Kochar, G D; Chakranarayan, A; Kohli, S; Kohli, V S; Khanna, V; Jayan, B; Chopra, S S; Verma, M
2016-05-01
The aim of this study was to quantify the changes in pharyngeal airway space (PAS) in patients with a skeletal class II malocclusion managed by bilateral sagittal split ramus osteotomy for mandibular advancement, using three-dimensional (3D) registration. The sample comprised 16 patients (mean age 21.69±2.80 years). Preoperative (T0) and postoperative (T1) computed tomography scans were recorded. Linear, cross-sectional area (CSA), and volumetric parameters of the velopharynx, oropharynx, and hypopharynx were evaluated. Parameters were compared with paired samples t-tests. Highly significant changes in dimension were measured in both sagittal and transverse planes (P<0.001). CSA measurements increased significantly between T0 and T1 (P<0.001). A significant increase in PAS volume was found at T1 compared with T0 (P<0.001). The changes in PAS were quantified using 3D reconstruction. Along the sagittal and transverse planes, the greatest increase was seen in the oropharynx (12.16% and 11.50%, respectively), followed by hypopharynx (11.00% and 9.07%) and velopharynx (8.97% and 6.73%). CSA increased by 41.69%, 34.56%, and 28.81% in the oropharynx, hypopharynx, and velopharynx, respectively. The volumetric increase was greatest in the oropharynx (49.79%) and least in the velopharynx (38.92%). These established quantifications may act as a useful guide for clinicians in the field of dental sleep medicine. PMID:26691933
Poon, Eric K W; Hayat, Umair; Thondapu, Vikas; Ooi, Andrew S H; Ul Haq, Muhammad Asrar; Moore, Stephen; Foin, Nicolas; Tu, Shengxian; Chin, Cheng; Monty, Jason P; Marusic, Ivan; Barlis, Peter
2015-08-01
Percutaneous coronary intervention (PCI) has shown a high success rate in the treatment of coronary artery disease. The decision to perform PCI often relies on the cardiologist's visual interpretation of coronary lesions during angiography. This has inherent limitations, particularly due to the low resolution and two-dimensional nature of angiography. State-of-the-art modalities such as three-dimensional quantitative coronary angiography, optical coherence tomography and invasive fractional flow reserve (FFR) may improve clinicians' understanding of both the anatomical and physiological importance of coronary lesions. While invasive FFR is the gold standard technique for assessment of the haemodynamic significance of coronary lesions, recent studies have explored a surrogate for FFR derived solely from three-dimensional reconstruction of the invasive angiogram, and therefore eliminating need for a pressure wire. Utilizing advanced computational fluid dynamics research, this virtual fractional flow reserve (vFFR) has demonstrated reasonable correlation with invasive measurements and remains an intense area of ongoing study. However, at present, several limitations and computational fluid dynamic assumptions may preclude vFFR from widespread clinical use. This review demonstrates the tight integration of advanced three-dimensional imaging techniques and vFFR in assessing coronary artery disease, reviews the advantages and disadvantages of such techniques and attempts to provide a glimpse of how such advances may benefit future clinical decision-making during PCI. PMID:26247271
Advanced Three-Dimensional Display System
NASA Technical Reports Server (NTRS)
Geng, Jason
2005-01-01
A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the
Advances in three-dimensional diagnostic radiology
TER HAAR ROMENY, BART M.; ZUIDERVELD, KAREL J.; VAN WAES, PAUL F. G. M.; VAN WALSUM, THEO; VAN DER WEIJDEN, REMKO; WEICKERT, JOACHIM; STOKKING, RIK; WINK, ONNO; KALITZIN, STILIYAN; MAINTZ, TWAN; ZONNEVELD, FRANS; VIERGEVER, MAX A.
1998-01-01
The maturity of current 3D rendering software in combination with recent developments in computer vision techniques enable an exciting range of applications for the visualisation, measurement and interactive manipulation of volumetric data, relevant both for diagnostic imaging and for anatomy. This paper reviews recent work in this area from the Image Sciences Institute at Utrecht University. The processes that yield a useful visual presentation are sequential. After acquisition and before any visualisation, an essential step is to prepare the data properly: this field is known as ‘image processing’ or ‘computer vision’ in analogy with the processing in human vision. Examples will be discussed of modern image enhancement and denoising techniques, and the complex process of automatically finding the objects or regions of interest, i.e. segmentation. One of the newer and promising methodologies for image analysis is based on a mathematical analysis of the human (cortical) visual processing: multiscale image analysis. After preprocessing the 3D rendering can be acquired by simulating the ‘ray casting’ in the computer. New possibilities are presented, such as the integrated visualisation in one image of (accurately registered) datasets of the same patient acquired in different modality scanners. Other examples include colour coding of functional data such as SPECT brain perfusion or functional magnetic resonance (MR) data and even metric data such as skull thickness on the rendered 3D anatomy from MR or computed tomography (CT). Optimal use and perception of 3D visualisation in radiology requires fast display and truly interactive manipulation facilities. Modern and increasingly cheaper workstations (<$10000) allow this to be a reality. It is now possible to manipulate 3D images of 2563 at 15 frames per second interactively, placing virtual reality within reach. The possibilities of modern workstations become increasingly more sophisticated and versatile
NASA Astrophysics Data System (ADS)
Thalmann, Peter; Hieber, Simone E.; Schulz, Georg; Deyhle, Hans; Khimchenko, Anna; Kurtcuoglu, Vartan; Olgac, Ufuk; Marmaras, Anastasios; Kuo, Willy; Meyer, Eric P.; Beckmann, Felix; Herzen, Julia; Ehrbar, Stefanie; Müller, Bert
2014-09-01
Malfunction of oxygen regulation in kidney and liver may lead to the pathogenesis of chronic diseases. The underlying mechanisms are poorly understood. In kidney, it is hypothesized that renal gas shunting from arteries to veins eliminates excess oxygen. Such shunting is highly dependent on the structure of the renal vascular network. The vascular tree has so far not been quantified under maintenance of its connectivity as three-dimensional imaging of the vessel tree down to the smallest capillaries, which in mouse model are smaller than 5 μm in diameter, is a challenging task. An established protocol uses corrosion casts and applies synchrotron radiation-based micro-computed tomography (SRμCT), which provides the desired spatial resolution with the necessary contrast. However, SRμCT is expensive and beamtime access is limited. We show here that measurements with a phoenix nanotomrm (General Electric, Wunstorf, Germany) can provide comparable results to those obtained with SRμCT, except for regions with small vessel structures, where the signal-to-noise level was significantly reduced. For this purpose the nanotom®m measurement was compared with its corresponding measurement acquired at the beamline P05 at PETRA III at DESY, Hamburg, Germany.
Three-Dimensional Computational Fluid Dynamics
Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
Computer program draws three-dimensional surfaces
NASA Technical Reports Server (NTRS)
Canright, R. B., Jr.; Swigert, P.
1972-01-01
Computer plotting program PLOT 3D draws views of surface forms z = f(x,y). Surface thus defined by program may be drawn after arbitrary rotations. Program portrays behavior of various functions involving two variables in many engineering, physics, and mathematical relationships.
Three-dimensional cardiac computational modelling: methods, features and applications.
Lopez-Perez, Alejandro; Sebastian, Rafael; Ferrero, Jose M
2015-01-01
The combination of computational models and biophysical simulations can help to interpret an array of experimental data and contribute to the understanding, diagnosis and treatment of complex diseases such as cardiac arrhythmias. For this reason, three-dimensional (3D) cardiac computational modelling is currently a rising field of research. The advance of medical imaging technology over the last decades has allowed the evolution from generic to patient-specific 3D cardiac models that faithfully represent the anatomy and different cardiac features of a given alive subject. Here we analyse sixty representative 3D cardiac computational models developed and published during the last fifty years, describing their information sources, features, development methods and online availability. This paper also reviews the necessary components to build a 3D computational model of the heart aimed at biophysical simulation, paying especial attention to cardiac electrophysiology (EP), and the existing approaches to incorporate those components. We assess the challenges associated to the different steps of the building process, from the processing of raw clinical or biological data to the final application, including image segmentation, inclusion of substructures and meshing among others. We briefly outline the personalisation approaches that are currently available in 3D cardiac computational modelling. Finally, we present examples of several specific applications, mainly related to cardiac EP simulation and model-based image analysis, showing the potential usefulness of 3D cardiac computational modelling into clinical environments as a tool to aid in the prevention, diagnosis and treatment of cardiac diseases. PMID:25928297
NASA Technical Reports Server (NTRS)
Anderson, B. H.
1983-01-01
A broad program to develop advanced, reliable, and user oriented three-dimensional viscous design techniques for supersonic inlet systems, and encourage their transfer into the general user community is discussed. Features of the program include: (1) develop effective methods of computing three-dimensional flows within a zonal modeling methodology; (2) ensure reasonable agreement between said analysis and selective sets of benchmark validation data; (3) develop user orientation into said analysis; and (4) explore and develop advanced numerical methodology.
High-definition three-dimensional television disparity map computation
NASA Astrophysics Data System (ADS)
Chammem, Afef; Mitrea, Mihai; Prêteux, Françoise
2012-10-01
By reconsidering some two-dimensional video inherited approaches and by adapting them to the stereoscopic video content and to the human visual system peculiarities, a new disparity map is designed. First, the inner relation between the left and the right views is modeled by some weights discriminating between the horizontal and vertical disparities. Second, the block matching operation is achieved by considering a visual related measure (normalized cross correlation) instead of the traditional pixel differences (mean squared error or sum of absolute differences). The advanced three-dimensional (3-D) video-new three step search (3DV-NTSS) disparity map (3-D Video-New Three Step Search) is benchmarked against two state-of-the-art algorithms, namely NTSS and full-search MPEG (FS-MPEG), by successively considering two corpora. The first corpus was organized during the 3DLive French national project and regroups 20 min of stereoscopic video sequences. The second one, with similar size, is provided by the MPEG community. The experimental results demonstrate the effectiveness of 3DV-NTSS in both reconstructed image quality (average gains between 3% and 7% in both PSNR and structural similarity, with a singular exception) and computational cost (search operation number reduced by average factors between 1.3 and 13). The 3DV-NTSS was finally validated by designing a watermarking method for high definition 3-D TV content protection.
New advances in three dimensional transient electromagnetic inversion
Newman, Gregory A.; Commer, Michael
2004-06-16
Inversion of transient electromagnetic (TEM) data sets to image the subsurface three-dimensional (3-D) electrical conductivity and magnetic permeability properties can be done directly in the time domain. The technique, first introduced by Wang et al. (1994) for causal and diffusive electromagnetic fields and subsequently implemented by Zhdanov and Portniaguine (1997) in the framework of iterative migration, is based upon imaging methods originally developed for seismic wavefields (Claerbout, 1971; Tarantola, 1984). In this paper we advance the original derivations of Wang et al. (1994) and Zhdanov and Portniaguine (1997) to treat non-causal TEM fields, as well as correct a flaw in the theory for treatment of magnetic field data. Our 3D imaging scheme is based on a conjugate-gradient search for the minimum of an error functional involving EM measurements governed by Maxwell's equations without displacement currents. Treatment for magnetic field, voltage (time derivative of the magnetic field) and electric field data are given. The functional can be computed by propagating the data errors back into the model in reverse time along with a DC field, sourced by the integrated data errors over the measurement time range. By correlating these fields, including the time-integrated back-propagated fields, with the corresponding incident field and its initial value at each image point, efficient computational forms for the gradients are developed. The forms of the gradients allow for additional efficiencies when voltage and electric field data are inverted. In such instances the combined data errors can be back-propagated jointly, significantly reducing the computation time required to solve the inverse problem. The inversion algorithm is applied to the long offset transient electromagnetic measurement (LOTEM) configuration thereby demonstrating its capability in inverting non-causal field measurements of electric field and voltage, sourced by a grounded wire, over complex
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
Ultrafast three-dimensional x-ray computed tomography
Bieberle, Martina; Barthel, Frank; Hampel, Uwe; Menz, Hans-Juergen; Mayer, Hans-Georg
2011-01-17
X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s{sup -1}. Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.
Three-dimensional computed tomography of the carpal ligaments.
Nanno, Mitsuhiko; Viegas, Steven F
2009-03-01
This article details a current perspective and accurate anatomical three-dimensional descriptions of the ligaments of the wrist. The carpometacarpal ligaments, the intercarpal ligaments, and the radiocarpal ligaments are described and illustrated using a unique combination of detailed dissection, computed tomography, and a three-dimensional digitization technique. Detailed information is also provided about the ligamentous attachments of the carpometacarpal joints, the carpal bones, and the distal radius. This study improves knowledge and understanding of the normal anatomy and mechanics of the radiocarpal and intercarpal ligaments and the carpometacarpal joints, and it should help in the assessment of radiographic images and treatment of various injuries and degenerative changes seen in the wrist. The knowledge of the ligaments will further serve as a foundation for understanding the anatomy of the ligaments, the biomechanics of the wrist, and the function of the individual ligaments and their roles in joint motion and stability. PMID:19235667
Ultrafast three-dimensional x-ray computed tomography
NASA Astrophysics Data System (ADS)
Bieberle, Martina; Barthel, Frank; Menz, Hans-Jürgen; Mayer, Hans-Georg; Hampel, Uwe
2011-01-01
X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s-1. Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.
Comparison of two three-dimensional cephalometric analysis computer software
Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek
2014-01-01
Background: Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Materials and Methods: Twenty cone beam computed tomography images were obtained using i-CAT® imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Results: Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. Conclusions: InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0. PMID:25426454
Three-dimensional geospatial information service based on cloud computing
NASA Astrophysics Data System (ADS)
Zhai, Xi; Yue, Peng; Jiang, Liangcun; Wang, Linnan
2014-01-01
Cloud computing technologies can support high-performance geospatial services in various domains, such as smart city and agriculture. Apache Hadoop, an open-source software framework, can be used to build a cloud environment on commodity clusters for storage and large-scale processing of data sets. The Open Geospatial Consortium (OGC) Web 3-D Service (W3DS) is a portrayal service for three-dimensional (3-D) geospatial data. Its performance could be improved by cloud computing technologies. This paper investigates how OGC W3DS could be developed in a cloud computing environment. It adopts the Apache Hadoop as the framework to provide a cloud implementation. The design and implementation of the 3-D geospatial information cloud service is presented. The performance evaluation is performed over data retrieval tests running in a cloud platform built by Hadoop clusters. The evaluation results provide a valuable reference on providing high-performance 3-D geospatial information cloud services.
Three-dimensional holographic reconstruction from computational tomography images
NASA Astrophysics Data System (ADS)
Zhao, Yan; Cao, Liangcai; Zhang, Hao; He, Qingsheng; Jin, Guofan
2014-11-01
An angular spectrum holographic algorithm is proposed for generating three-dimensional (3D) reconstruction from multiple computational tomography (CT) slices. Objects consist of multiple slices can be easily modeled by the angular spectrum. So the 3D structure can be built through the superposition of computer generated phase holograms originally from parallel discrete planes at different depths. Then the superposed phase hologram is uploaded to the phase-only spatial light modulator (SLM). With the SLM illuminated by the coherent light, the 3D reconstruction is observed by a camera. The proposed method is more computationally efficient compared with the point source algorithm, and the angular spectrum holographic algorithm can process more large-capacity CT data for the 3D visualization. Experiment demonstrates the feasibility of reconstructing CT biological structure with holographic display.
New advances in three-dimensional controlled-sourceelectromagnetic inversion
Commer, Michael; Newman, Gregory A.
2007-05-19
New techniques for improving both the computational andimaging performance of the three dimensional (3D) electromagnetic inverseproblem are presented. A non-linear conjugate gradient algorithm is theframework of the inversion scheme. Full wave equation modelling forcontrolled sources is utilized for data simulation along with anefficient gradient computation approach for the model update. Improvingthe modelling efficiency of the 3D finite difference method involves theseparation of the potentially large modelling mesh, defining the set ofmodel parameters, from the computational finite difference meshes usedfor field simulation. Grid spacings and thus overall grid sizes can bereduced and optimized according to source frequencies and source-receiveroffsets of a given input data set. Further computational efficiency isobtained by combining different levels of parallelization. While theparallel scheme allows for an arbitrarily large number of parallel tasks,the relative amount of message passing is kept constant. Imageenhancement is achieved by model parameter transformation functions,which enforce bounded conductivity parameters and thus prevent parameterovershoots. Further, a remedy for treating distorted data within theinversion process is presented. Data distortions simulated here includepositioning errors and a highly conductive overburden, hiding the desiredtarget signal. The methods are demonstrated using both synthetic andfield data.
Advanced three-dimensional Eulerian hydrodynamic algorithm development
Rider, W.J.; Kothe, D.B.; Mosso, S.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project is to investigate, implement, and evaluate algorithms that have high potential for improving the robustness, fidelity and accuracy of three-dimensional Eulerian hydrodynamic simulations. Eulerian computations are necessary to simulate a number of important physical phenomena ranging from the molding process for metal parts to nuclear weapons safety issues to astrophysical phenomena such as that associated with a Type 2 supernovae. A number of algorithmic issues were explored in the course of this research including interface/volume tracking, surface physics integration, high resolution integration techniques, multilevel iterative methods, multimaterial hydrodynamics and coupling radiation with hydrodynamics. This project combines core strengths of several Laboratory divisions. The project has high institutional benefit given the renewed emphasis on numerical simulations in Science-Based Stockpile Stewardship and the Accelerated Strategic Computing Initiative and LANL`s tactical goals related to high performance computing and simulation.
A three-dimensional magnetostatics computer code for insertion devices.
Chubar, O; Elleaume, P; Chavanne, J
1998-05-01
RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica [Mathematica is a registered trademark of Wolfram Research, Inc.]. The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented. PMID:15263552
Three Dimensional Display Of Tumors Via Computed Tomography
NASA Astrophysics Data System (ADS)
Smathers, Ralph L.
1985-09-01
Computed tomography is widely utilized for the detection and staging of neoplasm. Typical chest, abdomen or pelvis CT scans may produce 10 to 20 transverse slices for each region. The mental reconstruction of the three dimensional anatomy from these transverse sections can be done by a physician who has had training in the analysis and interpretation of cross sectional anatomy and pathology. This mental reconstruction, however, may take years to develop into an efficient tool. With the 3-D reconstructions used in this study, diagnostic information concerning the location, shape and spread of tumor masses can be presented in a simple, intuitive 3-dimensional display. This technique has been found to be useful for improving communication between diagnostic radiologists and consulting physicians.
Advancing three-dimensional MEMS by complimentary laser micro manufacturing
NASA Astrophysics Data System (ADS)
Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.
2006-01-01
This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.
Computations of Complex Three-Dimensional Turbulent Free Jets
NASA Technical Reports Server (NTRS)
Wilson, Robert V.; Demuren, Ayodeji O.
1997-01-01
Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.
Three-dimensional computer modeling of hydrogen injection and combustion
Johnson, N.L.; Amsden, A.A.; Naber, J.D.; Siebers, D.L.
1995-02-01
The hydrodynamics of hydrogen gas injection into a fixed-volume combustion chamber is analyzed and simulated using KIVA-3, a three-dimensional, reactive flow computer code. Comparisons of the simulation results are made to data obtained at the Combustion Research Facility at Sandia National Laboratory-California (SNL-CA). Simulation of the gas injection problem is found to be of comparable difficulty as the liquid fuel injection in diesel engines. The primary challenge is the large change of length scale from the flow of gas in the orifice to the penetration in the combustion chamber. In the current experiments, the change of length scale is about 4,000. A reduction of the full problem is developed that reduces the change in length scale in the simulation to about 400, with a comparable improvement in computational times. Comparisons of the simulation to the experimental data shows good agreement in the penetration history and pressure rise in the combustion chamber. At late times the comparison is sensitive to the method of determination of the penetration in the simulations. In a comparison of the combustion modeling of methane and hydrogen, hydrogen combustion is more difficult to model, and currently available kinetic models fail to predict the observed autoignition delay at these conditions.
Three-Dimensional Radiative Transfer on a Massively Parallel Computer.
NASA Astrophysics Data System (ADS)
Vath, Horst Michael
1994-01-01
We perform three-dimensional radiative transfer calculations on the MasPar MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. To make radiative transfer calculations efficient, we must re-consider the numerical methods and methods of storage of data that have been used with serial machines. We developed a numerical code which efficiently calculates images and spectra of astrophysical systems as seen from different viewing directions and at different wavelengths. We use this code to examine a number of different astrophysical systems. First we image the HI distribution of model galaxies. Then we investigate the galaxy NGC 5055, which displays a radial asymmetry in its optical appearance. This can be explained by the presence of dust in the outer HI disk far beyond the optical disk. As the formation of dust is connected to the presence of stars, the existence of dust in outer regions of this galaxy could have consequences for star formation at a time when this galaxy was just forming. Next we use the code for polarized radiative transfer. We first discuss the numerical computation of the required cyclotron opacities and use them to calculate spectra of AM Her systems, binaries containing accreting magnetic white dwarfs. Then we obtain spectra of an extended polar cap. Previous calculations did not consider the three -dimensional extension of the shock. We find that this results in a significant underestimate of the radiation emitted in the shock. Next we calculate the spectrum of the intermediate polar RE 0751+14. For this system we obtain a magnetic field of ~10 MG, which has consequences for the evolution of intermediate polars. Finally we perform 3D radiative transfer in NLTE in the two-level atom approximation. To solve the transfer equation in this case, we adapt the short characteristic method and examine different acceleration methods to obtain the
A Three-Dimensional Computational Model of Collagen Network Mechanics
Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi
2014-01-01
Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649
Computer simulations of realistic three-dimensional microstructures
NASA Astrophysics Data System (ADS)
Mao, Yuxiong
A novel and efficient methodology is developed for computer simulations of realistic two-dimensional (2D) and three-dimensional (3D) microstructures. The simulations incorporate realistic 2D and 3D complex morphologies/shapes, spatial patterns, anisotropy, volume fractions, and size distributions of the microstructural features statistically similar to those in the corresponding real microstructures. The methodology permits simulations of sufficiently large 2D as well as 3D microstructural windows that incorporate short-range (on the order of particle/feature size) as well as long-range (hundred times the particle/feature size) microstructural heterogeneities and spatial patterns at high resolution. The utility of the technique has been successfully demonstrated through its application to the 2D microstructures of the constituent particles in wrought Al-alloys, the 3D microstructure of discontinuously reinforced Al-alloy (DRA) composites containing SiC particles that have complex 3D shapes/morphologies and spatial clustering, and 3D microstructure of boron modified Ti-6Al-4V composites containing fine TiB whiskers and coarse primary TiB particles. The simulation parameters are correlated with the materials processing parameters (such as composition, particle size ratio, extrusion ratio, extrusion temperature, etc.), which enables the simulations of rational virtual 3D microstructures for the parametric studies on microstructure-properties relationships. The simulated microstructures have been implemented in the 3D finite-elements (FE)-based framework for simulations of micro-mechanical response and stress-strain curves. Finally, a new unbiased and assumption free dual-scale virtual cycloids probe for estimating surface area of 3D objects constructed by 2D serial section images is also presented.
Computer vision system for three-dimensional inspection
NASA Astrophysics Data System (ADS)
Penafiel, Francisco; Fernandez, Luis; Campoy, Pascual; Aracil, Rafael
1994-11-01
In the manufacturing process certain workpieces are inspected for dimensional measurement using sophisticated quality control techniques. During the operation phase, these parts are deformed due to the high temperatures involved in the process. The evolution of the workpieces structure is noticed on their dimensional modification. This evolution can be measured with a set of dimensional parameters. In this paper, a three dimensional automatic inspection of these parts is proposed. The aim is the measuring of some workpieces features through 3D control methods using directional lighting and a computer artificial vision system. The results of this measuring must be compared with the parameters obtained after the manufacturing process in order to determine the degree of deformation of the workpiece and decide whether it is still usable or not. Workpieces outside a predetermined specification range must be discarded and replaced by new ones. The advantage of artificial vision methods is based on the fact that there is no need to get in touch with the object to inspect. This makes feasible its use in hazardous environments, not suitable for human beings. A system has been developed and applied to the inspection of fuel assemblies in nuclear power plants. Such a system has been implemented in a very high level of radiation environment and operates in underwater conditions. The physical dimensions of a nuclear fuel assembly are modified after its operation in a nuclear power plant in relation to the original dimensions after its manufacturing. The whole system (camera, mechanical and illumination systems and the radioactive fuel assembly) is submerged in water for minimizing radiation effects and is remotely controlled by human intervention. The developed system has to inspect accurately a set of measures on the fuel assembly surface such as length, twists, arching, etc. The present project called SICOM (nuclear fuel assembly inspection system) is included into the R
Method for computing three-dimensional turbulent flows
Bernard, P.S.; Berger, B.S.
1982-06-01
The MVC (mean vorticity and covariance) turbulence closure is derived for three-dimensional turbulent flows. The derivation utilizes Lagrangian time expansion techniques applied to the unclosed terms of the mean vorticity and covariance equations. The closed mean vorticity equation is applied to the numerical solution of fully developed three-dimensional channel flow. Anisotropies in the wall region are modelled by pairs of counterrotating streamwise vortices. The numerical results are in close agreement with experimental data. Analysis of the contributions of the terms in the mean vorticity equation gives insight into the dynamics of the turbulent boundary. 41 references, 7 figures.
Application of three-dimensional computed tomography in craniofacial clinical practice and research.
Anderson, P J; Yong, R; Surman, T L; Rajion, Z A; Ranjitkar, S
2014-06-01
Following the invention of the first computed tomography (CT) scanner in the early 1970s, many innovations in three-dimensional (3D) diagnostic imaging technology have occurred, leading to a wide range of applications in craniofacial clinical practice and research. Three-dimensional image analysis provides superior and more detailed information compared with conventional plain two-dimensional (2D) radiography, with the added benefit of 3D printing for preoperative treatment planning and regenerative therapy. Current state-of-the-art multidetector CT (MDCT), also known as medical CT, has an important role in the diagnosis and management of craniofacial injuries and pathology. Three-dimensional cone beam CT (CBCT), pioneered in the 1990s, is gaining increasing popularity in dental and craniofacial clinical practice because of its faster image acquisition at a lower radiation dose, but sound guidelines are needed to ensure its optimal clinical use. Recent innovations in micro-computed tomography (micro-CT) have revolutionized craniofacial biology research by enabling higher resolution scanning of teeth beyond the capabilities of MDCT and CBCT, presenting new prospects for translational clinical research. Even after four decades of refinement, CT technology continues to advance and broaden the horizons of craniofacial clinical practice and phenomics research. PMID:24611727
Three-dimensional hybrid grid generation using advancing front techniques
NASA Technical Reports Server (NTRS)
Steinbrenner, John P.; Noack, Ralph W.
