advanced nodes
NASA Astrophysics Data System (ADS)
Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle
2014-07-01
Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids
Dai, Fu-Zhi; Zhou, Yanchun
2016-01-01
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids.
Dai, Fu-Zhi; Zhou, Yanchun
2016-01-01
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165
Theoretical models for Mars and their seismic properties
NASA Technical Reports Server (NTRS)
Okal, E. A.; Anderson, D. L.
1978-01-01
Theoretical seismic properties of the planet Mars are investigated on the basis of the various models which have been proposed for the internal composition of the planet. The latest interpretation of gravity-field data, assuming a lower value of the moment of inertia, would require a less dense mantle and a larger core than previous models. If Mars is chondritic in composition, the most reasonable models are an incompletely differentiated H-chondrite or a mixture of H-chondrites and carbonaceous chondrites. Seismic profiles, travel times, and free oscillation periods are computed for various models, with the aim of establishing which seismic data is crucial for deciding among the alternatives. A detailed discussion is given of the seismic properties which could - in principle - help answer the questions of whether Mars' core is liquid or solid and whether Mars has a partially molten asthenosphere in its upper mantle.
Theoretical consideration of a microcontinuum model of graphene
NASA Astrophysics Data System (ADS)
Yang, Gang; Huang, Zaixing; Gao, Cun-Fa; Zhang, Bin
2016-05-01
A microcontinuum model of graphene is proposed based on micromorphic theory, in which the planar Bravais cell of graphene crystal is taken as the basal element of finite size. Governing equations including the macro-displacements and the micro-deformations of the basal element are modified and derived in global coordinates. Since independent freedom degrees of the basal element are closely related to the modes of phonon dispersions, the secular equations in micromorphic form are obtained by substituting the assumed harmonic wave equations into the governing equations, and simplified further according to the properties of phonon dispersion relations of two-dimensional (2D) crystals. Thus, the constitutive equations of the microcontinuum model are confirmed, in which the constitutive constants are determined by fitting the data of experimental and theoretical phonon dispersion relations in literature respectively. By employing the 2D microcontinuum model, we obtained sound velocities, Rayleigh velocity and elastic moduli of graphene, which show good agreements with available experimental or theoretical values, indicating that the current model would be another efficient and reliable methodology to study the mechanical behaviors of graphene.
Healing from Childhood Sexual Abuse: A Theoretical Model
Draucker, Claire Burke; Martsolf, Donna S.; Roller, Cynthia; Knapik, Gregory; Ross, Ratchneewan; Stidham, Andrea Warner
2014-01-01
Childhood sexual abuse (CSA) is a prevalent social and healthcare problem. The processes by which individuals heal from CSA are not clearly understood. The purpose of this study was to develop a theoretical model to describe how adults heal from CSA. Community recruitment for an on-going, broader project on sexual violence throughout the lifespan, referred to as the Sexual Violence Study, yielded a subsample of 48 women and 47 men who had experienced CSA. During semi-structured, open-ended interviews, they were asked to describe their experiences with healing from CSA and other victimization throughout their lives. Constructivist grounded theory methods were used with these data to develop constructs and hypotheses about healing. For the Sexual Violence Study, frameworks were developed to describe the participants' life patterns, parenting experiences, disclosures about sexual violence, spirituality, and altruism. Several analytic techniques were used to synthesize the findings of these frameworks to develop an overarching theoretical model that describes healing from CSA. The model includes four stages of healing, five domains of functioning, and six enabling factors that facilitate movement from one stage to the next. The findings indicate that healing is a complex and dynamic trajectory. The model can be used to alert clinicians to a variety of processes and enabling factors that facilitate healing in several domains and to guide discussions on important issues related to healing from CSA. PMID:21812546
Theoretical Studies of Dust in the Galactic Environment: Some Recent Advances
NASA Technical Reports Server (NTRS)
Leung, Chun Ming
1995-01-01
Dust grains, although a minor constituent, play a very important role in the thermodynamics and evolution of many astronomical objects, e.g., young and evolved stars, nebulae, interstellar clouds, and nuclei of some galaxies. Since the birth of infrared astronomy over two decades ago, significant progress has been made not only in the observations of galactic dust, but also in the theoretical studies of phenomena involving dust grains. Models with increasing degree of sophistication and physical realism (in terms of grain properties, dust formation, emission processes, and grain alignment mechanisms) have become available. Here I review recent progress made in the following areas: (1) Extinction and emission of fractal grains. (2) Dust formation in radiation-driven outflows of evolved stars. (3) Transient heating and emission of very small dust grains. Where appropriate, relevant modeling results are presented and observational implications emphasized.
Arsalan Razani; Kwang J. Kim
2001-12-01
The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has
Game-Theoretic Models of Information Overload in Social Networks
NASA Astrophysics Data System (ADS)
Borgs, Christian; Chayes, Jennifer; Karrer, Brian; Meeder, Brendan; Ravi, R.; Reagans, Ray; Sayedi, Amin
We study the effect of information overload on user engagement in an asymmetric social network like Twitter. We introduce simple game-theoretic models that capture rate competition between celebrities producing updates in such networks where users non-strategically choose a subset of celebrities to follow based on the utility derived from high quality updates as well as disutility derived from having to wade through too many updates. Our two variants model the two behaviors of users dropping some potential connections (followership model) or leaving the network altogether (engagement model). We show that under a simple formulation of celebrity rate competition, there is no pure strategy Nash equilibrium under the first model. We then identify special cases in both models when pure rate equilibria exist for the celebrities: For the followership model, we show existence of a pure rate equilibrium when there is a global ranking of the celebrities in terms of the quality of their updates to users. This result also generalizes to the case when there is a partial order consistent with all the linear orders of the celebrities based on their qualities to the users. Furthermore, these equilibria can be computed in polynomial time. For the engagement model, pure rate equilibria exist when all users are interested in the same number of celebrities, or when they are interested in at most two. Finally, we also give a finite though inefficient procedure to determine if pure equilibria exist in the general case of the followership model.
Information-Theoretic Benchmarking of Land Surface Models
NASA Astrophysics Data System (ADS)
Nearing, Grey; Mocko, David; Kumar, Sujay; Peters-Lidard, Christa; Xia, Youlong
2016-04-01
Benchmarking is a type of model evaluation that compares model performance against a baseline metric that is derived, typically, from a different existing model. Statistical benchmarking was used to qualitatively show that land surface models do not fully utilize information in boundary conditions [1] several years before Gong et al [2] discovered the particular type of benchmark that makes it possible to *quantify* the amount of information lost by an incorrect or imperfect model structure. This theoretical development laid the foundation for a formal theory of model benchmarking [3]. We here extend that theory to separate uncertainty contributions from the three major components of dynamical systems models [4]: model structures, model parameters, and boundary conditions describe time-dependent details of each prediction scenario. The key to this new development is the use of large-sample [5] data sets that span multiple soil types, climates, and biomes, which allows us to segregate uncertainty due to parameters from the two other sources. The benefit of this approach for uncertainty quantification and segregation is that it does not rely on Bayesian priors (although it is strictly coherent with Bayes' theorem and with probability theory), and therefore the partitioning of uncertainty into different components is *not* dependent on any a priori assumptions. We apply this methodology to assess the information use efficiency of the four land surface models that comprise the North American Land Data Assimilation System (Noah, Mosaic, SAC-SMA, and VIC). Specifically, we looked at the ability of these models to estimate soil moisture and latent heat fluxes. We found that in the case of soil moisture, about 25% of net information loss was from boundary conditions, around 45% was from model parameters, and 30-40% was from the model structures. In the case of latent heat flux, boundary conditions contributed about 50% of net uncertainty, and model structures contributed
Naturalness of unknown physics: Theoretical models and experimental signatures
NASA Astrophysics Data System (ADS)
Kilic, Can
In the last few decades collider experiments have not only spectacularly confirmed the predictions of the Standard Model but also have not revealed any direct evidence for new physics beyond the SM, which has led theorists to devise numerous models where the new physics couples weakly to the SM or is simply beyond the reach of past experiments. While phenomenologically viable, many such models appear finely tuned, even contrived. This work illustrates three attempts at coming up with explanations to fine-tunings we observe in the world around us, such as the gauge hierarchy problem or the cosmological constant problem, emphasizing both the theoretical aspects of model building as well as possible experimental signatures. First we investigate the "Little Higgs" mechanism and work on a specifical model, the "Minimal Moose" to highlight its impact on precision observables in the SM, and illustrate that it does not require implausible fine-tuning. Next we build a supersymmetric model, the "Fat Higgs", with an extended gauge structure which becomes confining. This model, aside from naturally preserving the unification of the SM gauge couplings at high energies, also makes it possible to evade the bounds on the lightest Higgs boson mass which are quite restrictive in minimal SUSY scenarios. Lastly we take a look at a possible resolution of the cosmological constant problem through the mechanism of "Ghost Condensation" and dwell on astrophysical observables from the Lorentz Violating sector in this model. We use current experimental data to constrain the coupling of this sector to the SM.
Theoretical models for coronary vascular biomechanics: progress & challenges.
Waters, Sarah L; Alastruey, Jordi; Beard, Daniel A; Bovendeerd, Peter H M; Davies, Peter F; Jayaraman, Girija; Jensen, Oliver E; Lee, Jack; Parker, Kim H; Popel, Aleksander S; Secomb, Timothy W; Siebes, Maria; Sherwin, Spencer J; Shipley, Rebecca J; Smith, Nicolas P; van de Vosse, Frans N
2011-01-01
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741
Theoretical models for coronary vascular biomechanics: Progress & challenges
Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.
2013-01-01
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741
Accuracy Analysis of a Box-wing Theoretical SRP Model
NASA Astrophysics Data System (ADS)
Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui
2016-07-01
For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.
The theoretical aspects of UrQMD & AMPT models
NASA Astrophysics Data System (ADS)
Saini, Abhilasha; Bhardwaj, Sudhir
2016-05-01
The field of high energy physics is very challenging in carrying out theories and experiments to unlock the secrets of heavy ion collisions and still not cracked and solved completely. There are many theoretical queries; some may be due to the inherent causes like the non-perturbative nature of QCD in the strong coupling limit, also due to the multi-particle production and evolution during the heavy ion collisions which increase the complexity of the phenomena. So for the purpose of understanding the phenomena, variety of theories and ideas are developed which are usually implied in the form of Monte-Carlo codes. The UrQMD model and the AMPT model are discussed here in detail. These methods are useful in modeling the nuclear collisions.
Theoretical Modeling of Mechanical-Electrical Coupling of Carbon Nanotubes
Lu, Jun-Qiang; Jiang, Hanqiang
2008-01-01
Carbon nanotubes have been studied extensively due to their unique properties, ranging from electrical, mechanical, optical, to thermal properties. The coupling between the electrical and mechanical properties of carbon nanotubes has emerged as a new field, which raises both interesting fundamental problems and huge application potentials. In this article, we will review our recently work on the theoretical modeling on mechanical-electrical coupling of carbon nanotubes subject to various loading conditions, including tension/compression, torsion, and squashing. Some related work by other groups will be also mentioned.
Theoretical Models and Operational Frameworks in Public Health Ethics
Petrini, Carlo
2010-01-01
The article is divided into three sections: (i) an overview of the main ethical models in public health (theoretical foundations); (ii) a summary of several published frameworks for public health ethics (practical frameworks); and (iii) a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided. PMID:20195441
Recent advances in modeling stellar interiors (u)
Guzik, Joyce Ann
2010-01-01
Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.
Advances in scientific balloon thermal modeling
NASA Astrophysics Data System (ADS)
Bohaboj, T.; Cathey, H.
The National Aeronautics and Space Administration's Balloon Program Office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the ``Thermal Desktop'' addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical ``proxy models'' for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This paper presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.
Advances in Scientific Balloon Thermal Modeling
NASA Technical Reports Server (NTRS)
Bohaboj, T.; Cathey, H. M., Jr.
2004-01-01
The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.
NMR relaxation induced by iron oxide particles: testing theoretical models.
Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L
2016-04-15
Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water. PMID:26933908
NMR relaxation induced by iron oxide particles: testing theoretical models
NASA Astrophysics Data System (ADS)
Gossuin, Y.; Orlando, T.; Basini, M.; Henrard, D.; Lascialfari, A.; Mattea, C.; Stapf, S.; Vuong, Q. L.
2016-04-01
Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.
Xu, Lei
2004-07-01
The nature of Bayesian Ying-Yang harmony learning is reexamined from an information theoretic perspective. Not only its ability for model selection and regularization is explained with new insights, but also discussions are made on its relations and differences from the studies of minimum description length (MDL), Bayesian approach, the bit-back based MDL, Akaike information criterion (AIC), maximum likelihood, information geometry, Helmholtz machines, and variational approximation. Moreover, a generalized projection geometry is introduced for further understanding such a new mechanism. Furthermore, new algorithms are also developed for implementing Gaussian factor analysis (FA) and non-Gaussian factor analysis (NFA) such that selecting appropriate factors is automatically made during parameter learning. PMID:15461081
Center for Advanced Modeling and Simulation Intern
Gertman, Vanessa
2010-01-01
Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
Center for Advanced Modeling and Simulation Intern
Gertman, Vanessa
2013-05-28
Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
Sampling artifact in volume weighted velocity measurement. I. Theoretical modeling
NASA Astrophysics Data System (ADS)
Zhang, Pengjie; Zheng, Yi; Jing, Yipeng
2015-02-01
Cosmology based on large scale peculiar velocity prefers volume weighted velocity statistics. However, measuring the volume weighted velocity statistics from inhomogeneously distributed galaxies (simulation particles/halos) suffers from an inevitable and significant sampling artifact. We study this sampling artifact in the velocity power spectrum measured by the nearest particle velocity assignment method by Zheng et al., [Phys. Rev. D 88, 103510 (2013).]. We derive the analytical expression of leading and higher order terms. We find that the sampling artifact suppresses the z =0 E -mode velocity power spectrum by ˜10 % at k =0.1 h /Mpc , for samples with number density 10-3 (Mpc /h )-3 . This suppression becomes larger for larger k and for sparser samples. We argue that this source of systematic errors in peculiar velocity cosmology, albeit severe, can be self-calibrated in the framework of our theoretical modelling. We also work out the sampling artifact in the density-velocity cross power spectrum measurement. A more robust evaluation of related statistics through simulations will be presented in a companion paper by Zheng et al., [Sampling artifact in volume weighted velocity measurement. II. Detection in simulations and comparison with theoretical modelling, arXiv:1409.6809.]. We also argue that similar sampling artifact exists in other velocity assignment methods and hence must be carefully corrected to avoid systematic bias in peculiar velocity cosmology.
