Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes
R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng
2004-10-21
Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.
Han, X. Zhang, T.; Zhang, S. B.; Wang, Y. M.; Shi, T. H.; Liu, Z. X.; Kong, D. F.; Qu, H.; Gao, X.
2014-10-15
Two different pedestal turbulence structures have been observed in edge localized mode-free phase of H-mode heated by lower hybrid wave and RF wave in ion cyclotron range of frequencies (ICRF) on experimental advanced superconducting tokamak. When the fraction of ICRF power P{sub ICRF}/P{sub total} exceeds 0.7, coherent mode is observed. The mode is identified as an electromagnetic mode, rotating in electron diamagnetic direction with a frequency around 50 kHz and toroidal mode number n = −3. Whereas when P{sub ICRF}/P{sub total} is less than 0.7, harmonic mode with frequency f = 40–300 kHz appears instead. The characteristics of these two modes are demonstrated preliminarily. The threshold value of heating power and also the plasma parameters are distinct.
NASA Astrophysics Data System (ADS)
White, R. B.
2008-05-01
This lecture gives a basic introduction to magnetic £elds, magnetic surface destruction, toroidal equilibrium and tearing modes in a tokamak, including the linear and nonlinear development of these modes and their modi£cation by current drive and bootstrap current, and sawtooth oscillations and disruptions.
Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho; Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Ghim, Y.-C.
2015-12-15
It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.
Liu, Z. X.; Gao, X.; Liu, S. C.; Ding, S. Y.; Li, J. G.; Xia, T. Y.; Xu, X. Q.; Hughes, J. W.
2012-10-15
H-mode plasmas with ELM (edge localized mode) have been realized on experimental advanced superconducting tokamak (EAST) with 2.45 GHz low hybrid wave at P{sub LHW}{approx}1 MW in 2010. Data from EAST experiments including magnetic geometry, measured pressure profiles, and calculated current profiles are used to investigate the physics of ELM utilizing the BOUT++ code. Results from linear simulations show that the ELMs in EAST are dominated by resistive ballooning modes. When the Lundquist number (dimensionless ratio of the resistive diffusion time to the Alfven time) is equal to or less than 10{sup 7}, the resistive ballooning modes are found to become unstable in the ELMy H-mode plasma. For a fixed pedestal pressure profile, increasing plasma current generates more activities of low-n ELMs.
Li Erzhong; Zhou Ruijie; Hu Liqun
2011-09-15
In the past, the resonant cyclotron interaction between runaway electrons and lower hybrid waves via anomalous Doppler broadening was experimentally investigated, and it was shown to be able to create a barrier to the energy that could be reached by the runaway electrons [E. Li et al., Nucl. Instrum. Methods Phys. Res. A 621, 566 (2010)]. In this paper, to our knowledge for the first time, experimental evidence will be provided for a resonant cyclotron interaction between runaway electrons and magnetohydrodynamics modes in a stochastic magnetic field in the experimental advanced superconducting tokamak (EAST), which has been theoretically proposed as a mechanism able to limit the maximum attainable energy by runaway electrons in tokamak plasmas [J. R. Martin-Solis and R. Sanchez, Phys. Plasmas 15, 112505 (2008)].
Progress in physics and control of the resistive wall mode in advanced tokamaks
Liu Yueqiang; Chapman, I. T.; Gimblett, C. G.; Hastie, R. J.; Hender, T. C.; Reimerdes, H.; Villone, F.; Ambrosino, G.; Pironti, A.; Portone, A.
2009-05-15
Self-consistent computations are carried out to study the stability of the resistive wall mode (RWM) in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas with slow plasma rotation, using the hybrid kinetic-magnetohydrodynamic code MARS-K[Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)]. Based on kinetic resonances between the mode and the thermal particle toroidal precession drifts, the self-consistent modeling predicts less stabilization of the mode compared to perturbative approaches, and with the DIII-D experiments. A simple analytic model is proposed to explain the MARS-K results, which also gives a qualitative interpretation of the recent experimental results observed in JT-60U [S. Takeji et al., Nucl. Fusion 42, 5 (2002)]. Our present analysis does not include the kinetic contribution from hot ions, which may give additional damping on the mode. The effect of particle collision is not included either. Using the CARMA code [R. Albanese et al., IEEE Trans. Magn. 44, 1654 (2008)], a stability and control analysis is performed for the RWM in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)] steady state advanced plasmas, taking into account the influence of three-dimensional conducting structures.
Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.
2015-06-15
The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.
Progress towards sustainment of advanced tokamak modes in DIII-D
Rice, B. W.; Burrell, K. H.; Ferron, J. R.; Greenfield, C. M.; Jackson, G. L.; Lao, L. L.; Lahaye, R. J.; Luce, T. C.; Stallard, B. W.; Strait, E. J.; Taylor, T. S.; Turnbull, A. D.; Wade, M. R.; Synakowski, E. J.
1998-12-01
Improving confinement and beta limits simultaneously in long-pulse ELMy H-mode discharges is investigated. The product β_{N}H_{98y} serves as a useful figure-of-merit for performance, where β_{N} {triple_bond} β/(I/aB) and H_{98y} is the ratio of the thermal confinement time relative to the most recent ELMy H-mode confinement scaling established by the ITER confinement database working group. In discharges with q_{0} ~ 1 (no sawteeth) and discharges with q_{min} > 1.5 and negative central magnetic shear, β_{N} ~ 2.9 and H_{98y} ~ 1.4 are sustained for up to 2 s. Although peaked profiles are observed, steep internal transport barriers are not present. Further increases in β_{N} in these discharges is limited by neoclassical tearing modes (NTM) in the positive shear region. In another recently developed regime, β_{N} ~ 3.8 and H_{98y} ~ 1.8 has been sustained during large infrequent ELMs in non-sawtoothing discharges with q_{0} ~ 1. This level of performance is similar to that obtained in ELM-free regimes such as VH-mode. The limitation on β_{N} and pulse length in these discharges is also the onset of NTMs.
Microtearing modes in tokamak discharges
NASA Astrophysics Data System (ADS)
Rafiq, T.; Weiland, J.; Kritz, A. H.; Luo, L.; Pankin, A. Y.
2016-06-01
Microtearing modes (MTMs) have been identified as a source of significant electron thermal transport in tokamak discharges. In order to describe the evolution of these discharges, it is necessary to improve the prediction of electron thermal transport. This can be accomplished by utilizing a model for transport driven by MTMs in whole device predictive modeling codes. The objective of this paper is to develop the dispersion relation that governs the MTM driven transport. A unified fluid/kinetic approach is used in the development of a nonlinear dispersion relation for MTMs. The derivation includes the effects of electrostatic and magnetic fluctuations, arbitrary electron-ion collisionality, electron temperature and density gradients, magnetic curvature, and the effects associated with the parallel propagation vector. An iterative nonlinear approach is used to calculate the distribution function employed in obtaining the nonlinear parallel current and the nonlinear dispersion relation. The third order nonlinear effects in magnetic fluctuations are included, and the influence of third order effects on a multi-wave system is considered. An envelope equation for the nonlinear microtearing modes in the collision dominant limit is introduced in order to obtain the saturation level. In the limit that the mode amplitude does not vary along the field line, slab geometry, and strong collisionality, the fluid dispersion relation for nonlinear microtearing modes is found to agree with the kinetic dispersion relation.
INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS
HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M
2003-10-01
OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.
Advanced tokamak research on the DIII-D tokamak
Chan, V.S.
1994-01-01
The objective of the planned research in advanced tokamak development on DIII-D at General Atomics, San Diego, USA. is to establish improved tokamak operation through significant improvements in the stability factor, confinement quality, and bootstrap current fraction using localized radio frequency (rf) current profile control, rf and neutral beam heating for pressure profile control, as well as control of plasma rotation and optimization of the plasma boundary conditions. Recent research results in H-mode confinement, modifications of current profiles to achieve higher confinement and higher {beta}, a new regime of improved confinement (VH-mode), and rf noninductive current drive are encouraging. In this talk, arguments will be presented supporting the need for improved performance in tokamak reactors. Experimentally observed advanced performance regimes on DIII-D will be discussed. Confinement improvement up to H = 4, where H is the ratio of energy confinement time to the ITER89-P scaling H{triple_bond} {Tau}{sub E}/{Tau}{sub E-ITER89-P}, has been achieved. In other discharges {beta}{sub N} = {beta}/(I/aB),[%-m{center_dot}{Tau}/MA] {approx_gt} 6 has been obtained. These values have so far been achieved transiently and independently. Techniques, will be described which can extend the high performance to quasi-steady-state and sustain the high H and {beta}{sub N} values simultaneously. Two high performance regimes, one in first stable regime and the other in second stable regime, have been simulated br self-consistently evolving a magnetohydrodynamic (MHD) equilibrium-transport code. Finally, experimental program plans and outstanding important physics issues will be discussed.
Resistive edge mode instability in stellarator and tokamak geometries
Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.
2008-09-15
Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.
Multiple mode model of tokamak transport
Singer, C.E.; Ghanem, E.S.; Bateman, G.; Stotler, D.P.
1989-07-01
Theoretical models for radical transport of energy and particles in tokamaks due to drift waves, rippling modes, and resistive ballooning modes have been combined in a predictive transport code. The resulting unified model has been used to simulate low confinement mode (L-mode) energy confinement scalings. Dependence of global energy confinement on electron density for the resulting model is also described. 26 refs., 1 fig., 2 tabs.
Edge-localized-modes in tokamaks
Leonard, A. W.
2014-09-15
Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.
Microtearing modes in spherical and conventional tokamaks
NASA Astrophysics Data System (ADS)
Moradi, S.; Pusztai, I.; Guttenfelder, W.; Fülöp, T.; Mollén, A.
2013-06-01
The onset and characteristics of microtearing modes (MTM) in the core of spherical (NSTX) and conventional tokamaks (ASDEX Upgrade and JET) are studied through local linear gyrokinetic simulations with GYRO (Candy and Belli 2011 General Atomics Report GA-A26818). For experimentally relevant core plasma parameters in the NSTX and ASDEX Upgrade tokamaks, in agreement with previous works, we find MTMs as the dominant linear instability. Also, for JET-like core parameters considered in our study an MTM is found as the most unstable mode. In all of these plasmas, finite collisionality is needed for MTMs to become unstable and the electron temperature gradient is found to be the fundamental drive. However, a significant difference is observed in the dependence of the linear growth rate of MTMs on electron temperature gradient. While it varies weakly and non-monotonically in JET and ASDEX Upgrade plasmas, in NSTX it increases with the electron temperature gradient.
Neoclassical tearing modes in a tokamak
Hahm, T.S.
1988-08-01
Linear tearing instability is studied in the banana collisionality regime in tokamak geometry. Neoclassical effects produce significant modifications of Ohm's law and the vorticity equation so that the growth rate of tearing modes driven by ..delta..' is dramatically reduced compared to the usual resistive MHD value. Consequences of this result, regarding the presence of pressure-gradient-driven neoclassical resistive interchange instabilities and the evolution of magnetic islands in the Rutherford regime, are discussed. 10 refs.
Neoclassical tearing modes in a tokamak
Hahm, T.S.
1988-12-01
Linear tearing instability is studied in the banana collisionality regime in tokamak geometry. Neoclassical effects produce significant modifications of Ohm's law and the vorticity equation, so that the growth rate of tearing modes driven by ..delta..' is dramatically reduced compared to the usual resistive magnetohydrodynamic values. Consequences of this result, regarding the presence of pressure-gradient-driven neoclassical resistive interchange instabilities and the evolution of magnetic islands in the Rutherford regime, are discussed.
'Snowflake' H Mode in a Tokamak Plasma
Piras, F.; Coda, S.; Duval, B. P.; Labit, B.; Marki, J.; Moret, J.-M.; Pitzschke, A.; Sauter, O.; Medvedev, S. Yu.
2010-10-08
An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a 'snowflake' (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy ({Delta}W{sub ELM}/W{sub p}) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.
Quasicoherent modes on the COMPASS tokamak
NASA Astrophysics Data System (ADS)
Melnikov, A. V.; Markovic, T.; Eliseev, L. G.; Adámek, J.; Aftanas, M.; Bilkova, P.; Boehm, P.; Gryaznevich, M.; Imrisek, M.; Lysenko, S. E.; Medvedev, S. Y.; Panek, R.; Peterka, M.; Seidl, J.; Stefanikova, E.; Stockel, J.; Weinzettl, V.; the COMPASS Team
2015-06-01
Multiple quasicoherent electromagnetic modes with steady-state frequency and different nature and location were observed in the COMPASS tokamak (R = 0.56 m, = 0.2 m) at Bt = 1.14 T with Co-NBI (PNBI = 0.2-0.5 MW, Eb = 32 keV) at frequencies 5 kHz < f < 250 kHz. Modes were observed in both low and high confinement (L- and H-modes) plasmas. Lower frequency modes with f < 50 kHz were identified as low m tearing and kink MHD modes, while higher frequency modes with 50 kHz < f < 250 kHz were considered as having Alfvénic nature. Unexpectedly, such modes were only observed in the H-mode, both in neutral beam injector-assisted and Ohmic, so the mode driving force is not yet clear. Using the linear MHD code KINX, we initially identified the observed mode with a ballooning structure is as beta induced Alfvén eigenmode (BAE) with m, n < 5, while an antiballooning mode is initially identified as toroidal Alfvén eigenmode (TAE) with m, n < 9.
Tearing mode analysis in tokamaks, revisited
Nishimura, Y.; Callen, J.D.; Hegna, C.C.
1998-12-01
A new {Delta}{sup {prime}} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon}{le}0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of the finite pressure term. Numerical results compare favorably with Furth {ital et al.} [H. P. Furth {ital et al.}, Phys. Fluids {bold 16}, 1054 (1973)] results. The effects of finite pressure, which are shown to decrease {Delta}{sup {prime}}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric elements, stabilizes the tearing mode significantly, even in a low-{beta} regime before the toroidal magnetic curvature effects come into play. {copyright} {ital 1998 American Institute of Physics.}
Tearing mode analysis in tokamaks, revisited
Nishimura, Y.; Callen, J.D.; Hegna, C.C.