1995-01-01
A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.
Computation of three-dimensional mixed convective boundary layer flow
NASA Technical Reports Server (NTRS)
Gadepalli, Prashandt; Rahman, Muhammad M.
1995-01-01
The paper presents the numerical solution of heat and mass transfer during cross-flow (orthogonal) mixed convection. In this class of flow, a buoyancy-driven transport in the vertical direction and a forced convective flow in the horizontal direction results in a three-dimensional boundary layer structure adjacent to the plate. The rates of heat and mass transfer are determined by a combined influence of the two transport processes. The equations for the conservation of mass, momentum, energy, and species concentration were solved along with appropriate boundary conditions to determine the distributions of velocity components, temperature, and concentration across the thickness of the boundary layer at different locations on the plate. Results were expressed in dimensionless form using Reynolds number, Richardson number for heat transfer, Richardson number for mass transfer, Prandtl number, and Schmidt number as parameters. It was found that the transport is dominated by buoyancy at smaller vertical locations and at larger distances away from the forced convection leading edge. Effects of forced convection appeared to be very strong at smaller horizontal distances from the leading edge. The cross stream forced convection enhanced the rate of heat and mass transfer by a very significant amount.
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
Parallel computation of three-dimensional nonlinear magnetostatic problems.
Levine, D.; Gropp, W.; Forsman, K.; Kettunen, L.; Mathematics and Computer Science; Tampere Univ. of Tech.
1999-02-01
We describe a general-purpose parallel electromagnetic code for computing accurate solutions to large computationally demanding, 3D, nonlinear magnetostatic problems. The code, CORAL, is based on a volume integral equation formulation. Using an IBM SP parallel computer and iterative solution methods, we successfully solved the dense linear systems inherent in such formulations. A key component of our work was the use of the PETSc library, which provides parallel portability and access to the latest linear algebra solution technology.
Children Learning from Artfully Designed, Three-Dimensional Computer Animation
ERIC Educational Resources Information Center
Ju, Yoomi Choi; Cifuentes, Lauren
2002-01-01
An artfully designed, 3-D computer-generated video story was created to demonstrate the mixing of primary colors to obtain secondary colors. Two research questions were explored in this research: Do artfully designed 3-D computer-generated video stories enhance learning or are such entertaining works a distraction from learning? And, do children…
The three-dimensional Multi-Block Advanced Grid Generation System (3DMAGGS)
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Weilmuenster, Kenneth J.
1993-01-01
As the size and complexity of three dimensional volume grids increases, there is a growing need for fast and efficient 3D volumetric elliptic grid solvers. Present day solvers are limited by computational speed and do not have all the capabilities such as interior volume grid clustering control, viscous grid clustering at the wall of a configuration, truncation error limiters, and convergence optimization residing in one code. A new volume grid generator, 3DMAGGS (Three-Dimensional Multi-Block Advanced Grid Generation System), which is based on the 3DGRAPE code, has evolved to meet these needs. This is a manual for the usage of 3DMAGGS and contains five sections, including the motivations and usage, a GRIDGEN interface, a grid quality analysis tool, a sample case for verifying correct operation of the code, and a comparison to both 3DGRAPE and GRIDGEN3D. Since it was derived from 3DGRAPE, this technical memorandum should be used in conjunction with the 3DGRAPE manual (NASA TM-102224).
Early changes in condylar position after mandibular advancement: a three-dimensional analysis.
Méndez-Manjón, I; Guijarro-Martínez, R; Valls-Ontañón, A; Hernández-Alfaro, F
2016-06-01
The aim of this study was to perform a three-dimensional (3D) assessment of positional changes of the mandibular condyle after bilateral sagittal split osteotomy (BSSO). A prospective evaluation of 22 skeletal class II patients who underwent a BSSO for mandibular advancement was performed. Pre- and postoperative cone beam computed tomography scans were taken. Using the cranial base as a stable reference, the pre- and postoperative 3D skull models were superimposed virtually. Positional changes of the condyles were assessed with a 3D colour mapping system (SimPlant O&O). A Brunner-Langer statistical test was applied to test the null hypothesis that the condylar position remains stable after BSSO. The level of significance was set at 0.05. The mean mandibular advancement in the studied sample was 6.7±1.6mm. Overall, the condylar positional changes after BSSO for mandibular advancement were statistically significant (P<0.05). A positive correlation was found between the displacement of the left condyle and the amount of mandibular advancement (P<0.01). The results of this study suggest that statistically significant changes of condylar position occur after mandibular advancement. Long-term evaluation is needed to assess the capacity of the temporomandibular joint to adapt to these changes. PMID:26837717
Computation of three-dimensional flows using two stream functions
NASA Technical Reports Server (NTRS)
Greywall, Mahesh S.
1991-01-01
An approach to compute 3-D flows using two stream functions is presented. The method generates a boundary fitted grid as part of its solution. Commonly used two steps for computing the flow fields are combined into a single step in the present approach: (1) boundary fitted grid generation; and (2) solution of Navier-Stokes equations on the generated grid. The presented method can be used to directly compute 3-D viscous flows, or the potential flow approximation of this method can be used to generate grids for other algorithms to compute 3-D viscous flows. The independent variables used are chi, a spatial coordinate, and xi and eta, values of stream functions along two sets of suitably chosen intersecting stream surfaces. The dependent variables used are the streamwise velocity, and two functions that describe the stream surfaces. Since for a 3-D flow there is no unique way to define two sets of intersecting stream surfaces to cover the given flow, different types of two sets of intersecting stream surfaces are considered. First, the metric of the (chi, xi, eta) curvilinear coordinate system associated with each type is presented. Next, equations for the steady state transport of mass, momentum, and energy are presented in terms of the metric of the (chi, xi, eta) coordinate system. Also included are the inviscid and the parabolized approximations to the general transport equations.
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Chimento, Thomas; Doshay, David; Cheng, Rei
1992-01-01
Results of computer-assisted research concerned with the three-dimensional reconstruction and simulations of vestibular macular neural connectivities are summarized. The discussion focuses on terminal/receptive fields, the question of synapses across the striola, endoplasmic reticulum and its potential role in macular information processing, and the inner epithelial plexus. Also included are preliminary results of computer simulations of nerve fiber collateral functioning, an essential step toward the three-dimensional simulation of a functioning macular neural network.
NASA Astrophysics Data System (ADS)
Wang, Dongdong; Liang, Qingwen; Zhang, Hanjie
2016-06-01
A superconvergent isogeometric formulation is presented to compute the eigenvalues for three dimensional wave equation. This three dimensional superconvergent isogeometric formulation is characterized by a higher order mass matrix formulation with particular reference to the quadratic basis functions. The three dimensional higher order mass matrix is built upon an optimal combination of the reduced bandwidth mass matrix and the consistent mass matrix. The frequency error associated with the isogeometric discretization of three dimensional wave equation is derived in detail. In particular, the optimal mass combination parameter for higher order mass matrix is devised as a function of the two spatial wave propagation angles, which enables that arbitrary frequency corresponding to a given wave propagation direction can be computed in a superconvergent way. Two extra orders of accuracy, i.e., 6th order of accuracy, are attained by the proposed higher order mass matrix than the consistent mass matrix for the frequency computation of three dimensional wave equation. The dispersion property of the present three dimensional higher order mass matrix formulation is examined as well. The accuracy of the proposed three dimensional superconvergent isogeometric formulation is testified by several numerical examples.
Computation of three-dimensional flow about aerobrake configurations
NASA Technical Reports Server (NTRS)
Li, C. P.
1986-01-01
Ellipsoid, cone and cylinder aerobrake configurations are analyzed to provide comparison data between experimental and model predictions. An analytical model was devised to account for the shock layer ahead of the body and in the near-wake region in terms of the Navier-Stokes equations expressed in conformal polar and azimuthal-angle coordinates. Using polar coordinates simplified the equations by mapping the body onto a sphere, a procedure which also reduced the magnitude of the discretization errors. The equations are then solved using an alternating direction implicit (ADI) factorization technique. Computations were carried out for Mach 3-10 at various grid resolutions and compared with available wind tunnel data. The model generated pressure distributions, heat transfer coefficients and velocity profile data that agreed relatively well with experimental data at a reduced computational cost. Further work is necessary to identify the location of shocks and to model flows about asymmetric configurations.
Numerical procedures for three-dimensional computational surface thermochemistry
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Rasky, Daniel J.
1992-01-01
Models and equations for surface thermochemistry and near-surface thermophysics of aerodynamically-heated thermal protection materials are reviewed, with particular emphasis on computational boundary conditions for surface mass and energy transfer. The surface energy and mass balances, coupled with an appropriate ablation or surface catalysis model, provide complete thermochemical boundary conditions for a true multidisciplinary solution of the fully coupled fluid-dynamics/solid mechanics problem. Practical approximate solutions can be obtained by using a detailed model with full thermophysics for either the solid or fluid phase amd a semianalytic method for the other half of the problem. A significant increase in the state-of-the-art in aerothermal computational fluid dynamics is possible by uniting CFD methodology with surface thermochemistry boundary conditions and the heat-balance-integral method.
Owen, Benjamin; Lowe, Christopher; Ashton, Neil; Mandal, Parthasarathi; Rogers, Steven; Wein, Wolfgang; McCollum, Charles; Revell, Alistair
2016-03-01
The current criterion for surgical intervention in abdominal aortic aneurysms, based upon a maximal aortic diameter, is considered conservative due to the high mortality rate in case of rupture. The research community is actively investigating the use of computational mechanics tools combined with patient-specific imaging to help identify more accurate criteria. Widespread uptake of a successful metric will however be limited by the need for computed tomography, which is at present the primary image extraction method on account of the location and complex shape of the aneurysms. The use of three-dimensional ultrasound as the scanning method is more attractive on account of increased availability, reduced cost and reduced risk to patients. The suitability of three-dimensional ultrasound is assessed for this purpose in the present work; computational fluid dynamics simulations were performed on geometries obtained from the same patient using both ultrasound and computed tomography. The influence of different smoothing algorithms is investigated in the geometry preparation stage and Taubin's low-pass filter was found to best preserve geometry features. Laminar, Newtonian, steady-state simulation analysis identified haemodynamic characteristics to be qualitatively similar in terms of wall shear stress, velocity and vorticity. The study demonstrates the potential for three-dimensional ultrasound to be integrated into a more accessible patient-specific modelling tool able to identify the need for surgical intervention of abdominal aortic aneurysms. PMID:26893226
Computational Model of Three Dimensional Elastic Wing Driven by Muscles
NASA Astrophysics Data System (ADS)
Wang, Z. Jane; Cowen, Nathaniel; Peskin, Charles S.; Childress, Stephen W.
2003-11-01
The flapping wing motion observed in nature results from couplings of muscles, flexible wing structures, and unsteady flows. Previously we have studied the unsteady flows and forces of a rigid two dimensional wing undergoing prescribed motion similar to kinematics observed in insects, as a means of understanding basic unsteady aerodynamic mechanisms. In this talk, we describe our recent progress in constructing a more realistic model insect, which consists of a pair of elastic wings immersed in fluids, and is driven by periodically contracting 'muscles'. A natural computational framework for such a system is the immersed boundary method, which is used here. We present simulations of flapping flight at Reynolds number 10^2, in the same range as that of fruitflies and butterflies.
Hydrogen program combustion research: Three dimensional computational modeling
Johnson, N.L.; Amsden, A.A.; Butler, T.D.
1995-05-01
We have significantly increased our computational modeling capability by the addition of a vertical valve model in KIVA-3, code used internationally for engine design. In this report the implementation and application of the valve model is described. The model is shown to reproduce the experimentally verified intake flow problem examined by Hessel. Furthermore, the sensitivity and performance of the model is examined for the geometry and conditions of the hydrogen-fueled Onan engine in development at Sandia National Laboratory. Overall the valve model is shown to have comparable accuracy as the general flow simulation capability in KIVA-3, which has been well validated by past comparisons to experiments. In the exploratory simulations of the Onan engine, the standard use of the single kinetic reaction for hydrogen oxidation was found to be inadequate for modeling the hydrogen combustion because of its inability to describe both the observed laminar flame speed and the absence of autoignition in the Onan engine. We propose a temporary solution that inhibits the autoignition without sacrificing the ability to model spark ignition. In the absence of experimental data on the Onan engine, a computational investigation was undertaken to evaluate the importance of modeling the intake flow on the combustion and NO{sub x} emissions. A simulation that began with the compression of a quiescent hydrogen-air mixture was compared to a simulation of the full induction process with resolved opening and closing of the intake valve. Although minor differences were observed in the cylinder-averaged pressure, temperature, bulk-flow kinetic energy and turbulent kinetic energy, large differences where observed in the hydrogen combustion rate and NO{sub x} emissions. The flow state at combustion is highly heterogeneous and sensitive to the details of the bulk and turbulent flow and that an accurate simulation of the Onan engine must include the modeling of the air-fuel induction.
Three Dimensional Computer Graphics Federates for the 2012 Smackdown Simulation
NASA Technical Reports Server (NTRS)
Fordyce, Crystal; Govindaiah, Swetha; Muratet, Sean; O'Neil, Daniel A.; Schricker, Bradley C.
2012-01-01
The Simulation Interoperability Standards Organization (SISO) Smackdown is a two-year old annual event held at the 2012 Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown event is to provide college students with hands-on experience in developing distributed simulations using High Level Architecture (HLA). Participating for the second time, the University of Alabama in Huntsville (UAHuntsville) deployed four federates, two federates simulated a communications server and a lunar communications satellite with a radio. The other two federates generated 3D computer graphics displays for the communication satellite constellation and for the surface based lunar resupply mission. Using the Light-Weight Java Graphics Library, the satellite display federate presented a lunar-texture mapped sphere of the moon and four Telemetry Data Relay Satellites (TDRS), which received object attributes from the lunar communications satellite federate to drive their motion. The surface mission display federate was an enhanced version of the federate developed by ForwardSim, Inc. for the 2011 Smackdown simulation. Enhancements included a dead-reckoning algorithm and a visual indication of which communication satellite was in line of sight of Hadley Rille. This paper concentrates on these two federates by describing the functions, algorithms, HLA object attributes received from other federates, development experiences and recommendations for future, participating Smackdown teams.
Three-dimensional radiative transfer on a massively parallel computer
NASA Astrophysics Data System (ADS)
Vath, H. M.
1994-04-01
We perform 3D radiative transfer calculations in non-local thermodynamic equilibrium (NLTE) in the simple two-level atom approximation on the Mas-Par MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. On such a machine, all processors execute the same command at a given time, but on different data. To make radiative transfer calculations efficient, we must re-consider the numerical methods and storage of data. To solve the transfer equation, we adopt the short characteristic method and examine different acceleration methods to obtain the source function. We use the ALI method and test local and non-local operators. Furthermore, we compare the Ng and the orthomin methods of acceleration. We also investigate the use of multi-grid methods to get fast solutions for the NLTE case. In order to test these numerical methods, we apply them to two problems with and without periodic boundary conditions.
NASA Technical Reports Server (NTRS)
Davis, Steven B.
1990-01-01
Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.
NASA Astrophysics Data System (ADS)
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.
2016-02-01
In past work we have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we applied rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. In addition, we have given examples of the solution of forward and inverse problems using these algorithms.
NASA Technical Reports Server (NTRS)
Povinelli, L. A.
1984-01-01
An assessment of several three dimensional inviscid turbine aerodynamic computer codes and loss models used at the NASA Lewis Research Center is presented. Five flow situations are examined, for which both experimental data and computational results are available. The five flows form a basis for the evaluation of the computational procedures. It was concluded that stator flows may be calculated with a high degree of accuracy, whereas, rotor flow fields are less accurately determined. Exploitation of contouring, learning, bowing, and sweeping will require a three dimensional viscous analysis technique.
NASA Technical Reports Server (NTRS)
Wong, K. W.
1974-01-01
Program THREED was developed for the purpose of a research study on the treatment of control data in lunar phototriangulation. THREED is the code name of a computer program for performing absolute orientation by the method of three-dimensional projective transformation. It has the capability of performing complete error analysis on the computed transformation parameters as well as the transformed coordinates.
Computer program for assessing the theoretical performance of a three dimensional inlet
NASA Technical Reports Server (NTRS)
Agnone, A. M.; Kung, F.
1972-01-01
A computer program for determining the theoretical performance of a three dimensional inlet is presented. An analysis for determining the capture area, ram force, spillage force, and surface pressure force is presented, along with the necessary computer program. A sample calculation is also included.
NASA Technical Reports Server (NTRS)
Tanaka, K.; Hirose, H.
1986-01-01
The development of transonic aerodynamic computation methods and specific examples, as well as examples of three-dimensional transonic computation in design, are discussed. The case of the transonic transport and the case of the small transport are analyzed. Requirements for programs of the future are itemized.
NASA Technical Reports Server (NTRS)
Ashbaugh, J. B.; Roland, D. P.; Laird, L. F.
1978-01-01
DSPOBJ is a FORTRAN subroutine to control the display of three-dimensional line networks on a stand-alone, general-purpose, interactive computer graphics system. The program controls the creation and manipulation of transformation matrices for the display and control of multiple sets of line networks. It provides advanced graphics features such as independent and global scaling, rotation and translation, cross-sectioning, reflection, and simultaneous display of four views.
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1975-01-01
A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.
GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.
NASA Astrophysics Data System (ADS)
Kim, Kwang-Ho
Three-dimensional computation of turbulent flow in curved ducts and spiral turbine casings is performed. Mathematical models are described by basic equations resolved by a developed numerical partial parabolic computation procedure. Effect of turbulent oscillations on friction force is analyzed by Prandtl mixing length flow theory. Computational procedure is tested on a 90 deg curved channel. Main flow characteristics, secondary flow, double vortex formation, retroaction, and outlet boundary conditions are considered. Mathematical and experimental results are concordant.
An Exploration of Three-Dimensional Integrated Assessment for Computational Thinking
ERIC Educational Resources Information Center
Zhong, Baichang; Wang, Qiyun; Chen, Jie; Li, Yi
2016-01-01
Computational thinking (CT) is a fundamental skill for students, and assessment is a critical factor in education. However, there is a lack of effective approaches to CT assessment. Therefore, we designed the Three-Dimensional Integrated Assessment (TDIA) framework in this article. The TDIA has two aims: one was to integrate three dimensions…
Angular interpolations and splice options for three-dimensional transport computations
Abu-Shumays, I.K.; Yehnert, C.E.
1996-01-01
New, accurate and mathematically rigorous angular Interpolation strategies are presented. These strategies preserve flow and directionality separately over each octant of the unit sphere, and are based on a combination of spherical harmonics expansions and least squares algorithms. Details of a three-dimensional to three-dimensional (3-D to 3-D) splice method which utilizes the new angular interpolations are summarized. The method has been implemented in a multidimensional discrete ordinates transport computer program. Various features of the splice option are illustrated by several applications to a benchmark Dog-Legged Void Neutron (DLVN) streaming and transport experimental assembly.
Computation of three-dimensional shock wave and boundary-layer interactions
NASA Technical Reports Server (NTRS)
Hung, C. M.
1985-01-01
Computations of the impingement of an oblique shock wave on a cylinder and a supersonic flow past a blunt fin mounted on a plate are used to study three dimensional shock wave and boundary layer interaction. In the impingement case, the problem of imposing a planar impinging shock as an outer boundary condition is discussed and the details of particle traces in windward and leeward symmetry planes and near the body surface are presented. In the blunt fin case, differences between two dimensional and three dimensional separation are discussed, and the existence of an unique high speed, low pressure region under the separated spiral vortex core is demonstrated. The accessibility of three dimensional separation is discussed.
Three-Dimensional Ignition and Flame Propagation Above Liquid Fuel Pools: Computational Analysis
NASA Technical Reports Server (NTRS)
Cai, Jinsheng; Sirignano, William A.
2001-01-01
A three-dimensional unsteady reactive Navier-Stokes code is developed to study the ignition and flame spread above liquid fuels initially below the flashpoint temperature. Opposed air flow to the flame spread due to forced and/or natural convection is considered. Pools of finite width and length are studied in air channels of prescribed height and width. Three-dimensional effects of the flame front near the edge of the pool are captured in the computation. The formation of a recirculation zone in the gas phase similar to that found in two-dimensional calculations is also present in the three-dimensional calculations. Both uniform spread and pulsating spread modes are found in the calculated results.
Computational strategies for three-dimensional flow simulations on distributed computer systems
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Weed, Richard A.
1995-01-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
NASA Astrophysics Data System (ADS)
Dandois, J.; Ellis, E. C.
2009-12-01
Urban and other populated and used landscapes today cover a greater extent globally than do wild ecosystems. Methods for accurate ecological measurements on their vegetation and other ecological properties are therefore essential for ecology and earth science. Yet human landscapes are characterized by complex mosaics of vegetation and built structures that are heterogeneous at very fine spatial scales, therefore defying ecological measurements by conventional two dimensional remote sensing techniques, even when these are applied at fine spatial scales. To better measure and understand human-environment interactions within densely populated landscapes, high-spatial resolution three dimensional (3D) remote sensing techniques are needed. Current methods of remote sensing from aerial and satellite platforms are able to resolve land cover and three-dimensional structure using a combination of passive and active sensor technologies (e.g., optical imagers and LIDAR sensors). Despite such advances, there remain substantial gaps in knowledge about the distribution and biological characteristics of vegetation across all regions of earth, especially in densely populated environments. Here we present new methods for very fine scale 3D remote sensing of vegetation structure using computer vision techniques applied to standard digital photographs taken from consumer grade digital cameras mounted on low-altitude aerial platforms. Computer vision algorithms are used to produce 3D geometry from overlapping images, generating datasets very similar to LIDAR point clouds, and useful for measuring vegetation structure characteristics like canopy structure and tree height. These are then used to estimate vegetation biophysical characteristics like canopy density and biomass. Preliminary results demonstrate that this approach offers great promise as a tool for obtaining ecological measurements such as canopy height and vegetation form at the scale of individual trees in a low-cost and
High-resolution three-dimensional imaging by synchrotron-radiation computed laminography
NASA Astrophysics Data System (ADS)
Helfen, L.; Baumbach, T.; Pernot, P.; Mikulík, P.; DiMichiel, M.; Baruchel, J.
2006-08-01
The methodical development and first instrumental implementation of computed laminography / tomosynthesis using synchrotron radiation are presented. The technique was developed for three-dimensional imaging of flat and laterally extended objects with high spatial resolution. This paper introduces the fundamental principle of the imaging process and discusses the method's particularities in comparison to computed tomography and computed laminography / digital tomosynthesis. Introducing a simple scanning geometry adapted to the particular experimental conditions of synchrotron imaging set-ups (such as the stationary source and a parallel beam) allows us to combine the advantages of laminography and those provided by synchrotron radiation, for instance monochromatic radiation in order to avoid beam hardening artefacts, high beam intensity for achieving high spatial resolution and fast scanning times or spatial coherence for exploiting phase contrast. The potential of the method for three-dimensional imaging of microelectronic devices is demonstrated by examples of flip-chip bonded and wire-bonded devices.
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1986-01-01
In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.
NASA Technical Reports Server (NTRS)
Subramanian, S. V.; Bozzola, R.; Povinelli, L. A.
1986-01-01
The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady Euler equations in cylindrical coordinates. This method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Computed flowfield results are presented for a fully subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Izen, Steven H.
1991-01-01
A theory to determine the properties of a fluid from measurements of its projections was developed and tested. Viewing cones as small as 10 degrees were evaluated, with the only assumption being that the property was space limited. The results of applying the theory to numerical and actual interferograms of a spherical discontinuity of refractive index are presented. The theory was developed to test the practicality and limits of using three-dimensional computer tomography in internal fluid dynamics.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Izen, Steven H.
1992-01-01
A theory to determine the properties of a fluid from measurements of its projections was developed and tested. Viewing cones as small as 10 degrees were evaluated, with the only assumption being that the property was space limited. The results of applying the theory to numerical and actual interferograms of a spherical discontinuity of refractive index are presented. The theory was developed to test the practicality and limits of using three dimensional computer tomography in internal fluid dynamics.
A computer program for fitting smooth surfaces to three-dimensional aircraft configurations
NASA Technical Reports Server (NTRS)
Craidon, C. B.; Smith, R. E., Jr.
1975-01-01
A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.
Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces
NASA Technical Reports Server (NTRS)
Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.
2006-01-01
A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.
Three-dimensional computations of transverse hydrogen jet combustion in a supersonic airstream
NASA Technical Reports Server (NTRS)
Uenishi, K.; Rogers, R. C.; Northam, G. B.
1987-01-01
A computational fluid dynamics (CFD) code is being developed to compute the mixing and combustion of hydrogen fuel in the turbulent flow fields of supersonic combustion ramjets (scramjet). The code solves the three-dimensional Reynolds time-averaged complete Navier-Stokes equations including transport equations for a four species, two reaction, global finite rate chemistry model. The code was applied to the case of transverse injection of hydrogen from a sonic circular orifice into a supersonic airstream. The equations were numerically integrated using MacCormack's explicit method, and the algebraic eddy viscosity model of Baldwin-Lomax was used to model the turbulence. In the species transport and energy equations, diffusion coefficients based on Fick's Law and an assumption of unit Lewis number were applied. Computed features of the three-dimensional flow field are depicted by static pressure, static temperature, mass fraction of species, and velocity vectors. For engineering interest, mixing and combustion parameters were examined to assess the effect of injector diameter, injected fuel pressure, fuel-air ratio, and spacing of fuel injectors. The objective of the present paper is to demonstrate the capability of the present three-dimensional spatially elliptic, CFD code for turbulent, reacting flow. Application of the code to specific supersonic combustion configurations is planned.
A combined direct/inverse three-dimensional transonic wing design method for vector computers
NASA Technical Reports Server (NTRS)
Weed, R. A.; Carlson, L. A.; Anderson, W. K.
1984-01-01
A three-dimensional transonic-wing design algorithm for vector computers is developed, and the results of sample computations are presented graphically. The method incorporates the direct/inverse scheme of Carlson (1975), a Cartesian grid system with boundary conditions applied at a mean plane, and a potential-flow solver based on the conservative form of the full potential equation and using the ZEBRA II vectorizable solution algorithm of South et al. (1980). The accuracy and consistency of the method with regard to direct and inverse analysis and trailing-edge closure are verified in the test computations.
NASA Technical Reports Server (NTRS)
Perucchio, R.; Ingraffea, A. R.
1984-01-01
The establishment of the boundary element method (BEM) as a valid tool for solving problems in structural mechanics and in other fields of applied physics is discussed. The development of an integrated interactive computer graphic system for the application of the BEM to three dimensional problems in elastostatics is described. The integration of interactive computer graphic techniques and the BEM takes place at the preprocessing and postprocessing stages of the analysis process, when, respectively, the data base is generated and the results are interpreted. The interactive computer graphic modeling techniques used for generating and discretizing the boundary surfaces of a solid domain are outlined.