Arsalan Razani; Kwang J. Kim
2000-10-28
The annual progress report for the period of October 1, 1999 to September 30, 2000 on DOE/UNM grant number DE-FG26-98FT40148 discusses the progress on both the theoretical analysis of advanced power cycles and the experimental investigation of advanced falling film heat exchangers. The previously developed computer program for the triple cycle, based on the air standard cycle assumption, was modified to include actual air composition (%77.48 N{sub 2}, %20.59 O{sub 2}, %1.9 H{sub 2}O, and %0.03 CO{sub 2}). The actual combustion products were used in exergy analysis of the triple cycle. The effect of steam injection into the combustion chamber on its irreversibility, and the irreversibility of the entire cycle, was evaluated. A more practical fuel inlet condition and a better position of the feedwater heater in the steam cycle were used in the modified cycle. The effect of pinch point and the temperature difference between the combustion products, as well as the steam in the heat recovery steam generator on irreversibility of the cycle were evaluated. Design, construction, and testing of the multitube horizontal falling film condenser facility were completed. Two effective heat transfer additives (2-ethyl-1-hexanol and alkyl amine) were identified and tested for steam condensation. The test results are included. The condenser was designed with twelve tubes in an array of three horizontals and four verticals, with a 2-inch horizontal and 1.5-inch vertical in-line pitch. By using effective additives, the condensation heat transfer rate can be augmented as much as 30%, as compared to a heat transfer that operated without additives under the same operating condition. When heat transfer additives function effectively, the condensate-droplets become more dispersed and have a smaller shape than those produced without additives. These droplets, unlike traditional turbulence, start at the top portion of the condenser tubes and cover most of the tubes. Such a flow behavior can
Inference of Mix from Experimental Data and Theoretical Mix Models
Welser-Sherrill, L.; Haynes, D. A.; Cooley, J. H.; Mancini, R. C.; Haan, S. W.; Golovkin, I. E.
2007-08-02
The mixing between fuel and shell materials in Inertial Confinement Fusion implosion cores is a topic of great interest. Mixing due to hydrodynamic instabilities can affect implosion dynamics and could also go so far as to prevent ignition. We have demonstrated that it is possible to extract information on mixing directly from experimental data using spectroscopic arguments. In order to compare this data-driven analysis to a theoretical framework, two independent mix models, Youngs' phenomenological model and the Haan saturation model, have been implemented in conjunction with a series of clean hydrodynamic simulations that model the experiments. The first tests of these methods were carried out based on a set of indirect drive implosions at the OMEGA laser. We now focus on direct drive experiments, and endeavor to approach the problem from another perspective. In the current work, we use Youngs' and Haan's mix models in conjunction with hydrodynamic simulations in order to design experimental platforms that exhibit measurably different levels of mix. Once the experiments are completed based on these designs, the results of a data-driven mix analysis will be compared to the levels of mix predicted by the simulations. In this way, we aim to increase our confidence in the methods used to extract mixing information from the experimental data, as well as to study sensitivities and the range of validity of the mix models.
Development of theoretical models of integrated millimeter wave antennas
NASA Technical Reports Server (NTRS)
Yngvesson, K. Sigfrid; Schaubert, Daniel H.
1991-01-01
Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.
Combustion modeling in advanced gas turbine systems
Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K.
1995-12-31
Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.
Advancing the theoretical foundation of the partially-averaged Navier-Stokes approach
NASA Astrophysics Data System (ADS)
Reyes, Dasia Ann
The goal of this dissertation is to consolidate the theoretical foundation of variable-resolution (VR) methods in general and the partially-averaged Navier-Stokes (PANS) approach in particular. The accurate simulation of complex turbulent flows remains an outstanding challenge in modern computational fluid dynamics. High-fidelity approaches such as direct numerical simulations (DNS) and large-eddy simulation (LES) are not typically feasible for complex engineering simulations with current computational technologies. Low-fidelity approaches such as Reynolds-averaged Navier-Stokes (RANS), although widely used, are inherently inadequate for turbulent flows with complex flow features. VR bridging methods fill the gap between DNS and RANS by allowing a tunable degree of resolution ranging from RANS to DNS. While the utility of VR methods is well established, the mathematical foundations and physical characterization require further development. This dissertation focuses on the physical attributes of fluctuations in partially-resolved simulations of turbulence. The specific objectives are to: (i) establish a framework for assessing the physical fidelity of VR methods to examine PANS fluctuations; (ii) investigate PANS simulations subject to multiple resolution changes; (iii) examine turbulent transport closure modeling for partially-resolved fields; (iv) examine the effect of filter control parameters in the limit of spectral cut-off in the dissipative region; and (v) validate low-Reynolds number corrections with RANS for eventual implementation with PANS. While the validation methods are carried out in the context of PANS, they are considered appropriate for all VR bridging methods. The key findings of this dissertation are summarized as follows. The Kolmogorov hypotheses are suitably adapted to describe fluctuations of partially-resolved turbulence fields, and the PANS partially-resolved field is physically consistent with the adapted Kolmogorov hypotheses. PANS
Theoretical light curves for deflagration models of type Ia supernova
NASA Astrophysics Data System (ADS)
Blinnikov, S. I.; Röpke, F. K.; Sorokina, E. I.; Gieseler, M.; Reinecke, M.; Travaglio, C.; Hillebrandt, W.; Stritzinger, M.
2006-07-01
Aims.We present synthetic bolometric and broad-band UBVRI light curves of SNe Ia for four selected 3D deflagration models of thermonuclear supernovae. Methods: .The light curves are computed with the 1D hydro code stella, which models (multi-group time-dependent) non-equilibrium radiative transfer inside SN ejecta. Angle-averaged results from 3D hydrodynamical explosion simulations with the composition determined in a nucleosynthetic postprocessing step served as the input to the radiative transfer model. Results: .The predicted model {UBV} light curves do agree reasonably well with the observed ones for SNe Ia in the range of low to normal luminosities, although the underlying hydrodynamical explosion models produced only a modest amount of radioactive {}56Ni(i.e. 0.24-0.42 M⊙) and relatively low kinetic energy in the explosion (less than 0.7 × 1051 erg). The evolution of predicted B and V fluxes in the model with a {}56Nimass of 0.42 M⊙ follows the observed decline rate after the maximum very well, although the behavior of fluxes in other filters deviates somewhat from observations, and the bolometric decline rate is a bit slow. The material velocity at the photospheric level is on the order of 104 km s-1 for all models. Using our models, we check the validity of Arnett's rule, relating the peak luminosity to the power of the deposited radioactive heating, and we also check the accuracy of the procedure for extracting the {}56Nimass from the observed light curves. Conclusions: .We find that the comparison between theoretical light curves and observations provides a useful tool to validate SN Ia models. The steps necessary for improving the agreement between theory and observations are set out.
Advanced dynamic modelling for friction draft gears
NASA Astrophysics Data System (ADS)
Wu, Qing; Spiryagin, Maksym; Cole, Colin
2015-04-01
A white-box friction draft gear model has been developed with all components of the draft gear and their geometries considered. The conventional two-stage (loading and unloading) working process of the friction draft gear was detailed as a four-stage process. A preliminary work called the 'base model' was improved with regard to force-displacement characteristics, friction modelling and transitional characteristics. A set of impact test data were analysed; five types of draft gear behaviour were identified and modelled: hysteresis, stiffening, change of stage, locked unloading and softening. Simulated comparisons of three draft gear models were presented: a look-up table model, the base model and the advanced model.
A thematic analysis of theoretical models for translational science in nursing: mapping the field.
Mitchell, Sandra A; Fisher, Cheryl A; Hastings, Clare E; Silverman, Leanne B; Wallen, Gwenyth R
2010-01-01
The quantity and diversity of conceptual models in translational science may complicate rather than advance the use of theory. This paper offers a comparative thematic analysis of the models available to inform knowledge development, transfer, and utilization. Literature searches identified 47 models for knowledge translation. Four thematic areas emerged: (1) evidence-based practice and knowledge transformation processes, (2) strategic change to promote adoption of new knowledge, (3) knowledge exchange and synthesis for application and inquiry, and (4) designing and interpreting dissemination research. This analysis distinguishes the contributions made by leaders and researchers at each phase in the process of discovery, development, and service delivery. It also informs the selection of models to guide activities in knowledge translation. A flexible theoretical stance is essential to simultaneously develop new knowledge and accelerate the translation of that knowledge into practice behaviors and programs of care that support optimal patient outcomes. PMID:21074646
A Thematic Analysis of Theoretical Models for Translational Science in Nursing: Mapping the Field
Mitchell, Sandra A.; Fisher, Cheryl A.; Hastings, Clare E.; Silverman, Leanne B.; Wallen, Gwenyth R.
2010-01-01
Background The quantity and diversity of conceptual models in translational science may complicate rather than advance the use of theory. Purpose This paper offers a comparative thematic analysis of the models available to inform knowledge development, transfer, and utilization. Method Literature searches identified 47 models for knowledge translation. Four thematic areas emerged: (1) evidence-based practice and knowledge transformation processes; (2) strategic change to promote adoption of new knowledge; (3) knowledge exchange and synthesis for application and inquiry; (4) designing and interpreting dissemination research. Discussion This analysis distinguishes the contributions made by leaders and researchers at each phase in the process of discovery, development, and service delivery. It also informs the selection of models to guide activities in knowledge translation. Conclusions A flexible theoretical stance is essential to simultaneously develop new knowledge and accelerate the translation of that knowledge into practice behaviors and programs of care that support optimal patient outcomes. PMID:21074646
Maturity Model for Advancing Smart Grid Interoperability
Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin
2013-10-28
Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.
Theoretical model for the wetting of a rough surface.
Hay, K M; Dragila, M I; Liburdy, J
2008-09-15
Many applications would benefit from an understanding of the physical mechanism behind fluid movement on rough surfaces, including the movement of water or contaminants within an unsaturated rock fracture. Presented is a theoretical investigation of the effect of surface roughness on fluid spreading. It is known that surface roughness enhances the effects of hydrophobic or hydrophilic behavior, as well as allowing for faster spreading of a hydrophilic fluid. A model is presented based on the classification of the regimes of spreading that occur when fluid encounters a rough surface: microscopic precursor film, mesoscopic invasion of roughness and macroscopic reaction to external forces. A theoretical relationship is developed for the physical mechanisms that drive mesoscopic invasion, which is used to guide a discussion of the implications of the theory on spreading conditions. Development of the analytical equation is based on a balance between capillary forces and frictional resistive forces. Chemical heterogeneity is ignored. The effect of various methods for estimating viscous dissipation is compared to available data from fluid rise on roughness experiments. Methods that account more accurately for roughness shape better explain the data as they account for more surface friction; the best fit was found for a hydraulic diameter approximation. The analytical solution implies the existence of a critical contact angle that is a function of roughness geometry, below which fluid will spread and above which fluid will resist spreading. The resulting equation predicts movement of a liquid invasion front with a square root of time dependence, mathematically resembling a diffusive process. PMID:18586259
Group theoretical modeling of thermal explosion with reactant consumption
NASA Astrophysics Data System (ADS)
Ibragimov, Ranis N.; Dameron, Michael
2012-09-01
Today engineering and science researchers routinely confront problems in mathematical modeling involving nonlinear differential equations. Many mathematical models formulated in terms of nonlinear differential equations can be successfully treated and solved by Lie group methods. Lie group analysis is especially valuable in investigating nonlinear differential equations, for its algorithms act as reliably as for linear cases. The aim of this article is to provide the group theoretical modeling of the symmetrical heating of an exothermally reacting medium with approximations to the body's temperature distribution similar to those made by Thomas [17] and Squire [15]. The quantitative results were found to be in a good agreement with Adler and Enig in [1], where the authors were comparing the integral curves corresponding to the critical conditions for the first-order reaction. Further development of the modeling by including the critical temperature is proposed. Overall, it is shown, in particular, that the application of Lie group analysis allows one to extend the previous analytic results for the first order reactions to nth order ones.
Theoretical model for calculation of helicity in solar active regions
NASA Astrophysics Data System (ADS)
Chatterjee, P.
We (Choudhuri, Chatterjee and Nandy, 2005) calculate helicities of solar active regions based on the idea of Choudhuri (2003) that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. Rough estimates based on this idea compare favourably with the observed magnitude of helicity. We use our solar dynamo model based on the Babcock--Leighton α-effect to study how helicity varies with latitude and time. At the time of solar maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the south, in accordance with observed hemispheric trends. However, we find that, during a short interval at the beginning of a cycle, helicities tend to be opposite of the preferred hemispheric trends. Next we (Chatterjee, Choudhuri and Petrovay 2006) use the above idea along with the sunspot decay model of Petrovay and Moreno-Insertis, (1997) to estimate the distribution of helicity inside a flux tube as it keeps collecting more azimuthal flux during its rise through the convection zone and as turbulent diffusion keeps acting on it. By varying parameters over reasonable ranges in our simple 1-d model, we find that the azimuthal flux penetrates the flux tube to some extent instead of being confined to a narrow sheath outside.