1997-12-01
A new {Delta}{prime} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon} {le} 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease {Delta}{prime}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low {beta} regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m {ge} 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code.
External Kink Mode in Diverted Tokamaks
NASA Astrophysics Data System (ADS)
Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Hanson, J. M.; Turco, F.; Piovesan, P.
2014-10-01
In a straight tokamak model, the external kink mode with toroidal mode number n and poloidal mode number m is predicted to be unstable when the edge safety factor, qedge , lies just below a rational value. In a torus, the picture is essentially unchanged and the 2/1 instability in particular is always encountered when qedge = 2 . For a diverted plasma, the edge q is infinite, but, the experimental limit is then q95 = 2 , where q95 is at the 95% flux surface. However, no theoretical basis has been established for the importance of q95 and ideal predictions indicate stability with qedge > 2 and q95 < 2 instability is found only when the actual q at the edge is below 2. Two possible solutions present themselves. The observed mode may be destabilized as a result of small 3D error fields. Alternatively, the observed mode may be destabilized by the rapidly increased resistivity at the plasma edge. Both possibilities are examined using ideal and resistive MHD tools in two and three dimensions. Work supported in part by the US DOE under DE-FG02-95ER54309, DE-FG02-04ER54761, and DE-FG02-07ER54917.
Resistive X-point modes in tokamak boundary plasmas
Myra, J. R.; D'Ippolito, D. A.; Xu, X. Q.; Cohen, R. H.
2000-06-01
It is shown that the boundary (edge and scrape-off-layer) plasma in a typical low (L) mode diverted tokamak discharge is unstable to a new class of modes called resistive X-point (RX) modes. The RX mode is a type of resistive ballooning mode that exploits a synergism between resistivity and the magnetic geometry of the X-point region. The RX modes are shown to give robust instabilities at moderate mode numbers, and therefore are expected to be the dominant contributors to turbulent diffusion in the boundary plasma of a diverted tokamak. (c) 2000 American Institute of Physics.
Rippling modes in the edge of a Tokamak plasma
NASA Astrophysics Data System (ADS)
Carreras, B. A.; Callen, J. D.; Gaffney, P. W.; Hicks, H. R.
1982-02-01
A promising resistive magnetohydrodynamic candidate for the underlying cause of turbulence in the edge of a Tokamak plasma is the rippling instability. A computational model for these modes in the cylindrical Tokamak approximation was developed and the linear growth and single helicity quasilinear saturation phases of the rippling modes for parameters appropriate to the edge of a Tokamak plasma was explored. Large parallel heat conduction does not stabilize these mode. Nonlinearly, individual rippling modes are found to saturate by quasilinear flattening of the resistivity profile. The saturated amplitude of the modes scales as m/sup -1/, and the radial extent of these modes grows linearly with time due to radial Vector E x Vector B0 convection. It is found that this evolution is terminated by parallel heat conduction.
ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM
HUMPHREYS,DA; FERRON,JR; GAROFALO,AM; HYATT,AW; JERNIGAN,TC; JOHNSON,RD; LAHAYE,RJ; LEUER,JA; OKABAYASHI,M; PENAFLOR,BG; SCOVILLE,JT; STRAIT,EJ; WALKER,ML; WHYTE,DG
2002-10-01
A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response.
LONG PULSE ADVANCED TOKAMAK DISCHARGES IN THE DIII-D TOKAMAK
P.I. PETERSEN
2002-06-01
One of the main goals for the DIII-D research program is to establish an advanced tokamak plasma with high bootstrap current fraction that can be sustained in-principle steady-state. Substantial progress has been made in several areas during the last year. The resistive wall mode stabilization has been done with spinning plasmas in which the plasma pressure has been extended well above the no-wall beta limit. The 3/2 neoclassical tearing mode has been stabilized by the injection of ECH into the magnetic islands, which drives current to substitute the missing bootstrap current. In these experiments either the plasma was moved or the toroidal field was changed to overlap the ECCD resonance with the location of the NTMs. Effective disruption mitigation has been obtained by massive noble gas injection into shots where disruptions were deliberately triggered. The massive gas puff causes a fast and clean current quench with essentially all the plasma energy radiated fairly uniformly to the vessel walls. The run-away electrons that are normally seen accompanying disruptions are suppressed by the large density of electrons still bound on the impurity nuclei. Major elements required to establish integrated, long-pulse, advanced tokamak operations have been achieved in DIII-D: {beta}{sub T} = 4.2%, {beta}{sub p} = 2, f{sub BS} = 65%, and {beta}{sub N}H{sub 89} = 10 for 600 ms ({approx} 4{tau}{sub E}). The next challenge is to integrate the different elements, which will be the goal for the next five years when additional control will be available. Twelve resistive wall mode coils are scheduled to be installed in DIII-D during the summer of 2003. The future plans include upgrading the tokamak pulse length capability and increasing the ECH power, to control the current profile evolution.
ADX - Advanced Divertor and RF Tokamak Experiment
NASA Astrophysics Data System (ADS)
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
L to H mode transitions and associated phenomena in divertor tokamaks
Punjabi, A. )
1990-09-01
This is the final report for the research project titled L to H Mode Transitions and Associated Phenomena in Divertor Tokamaks.'' The period covered by this project is the fiscal year 1990. This report covers the development of Advanced Two Chamber Model.
DIII-D Advanced Tokamak Research Overview
V.S. Chan; C.M. Greenfield; L.L. Lao; T.C. Luce; C.C. Petty; G.M. Staebler
1999-12-01
This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously {beta}{sub N}H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues.
Modeling of ICRF Internal Transport Barrier Control for Advanced Tokamaks
NASA Astrophysics Data System (ADS)
Sund, R. S.; Scharer, J. E.
1998-11-01
We present an analysis of TFTR ICRF current drive experiments carried out by Majeski et al.(R. Majeski, J. Rodgers, G. Schilling, C. Phillips, J. Hosea and the TFTR Group, private communication.) The influence of deuterium, tritium, minority specie, electron and alpha concentrations, temperatures and beam fractions are considered for the two-ion mode conversion current drive experiments. Direct comparison with experimental data is carried out by means of a nonlocal large gyroradius ICRF code(O. Sauter, Ph.D. thesis, Ecole Polytechnique de Lausanne, Switzerland (1992).) which incorporates 1-D plasma profiles. It is found that substantial beam and alpha particle absorption can occur for some cases. Application of ion cyclotron range of frequencies internal transport barrier control requires further examination of fast wave mode conversion and the interaction of ion Bernstein waves with plasmas in advanced tokamaks. The effects of perpendicular and parallel magnetic gradients on the ion, electron, and alpha particle absorption are examined. A viable internal transport barrier control scheme for a reactor grade advanced tokamak will be discussed.
Gyrokinetics for high-frequency modes in tokamaks
NASA Astrophysics Data System (ADS)
Wang, Z. T.; Wang, L.; Long, L. X.; Dong, J. Q.; He, Zhixiong; Liu, Y.; Tang, C. J.