Three-dimensional compressible turbulent computations for a nondiffusing S-duct
NASA Technical Reports Server (NTRS)
Harloff, G. J.; Debonis, J. R.; Smith, C. F.; Bruns, J. E.
1992-01-01
The PARC3D code was used to compute the compressible turbulent flow within a three dimensional, nondiffusing S-duct. A frame of reference is provided for future computational fluid dynamics studies of internal flows with strong secondary flows and provides an understanding of the performance characteristics of a typical S-duct with attached flow. The predicted results, obtained with both H- and O-grids, are compared with the experimental wall pressure, static and total pressure fields, and velocity vectors. Additionally, computed boundary layer thickness, velocity profiles in wall coordinates, and skin friction values are presented.
Schlusselberg, D.S.; Simon, T.R.; Smith, W.K.; Woodward, D.J.; Parkey, R.W.
1985-05-01
Emission computed tomography (ECT) quantitatively localizes radionuclide tracer distributions within a three-dimensional (3D) volume. Currently available techniques limit the display of this information to series of cross-sectional or rotating images. Such techniques of ten rely on special viewing equipment to synthesize the image series into a volumetric display. The authors have developed new algorithms that generate 3D images of radiotracer distributions using computerized analysis of tomographic data. Imaging strategies including transparent volumes, surface models, color-coded circumferential histograms and transparent slices are combined to produce a single image that contains the quantitative distributional information. While the images can be displayed on most raster-based display devices, they are suitable for archiving and distribution as single image photographs. This choice of formats enhances the value of the technique for communicating scintigraphic information to referring physicians while maintaining the quantitative integrity of the data. The technique has been successfully applied to a variety of ECT examination including brain, heart, liver and bone studies.
High performance computing for three-dimensional agent-based molecular models.
Pérez-Rodríguez, G; Pérez-Pérez, M; Fdez-Riverola, F; Lourenço, A
2016-07-01
Agent-based simulations are increasingly popular in exploring and understanding cellular systems, but the natural complexity of these systems and the desire to grasp different modelling levels demand cost-effective simulation strategies and tools. In this context, the present paper introduces novel sequential and distributed approaches for the three-dimensional agent-based simulation of individual molecules in cellular events. These approaches are able to describe the dimensions and position of the molecules with high accuracy and thus, study the critical effect of spatial distribution on cellular events. Moreover, two of the approaches allow multi-thread high performance simulations, distributing the three-dimensional model in a platform independent and computationally efficient way. Evaluation addressed the reproduction of molecular scenarios and different scalability aspects of agent creation and agent interaction. The three approaches simulate common biophysical and biochemical laws faithfully. The distributed approaches show improved performance when dealing with large agent populations while the sequential approach is better suited for small to medium size agent populations. Overall, the main new contribution of the approaches is the ability to simulate three-dimensional agent-based models at the molecular level with reduced implementation effort and moderate-level computational capacity. Since these approaches have a generic design, they have the major potential of being used in any event-driven agent-based tool. PMID:27372059
Computational analysis of three-dimensional epithelial morphogenesis using vertex models
Du, XinXin; Osterfield, Miriam; Shvartsman, Stanislav Y.
2014-01-01
The folding of epithelial sheets, accompanied by cell shape changes and rearrangements, gives rise to three-dimensional structures during development. Recently, some aspects of epithelial morphogenesis have been modeled using vertex models, in which each cell is approximated by a polygon; however, these models have been largely confined to two dimensions. Here, we describe an adaptation of these models in which the classical two-dimensional vertex model is embedded in three dimensions. This modification allows for the construction of complex three-dimensional shapes from simple sheets of cells. We describe algorithmic, computational, and biophysical aspects of our model, with the view that it may be useful for formulating and testing hypotheses regarding the mechanical forces underlying a wide range of morphogenetic processes. PMID:25410646
Evaluation of the three-dimensional parabolic flow computer program SHIP
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
The three-dimensional parabolic flow program SHIP designed for predicting supersonic combustor flow fields is evaluated to determine its capabilities. The mathematical foundation and numerical procedure are reviewed; simplifications are pointed out and commented upon. The program is then evaluated numerically by applying it to several subsonic and supersonic, turbulent, reacting and nonreacting flow problems. Computational results are compared with available experimental or other analytical data. Good agreements are obtained when the simplifications on which the program is based are justified. Limitations of the program and the needs for improvement and extension are pointed out. The present three dimensional parabolic flow program appears to be potentially useful for the development of supersonic combustors.
Numerical computation of three-dimensional blunt body flow fields with an impinging shock
NASA Technical Reports Server (NTRS)
Holst, T. L.; Tannehill, J. C.
1975-01-01
A time-marching finite-difference method was used to solve the compressible Navier-Stokes equations for the three-dimensional wing-leading-edge shock impingement problem. The bow shock was treated as a discontinuity across which the exact shock jump conditions were applied. All interior shock layer detail such as shear layers, shock waves, jets, and the wall boundary layer were automatically captured in the solution. The impinging shock was introduced by discontinuously changing the freestream conditions across the intersection line at the bow shock. A special storage-saving procedure for sweeping through the finite-difference mesh was developed which reduces the required amount of computer storage by at least a factor of two without sacrificing the execution time. Numerical results are presented for infinite cylinder blunt body cases as well as the three-dimensional shock impingement case. The numerical results are compared with existing experimental and theoretical results.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
A computer program is presented which numerically solves an exact, full potential equation (FPE) for three dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three dimensional, boundary conforming grid and iteratively solves the FPE while fully accounting for both the rotating cascade and Coriolis effects. The numerical techniques incorporated involve rotated, type dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive line overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, the WIND program is capable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. The program can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the total relative Mach number of the oncoming flow is subsonic.
A Computer Program for the Calculation of Three-Dimensional Transonic Nacelle/Inlet Flowfields
NASA Technical Reports Server (NTRS)
Vadyak, J.; Atta, E. H.
1983-01-01
A highly efficient computer analysis was developed for predicting transonic nacelle/inlet flowfields. This algorithm can compute the three dimensional transonic flowfield about axisymmetric (or asymmetric) nacelle/inlet configurations at zero or nonzero incidence. The flowfield is determined by solving the full-potential equation in conservative form on a body-fitted curvilinear computational mesh. The difference equations are solved using the AF2 approximate factorization scheme. This report presents a discussion of the computational methods used to both generate the body-fitted curvilinear mesh and to obtain the inviscid flow solution. Computed results and correlations with existing methods and experiment are presented. Also presented are discussions on the organization of the grid generation (NGRIDA) computer program and the flow solution (NACELLE) computer program, descriptions of the respective subroutines, definitions of the required input parameters for both algorithms, a brief discussion on interpretation of the output, and sample cases to illustrate application of the analysis.
Three-dimensional unsteady flow calculations in an advanced gas generator turbine
NASA Technical Reports Server (NTRS)
Rangwalla, Akil A.
1993-01-01
This paper deals with the application of a three-dimensional, unsteady Navier-Stokes code for predicting the unsteady flow in a single stage of an advanced gas generator turbine. The numerical method solves the three-dimensional thin-layer Navier-Stokes equations, using a system of overlaid grids, which allow for relative motion between the rotor and stator airfoils. Results in the form of time averaged pressures and pressure amplitudes on the airfoil surfaces will be shown. In addition, instantaneous contours of pressure, Mach number, etc. will be presented in order to provide a greater understanding of the inviscid as well as the viscous aspects of the flowfield. Also, relevant secondary flow features such as cross-plane velocity vectors and total pressure contours will be presented. Prior work in two-dimensions has indicated that for the advanced designs, the unsteady interactions can play a significant role in turbine performance. These interactions affect not only the stage efficiency but can substantially alter the time-averaged features of the flow. This work is a natural extension of the work done in two-dimensions and hopes to address some of the issues raised by the two-dimensional calculations. These calculations are being performed as an integral part of an actual design process and demonstrate the value of unsteady rotor-stator interaction calculations in the design of turbomachines.
Papantoniou, Ioannis; Sonnaert, Maarten; Geris, Liesbet; Luyten, Frank P; Schrooten, Jan; Kerckhofs, Greet
2014-03-01
To successfully implement tissue-engineered (TE) constructs as part of a clinical therapy, it is necessary to develop quality control tools that will ensure accurate and consistent TE construct release specifications. Hence, advanced methods to monitor TE construct properties need to be further developed. In this study, we showed proof of concept for contrast-enhanced nanofocus computed tomography (CE-nano-CT) as a whole-construct imaging technique with a noninvasive potential that enables three-dimensional (3D) visualization and quantification of in vitro engineered extracellular matrix (ECM) in TE constructs. In particular, we performed a 3D qualitative and quantitative structural and spatial assessment of the in vitro engineered ECM, formed during static and perfusion bioreactor cell culture in 3D TE scaffolds, using two contrast agents, namely, Hexabrix® and phosphotungstic acid (PTA). To evaluate the potential of CE-nano-CT, a comparison was made to standardly used techniques such as Live/Dead viability/cytotoxicity, Picrosirius Red staining, and to net dry weight measurements of the TE constructs. When using Hexabrix as the contrast agent, the ECM volume fitted linearly with the net dry ECM weight independent from the flow rate used, thus suggesting that it stains most of the ECM. When using PTA as the contrast agent, comparing to net weight measurements showed that PTA only stains a part of the ECM. This was attributed to the binding specificity of this contrast agent. In addition, the PTA-stained CE-nano-CT data showed pronounced distinction between flow conditions when compared to Hexabrix, indicating culture-specific structural ECM differences. This novel type of information can contribute to optimize bioreactor culture conditions and potentially critical quality characteristics of TE constructs such as ECM quantity and homogeneity, facilitating the gradual transformation of TE constructs in well-characterized TE products. PMID:23800097
Papantoniou, Ioannis; Sonnaert, Maarten; Geris, Liesbet; Luyten, Frank P.; Kerckhofs, Greet
2014-01-01
To successfully implement tissue-engineered (TE) constructs as part of a clinical therapy, it is necessary to develop quality control tools that will ensure accurate and consistent TE construct release specifications. Hence, advanced methods to monitor TE construct properties need to be further developed. In this study, we showed proof of concept for contrast-enhanced nanofocus computed tomography (CE-nano-CT) as a whole-construct imaging technique with a noninvasive potential that enables three-dimensional (3D) visualization and quantification of in vitro engineered extracellular matrix (ECM) in TE constructs. In particular, we performed a 3D qualitative and quantitative structural and spatial assessment of the in vitro engineered ECM, formed during static and perfusion bioreactor cell culture in 3D TE scaffolds, using two contrast agents, namely, Hexabrix® and phosphotungstic acid (PTA). To evaluate the potential of CE-nano-CT, a comparison was made to standardly used techniques such as Live/Dead viability/cytotoxicity, Picrosirius Red staining, and to net dry weight measurements of the TE constructs. When using Hexabrix as the contrast agent, the ECM volume fitted linearly with the net dry ECM weight independent from the flow rate used, thus suggesting that it stains most of the ECM. When using PTA as the contrast agent, comparing to net weight measurements showed that PTA only stains a part of the ECM. This was attributed to the binding specificity of this contrast agent. In addition, the PTA-stained CE-nano-CT data showed pronounced distinction between flow conditions when compared to Hexabrix, indicating culture-specific structural ECM differences. This novel type of information can contribute to optimize bioreactor culture conditions and potentially critical quality characteristics of TE constructs such as ECM quantity and homogeneity, facilitating the gradual transformation of TE constructs in well-characterized TE products. PMID:23800097
Three-dimensional multigrid Navier-Stokes computations for turbomachinery applications
NASA Technical Reports Server (NTRS)
Subramanian, S. V.
1989-01-01
The fully three-dimensional, time-dependent compressible Navier-Stokes equations in cylindrical coordinates are presently used, in conjunction with the multistage Runge-Kutta numerical integration scheme for solution of the governing flow equations, to simulate complex flowfields within turbomechanical components whose pertinent effects encompass those of viscosity, compressibility, blade rotation, and tip clearance. Computed results are presented for selected cascades, emphasizing the code's capabilities in the accurate prediction of such features as airfoil loadings, exit flow angles, shocks, and secondary flows. Computations for several test cases have been performed on a Cray-YMP, using nearly 90,000 grid points.
Three-dimensional multigrid Navier-Stokes computations for turbomachinery applications
NASA Astrophysics Data System (ADS)
Subramanian, S. V.
1989-07-01
The fully three-dimensional, time-dependent compressible Navier-Stokes equations in cylindrical coordinates are presently used, in conjunction with the multistage Runge-Kutta numerical integration scheme for solution of the governing flow equations, to simulate complex flowfields within turbomechanical components whose pertinent effects encompass those of viscosity, compressibility, blade rotation, and tip clearance. Computed results are presented for selected cascades, emphasizing the code's capabilities in the accurate prediction of such features as airfoil loadings, exit flow angles, shocks, and secondary flows. Computations for several test cases have been performed on a Cray-YMP, using nearly 90,000 grid points.
Three-dimensional multigrid Navier-Stokes computations for turbomachinery applications
Subramanian, S. V.
1989-01-01
The fully three-dimensional, time-dependent compressible Navier-Stokes equations in cylindrical coordinates are presently used, in conjunction with the multistage Runge-Kutta numerical integration scheme for solution of the governing flow equations, to simulate complex flowfields within turbomechanical components whose pertinent effects encompass those of viscosity, compressibility, blade rotation, and tip clearance. Computed results are presented for selected cascades, emphasizing the code's capabilities in the accurate prediction of such features as airfoil loadings, exit flow angles, shocks, and secondary flows. Computations for several test cases have been performed on a Cray-YMP, using nearly 90,000 grid points. 18 refs.
Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels
Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott
2014-01-09
Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear
Devireddy, Sathya Kumar; Kumar, R. V. Kishore; Gali, Rajasekhar; Kanubaddy, Sridhar Reddy; Rao, Dasari Mallikarjuna; Siddhartha, Mannava
2014-01-01
Objective: The aim was to assess the accuracy of three-dimensional anatomical reductions achieved by open method of treatment in cases of displaced unilateral mandibular subcondylar fractures using preoperative (pre op) and postoperative (post op) computed tomography (CT) scans. Materials and Methods: In this prospective study, 10 patients with unilateral sub condylar fractures confirmed by an orthopantomogram were included. A pre op and post op CT after 1 week of surgical procedure was taken in axial, coronal and sagittal plane along with three-dimensional reconstruction. Standard anatomical parameters, which undergo changes due to fractures of the mandibular condyle were measured in pre and post op CT scans in three planes and statistically analysed for the accuracy of the reduction comparing the following variables: (a) Pre op fractured and nonfractured side (b) post op fractured and nonfractured side (c) pre op fractured and post op fractured side. P < 0.05 was considered as significant. Results: Three-dimensional anatomical reduction was possible in 9 out of 10 cases (90%). The statistical analysis of each parameter in three variables revealed (P < 0.05) that there was a gross change in the dimensions of the parameters obtained in pre op fractured and nonfractured side. When these parameters were assessed in post op CT for the three variables there was no statistical difference between the post op fractured side and non fractured side. The same parameters were analysed for the three variables in pre op fractured and post op fractured side and found significant statistical difference suggesting a considerable change in the dimensions of the fractured side post operatively. Conclusion: The statistical and clinical results in our study emphasised that it is possible to fix the condyle in three-dimensional anatomical positions with open method of treatment and avoid post op degenerative joint changes. CT is the ideal imaging tool and should be used on a regular
Mach 10 computational study of a three-dimensional scramjet inlet flow field
NASA Technical Reports Server (NTRS)
Holland, Scott D.
1995-01-01
The present work documents the computational results for a combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall-compression scramjet inlet configuration at Mach 10. The three-dimensional Navier-Stokes code SCRAMIN was chosen for the computational portion of the study because it uses a well-known and well-proven numerical scheme and has shown favorable comparison with experiment at Mach numbers between 2 and 6. One advantage of CFD was that it provided flow field data for a detailed examination of the internal flow characteristics in addition to the surface properties. The experimental test matrix at Mach 10 included three geometric contraction ratios (3, 5, and 9), three Reynolds numbers (0.55 x 10(exp 6) per foot, 1.14 x 10(exp 6) per foot, and 2.15 x 10(exp 6) per foot), and three cowl positions (at the throat and two forward positions). Computational data for two of these configurations (the contraction ratio of 3, Re = 2.15 x 10(exp 6) per foot, at two cowl positions) are presented along with a detailed analysis of the flow interactions in successive computational planes.
Mach 10 computational study of a three-dimensional scramjet inlet flow field
NASA Technical Reports Server (NTRS)
Holland, Scott D.
1995-01-01
The present work documents the computational results for a combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall-compression scramjet inlet configuration at Mach 10. The three-dimensional Navier-Stokes code SCRAMIN was chosen for the computational portion of the study because it uses a well-known and well-proven numerical scheme and has shown favorable comparison with experiment at Mach numbers between 2 and 6. One advantage of CFD was that it provided flow field data for a detailed examination of the internal flow characteristics in addition to the surface properties. The experimental test matrix at mach 10 included three geometric contraction ratios (3, 5, and 9), three Reynolds numbers (0.55 x 10(exp 6) per foot, 1.14 x 10(exp 6) per foot, and 2.15 x 10(exp 6) per foot), and three cowl positions (at the throat and two forward positions). Computational data for two of these configurations (the contraction ratio of 3, Re = 2.15 x 10 (exp 6) per foot, at two cowl positions) are presented along with a detailed analysis of the flow interactions in successive computational planes.
Three-Dimensional Integration Technology for Advanced Focal Planes and Integrated Circuits
Keast, Craig
2007-02-28
Over the last five years MIT Lincoln Laboratory (MIT-LL) has developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. Advanced focal plane arrays have been the first applications to exploit the benefits of this 3D integration technology because the massively parallel information flow present in 2D imaging arrays maps very nicely into a 3D computational structure as information flows from circuit-tier to circuit-tier in the z-direction. To date, the MIT-LL 3D integration technology has been used to fabricate four different focal planes including: a 2-tier 64 x 64 imager with fully parallel per-pixel A/D conversion; a 3-tier 640 x 480 imager consisting of an imaging tier, an A/D conversion tier, and a digital signal processing tier; a 2-tier 1024 x 1024 pixel, 4-side-abutable imaging modules for tiling large mosaic focal planes, and a 3-tier Geiger-mode avalanche photodiode (APD) 3-D LIDAR array, using a 30 volt APD tier, a 3.3 volt CMOS tier, and a 1.5 volt CMOS tier. Recently, the 3D integration technology has been made available to the circuit design research community through DARPA-sponsored Multiproject fabrication runs. The first Multiproject Run (3DL1) completed fabrication in early 2006 and included over 30 different circuit designs from 21 different research groups. 3D circuit concepts explored in this run included stacked memories, field programmable gate arrays (FPGAs), and mixed-signal circuits. The second Multiproject Run (3DM2) is currently in fabrication and includes particle detector readouts designed by Fermilab. This talk will provide a brief overview of MIT-LL's 3D-integration process, discuss some of the focal plane applications where the technology is being applied, and provide a summary of some of the Multiproject Run circuit results.
Lighting effects rendering in three-dimensional computer-generated holographic display
NASA Astrophysics Data System (ADS)
Zhang, Hao; Cao, Liangcai; Jin, Guofan
2016-07-01
We present a technique for generating three-dimensional (3-D) computer-generated holograms (CGHs) with realistic lighting effects based on a phase-only spatial light modulator (SLM). Phong reflection model is employed in the calculation of reflectance distribution for CGH synthesizing. Directional point-based algorithm produces realistic lighting effects of the 3-D scenes in processing the ambient, diffuse and specular reflections. A phase-only SLM is used to perform the optical experiments, and the results show that the proposed technique can perform quality reconstructions of the 3-D scenes with high optical efficiency and efficient utilization of the system space-bandwidth product.
NASA Astrophysics Data System (ADS)
Vedenov, A. A.
1994-09-01
Today scientists can create, with the aid of a personal computer three-dimensional (3D) representations of objects—a specific data base, containing not only the space coordinates and colours of all points of an object, but also allowing it be examined from a bird's-eye point of view. The data base reveals the characteristic features of the object as a whole and allows them to be named. Examples of 3D representations are given and the principles of their creation and viewing are discussed.
An improved method for computer generation of three-dimensional digital holography
NASA Astrophysics Data System (ADS)
Hu, Yanlei; Ma, Jianqiang; Chen, Yuhang; Li, Jiawen; Huang, Wenhao; Chu, Jiaru
2013-12-01
A novel method is proposed for designing optimized three-dimensional computer-generated holograms (CGHs). A series of spherical wave factors are introduced into the conventional optimal rotation angle (ORA) algorithm to achieve a varying amount of defocus along the optical axis, and the distraction terms are minimized during the iterative process. Both numerical simulation and experimental reconstructions are presented to demonstrate that this method is able to yield excellent multilayer patterns with high uniformity and signal-to-noise ratio (SNR). This method is significant for applications in laser 3D printing and multilayer data recording.
NASA Astrophysics Data System (ADS)
Yeom, Seokwon; Lee, Dongsu; Son, Jung-Young; Kim, Shin-Hwan
2009-09-01
In this paper, we discuss computational reconstruction and statistical pattern classification using integral imaging. Three-dimensional object information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. The longitudinal distance and object boundary are estimated where the standard deviation of the intensity is minimized. Fisher linear discriminant analysis combined with principal component analysis is adopted for the classification of out-of-plane rotated objects. The Fisher linear discriminant analysis maximizes the class-discrimination while the principal component analysis minimizes the error between the original and the restored images. The presented method provides promising results for the distortion-tolerant pattern classification.
Three-dimensional computational study of asymmetric flows using Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Cheung, Y. K. (Editor); Lee, J. H. W. (Editor); Leung, A. Y. T. (Editor); Wong, Tin-Chee; Kandil, Osama A.; Liu, C. H.
1992-01-01
The unsteady, compressible, thin-layer Navier-Stokes equations are used to obtain three-dimensional, asymmetric, vortex-flow solutions around cones and cone-cylinder configurations. The equations are solved using an implicit, upwind, flux-difference splitting, finite-volume scheme. The computational applications cover asymmetric flows around a 5 semi-apex angle cone of unit length at various Reynolds number. Next, a cylindrical afterbody of various length is added to the conical forebody to study the effect of the length of cylindrical afterbody on the flow asymmetry. All the asymmetric flow solutions are obtained by using a short-duration side-slip disturbance.
Use of CYBER 203 and CYBER 205 computers for three-dimensional transonic flow calculations
NASA Astrophysics Data System (ADS)
Melson, N. D.; Keller, J. D.
1983-04-01
Experiences are discussed for modifying two three-dimensional transonic flow computer programs (FLO 22 and FLO 27) for use on the CDC CYBER 203 computer system. Both programs were originally written for use on serial machines. Several methods were attempted to optimize the execution of the two programs on the vector machine: leaving the program in a scalar form (i.e., serial computation) with compiler software used to optimize and vectorize the program, vectorizing parts of the existing algorithm in the program, and incorporating a vectorizable algorithm (ZEBRA I or ZEBRA II) in the program. Comparison runs of the programs were made on CDC CYBER 175. CYBER 203, and two pipe CDC CYBER 205 computer systems.
Use of CYBER 203 and CYBER 205 computers for three-dimensional transonic flow calculations
NASA Technical Reports Server (NTRS)
Melson, N. D.; Keller, J. D.
1983-01-01
Experiences are discussed for modifying two three-dimensional transonic flow computer programs (FLO 22 and FLO 27) for use on the CDC CYBER 203 computer system. Both programs were originally written for use on serial machines. Several methods were attempted to optimize the execution of the two programs on the vector machine: leaving the program in a scalar form (i.e., serial computation) with compiler software used to optimize and vectorize the program, vectorizing parts of the existing algorithm in the program, and incorporating a vectorizable algorithm (ZEBRA I or ZEBRA II) in the program. Comparison runs of the programs were made on CDC CYBER 175. CYBER 203, and two pipe CDC CYBER 205 computer systems.
An eddy-current model for three-dimensional nondestructive evaluation of advanced composites
NASA Astrophysics Data System (ADS)
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.
2015-03-01
We have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we apply rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. We will give examples of the solution of forward problems using this model.
Advanced numerical methods for three dimensional two-phase flow calculations
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.
NASA Technical Reports Server (NTRS)
Jumper, S. J.
1979-01-01
A method was developed for predicting the potential flow velocity field at the plane of a propeller operating under the influence of a wing-fuselage-cowl or nacelle combination. A computer program was written which predicts the three dimensional potential flow field. The contents of the program, its input data, and its output results are described.
NASA Technical Reports Server (NTRS)
Xiques, K. E.; Rawlinson, E. G.; Stalnaker, J. F.; Spradley, L. W.
1982-01-01
A three-dimensional computational technique was used to obtain flowfield solutions to the Euler equations over selected hypersonic missile configurations. The General Interpolants Method (GIM) computer code was used with interpolation functions in an algebraic approach to generate a discrete computational grid for each configuration. The spatial marching version of the GIM code, which treats the parabolized Navier-Stokes (PNS) equations or the Euler equations with a shock capturing, 'MacCormack-like' scheme, was used to advance the solution hyperbolically over each configuration. The inviscid flowfield solutions over the two three-dimensional missile configurations, calculated using the GIM hyperbolic scheme, are presented here. The flow field over a wing/body configuration at zero degree angle of attack is presented. Flow over the fuselage of a tactical missile, termed the TAME 10, at both zero degree and 7.5 degree angles of attack is presented. In addition, an inviscid, two-dimensional analysis of an inlet configuration designed to mount on the TAME 10 is included. Contour maps of velocity and pressure are included for each configuration. Comparison of calculation and data show good agreement.
Fiber pushout test - A three-dimensional finite element computational simulation
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Chamis, Christos C.
1991-01-01
A fiber pushthrough process was computationally simulated using three-dimensional finite element method. The interface material is replaced by an anisotropic material with greatly reduced shear modulus in order to simulate the fiber pushthrough process using a linear analysis. Such a procedure is easily implemented and is computational very effective. It can be used to predict fiber pushthrough load for a composite system at any temperature. The average interface shear strength obtained from pushthrough load can easily be separated into its two components: one that comes from frictioal stresses and the other that comes from chemical adhesion between fiber and the matrix and mechanical interlocking that develops due to shrinkage of the composite because of phase change during the processing. Step-by-step procedures are described to perform the computational simulation, to establish bounds on interfacial bond strength and to interpret interfacial bond quality.
Efficient computation of the stability of three-dimensional compressible boundary layers
NASA Technical Reports Server (NTRS)
Malik, M. R.; Orszag, S. A.