Advances in Computationally Modeling Human Oral Bioavailability
Wang, Junmei; Hou, Tingjun
2015-01-01
Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307
Advances in computationally modeling human oral bioavailability.
Wang, Junmei; Hou, Tingjun
2015-06-23
Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307
Modeling of rolling element bearing mechanics. Theoretical manual
NASA Technical Reports Server (NTRS)
Merchant, David H.; Greenhill, Lyn M.
1994-01-01
This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
Modeling an Application's Theoretical Minimum and Average Transactional Response Times
Paiz, Mary Rose
2015-04-01
The theoretical minimum transactional response time of an application serves as a ba- sis for the expected response time. The lower threshold for the minimum response time represents the minimum amount of time that the application should take to complete a transaction. Knowing the lower threshold is beneficial in detecting anomalies that are re- sults of unsuccessful transactions. On the converse, when an application's response time falls above an upper threshold, there is likely an anomaly in the application that is causing unusual performance issues in the transaction. This report explains how the non-stationary Generalized Extreme Value distribution is used to estimate the lower threshold of an ap- plication's daily minimum transactional response time. It also explains how the seasonal Autoregressive Integrated Moving Average time series model is used to estimate the upper threshold for an application's average transactional response time.
Recent modelling advances for ultrasonic TOFD inspections
Darmon, Michel; Ferrand, Adrien; Dorval, Vincent; Chatillon, Sylvain; Lonné, Sébastien
2015-03-31
The ultrasonic TOFD (Time of Flight Diffraction) Technique is commonly used to detect and characterize disoriented cracks using their edge diffraction echoes. An overview of the models integrated in the CIVA software platform and devoted to TOFD simulation is presented. CIVA allows to predict diffraction echoes from complex 3D flaws using a PTD (Physical Theory of Diffraction) based model. Other dedicated developments have been added to simulate lateral waves in 3D on planar entry surfaces and in 2D on irregular surfaces by a ray approach. Calibration echoes from Side Drilled Holes (SDHs), specimen echoes and shadowing effects from flaws can also been modelled. Some examples of theoretical validation of the models are presented. In addition, experimental validations have been performed both on planar blocks containing calibration holes and various notches and also on a specimen with an irregular entry surface and allow to draw conclusions on the validity of all the developed models.
Acoustic test and analyses of three advanced turboprop models
NASA Technical Reports Server (NTRS)
Brooks, B. M.; Metzger, F. B.
1980-01-01
Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.
Advanced Technology System Scheduling Governance Model
Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel
2015-06-11
In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).
Computational Graph Theoretical Model of the Zebrafish Sensorimotor Pathway
NASA Astrophysics Data System (ADS)
Peterson, Joshua M.; Stobb, Michael; Mazzag, Bori; Gahtan, Ethan
2011-11-01
Mapping the detailed connectivity patterns of neural circuits is a central goal of neuroscience and has been the focus of extensive current research [4, 3]. The best quantitative approach to analyze the acquired data is still unclear but graph theory has been used with success [3, 1]. We present a graph theoretical model with vertices and edges representing neurons and synaptic connections, respectively. Our system is the zebrafish posterior lateral line sensorimotor pathway. The goal of our analysis is to elucidate mechanisms of information processing in this neural pathway by comparing the mathematical properties of its graph to those of other, previously described graphs. We create a zebrafish model based on currently known anatomical data. The degree distributions and small-world measures of this model is compared to small-world, random and 3-compartment random graphs of the same size (with over 2500 nodes and 160,000 connections). We find that the zebrafish graph shows small-worldness similar to other neural networks and does not have a scale-free distribution of connections.
Combustion modeling in advanced gas turbine systems
Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.
1995-10-01
The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Ssen, Subhayu; Stefanescu, Doru M.
2003-01-01
The interaction of an insoluble particle with an advancing solid/liquid interface (SLI) has been a subject of investigation for the past four decades. While the original interest stemmed from geology applications (e.g., frost heaving in soil), researchers soon realized that the complex science associated with such an interaction is relevant to many other scientific fields encompassing metal matrix composites (MMCs), high temperature superconductors, inclusion management in steel, growth of monotectics, and preservation of biological cells. During solidification of a liquid containing an insoluble particle, three distinct interaction phenomena have been experimentally observed: instantaneous engulfment of the particle, continuous pushing, and particle pushing followed by engulfment. It was also observed that for given experimental conditions and particle size there is a critical solidification velocity, V(sub cr), above which a particle is engulfed. During solidification of MMCs pushing leads to particle agglomeration at the grain boundaries and this has detrimental effects on mechanical properties of the casting. Consequently, the process must be designed for instantaneous engulfment to occur. This implies the development of accurate theoretical models to predict V(sub cr), and perform benchmark experiments to test the validity of such models. Although considerable progress has been made in understanding the pushing/engulfment phenomenon (PEP), its quantification in terms of the material and processing parameters remains a focus of research. Since natural convection currents occurring during terrestrial solidification experiments complicate the study of PEP, execution of experiments on the International Space Station (ISS) has been approved and funded by NASA. Extensive terrestrial (1g) experiments and preliminary micro-gravity (mu g) experiments on two space shuttle missions have been conducted in preparation for future experiments on the ISS. The investigated
Graph theoretic modeling of large-scale semantic networks.
Bales, Michael E; Johnson, Stephen B
2006-08-01
During the past several years, social network analysis methods have been used to model many complex real-world phenomena, including social networks, transportation networks, and the Internet. Graph theoretic methods, based on an elegant representation of entities and relationships, have been used in computational biology to study biological networks; however they have not yet been adopted widely by the greater informatics community. The graphs produced are generally large, sparse, and complex, and share common global topological properties. In this review of research (1998-2005) on large-scale semantic networks, we used a tailored search strategy to identify articles involving both a graph theoretic perspective and semantic information. Thirty-one relevant articles were retrieved. The majority (28, 90.3%) involved an investigation of a real-world network. These included corpora, thesauri, dictionaries, large computer programs, biological neuronal networks, word association networks, and files on the Internet. Twenty-two of the 28 (78.6%) involved a graph comprised of words or phrases. Fifteen of the 28 (53.6%) mentioned evidence of small-world characteristics in the network investigated. Eleven (39.3%) reported a scale-free topology, which tends to have a similar appearance when examined at varying scales. The results of this review indicate that networks generated from natural language have topological properties common to other natural phenomena. It has not yet been determined whether artificial human-curated terminology systems in biomedicine share these properties. Large network analysis methods have potential application in a variety of areas of informatics, such as in development of controlled vocabularies and for characterizing a given domain. PMID:16442849
Electron Scale Solar Wind Turbulence: Cluster Observations and Theoretical Modeling
Sahraoui, F.; Goldstein, M. L.
2011-01-04
Turbulence at MagnetoHydroDynamics (MHD) scales of the solar wind has been studied for more than three decades, using data analyzes, theoretical and numerical modeling. However smaller scales have not been explored until very recently. Here, we review recent results on the first observation of cascade and dissipation of the solar wind turbulence at the electron scales. Thanks to the high resolution magnetic and electric field data of the Cluster spacecraft, we computed the spectra of turbulence up to {approx}100 Hz (in the spacecraft reference frame) and found two distinct breakpoints in the magnetic spectrum at 0.4 Hz and 35 Hz, which correspond, respectively, to the Doppler-shifted proton and electron gyroscales, f{sub {rho}p} and f{sub {rho}e}. Below f{sub {rho}p} the spectrum follows a Kolmogorov scaling f{sup -1.62}, typical of spectra observed at 1 AU. Above f{sub {rho}p} a second inertial range is formed with a scaling f{sup -2.3} down to f{sub {rho}e}. Above f{sub {rho}e} the spectrum has a steeper power law {approx}f{sup -4.1} down to the noise level of the instrument. Solving numerically the linear Maxwell-Vlasov equations combined with recent theoretical predictions of the Gyro-Kinetic theory, we show that the present results are fully consistent with a scenario of a quasi-two-dimensional cascade into Kinetic Alfven modes (KAW).
Posttraumatic Stress Disorder: A Theoretical Model of the Hyperarousal Subtype
Weston, Charles Stewart E.
2014-01-01
Posttraumatic stress disorder (PTSD) is a frequent and distressing mental disorder, about which much remains to be learned. It is a heterogeneous disorder; the hyperarousal subtype (about 70% of occurrences and simply termed PTSD in this paper) is the topic of this article, but the dissociative subtype (about 30% of occurrences and likely involving quite different brain mechanisms) is outside its scope. A theoretical model is presented that integrates neuroscience data on diverse brain regions known to be involved in PTSD, and extensive psychiatric findings on the disorder. Specifically, the amygdala is a multifunctional brain region that is crucial to PTSD, and processes peritraumatic hyperarousal on grounded cognition principles to produce hyperarousal symptoms. Amygdala activity also modulates hippocampal function, which is supported by a large body of evidence, and likewise amygdala activity modulates several brainstem regions, visual cortex, rostral anterior cingulate cortex (rACC), and medial orbitofrontal cortex (mOFC), to produce diverse startle, visual, memory, numbing, anger, and recklessness symptoms. Additional brain regions process other aspects of peritraumatic responses to produce further symptoms. These contentions are supported by neuroimaging, neuropsychological, neuroanatomical, physiological, cognitive, and behavioral evidence. Collectively, the model offers an account of how responses at the time of trauma are transformed into an extensive array of the 20 PTSD symptoms that are specified in the Diagnostic and Statistical Manual of Mental Disorders, Fifth edition. It elucidates the neural mechanisms of a specific form of psychopathology, and accords with the Research Domain Criteria framework. PMID:24772094
A theoretical model for the Lorentz force particle analyzer
NASA Astrophysics Data System (ADS)
Moreau, René; Tao, Zhen; Wang, Xiaodong
2016-07-01
In a previous paper [X. Wang et al., J. Appl. Phys. 120, 014903 (2016)], several experimental devices have been presented, which demonstrate the efficiency of electromagnetic techniques for detecting and sizing electrically insulating particles entrained in the flow of a molten metal. In each case, a non-uniform magnetic field is applied across the flow of the electrically conducting liquid, thereby generating a braking Lorentz force on this moving medium and a reaction force on the magnet, which tends to be entrained in the flow direction. The purpose of this letter is to derive scaling laws for this Lorentz force from an elementary theoretical model. For simplicity, as in the experiments, the flowing liquid is modeled as a solid body moving with a uniform velocity U. The eddy currents in the moving domain are derived from the classic induction equation and Ohm's law, and expressions for the Lorentz force density j ×B and for its integral over the entire moving domain follow. The insulating particles that are eventually present and entrained with this body are then treated as small disturbances in a classic perturbation analysis, thereby leading to scaling laws for the pulses they generate in the Lorentz force. The purpose of this letter is both to illustrate the eddy currents without and with insulating particles in the electrically conducting liquid and to derive a key relation between the pulses in the Lorentz force and the main parameters (particle volume and dimensions of the region subjected to the magnetic field).
A game theoretic model of drug launch in India.
Bhaduri, Saradindu; Ray, Amit Shovon
2006-01-01
There is a popular belief that drug launch is delayed in developing countries like India because of delayed transfer of technology due to a 'post-launch' imitation threat through weak intellectual property rights (IPR). In fact, this belief has been a major reason for the imposition of the Trade Related Intellectual Property Rights regime under the WTO. This construct undermines the fact that in countries like India, with high reverse engineering capabilities, imitation can occur even before the formal technology transfer, and fails to recognize the first mover advantage in pharmaceutical markets. This paper argues that the first mover advantage is important and will vary across therapeutic areas, especially in developing countries with diverse levels of patient enlightenment and quality awareness. We construct a game theoretic model of incomplete information to examine the delay in drug launch in terms of costs and benefits of first move, assumed to be primarily a function of the therapeutic area of the new drug. Our model shows that drug launch will be delayed only for external (infective/communicable) diseases, while drugs for internal, non-communicable diseases (accounting for the overwhelming majority of new drug discovery) will be launched without delay. PMID:18634701
Theoretical model of prion propagation: a misfolded protein induces misfolding.
Małolepsza, Edyta; Boniecki, Michal; Kolinski, Andrzej; Piela, Lucjan
2005-05-31
There is a hypothesis that dangerous diseases such as bovine spongiform encephalopathy, Creutzfeldt-Jakob, Alzheimer's, fatal familial insomnia, and several others are induced by propagation of wrong or misfolded conformations of some vital proteins. If for some reason the misfolded conformations were acquired by many such protein molecules it might lead to a "conformational" disease of the organism. Here, a theoretical model of the molecular mechanism of such a conformational disease is proposed, in which a metastable (or misfolded) form of a protein induces a similar misfolding of another protein molecule (conformational autocatalysis). First, a number of amino acid sequences composed of 32 aa have been designed that fold rapidly into a well defined native-like alpha-helical conformation. From a large number of such sequences a subset of 14 had a specific feature of their energy landscape, a well defined local energy minimum (higher than the global minimum for the alpha-helical fold) corresponding to beta-type structure. Only one of these 14 sequences exhibited a strong autocatalytic tendency to form a beta-sheet dimer capable of further propagation of protofibril-like structure. Simulations were done by using a reduced, although of high resolution, protein model and the replica exchange Monte Carlo sampling procedure. PMID:15911770
Theoretical model of prion propagation: A misfolded protein induces misfolding
Małolepsza, Edyta; Boniecki, Michał; Kolinski, Andrzej; Piela, Lucjan
2005-01-01
There is a hypothesis that dangerous diseases such as bovine spongiform encephalopathy, Creutzfeldt-Jakob, Alzheimer's, fatal familial insomnia, and several others are induced by propagation of wrong or misfolded conformations of some vital proteins. If for some reason the misfolded conformations were acquired by many such protein molecules it might lead to a “conformational” disease of the organism. Here, a theoretical model of the molecular mechanism of such a conformational disease is proposed, in which a metastable (or misfolded) form of a protein induces a similar misfolding of another protein molecule (conformational autocatalysis). First, a number of amino acid sequences composed of 32 aa have been designed that fold rapidly into a well defined native-like α-helical conformation. From a large number of such sequences a subset of 14 had a specific feature of their energy landscape, a well defined local energy minimum (higher than the global minimum for the α-helical fold) corresponding to β-type structure. Only one of these 14 sequences exhibited a strong autocatalytic tendency to form a β-sheet dimer capable of further propagation of protofibril-like structure. Simulations were done by using a reduced, although of high resolution, protein model and the replica exchange Monte Carlo sampling procedure. PMID:15911770
Accelerating advances in continental domain hydrologic modeling
NASA Astrophysics Data System (ADS)
Archfield, Stacey A.; Clark, Martyn; Arheimer, Berit; Hay, Lauren E.; McMillan, Hilary; Kiang, Julie E.; Seibert, Jan; Hakala, Kirsti; Bock, Andrew; Wagener, Thorsten; Farmer, William H.; Andréassian, Vazken; Attinger, Sabine; Viglione, Alberto; Knight, Rodney; Markstrom, Steven; Over, Thomas
2015-12-01
In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.