2012-07-01
Gyrokinetics for high-frequency modes in tokamaks is developed. It is found that the breakdown of the invariants by perturbed electromagnetic fields drives microinstability. The obtained diamagnetic frequency, ω∗, is proportional to only the toroidal mode number rather than transverse mode numbers. Therefore, there is no nonadiabatic drive for axisymmetrical modes in gyrokinetics. Meanwhile, the conventional eikonal Ansatz breaks down for the axisymmetrical modes. The ion drift-cyclotron instability discovered in a mirror machine is found for the first time in the toroidal system. The growth rates are proportional to ρi/Ln, and the slope changes with magnetic curvature. In spherical torus, where magnetic curvature is greater than that of traditional tokamaks, instability poses a potential danger to such devices.
Gyrokinetics for high-frequency modes in tokamaks
Wang, Z. T.; Long, L. X.; Dong, J. Q.; He, Zhixiong; Wang, L.; Liu, Y.; Tang, C. J.
2012-07-15
Gyrokinetics for high-frequency modes in tokamaks is developed. It is found that the breakdown of the invariants by perturbed electromagnetic fields drives microinstability. The obtained diamagnetic frequency, {omega}{sup *}, is proportional to only the toroidal mode number rather than transverse mode numbers. Therefore, there is no nonadiabatic drive for axisymmetrical modes in gyrokinetics. Meanwhile, the conventional eikonal Ansatz breaks down for the axisymmetrical modes. The ion drift-cyclotron instability discovered in a mirror machine is found for the first time in the toroidal system. The growth rates are proportional to {rho}{sub i}/L{sub n}, and the slope changes with magnetic curvature. In spherical torus, where magnetic curvature is greater than that of traditional tokamaks, instability poses a potential danger to such devices.
Microwave Doppler reflectometer system in the Experimental Advanced Superconducting Tokamak.
Zhou, C; Liu, A D; Zhang, X H; Hu, J Q; Wang, M Y; Li, H; Lan, T; Xie, J L; Sun, X; Ding, W X; Liu, W D; Yu, C X
2013-10-01
A Doppler reflectometer system has recently been installed in the Experimental Advanced Superconducting (EAST) Tokamak. It includes two separated systems, one for Q-band (33-50 GHz) and the other for V-band (50-75 GHz). The optical system consists of a flat mirror and a parabolic mirror which are optimized to improve the spectral resolution. A synthesizer is used as the source and a 20 MHz single band frequency modulator is used to get a differential frequency for heterodyne detection. Ray tracing simulations are used to calculate the scattering location and the perpendicular wave number. In EAST last experimental campaign, the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated. PMID:24182112
Induced emission of extraordinary mode radiation in tokamaks
NASA Technical Reports Server (NTRS)
Freund, H. P.; Lee, L. C.
1979-01-01
The implications of the formation of a positive slope in the runaway electron tail in tokamak plasmas are investigated in regard to the radiation in the vicinity of the electron plasma frequency. In particular, it is shown that the amplification of extraordinary mode waves may result.
Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons
Swamy, Aditya K.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.
2015-07-15
Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instability is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.
Mode Analysis with Autocorrelation Method (Single Time Series) in Tokamak
NASA Astrophysics Data System (ADS)
Saadat, Shervin; Salem, Mohammad K.; Goranneviss, Mahmoud; Khorshid, Pejman
2010-08-01
In this paper plasma mode analyzed with statistical method that designated Autocorrelation function. Auto correlation function used from one time series, so for this purpose we need one Minov coil. After autocorrelation analysis on mirnov coil data, spectral density diagram is plotted. Spectral density diagram from symmetries and trends can analyzed plasma mode. RHF fields effects with this method ate investigated in IR-T1 tokamak and results corresponded with multichannel methods such as SVD and FFT.
Guo, H. Y.; Li, J.; Wan, B. N. Gong, X. Z.; Xu, G. S.; Zhang, X. D.; Ding, S. Y.; Gan, K. F.; Hu, J. S.; Hu, L. Q.; Liu, S. C.; Qian, J. P.; Sun, Y. W.; Wang, H. Q.; Wang, L.; Xia, T. Y.; Xiao, B. J.; Zeng, L.; Zhao, Y. P.; and others
2014-05-15
A long-pulse high confinement plasma regime known as H-mode is achieved in the Experimental Advanced Superconducting Tokamak (EAST) with a record duration over 30 s, sustained by Lower Hybrid wave Current Drive (LHCD) with advanced lithium wall conditioning and divertor pumping. This long-pulse H-mode plasma regime is characterized by the co-existence of a small Magneto-Hydrodynamic (MHD) instability, i.e., Edge Localized Modes (ELMs) and a continuous quasi-coherent MHD mode at the edge. We find that LHCD provides an intrinsic boundary control for ELMs, leading to a dramatic reduction in the transient power load on the vessel wall, compared to the standard Type I ELMs. LHCD also induces edge plasma ergodization, broadening heat deposition footprints, and the heat transport caused by ergodization can be actively controlled by regulating edge plasma conditions, thus providing a new means for stationary heat flux control. In addition, advanced tokamak scenarios have been newly developed for high-performance long-pulse plasma operations in the next EAST experimental campaign.
Geodesic Acoustic Mode Induced by Toroidal Rotation in Tokamaks
Wahlberg, C.
2008-09-12
The effect of toroidal rotation on the geodesic acoustic mode (GAM) in a tokamak is studied. It is shown that, in addition to a small frequency upshift of the ordinary GAM, another GAM, with much lower frequency, is induced by the rotation. The new GAM appears as a consequence of the nonuniform plasma density and pressure created by the centrifugal force on the magnetic surfaces. Both GAMs in a rotating plasma are shown to exist both as continuum modes with finite mode numbers m and n at the rational surfaces q=m/n as well as in the form of axisymmetric modes with m=n=0.
Seo, Seong-Heon; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Park, Jinhyung; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.
2013-08-15
Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6–54 GHz), V band (48–72 GHz), and W band (72–108 GHz) to measure the density up to 7 × 10{sup 19} m{sup −3} when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.
Stability of tearing modes in tokamak plasmas
Hegna, C.C.; Callen, J.D.
1994-02-01
The stability properties of m {ge} 2 tearing instabilities in tokamak plasmas are analyzed. A boundary layer theory is used to find asymptotic solutions to the ideal external kink equation which are used to obtain a simple analytic expression for the tearing instability parameter {Delta}{prime}. This calculation generalizes previous work on this topic by considering more general toroidal equilibria (however, toroidal coupling effects are ignored). Constructions of {Delta}{prime} are obtained for plasmas with finite beta and for islands that have nonzero width. A simple heuristic estimate is given for the value of the saturated island width when the instability criterion is violated. A connection is made between the calculation of the asymptotic matching parameter in the finite beta and island width case to the nonlinear analog of the Glasser effect.
Eikonal waves, caustics and mode conversion in tokamak plasmas
NASA Astrophysics Data System (ADS)
Jaun, A.; Tracy, E. R.; Kaufman, A. N.