1981-01-01
Methods for the computer analysis of the stability of three-dimensional compressible boundary layers are discussed and the user-oriented Compressible Stability Analysis (COSAL) computer code is described. The COSAL code uses a matrix finite-difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial-value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black-box stability code. Sample stability calculations are presented for the boundary layer profiles of an LFC swept wing.
Fiber pushout test: A three-dimensional finite element computational simulation
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Chamis, Christos C.
1990-01-01
A fiber pushthrough process was computationally simulated using three-dimensional finite element method. The interface material is replaced by an anisotropic material with greatly reduced shear modulus in order to simulate the fiber pushthrough process using a linear analysis. Such a procedure is easily implemented and is computationally very effective. It can be used to predict fiber pushthrough load for a composite system at any temperature. The average interface shear strength obtained from pushthrough load can easily be separated into its two components: one that comes from frictional stresses and the other that comes from chemical adhesion between fiber and the matrix and mechanical interlocking that develops due to shrinkage of the composite because of phase change during the processing. Step-by-step procedures are described to perform the computational simulation, to establish bounds on interfacial bond strength and to interpret interfacial bond quality.
Three-dimensional viscous-flow computations using a directionally hybrid implicit-explicit procedure
NASA Astrophysics Data System (ADS)
Rizk, Y. M.; Chaussee, D. S.
A new, directionally dependent, hybrid numerical algorithm for solving the unsteady, three-dimensional Navier-Stokes equations has been developed and used to compute the viscous supersonic flow over complex configurations, which may generate local regions of embedded subsonic or streamwise separated flows or both. The new hybrid implicit-explicit algorithm is derived from the more general implicit Beam-Warming algorithm and is particularly suitable for viscous computations in which the grid spacing in the direction outward from the body is considerably smaller than the spacing in the other two directions. Numerical results obtained from both the hybrid and implicit schemes are presented and compared on the basis of numerical stability, convergence history, and computer and core memory requirements.
An Improved Treatment of External Boundary for Three-Dimensional Flow Computations
NASA Technical Reports Server (NTRS)
Tsynkov, Semyon V.; Vatsa, Veer N.
1997-01-01
We present an innovative numerical approach for setting highly accurate nonlocal boundary conditions at the external computational boundaries when calculating three-dimensional compressible viscous flows over finite bodies. The approach is based on application of the difference potentials method by V. S. Ryaben'kii and extends our previous technique developed for the two-dimensional case. The new boundary conditions methodology has been successfully combined with the NASA-developed code TLNS3D and used for the analysis of wing-shaped configurations in subsonic and transonic flow regimes. As demonstrated by the computational experiments, the improved external boundary conditions allow one to greatly reduce the size of the computational domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide for a noticeable speedup of convergence of the multigrid iterations.
Computational Simulation of Damage Propagation in Three-Dimensional Woven Composites
NASA Technical Reports Server (NTRS)
Huang, Dade; Minnetyan, Levon
2005-01-01
Three dimensional (3D) woven composites have demonstrated multi-directional properties and improved transverse strength, impact resistance, and shear characteristics. The objective of this research is to develop a new model for predicting the elastic constants, hygrothermal effects, thermomechanical response, and stress limits of 3D woven composites; and to develop a computational tool to facilitate the evaluation of 3D woven composite structures with regard to damage tolerance and durability. Fiber orientations of weave and braid patterns are defined with reference to composite structural coordinates. Orthotropic ply properties and stress limits computed via micromechanics are transformed to composite structural coordinates and integrated to obtain the 3D properties. The various stages of degradation, from damage initiation to collapse of structures, in the 3D woven structures are simulated for the first time. Three dimensional woven composite specimens with various woven patterns under different loading conditions, such as tension, compression, bending, and shear are simulated in the validation process of this research. Damage initiation, growth, accumulation, and propagation to fracture are included in these simulations.
Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Kornblum, B.T.; Perkins, D.E.; Schneberk, D.J.; Shapiro, A.B.
1993-04-01
We discuss three-dimensional (3D) dynamic thermal imaging of structure flaws using dual-band infrared (DBIR) computed tomography. Conventional thermography provides single-band infrared images which are difficult to interpret. Standard procedures yield imprecise (or qualitative) information about subsurface flaw sites which are typically masked by surface clutter. We use a DBIR imaging unique pioneered at LLNL to capture the time history of surface temperature difference for flash-heated targets. We relate these patterns to the location, size, shape and depth of subsurface flaws. We have demonstrated temperature accuracies of 0.2{degree}C, timing synchronizations of 3 ms (after onset of heat flash) and intervals of 42 ms, between images, during an 8 s cooling (and hearing) interval characterizing the front (and back) surface temperature-time history of an epoxy-glue disbond site in a flash-heated aluminum lap joint. This type of disbond played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. By ratioing DBIR images (near 5 and 10 micron), we located surface temperature patterns (generated by weak heat flow anomalies at subsurface flaw sites) and removed the emissivity mask (from surface roughness variations). We compared measurements with calculations from the three-dimensional, finite element computer code: TOPAZ3D. We combined infrared, ultrasound and x-ray imaging methods to characterize the lap joint disbond site spatial, bond quality, and material differences.
Three-dimensional computation of mixing of transverse injector in a ducted supersonic airstream
NASA Technical Reports Server (NTRS)
Uenishi, K.; Rogers, R. C.
1986-01-01
Numerical solutions of the three-dimensional mass-averaged elliptic Navier-Stokes equations, including species transport, are obtained for nonreacting, turbulent, mixing flow fields for the case of transverse sonic injection of a secondary gas into a supersonic airstream through a circular orifice injector. Results are presented for flow through a constant area duct and through a duct with a rearward-facing step upstream of the injector. The equations are numerically integrated using MacCormack's explicit method and turbulence is included using the Baldwin-Lomax algebraic eddy viscosity model. In the species transport and energy equations, diffusion coefficients based on Fick's law and an assumption of unit Lewis number are applied. The computations were performed on a CDC-VPS-32 (extended version of Cyber-205) using a grid consisting of approximately 200,000 points. The computed results are compared with experimentally observed penetration and spreading boundaries for an injected gas at two dynamic pressure ratios. Three-dimensional flow field structures are dipicted in terms of static pressure, mass fractions of species and velocity vectors.
Surgical management of impacted teeth using three-dimensional computed tomography.
Costa, Fábio Santos; Bellotti, Alexandre; Farah, Gustavo Jacobucci; Daniel, Aparecido Néri; Camarini, Edevaldo Tadeu; Rezende de Moraes Ferreira, Ana Carulina
2011-11-01
The surgical removal of impacted, supernumerary, or ectopic teeth is a routine procedure to the dental surgeon. Because any and all surgical interventions involve anatomic considerations that predispose the patient to a high risk of incidents or complications, it is absolutely necessary to precisely determine the location of the enclosed teeth, to better plan the procedure. Even though the conventional radiographic techniques are commonly used to detect the presence of such teeth, they can present deficiencies. In those situations, additional examinations can be requested. In this article, we are reporting the case of a 12-year-old patient, whose third superior molars appeared in a very atypical position. We chose to request a computed tomography and three-dimensional manipulation of the obtained images. This article, as its main goal, highlighted the importance of computed tomography and of three-dimensional reconstructions as a tool to precisely determine the location of enclosed teeth, thus allowing for a better planning of the surgery and a safer surgical intervention. PMID:22134273
A systematic computational methodology applied to a three-dimensional film-cooling flowfield
Walters, D.K.; Leylek, J.H.
1997-10-01
Numerical results are presented for a three-dimensional discrete-jet in crossflow problem typical of a realistic film-cooling application in gas turbines. Key aspects of the study include: (1) application of a systematic computational methodology that stresses accurate computational model of the physical problem, including simultaneous, fully elliptic solution of the crossflow, film-hole, and plenum regions; high-quality three-dimensional unstructured grid generation techniques, which have yet to be documented for this class of problems; the use of a high-order discretization scheme to reduce numerical errors significantly; and effective turbulence modeling; (2) a three-way comparison of results to both code validation quality experimental data and a previously documented structured grid simulation; and (3) identification of sources of discrepancy between predicted and measured results, as well as recommendations to alleviate these discrepancies. Solutions were obtained with a multiblock, unstructured/adaptive grid, fully explicit, time-marching, Reynolds-averaged Navier-Stokes code with multigrid, local time stepping, and residual smoothing type acceleration techniques. The computational methodology was applied to the validation test case of a row of discrete jets on a flat plate with a streamwise injection angle of 35 deg, and two film-hole length-to-diameter ratios of 3.5 and 1.75. The density ratio for all cases was 2.0, blowing ratio was varied from 0.5 to 2.0, and free-stream turbulence intensity was 2%. The results demonstrate that the prescribed computational methodology yields consistently more accurate solutions for this class of problems than previous attempts published in the open literature. Sources of disagreement between measured and computed results have been identified, and recommendations made for future prediction of film-cooling problems.
Computation of Three-Dimensional Compressible Flow From a Rectangular Nozzle with Delta Tabs
NASA Technical Reports Server (NTRS)
Reddy, D. R.; Steffen, C. J., Jr.; Zaman, K. B. M. Q.
1999-01-01
A three-dimensional viscous flow analysis is performed using a time-marching Reynolds-averaged Navier-Stokes code for a 3:1 rectangular nozzle with two delta tabs located at the nozz1e exit plane to enhance mixing. Two flow configurations, a subsonic jet case and a supersonic jet case using the same rate configuration, which were previously studied experimentally, are computed and compared with the experimental data. The experimental data include streamwise velocity and vorticity distributions for the subsonic case, and Mach number distributions for the supersonic case, at various axial locations downstream of the nozzle exit. The computational results show very good agreement with the experimental data. In addition, the effect of compressibility on vorticity dynamics is examined by comparing the vorticity contours of the subsonic jet case with those of the supersonic jet case which were not measured in the experiment.
NASA Astrophysics Data System (ADS)
Chiu, Daniel T.; Pezzoli, Elena; Wu, Hongkai; Stroock, Abraham D.; Whitesides, George M.
2001-03-01
This paper describes the design of a parallel algorithm that uses moving fluids in a three-dimensional microfluidic system to solve a nondeterministically polynomial complete problem (the maximal clique problem) in polynomial time. This algorithm relies on (i) parallel fabrication of the microfluidic system, (ii) parallel searching of all potential solutions by using fluid flow, and (iii) parallel optical readout of all solutions. This algorithm was implemented to solve the maximal clique problem for a simple graph with six vertices. The successful implementation of this algorithm to compute solutions for small-size graphs with fluids in microchannels is not useful, per se, but does suggest broader application for microfluidics in computation and control.
Computing three-dimensional eye position quaternions and eye velocity from search coil signals.
Tweed, D; Cadera, W; Vilis, T
1990-01-01
The four-component rotational operators called quaternions, which represent eye rotations in terms of their axes and angles, have several advantages over other representations of eye position (such as Fick coordinates): they provide easy computations, symmetry, a simple form for Listing's law, and useful three-dimensional plots of eye movements. In this paper we present algorithms for computing eye position quaternions and eye angular velocity (not the derivative of position in three dimensions) from two search coils (not necessarily orthogonal) on one eye in two or three magnetic fields, and for locating primary position using quaternions. We show how differentiation of eye position signals yields poor estimates of all three components of eye velocity. PMID:2321369
A computational approach to continuum damping of Alfven waves in two and three-dimensional geometry
Koenies, Axel; Kleiber, Ralf
2012-12-15
While the usual way of calculating continuum damping of global Alfven modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting method and it is shown that it can be transferred to the Galerkin method used in three-dimensional ideal magneto-hydrodynamics (MHD) codes. The new approach turns out to be less expensive with respect to resolution and computation time than the usual one. We present an application to large aspect ratio tokamak and stellarator equilibria retaining a few Fourier harmonics only and calculate eigenfunctions and continuum damping rates. These may serve as an input for kinetic MHD hybrid models making it possible to bypass the problem of having singularities on the path of integration on one hand and considering continuum damping on the other.
A comparison of computational methods for three-dimensional, turbulent turbomachinery flow fields
NASA Technical Reports Server (NTRS)
Kirtley, K. R.; Warfield, M.; Lakshminarayana, B.
1986-01-01
A space-marching method and a time-marching method have been used to compute the three-dimensional turbulent flow in an end wall cascade of airfoils. Using an identical grid and turbulence model, the two codes were used to predict a variety of flow quantities. Predictions by the two methods are compared to each other and to experimental data. In general both methods predict measured quantities well, with a small edge in prediction accuracy going to the space-marching method. Secondary flow comparisons show the time-marching solution more accurately predicting the underturning of the flow in the outer portion of the end wall boundary layer while the space-marching method more accurately predicted the overturning of the flow very near the end wall. The prediction comparisons are discussed along with computational details and other attributes of the two methods.
NF85: A three-dimensional, air-dynamics computer code for analyzing explosions in structures
NASA Astrophysics Data System (ADS)
Steinke, R. G.
1987-12-01
The NF85 (Near-Field 85) computer program analyzes the effect of explosions on the dynamic behavior of air in structures. The explosion is modeled as a time- and spallese-dependent source of equivalent air mass and energy. Chemical reactions can be modeled directly with a combustion-model option, and tracer particles may be used to monitor combustion-products convection by the air. The near-field region of the explosion is modeled in three-dimensional Cartesian or cylindrical geometry. Internal structures can be defined in the region to reflect shock waves and obstruct airflow. A convenient dump/restart capability allows the movement or removal of internal structures during the transient solution. The effects of the surrounding far-field region are modeled at the three-dimensional region's external boundary by a wall surface, time- and space-dependent pressure or velocity boundary conditions, and/or one-dimensional Cartesian-geometry regions attached to openings in the external boundary. Ventilation ducts, passageways, and adjacent rooms can be modeled directly with one-dimensional regions, and the presence of blowers and filters can be modeled as well.
The Proteus Navier-Stokes code. [two and three dimensional computational fluid dynamics
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.
1992-01-01
An effort is currently underway at NASA Lewis to develop two and three dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. Proteus solves the Reynolds-averaged, unsteady, compressible Navier-Stokes equations in strong conservation law form. Turbulence is modeled using a Baldwin-Lomax based algebraic eddy viscosity model. In addition, options are available to solve thin layer or Euler equations, and to eliminate the energy equation by assuming constant stagnation enthalpy. An extensive series of validation cases have been run, primarily using the two dimensional planar/axisymmetric version of the code. Several flows were computed that have exact solution such as: fully developed channel and pipe flow; Couette flow with and without pressure gradients; unsteady Couette flow formation; flow near a suddenly accelerated flat plate; flow between concentric rotating cylinders; and flow near a rotating disk. The two dimensional version of the Proteus code has been released, and the three dimensional code is scheduled for release in late 1991.
NASA Astrophysics Data System (ADS)
Abookasis, David; Rosen, Joseph
2003-08-01
Synthesizing computer-generated holograms (CGHs) of a general three-dimensional (3D) object is usually a heavy computational task. We propose and demonstrate a new algorithm for computing CGHs of 3D objects. In our scheme, many different angular projections of computer-designed 3D objects are numerically processed to yield a single two-dimensional complex matrix. This matrix is equivalent to the complex amplitude of a wave front on the rear focal plane of a spherical lens when the object is located near the front focal point and illuminated by a plane wave. Therefore the computed matrix can be used as a CGH after it is encoded to a real positive-valued transparency. When such CGH is illuminated by a plane wave, a 3D real image of the objects is constructed. The number of computer operations are equivalent to those of a two-dimensional Fourier CGH. Computer and optical constructions of 3D objects, both of which show the feasibility of the proposed approach, are described.
Zhang, Chunhui; Lin, Hui; Chen, Jun; Zhang, Wenwen
2013-01-01
Electrochemical oxidation is a promising technology for the treatment ofbio-refractory wastewater. In this research, advanced treatment of coking wastewater which had previously undergone A/O (anaerobic-aerobic biological) treatment was investigated over Ti/RuO2 x IrO2 anode, stainless steel cathode and coke powder particle electrodes which were packed into the electrodes in a bipolar three-dimensional electrode reactor (BTDR). The results showed that the removal efficiency of COD and ammonia nitrogen increased with applied current density. The main influencing factors of BTDR were evaluated by an orthogonal test, including reaction time, plate distance, current density, plate amounts and aeration flow rate. With reaction time of 60 min, plate distance of 1.0 cm, current density of 20 mA/cm2 and plate amounts of four pairs, most of the contaminants in coking wastewater can be remediated by BTDR, which can then meet the discharge limit for coking wastewater in China. For organic pollutants, 12 kinds of organic pollutants can be completely removed, and the removal efficiencies of 11 kinds of organic pollutants are between 13.3 and 70.3% by advanced treatment with BTDR. We conclude that there is great potential for BTDR in engineering applications as a final treatment for coking wastewater. PMID:24350493
NASA Astrophysics Data System (ADS)
McBride, D.; Cross, M.; Croft, N.; Bennett, C.; Gebhardt, J.
2006-03-01
A computational procedure is presented for solving complex variably saturated flows in porous media, that may easily be implemented into existing conventional finite-volume-based computational fluid dynamics codes, so that their functionality might be geared upon to readily enable the modelling of a complex suite of interacting fluid, thermal and chemical reaction process physics. This procedure has been integrated within a multi-physics finite volume unstructured mesh framework, allowing arbitrarily complex three-dimensional geometries to be modelled. The model is particularly targeted at ore heap-leaching processes, which encounter complex flow problems, such as infiltration into dry soil, drainage, perched water tables and flow through heterogeneous materials, but is equally applicable to any process involving flow through porous media, such as in environmental recovery processes. The computational procedure is based on the mixed form of the classical Richards equation, employing an adaptive transformed mixed algorithm that is numerically robust and significantly reduces compute (or CPU) time. The computational procedure is accurate (compares well with other methods and analytical data), comprehensive (representing any kind of porous flow model), and is computationally efficient. As such, this procedure provides a suitable basis for the implementation of large-scale industrial heap-leach models.
NASA Astrophysics Data System (ADS)
Helfen, L.; Baumbach, T.; Mikulík, P.; Kiel, D.; Pernot, P.; Cloetens, P.; Baruchel, J.
2005-02-01
Computed laminography with synchrotron radiation is developed and carried out for three-dimensional imaging of flat, laterally extended objects with high spatial resolution. Particular experimental conditions of a stationary synchrotron source have been taken into account by a scanning geometry different from that employed with movable conventional laboratory x-ray sources. Depending on the mechanical precision of the sample manipulation system, high spatial resolution down to the scale of 1μm can be attained nondestructively, even for objects of large lateral size. Furthermore, high beam intensity and the parallel-beam geometry enables easy use of monochromatic radiation for optimizing contrast and reducing imaging artifacts. Simulations and experiments on a test object demonstrate the feasibility of the method. Application to the inspection of solder joints in a flip-chip bonded device shows the potential for quality assurance of microsystem devices.
Investigation and evaluation of a computer program to minimize three-dimensional flight time tracks
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
The program for the DC 8-D3 flight planning was slightly modified for the three dimensional flight planning for DC 10 aircrafts. Several test runs of the modified program over the North Atlantic and North America were made for verifying the program. While geopotential height and temperature were used in a previous program as meteorological data, the modified program uses wind direction and speed and temperature received from the National Weather Service. A scanning program was written to collect required weather information from the raw data received in a packed decimal format. Two sets of weather data, the 12-hour forecast and 24-hour forecast based on 0000 GMT, are used for dynamic processes in testruns. In order to save computing time only the weather data of the North Atlantic and North America is previously stored in a PCF file and then scanned one by one.
User's manual for PELE3D: a computer code for three-dimensional incompressible fluid dynamics
McMaster, W H
1982-05-07
The PELE3D code is a three-dimensional semi-implicit Eulerian hydrodynamics computer program for the solution of incompressible fluid flow coupled to a structure. The fluid and coupling algorithms have been adapted from the previously developed two-dimensional code PELE-IC. The PELE3D code is written in both plane and cylindrical coordinates. The coupling algorithm is general enough to handle a variety of structural shapes. The free surface algorithm is able to accommodate a top surface and several independent bubbles. The code is in a developmental status since all the intended options have not been fully implemented and tested. Development of this code ended in 1980 upon termination of the contract with the Nuclear Regulatory Commission.
Özkadif, S; Eken, E; Beşoluk, K; Dayan, M. O.
2015-01-01
The aim of this study was to reveal biometric peculiarities of New Zealand white rabbit antebrachium (radius and ulna) by means of three-dimensional (3D) reconstruction of multidetector computed tomography (MDCT) images. Under general anesthesia, the antebrachiums of a total of sixteen rabbits of both sexes were scanned with a general diagnostic MDCT. Biometric measurements of the reconstructed models from high resolution MDCT images were analyzed statistically. Consequently, when biometric measurement values of corresponding bones of antebrachium were compared, it was revealed that there was no statistical significance within both sexes but there were statistically important differences between both sexes in some biometric measurements. It has been suggested that the results from the study can shed light on future studies on the skeletal system and can form a modern point of view to anatomical education. PMID:27175177
Simulation of radiation effects on three-dimensional computer optical memories
NASA Technical Reports Server (NTRS)
Moscovitch, M.; Emfietzoglou, D.
1997-01-01
A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.
NASA Technical Reports Server (NTRS)
Kutler, P.; Reinhardt, W. A.; Warming, R. F.
1972-01-01
A computational procedure is presented which is capable of determining the supersonic flow field surrounding three-dimensional wing-body configurations such as a delta-wing space shuttle. The governing equations in conservation-law form are solved by a finite difference method using a second-order noncentered algorithm between the body and the outermost shock wave, which is treated as a sharp discontinuity. Secondary shocks which form between these boundaries are captured automatically, and the intersection of these shocks with the bow shock posed no difficulty. Resulting flow fields about typical blunt nose shuttle-like configurations at angle of attack are presented. The differences between perfect and real gas effects for high Mach number flows are shown.
NASA Astrophysics Data System (ADS)
Stürzel, T.; Bieberle, M.; Laurien, E.; Hampel, U.; Barthel, F.; Menz, H.-J.; Mayer, H.-G.
2011-02-01
An experimental facility is described, which has been designed to perform ultrafast two-dimensional (2D) and three-dimensional (3D) electron beam computed tomographies. As a novelty, a specially designed transparent target enables tomography with no axial offset for 2D imaging and high axial resolution 3D imaging employing the cone-beam tomography principles. The imaging speed is 10 000 frames per second for planar scanning and more than 1000 frames per second for 3D imaging. The facility serves a broad spectrum of potential applications; primarily, the study of multiphase flows, but also in principle nondestructive testing or small animal imaging. In order to demonstrate the aptitude for these applications, static phantom experiments at a frame rate of 2000 frames per second were performed. Resulting spatial resolution was found to be 1.2 mm and better for a reduced temporal resolution.
Application of a three-dimensional computational wrist model to proximal row carpectomy.
Wayne, Jennifer S; Mir, Afsarul Q
2015-06-01
A three-dimensional (3D) computational model of the wrist examined the biomechanical effects of the proximal row carpectomy (PRC), a surgical treatment of certain wrist degenerative conditions but with functional consequences. Model simulations, replicating the 3D bony anatomy, soft tissue restraints, muscle loading, and applied perturbations, demonstrated quantitatively accurate responses for the decreased motions subsequent to the surgical procedure. It also yielded some knowledge of alterations in radiocarpal contact force which likely increase contact pressure as well as additional insight into the importance of the triangular fibrocartilage complex and retinacular/capsular structures for stabilizing the deficient wrist. As better understanding of the wrist joint is achieved, this model could serve as a useful clinical tool. PMID:25710135
Three-Dimensional Computed Tomography as a Method for Finding Die Attach Voids in Diodes
NASA Technical Reports Server (NTRS)
Brahm, E. N.; Rolin, T. D.
2010-01-01
NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. The diode is an EEE part critical to NASA missions that can fail due to excessive voiding in the die attach. Metallography, one established method for studying the die attach, is a time-intensive, destructive, and equivocal process whereby mechanical grinding of the diodes is performed to reveal voiding in the die attach. Problems such as die attach pull-out tend to complicate results and can lead to erroneous conclusions. The objective of this study is to determine if three-dimensional computed tomography (3DCT), a nondestructive technique, is a viable alternative to metallography for detecting die attach voiding. The die attach voiding in two- dimensional planes created from 3DCT scans was compared to several physical cross sections of the same diode to determine if the 3DCT scan accurately recreates die attach volumetric variability
Simulation of radiation effects on three-dimensional computer optical memories
Moscovitch, M.; Emfietzoglou, D.
1997-01-01
A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle{close_quote}s track axis may be lost. The magnitude of the effect is dependent on the particle{close_quote}s track structure. {copyright} {ital 1997 American Institute of Physics.}
Three-Dimensional Object Motion and Velocity Estimation Using a Single Computational RGB-D Camera
Lee, Seungwon; Jeong, Kyungwon; Park, Jinho; Paik, Joonki
2015-01-01
In this paper, a three-dimensional (3D) object moving direction and velocity estimation method is presented using a dual off-axis color-filtered aperture (DCA)-based computational camera. Conventional object tracking methods provided only two-dimensional (2D) states of an object in the image for the target representation. The proposed method estimates depth information in the object region from a single DCA camera that transforms 2D spatial information into 3D model parameters of the object. We also present a calibration method of the DCA camera to estimate the entire set of camera parameters for a practical implementation. Experimental results show that the proposed DCA-based color and depth (RGB-D) camera can calculate the 3D object moving direction and velocity of a randomly moving object in a single-camera framework. PMID:25580899
NASA Technical Reports Server (NTRS)
Walitt, L.; Trulio, J. G.
1971-01-01
A numerical method is presented for the calculation of steady, three-dimensional, viscous, compressible flow fields about slender bodies at angle of attack and at supersonic speeds. Approximations are introduced in modeling the flow in the longitudinal direction. Accordingly, the flow fields calculated with the program were computed with a model that permits viscous crossflow together with inviscid axial flow. An analysis of the errors introduced by such a treatment is presented. Numerical calculations were made and compared with experimental results for an ogive-cylinder and an airplane fuselage configuration. Generally, good agreement with experiment was obtained. However, boundary layer separation and body vortex positions differed from experimental locations on the ogive-cylinder, and the shock induced by the fuselage canopy was predicted at a slightly different location.
The use of computer-generated three-dimensional models in orbital reconstruction.