Phenomenological Modeling of Infrared Sources: Recent Advances
NASA Technical Reports Server (NTRS)
Leung, Chun Ming; Kwok, Sun (Editor)
1993-01-01
Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.
Advancements in predictive plasma formation modeling
NASA Astrophysics Data System (ADS)
Purvis, Michael A.; Schafgans, Alexander; Brown, Daniel J. W.; Fomenkov, Igor; Rafac, Rob; Brown, Josh; Tao, Yezheng; Rokitski, Slava; Abraham, Mathew; Vargas, Mike; Rich, Spencer; Taylor, Ted; Brandt, David; Pirati, Alberto; Fisher, Aaron; Scott, Howard; Koniges, Alice; Eder, David; Wilks, Scott; Link, Anthony; Langer, Steven
2016-03-01
We present highlights from plasma simulations performed in collaboration with Lawrence Livermore National Labs. This modeling is performed to advance the rate of learning about optimal EUV generation for laser produced plasmas and to provide insights where experimental results are not currently available. The goal is to identify key physical processes necessary for an accurate and predictive model capable of simulating a wide range of conditions. This modeling will help to drive source performance scaling in support of the EUV Lithography roadmap. The model simulates pre-pulse laser interaction with the tin droplet and follows the droplet expansion into the main pulse target zone. Next, the interaction of the expanded droplet with the main laser pulse is simulated. We demonstrate the predictive nature of the code and provide comparison with experimental results.
Empirical STORM-E Model. [I. Theoretical and Observational Basis
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III
2013-01-01
Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented
Advanced Small Modular Reactor Economics Model Development
Harrison, Thomas J.
2014-10-01
The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the
Martian weathering processes: Terrestrial analog and theoretical modeling studies
NASA Astrophysics Data System (ADS)
McAdam, Amy Catherine
2008-06-01
Understanding the role of water in the Martian near-surface, and its implications for possible habitable environments, is among the highest priorities of NASA's Mars Exploration Program. Characterization of alteration signatures in surface materials provides the best opportunity to assess the role of water on Mars. This dissertation investigates Martian alteration processes through analyses of Antarctic analogs and numerical modeling of mineral-fluid interactions. Analog work involved studying an Antarctic diabase, and associated soils, as Mars analogs to understand weathering processes in cold, dry environments. The soils are dominated by primary basaltic minerals, but also contain phyllosilicates, salts, iron oxides/oxyhydroxides, and zeolites. Soil clay minerals and zeolites, formed primarily during deuteric or hydrothermal alteration of the parent rock, were subsequently transferred to the soil by physical rock weathering. Authigenic soil iron oxides/oxyhydroxides and small amounts of poorly-ordered secondary silicates indicate some contributions from low-temperature aqueous weathering. Soil sulfates, which exhibit a sulfate- aerosol-derived mass-independent oxygen isotope signature, suggest contributions from acid aerosol-rock interactions. The complex alteration history of the Antarctic materials resulted in several similarities to Martian materials. The processes that affected the analogs, including deuteric/ hydrothermal clay formation, may be important in producing Martian surface materials. Theoretical modeling focused on investigating the alteration of Martian rocks under acidic conditions and using modeling results to interpret Martian observations. Kinetic modeling of the dissolution of plagioclase-pyroxene mineral mixtures under acidic conditions suggested that surfaces with high plagioclase/pyroxene, such as several northern regions, could have experienced some preferential dissolution of pyroxenes at a pH less than approximately 3-4. Modeling of the
Models in Educational Administration: Revisiting Willower's "Theoretically Oriented" Critique
ERIC Educational Resources Information Center
Newton, Paul; Burgess, David; Burns, David P.
2010-01-01
Three decades ago, Willower (1975) argued that much of what we take to be theory in educational administration is in fact only theoretically oriented. If we accept Willower's assessment of the field as true, what implications does this statement hold for the academic study and practical application of the theoretically oriented aspects of our…
Thermochemical modelling of advanced CANDU reactor fuel
NASA Astrophysics Data System (ADS)
Corcoran, Emily Catherine
2009-04-01
With an aging fleet of nuclear generating facilities, the imperative to limit the use of non-renewal fossil fuels and the inevitable need for additional electricity to power Canada's economy, a renaissance in the use of nuclear technology in Canada is at hand. The experience and knowledge of over 40 years of CANDU research, development and operation in Ontario and elsewhere has been applied to a new generation of CANDU, the Advanced CANDU Reactor (ACR). Improved fuel design allows for an extended burnup, which is a significant improvement, enhancing the safety and the economies of the ACR. The use of a Burnable Neutron Absorber (BNA) material and Low Enriched Uranium (LEU) fuel has created a need to understand better these novel materials and fuel types. This thesis documents a work to advance the scientific and technological knowledge of the ACR fuel design with respect to thermodynamic phase stability and fuel oxidation modelling. For the BNA material, a new (BNA) model is created based on the fundamental first principles of Gibbs energy minimization applied to material phase stability. For LEU fuel, the methodology used for the BNA model is applied to the oxidation of irradiated fuel. The pertinent knowledge base for uranium, oxygen and the major fission products is reviewed, updated and integrated to create a model that is applicable to current and future CANDU fuel designs. As part of this thesis, X-Ray Diffraction (XRD) and Coulombic Titration (CT) experiments are compared to the BNA and LEU models, respectively. From the analysis of the CT results, a number of improvements are proposed to enhance the LEU model and provide confidence in its application to ACR fuel. A number of applications for the potential use of these models are proposed and discussed. Keywords: CANDU Fuel, Gibbs Energy Mimimization, Low Enriched Uranium (LEU) Fuel, Burnable Neutron Absorber (BNA) Material, Coulometric Titration, X-Ray Diffraction
Sequence design in lattice models by graph theoretical methods
NASA Astrophysics Data System (ADS)
Sanjeev, B. S.; Patra, S. M.; Vishveshwara, S.
2001-01-01
A general strategy has been developed based on graph theoretical methods, for finding amino acid sequences that take up a desired conformation as the native state. This problem of inverse design has been addressed by assigning topological indices for the monomer sites (vertices) of the polymer on a 3×3×3 cubic lattice. This is a simple design strategy, which takes into account only the topology of the target protein and identifies the best sequence for a given composition. The procedure allows the design of a good sequence for a target native state by assigning weights for the vertices on a lattice site in a given conformation. It is seen across a variety of conformations that the predicted sequences perform well both in sequence and in conformation space, in identifying the target conformation as native state for a fixed composition of amino acids. Although the method is tested in the framework of the HP model [K. F. Lau and K. A. Dill, Macromolecules 22, 3986 (1989)] it can be used in any context if proper potential functions are available, since the procedure derives unique weights for all the sites (vertices, nodes) of the polymer chain of a chosen conformation (graph).
Thermophotonic heat pump—a theoretical model and numerical simulations
NASA Astrophysics Data System (ADS)
Oksanen, Jani; Tulkki, Jukka
2010-05-01
We have recently proposed a solid state heat pump based on photon mediated heat transfer between two large-area light emitting diodes coupled by the electromagnetic field and enclosed in a semiconductor structure with a nearly homogeneous refractive index. Ideally the thermophotonic heat pump (THP) allows heat transfer at Carnot efficiency but in reality there are several factors that limit the efficiency. The efficient operation of the THP is based on the following construction factors and operational characteristics: (1) broad area semiconductor diodes to enable operation at optimal carrier density and high efficiency, (2) recycling of the energy of the emitted photons, (3) elimination of photon extraction losses by integrating the emitting and the absorbing diodes within a single semiconductor structure, and (4) eliminating the reverse thermal conduction by a nanometer scale vacuum layer between the diodes. In this paper we develop a theoretical model for the THP and study the fundamental physical limitations and potential of the concept. The results show that even when the most important losses of the THPs are accounted for, the THP has potential to outperform the thermoelectric coolers especially for heat transfer across large temperature differences and possibly even to compete with conventional small scale compressor based heat pumps.
A Game-Theoretic Model of Marketing Skin Whiteners.
Mendoza, Roger Lee
2015-01-01
Empirical studies consistently find that people in less developed countries tend to regard light or "white" skin, particularly among women, as more desirable or superior. This is a study about the marketing of skin whiteners in these countries, where over 80 percent of users are typically women. It proceeds from the following premises: a) Purely market or policy-oriented approaches toward the risks and harms of skin whitening are cost-inefficient; b) Psychosocial and informational factors breed uninformed and risky consumer choices that favor toxic skin whiteners; and c) Proliferation of toxic whiteners in a competitive buyer's market raises critical supplier accountability issues. Is intentional tort a rational outcome of uncooperative game equilibria? Can voluntary cooperation nonetheless evolve between buyers and sellers of skin whiteners? These twin questions are key to addressing the central paradox in this study: A robust and expanding buyer's market, where cheap whitening products abound at a high risk to personal and societal health and safety. Game-theoretic modeling of two-player and n-player strategic interactions is proposed in this study for both its explanatory and predictive value. Therein also lie its practical contributions to the economic literature on skin whitening. PMID:26565686
Network-theoretic approach to model vortex interactions
NASA Astrophysics Data System (ADS)
Nair, Aditya; Taira, Kunihiko
2014-11-01
We present a network-theoretic approach to describe a system of point vortices in two-dimensional flow. By considering the point vortices as nodes, a complete graph is constructed with edges connecting each vortex to every other vortex. The interactions between the vortices are captured by the graph edge weights. We employ sparsification techniques on these graph representations based on spectral theory to construct sparsified models of the overall vortical interactions. The edge weights are redistributed through spectral sparsification of the graph such that the sum of the interactions associated with each vortex is maintained constant. In addition, sparse configurations maintain similar spectral properties as the original setup. Through the reduction in the number of interactions, key vortex interactions can be highlighted. Identification of vortex structures based on graph sparsification is demonstrated with an example of clusters of point vortices. We also evaluate the computational performance of sparsification for large collection of point vortices. Work supported by US Army Research Office (W911NF-14-1-0386) and US Air Force Office of Scientific Research (YIP: FA9550-13-1-0183).
Information theoretic aspects of the two-dimensional Ising model.
Lau, Hon Wai; Grassberger, Peter
2013-02-01
We present numerical results for various information theoretic properties of the square lattice Ising model. First, using a bond propagation algorithm, we find the difference 2H(L)(w)-H(2L)(w) between entropies on cylinders of finite lengths L and 2L with open end cap boundaries, in the limit L→∞. This essentially quantifies how the finite length correction for the entropy scales with the cylinder circumference w. Secondly, using the transfer matrix, we obtain precise estimates for the information needed to specify the spin state on a ring encircling an infinitely long cylinder. Combining both results, we obtain the mutual information between the two halves of a cylinder (the "excess entropy" for the cylinder), where we confirm with higher precision but for smaller systems the results recently obtained by Wilms et al., and we show that the mutual information between the two halves of the ring diverges at the critical point logarithmically with w. Finally, we use the second result together with Monte Carlo simulations to show that also the excess entropy of a straight line of n spins in an infinite lattice diverges at criticality logarithmically with n. We conjecture that such logarithmic divergence happens generically for any one-dimensional subset of sites at any two-dimensional second-order phase transition. Comparing straight lines on square and triangular lattices with square loops and with lines of thickness 2, we discuss questions of universality. PMID:23496480
Information theoretic aspects of the two-dimensional Ising model
NASA Astrophysics Data System (ADS)
Lau, Hon Wai; Grassberger, Peter
2013-02-01
We present numerical results for various information theoretic properties of the square lattice Ising model. First, using a bond propagation algorithm, we find the difference 2HL(w)-H2L(w) between entropies on cylinders of finite lengths L and 2L with open end cap boundaries, in the limit L→∞. This essentially quantifies how the finite length correction for the entropy scales with the cylinder circumference w. Secondly, using the transfer matrix, we obtain precise estimates for the information needed to specify the spin state on a ring encircling an infinitely long cylinder. Combining both results, we obtain the mutual information between the two halves of a cylinder (the “excess entropy” for the cylinder), where we confirm with higher precision but for smaller systems the results recently obtained by Wilms , and we show that the mutual information between the two halves of the ring diverges at the critical point logarithmically with w. Finally, we use the second result together with Monte Carlo simulations to show that also the excess entropy of a straight line of n spins in an infinite lattice diverges at criticality logarithmically with n. We conjecture that such logarithmic divergence happens generically for any one-dimensional subset of sites at any two-dimensional second-order phase transition. Comparing straight lines on square and triangular lattices with square loops and with lines of thickness 2, we discuss questions of universality.