2007-01-01
Ray optics is used to model the propagation of short electromagnetic plasma waves in toroidal geometry. The new RAYCON code evolves each ray independently in phase space, together with its amplitude, phase and focusing tensor to describe the transport of power along the ray. Particular emphasis is laid on caustics and mode conversion layers, where a linear phenomenon splits a single incoming ray into two. The complete mode conversion algorithm is described and tested for the first time, using the two space dimensions that are relevant in a tokamak. Applications are shown, using a cold plasma model to account for mode conversion at the ion-hybrid resonance in the Joint European Torus.
Operation of a tokamak reactor in the radiative improved mode
NASA Astrophysics Data System (ADS)
Morozov, D. Kh.; Mavrin, A. A.
2016-03-01
The operation of a nuclear fusion reactor has been simulated within a model based on experimental results obtained at the TEXTOR-94 tokamak and other facilities in which quasistationary regimes were achieved with long confinement times, high densities, and absence of the edge-localized mode. The radiative improved mode of confinement studied in detail at the TEXTOR-94 tokamak is the most interesting such regime. One of the most important problems of modern tokamaks is the problem of a very high thermal load on a divertor (or a limiter). This problem is quite easily solved in the radiative improved mode. Since a significant fraction of the thermal energy is reemitted by an impurity, the thermal loading is significantly reduced. As the energy confinement time τ E at high densities in the indicated mode is significantly larger than the time predicted by the scaling of ITERH-98P(y, 2), ignition can be achieved in a facility much smaller than the ITER facility at plasma temperatures below 20 keV. The revealed decrease in the degradation of the confinement time τ E with an increase in the introduced power has been analyzed.
Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas
Firpo, M.-C.; Ettoumi, W.; Farengo, R.; Ferrari, H. E.; García-Martínez, P. L.; Lifschitz, A. F.
2013-07-15
A dynamical analysis applied to a reduced resistive magnetohydrodynamics model is shown to explain the chronology of the nonlinear destabilization of modes observed in tokamak sawteeth. A special emphasis is put on the nonlinear self-consistent perturbation of the axisymmetric m = n = 0 mode that manifests through the q-profile evolution. For the very low fusion-relevant resistivity values, the q-profile is shown to remain almost unchanged on the early nonlinear timescale within the central tokamak region, which supports a partial reconnection scenario. Within the resistive region, indications for a local flattening or even a local reversed-shear of the q-profile are given. The impact of this ingredient in the occurrence of the sawtooth crash is discussed.
Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas
NASA Astrophysics Data System (ADS)
Firpo, M.-C.; Ettoumi, W.; Farengo, R.; Ferrari, H. E.; García-Martínez, P. L.; Lifschitz, A. F.
2013-07-01
A dynamical analysis applied to a reduced resistive magnetohydrodynamics model is shown to explain the chronology of the nonlinear destabilization of modes observed in tokamak sawteeth. A special emphasis is put on the nonlinear self-consistent perturbation of the axisymmetric m = n = 0 mode that manifests through the q-profile evolution. For the very low fusion-relevant resistivity values, the q-profile is shown to remain almost unchanged on the early nonlinear timescale within the central tokamak region, which supports a partial reconnection scenario. Within the resistive region, indications for a local flattening or even a local reversed-shear of the q-profile are given. The impact of this ingredient in the occurrence of the sawtooth crash is discussed.
Microtearing mode (MTM) turbulence in JIPPT-IIU tokamak plasmas
NASA Astrophysics Data System (ADS)
Hamada, Y.; Watari, T.; Nishizawa, A.; Yamagishi, O.; Narihara, K.; Ida, K.; Kawasumi, Y.; Ido, T.; Kojima, M.; Toi, K.; the JIPPT-IIU Group
2015-04-01
Magnetic, density and potential fluctuations up to 500 kHz at several spatial points have been observed in the core region of JIPPT-IIU tokamak plasmas using a heavy ion beam probe. The frequency spectra of the density and magnetic oscillations are found to be similar, whereas there are large differences in the phase, coherence and frequency dependences deduced from signals at adjacent sample volumes. These differences allow us to ascribe the detected magnetic fluctuations to the microtearing mode (MTM) by simple dispersion relations of the MTM in collisionless and intermediate regimes. The frequency-integrated level of magnetic fluctuations around 150 kHz (100-200 kHz) is \\tilde{{B}}r /Bt ≈ 1× 10-4 , a level high enough for the ergodization of the magnetic surface and enhanced electron heat loss as derived by Rechester and Rosenbluth (1978 Phys. Rev. Lett. 40 38). This level is consistent with the measurements performed using cross-polarization scattering of microwaves in the Tore Supra tokamak. Our results are the first direct experimental verification of the MTM in the core region of tokamak plasmas, which has been recently observed in gyrokinetic simulations using a very fine mesh in tokamak and ST plasmas.
Development of a free-boundary tokamak equilibrium solver for advanced study of tokamak equilibria
NASA Astrophysics Data System (ADS)
Jeon, Young Mu
2015-09-01
A free-boundary Tokamak equilibrium solver (TES), developed for advanced study of tokamak equilibra, is described with two distinctive features. One is a generalized method to resolve the intrinsic axisymmetric instability, which is encountered in all equilibrium calculations with a freeboundary condition. The other is an extension to deal with a new divertor geometry such as snowflake or X divertors. For validations, the uniqueness of a solution is confirmed by the independence of variations in the computational domain, the mathematical correctness and accuracy of equilibrium profiles are checked by using a direct comparison with an analytic equilibrium known as a generalized Solov'ev equilibrium, and the governing force balance relation is tested by examining the intrinsic axisymmetric instabilities. As an application of an advanced equilibrium study, a snow-flake divertor configuration that requires a second-order zero of the poloidal magnetic flux is discussed in the circumstance of the Korea superconducting tokamak advanced research (KSTAR) coil system.
Hollow current profile scenarios for advanced tokamak reactor operations
Gourdain, P.-A.; Leboeuf, J.-N.
2009-11-15
Advanced tokamak scenarios are a possible approach to boosting reactor performances. Such schemes usually trigger current holes, a particular magnetohydrodynamics equilibrium where no current or pressure gradients exist in the core of the plasma. While such equilibria have large bootstrap fractions, flat pressure profiles in the plasma core may not be optimal for a reactor. However, moderate modifications of the equilibrium current profile can lead to diamagnetism where most of the pressure gradient is now balanced by poloidal currents and the toroidal magnetic field. In this paper, we consider the properties of diamagnetic current holes, also called ''dual equilibria,'' and demonstrate that fusion throughput can be significantly increased in such scenarios. Their stability is investigated using the DCON code. Plasmas with a beta peak of 30% and an average beta of 6% are found stable to both fixed and free-boundary modes with toroidal mode numbers n=1-4, as well as Mercier and high-n ballooning modes. This is not surprising as these scenarios have a normal beta close to 3.
Nonlinear saturation of ballooning modes in tokamaks and stellarators
Bauer, F.; Garabedian, P.; Betancourt, O.