Perry, M; Banks, P; Richards, R; Friedman, E P; Shaw, P
1998-08-01
In this paper we describe the application of three-dimensional (3D) imaging and computer-generated models in the management of orbital deformity. The technique was found to be particularly useful in posttraumatic deformity and fibrous dysplasia involving the orbit. Further application was found in cases of radiation hypoplasia, high facial cleft, and facial atrophy. Funding restrictions necessitate appropriate selection of cases when using new and expensive 3D imaging rather than traditional and less expensive methods. To remain within a realistic budget only those patients who will clearly benefit from the third dimension compared with traditional methods of assessment and management should be selected. These include patients requiring precise reduction or secondary reconstruction in which there is a matched normal anatomical component for comparison. This application is also only beneficial where the planned reconstruction is dimensionally stable. PMID:9762455
Ambrose, D.H. )
1993-01-01
Using three-dimensional (3-D) graphics computing to evaluate new technologies for computer-assisted mining systems illustrates how these visual techniques can redefine the way researchers look at raw scientific data. The US Bureau of Mines is using 3-D graphics computing to obtain cheaply, easily, and quickly information about the operation and design of current and proposed mechanical coal and metal-nonmetal mining systems. Bureau engineers developed a graphics simulator for a continuous miner that enables a realistic test for experimental software that controls the functions of a machine. Some of the specific simulated functions of the continuous miner are machine motion, appendage motion, machine position, and machine sensors. The simulator uses data files generated in the laboratory or mine using a computer-assisted mining machine. The data file contains information from a laser-based guidance system and a data acquisition system that records all control commands given to a computer-assisted mining machine. This report documents the first phase in developing the simulator and discusses simulator requirements, features of the initial simulator, and several examples of its application. During this endeavor, Bureau engineers discovered and appreciated the simulator's potential to assist their investigations of machine controls and navigation systems.
Advances in three-dimensional integration technologies in support of infrared focal plane arrays
NASA Astrophysics Data System (ADS)
Temple, D. S.; Vick, E. P.; Malta, D.; Lueck, M. R.; Skokan, M. R.; Masterjohn, C. M.; Muzilla, M. S.
2015-01-01
Staring infrared focal plane arrays (FPAs) require pixel-level, three-dimensional (3D) integration with silicon readout integrated circuits (ROICs) that provide detector bias, integrate detector current, and may further process the signals. There is an increased interest in ROIC technology as a result of two trends in the evolution of infrared FPAs. The first trend involves decreasing the FPA pixel size, which leads to the increased information content within the same FPA die size. The second trend involves the desire to enhance signal processing capability at the FPA level, which opens the door to the detector behaving like a smart peripheral rather than a passive component—with complex signal processing functions being executed on, rather than off, the FPA chip. In this paper, we review recent advances in 3D integration process technologies that support these key trends in the development of infrared FPAs. Specifically, we discuss approaches in which the infrared sensor is integrated with 3D ROIC stacks composed of multiple layers of silicon circuitry interconnected using metal-filled through-silicon vias. We describe the continued development of the 3D integration technology and summarize key demonstrations that show its viability for pixels as small as 5 microns.
[Advances in the research of application of hydrogels in three-dimensional bioprinting].
Yang, J; Zhao, Y; Li, H H; Zhu, S H
2016-08-20
Hydrogels are three-dimensional networks made of hydrophilic polymer crosslinked through covalent bonds or physical intermolecular attractions, which can contain growth media and growth factors to support cell growth. In bioprinting, hydrogels are used to provide accurate control over cellular microenvironment and to dramatically reduce experimental repetition times, meanwhile we can obtain three-dimensional cell images of high quality. Hydrogels in three-dimensional bioprinting have received a considerable interest due to their structural similarities to the natural extracellular matrix and polyporous frameworks which can support the cellular proliferation and survival. Meanwhile, they are accompanied by many challenges. PMID:27562161
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1991-01-01
An upwind MUSCL-type implicit scheme for the three-dimensional Navier-Stokes equations is presented and details on the implementation for three-dimensional flows of a 'diagonal' upwind implicit operator are developed. Turbulence models for separated flows are also described with an emphasis on the numerical specificities of the Johnson-King nonequilibrium model. Good predictions of separated two- and three-dimensional flows are demonstrated.
A spectral formalism for computing three-dimensional deformations due to surface loads. 1: Theory
NASA Technical Reports Server (NTRS)
Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.
1994-01-01
We outline a complete spectral formalism for computing high spatial resolution three-dimensional deformations arising from the surface mass loading of a spherically symmetric planet. The main advantages of the formalism are that all surface mass loads are always described using a consistent mathematical representation and that calculations of deformation fields for various spatial resolutions can be performed by simpley altering the spherical harmonic degree truncation level of the procedure. The latter may be important when incorporating improved observational constraints on a particular surface mass load, when considering potential errors in the computed field associated with mass loading having a spatial scale unresolved by the observational constraints, or when treating a number of global surface mass loads constrained with different spatial resolutions. The advantages do not extend to traditional 'Green's function' approaches which involve surface element discretizations of the global mass loads. Another advantage of the spectral formalism, over the Green's function approach, is that a posteriori analyses of the computed deformation fields are easily performed. In developing the spectral formalism, we consider specific cases where the Earth's mantle is assumed to respond as an elastic, slightly anelastic, or linear viscoelastic medium. In the case of an elastic or slightly anelastic mantle rheology the spectral response equations incorporate frequency dependent Love numbers. The formalism can therefore be used, for example, to compute the potentially resonant deformational response associated with the free core nutation and Chandler wobble eigenfunctions. For completeness, the spectral response equations include both body forces, as arise from the gravitational attraction of the Sun and the Moon, and surface mass loads. In either case, and for both elastic and anelastic mantle rheologies, we outline a pseudo-spectral technique for computing the ocean
External Boundary Conditions for Three-Dimensional Problems of Computational Aerodynamics
NASA Technical Reports Server (NTRS)
Tsynkov, Semyon V.
1997-01-01
We consider an unbounded steady-state flow of viscous fluid over a three-dimensional finite body or configuration of bodies. For the purpose of solving this flow problem numerically, we discretize the governing equations (Navier-Stokes) on a finite-difference grid. The grid obviously cannot stretch from the body up to infinity, because the number of the discrete variables in that case would not be finite. Therefore, prior to the discretization we truncate the original unbounded flow domain by introducing some artificial computational boundary at a finite distance of the body. Typically, the artificial boundary is introduced in a natural way as the external boundary of the domain covered by the grid. The flow problem formulated only on the finite computational domain rather than on the original infinite domain is clearly subdefinite unless some artificial boundary conditions (ABC's) are specified at the external computational boundary. Similarly, the discretized flow problem is subdefinite (i.e., lacks equations with respect to unknowns) unless a special closing procedure is implemented at this artificial boundary. The closing procedure in the discrete case is called the ABC's as well. In this paper, we present an innovative approach to constructing highly accurate ABC's for three-dimensional flow computations. The approach extends our previous technique developed for the two-dimensional case; it employs the finite-difference counterparts to Calderon's pseudodifferential boundary projections calculated in the framework of the difference potentials method (DPM) by Ryaben'kii. The resulting ABC's appear spatially nonlocal but particularly easy to implement along with the existing solvers. The new boundary conditions have been successfully combined with the NASA-developed production code TLNS3D and used for the analysis of wing-shaped configurations in subsonic (including incompressible limit) and transonic flow regimes. As demonstrated by the computational experiments
NASA Technical Reports Server (NTRS)
Guruswamy, P.; Goorjian, P. M.
1982-01-01
Comparisons were made of computed and experimental data in three-dimensional unsteady transonic aerodynamics, including aeroelastic applications. The computer code LTRAN3, which is based on small-disturbance aerodynamic theory, was used to obtain the aerodynamic data. A procedure based on the U-g method was developed to compute flutter boundaries by using the unsteady aerodynamic coefficients obtained from LTRAN3. The experimental data were obtained from available NASA publications. All the studies were conducted for thin, unswept, rectangular wings with circular-arc cross sections. Numerical and experimental steady and unsteady aerodynamic data were compared for a wing with an aspect ratio of 3 and a thickness ratio of 5% at Mach numbers of 0.7 and 0.9. Flutter data were compared for a wing with an aspect ratio of 5. Two thickness ratios, 6% at Mach numbers of 0.715, 0.851, and 0.913, and 4% at Mach number of 0.904, were considered. Based on the unsteady aerodynamic data obtained from LTRAN3, flutter boundaries were computed; they were compared with those obtained from experiments and the code NASTRAN, which uses linear aerodynamics.
Computational models for the analysis of three-dimensional internal and exhaust plume flowfields
NASA Technical Reports Server (NTRS)
Dash, S. M.; Delguidice, P. D.
1977-01-01
This paper describes computational procedures developed for the analysis of three-dimensional supersonic ducted flows and multinozzle exhaust plume flowfields. The models/codes embodying these procedures cater to a broad spectrum of geometric situations via the use of multiple reference plane grid networks in several coordinate systems. Shock capturing techniques are employed to trace the propagation and interaction of multiple shock surfaces while the plume interface, separating the exhaust and external flows, and the plume external shock are discretely analyzed. The computational grid within the reference planes follows the trace of streamlines to facilitate the incorporation of finite-rate chemistry and viscous computational capabilities. Exhaust gas properties consist of combustion products in chemical equilibrium. The computational accuracy of the models/codes is assessed via comparisons with exact solutions, results of other codes and experimental data. Results are presented for the flows in two-dimensional convergent and divergent ducts, expansive and compressive corner flows, flow in a rectangular nozzle and the plume flowfields for exhausts issuing out of single and multiple rectangular nozzles.
NASA Astrophysics Data System (ADS)
Martiniani, Stefano; Schrenk, K. Julian; Stevenson, Jacob D.; Wales, David J.; Frenkel, Daan
2016-01-01
We present a numerical calculation of the total number of disordered jammed configurations Ω of N repulsive, three-dimensional spheres in a fixed volume V . To make these calculations tractable, we increase the computational efficiency of the approach of Xu et al. [Phys. Rev. Lett. 106, 245502 (2011), 10.1103/PhysRevLett.106.245502] and Asenjo et al. [Phys. Rev. Lett. 112, 098002 (2014), 10.1103/PhysRevLett.112.098002] and we extend the method to allow computation of the configurational entropy as a function of pressure. The approach that we use computes the configurational entropy by sampling the absolute volume of basins of attraction of the stable packings in the potential energy landscape. We find a surprisingly strong correlation between the pressure of a configuration and the volume of its basin of attraction in the potential energy landscape. This relation is well described by a power law. Our methodology to compute the number of minima in the potential energy landscape should be applicable to a wide range of other enumeration problems in statistical physics, string theory, cosmology, and machine learning that aim to find the distribution of the extrema of a scalar cost function that depends on many degrees of freedom.
Martiniani, Stefano; Schrenk, K Julian; Stevenson, Jacob D; Wales, David J; Frenkel, Daan
2016-01-01
We present a numerical calculation of the total number of disordered jammed configurations Ω of N repulsive, three-dimensional spheres in a fixed volume V. To make these calculations tractable, we increase the computational efficiency of the approach of Xu et al. [Phys. Rev. Lett. 106, 245502 (2011)10.1103/PhysRevLett.106.245502] and Asenjo et al. [Phys. Rev. Lett. 112, 098002 (2014)10.1103/PhysRevLett.112.098002] and we extend the method to allow computation of the configurational entropy as a function of pressure. The approach that we use computes the configurational entropy by sampling the absolute volume of basins of attraction of the stable packings in the potential energy landscape. We find a surprisingly strong correlation between the pressure of a configuration and the volume of its basin of attraction in the potential energy landscape. This relation is well described by a power law. Our methodology to compute the number of minima in the potential energy landscape should be applicable to a wide range of other enumeration problems in statistical physics, string theory, cosmology, and machine learning that aim to find the distribution of the extrema of a scalar cost function that depends on many degrees of freedom. PMID:26871142
High Speed Data Acquisition System for Three-Dimensional X-Ray and Neutron Computed Tomography
Davis, A.W.; Claytor, T.N.; Sheats, M.J.
1999-07-01
Computed tomography for nondestructive evaluation applications has been limited by system cost, resolution, and time requirements for three-dimensional data sets. FlashCT (Flat panel Amorphous Silicon High-Resolution Computed Tomography) is a system developed at Los Alamos National Laboratory to address these three problems. Developed around a flat panel amorphous silicon detector array, FlashCT is suitable for low to medium energy x-ray and neutron computed tomography at 127-micron resolution. Overall system size is small, allowing rapid transportation to a variety of radiographic sources. System control software was developed in LabVIEW for Windows NT to allow multithreading of data acquisition, data correction, and staging motor control. The system control software simplifies data collection and allows fully automated control of the data acquisition process, leading toward remote or unattended operation. The first generation of the FlashCT Data Acquisition System was completed in Au gust 1998, and since that time the system has been tested using x-ray sources ranging in energy from 60 kV to 20MV. The system has also been used to collect data for thermal neutron computed tomography at Los Alamos Neutron Science Center (LANSCE). System improvements have been proposed to provide faster data collection and greater dynamic range during data collection.
Vortical flow in human elbow joints: a three-dimensional computed tomography modeling study.
Adikrishna, Arnold; Kekatpure, Aashay L; Tan, Jun; Lee, Hyun-Joo; Deslivia, Maria Florencia; Jeon, In-Ho
2014-10-01
The human elbow joint has been regarded as a loose hinge joint, with a unique helical motion of the axis during extension-flexion. This study was designed to identify the helical axis in the ulnohumeral joint during elbow extension-flexion by tracking the midpoint between the coronoid tip and the olecranon tip of the proximal ulna in a three-dimensional (3D) computed tomography (CT) image model. The elbows of four volunteers were CT-scanned at four flexion angles (0°, 45°, 90°, and 130°) at neutral rotation with a custom-made holding device to control any motion during scanning. Three-dimensional models of each elbow were reconstructed and a 3D ulnohumeral joint at 45°, 90°, and 130° was superimposed onto a fully extended joint (0°) by rotating and translating each 3D ulnohumeral joint along the axes. The midpoints of the olecranon and coronoid tips were interpolated using cubic spline technique and the dynamic elbow motion was plotted to determine the motion of the helical axis. The means and standard deviations were subsequently calculated. The average midpoint pattern of joint motion from extension to flexion was elliptical-orbit-like when projected onto a sagittal plane and continuously translated a mean 2.14 ± 0.34 mm (range, 1.83-2.52 mm) to the lateral side during elbow extension-flexion. In 3D space, the average midpoint pattern of the ulnohumeral joint resembles a vortical flow, spinning along an imaginary axis, with an inconsistent radius from 0° to 130° flexion. The ulnohumeral joint axis both rotates and translates during elbow extension-flexion, with a vortex-flow motion occurring during flexion in 3D model analysis. This motion should be considered when performing hinged external fixation, total elbow replacement and medial collateral ligament reconstruction surgery. PMID:25100632
NASA Astrophysics Data System (ADS)
Liu, P.; Zhang, Y.
2008-04-01
Accurately simulating secondary organic aerosols (SOA) in three-dimensional (3-D) air quality models is challenging due to the complexity of the physics and chemistry involved and the high computational demand required. A computationally-efficient yet accurate SOA module is necessary in 3-D applications for long-term simulations and real-time air quality forecasting. A coupled gas and aerosol box model (i.e., 0-D CMAQ-MADRID 2) is used to optimize relevant processes in order to develop such a SOA module. Solving the partitioning equations for condensable volatile organic compounds (VOCs) and calculating their activity coefficients in the multicomponent mixtures are identified to be the most computationally-expensive processes. The two processes can be speeded up by relaxing the error tolerance levels and reducing the maximum number of iterations of the numerical solver for the partitioning equations for organic species; turning on organic-inorganic interactions only when the water content associated with organic compounds is significant; and parameterizing the calculation of activity coefficients for organic mixtures in the hydrophilic module. The optimal speed-up method can reduce the total CPU cost by up to a factor of 29.7 with ±15% deviation from benchmark results. These speedup methods are applicable to other SOA modules that are based on partitioning theories.
NASA Astrophysics Data System (ADS)
Liu, P.; Zhang, Y.
2008-07-01
Accurately simulating secondary organic aerosols (SOA) in three-dimensional (3-D) air quality models is challenging due to the complexity of the physics and chemistry involved and the high computational demand required. A computationally-efficient yet accurate SOA module is necessary in 3-D applications for long-term simulations and real-time air quality forecasting. A coupled gas and aerosol box model (i.e., 0-D CMAQ-MADRID 2) is used to optimize relevant processes in order to develop such a SOA module. Solving the partitioning equations for condensable volatile organic compounds (VOCs) and calculating their activity coefficients in the multicomponent mixtures are identified to be the most computationally-expensive processes. The two processes can be speeded up by relaxing the error tolerance levels and reducing the maximum number of iterations of the numerical solver for the partitioning equations for organic species; conditionally activating organic-inorganic interactions; and parameterizing the calculation of activity coefficients for organic mixtures in the hydrophilic module. The optimal speed-up method can reduce the total CPU cost by up to a factor of 31.4 from benchmark under the rural conditions with 2 ppb isoprene and by factors of 10 71 under various test conditions with 2 10 ppb isoprene and >40% relative humidity while maintaining ±15% deviation. These speed-up methods are applicable to other SOA modules that are based on partitioning theories.
Constructing three-dimensional detachable and composable computer models of the head and neck.
Fan, Min; Dai, Peishan; Zheng, Buhong; Li, Xinchun
2015-06-01
The head and neck region has a complex spatial and topological structure, three-dimensional (3D) computer model of the region can be used in anatomical education, radiotherapy planning and surgical training. However, most of the current models only consist of a few parts of the head and neck, and the 3D models are not detachable and composable. In this study, a high-resolution 3D detachable and composable model of the head and neck was constructed based on computed tomography (CT) serial images. First, fine CT serial images of the head and neck were obtained. Then, a color lookup table was created for 58 structures, which was used to create anatomical atlases of the head and neck. Then, surface and volume rendering methods were used to reconstruct 3D models of the head and neck. Smoothing and polygon reduction steps were added to improve 3D rendering effects. 3D computer models of the head and neck, including the sinus, pharynx, vasculature, nervous system, endocrine system and glands, muscles, bones and skin, were reconstructed. The models consisted of 58 anatomical detachable and composable structures and each structure can be displayed individually or together with other structures. PMID:26091713
Application of three-dimensional computer modeling for reservoir and ore-body analysis
Hamilton, D.E.; Marie, J.L.; Moon, G.M.; Moretti, F.J.; Ryman, W.P.; Didur, R.S.
1985-02-01
Three-dimensional computer modeling of reservoirs and ore bodies aids in understanding and exploiting these resources. This modeling tool enables the geologist and engineer to correlate in 3 dimensions, experiment with various geologic interpretations, combine variables to enhance certain geologic attributes, test for reservoir heterogeneities and continuity, select drill sites or perforation zones, determine volumes, plan production, generate geologic parameters for input to flow simulators, calculate tonnages and ore-waste ratios, and test sensitivity of reserves to various ore-grade cutoffs and economic parameters. All applications benefit from the ability to update rapidly the 3-dimensional computer models when new data are collected. Two 3-dimensional computer modeling projects demonstrate these capabilities. The first project involves modeling porosity, permeability, and water saturation in a Malaysian reservoir. The models were used to analyze the relationship between water saturation and porosity and to generate geologic parameters for input to a flow simulator. The second project involves modeling copper, zinc, silver, gold, and specific gravity in a massive sulfide ore body in British Columbia. The 4 metal models were combined into one copper-equivalence model and evaluated for tonnage, stripping ratio, and sensitivity to variations of ore-grade cutoff.
Wieringa, Fokko P.; Bouma, Henri; Eendebak, Pieter T.; van Basten, Jean-Paul A.; Beerlage, Harrie P.; Smits, Geert A. H. J.; Bos, Jelte E.
2014-01-01
Abstract. In comparison to open surgery, endoscopic surgery offers impaired depth perception and narrower field-of-view. To improve depth perception, the Da Vinci robot offers three-dimensional (3-D) video on the console for the surgeon but not for assistants, although both must collaborate. We improved the shared perception of the whole surgical team by connecting live 3-D monitors to all three available Da Vinci generations, probed user experience after two years by questionnaire, and compared time measurements of a predefined complex interaction task performed with a 3-D monitor versus two-dimensional. Additionally, we investigated whether the complex mental task of reconstructing a 3-D overview from an endoscopic video can be performed by a computer and shared among users. During the study, 925 robot-assisted laparoscopic procedures were performed in three hospitals, including prostatectomies, cystectomies, and nephrectomies. Thirty-one users participated in our questionnaire. Eighty-four percent preferred 3-D monitors and 100% reported spatial-perception improvement. All participating urologists indicated quicker performance of tasks requiring delicate collaboration (e.g., clip placement) when assistants used 3-D monitors. Eighteen users participated in a timing experiment during a delicate cooperation task in vitro. Teamwork was significantly (40%) faster with the 3-D monitor. Computer-generated 3-D reconstructions from recordings offered very wide interactive panoramas with educational value, although the present embodiment is vulnerable to movement artifacts. PMID:26158026
NASA Astrophysics Data System (ADS)
Zhang, Hao; Tan, Qiaofeng; Jin, Guofan
2013-02-01
Holographic display is capable of reconstructing the whole optical wave field of a three-dimensional (3D) scene. It is the only one among all the 3D display techniques that can produce all the depth cues. With the development of computing technology and spatial light modulators, computer generated holograms (CGHs) can now be used to produce dynamic 3D images of synthetic objects. Computation holography becomes highly complicated and demanding when it is employed to produce real 3D images. Here we present a novel algorithm for generating a full parallax 3D CGH with occlusion effect, which is an important property of 3D perception, but has often been neglected in fully computed hologram synthesis. The ray casting technique, which is widely used in computer graphics, is introduced to handle the occlusion issue of CGH computation. Horizontally and vertically distributed rays are projected from each hologram sample to the 3D objects to obtain the complex amplitude distribution. The occlusion issue is handled by performing ray casting calculations to all the hologram samples. The proposed algorithm has no restriction on or approximation to the 3D objects, and hence it can produce reconstructed images with correct shading effect and no visible artifacts. Programmable graphics processing unit (GPU) is used to perform parallel calculation. This is made possible because each hologram sample belongs to an independent operation. To demonstrate the performance of our proposed algorithm, an optical experiment is performed to reconstruct the 3D scene by using a phase-only spatial light modulator. We can easily perceive the accommodation cue by focusing our eyes on different depths of the scene and the motion parallax cue with occlusion effect by moving our eyes around. The experiment result confirms that the CGHs produced by our algorithm can successfully reconstruct 3D images with all the depth cues.
Synchrotron X-ray computed laminography of the three-dimensional anatomy of tomato leaves.
Verboven, Pieter; Herremans, Els; Helfen, Lukas; Ho, Quang T; Abera, Metadel; Baumbach, Tilo; Wevers, Martine; Nicolaï, Bart M
2015-01-01
Synchrotron radiation computed laminography (SR-CL) is presented as an imaging method for analyzing the three-dimensional (3D) anatomy of leaves. The SR-CL method was used to provide 3D images of 1-mm² samples of intact leaves at a pixel resolution of 750 nm. The method allowed visualization and quantitative analysis of palisade and spongy mesophyll cells, and showed local venation patterns, aspects of xylem vascular structure and stomata. The method failed to image subcellular organelles such as chloroplasts. We constructed 3D computer models of leaves that can provide a basis for calculating gas exchange, light penetration and water and solute transport. The leaf anatomy of two different tomato genotypes grown in saturating light conditions was compared by 3D analysis. Differences were found in calculated values of tissue porosity, cell number density, cell area to volume ratio and cell volume and cell shape distributions of palisade and spongy cell layers. In contrast, the exposed cell area to leaf area ratio in mesophyll, a descriptor that correlates to the maximum rate of photosynthesis in saturated light conditions, was no different between spongy and palisade cells or between genotypes. The use of 3D image processing avoids many of the limitations of anatomical analysis with two-dimensional sections. PMID:25319143
Hasegawa, T; Horio, H; Okino, H; Taylor, T W; Yamaguchi, T
1993-01-01
An application of three-dimensional (3D) computational fluid mechanics to the air flow in infant incubators is presented. The air flows in two numerical models were simulated by directly solving the Navier-Stokes equations for incompressible gases. The method used was a finite-volume method incorporating a body-fitted coordinate system. The basic model was based on a real infant incubator, which was slightly simplified and included a model of a baby. The number of computation grids was 56 (width) x 21 (depth) x 21 (height) = 24,696. There were several very-large-scale eddies in the incubator free space. In addition to the global structure, small-scale eddies were shown to be produced at many locations scattered in the free space. From these results, it is evident that the conventional assumption of steady and uniform flows in incubators is not always justified when considering heat loss from the body of a baby in an incubator. PMID:8369866
Acosta Santamaría, Víctor Andrés; Malvè, M; Duizabo, A; Mena Tobar, A; Gallego Ferrer, G; García Aznar, J M; Doblaré, M; Ochoa, I
2013-11-01
The application of three-dimensional (3D) biomaterials to facilitate the adhesion, proliferation, and differentiation of cells has been widely studied for tissue engineering purposes. The fabrication methods used to improve the mechanical response of the scaffold produce complex and non regular structures. Apart from the mechanical aspect, the fluid behavior in the inner part of the scaffold should also be considered. Parameters such as permeability (k) or wall shear stress (WSS) are important aspects in the provision of nutrients, the removal of metabolic waste products or the mechanically-induced differentiation of cells attached in the trabecular network of the scaffolds. Experimental measurements of these parameters are not available in all labs. However, fluid parameters should be known prior to other types of experiments. The present work compares an experimental study with a computational fluid dynamics (CFD) methodology to determine the related fluid parameters (k and WSS) of complex non regular poly(L-lactic acid) scaffolds based only on the treatment of microphotographic images obtained with a microCT (μCT). The CFD analysis shows similar tendencies and results with low relative difference compared to those of the experimental study, for high flow rates. For low flow rates the accuracy of this prediction reduces. The correlation between the computational and experimental results validates the robustness of the proposed methodology. PMID:23807712
Xue, Qian; Zheng, Xudong; Mittal, Rajat; Bielamowicz, Steve
2014-01-01
Summary Objective The current study explores the use of a continuum based computational model to investigate the effect of left right tension imbalance on vocal fold vibrations and glottal aerodynamics, as well as its implication on phonation. The study allows us to gain new insights into the underlying physical mechanism of irregularities induced by vocal fold tension imbalance associated with unilateral cricothyroid muscle paralysis. Method A three dimensional simulation of glottal flow and vocal fold dynamics in a tubular laryngeal model with tension imbalance was conducted by using a coupled flow-structure interaction computational model. Tension imbalance was modeled by reducing by 20% the Young’s modulus of one of the vocal folds, while holding vocal fold length constant. Effects of tension imbalance on vibratory characteristic of the vocal folds and on the time-varying properties of glottal airflow as well as the aerodynamic energy transfer are comprehensively analyzed. Results and Conclusions The analysis demonstrates that the continuum based biomechanical model can provide a good description of phonatory dynamics in tension imbalance conditions. It is found that while 20% tension imbalance does not have noticeable effects on the fundamental frequency, it does lead to a larger glottal flow leakage and asymmetric vibrations of the two vocal folds. A detailed analysis of the energy transfer suggests that the majority of the energy is consumed by the lateral motion of the vocal folds and the net energy transferred to the softer fold is less than the one transferred to the normal fold. PMID:24725589
Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks
Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring
2008-07-01
A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created for detailed analysis of a high-temperature electrolysis stack (solid oxide fuel cells operated as electrolyzers). Inlet and outlet plenum flow distributions are discussed. Maldistribution of plena flow show deviations in per-cell operating conditions due to non-uniformity of species concentrations. Models have also been created to simulate experimental conditions and for code validation. Comparisons between model predictions and experimental results are discussed. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the electrolysis mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Variations in flow distribution, and species concentration are discussed. End effects of flow and per-cell voltage are also considered. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition.