Theoretical model for electrophilic oxygen atom insertion into hydrocarbons
Bach, R.D.; Su, M.D. ); Andres, J.L. Wayne State Univ., Detroit, MI ); McDouall, J.J.W. )
1993-06-30
A theoretical model suggesting the mechanistic pathway for the oxidation of saturated-alkanes to their corresponding alcohols and ketones is described. Water oxide (H[sub 2]O-O) is employed as a model singlet oxygen atom donor. Molecular orbital calculations with the 6-31G basis set at the MP2, QCISD, QCISD(T), CASSCF, and MRCI levels of theory suggest that oxygen insertion by water oxide occurs by the interaction of an electrophilic oxygen atom with a doubly occupied hydrocarbon fragment orbital. The electrophilic oxygen approaches the hydrocarbon along the axis of the atomic carbon p orbital comprising a [pi]-[sub CH(2)] or [pi]-[sub CHCH(3)] fragment orbital to form a carbon-oxygen [sigma] bond. A concerted hydrogen migration to an adjacent oxygen lone pair of electrons affords the alcohol insertion product in a stereoselective fashion with predictable stereochemistry. Subsequent oxidation of the alcohol to a ketone (or aldehyde) occurs in a similar fashion and has a lower activation barrier. The calculated (MP4/6-31G*//MP2/6-31G*) activation barriers for oxygen atom insertion into the C-H bonds of methane, ethane, propane, butane, isobutane, and methanol are 10.7, 8.2, 3.9, 4.8, 4.5, and 3.3 kcal/mol, respectively. We use ab initio molecular orbital calculations in support of a frontier MO theory that provides a unique rationale for both the stereospecificity and the stereoselectivity of insertion of electrophilic oxygen and related electrophiles into the carbon-hydrogen bond. 13 refs., 7 figs., 2 tabs.
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
Ding, Ning Zhang, Yang Xiao, Delong Wu, Jiming Huang, Jun Yin, Li Sun, Shunkai Xue, Chuang Dai, Zihuan Ning, Cheng Shu, Xiaojian Wang, Jianguo Li, Hua
2014-12-15
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
NASA Astrophysics Data System (ADS)
Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua
2014-12-01
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire
Theoretical Modeling of the Discharge-Pumped Xenon - Excimer Laser.
NASA Astrophysics Data System (ADS)
Zhu, Sheng-Bai
The present dissertation is dedicated to a theoretical study of the discharge pumped XeCl excimer laser. For a better description of our system, Two modelings which supplement each other from different angles have been successfully developed. The first one, a comprehensive kinetics model which can be applied to the detailed simulations of the temporal behavior of the discharge characteristics and laser performance, is constructed by a set of coupled first -order differential equations, such as the rate equations, the Boltzmann equation, the external electric circuit equations, the energy balance equation, and the equations of optical resonator. The starting and termination of the discharge are taken into deliberation for the first time, especially for the Blumlein case. Some 70 kinetic processes and 23 chemical species are included. Such a problem can only be numerically solved by means of an elaborate computer code. Another model, on the other hand, pays attention to the quasi-steady-state to facilitate parametric study. A group of rate coefficients for the kinetic processes involving free electrons are approximated by analytic expressions using numerical results compiled from computer code calculations. Explicit expressions of the number densities for all relevant chemical species are obtained. Among them, HCI(O), H, and Cl can never reach steady-state population. Time history of the concentrations for these species are computed instead. With the discussions about the effect of vibrational relaxation and state-to-state transfer in the upper energy level, and the discussions about the rotational structure, collisional broadening, and dissociation of the diatomic ground state, we have extensively investigated the spontaneous emission spectra, the small-signal gain, the non-saturable absorption, the steady-state laser output power, and various efficiencies. Saturation effects in laser oscillators and laser amplifiers are discussed as well. These topics relate to the
ERIC Educational Resources Information Center
Markon, Kristian E.; Krueger, Robert F.
2006-01-01
Distinguishing between discrete and continuous latent variable distributions has become increasingly important in numerous domains of behavioral science. Here, the authors explore an information-theoretic approach to latent distribution modeling, in which the ability of latent distribution models to represent statistical information in observed…
76 FR 68011 - Medicare Program; Advanced Payment Model
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
... Medicare Program; Advanced Payment Model; Notice #0;#0;Federal Register / Vol. 76, No. 212 / Wednesday... Services Medicare Program; Advanced Payment Model AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS. ACTION: Notice. SUMMARY: This notice announces the testing of the Advance Payment Model...
String Theoretic Toy Models of the Big Bang
NASA Astrophysics Data System (ADS)
Michelson, Jeremy
2006-03-01
Recently, examples of toy cosmologies have been found that are exact solutions of String Theory. These solutions have the feature that the theoretical framework permits reliable calculation arbitrarily close to the big bang singularity. Thus one can understand both the big bang, and late time physics. I will describe these toy cosmologies, and how they fit into String Theory's chains of equivalences between gravitational and nongravitational theories. These equivalences are the means by which one theoretically probes the big bang.
Advances in Sun-Earth Connection Modeling
NASA Astrophysics Data System (ADS)
Ganguli, S. B.; Gavrishchaka, V. V.
2003-06-01
Space weather forecasting is a focus of a multidisciplinary research effort motivated by a sensitive dependence of many modern technologies on geospace conditions. Adequate understanding of the physics of the Sun-Earth connection and associated multi-scale magnetospheric and ionospheric processes is an essential part of this effort. Modern physical simulation models such as multimoment multifluid models with effective coupling from small-scale kinetic processes can provide valuable insight into the role of various physical mechanisms operating during geomagnetic storm/substorm activity. However, due to necessary simplifying assumptions, physical models are still not well suited for accurate real-time forecasting. Complimentary approach includes data-driven models capable of efficient processing of multi-scale spatio-temporal data. However, the majority of advanced nonlinear algorithms, including neural networks (NN), can encounter a set of problems called dimensionality curse when applied to high-dimensional data. Forecasting of rare/extreme events such as large geomagnetic storms/substorms is of the most practical importance but is also very challenging for many existing models. A very promising algorithm that combines the power of the best nonlinear techniques and tolerance to high-dimensional and incomplete data is support vector machine (SVM). We have summarized advantages of the SVM and described a hybrid model based on SVM and extreme value theory (EVT) for rare event forecasting. Results of the SVM application to substorm forecasting and future directions are discussed.
Prospects for Advanced RF Theory and Modeling
Batchelor, D.B.
1999-04-12
This paper represents an attempt to express in print the contents of a rather philosophical review talk. The charge for the talk was not to summarize the present status of the field and what we can do, but to assess what we will need to do in the future and where the gaps are in fulfilling these needs. The objective was to be complete, covering all aspects of theory and modeling in all frequency regimes, although in the end the talk mainly focussed on the ion cyclotron range of frequencies (ICRF). In choosing which areas to develop, it is important to keep in mind who the customers for RF modeling are likely to be and what sorts of tasks they will need for RF to do. This occupies the first part of the paper. Then we examine each of the elements of a complete RF theory and try to identify the kinds of advances needed.
Micromechanical Modeling Efforts for Advanced Composites
NASA Technical Reports Server (NTRS)
1997-01-01
Over the past two decades, NASA Lewis Research Center's in-house efforts in analytical modeling for advanced composites have yielded several computational predictive tools. These are, in general, based on simplified micromechanics equations. During the last 3 years, our efforts have been directed primarily toward developing prediction tools for high temperature ceramic matrix composite (CMC's) materials. These materials are being considered for High Speed Research program applications, specifically for combustor liners. In comparison to conventional materials, CMC's offer several advantages: high specific stiffness and strength, and higher toughness and nonbrittle failure in comparison to monolithic ceramics, as well as environmental stability and wear resistance for both roomtemperature and elevated-temperature applications. Under the sponsorship of the High Temperature Engine Materials Program (HITEMP), CMC analytical modeling has resulted in the computational tool Ceramic Matrix Composites Analyzer (CEMCAN).
Advancing an Information Model for Environmental Observations
NASA Astrophysics Data System (ADS)
Horsburgh, J. S.; Aufdenkampe, A. K.; Hooper, R. P.; Lehnert, K. A.; Schreuders, K.; Tarboton, D. G.; Valentine, D. W.; Zaslavsky, I.
2011-12-01
have been modified to support data management for the Critical Zone Observatories (CZOs). This paper will present limitations of the existing information model used by the CUAHSI HIS that have been uncovered through its deployment and use, as well as new advances to the information model, including: better representation of both in situ observations from field sensors and observations derived from environmental samples, extensibility in attributes used to describe observations, and observation provenance. These advances have been developed by the HIS team and the broader scientific community and will enable the information model to accommodate and better describe wider classes of environmental observations and to better meet the needs of the hydrologic science and CZO communities.
User's manual for ADAM (Advanced Dynamic Airfoil Model)
Oler, J.W.; Strickland, J.H.; Im, B.J.
1987-06-01
The computer code for an advanced dynamic airfoil model (ADAM) is described. The code is capable of calculating steady or unsteady flow over two-dimensional airfoils with allowances for boundary layer separation. Specific types of airfoil motions currently installed are steady rectilinear motion, impulsively started rectilinear motion, constant rate pitching, sinusoidal pitch oscillations, sinusoidal lateral plunging, and simulated Darrieus turbine motion. Other types of airfoil motion may be analyzed through simple modifications of a single subroutine. The code has a built-in capability to generate the geometric parameters for a cylinder, the NACA four-digit series of airfoils, and a NASA NLF-0416 laminar airfoil. Other types of airfoils are easily incorporated. The code ADAM is currently in a state of development. It is theoretically consistent and complete. However, further work is needed on the numerical implementation of the method.
ERIC Educational Resources Information Center
Gouran, Dennis S.
This paper discusses ways in which the field of speech communication can be advanced. The first half of the paper characterizes the objectivist and subjectivist views of how knowledge is acquired and the forms of inquiry to which these views have led. The remainder of the paper demonstrates the role that the "interesting question" (one for which…
A theoretical model of grainsize evolution during deformation
NASA Astrophysics Data System (ADS)
Ricard, Y.; Bercovici, D.; Rozel, A.
2007-12-01
Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grainsize (e.g., mylonites). Grainsize reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear-localization arising from this hypothesis are problematic since (1) they require the simultaneous action of two exclusive creep mechanisms (diffusion and dislocation creep), and (2) the grain-growth ("healing") laws employed by these models are derived from static grain-growth or coarsening theory, although the shear-localization setting itself is far from static equilibrium. We present a new first-principles grained-continuum theory which accounts for both coarsening and damage-induced grainsize reduction. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nucleii and cataclastic breakdown of grains. The theory contains coupled statistical grain-scale and continuum macroscopic components. The grain-scale element of the theory prescribes both the evolution of the grainsize distribution, and a phenomenological grain-growth law derived from non-equilibrium thermodynamics; grain-growth thus incorporates the free energy differences between grains, including both grain-boundary surface energy (which controls coarsening) and the contribution of deformational work to these free energiesconservation and positivity of entropy production provide the phenomenological law for the statistical grain-growth law. We identify four potential mechanisms that affect the distribution of grainsize; two of them conserve the number of grains but change their relative masses and two of them change the number of grains by sticking them together or breaking them. In the limit of static equilibrium, only the two mechanisms that increase the average grainsize are allowed by the second law of thermodynamics. The first one is a diffusive mass transport
A theoretical microbial contamination model for a human Mars mission
NASA Astrophysics Data System (ADS)
Lupisella, Mark Lewis
Contamination from a human presence on Mars could significantly compromise the search for extraterrestrial life. In particular, the difficulties in controlling microbial contamination, the potential for terrestrial microbes to grow, evolve, compete, and modify the Martian environment, and the likely microbial nature of putative Martian life, make microbial contamination worthy of focus as we begin to plan for a human mission to Mars. This dissertation describes a relatively simple theoretical model that can be used to explore how microbial contamination from a human Mars mission might survive and grow in the Martian soil environment surrounding a habitat. A user interface has been developed to allow a general practitioner to choose values and functions for almost all parameters ranging from the number of astronauts to the half-saturation constants for microbial growth. Systematic deviations from a baseline set of parameter values are explored as potential plausible scenarios for the first human Mars missions. The total viable population and population density are the primary state variables of interest, but other variables such as the total number of births and total dead and viable microbes are also tracked. The general approach was to find the most plausible parameter value combinations that produced a population density of 1 microbe/cm3 or greater, a threshold that was used to categorize the more noteworthy populations for subsequent analysis. Preliminary assessments indicate that terrestrial microbial contamination resulting from leakage from a limited human mission (perhaps lasting up to 5 months) will not likely become a problematic population in the near-term as long as reasonable contamination control measures are implemented (for example, a habitat leak rate no greater than 1% per hour). However, there appear to be plausible, albeit unlikely, scenarios that could cause problematic populations, depending in part on (a) the initial survival fraction and
Presenting a Theoretical Model of Four Conceptions of Civic Education
ERIC Educational Resources Information Center
Cohen, Aviv
2010-01-01
This conceptual study will question the ways different epistemological conceptions of citizenship and education influence the characteristics of civic education. While offering a new theoretical framework, the different undercurrent conceptions that lay at the base of the civic education process shall be brought forth. With the use of the method…
A comparison of theoretical and experimental pressure distributions for two advanced fighter wings
NASA Technical Reports Server (NTRS)
Haney, H. P.; Hicks, R. M.