1988-01-01
The spectral code BETAS computes plasma equilibrium in a toroidal magnetic field B = [unk]s × [unk]Ψ with remarkable accuracy because the finite difference scheme employed in the radial direction allows for discontinuities of the flux function Ψ across the nested surfaces s = const. Instability of higher modes in stellarators like the Heliotron E can be detected in roughly an hour on the best supercomputers by calculating bifurcated equilibria that are defined over just one field period. The method has been validated by comparing results about nonlinear saturation of ballooning modes in tokamaks with numerical data from the PEST code. PMID:16593984
OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM
BURRELL,KH
2002-11-01
OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, the authors have made significant progress in developing the building blocks needed for AT operation: (1) the authors have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {le} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. They have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiation power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet
Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak
Hu, Youjun; Li, Guoqiang; Yang, Wenjun; Zhou, Deng; Ren, Qilong; Gorelenkov, N. N.; Cai, Huishan
2014-05-15
Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane.
Stabilization of the resistive shell mode in tokamaks
Fitzpatrick, R.; Aydemir, A.
1995-02-01
The stability of current-driven external-kink modes is investigated in a tokamak plasma surrounded by an external shell of finite electrical conductivity. According to conventional theory, the ideal mode can be stabilized by placing the shell sufficiently close to the plasma, but the non-rotating ``resistive shell mode,`` which grows on the characteristic L/R time of the shell, always persists. It is demonstrated, using both analytic and numerical techniques, that a combination of strong edge plasma rotation and dissipation somewhere inside the plasma is capable of stabilizing the resistive shell mode. This stabilization mechanism does not necessarily depend on toroidicity or presence of resonant surfaces inside the plasma.
Kinetic analysis of MHD ballooning modes in tokamaks
Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.
1984-10-01
A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from ..beta.. = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with ..beta.., these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-..beta..-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties.
Stability of coupled tearing and twisting modes in tokamaks
Fitzpatrick, R.
1994-03-01
A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD behavior at only one rational surface at a time in the plasma are decoupled via sheared rotation and diamagnetic flows. At higher amplitude, more unstable {open_quote}compound{close_quote} modes develop which have nonideal behavior simultaneously at many surfaces. Such modes possess tearing parity layers at some of the nonideal surfaces, and twisting parity layers at others, but mixed parity layers are generally disallowed. At low mode number, {open_quote}compound{close_quote} modes are likely to have tearing parity layers at all of the nonideal surfaces in a very low-{beta} plasma, but twisting parity layers become more probable as the plasma {beta} is increased. At high mode number, unstable twisting modes which exceed a critical amplitude drive conventional magnetic island chains on alternate rational surfaces, to form an interlocking structure in which the O-points and X-points of neighboring chains line up.
Resistive wall mode and neoclassical tearing mode coupling in rotating tokamak plasmas
NASA Astrophysics Data System (ADS)
McAdams, Rachel; Wilson, H. R.; Chapman, I. T.
2013-08-01
A model system of equations has been derived to describe a toroidally rotating tokamak plasma, unstable to resistive wall modes (RWMs) and metastable to neoclassical tearing modes (NTMs), using a linear RWM model and a nonlinear NTM model. If no wall is present, the NTM growth shows the typical threshold/saturation island widths, whereas a linearly unstable kink mode grows exponentially in this model plasma system. When a resistive wall is present, the growth of the linearly unstable RWM is accelerated by an unstable island: a form of coupled RWM-NTM mode. Crucially, this coupled system has no threshold island width, giving the impression of a triggerless NTM, observed in high beta tokamak discharges. Increasing plasma rotation at the island location can mitigate its growth, decoupling the modes to yield a conventional RWM with no threshold width.
Ideal Stability of the Tokamak H--mode Edge Region
NASA Astrophysics Data System (ADS)
Wilson, H. R.
1998-11-01
Tokamak performance is often controlled by stability of the edge plasma. Consistent with ``stiff'' transport models, the confinement in tokamak discharges is strongly correlated with the magnitude of the edge pressure pedestal which is limited by MHD stability. Furthermore, the high performance ELM-free H--modes are terminated by low toroidal mode number n, MHD modes driven by high edge pressure gradient, and edge current. We have evaluated low n modes using the δ W code GATO, and both high edge pressure gradient and high edge current density are found to destabilize the n=1, 2, and 3 ideal modes. We have included the self-consistent bootstrap current in the equilibria generation, and have completed a thorough survey of the effects of plasma shape and edge pressure profiles on the edge ballooning stability. The bootstrap current density helps to provide access to the second regime of stability, which is easier for: higher elongation, intermediate triangularity, larger aspect ratio, narrower pedestal width, and higher q_95. The intermediate n stability is being evaluated using a high-mode-number peeling/ ballooning mode model,(J.W. Connor, R.J. Hastie, H.R. Wilson, and R.L. Miller, Phys. Plasmas 5), 2687 (1998). where a critical role is played by the edge current density. This edge model describes the interaction of peeling mode (current driven) and ballooning mode (pressure driven) effects at high, but finite, mode number; a modified ballooning mode formalism is shown to be valid at the plasma edge. Based upon this edge model, a 2D eigenvalue code has been written to determine the stability of these modes for arbitrary shape cross sections, and edge pressure and current profiles including bootstrap current effects. This model suggests a power threshold for L--H transitions and provides a plausible explanation for an ELM cycle. Results will be presented for the pressure gradient and edge current density stability boundaries for a range of shapes and pedestal widths
Linear Analysis of Drift Ballooning Modes in Tokamak Edge Plasmas
NASA Astrophysics Data System (ADS)
Tangri, Varun; Kritz, Arnold; Rafiq, Tariq; Pankin, Alexei
2012-10-01
The H-mode pedestal structure depends on the linear stability of drift ballooning modes (DBMs) in many H-mode pedestal models. Integrated modeling that uses these pedestal models requires fast evaluation of linear stability of DBMs. Linear analysis of DBMs is also needed in the computations of effective diffusivities associated with anomalous transport that is driven by the DBMs in tokamak edge plasmas. In this study several numerical techniques of linear analysis of the DBMs are investigated. Differentiation matrix based spectral methods are used to compute the physical eigenvalues of the DBMs. The model for DBMs used here consists of six differential equations [T. Rafiq et al. Phys. Plasmas, 17, 082511, (2010)]. It is important to differentiate among non-physical (numerical) modes and physical modes. The determination of the number of eigenvalues is solved by a computation of the `nearest' and `ordinal' distances. The Finite Difference, Hermite and Sinc based differentiation matrices are used. It is shown that spectral collocation methods are more accurate than finite difference methods. The technique that has been developed for calculating eigenvalues is quite general and is relevant in the computation of other modes that utilize the ballooning mode formalism.