Full parallax three-dimensional display with occlusion effect using computer generated hologram
NASA Astrophysics Data System (ADS)
Zhang, Hao; Collings, Neil; Chen, Jing; Crossland, Bill; Chu, Daping; Xie, Jinghui
2011-07-01
Computational holography becomes highly complicated and demanding when it is employed to produce real three-dimensional (3D) images. Here we present a novel algorithm for generating a full parallax 3D computer generated hologram (CGH) with occlusion effect, which is an important property of 3D perception, but has often been neglected in most CGH related works. The ray casting technique is introduced to handle the occlusion issue. Horizontally and vertically distributed rays are projected from each hologram sample to the 3D objects to obtain the complex amplitude distribution. The proposed algorithm has no restriction on--or approximation to--the 3D objects, and it can produce reconstructed images with correct shading effect and no visible artifacts. An optical experiment is performed to validate our approach, using a phase-only spatial light modulator to optically reconstruct a 3D scene. The experimental result confirmed that the CGHs produced by our algorithm can successfully reconstruct 3D images with full parallax and occlusion effect.
Computation of three-dimensional nozzle-exhaust flow fields with the GIM code
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Anderson, P. G.
1978-01-01
A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology.
NASA Astrophysics Data System (ADS)
Kinoshita, Shunichi; Eder, Wolfgang; Woeger, Julia; Hohenegger, Johann; Briguglio, Antonino; Ferrandez-Canadell, Carles
2015-04-01
Symbiont-bearing larger benthic Foraminifera (LBF) are long-living marine (at least 1 year), single-celled organisms with complex calcium carbonate shells. Their morphology has been intensively studied since the middle of the nineteenth century. This led to a broad spectrum of taxonomic results, important from biostratigraphy to ecology in shallow water tropical to warm temperate marine palaeo-environments. However, it was necessary for the traditional investigation methods to cut or destruct specimens for analysing the taxonomically important inner structures. X-ray micro-computed tomography (microCT) is one of the newest techniques used in morphological studies. The greatest advantage is the non-destructive acquisition of inner structures. Furthermore, the running improve of microCT scanners' hard- and software provides high resolution and short time scans well-suited for LBF. Three-dimensional imaging techniques allow to select and extract each chamber and to measure easily its volume, surface and several form parameters used for morphometric analyses. Thus, 3-dimensional visualisation of LBF-tests is a very big step forward from traditional morphology based on 2-dimensional data. The quantification of chamber form is a great opportunity to tackle LBF structures, architectures and the bauplan geometry. The micrometric digital resolution is the only way to solve many controversies in phylogeny and evolutionary trends of LBF. For the present study we used micro-computed tomography to easily investigate the chamber number of every specimen from statistically representative part of populations to estimate population dynamics. Samples of living individuals are collected at monthly intervals from fixed locations. Specific preparation allows to scan up to 35 specimens per scan within 2 hours and to obtain the complete digital dataset for each specimen of the population. MicroCT enables thus a fast and precise count of all chambers built by the foraminifer from its
Optical computed tomography of radiochromic gels for accurate three-dimensional dosimetry
NASA Astrophysics Data System (ADS)
Babic, Steven
In this thesis, three-dimensional (3-D) radiochromic Ferrous Xylenol-orange (FX) and Leuco Crystal Violet (LCV) micelles gels were imaged by laser and cone-beam (Vista(TM)) optical computed tomography (CT) scanners. The objective was to develop optical CT of radiochromic gels for accurate 3-D dosimetry of intensity-modulated radiation therapy (IMRT) and small field techniques used in modern radiotherapy. First, the cause of a threshold dose response in FX gel dosimeters when scanned with a yellow light source was determined. This effect stems from a spectral sensitivity to multiple chemical complexes that are at different dose levels between ferric ions and xylenol-orange. To negate the threshold dose, an initial concentration of ferric ions is needed in order to shift the chemical equilibrium so that additional dose results in a linear production of a coloured complex that preferentially absorbs at longer wavelengths. Second, a low diffusion leuco-based radiochromic gel consisting of Triton X-100 micelles was developed. The diffusion coefficient of the LCV micelle gel was found to be minimal (0.036 + 0.001 mm2 hr-1 ). Although a dosimetric characterization revealed a reduced sensitivity to radiation, this was offset by a lower auto-oxidation rate and base optical density, higher melting point and no spectral sensitivity. Third, the Radiological Physics Centre (RPC) head-and-neck IMRT protocol was extended to 3-D dose verification using laser and cone-beam (Vista(TM)) optical CT scans of FX gels. Both optical systems yielded comparable measured dose distributions in high-dose regions and low gradients. The FX gel dosimetry results were crossed checked against independent thermoluminescent dosimeter and GAFChromicRTM EBT film measurements made by the RPC. It was shown that optical CT scanned FX gels can be used for accurate IMRT dose verification in 3-D. Finally, corrections for FX gel diffusion and scattered stray light in the Vista(TM) scanner were developed to
Shimizu, Y; Kamiyoshihara, M; Okajo, J; Ishii, Y; Takise, A
2014-01-01
Patients with relapsing polychondritis (RP) and airway stenosis have difficulty performing conventional spirometry that requires maximum forced expiration. We report a patient with RP who showed progressive severe bronchial stenosis on three-dimensional computed tomography (3D-CT) and impulse oscillation (IOS) with 3D color imaging using a Mostgraph®. The forced oscillation technique using IOS allows within-breath evaluation without forced expiration. A 68-year-old man who had RP presented with dyspnea due to stenosis of the trachea and left main bronchus (lt. mb). Stenting was performed twice in two years. Chest 3D-CT revealed a marked difference in the extent of bronchial collapse during expiration compared with inspiration. The forced expiratory volume in 1 second (FEV1.0), reactance at 5Hz (X5), resonant frequency (Fres), and integrated low frequency reactance area (ALX) measured by IOS showed temporary improvement after placement of the first stent, but respiratory resistance at 5Hz (R5) and 20Hz (R20) remained poor. 3D color images of respiratory resistance obtained with a Mostgraph® already showed high values at the time of diagnosis, resembling the features of chronic obstructive disease (COPD). 3D color images were helpful for interpreting the changes of IOS parameters during the clinical course. In conclusion, 3D-CT in inspiration/expiration and noninvasive IOS with 3D color imaging are useful for assessing airway stenosis in RP while reducing the burden of repeated spirometry. PMID:25001664
Three-Dimensional Effects in Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.
2003-01-01
In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.
Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil
NASA Technical Reports Server (NTRS)
Jun, Garam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching
2014-01-01
The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Center's Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.
Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil
NASA Technical Reports Server (NTRS)
Jun, GaRam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching
2014-01-01
The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Centers Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.
Valentini, Anna Lia; Gui, Benedetta; D'Agostino, Giuseppe Roberto; Mattiucci, Giancarlo; Clementi, Valeria; Di Molfetta, Ippolita Valentina; Bonomo, Pierluigi; Mantini, Giovanna
2012-11-01
Purpose: To correlate results of three-dimensional magnetic resonance spectroscopic imaging (MRSI) with prostate-specific antigen (PSA) levels and time since external beam irradiation (EBRT) in patients treated with long-term hormone therapy (HT) and EBRT for locally advanced disease to verify successful treatment by documenting the achievement of metabolic atrophy (MA). Methods and Materials: Between 2006 and 2008, 109 patients were consecutively enrolled. MA was assessed by choline and citrate peak area-to-noise-ratio <5:1. Cancerous metabolism (CM) was defined by choline-to-creatine ratio >1.5:1 or choline signal-to-noise-ratio >5:1. To test the strength of association between MRSI results and the time elapsed since EBRT (TEFRT), PSA levels, Gleason score (GS), and stage, logistic regression (LR) was performed. p value <0.05 was statistically significant. The patients' outcomes were verified in 2011. Results: MRSI documented MA in 84 of 109 and CM in 25 of 109 cases. LR showed that age, GS, stage, and initial and recent PSA had no significant impact on MRSI results which were significantly related to PSA values at the time of MRSI and to TEFRT. Patients were divided into three groups according to TEFRT: <1 year, 1-2 years, and >2 years. MA was detected in 54.1% of patients of group 1, 88.9% of group 2, and in 94.5% of group 3 (100% when PSA nadir was reached). CM was detected in 50% of patients with reached PSA nadir in group 1. Local relapse was found in 3 patients previously showing CM at long TEFRT. Conclusion: MA detection, indicative of successful treatment because growth of normal or abnormal cells cannot occur without metabolism, increases with decreasing PSA levels and increasing time on HT after EBRT. This supports long-term HT in advanced prostate cancer. Larger study series are needed to assess whether MRSI could predict local relapse by detecting CM at long TEFRT.
A computational model to generate simulated three-dimensional breast masses
de Sisternes, Luis; Brankov, Jovan G.; Zysk, Adam M.; Schmidt, Robert A.; Nishikawa, Robert M.; Wernick, Miles N.
2015-01-01
Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and
A computational model to generate simulated three-dimensional breast masses
Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N.; Schmidt, Robert A.; Nishikawa, Robert M.
2015-02-15
Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and
Jeong, Ji-wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul
2016-01-01
We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%. PMID:27274993
NASA Astrophysics Data System (ADS)
Müller, Ert; Riedel, Marco; Thurner, Philipp J.
2006-04-01
Micro-computed tomography with the highly intense, monochromatic X rays produced by the synchrotron is a superior method to nondestructively measure the local absorption in three-dimensional space. Because biological tissues and cells consist mainly of water as the surrounding medium, higher absorbing agents have to be incorporated into the structures of interest. Even without X-ray optics such as refractive lens, one can uncover the stain distribution with the spatial resolution of about 1 [mu]m. Incorporating the stain at selected cell compartments, for example, binding to the RNA/DNA, their density distribution becomes quantified. In this communication, we demonstrate that tomograms obtained at the beamlines BW2 and W2 (HASYLAB at DESY, Hamburg, Germany) and 4S (SLS, Villigen, Switzerland) clearly show that the RNA/DNA-stained HEK 293 cell clusters have a core of high density and a peripheral part of lower density, which correlate with results of optical microscopy. The inner part of the clusters is associated with nonvital cells as the result of insufficient oxygen and nutrition supply. This necrotic part is surrounded by (6 ± 1) layers of vital cells.
Anthropometry of the Human Scaphoid Waist by Three-Dimensional Computed Tomography.
Smith, Jennifer; Hofmeister, Eric P; Renninger, Christopher; Kroonen, Leo T
2015-01-01
Published measurements for the scaphoid are scarce. The purpose of this study is to define anthropometric norms for the waist of the scaphoid to assist in optimizing bone graft quantity and implant use. Computed tomography images of the wrist were reviewed by three surgeons. Anthropometric data were gathered, including the scaphoid waist diameter in two dimensions and the scaphoid waist volume. Each study was measured twice, allowing for determination of inter- and intraobserver reliability. Forty-three studies were examined (23 female and 20 male). Average measurements of the scaphoid waist were 11.28 ± 0.26 mm in the sagittal plane and 8.70 ± 0.17 mm in the coronal plane, and the waist volume was 715 ± 33.0 mm3. Specific measures of the narrowest portion of the scaphoid are provided by this study. Measurements of the scaphoid waist through the use of three-dimensional imaging are an accurate method with good inter- and intraobserver reliability. The measurements obtained from this study can be applied to guide graft and implant selection for treatment of scaphoid waist fractures and nonunions. PMID:26688990
Bergemann, Claudia; Elter, Patrick; Lange, Regina; Weißmann, Volker; Hansmann, Harald; Klinkenberg, Ernst-Dieter; Nebe, Barbara
2015-01-01
Studies on bone cell ingrowth into synthetic, porous three-dimensional (3D) implants showed difficulties arising from impaired cellular proliferation and differentiation in the core region of these scaffolds with increasing scaffold volume in vitro. Therefore, we developed an in vitro perfusion cell culture module, which allows the analysis of cells in the interior of scaffolds under different medium flow rates. For each flow rate the cell viability was measured and compared with results from computer simulations that predict the local oxygen supply and shear stress inside the scaffold based on the finite element method. We found that the local cell viability correlates with the local oxygen concentration and the local shear stress. On the one hand the oxygen supply of the cells in the core becomes optimal with a higher perfusion flow. On the other hand shear stress caused by high flow rates impedes cell vitality, especially at the surface of the scaffold. Our results demonstrate that both parameters must be considered to derive an optimal nutrient flow rate. PMID:26539216
Jeong, Ji-Wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul
2016-01-01
We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%. PMID:27274993
Wendel, M.W.; Siman-Tov, M.
1998-11-01
The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.
Three-dimensional visualisation of soft biological structures by X-ray computed micro-tomography.
Shearer, Tom; Bradley, Robert S; Hidalgo-Bastida, L Araida; Sherratt, Michael J; Cartmell, Sarah H
2016-07-01
Whereas the two-dimensional (2D) visualisation of biological samples is routine, three-dimensional (3D) imaging remains a time-consuming and relatively specialised pursuit. Current commonly adopted techniques for characterising the 3D structure of non-calcified tissues and biomaterials include optical and electron microscopy of serial sections and sectioned block faces, and the visualisation of intact samples by confocal microscopy or electron tomography. As an alternative to these approaches, X-ray computed micro-tomography (microCT) can both rapidly image the internal 3D structure of macroscopic volumes at sub-micron resolutions and visualise dynamic changes in living tissues at a microsecond scale. In this Commentary, we discuss the history and current capabilities of microCT. To that end, we present four case studies to illustrate the ability of microCT to visualise and quantify: (1) pressure-induced changes in the internal structure of unstained rat arteries, (2) the differential morphology of stained collagen fascicles in tendon and ligament, (3) the development of Vanessa cardui chrysalises, and (4) the distribution of cells within a tissue-engineering construct. Future developments in detector design and the use of synchrotron X-ray sources might enable real-time 3D imaging of dynamically remodelling biological samples. PMID:27278017
Pandolfi, Anna; Holzapfel, Gerhard A
2008-12-01
Experimental tests on human corneas reveal distinguished reinforcing collagen lamellar structures that may be well described by a structural constitutive model considering distributed collagen fibril orientations along the superior-inferior and the nasal-temporal meridians. A proper interplay between the material structure and the geometry guarantees the refractive function and defines the refractive properties of the cornea. We propose a three-dimensional computational model for the human cornea that is able to provide the refractive power by analyzing the structural mechanical response with the nonlinear regime and the effect the intraocular pressure has. For an assigned unloaded geometry we show how the distribution of the von Mises stress at the top surface of the cornea and through the corneal thickness and the refractive power depend on the material properties and the fibril dispersion. We conclude that a model for the human cornea must not disregard the peculiar collagen fibrillar structure, which equips the cornea with the unique biophysical, mechanical, and optical properties. PMID:19045535
Mısırlıoglu, Melda; Nalcaci, Rana; Yardımcı, Selmi
2013-01-01
Purpose Tonsilloliths are calcifications found in the crypts of the palatal tonsils and can be detected on routine panoramic examinations. This study was performed to highlight the benefits of cone-beam computed tomography (CBCT) in the diagnosis of tonsilloliths appearing bilaterally on panoramic radiographs. Materials and Methods The sample group consisted of 7 patients who had bilateral radiopaque lesions at the area of the ascending ramus on panoramic radiographs. CBCT images for every patient were obtained from both sides of the jaw to determine the exact locations of the lesions and to rule out other calcifications. The calcifications were evaluated on the CBCT images using Ez3D2009 software. Additionally, the obtained images in DICOM format were transferred to ITK SNAP 2.4.0 pc software for semiautomatic segmentation. Segmentation was performed using contrast differences between the soft tissues and calcifications on grayscale images, and the volume in mm3 of the segmented three dimensional models were obtained. Results CBCT scans revealed that what appeared on panoramic radiographs as bilateral images were in fact unilateral lesions in 2 cases. The total volume of the calcifications ranged from 7.92 to 302.5mm3. The patients with bilaterally multiple and large calcifications were found to be symptomatic. Conclusion The cases provided the evidence that tonsilloliths should be considered in the differential diagnosis of radiopaque masses involving the mandibular ramus, and they highlight the need for a CBCT scan to differentiate pseudo- or ghost images from true bilateral pathologies. PMID:24083209
Teslow, T.N.
1985-01-01
Using computed tomogram time series, myocardial perfusion was angiographically measured as distributions of x-ray circulatory indicators in three dimensions. By separating the dynamic function from the cardiac structure, these separate components were tested using region-of-interest (ROI) mensuration in simulation, phantom, and in vivo experiments. Statistical criteria were used to evaluate the dynamic component which was represented by analytic mathematical models of indicator dilution. The spatial component was represented by three-dimensional (3-D) and two-dimensional (2-D) geometric models of the heart. Each of these components were determined in individual ROI's and globally integrated to manifest the perfusion heterogeneities. A physical heart phantom with controllable regional perfusion characteristics was also developed and studied. Experiments conducted on dogs compared the accuracy of 2-D and 3-D perfusion measurements by imaging to those using gamma-radioactive microspheres. Accurate reproducible localization of the heart was found to be important for obtaining accurate measures of regional perfusion in 3-D volume images exhibiting high noise.
NASA Astrophysics Data System (ADS)
Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.
2016-02-01
A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.
Three-dimensional analysis of root canal geometry by high-resolution computed tomography.
Peters, O A; Laib, A; Rüegsegger, P; Barbakow, F
2000-06-01
A detailed understanding of the complexity of root canal systems is imperative to ensure successful root canal preparation. The aim of this study was to evaluate the potential and accuracy of a three-dimensional, non-destructive technique for detailing root canal geometry by means of high-resolution tomography. The anatomy of root canals in 12 extracted human maxillary molars was analyzed by means of a micro-computed tomography scanner (microCT, cubic resolution 34 microm). A special mounting device facilitated repeated precise repositioning of the teeth in the microCT. Surface areas and volumes of each canal were calculated by triangulation, and means were determined. Model-independent methods were used to evaluate the canals' diameters and configuration. The calculated and measured volumes and the areas of artificial root canals, produced by the drilling of precision holes into dentin disks, were well-correlated. Semi-automated repositioning of specimens resulted in near-perfect matching (< 1 voxel) when outer canal contours were assessed. Root canal geometry was accurately assessed by this innovative technique; therefore, variables and indices presented may serve as a basis for further analyses of root canal anatomy in experimental endodontology. PMID:10890720
Koerich, L; Burns, D; Weissheimer, A; Claus, J D P
2016-05-01
This study aimed to validate a novel method for fast regional superimposition of cone beam computed tomography (CBCT) scans. The method can be used with smaller field of view scans, thereby allowing for a lower radiation dose. This retrospective study used two dry skulls and secondary data from 15 patients who had more than one scan taken using the same machine. Two observers tested two types of regional voxel-based superimposition: maxillary and mandibular. The registration took 10-15s. Three-dimensional surface models of the maxillas and mandibles were generated via standardized threshold segmentation, and the accuracy and reproducibility of the superimpositions were assessed using the iterative closest point technique to measure the root mean square (RMS) distance between the images. Five areas were measured and a RMS≤0.25 was considered successful. Descriptive statistics and the intra-class correlation coefficient (ICC) were used to compare the intra-observer measurement reproducibility. The ICC was ≥0.980 for all of the variables and the highest RMS found was 0.241. The inter-observer reproducibility was assessed case by case and was perfect (RMS 0) for 68% (23 out of 34) of the superimpositions done and not clinically significant (RMS≤0.25) for the other 32%. The method is fast, accurate, and reproducible and is an alternative to cranial base superimposition. PMID:26794399
Affective three-dimensional brain-computer interface created using a prism array-based display
NASA Astrophysics Data System (ADS)
Mun, Sungchul; Park, Min-Chul
2014-12-01
To avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we applied a prism array-based display when presenting three-dimensional (3-D) objects. Emotional pictures were used as visual stimuli to increase the signal-to-noise ratios of steady-state visually evoked potentials (SSVEPs) because involuntarily motivated selective attention by affective mechanisms can enhance SSVEP amplitudes, thus producing increased interaction efficiency. Ten male and nine female participants voluntarily participated in our experiments. Participants were asked to control objects under three viewing conditions: two-dimension (2-D), stereoscopic 3-D, and prism. The participants performed each condition in a counter-balanced order. One-way repeated measures analysis of variance showed significant increases in the positive predictive values in the prism condition compared to the 2-D and 3-D conditions. Participants' subjective ratings of realness and engagement were also significantly greater in the prism condition than in the 2-D and 3-D conditions, while the ratings for visual fatigue were significantly reduced in the prism condition than in the 3-D condition. The proposed methods are expected to enhance the sense of reality in 3-D space without causing critical visual fatigue. In addition, people who are especially susceptible to stereoscopic 3-D may be able to use the affective brain-computer interface.
Wery, M F; Nada, R M; van der Meulen, J J; Wolvius, E B; Ongkosuwito, E M
2015-03-01
There is little anteroposterior growth of the midface in patients with syndromic craniosynostosis who are followed up over time without intervention. A Le Fort III with distraction osteogenesis can be done to correct this. This is a controlled way in which to achieve appreciable stable advancement of the midface without the need for bone grafting, but the vector of the movement is not always predictable. The purpose of this study was to evaluate the 3-dimensional effect of Le Fort III distraction osteogenesis with an external frame. Ten patients (aged 7-19 years) who had the procedure were included in the study. The le Fort III procedure and the placement of the external frame were followed by an activation period and then a 3-month retention period. Computed tomographic (CT) images taken before and after operation were converted and loaded into 3-dimensional image rendering software and compared with the aid of a paired sample t test and a colour-coded qualitative analysis. Comparison of the CT data before and after distraction indicated that the amount of midface advancement was significant. Le Fort III distraction osteogenesis is an effective way to advance the midface. However, the movement during osteogenesis is not always exactly in the intended direction, and a secondary operation is often necessary. Three-dimensional evaluation over a longer period of time is necessary. PMID:25605236
Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform.
Rider, Amanda Evelyn; Kumar, Shailesh; Furman, Scott A; Ostrikov, Kostya Ken
2012-03-11
A three-dimensional surface enhanced Raman scattering (SERS)/plasmonic sensing platform based on plasma-enabled, catalyst-free, few-layer vertical graphenes decorated with self-organized Au nanoparticle arrays is demonstrated. This platform is viable for multiple species detection and overcomes several limitations of two-dimensional sensors. PMID:22227575
NASA Technical Reports Server (NTRS)
Chima, R. V.; Strazisar, A. J.
1982-01-01
Two and three dimensional inviscid solutions for the flow in a transonic axial compressor rotor at design speed are compared with probe and laser anemometers measurements at near-stall and maximum-flow operating points. Experimental details of the laser anemometer system and computational details of the two dimensional axisymmetric code and three dimensional Euler code are described. Comparisons are made between relative Mach number and flow angle contours, shock location, and shock strength. A procedure for using an efficient axisymmetric code to generate downstream pressure input for computationally expensive Euler codes is discussed. A film supplement shows the calculations of the two operating points with the time-marching Euler code.
Trent, D.S.; Eyler, L.L.; Budden, M.J.
1983-09-01
This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Biotteau, E.; Gravouil, A.; Lubrecht, A. A.; Combescure, A.
2012-01-01
In this paper, the refinement strategy based on the "Non-Linear Localized Full MultiGrid" solver originally published in Int. J. Numer. Meth. Engng 84(8):947-971 (2010) for 2-D structural problems is extended to 3-D simulations. In this context, some extra information concerning the refinement strategy and the behavior of the error indicators are given. The adaptive strategy is dedicated to the accurate modeling of elastoplastic materials with isotropic hardening in transient dynamics. A multigrid solver with local mesh refinement is used to reduce the amount of computational work needed to achieve an accurate calculation at each time step. The locally refined grids are automatically constructed, depending on the user prescribed accuracy. The discretization error is estimated by a dedicated error indicator within the multigrid method. In contrast to other adaptive procedures, where grids are erased when new ones are generated, the previous solutions are used recursively to reduce the computing time on the new mesh. Moreover, the adaptive strategy needs no costly coarsening method as the mesh is reassessed at each time step. The multigrid strategy improves the convergence rate of the non-linear solver while ensuring the information transfer between the different meshes. It accounts for the influence of localized non-linearities on the whole structure. All the steps needed to achieve the adaptive strategy are automatically performed within the solver such that the calculation does not depend on user experience. This paper presents three-dimensional results using the adaptive multigrid strategy on elastoplastic structures in transient dynamics and in a linear geometrical framework. Isoparametric cubic elements with energy and plastic work error indicators are used during the calculation.
Henshaw, W; Schwendeman, D
2007-11-15
This paper describes an approach for the numerical solution of time-dependent partial differential equations in complex three-dimensional domains. The domains are represented by overlapping structured grids, and block-structured adaptive mesh refinement (AMR) is employed to locally increase the grid resolution. In addition, the numerical method is implemented on parallel distributed-memory computers using a domain-decomposition approach. The implementation is flexible so that each base grid within the overlapping grid structure and its associated refinement grids can be independently partitioned over a chosen set of processors. A modified bin-packing algorithm is used to specify the partition for each grid so that the computational work is evenly distributed amongst the processors. All components of the AMR algorithm such as error estimation, regridding, and interpolation are performed in parallel. The parallel time-stepping algorithm is illustrated for initial-boundary-value problems involving a linear advection-diffusion equation and the (nonlinear) reactive Euler equations. Numerical results are presented for both equations to demonstrate the accuracy and correctness of the parallel approach. Exact solutions of the advection-diffusion equation are constructed, and these are used to check the corresponding numerical solutions for a variety of tests involving different overlapping grids, different numbers of refinement levels and refinement ratios, and different numbers of processors. The problem of planar shock diffraction by a sphere is considered as an illustration of the numerical approach for the Euler equations, and a problem involving the initiation of a detonation from a hot spot in a T-shaped pipe is considered to demonstrate the numerical approach for the reactive case. For both problems, the solutions are shown to be well resolved on the finest grid. The parallel performance of the approach is examined in detail for the shock diffraction problem.