1981-01-01
A comparison was made between experimental pressure distributions measured during testing of the Vought A-7 fighter and the theoretical predictions of four transonic potential flow codes. Isolated wind and three wing-body codes were used for comparison. All comparisons are for transonic Mach numbers and include both attached and separate flows. In general, the wing-body codes gave better agreement with the experiment than did the isolated wing code but, because of the greater complexity of the geometry, were found to be considerably more expensive and less reliable.
AFDM: An Advanced Fluid-Dynamics Model
Bohl, W.R.; Parker, F.R. ); Wilhelm, D. . Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. ); Goutagny, L. . Inst. de Protection et de Surete Nucleaire); Ninokata,
1990-09-01
AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs.
Nonlinear Dynamic Models in Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
Modeling of advanced fossil fuel power plants
NASA Astrophysics Data System (ADS)
Zabihian, Farshid
The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique
Measured Model, Theoretical Model and Represented Model: the So-Called Arch of Drusus in Rome
NASA Astrophysics Data System (ADS)
Canciani, M.; Maestri, D.; Spadafora, G.; Manacorda, D.; Di Cola, V.
2011-09-01
The Arch of Drusus is a complex building, stratified over time. It isn't possible to advance only one hypothesis about its origin, but its several transformations may be given some interpretations. The difficulty lies in the coexistence of two structures, typologically and chronologically different, in a single monument: an original structure which can be related to a commemorative travertine arch sheathed in marble, dating back to the Imperial Age, which probably had three fornices and a later structure reused in the III century as an aque- duct arch and monumentalized again with the application of decorated architectural elements on the southern façade. In order to provide a graphic description as much accurate as possible from the metric-dimensional point of view and as much detailed as possible in all the elements which form the building, a new survey methodology has been tested. It uses different kinds of systems - instrumental, topographic and GPS, photogrammetric and direct traditional - which complement each other, in order to render a three-dimensional computerized reference model. The analysis process of the monument, made from what emerged from the archaeological analysis, thanks to the carrying out of dif- ferent navigable models, has been developed making, in the early stage, a represented model subsequently detailed on the basis of the incongruities detected in the survey.
Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model.
Naire, Shailesh; Jensen, Oliver E
2005-08-01
A theoretical model is presented describing the reopening by an advancing air bubble of an initially liquid-filled collapsed airway lined with deformable epithelial cells. The model integrates descriptions of flow-structure interaction (accounting for nonlinear deformation of the airway wall and viscous resistance of the airway liquid flow), surfactant transport around the bubble tip (incorporating physicochemical parameters appropriate for Infasurf), and cell deformation (due to stretching of the airway wall and airway liquid flows). It is shown how the pressure required to drive a bubble into a flooded airway, peeling apart the wet airway walls, can be reduced substantially by surfactant, although the effectiveness of Infasurf is limited by slow adsorption at high concentrations. The model demonstrates how the addition of surfactant can lead to the spontaneous reopening of a collapsed airway, depending on the degree of initial airway collapse. The effective elastic modulus of the epithelial layer is shown to be a key determinant of the relative magnitude of strains generated by flow-induced shear stresses and by airway wall stretch. The model also shows how epithelial-layer compressibility can mediate strains arising from flow-induced normal stresses and stress gradients. PMID:15802368
Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Antonsson, Erik; Gombosi, Tamas
2005-01-01
Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.
Advances in Modelling of Valley Glaciers
NASA Astrophysics Data System (ADS)
Adhikari, Surendra
For glaciological conditions typical of valley glaciers, the central idea of this research lies in understanding the effects of high-order mechanics and parameterizing these for simpler dynamical and statistical methods in glaciology. As an effective tool for this, I formulate a new brand of dynamical models that describes distinct physical processes of deformational flow. Through numerical simulations of idealized glacier domains, I calculate empirical correction factors to capture the effects of longitudinal stress gradients and lateral drag for simplified dynamical models in the plane-strain regime. To get some insights into real glacier dynamics, I simulate Haig Glacier in the Canadian Rocky Mountains. As geometric effects overshadow dynamical effects in glacier retreat scenarios, it appears that high-order physics are not very important for Haig Glacier, particularly for evaluating its fate. Indeed, high-order and reduced models all predict that Haig Glacier ceases to exist by about AD2080 under ongoing climate warming. This finding regarding the minimal role of high-order physics may not be broadly valid, as it is not true in advance scenarios at Haig Glacier and it may not be representative of other glaciological settings. Through a 'bulk' parameterization of high-order physics, geometric and climatic settings, sliding conditions, and transient effects, I also provide new insights into the volume-area relation, a widely used statistical method for estimating glacier volume. I find a steady-state power-law exponent of 1:46, which declines systematically to 1:38 after 100 years of sustained retreat, in good accord with the observations. I recommend more accurate scaling relations through characterization of individual glacier morphology and degree of climatic disequilibrium. This motivates a revision of global glacier volume estimates, of some urgency in sea level rise assessments.
Advanced modeling of high intensity accelerators
Ryne, R.D.; Habib, S.; Wangler, T.P.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goals of this project were three-fold: (1) to develop a new capability, based on high performance (parallel) computers, to perform large scale simulations of high intensity accelerators; (2) to apply this capability to modeling high intensity accelerators under design at LANL; and (3) to use this new capability to improve the understanding of the physics of intense charge particle beams, especially in regard to the issue of beam halo formation. All of these goals were met. In particular, the authors introduced split-operator methods as a powerful and efficient means to simulate intense beams in the presence of rapidly varying accelerating and focusing fields. They then applied these methods to develop scaleable, parallel beam dynamics codes for modeling intense beams in linacs, and in the process they implemented a new three-dimensional space charge algorithm. They also used the codes to study a number of beam dynamics issues related to the Accelerator Production of Tritium (APT) project, and in the process performed the largest simulations to date for any accelerator design project. Finally, they used the new modeling capability to provide direction and validation to beam physics studies, helping to identify beam mismatch as a major source of halo formation in high intensity accelerators. This LDRD project ultimately benefited not only LANL but also the US accelerator community since, by promoting expertise in high performance computing and advancing the state-of-the-art in accelerator simulation, its accomplishments helped lead to approval of a new DOE Grand Challenge in Computational Accelerator Physics.
ERIC Educational Resources Information Center
Dziedziewicz, Dorota; Karwowski, Maciej
2015-01-01
This paper presents a new theoretical model of creative imagination and its applications in early education. The model sees creative imagination as composed of three inter-related components: vividness of images, their originality, and the level of transformation of imageries. We explore the theoretical and practical consequences of this new…
A theoretical model of phase changes of a klystron due to variation of operating parameters
NASA Technical Reports Server (NTRS)
Kupiszewski, A.
1980-01-01
A mathematical model for phase changes of the VA-876 CW klystron amplifier output is presented and variations of several operating parameters are considered. The theoretical approach to the problem is based upon a gridded gap modeling with inclusion of a second order correction term so that actual gap geometry is reflected in the formulation. Physical measurements are contrasted to theoretical calculations.
A Model of Resource Allocation in Public School Districts: A Theoretical and Empirical Analysis.
ERIC Educational Resources Information Center
Chambers, Jay G.
This paper formulates a comprehensive model of resource allocation in a local public school district. The theoretical framework specified could be applied equally well to any number of local public social service agencies. Section 1 develops the theoretical model describing the process of resource allocation. This involves the determination of the…
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Fuentes-Cabrera, Miguel A; Huang, Jingsong; Jakowski, Jacek; Meunier, V.; Lopez-Benzanilla, Alejandro; Cruz Silva, Eduardo; Sumpter, Bobby G; Beste, Ariana
2012-01-01
Theoretical and computational chemical physics and materials science offers great opportunity toward helping solve some of the grand challenges in science and engineering, because structure and properties of molecules, solids, and liquids are direct reflections of the underlying quantum motion of their electrons. With the advent of semilocal and especially nonlocal descriptions of exchange and correlation effects, density functional theory (DFT) can now describe bonding in molecules and solids with an accuracy which, for many classes of systems, is sufficient to compare quantitatively to experiments. It is therefore becoming possible to develop a semiquantitative description of a large number of systems and processes. In this chapter, we briefly review DFT and its various extensions to include nonlocal terms that are important for long-range dispersion interactions that dominate many self-assembly processes, molecular surface adsorption processes, solution processes, and biological and polymeric materials. Applications of DFT toward problems relevant to energy systems, including energy storage materials, functional nanoelectronics/optoelectronics, and energy conversion, are highlighted.
Recent Advances in the Mass Spectrometric Analysis of Glycoproteins: Theoretical Considerations
Lazar, Iulia M.; Lazar, Alexandru C.; Cortes, Diego F.; Kabulski, Jarod L.
2011-01-01
Protein glycosylation is involved in a broad range of biological processes that regulate protein function and control cell fate. As aberrant glycosylation has been found to be implicated in numerous diseases, the study and large-scale characterization of protein glycosylation is of great interest not only to the biological and biomedical research community, but also to the pharmaceutical and biotechnology industry. Due to the complex chemical structure and differing chemical properties of the protein/peptide and glycan moieties, the analysis and structural characterization of glycoproteins has been proven to be a difficult task. Large-scale endeavors have been further limited by the dynamic outcome of the glycosylation process itself, and, occasionally, by the low abundance of glycoproteins in biological samples. Recent advances in mass spectrometry (MS) instrumentation, and progress in miniaturized technologies for sample handling, enrichment and separation, have resulted in robust and compelling analysis strategies that effectively address the challenges of the glycoproteome. This review summarizes the key steps that are involved in the development of efficient glycoproteomic analysis methods, and the latest innovations that led to successful strategies for the characterization of glycoproteins and their corresponding glycans. As a follow-up to this work, we review innovative capillary and microfluidic-MS workflows for the identification, sequencing, and characterization of glycoconjugates. PMID:21171109
Induced airflow in flying insects I. A theoretical model of the induced flow.
Sane, Sanjay P
2006-01-01
A strong induced flow structure envelops the body of insects and birds during flight. This flow influences many physiological processes including delivery of odor and mechanical stimuli to the sensory organs, as well as mass flow processes including heat loss and gas exchange in flying animals. With recent advances in near-field aerodynamics of insect and bird flight, it is now possible to determine how wing kinematics affects induced flow over their body. In this paper, I develop a theoretical model based in rotor theory to estimate the mean induced flow over the body of flapping insects. This model is able to capture some key characteristics of mean induced flow over the body of a flying insect. Specifically, it predicts that induced flow is directly proportional to wing beat frequency and stroke amplitude and is also affected by a wing shape dependent parameter. The derivation of induced flow includes the determination of spanwise variation of circulation on flapping wings. These predictions are tested against the available data on the spanwise distribution of aerodynamic circulation along finite Drosophila melanogaster wings and mean flows over the body of Manduca sexta. To explicitly account for tip losses in finite wings, a formula previously proposed by Prandtl for a finite blade propeller system is tentatively included. Thus, the model described in this paper allows us to estimate how far-field flows are influenced by near-field events in flapping flight. PMID:16354776
NASA Astrophysics Data System (ADS)
Perdigão, Rui A. P.
2016-04-01
The fundamental stochastic-dynamic coevolution laws governing complex coevolutionary systems are introduced in a mathematical physics framework formally unifying nonlinear stochastic physics with fundamental deterministic interaction laws among spatiotemporally distributed processes. The methodological developments are then used to shed light onto fundamental interactions underlying complex spatiotemporal behaviour and emergence in multiscale hydroclimate dynamics. For this purpose, a mathematical physics framework is presented predicting evolving distributions of hydrologic quantities under nonlinearly coevolving geophysical processes. The functional formulation is grounded on first principles regulating the dynamics of each system constituent and their interactions, therefore its applicability is general and data-independent, not requiring local calibrations. Moreover, it enables the dynamical estimation of hydroclimatic variations in space and time from knowledge at different spatiotemporal conditions, along with the associated uncertainties. This paves the way for a robust physically based prediction of hydroclimatic changes in unsupervised areas (e.g. ungauged basins). Validation is achieved by producing, with the mathematical physics framework, a comprehensive spatiotemporal legacy consistent with the observed distributions along with their statistic-dynamic relations. The similarity between simulated and observed distributions is further assessed with novel robust nonlinear information-theoretic diagnostics. The present study brings to light emerging signatures of structural change in hydroclimate dynamics arising from nonlinear synergies across multiple spatiotemporal scales, and contributes to a better dynamical understanding and prediction of spatiotemporal regimes, transitions, structural changes and extremes in complex coevolutionary systems. This study further sheds light onto a diversity of emerging properties from harmonic to hyper-chaotic in general
Arrigo, Bruce A
2002-01-01
The critical perspectives of psychological jurisprudence identified above, along with their corresponding epistemological assumptions, reflect a radical agenda for change at the law-psychology divide. Although not exhaustively reviewed, the individual theories represent different approaches by which structural reform can be enacted and citizen well-being can therefore be realized. Collectively, the critical perspectives and their attending presuppositions challenge conventional wisdom about prospects for transforming (i.e., humanizing) the legal apparatus. I submit that the future viability of the law-psychology movement, and its overall utility for society, considerably depends on its capacity to facilitate and secure such widespread change. By focusing on critical theoretical inquiry, this article makes painfully clear that much of what is wrong with the legal system, especially in its interactions with and interpretations of people, cannot be amended or solved through it. Indeed, as Roesch (1995) observed, "changes in the justice system will never be sufficient to create a just society, nor will within system changes by themselves ever have much of an impact on individuals who come into conflict with the law" (p. 3). I agree. Accordingly, it is time to move on and, where necessary, to look elsewhere for guidance. The radical agenda in psychological jurisprudence represents a provocative strategy, providing a meaningful basis for critique and a sustainable basis for reform. Both are integral to the call for justice embodied in the founding of the AP-LS decades ago. Realizing this challenge, however, remains an unfulfilled dream. Thus, the task that awaits is to apply the insights of critical psychological jurisprudence to relevant areas of research and policy. I submit that the academy can ill afford to dismiss this task. Indeed, in the final analysis, to do so would not only defer prospects for justice but would destroy its very possibility, especially for
Information-theoretic model comparison unifies saliency metrics
Kümmerer, Matthias; Wallis, Thomas S. A.; Bethge, Matthias
2015-01-01
Learning the properties of an image associated with human gaze placement is important both for understanding how biological systems explore the environment and for computer vision applications. There is a large literature on quantitative eye movement models that seeks to predict fixations from images (sometimes termed “saliency” prediction). A major problem known to the field is that existing model comparison metrics give inconsistent results, causing confusion. We argue that the primary reason for these inconsistencies is because different metrics and models use different definitions of what a “saliency map” entails. For example, some metrics expect a model to account for image-independent central fixation bias whereas others will penalize a model that does. Here we bring saliency evaluation into the domain of information by framing fixation prediction models probabilistically and calculating information gain. We jointly optimize the scale, the center bias, and spatial blurring of all models within this framework. Evaluating existing metrics on these rephrased models produces almost perfect agreement in model rankings across the metrics. Model performance is separated from center bias and spatial blurring, avoiding the confounding of these factors in model comparison. We additionally provide a method to show where and how models fail to capture information in the fixations on the pixel level. These methods are readily extended to spatiotemporal models of fixation scanpaths, and we provide a software package to facilitate their use. PMID:26655340
Theoretical model-based quantitative optimisation of numerical modelling for eddy current NDT
NASA Astrophysics Data System (ADS)
Yu, Yating; Li, Xinhua; Simm, Anthony; Tian, Guiyun
2011-06-01
Eddy current (EC) nondestructive testing (NDT) is one of the most widely used NDT methods. Numerical modelling of NDT methods has been used as an important investigative approach alongside experimental and theoretical studies. This paper investigates the set-up of numerical modelling using finite-element method in terms of the optimal selection of element mesh size in different regions within the model based on theoretical analysis of EC NDT. The modelling set-up is refined and evaluated through numerical simulation, balancing both computation time and simulation accuracy. A case study in the optimisation of the modelling set-up of the EC NDT system with a cylindrical probe coil is carried out to verify the proposed optimisation approach. Here, the mesh size of the simulation model is set based on the geometries of the coil and the magnetic sensor, as well as on the skin depth in the sample; so the optimised modelling set-up can be useful even when the geometry of EC system, the excitation frequency or the pulsed width is changed in multi-frequency EC, sweep-frequency EC or system and pulsed EC. Furthermore, this optimisation approach can be used to improve the trade-off between accuracy and the computation time in other more complex EC NDT simulations.