Deuterium-Tritium Simulations of the Enhanced Reversed Shear Mode in the Tokamak Fusion Test Reactor
Mikkelsen, D.R.; Manickam, J.; Scott, S.D.; Zarnstorff
1997-04-01
The potential performance, in deuterium-tritium plasmas, of a new enhanced con nement regime with reversed magnetic shear (ERS mode) is assessed. The equilibrium conditions for an ERS mode plasma are estimated by solving the plasma transport equations using the thermal and particle dif- fusivities measured in a short duration ERS mode discharge in the Tokamak Fusion Test Reactor [F. M. Levinton, et al., Phys. Rev. Letters, 75, 4417, (1995)]. The plasma performance depends strongly on Zeff and neutral beam penetration to the core. The steady state projections typically have a central electron density of {approx}2:5x10 20 m{sup -3} and nearly equal central electron and ion temperatures of {approx}10 keV. In time dependent simulations the peak fusion power, {approx} 25 MW, is twice the steady state level. Peak performance occurs during the density rise when the central ion temperature is close to the optimal value of {approx} 15 keV. The simulated pressure profiles can be stable to ideal MHD instabilities with toroidal mode number n = 1, 2, 3, 4 and {infinity} for {beta}{sub norm} up to 2.5; the simulations have {beta}{sub norm} {le} 2.1. The enhanced reversed shear mode may thus provide an opportunity to conduct alpha physics experiments in conditions imilar to those proposed for advanced tokamak reactors.
On the difference of H-mode power threshold in divertor and limiter tokamaks
NASA Astrophysics Data System (ADS)
Kalupin, D.; Tokar, M. Z.; Unterberg, B.; Loozen, X.; Pilipenko, D.; Zagorski, R.; Contributors, TEXTOR
2006-05-01
The difference in the H-mode power threshold in divertor and limiter configurations is numerically investigated by analysing the effect of boundary conditions imposed on the last closed magnetic surface (LCMS) and given by prescribed density and temperature e-folding lengths, δn and δT, respectively. It is demonstrated that the variation of δn and δT significantly affects the H-mode power threshold. This is explained by the change in the balance between conductive and convective heat losses at the edge. For the ratio δn/δT large enough, when the convective loss does not exceed 45% of the total power, the threshold agrees well with the experimental multi-machine scaling for divertor tokamaks. With reduction in δn/δT and increase in convective loss above this critical level, the power threshold significantly exceeds the scaling, in agreement with observations on different limiter tokamaks. By considering the power and particle balances in the scrape-off layer it is shown that the ratio δn/δT is controlled by the distance which recycling neutrals pass before entering the confined plasma and which is normally much larger in divertor machines than in the limiter ones. The calculations for the limiter tokamak TEXTOR have predicted the experimentally found conditions for the L H transition in advance.
3D passive stabilization of n = 0 MHD modes in EAST tokamak.
Chen, S L; Villone, F; Xiao, B J; Barbato, L; Luo, Z P; Liu, L; Mastrostefano, S; Xing, Z
2016-01-01
Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented. PMID:27597182
3D passive stabilization of n = 0 MHD modes in EAST tokamak
Chen, S. L.; Villone, F.; Xiao, B. J.; Barbato, L.; Luo, Z. P.; Liu, L.; Mastrostefano, S.; Xing, Z.
2016-01-01
Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented. PMID:27597182
Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak.
Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang
2015-08-01
An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s. PMID:26329188
Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak
Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang
2015-08-15
An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.
Gyrokinetic particle simulations of kinetic ballooning mode in tokamak pedestal
NASA Astrophysics Data System (ADS)
Holod, Ihor
2014-10-01
The pedestal height and width in tokamak H-mode operation are widely believed to be constrained by mesoscale peeling-ballooning modes and microscopic kinetic ballooning modes (KBM). However, direct evidences of the KBM turbulence in pedestal are very limited. The role of the drift-Alfvenic microturbulence during the pedestal recovery period is not clear. Here we use gyrokinetic toroidal code (GTC) to study the edge instability of a DIII-D discharge #131997 using realistic geometry and plasma profiles and focusing on the pedestal region with steep pressure gradient. First, electrostatic simulations find a reactive trapped electron mode with an unusual eigenmode structure, which peaks at the poloidal angle θ = +/- π /2. The electron collisions decrease the growth rate by about one-half. Next, the plasma pressure is scanned in GTC electromagnetic simulations to identify the boundary for the KBM onset. At the finite electron beta an electromagnetic instability is found with KBM characteristics. The linear growth rate increases with βe and the mode propagation is in the ion diamagnetic direction. Nonlinear simulations of the KBM turbulence will also be presented. Work supported by DOE Grant DE-SC0010416, and in collaborations with GTC team.
Ideal ballooning modes in the tokamak scrape-off layer
Halpern, Federico D.; Jolliet, Sebastien; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo
2013-05-15
A drift-reduced Braginskii fluid model is used to carry out a linear and non-linear study of ideal ballooning modes in the tokamak scrape-off layer. First, it is shown that the scrape-off layer finite connection length and boundary conditions modify the ideal stability limit with respect to the closed flux-surface result. Then, in a two-fluid description, it is found that magnetic induction effects can destabilize long wavelength resistive ballooning modes below marginal ideal stability. Non-linear simulations confirm a gradual transition from small scale quasi-electrostatic interchange turbulence to longer wavelength modes as the plasma beta is increased. The transition to global ideal ballooning modes occurs, roughly, at the linearly obtained stability threshold. The transport levels and the pressure gradient as a function of plasma beta obtained in non-linear simulations can be predicted using the non-linear flattening of the pressure profile from the linear modes as a turbulent saturation mechanism.
High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak.
Thome, K E; Bongard, M W; Barr, J L; Bodner, G M; Burke, M G; Fonck, R J; Kriete, D M; Perry, J M; Schlossberg, D J
2016-04-29
Tokamak experiments at near-unity aspect ratio A≲1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A∼3 plasmas, the L-H power threshold P_{LH} is ∼15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. These ultralow-A operations enable heretofore inaccessible J_{edge}(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament. PMID:27176526
High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak
NASA Astrophysics Data System (ADS)
Thome, K. E.; Bongard, M. W.; Barr, J. L.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Kriete, D. M.; Perry, J. M.; Schlossberg, D. J.
2016-04-01
Tokamak experiments at near-unity aspect ratio A ≲1.2 offer new insights into the self-organized H -mode plasma confinement regime. In contrast to conventional A ˜3 plasmas, the L -H power threshold PL H is ˜15 × higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. These ultralow-A operations enable heretofore inaccessible Jedge(R ,t ) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.
High confinement mode and edge localized mode characteristics in a near-unity aspect ratio tokamak
Thome, Kathreen E.; Bongard, Michael W.; Barr, Jayson L.; Bodner, Grant M.; Burke, Marcus G.; Fonck, Raymond J.; Kriete, David M.; Perry, Justin M.; Schlossberg, David J.
2016-04-27
Tokamak experiments at near-unity aspect ratio A ≲ 1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A ~ 3 plasmas, the L–H power threshold PLH is ~15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. Furthermore, these ultralow-A operations enable heretofore inaccessible Jedge(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.
Advanced tokamak physics experiments on DIII-D
Taylor, T.S.