NASA Astrophysics Data System (ADS)
Song, Huimin
In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and
NASA Technical Reports Server (NTRS)
Logan, Terry G.
1994-01-01
The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.
High-immersion three-dimensional display of the numerical computer model
NASA Astrophysics Data System (ADS)
Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu
2013-08-01
High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.
Kim, Jung-Jae; Jung, Chul-Young; Eastman, Jonathan G.
2016-01-01
Background Percutaneous iliosacral screw fixation can provide stable fixation with a minimally invasive surgical technique for unstable posterior pelvic ring injuries. This surgical technique is not limited by cases of difficult fracture patterns, sacral dysplasia, and small sacral pedicles that can occur in Asians. The purpose of this study was to investigate the incidence of the sacral dysplasia in the Korean population and determine the optimal direction of iliosacral screws by analyzing pelvic three-dimensional computed tomography (3D-CT) scans. Methods One hundred adult patients who had pelvic 3D-CT scans were evaluated. The upper sacral morphology was classified into three groups, i.e., normal, transitional, and dysplastic groups; the cross-sectional area of the safe zone was measured in each group. S1 pedicle with a short width of more than 11 mm was defined as safe pedicle. The incidences of safe pedicles at different angles ranging from 0° to 15° were investigated in order to determine optimal angle for screw direction. Results The incidence of normal, transitional, and dysplastic group was 46%, 32%, and 22%, respectively. There were significant increases of the cross-sectional area of the safe zones by increasing the angles from 0° to 15° in all groups. The incidence of safe pedicles increased similar to the changes in cross-sectional area. The overall incidence of safe pedicles was highest at the 10° tilt angle. Conclusions The incidence of sacral dysplasia in Koreans was 54%, which is higher than previous studies for Western populations. The cross-sectional area of the safe zone can be increased by anteromedial direction of the iliosacral screw. Considering the diversity of sacral morphology present in the Korean population, a tilt angle of 10° may be the safest angle. PMID:27247736
Development of a percentile based three-dimensional model of the buttocks in computer system
NASA Astrophysics Data System (ADS)
Wang, Lijing; He, Xueli; Li, Hongpeng
2016-04-01
There are diverse products related to human buttocks, which need to be designed, manufactured and evaluated with 3D buttock model. The 3D buttock model used in present research field is just simple approximate model similar to human buttocks. The 3D buttock percentile model is highly desired in the ergonomics design and evaluation for these products. So far, there is no research on the percentile sizing system of human 3D buttock model. So the purpose of this paper is to develop a new method for building three-dimensional buttock percentile model in computer system. After scanning the 3D shape of buttocks, the cloud data of 3D points is imported into the reverse engineering software (Geomagic) for the reconstructing of the buttock surface model. Five characteristic dimensions of the buttock are measured through mark-points after models being imported into engineering software CATIA. A series of space points are obtained by the intersecting of the cutting slices and 3D buttock surface model, and then are ordered based on the sequence number of the horizontal and vertical slices. The 1st, 5th, 50th, 95th, 99th percentile values of the five dimensions and the spatial coordinate values of the space points are obtained, and used to reconstruct percentile buttock models. This research proposes a establishing method of percentile sizing system of buttock 3D model based on the percentile values of the ischial tuberosities diameter, the distances from margin to ischial tuberosity and the space coordinates value of coordinate points, for establishing the Nth percentile 3D buttock model and every special buttock types model. The proposed method also serves as a useful guidance for the other 3D percentile models establishment for other part in human body with characteristic points.
Three-Dimensional Acoustic Tissue Model: A Computational Tissue Phantom for Image Analyses
NASA Astrophysics Data System (ADS)
Mamou, J.; Oelze, M. L.; O'Brien, W. D.; Zachary, J. F.
A novel methodology to obtain three-dimensional (3D) acoustic tissue models (3DATMs) is introduced. 3DATMs can be used as computational tools for ultrasonic imaging algorithm development and analysis. In particular, 3D models of biological structures can provide great benefit to better understand fundamentally how ultrasonic waves interact with biological materials. As an example, such models were used to generate ultrasonic images that characterize tumor tissue microstructures. 3DATMs can be used to evaluate a variety of tissue types. Typically, excised tissue is fixed, embedded, serially sectioned, and stained. The stained sections are digitally imaged (24-bit bitmap) with light microscopy. Contrast of each stained section is equalized and an automated registration algorithm aligns consecutive sections. The normalized mutual information is used as a similarity measure, and simplex optimization is conducted to find the best alignment. Both rigid and non-rigid registrations are performed. During tissue preparation, some sections are generally lost; thus, interpolation prior to 3D reconstruction is performed. Interpolation is conducted after registration using cubic Hermite polynoms. The registered (with interpolated) sections yield a 3D histologic volume (3DHV). Acoustic properties are then assigned to each tissue constituent of the 3DHV to obtain the 3DATMs. As an example, a 3D acoustic impedance tissue model (3DZM) was obtained for a solid breast tumor (EHS mouse sarcoma) and used to estimate ultrasonic scatterer size. The 3DZM results yielded an effective scatterer size of 32.9 (±6.1) μm. Ultrasonic backscatter measurements conducted on the same tumor tissue in vivo yielded an effective scatterer size of 33 (±8) μm. This good agreement shows that 3DATMs may be a powerful modeling tool for acoustic imaging applications
Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.
2015-01-01
Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902
Three-dimensional computed tomography in laparoscopic surgery for colorectal carcinoma
Ohtani, Hiroshi; Ohta, Kohei; Arimoto, Yuichi; Kim, Eui-Chul; Oba, Hiroko; Adachi, Kenji; Terakawa, Shoichi; Tsubakimoto, Mitsuo
2005-01-01
AIM: To evaluate the usefulness of three-dimensional computed tomography (3DCT) in laparoscopic surgery for colorectal carcinoma. METHODS: Seventy-two patients with colorectal cancer who underwent curative operation at our hospital were enrolled in this study. They were classified into two groups by operative procedures. Sixteen patients underwent laparoscopic surgery, laparoscopic group (LG), while 56 patients underwent conventional open surgery, open group (OG). At our institution, contrast-enhanced CT is routinely performed as part of intra-abdominal screening and the 3D images of the major regional vessels are described. We have previously described about the preoperative visualization of the inferior mesenteric artery (IMA) by 3DCT. This time we newly acquired 3D images of the superior mesenteric artery (SMA)/superior mesenteric vein (SMV), ileocecal artery (ICA), middle colic artery (MCA), and inferior mesenteric vein (IMV). We have compared our two study groups with regard to five items, including clinical anastomotic leakage. We have discussed here the role of 3DCT in laparoscopic surgery for colorectal carcinoma. RESULTS: The mean length of the incision in LG was 4.625±0.89 cm, which was significantly shorter than that in OG (P<0.001). The association between ICA and SMV and SMA was described in the right-sided colectomy. The preoperative imaging of IMA and IMV was created in the rectosigmoidectomy. There was no significant difference in anastomotic leakage between the two groups, but no patients in LG experienced anastomotic leakage. CONCLUSION: Most of the patients are satisfied with the shorter incisional length following laparoscopic surgery. Preoperative visualization of the major regional vessels may be helpful for the secure treatment of the anastomosis in laparoscopic surgery for colorectal carcinoma. PMID:16437595
Development of a percentile based three-dimensional model of the buttocks in computer system
NASA Astrophysics Data System (ADS)
Wang, Lijing; He, Xueli; Li, Hongpeng
2016-05-01
There are diverse products related to human buttocks, which need to be designed, manufactured and evaluated with 3D buttock model. The 3D buttock model used in present research field is just simple approximate model similar to human buttocks. The 3D buttock percentile model is highly desired in the ergonomics design and evaluation for these products. So far, there is no research on the percentile sizing system of human 3D buttock model. So the purpose of this paper is to develop a new method for building three-dimensional buttock percentile model in computer system. After scanning the 3D shape of buttocks, the cloud data of 3D points is imported into the reverse engineering software (Geomagic) for the reconstructing of the buttock surface model. Five characteristic dimensions of the buttock are measured through mark-points after models being imported into engineering software CATIA. A series of space points are obtained by the intersecting of the cutting slices and 3D buttock surface model, and then are ordered based on the sequence number of the horizontal and vertical slices. The 1st, 5th, 50th, 95th, 99th percentile values of the five dimensions and the spatial coordinate values of the space points are obtained, and used to reconstruct percentile buttock models. This research proposes a establishing method of percentile sizing system of buttock 3D model based on the percentile values of the ischial tuberosities diameter, the distances from margin to ischial tuberosity and the space coordinates value of coordinate points, for establishing the Nth percentile 3D buttock model and every special buttock types model. The proposed method also serves as a useful guidance for the other 3D percentile models establishment for other part in human body with characteristic points.
NASA Astrophysics Data System (ADS)
Shen, Yi; Diplas, Panayiotis
2008-01-01
SummaryComplex flow patterns generated by irregular channel topography, such as boulders, submerged large woody debris, riprap and spur dikes, provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. In this study, the ability of two- (2-D) and three-dimensional (3-D) computational fluid dynamics models to reproduce these localized complex flow features is examined. The 3-D model is validated with laboratory data obtained from the literature for the case of a flow around a hemisphere under emergent and submerged conditions. The performance of the 2-D and 3-D models is then evaluated by comparing the numerical results with field measurements of flow around several boulders located at a reach of the Smith River, a regulated mountainous stream, obtained at base and peak flows. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind the hemisphere and boulders. However, the results suggest that in the vicinity of these obstructions the 3-D model is better suited for reproducing the circulation flow behavior at both low and high discharges. Application of the 2-D and 3-D models to meso-scale stream flows of ecological significance is furthermore demonstrated by using a recently developed spatial hydraulic metric to quantify flow complexity surrounding a number of brown trout spawning sites. It is concluded that the 3-D model can provide a much more accurate description of the heterogeneous velocity patterns favored by many aquatic species over a broad range of flows, especially under deep flow conditions when the various obstructions are submerged. Issues pertaining to selection of appropriate models for a variety of flow regimes and potential implication of the 3-D model on the development of better habitat suitability criteria are discussed. The
Three-dimensional computational modeling of multiple deformable cells flowing in microvessels
NASA Astrophysics Data System (ADS)
Doddi, Sai K.; Bagchi, Prosenjit
2009-04-01
Three-dimensional (3D) computational modeling and simulation are presented on the motion of a large number of deformable cells in microchannels. The methodology is based on an immersed boundary method, and the cells are modeled as liquid-filled elastic capsules. The model retains two important features of the blood flow in the microcirculation, that is, the particulate nature of blood and deformation of the erythrocytes. The tank-treading and tumbling motion and the lateral migration, as observed for erythrocytes in dilute suspension, are briefly discussed. We then present results on the motion of multiple cells in semidense suspension and study how their collective dynamics leads to various physiologically relevant processes such as the development of the cell-free layer and the Fahraeus-Lindqvist effect. We analyze the 3D trajectory and velocity fluctuations of individual cell in the suspension and the plug-flow velocity profile as functions of the cell deformability, hematocrit, and vessel size. The numerical results allow us to directly obtain various microrheological data, such as the width of the cell-free layer, and the variation in the apparent blood viscosity and hematocrit over the vessel cross section. We then use these results to calculate the core and plasma-layer viscosity and show that the two-phase (or core-annular) model of blood flow in microvessels underpredicts the blood velocity obtained in the simulations by as much as 40%. Based on a posteriori analysis of the simulation data, we develop a three-layer model of blood flow by taking into consideration the smooth variation in viscosity and hematocrit across the interface of the cell-free layer and the core. We then show that the blood velocity predicted by the three-layer model agrees very well with that obtained from the simulations.
Byun, Ha Young; Shin, Heesuk; Lee, Eun Shin; Kong, Min Sik; Lee, Seung Hun
2016-01-01
Objective To assess the intra-rater and inter-rater reliability for measuring femoral anteversion angle (FAA) by a radiographic method using three-dimensional computed tomography reconstruction (3D-CT). Methods The study included 82 children who presented with intoeing gait. 3D-CT data taken between 2006 and 2014 were retrospectively reviewed. FAA was measured by 3D-CT. FAA is defined as the angle between the long axis of the femur neck and condylar axis of the distal femur. FAA measurement was performed twice at both lower extremities by each rater. The intra-rater and inter-rater reliability were calculated by intraclass correlation coefficient (ICC). Results One hundred and sixty-four lower limbs of 82 children (31 boys and 51 girls, 6.3±3.2 years old) were included. The ICCs of intra-rater measurement for the angle of femoral neck axis (NA) were 0.89 for rater A and 0.96 for rater B, and those of condylar axis (CA) were 0.99 for rater A and 0.99 for rater B, respectively. The ICC of inter-rater measurement for the angle of NA was 0.89 and that of CA was 0.92. By each rater, the ICCs of the intrarater measurement for FAA were 0.97 for rater A and 0.95 for rater B, respectively and the ICC of the inter-rater measurement for FAA was 0.89. Conclusion The 3D-CT measures for FAA are reliable within individual raters and between different raters. The 3D-CT measures of FAA can be a useful method for accurate diagnosis and follow-up of femoral anteversion. PMID:27152273
Subgrid or Reynolds stress-modeling for three-dimensional turbulence computations
NASA Technical Reports Server (NTRS)
Rubesin, M. W.
1975-01-01
A review is given of recent advances in two distinct computational methods for evaluating turbulence fields, namely, statistical Reynolds stress modeling and turbulence simulation, where large eddies are followed in time. It is shown that evaluation of the mean Reynolds stresses, rather than use of a scalar eddy viscosity, permits an explanation of streamline curvature effects found in several experiments. Turbulence simulation, with a new volume averaging technique and third-order accurate finite-difference computing is shown to predict the decay of isotropic turbulence in incompressible flow with rather modest computer storage requirements, even at Reynolds numbers of aerodynamic interest.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Putt, C. W.; Giamati, C. C.
1981-01-01
Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.
NASA Technical Reports Server (NTRS)
Katsanis, T.
1972-01-01
Computer program, CHANEL, can obtain quasi-three-dimensional solutions in any well-guided channel. Conditions that can be handled by program that could not be handled previously are nonuniform inlet temperature, pressure, prewhirl, nonaxial flow where meridional flow angle, meridional stream-line curvature, and radius can vary as desired from hub to tip.
NASA Technical Reports Server (NTRS)
Mcfadden, G. B.; Boisvert, R. F.; Coriell, S. R.
1987-01-01
A finite difference method is used to obtain three-dimensional steady-state solutions for nonplanar interface morphologies in order to study the situation of equal thermal properties in the crystal and melt with negligible latent heat release. Stable steady-state solutions corresponding to two-dimensional bands and three-dimensional hexagonal nodes, as well as to rectangular interface planiforms, are found using a model of an aluminum-chromium alloy with a distribution coefficient of greater than one. Hexagonal nodes are predicted near the onset of instability, in agreement with weakly nonlinear theory.
Three-dimensional computations of cross-flow injection and combustion in a supersonic flow
NASA Technical Reports Server (NTRS)
Carpenter, M. H.
1989-01-01
A low-storage version of the SPARK3D code which is based on the temporally second-order accurate MacCormack (1969) explicit scheme is used to solve the governing equations for three-dimensional chemically reacting flows with finite-rate chemistry. The code includes a fourth-order compact spatial scheme capable of providing higher order spatial accuracy, and it is used to study two-dimensional linear advection, two-dimensional Euler flow, and three-dimensional viscous flow. Also considered are the injection, mixing, and combustion of hydrogen in a supersonic cross stream.
NASA Astrophysics Data System (ADS)
Meng, Jing; Jiang, Zibo; Wang, Lihong V.; Park, Jongin; Kim, Chulhong; Sun, Mingjian; Zhang, Yuanke; Song, Liang
2016-07-01
Photoacoustic computed tomography (PACT) has emerged as a unique and promising technology for multiscale biomedical imaging. To fully realize its potential for various preclinical and clinical applications, development of systems with high imaging speed, reasonable cost, and manageable data flow are needed. Sparse-sampling PACT with advanced reconstruction algorithms, such as compressed-sensing reconstruction, has shown potential as a solution to this challenge. However, most such algorithms require iterative reconstruction and thus intense computation, which may lead to excessively long image reconstruction times. Here, we developed a principal component analysis (PCA)-based PACT (PCA-PACT) that can rapidly reconstruct high-quality, three-dimensional (3-D) PACT images with sparsely sampled data without requiring an iterative process. In vivo images of the vasculature of a human hand were obtained, thus validating the PCA-PACT method. The results showed that, compared with the back-projection (BP) method, PCA-PACT required ˜50% fewer measurements and ˜40% less time for image reconstruction, and the imaging quality was almost the same as that for BP with full sampling. In addition, compared with compressed sensing-based PACT, PCA-PACT had approximately sevenfold faster imaging speed with higher imaging accuracy. This work suggests a promising approach for low-cost, 3-D, rapid PACT for various biomedical applications.
Heller, Stefan
2015-01-01
Single-cell gene expression analysis has contributed to a better understanding of the transcriptional heterogeneity in a variety of model systems, including those used in research in developmental, cancer, and stem cell biology. Nowadays, technological advances facilitate the generation of large gene expression datasets in high-throughput format. Strategies are needed to pertinently visualize this information in a tissue–structure related context, so as to improve data analysis and aid the drawing of meaningful conclusions. Here we describe an approach that utilizes spatial properties of the tissue source to enable the reconstruction of hollow sphere–shaped tissues and organs from single-cell gene expression data in three-dimensional space. To demonstrate our method, we used cells of the mouse otocyst and the renal vesicle as examples. This protocol presents a straightforward computational expression analysis workflow and is implemented on the MATLAB and R statistical computing and graphics software platforms. Hands-on time for typical experiments can be less than 1 h using a standard desktop PC or Mac. PMID:25675210
Maidment, Susannah C R; Bates, Karl T; Falkingham, Peter L; VanBuren, Collin; Arbour, Victoria; Barrett, Paul M
2014-08-01
Ornithischian dinosaurs were primitively bipedal with forelimbs modified for grasping, but quadrupedalism evolved in the clade on at least three occasions independently. Outside of Ornithischia, quadrupedality from bipedal ancestors has only evolved on two other occasions, making this one of the rarest locomotory transitions in tetrapod evolutionary history. The osteological and myological changes associated with these transitions have only recently been documented, and the biomechanical consequences of these changes remain to be examined. Here, we review previous approaches to understanding locomotion in extinct animals, which can be broadly split into form-function approaches using analogy based on extant animals, limb-bone scaling, and computational approaches. We then carry out the first systematic attempt to quantify changes in locomotor muscle function in bipedal and quadrupedal ornithischian dinosaurs. Using three-dimensional computational modelling of the major pelvic locomotor muscle moment arms, we examine similarities and differences among individual taxa, between quadrupedal and bipedal taxa, and among taxa representing the three major ornithischian lineages (Thyreophora, Ornithopoda, Marginocephalia). Our results suggest that the ceratopsid Chasmosaurus and the ornithopod Hypsilophodon have relatively low moment arms for most muscles and most functions, perhaps suggesting poor locomotor performance in these taxa. Quadrupeds have higher abductor moment arms than bipeds, which we suggest is due to the overall wider bodies of the quadrupeds modelled. A peak in extensor moment arms at more extended hip angles and lower medial rotator moment arms in quadrupeds than in bipeds may be due to a more columnar hindlimb and loss of medial rotation as a form of lateral limb support in quadrupeds. We are not able to identify trends in moment arm evolution across Ornithischia as a whole, suggesting that the bipedal ancestry of ornithischians did not constrain the
ERIC Educational Resources Information Center
Finegold, Lawrence S.; And Others
The research and development project demonstrated the viability of a simulated training system to address training issues related to three-dimensional air intercept tactics and geometry, and resulted in the production of two videotapes for use in the United States Air Force Interceptor Weapons School. An introduction discusses the overall…
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1993-01-01
The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method of constructing these images from both ideal- and real-gas, two and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, th sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1992-01-01
The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method for constructing these images from both ideal- and real-gas, two- and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, the sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.
Kuzmiak, Cherie Marie; Cole, Elodia B; Zeng, Donglin; Tuttle, Laura A; Steed, Doreen; Pisano, Etta D
2016-01-01
Objectives: To assess radiologist confidence in the characterization of suspicious breast lesions with a dedicated three-dimensional breast computed tomography (DBCT) system in comparison to diagnostic two-dimensional digital mammography (dxDM). Materials and Methods: Twenty women were recruited who were to undergo a breast biopsy for a Breast Imaging-Reporting and Data System (BI-RADS) 4 or 5 lesion evaluated with dxDM in this Institutional Review Board-approved study. The enrolled subjects underwent imaging of the breast(s) of concern using DBCT. Seven radiologists reviewed the cases. Each reader compared DBCT to the dxDM and was asked to specify the lesion type and BI-RADS score for each lesion and modality. They also compared lesion characteristics: Shape for masses or morphology for calcifications; and margins for masses or distribution for calcifications between the modalities using confidence scores (0–100). Results: Twenty-four biopsied lesions were included in this study: 17 (70.8%) masses and 7 (29.2%) calcifications. Eight (33.3%) lesions were malignant, and 16 (66.7%) were benign. Across all lesions, there was no significant difference in the margin/distribution (Δ = −0.99, P = 0.84) and shape/morphology (Δ = −0.10, P = 0.98) visualization confidence scores of DBCT in relation to dxDM. However, analysis by lesion type showed a statistically significant increase in reader shape (Δ =11.34, P = 0.013) and margin (Δ =9.93, P = 0.023) visualization confidence with DBCT versus dxDM for masses and significant decrease in reader morphology (Δ = −29.95, P = 0.001) and distribution (Δ = −28.62, P = 0.002) visualization confidence for calcifications. Conclusion: Reader confidence in the characterization of suspicious masses is significantly improved with DBCT, but reduced for calcifications. Further study is needed to determine whether this technology can be used for breast cancer screening. PMID:27195180
Liow, R Y; Birdsall, P D; Mucci, B; Greiss, M E
1999-10-01
Spiral computed tomography (CT) with three-dimensional and multiplanar reconstructions was used in the evaluation of tibial fractures in nine patients. Computed tomography added important information to that obtained by plain radiographs. Five (55%) fractures were reclassified. The degree of articular depression was often underappreciated on plain radiographs. Furthermore, the fracture complexity and the spatial relation of fragments could be readily demonstrated with 3-D reconstruction. This technique is useful in planning operative reconstruction. PMID:10535555
NASA Astrophysics Data System (ADS)
Clemo, T. M.; Ramarao, B.; Kelly, V. A.; Lavenue, M.
2011-12-01
Capture is a measure of the impact of groundwater pumping upon groundwater and surface water systems. The computation of capture through analytical or numerical methods has been the subject of articles in the literature for several decades (Bredehoeft et al., 1982). Most recently Leake et al. (2010) described a systematic way to produce capture maps in three-dimensional systems using a numerical perturbation approach in which capture from streams was computed using unit rate pumping at many locations within a MODFLOW model. The Leake et al. (2010) method advances the current state of computing capture. A limitation stems from the computational demand required by the perturbation approach wherein days or weeks of computational time might be required to obtain a robust measure of capture. In this paper, we present an efficient method to compute capture in three-dimensional systems based upon adjoint states. The efficiency of the adjoint method will enable uncertainty analysis to be conducted on capture calculations. The USGS and INTERA have collaborated to extend the MODFLOW Adjoint code (Clemo, 2007) to include stream-aquifer interaction and have applied it to one of the examples used in Leake et al. (2010), the San Pedro Basin MODFLOW model. With five layers and 140,800 grid blocks per layer, the San Pedro Basin model, provided an ideal example data set to compare the capture computed from the perturbation and the adjoint methods. The capture fraction map produced from the perturbation method for the San Pedro Basin model required significant computational time to compute and therefore the locations for the pumping wells were limited to 1530 locations in layer 4. The 1530 direct simulations of capture require approximately 76 CPU hours. Had capture been simulated in each grid block in each layer, as is done in the adjoint method, the CPU time would have been on the order of 4 years. The MODFLOW-Adjoint produced the capture fraction map of the San Pedro Basin model
An experimental and computational study of transonic three-dimensional flow in a turbine cascade
Camus, J.J.; Denton, J.D.; Scrivener, C.T.J.; Soulis, J.V.
1984-04-01
Detailed experimental measurements of the flow in a cascade of turbine rotor blades with a nonplanar end wall are reported. The cascade geometry was chosen to model as closely as possible that of a H.P. gas turbine rotor blade. The blade section is designed for supersonic flow with an exit Mach number of 1.15 and the experiments covered a range of exit Mach numbers from 0.7-1.2. Significant three-dimensional effects were observed and the origin of these is discussed. The measurements are compared with data for the same blade section in a two-dimensional cascade and also with the predictions of two different fully three-dimensional inviscid flow calculation methods. It is found that both these calculations predict the major threedimensional effects on the flow correctly.
Conformal mappings for computations of steady, three-dimensional, supersonic flows
NASA Technical Reports Server (NTRS)
Moretti, G.
1976-01-01
The evaluation of steady, supersonic, three-dimensional inviscid flows is considered, taking into account the construction of suitable grids on the basis of a simple conformal mapping. A description is presented of an analytical mapping technique. The technique is illustrated with the aid of examples of mappings, involving nontrivial geometries. Attention is given to a wing-fuselage cross section, a FORTRAN program for the basic mapping, the coupling of mappings, and the equations of motion.
Combined three-dimensional computer vision and epi-illumination fluorescence imaging system
NASA Astrophysics Data System (ADS)
Gorpas, Dimitris; Yova, Dido; Politopoulos, Kostas
2012-03-01
Most of the reported fluorescence imaging methods and systems highlight the need for three-dimensional information of the inspected region surface geometry. The scope of this manuscript is to introduce an epi-illumination fluorescence imaging system, which has been enhanced with a binocular machine vision system for the translation of the inverse problem solution to the global coordinates system. The epi-illumination fluorescence imaging system is consisted of a structured scanning excitation source, which increases the spatial differentiation of the measured data, and a telecentric lens, which increases the angular differentiation. On the other hand, the binocular system is based on the projection of a structured light pattern on the inspected area, for the solution of the correspondence problem between the stereo pair. The functionality of the system has been evaluated on tissue phantoms and calibration objects. The reconstruction accuracy of the fluorophores distribution, as resulted from the root mean square error between the actual distribution and the outcome of the forward solver, was more than 80%. On the other hand, the surface three-dimensional reconstruction of the inspected region presented 0.067+/-0.004 mm accuracy, as resulted from the mean Euclidean distance between the three-dimensional position of the real world points and those reconstructed.