College Students Solving Chemistry Problems: A Theoretical Model of Expertise
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Glynn, Shawn M.
2009-01-01
A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…
ERIC Educational Resources Information Center
Kim, Young Rae
2013-01-01
A theoretical model of metacognition in complex modeling activities has been developed based on existing frameworks, by synthesizing the re-conceptualization of metacognition at multiple levels by looking at the three sources that trigger metacognition. Using the theoretical model as a framework, this study was designed to explore how students'…
Theoretical modelling of the semiconductor-electrolyte interface
NASA Astrophysics Data System (ADS)
Schelling, Patrick Kenneth
We have developed tight-binding models of transition metal oxides. In contrast to many tight-binding models, these models include a description of electron-electron interactions. After parameterizing to bulk first-principles calculations, we demonstrated the transferability of the model by calculating atomic and electronic structure of rutile surfaces, which compared well with experiment and first-principles calculations. We also studied the structure of twist grain boundaries in rutile. Molecular dynamics simulations using the model were also carried out to describe polaron localization. We have also demonstrated that tight-binding models can be constructed to describe metallic systems. The computational cost tight-binding simulations was greatly reduced by incorporating O(N) electronic structure methods. We have also interpreted photoluminesence experiments on GaAs electrodes in contact with an electrolyte using drift-diffusion models. Electron transfer velocities were obtained by fitting to experimental results.
A graph theoretical perspective of a drug abuse epidemic model
NASA Astrophysics Data System (ADS)
Nyabadza, F.; Mukwembi, S.; Rodrigues, B. G.
2011-05-01
A drug use epidemic can be represented by a finite number of states and transition rules that govern the dynamics of drug use in each discrete time step. This paper investigates the spread of drug use in a community where some users are in treatment and others are not in treatment, citing South Africa as an example. In our analysis, we consider the neighbourhood prevalence of each individual, i.e., the proportion of the individual’s drug user contacts who are not in treatment amongst all of his or her contacts. We introduce parameters α∗, β∗ and γ∗, depending on the neighbourhood prevalence, which govern the spread of drug use. We examine how changes in α∗, β∗ and γ∗ affect the system dynamics. Simulations presented support the theoretical results.
A Type-Theoretic Framework for Certified Model Transformations
NASA Astrophysics Data System (ADS)
Calegari, Daniel; Luna, Carlos; Szasz, Nora; Tasistro, Álvaro
We present a framework based on the Calculus of Inductive Constructions (CIC) and its associated tool the Coq proof assistant to allow certification of model transformations in the context of Model-Driven Engineering (MDE). The approached is based on a semi-automatic translation process from metamodels, models and transformations of the MDE technical space into types, propositions and functions of the CIC technical space. We describe this translation and illustrate its use in a standard case study.
THEORETICAL MODEL OF SOILING OF SURFACES BY AIRBORNE PARTICLES
A model is developed which can be used to predict the change in reflectance from a surface as a function of time. Reflectance change is a measure of soiling caused by the deposition of particles on a surface. The major inputs to the model are the parameters to a bimodal distribut...
Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; He, Xiang
2012-01-01
Quantitative evaluation of brain hemodynamics and metabolism, particularly the relationship between brain function and oxygen utilization, is important for understanding normal human brain operation as well as pathophysiology of neurological disorders. It can also be of great importance for evaluation of hypoxia within tumors of the brain and other organs. A fundamental discovery by Ogawa and co-workers of the BOLD (Blood Oxygenation Level Dependent) contrast opened a possibility to use this effect to study brain hemodynamic and metabolic properties by means of MRI measurements. Such measurements require developing theoretical models connecting MRI signal to brain structure and functioning and designing experimental techniques allowing MR measurements of salient features of theoretical models. In our review we discuss several such theoretical models and experimental methods for quantification brain hemodynamic and metabolic properties. Our review aims mostly at methods for measuring oxygen extraction fraction, OEF, based on measuring blood oxygenation level. Combining measurement of OEF with measurement of CBF allows evaluation of oxygen consumption, CMRO2. We first consider in detail magnetic properties of blood – magnetic susceptibility, MR relaxation and theoretical models of intravascular contribution to MR signal under different experimental conditions. Then, we describe a “through-space” effect – the influence of inhomogeneous magnetic fields, created in the extravascular space by intravascular deoxygenated blood, on the MR signal formation. Further we describe several experimental techniques taking advantage of these theoretical models. Some of these techniques - MR susceptometry, and T2-based quantification of oxygen OEF – utilize intravascular MR signal. Another technique – qBOLD – evaluates OEF by making use of through-space effects. In this review we targeted both scientists just entering the MR field and more experienced MR researchers
NASA Astrophysics Data System (ADS)
Berezovska, Ganna; Prada-Gracia, Diego; Mostarda, Stefano; Rao, Francesco
2012-11-01
Molecular simulations as well as single molecule experiments have been widely analyzed in terms of order parameters, the latter representing candidate probes for the relevant degrees of freedom. Notwithstanding this approach is very intuitive, mounting evidence showed that such descriptions are inaccurate, leading to ambiguous definitions of states and wrong kinetics. To overcome these limitations a framework making use of order parameter fluctuations in conjunction with complex network analysis is investigated. Derived from recent advances in the analysis of single molecule time traces, this approach takes into account the fluctuations around each time point to distinguish between states that have similar values of the order parameter but different dynamics. Snapshots with similar fluctuations are used as nodes of a transition network, the clusterization of which into states provides accurate Markov-state-models of the system under study. Application of the methodology to theoretical models with a noisy order parameter as well as the dynamics of a disordered peptide illustrates the possibility to build accurate descriptions of molecular processes on the sole basis of order parameter time series without using any supplementary information.
Experimental observations and theoretical models for beam-beam phenomena
Kheifets, S.
1981-03-01
The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.
Psychosocial stress and prostate cancer: a theoretical model.
Ellison, G L; Coker, A L; Hebert, J R; Sanderson, S M; Royal, C D; Weinrich, S P
2001-01-01
African-American men are more likely to develop and die from prostate cancer than are European-American men; yet, factors responsible for the racial disparity in incidence and mortality have not been elucidated. Socioeconomic disadvantage is more prevalent among African-American than among European-American men. Socioeconomic disadvantage can lead to psychosocial stress and may be linked to negative lifestyle behaviors. Regardless of socioeconomic position, African-American men routinely experience racism-induced stress. We propose a theoretical framework for an association between psychosocial stress and prostate cancer. Within the context of history and culture, we further propose that psychosocial stress may partially explain the variable incidence of prostate cancer between these diverse groups. Psychosocial stress may negatively impact the immune system leaving the individual susceptible to malignancies. Behavioral responses to psychosocial stress are amenable to change. If psychosocial stress is found to negatively impact prostate cancer risk, interventions may be designed to modify reactions to environmental demands. PMID:11572415
Theoretical Tools in Modeling Communication and Language Dynamics
NASA Astrophysics Data System (ADS)
Loreto, Vittorio
Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. In social phenomena, the basic constituents are not particles but humans and every individual interacts with a limited number of peers, usually negligible compared to the total number of people in the system. In spite of that, human societies are characterized by stunning global regularities that naturally call for a statistical physics approach to social behavior, i.e., the attempt to understand regularities at large scale as collective effects of the interaction among single individuals, considered as relatively simple entities. This is the paradigm of Complex Systems: an assembly of many interacting (and simple) units whose collective behavior is not trivially deducible from the knowledge of the rules governing their mutual interactions. In this chapter we review the main theoretical concepts and tools that physics can borrow to socially-motivated problems. Despite their apparent diversity, most research lines in social dynamics are actually closely connected from the point of view of both the methodologies employed and, more importantly, of the general phenomenological questions, e.g., what are the fundamental interaction mechanisms leading to the emergence of consensus on an issue, a shared culture, a common language or a collective motion?
Ion Implantation into Presolar Grains: A Theoretical Model
NASA Astrophysics Data System (ADS)
Verchovsky, A. B.; Wright, I. P.; Pillinger, C. T.
A numerical model for ion implantation into spherical grains in free space has been developed. It can be applied to single grains or collections of grains with known grain-size distributions. Ion-scattering effects were taken into account using results of computer simulations. Possible isotope and element fractionation of the implanted species was investigated using this model. The astrophysical significance of the model lies in the possible identification of energetically different components (such as noble gases) implanted into presolar grains (such as diamond and SiC) and in establishing implantation energies of the components.
NASA Astrophysics Data System (ADS)
Hauser, H.; Melikhov, Y.; Jiles, D. C.
2007-10-01
Two recent theoretical hysteresis models (Jiles-Atherton model and energetic model) are examined with respect to their capability to describe the dependence of the magnetization on magnetic field, microstructure, and anisotropy. It is shown that the classical Rayleigh law for the behavior of magnetization at low fields and the Stoner-Wohlfarth theory of domain magnetization rotation in noninteracting magnetic single domain particles can be considered as limiting cases of a more general theoretical treatment of hysteresis in ferromagnetism.
Theoretical model of impact damage in structural ceramics
NASA Technical Reports Server (NTRS)
Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.
1984-01-01
This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.
Theoretical models for duct acoustic propagation and radiation
NASA Technical Reports Server (NTRS)
Eversman, Walter
1991-01-01
The development of computational methods in acoustics has led to the introduction of analysis and design procedures which model the turbofan inlet as a coupled system, simultaneously modeling propagation and radiation in the presence of realistic internal and external flows. Such models are generally large, require substantial computer speed and capacity, and can be expected to be used in the final design stages, with the simpler models being used in the early design iterations. Emphasis is given to practical modeling methods that have been applied to the acoustical design problem in turbofan engines. The mathematical model is established and the simplest case of propagation in a duct with hard walls is solved to introduce concepts and terminologies. An extensive overview is given of methods for the calculation of attenuation in uniform ducts with uniform flow and with shear flow. Subsequent sections deal with numerical techniques which provide an integrated representation of duct propagation and near- and far-field radiation for realistic geometries and flight conditions.
Learning models of PTSD: Theoretical accounts and psychobiological evidence.
Lissek, Shmuel; van Meurs, Brian
2015-12-01
Learning abnormalities have long been centrally implicated in posttraumatic psychopathology. Indeed, of all anxiety disorders, PTSD may be most clearly attributable to discrete, aversive learning events. In PTSD, such learning is acquired during the traumatic encounter and is expressed as both conditioned fear to stimuli associated with the event and more general over-reactivity-or failure to adapt-to intense, novel, or fear-related stimuli. The relatively straightforward link between PTSD and these basic, evolutionarily old, learning processes of conditioning, sensitization, and habituation affords models of PTSD comprised of fundamental, experimentally tractable mechanisms of learning that have been well characterized across a variety of mammalian species including humans. Though such learning mechanisms have featured prominently in explanatory models of psychological maladjustment to trauma for at least 90years, much of the empirical testing of these models has occurred only in the past two decades. The current review delineates the variety of theories forming this longstanding tradition of learning-based models of PTSD, details empirical evidence for such models, attempts an integrative account of results from this literature, and specifies limitations of, and future directions for, studies testing learning models of PTSD. PMID:25462219
Design theoretic analysis of three system modeling frameworks.