NASA Astrophysics Data System (ADS)
Ohtani, Tomoyuki; Nakano, Tsukasa; Nakashima, Yoshito; Muraoka, Hirofumi
2001-11-01
Three-dimensional shape analysis of miarolitic cavities and enclaves from the Kakkonda granite, NE Japan, was performed by X-ray computed tomography (CT) and image analysis. The three-dimensional shape of the miarolitic cavities and enclaves was reconstructed by stacked two-dimensional CT slice images with an in-plane resolution of 0.3 mm and an inter-slice spacing of 1 mm. An ellipsoid was fitted to each reconstructed object by the image processing programs. The shortest, intermediate, and longest axes of the ellipsoids fitted to miarolitic cavities had E-W, N-S, and vertical directions, respectively. The shortest axes of the ellipsoids fitted to enclaves were sub-vertical to vertical. Three-dimensional strains calculated from miarolitic cavities and enclaves have E-W and vertical shortening, respectively. The shape characteristics of miarolitic cavities probably reflect regional stress during the late magmatic stage, and those of enclaves reflect shortening by later-intruded magma or body rotation during the early magmatic stage. The miarolitic cavities may not be strained homogeneously with the surrounding granite, because the competence of minerals is different from that of the fluid-filled cavities. Although the strain markers require sufficient contrast between their CT numbers and those of the surrounding minerals, this method has several advantages over conventional methods, including the fact that it is non-destructive, expedient, and allows direct three-dimensional observation of each object.
Aerodynamic Analyses Requiring Advanced Computers, part 2
NASA Technical Reports Server (NTRS)
1975-01-01
Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1982-01-01
A fast computer program, GRID3C, was developed for accurately generating periodic, boundary conforming, three dimensional, consecutively refined computational grids applicable to realistic axial turbomachinery geometries. The method is based on using two functions to generate two dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These boundary fitted grids are of the C type and are characterized by quasi-orthogonality and geometric periodicity. The built in nonorthogonal coordinate stretchings and shearings cause the grid clustering in the regions of interest. The stretching parameters are part of the input to GRID3C. In its present version GRID3C can generate and store a maximum of four consecutively refined three dimensional grids. The output grid coordinates can be calculated either in the Cartesian or in the cylindrical coordinate system.
LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin
2013-01-01
Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712
NASA Technical Reports Server (NTRS)
Omalley, T. A.
1984-01-01
The use of the coupled cavity traveling wave tube for space communications has led to an increased interest in improving the efficiency of the basic interaction process in these devices through velocity resynchronization and other methods. A flexible, three dimensional, axially symmetric, large signal computer program was developed for use on the IBM 370 time sharing system. A users' manual for this program is included.
NASA Astrophysics Data System (ADS)
Trell, Erik
2012-09-01
Emulating Nature by observation and ground-up application of its patterns, structures and processes is a classical scientific practice which under the designation of Biomimetics has now been brought to the Nanotechnology scale where even highly complex systems can be replicated by continuous or cyclically reiterated assembly of the respective self-similar real-world eigen-elements, modules and algorithms right from their infinitesimal origin. This is actually quite akin to the genuine mathematical art and can find valuable renewed use as here exemplified by an onedimensional prime-number line and a three-dimensional Diophantine Equation Universe embodiment.
Advances in three-dimensional integral imaging: sensing, display, and applications [Invited].
Xiao, Xiao; Javidi, Bahram; Martinez-Corral, Manuel; Stern, Adrian
2013-02-01
Three-dimensional (3D) sensing and imaging technologies have been extensively researched for many applications in the fields of entertainment, medicine, robotics, manufacturing, industrial inspection, security, surveillance, and defense due to their diverse and significant benefits. Integral imaging is a passive multiperspective imaging technique, which records multiple two-dimensional images of a scene from different perspectives. Unlike holography, it can capture a scene such as outdoor events with incoherent or ambient light. Integral imaging can display a true 3D color image with full parallax and continuous viewing angles by incoherent light; thus it does not suffer from speckle degradation. Because of its unique properties, integral imaging has been revived over the past decade or so as a promising approach for massive 3D commercialization. A series of key articles on this topic have appeared in the OSA journals, including Applied Optics. Thus, it is fitting that this Commemorative Review presents an overview of literature on physical principles and applications of integral imaging. Several data capture configurations, reconstruction, and display methods are overviewed. In addition, applications including 3D underwater imaging, 3D imaging in photon-starved environments, 3D tracking of occluded objects, 3D optical microscopy, and 3D polarimetric imaging are reviewed. PMID:23385893
Yang, Yanbing; Li, Peixu; Wu, Shiting; Li, Xinyang; Shi, Enzheng; Shen, Qicang; Wu, Dehai; Xu, Wenjing; Cao, Anyuan; Yuan, Quan
2015-04-13
Mesoporous carbon (m-C) has potential applications as porous electrodes for electrochemical energy storage, but its applications have been severely limited by the inherent fragility and low electrical conductivity. A rational strategy is presented to construct m-C into hierarchical porous structures with high flexibility by using a carbon nanotube (CNT) sponge as a three-dimensional template, and grafting Pt nanoparticles at the m-C surface. This method involves several controllable steps including solution deposition of a mesoporous silica (m-SiO2 ) layer onto CNTs, chemical vapor deposition of acetylene, and etching of m-SiO2 , resulting in a CNT@m-C core-shell or a CNT@m-C@Pt core-shell hybrid structure after Pt adsorption. The underlying CNT network provides a robust yet flexible support and a high electrical conductivity, whereas the m-C provides large surface area, and the Pt nanoparticles improves interfacial electron and ion diffusion. Consequently, specific capacitances of 203 and 311 F g(-1) have been achieved in these CNT@m-C and CNT@m-C@Pt sponges as supercapacitor electrodes, respectively, which can retain 96 % of original capacitance under large degree compression. PMID:25752493
Amsden, A.A.; O'Rourke, P.J.; Butler, T.D. ); Meintjes, K.; Fansler, T.D. )
1991-01-01
Computer simulations are compared with measurements of the three-dimensional, unsteady scavenging flows of a motored two-stroke engine. Laser Doppler velocimetry measurements were made on a modified Suzuki DT-85 ported engine. Calculations were performed using KIVA-3, a computer program that efficiently solves the intake and exhaust port flows along with those in the cylinder. Measured and computed cylinder pressures and velocities are compared. Pressures agree well over the cycle as do the velocities at the intake ports. In-cylinder velocities differ in detail, but the tumbling motion in the cylinder is well replicated in vertical plane passing through the cylinder axis. 20 refs., 7 figs., 3 tabs.
NASA Technical Reports Server (NTRS)
Gibson, S. G.
1983-01-01
A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.
Xue, Q.; Mittal, R.; Zheng, X.; Bielamowicz, S.
2012-01-01
Simulation of the phonatory flow-structure interaction has been conducted in a three-dimensional, tubular shaped laryngeal model that has been designed with a high level of realism with respect to the human laryngeal anatomy. A non-linear spring-based contact force model is also implemented for the purpose of representing contact in more general conditions, especially those associated with three-dimensional modeling of phonation in the presence of vocal fold pathologies. The model is used to study the effects of a moderate (20%) vocal-fold tension imbalance on the phonatory dynamics. The characteristic features of phonation for normal as well as tension-imbalanced vocal folds, such as glottal waveform, glottal jet evolution, mucosal wave-type vocal-fold motion, modal entrainment, and asymmetric glottal jet deflection have been discussed in detail and compared to established data. It is found that while a moderate level of tension asymmetry does not change the vibratory dynamics significantly, it can potentially lead to measurable deterioration in voice quality. PMID:22978889
Computational study of the formation and evolution of a three-dimensional gravity current
NASA Astrophysics Data System (ADS)
Ooi, Andrew; Zhu, Shuang; Zgheib, Nadim; Sivaramakrishnan, Balachandar
2015-11-01
Gravity currents occur when fluids of different density are brought together. They are relevant in many engineering applications such as the dispersion of hazardous gas cloud or the spillage heavy chemicals from marine vehicles. Thus far, most of the studies have assumed that the gravity current is two-dimensional (or ``planar'') as it travels down the slope, i.e. the gravity current is homogeneous in the spanwise direction. In this study, we utilise data from direct numerical simulation to investigate the evolution and formation of a fully three-dimensional gravity current propagating down a uniform slope. Previous theoretical studies have predicted that three-dimensional gravity current will evolve towards a ``self-similar'' circular wedge shape. Flow visualization from experiments showed that, contrary to the theoretical prediction, the gravity current takes on a shape that is more akin to a triangular wedge. Data from our direct numerical simulation agrees with the experimental observation. Furthermore, it has been found that the shape of this triangular wedge is relatively insensitive to the initial shape of the gravity current. The physical mechanisms leading to formation of this triangular shape and the entrainment properties of such a structure will be presented.
Computed myography: three-dimensional reconstruction of motor functions from surface EMG data
NASA Astrophysics Data System (ADS)
van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.
2008-12-01
We describe a methodology called computed myography to qualitatively and quantitatively determine the activation level of individual muscles by voltage measurements from an array of voltage sensors on the skin surface. A finite element model for electrostatics simulation is constructed from morphometric data. For the inverse problem, we utilize a generalized Tikhonov regularization. This imposes smoothness on the reconstructed sources inside the muscles and suppresses sources outside the muscles using a penalty term. Results from experiments with simulated and human data are presented for activation reconstructions of three muscles in the upper arm (biceps brachii, bracialis and triceps). This approach potentially offers a new clinical tool to sensitively assess muscle function in patients suffering from neurological disorders (e.g., spinal cord injury), and could more accurately guide advances in the evaluation of specific rehabilitation training regimens.
NASA Astrophysics Data System (ADS)
Oloso, Amidu Olawale
A hybrid automatic differentiation/incremental iterative method was implemented in the general purpose advanced computational fluid dynamics code (CFL3D Version 4.1) to yield a new code (CFL3D.ADII) that is capable of computing consistently discrete first order sensitivity derivatives for complex geometries. With the exception of unsteady problems, the new code retains all the useful features and capabilities of the original CFL3D flow analysis code. The superiority of the new code over a carefully applied method of finite-differences is demonstrated. A coarse grain, scalable, distributed-memory, parallel version of CFL3D.ADII was developed based on "derivative stripmining". In this data-parallel approach, an identical copy of CFL3D.ADII is executed on each processor with different derivative input files. The effect of communication overhead on the overall parallel computational efficiency is negligible. However, the fraction of CFL3D.ADII duplicated on all processors has significant impact on the computational efficiency. To reduce the large execution time associated with the sequential 1-D line search in gradient-based aerodynamic optimization, an alternative parallel approach was developed. The execution time of the new approach was reduced effectively to that of one flow analysis, regardless of the number of function evaluations in the 1-D search. The new approach was found to yield design results that are essentially identical to those obtained from the traditional sequential approach but at much smaller execution time. The parallel CFL3D.ADII and the parallel 1-D line search are demonstrated in shape improvement studies of a realistic High Speed Civil Transport (HSCT) wing/body configuration represented by over 100 design variables and 200,000 grid points in inviscid supersonic flow on the 16 node IBM SP2 parallel computer at the Numerical Aerospace Simulation (NAS) facility, NASA Ames Research Center. In addition to making the handling of such a large
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Antoun, T.; Rodgers, A.; Matzel, E.; Myers, S.; Walter, W.; Petersson, A.; Bono, C.; Sjogreen, B.
2008-12-01
Next generation methods for lowering seismic monitoring thresholds and reducing uncertainties will likely rely on complete waveform simulations using three-dimensional (3D) earth models. Recent advances in numerical methods for both non-linear (shock wave) and linear (anelastic, seismic wave) propagation, improved 3D models and the steady growth of parallel computing promise to improve the accuracy and efficiency of explosion simulations. These methods implemented in new computer codes can advance physics-based understanding of nuclear explosions as well as the propagation effects caused by path-dependent earth structure. This presentation will summarize new 3D modeling capabilities developed to improve understanding of the seismic waves emerging from an explosion. Specifically we are working in three thrust areas: 1) computation of regional distance intermediate-period (50-10 seconds) synthetic seismograms in 3D earth models to assess the ability of these models to predict observed seismograms from well-characterized events; 2) coupling of non-linear hydrodynamic simulations of explosion shock waves with an anelastic finite difference code for modeling the dependence of seismic wave observables on explosion emplacement conditions and near-source heterogeneity; and 3) implementation of surface topography in our anelastic finite difference code to include scattering and mode-conversion due to a non-planar free surface. Current 3D continental-to-global scale seismic models represent long-wavelength (greater than 100 km) heterogeneity. We are investigating the efficacy of current 3D models to predict complete intermediate (50- 10 seconds) waveforms for well-characterized events (mostly earthquakes) using the spectral element code, SPECFEM3D. Intermediate period seismograms for crustal events at regional distance are strongly impacted by path propagation effects due to laterally variable crustal and upper mantle structure. We are also modeling shock wave propagation
Rodgers, A; Matzel, E; Pasyanos, M; Petersson, A; Sjogreen, B; Bono, C; Vorobiev, O; Antoun, T; Walter, W; Myers, S; Lomov, I
2008-07-07
The development of accurate numerical methods to simulate wave propagation in three-dimensional (3D) earth models and advances in computational power offer exciting possibilities for modeling the motions excited by underground nuclear explosions. This presentation will describe recent work to use new numerical techniques and parallel computing to model earthquakes and underground explosions to improve understanding of the wave excitation at the source and path-propagation effects. Firstly, we are using the spectral element method (SEM, SPECFEM3D code of Komatitsch and Tromp, 2002) to model earthquakes and explosions at regional distances using available 3D models. SPECFEM3D simulates anelastic wave propagation in fully 3D earth models in spherical geometry with the ability to account for free surface topography, anisotropy, ellipticity, rotation and gravity. Results show in many cases that 3D models are able to reproduce features of the observed seismograms that arise from path-propagation effects (e.g. enhanced surface wave dispersion, refraction, amplitude variations from focusing and defocusing, tangential component energy from isotropic sources). We are currently investigating the ability of different 3D models to predict path-specific seismograms as a function of frequency. A number of models developed using a variety of methodologies are available for testing. These include the WENA/Unified model of Eurasia (e.g. Pasyanos et al 2004), the global CUB 2.0 model (Shapiro and Ritzwoller, 2002), the partitioned waveform model for the Mediterranean (van der Lee et al., 2007) and stochastic models of the Yellow Sea Korean Peninsula region (Pasyanos et al., 2006). Secondly, we are extending our Cartesian anelastic finite difference code (WPP of Nilsson et al., 2007) to model the effects of free-surface topography. WPP models anelastic wave propagation in fully 3D earth models using mesh refinement to increase computational speed and improve memory efficiency. Thirdly
NASA Astrophysics Data System (ADS)
Hase, Kazunori; Yokoi, Takashi
In the present study, the computer simulation technique to autonomously generate running motion from walking was developed using a three-dimensional entire-body neuro-musculo-skeletal model. When maximizing locomotive speed was employed as the evaluative criterion, the initial walking pattern could not transition to a valid running motion. When minimizing the period of foot-ground contact was added to this evaluative criterion, the simulation model autonomously produced appropriate three-dimensional running. Changes in the neuronal system showed the fatigue coefficient of the neural oscillators to reduce as locomotion patterns transitioned from walking to running. Then, when the running speed increased, the amplitude of the non-specific stimulus from the higher center increased. These two changes indicate mean that the improvement in responsiveness of the neuronal system is important for the transition process from walking to running, and that the comprehensive activation level of the neuronal system is essential in the process of increasing running speed.
NASA Technical Reports Server (NTRS)
Dorsey, D. R., Jr.
1975-01-01
A mathematical model was developed of the three-dimensional dynamics of a high-altitude scientific research balloon system perturbed from its equilibrium configuration by an arbitrary gust loading. The platform is modelled as a system of four coupled pendula, and the equations of motion were developed in the Lagrangian formalism assuming a small-angle approximation. Three-dimensional pendulation, torsion, and precessional motion due to Coriolis forces are considered. Aerodynamic and viscous damping effects on the pendulatory and torsional motions are included. A general model of the gust field incident upon the balloon system was developed. The digital computer simulation program is described, and a guide to its use is given.
Development of a three-dimensional Navier-Stokes code on CDC star-100 computer
NASA Technical Reports Server (NTRS)
Vatsa, V. N.; Goglia, G. L.
1978-01-01
A three-dimensional code in body-fitted coordinates was developed using MacCormack's algorithm. The code is structured to be compatible with any general configuration, provided that the metric coefficients for the transformation are available. The governing equations are developed in primitive variables in order to facilitate the incorporation of physical boundary conditions and turbulence-closure models. MacCormack's two-step, unsplit, time-marching algorithm is used to solve the unsteady Navier-Stokes equations until steady-state solution is achieved. Cases discussed include (1) flat plate in supersonic free stream; (2) supersonic flow along an axial corner; (3) subsonic flow in an axial corner at M infinity = 0.95; and (4) supersonic flow in an axial corner at M infinity 1.5.
Three-dimensional computations of rotordynamic force distributions in a labyrinth seal
NASA Astrophysics Data System (ADS)
Rhode, D. L.; Hensel, S. J.; Guidry, M. J.
1993-07-01
A numerical method employing a finite volume approach for calculating the rotordynamic force on eccentric, whirling labyrinth seals is presented. The SIMPLER algorithm is used to calculate the three-dimensional flowfield within a seal. The modified bipolar coordinate system used accurately describes the geometry of an eccentric seal. The turbulent flow form of the fully elliptic Navier-Stokes equations was solved. A 3-percent eccentric, single labyrinth cavity rotating at 7000 cpm was investigated for three different inlet swirl conditions, each with and without a whirl orbit frequency of 3500 cpm. It was found that the circumferential pressure variation around the downstream tooth periphery is by far the most important contribution to both rotordynamic force components. Thus, the flowfield details near each tooth throttling should be carefully considered. Further, a substantial increase of shaft whirl frequency was found to decrease and increase the effect of cavity inlet swirl on Ft and Fr, respectively.
Computation of three-dimensional temperature distribution in diode-pumped alkali vapor amplifiers
NASA Astrophysics Data System (ADS)
Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2016-06-01
Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor amplifiers, a comprehensive physical model with a cyclic iterative approach for calculating the three-dimensional temperature distribution of the vapor cell is established. Taking into account heat generation, thermal conductivity and convection, the excitation of the alkali atoms to high electronic levels, and their losses due to ionization in the gain medium, the thermal features and output characteristics have been simultaneously obtained. The results are in good agreement with those of the measurement in a static rubidium vapor amplifier. Influences of gas velocity on radial and axial temperature profiles are simulated and analyzed. The results have demonstrated that thermal problems in gaseous gain medium can be significantly reduced by flowing the gain medium with sufficiently high velocity.
Development Of A Three-Dimensional Circuit Integration Technology And Computer Architecture
NASA Astrophysics Data System (ADS)
Etchells, R. D.; Grinberg, J.; Nudd, G. R.
1981-12-01
This paper is the first of a series 1,2,3 describing a range of efforts at Hughes Research Laboratories, which are collectively referred to as "Three-Dimensional Microelectronics." The technology being developed is a combination of a unique circuit fabrication/packaging technology and a novel processing architecture. The packaging technology greatly reduces the parasitic impedances associated with signal-routing in complex VLSI structures, while simultaneously allowing circuit densities orders of magnitude higher than the current state-of-the-art. When combined with the 3-D processor architecture, the resulting machine exhibits a one- to two-order of magnitude simultaneous improvement over current state-of-the-art machines in the three areas of processing speed, power consumption, and physical volume. The 3-D architecture is essentially that commonly referred to as a "cellular array", with the ultimate implementation having as many as 512 x 512 processors working in parallel. The three-dimensional nature of the assembled machine arises from the fact that the chips containing the active circuitry of the processor are stacked on top of each other. In this structure, electrical signals are passed vertically through the chips via thermomigrated aluminum feedthroughs. Signals are passed between adjacent chips by micro-interconnects. This discussion presents a broad view of the total effort, as well as a more detailed treatment of the fabrication and packaging technologies themselves. The results of performance simulations of the completed 3-D processor executing a variety of algorithms are also presented. Of particular pertinence to the interests of the focal-plane array community is the simulation of the UNICORNS nonuniformity correction algorithms as executed by the 3-D architecture.
Ichijo, Yoshifumi; Takahashi, Yusuke; Tsuchiya, Mahito; Marushita, Yoichi; Sato, Toshio; Sugawara, Hitoshi; Hayashi, Shogo; Itoh, Masahiro; Takahashi, Tsuneo
2016-09-01
The aim of this study is to obtain a quantitative anatomical description of the hyoid bone and mandible using three-dimensional computed tomography. Hyoid bones were obtained from a total of 101 cadavers varying in age from 67 to 102 years. The percentage of symmetrical U-type and asymmetrical-type hyoid bones was low compared with symmetrical V type (14.9, 15.8, and 69.3 %, respectively), and no significant sex difference was observed. We found bilateral nonfusion in cadavers of advanced age at a rate of 22.7 % and bilateral complete fusion at a rate of 51.5 %. There were significant differences in metric variables (length and width) between males and females, but no significant differences in width among the different fusion types. There was no significant interaction effect of sex and degree of fusion. Strong significant associations were observed between size (length and width) of the hyoid bone and mandible in the nonfusion group, while the complete fusion group revealed a moderate correlation. We also investigated the hypothesis that the junction between the hyoid body and greater horn plays an important role in the movement of bones that have not yet ossified. However, no statistical difference was observed in the width between the two greater horns. The degree of fusion of the greater horn with the hyoid body may also affect relations of interdependencies between the hyoid bone and mandible, an important component to consider when assessing risk factors in the development of masticatory and swallowing function. PMID:26543038
NASA Technical Reports Server (NTRS)
Holland, Scott Douglas
1991-01-01
A combined computational and experimental parametric study of the internal aerodynamics of a generic three dimensional sidewall compression scramjet inlet configuration was performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration.
NASA Technical Reports Server (NTRS)
Smith, R. E.; Pitts, J. I.
1979-01-01
The development of a vectorized computer code for the solution of the three-dimensional viscous-compressible Navier-Stokes equations is described. The code is applied on the CDC STAR-100 vector computer which is capable of achieving high result rates when a high degree of parallelism is present in the computations. The computational technique is an explicit time-split MacCormack predictor-corrector algorithm. Since a large volume of data is processed and virtual memory utilized, a data management scheme based on interleaving is used. The program has been applied to obtain the solution of the laminar supersonic flow about a family of three-dimensional corners. The equations of motion are expressed in a generalized form relative to a uniform rectangular computational domain. The metric coefficient and boundary conditions must be supplied for the corresponding physical domain. For calculations with 30,000 grid points, a computational rate of 0.00015 seconds per grid point per time step is observed.
McElrone, Andrew J.; Choat, Brendan; Parkinson, Dilworth Y.; MacDowell, Alastair A.; Brodersen, Craig R.
2013-01-01
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause
McElrone, Andrew J; Choat, Brendan; Parkinson, Dilworth Y; MacDowell, Alastair A; Brodersen, Craig R
2013-01-01
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause
Computer-aided three-dimensional analysis of the small-geometry effects of a MOSFET
Hsueh, K.L.K.
1987-01-01
The 3-D effects of a small-geometry MOSFET can only be analyzed accurately by using a 3-D simulator. A 3-D MOSFET simulator, called MICROMOS, therefore, was developed for this purpose. The history of numerical analysis used to simulate semiconductor devices was reviewed. Numerical methods, their mathematical background, and the iteration techniques commonly used in the semiconductor simulation are also discussed. The three-dimensional graphic results of the numerical analysis give valuable information for the understanding the physics of the small-geometry effects in a VLSI MOSFET. A mutual modulation of the depletion depth underneath the gate is described. This leads to an accurate 3-D analytical model for the prediction of the threshold voltage of a small-geometry MOSFET with a fully-recessed isolation oxide structure. Also, there is a mutual modulation between the transverse electric field and its two perpendicular components. This modulation was proven to be the source of the small-geometry effects of a small-size MOSFET. The enhanced drain-induced barrier lowering (DIBL) due to the scaling of the device is also presented.
Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates.
Weidling, John; Isikman, Serhan O; Greenbaum, Alon; Ozcan, Aydogan; Botvinick, Elliot
2012-12-01
Endothelial cells cultured in three-dimensional (3-D) extracellular matrices spontaneously form microvessels in response to soluble and matrix-bound factors. Such cultures are common for the study of angiogenesis and may find widespread use in drug discovery. Vascular networks are imaged over weeks to measure the distribution of vessel morphogenic parameters. Measurements require micron-scale spatial resolution, which for light microscopy comes at the cost of limited field-of-view (FOV) and shallow depth-of-focus (DOF). Small FOVs and DOFs necessitate lateral and axial mechanical scanning, thus limiting imaging throughput. We present a lens-free holographic on-chip microscopy technique to rapidly image microvessels within a Petri dish over a large volume without any mechanical scanning. This on-chip method uses partially coherent illumination and a CMOS sensor to record in-line holographic images of the sample. For digital reconstruction of the measured holograms, we implement a multiheight phase recovery method to obtain phase images of capillary morphogenesis over a large FOV (24 mm2) with ≈ 1.5 μm spatial resolution. On average, measured capillary length in our method was within approximately 2% of lengths measured using a 10 × microscope objective. These results suggest lens-free on-chip imaging is a useful toolset for high-throughput monitoring and quantitative analysis of microvascular 3-D networks. PMID:23235893
Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates
NASA Astrophysics Data System (ADS)
Weidling, John; Isikman, Serhan O.; Greenbaum, Alon; Ozcan, Aydogan; Botvinick, Elliot
2012-12-01
Endothelial cells cultured in three-dimensional (3-D) extracellular matrices spontaneously form microvessels in response to soluble and matrix-bound factors. Such cultures are common for the study of angiogenesis and may find widespread use in drug discovery. Vascular networks are imaged over weeks to measure the distribution of vessel morphogenic parameters. Measurements require micron-scale spatial resolution, which for light microscopy comes at the cost of limited field-of-view (FOV) and shallow depth-of-focus (DOF). Small FOVs and DOFs necessitate lateral and axial mechanical scanning, thus limiting imaging throughput. We present a lens-free holographic on-chip microscopy technique to rapidly image microvessels within a Petri dish over a large volume without any mechanical scanning. This on-chip method uses partially coherent illumination and a CMOS sensor to record in-line holographic images of the sample. For digital reconstruction of the measured holograms, we implement a multiheight phase recovery method to obtain phase images of capillary morphogenesis over a large FOV (24 mm2) with ˜1.5 μm spatial resolution. On average, measured capillary length in our method was within approximately 2% of lengths measured using a 10× microscope objective. These results suggest lens-free on-chip imaging is a useful toolset for high-throughput monitoring and quantitative analysis of microvascular 3-D networks.