McDonald, Michael James
2007-05-01
This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.
Theoretical and computational models of biological ion channels
NASA Astrophysics Data System (ADS)
Roux, Benoit
2004-03-01
A theoretical framework for describing ion conduction through biological molecular pores is established and explored. The framework is based on a statistical mechanical formulation of the transmembrane potential (1) and of the equilibrium multi-ion potential of mean forces through selective ion channels (2). On the basis of these developments, it is possible to define computational schemes to address questions about the non-equilibrium flow of ions through ion channels. In the case of narrow channels (gramicidin or KcsA), it is possible to characterize the ion conduction in terms of the potential of mean force of the ions along the channel axis (i.e., integrating out the off-axis motions). This has been used for gramicidin (3) and for KcsA (4,5). In the case of wide pores (i.e., OmpF porin), this is no longer a good idea, but it is possible to use a continuum solvent approximations. In this case, a grand canonical monte carlo brownian dynamics algorithm was constructed for simulating the non-equilibrium flow of ions through wide pores. The results were compared with those from the Poisson-Nernst-Planck mean-field electrodiffusion theory (6-8). References; 1. B. Roux, Biophys. J. 73:2980-2989 (1997); 2. B. Roux, Biophys. J. 77, 139-153 (1999); 3. Allen, Andersen and Roux, PNAS (2004, in press); 4. Berneche and Roux. Nature, 414:73-77 (2001); 5. Berneche and Roux. PNAS, 100:8644-8648 (2003); 6. W. Im and S. Seefeld and B. Roux, Biophys. J. 79:788-801 (2000); 7. W. Im and B. Roux, J. Chem. Phys. 115:4850-4861 (2001); 8. W. Im and B. Roux, J. Mol. Biol. 322:851-869 (2002).
Advancing swine models for human health and diseases.
Walters, Eric M; Prather, Randall S
2013-01-01
Swine models are relatively new kids on the block for modeling human health and diseases when compared to rodents and dogs. Because of the similarity to humans in size, physiology, and genetics, the pig has made significant strides in advancing the understanding of the human condition, and is thus an excellent choice for an animal model. Recent technological advances to genetic engineering of the swine genome enhance the utility of swine as models of human genetic diseases. PMID:23829105
Ray-theoretical modeling of secondary microseism P-waves
NASA Astrophysics Data System (ADS)
Farra, V.; Stutzmann, E.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.
2016-06-01
Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P-waves that propagate in water down to the ocean bottom where they are partly reflected, and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P-waves recorded by receivers in the far field. In the frequency domain, the P-wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P-waves in the ocean, (3) the propagation from the ocean bottom to the stations, (4) the receiver site effect. Secondary microseism P-waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analyzing the seismic signals generated by Typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Back projecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH IIIR. The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P-wave noise data and retrieve the source intensity and lateral extent.
Ray-theoretical modeling of secondary microseism P waves
NASA Astrophysics Data System (ADS)
Farra, V.; Stutzmann, E.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.
2016-09-01
Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P waves that propagate in water down to the ocean bottom where they are partly reflected and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P waves recorded by receivers in the far field. In the frequency domain, the P-wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P waves in the ocean, (3) the propagation from the ocean bottom to the stations and (4) the receiver site effect. Secondary microseism P waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analysing the seismic signals generated by typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Backprojecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH IIIR. The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P-wave noise data and retrieve the source intensity and lateral extent.
Theoretical modeling of electron mobility in superfluid 4He
NASA Astrophysics Data System (ADS)
Aitken, Frédéric; Bonifaci, Nelly; von Haeften, Klaus; Eloranta, Jussi
2016-07-01
The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid 4He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed "exotic ion" data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.
Theoretical modeling of electron mobility in superfluid (4)He.
Aitken, Frédéric; Bonifaci, Nelly; von Haeften, Klaus; Eloranta, Jussi
2016-07-28
The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid (4)He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed "exotic ion" data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed. PMID:27475346
A control theoretic model of driver steering behavior
NASA Technical Reports Server (NTRS)
Donges, E.
1977-01-01
A quantitative description of driver steering behavior such as a mathematical model is presented. The steering task is divided into two levels: (1) the guidance level involving the perception of the instantaneous and future course of the forcing function provided by the forward view of the road, and the response to it in an anticipatory open-loop control mode; (2) the stabilization level whereby any occuring deviations from the forcing function are compensated for in a closed-loop control mode. This concept of the duality of the driver's steering activity led to a newly developed two-level model of driver steering behavior. Its parameters are identified on the basis of data measured in driving simulator experiments. The parameter estimates of both levels of the model show significant dependence on the experimental situation which can be characterized by variables such as vehicle speed and desired path curvature.
Flavor symmetry based MSSM: Theoretical models and phenomenological analysis
NASA Astrophysics Data System (ADS)
Babu, K. S.; Gogoladze, Ilia; Raza, Shabbar; Shafi, Qaisar
2014-09-01
We present a class of supersymmetric models in which symmetry considerations alone dictate the form of the soft SUSY breaking Lagrangian. We develop a class of minimal models, denoted as sMSSM—for flavor symmetry-based minimal supersymmetric standard model—that respect a grand unified symmetry such as SO(10) and a non-Abelian flavor symmetry H which suppresses SUSY-induced flavor violation. Explicit examples are constructed with the flavor symmetry being gauged SU(2)H and SO(3)H with the three families transforming as 2+1 and 3 representations, respectively. A simple solution is found in the case of SU(2)H for suppressing the flavor violating D-terms based on an exchange symmetry. Explicit models based on SO(3)H without the D-term problem are developed. In addition, models based on discrete non-Abelian flavor groups are presented which are automatically free from D-term issues. The permutation group S3 with a 2+1 family assignment, as well as the tetrahedral group A4 with a 3 assignment are studied. In all cases, a simple solution to the SUSY CP problem is found, based on spontaneous CP violation leading to a complex quark mixing matrix. We develop the phenomenology of the resulting sMSSM, which is controlled by seven soft SUSY breaking parameters for both the 2+1 assignment and the 3 assignment of fermion families. These models are special cases of the phenomenological MSSM (pMSSM), but with symmetry restrictions. We discuss the parameter space of sMSSM compatible with LHC searches, B-physics constraints and dark matter relic abundance. Fine-tuning in these models is relatively mild, since all SUSY particles can have masses below about 3 TeV.
Some theoretical and computational aspects of a simplified subchannel model
Neil, C.H.
1983-01-01
Some recently obtained results are presented concerning the qualitative behavior of solutions to equations governing a simplified subchannel model for reactor hydrodynamics. The model describes time-independent flow of an incompressible fluid in two parallel, interconnected channels, subject to axial and lateral pressure drops defined by a Darcy friction factor. The phase portrait for the system of ordinary differential equations is presented, a solution to a boundary-value problem describing flow blockage is discussed, and the effect of the qualitative behavior of solutions on their numerical approximation is examined. The study was undertaken to determine the cause of numerical difficulty in approximating solutions to problems.
Aging and Interdependence: A Theoretical Model for Close Relationships.
ERIC Educational Resources Information Center
Blieszner, Rosemary
This paper demonstrates the utility of interdependence theory for understanding older persons' social relationships. Using friendship as an exemplary case, a model of expectations for and reactions to social exchanges is described. Exchanges which are perceived to be motivated by obligation are distinguished from those which are perceived to…
Testing Theoretical Models of Magnetic Damping Using an Air Track
ERIC Educational Resources Information Center
Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Gimenez, Marcos H.
2008-01-01
Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the…
Interpreting Unfamiliar Graphs: A Generative, Activity Theoretic Model
ERIC Educational Resources Information Center
Roth, Wolff-Michael; Lee, Yew Jin
2004-01-01
Research on graphing presents its results as if knowing and understanding were something stored in peoples' minds independent of the situation that they find themselves in. Thus, there are no models that situate interview responses to graphing tasks. How, then, we question, are the interview texts produced? How do respondents begin and end…
[Theoretical model for rocky desertification control in karst area].
Liang, Liang; Liu, Zhi-Xiao; Zhang, Dai-Gui; Deng, Kai-Dong; Zhang, You-Xiang
2007-03-01
Based on the basic principles of restoration ecology, the trigger-action model for rocky desertification control was proposed, i. e. , the ability that an ecosystem enables itself to develop was called dominant force, and the interfering factor resulting in the deviation of the climax of ecological succession from its preconcerted status was called trigger factor. The ultimate status of ecological succession was determined by the interaction of dominant force and trigger factor. Rocky desertification was the result of serious malignant triggers, and its control was the process of benign triggers in using the ecological restoration method of artificial designs to activate the natural designing ability of an ecosystem. The ecosystem of Karst rocky desertification in Fenghuang County with restoration measures was taken as a case to test the model, and the results showed that the restoration measures based on trigger-action model markedly improved the physical and chemical properties of soil and increased the diversity of plant. There was a benign trigger between the restoration measures and the Karst area. The rationality of the trigger-action model was primarily tested by the results in practice. PMID:17552199
SBS mitigation with 'two-tone' amplification: a theoretical model
NASA Astrophysics Data System (ADS)
Bronder, T. J.; Shay, T. M.; Dajani, I.; Gavrielides, A.; Robin, C. A.; Lu, C. A.
2008-02-01
A new technique for mitigating stimulated Brillouin scattering (SBS) effects in narrow-linewidth Yb-doped fiber amplifiers is demonstrated with a model that reduces to solving an 8×8 system of coupled nonlinear equations with the gain, SBS, and four-wave mixing (FMW) incorporated into the model. This technique uses two seed signals, or 'two-tones', with each tone reaching its SBS threshold almost independently and thus increasing the overall threshold for SBS in the fiber amplifier. The wavelength separation of these signals is also selected to avoid FWM, which in this case possesses the next lowest nonlinear effects threshold. This model predicts an output power increase of 86% (at SBS threshold with no signs of FWM) for a 'two-tone' amplifier with seed signals at 1064nm and 1068nm, compared to a conventional fiber amplifier with a single 1064nm seed. The model is also used to simulate an SBS-suppressing fiber amplifier to test the regime where FWM is the limiting factor. In this case, an optimum wavelength separation of 3nm to 10nm prevents FWM from reaching threshold. The optimum ratio of the input power for the two seed signals in 'two-tone' amplification is also tested. Future experimental verification of this 'two-tone' technique is discussed.
Multiaxial cyclic ratcheting in coiled tubing -- Part 1: Theoretical modeling
Rolovic, R.; Tipton, S.M.
2000-04-01
Coiled tubing is a long, continuous string of steel tubing that is used in the oil well drilling and servicing industry. Bending strains imposed on coiled tubing as it is deployed and retrieved from a well are considerably into the plastic regime and can be as high as 3%. Progressive growth of tubing diameter occurs when tubing is cyclically bent-straightened under constant internal pressure, regardless of the fact that the hoop stress imposed by typical pressure levels is well below the material's yield strength. A new incremental plasticity model is proposed in this study that can predict multiaxial cyclic ratcheting in coiled tubing more accurately than the conventional plasticity models. A new hardening rule is presented based on published experimental observations. The model also implements a new plastic modulus function. The predictions based on the new theory correlate well with experimental results presented in Part 2 of this paper. Some previously unexpected trends in coiled tubing deformation behavior were observed and correctly predicted using the proposed model.
Photoabsorption spectrum of helium trimer cation—Theoretical modeling
NASA Astrophysics Data System (ADS)
Kalus, René; Karlický, František; Lepetit, Bruno; Paidarová, Ivana; Gadea, Florent Xavier
2013-11-01
The photoabsorption spectrum of He_3^+ is calculated for two semiempirical models of intracluster interactions and compared with available experimental data reported in the middle UV range [H. Haberland and B. von Issendorff, J. Chem. Phys. 102, 8773 (1995)]. Nuclear delocalization effects are investigated via several approaches comprising quantum samplings using either exact or approximate (harmonic) nuclear wavefunctions, as well as classical samplings based on the Monte Carlo methodology. Good agreement with the experiment is achieved for the model by Knowles et al., [Mol. Phys. 85, 243 (1995); Knowles et al., Mol. Phys. 87, 827 (1996)] whereas the model by Calvo et al., [J. Chem. Phys. 135, 124308 (2011)] exhibits non-negligible deviations from the experiment. Predictions of far UV absorption spectrum of He_3^+, for which no experimental data are presently available, are reported for both models and compared to each other as well as to the photoabsorption spectrum of He_2^+. A simple semiempirical point-charge approximation for calculating transition probabilities is shown to perform well for He_3^+.
Photoabsorption spectrum of helium trimer cation--theoretical modeling.
Kalus, René; Karlický, František; Lepetit, Bruno; Paidarová, Ivana; Gadea, Florent Xavier
2013-11-28
The photoabsorption spectrum of He3(+) is calculated for two semiempirical models of intracluster interactions and compared with available experimental data reported in the middle UV range [H. Haberland and B. von Issendorff, J. Chem. Phys. 102, 8773 (1995)]. Nuclear delocalization effects are investigated via several approaches comprising quantum samplings using either exact or approximate (harmonic) nuclear wavefunctions, as well as classical samplings based on the Monte Carlo methodology. Good agreement with the experiment is achieved for the model by Knowles et al., [Mol. Phys. 85, 243 (1995); Mol. Phys. 87, 827 (1996)] whereas the model by Calvo et al., [J. Chem. Phys. 135, 124308 (2011)] exhibits non-negligible deviations from the experiment. Predictions of far UV absorption spectrum of He3(+), for which no experimental data are presently available, are reported for both models and compared to each other as well as to the photoabsorption spectrum of He2(+). A simple semiempirical point-charge approximation for calculating transition probabilities is shown to perform well for He3(+). PMID:24289357