1998-12-01
Significant reductions in the size and cost of a fusion power plant core can be realized if simultaneous improvements in the energy confinement time ({tau}{sub E}) and the plasma pressure (or beta {beta}{sub T} = 2 {mu}{sub 0} < p > /B{sub T}{sup 2}) can be achieved in steady-state conditions with high self driven bootstrap current fraction. In addition, effective power exhaust and impurity and particle control is required. Significant progress has been made in experimentally achieving regimes having the required performance in all of these aspects as well as in developing a theoretical understanding of the underlying physics. The authors have extended the duration of high performance ELMing H-mode plasmas with {beta}{sub N} H{sub iop} {approximately} 10 for 5 {tau}{sub E} ({approximately}1 s) and have demonstrated that core transport barriers can be sustained for the entire 5-s neutral beam duration in L-mode plasmas. Recent DIII-D work has advanced the understanding of improved confinement and internal transport barriers in terms of E x B shear stabilization of micro turbulence. With the aim of current profile control in discharges with negative central magnetic shear, they have demonstrated off-axis electron cyclotron current drive for the first time in a tokamak, finding an efficiency above theoretical expectations. MHD stability has been improved through shape optimization, wall stabilization, and modification of the pressure and current density profiles. Heat flux reduction and improved impurity and particle control have been realized through edge/divertor radiation and understanding and utilization of forced scrape off layer flow and divertor baffling.
Geodesic acoustic mode in toroidally rotating anisotropic tokamaks
Ren, Haijun
2015-07-15
Effects of anisotropy on the geodesic acoustic mode (GAM) are analyzed by using gyro-kinetic equations applicable to low-frequency microinstabilities in a toroidally rotating tokamak plasma. Dispersion relation in the presence of arbitrary Mach number M, anisotropy strength σ, and the temperature ration τ is analytically derived. It is shown that when σ is less than 3 + 2τ, the increased electron temperature with fixed ion parallel temperature increases the normalized GAM frequency. When σ is larger than 3 + 2τ, the increasing of electron temperature decreases the GAM frequency. The anisotropy σ always tends to enlarge the GAM frequency. The Landau damping rate is dramatically decreased by the increasing τ or σ.
Overview of recent experimental results from the DIII-D advanced tokamak program.
Burrell, K. H.
2003-12-01
The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last international atomic energy agency (IAEA) meeting, we have made significant progress in developing the building blocks needed for AT operation: (1) we have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, we have achieved {beta}{sub N}H{sub 89} {ge} 10 for 4{tau}{sub E} limited by the neoclassical tearing mode (NTM); (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, we have stabilized the (m, n) = (3, 2) NTM and then increased {beta}{sub T} by 60%; (4) we have produced ECCD stabilization of the (2, 1) NTM in initial experiments; (5) we have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) we have demonstrated stationary tokamak operation for 6.5 s (36{tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx_equal} as ITER but at much higher q{sub 95} = 4.2. We have developed general improvements applicable to conventional and AT operating modes: (1) we have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, edge localized modes (ELM) heat load to the divertor and which can run for long periods of time (3.8 s or 25{tau}{sub E}) with constant density and constant radiated power; (2) we have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gases; (3) we have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much
Helical temperature perturbations associated with tearing modes in tokamak plasmas
Fitzpatrick, R.
1994-06-01
An investigation is made into the electron temperature perturbations associated with tearing modes in tokamak plasmas, with a view to determining the mode structure using Electron Cyclotron Emission (ECE) data. It is found that there is a critical magnetic island width below which the conventional picture where the temperature is flattened inside the separatrix is invalid. This effect comes about because of the stagnation of magnetic field lines in the vicinity of the rational surface and the finite parallel thermal conductivity of the plasma. For islands whose widths lie below the critical value there is no flattening of the electron temperature inside the separatrix. Such islands have quite different ECE signatures to conventional magnetic islands. In fact the two island types could, in principle, be differentiated experimentally. It should also be possible to map out the outer ideal magnetohydrodynamical eigenfunctions using ECE data. Islands whose widths are much less than the critical value are not destabilized by the perturbed bootstrap current, unlike conventional magnetic islands. This effect is found to have a number of very interesting consequences and may, indeed, provide an explanation for some puzzling experimental results regarding error field induced magnetic reconnection. All islands whose widths are much greater than the critical width possess a boundary layer on the separatrix which enables heat to be transported from one side of the island to the other via the X-point region. The structure of this boundary layer is described in some detail. Finally, the critical island width is found to be fairly substantial in conventional tokamak plasmas, provided that the long mean free path nature of parallel heat transport and the anomalous nature of perpendicular heat transport are taken into account in the calculation.
A long-pulse high-confinement plasma regime in the Experimental Advanced Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Li, J.; Guo, H. Y.; Wan, B. N.; Gong, X. Z.; Liang, Y. F.; Xu, G. S.; Gan, K. F.; Hu, J. S.; Wang, H. Q.; Wang, L.; Zeng, L.; Zhao, Y. P.; Denner, P.; Jackson, G. L.; Loarte, A.; Maingi, R.; Menard, J. E.; Rack, M.; Zou, X. L.
2013-12-01
High-performance and long-pulse operation is a crucial goal of current magnetic fusion research. Here, we demonstrate a high-confinement plasma regime known as an H-mode with a record pulse length of over 30s in the Experimental Advanced Superconducting Tokamak sustained by lower hybrid wave current drive (LHCD) with advanced lithium wall conditioning. We find that LHCD provides a flexible boundary control for a ubiquitous edge instability in H-mode plasmas known as an edge-localized mode, which leads to a marked reduction in the heat load on the vessel wall compared with standard edge-localized modes. LHCD also induces edge plasma ergodization that broadens the heat deposition footprint. The heat transport caused by this ergodization can be actively controlled by regulating the edge plasma conditions. This potentially offers a new means for heat-flux control, which is a key issue for next-step fusion development.
OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM
BURRELL,HK
2002-11-01
OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {ge} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet
Feedback stabilization of the resistive shell mode in a tokamak fusion reactor
Fitzpatrick, R.
1997-07-01
Stabilization of the {open_quotes}resistive shell mode{close_quotes} is vital to the success of the {open_quotes}advanced tokamak{close_quotes} concept. The most promising reactor relevant approach is to apply external feedback using, for instance, the previously proposed {open_quotes}fake rotating shell{close_quotes} scheme [R. Fitzpatrick and T. H. Jensen, Phys. Plasmas {bold 3}, 2641 (1996)]. This scheme, like other simple feedback schemes, only works if the feedback controlled conductors are located inside the {open_quotes}critical radius{close_quotes} at which a perfectly conducting shell is just able to stabilize the ideal external kink mode. In general, this is not possible in a reactor, since engineering constraints demand that any feedback controlled conductors be placed {ital outside} the neutron shielding blanket (i.e., relatively far from the edge of the plasma). It is demonstrated that the fake rotating shell feedback scheme can be modified so that it works even when the feedback controlled conductors are located well beyond the critical radius. The gain, bandwidth, current, and total power requirements of such a feedback system for a reactor sized plasma are estimated to be less than 100, a few Hz, a fews tens of kA, and a few MW, respectively. These requirements could easily be met using existing technology. It is concluded that feedback stabilization of the resistive shell mode is possible in a tokamak fusion reactor. {copyright} {ital 1997 American Institute of Physics.}
Advanced Tokamak Plasmas in the Fusion Ignition Research Experiment
C.E. Kessel; D. Meade; D.W. Swain; P. Titus; M.A. Ulrickson
2003-10-13
The Advanced Tokamak (AT) capability of the Fusion Ignition Research Experiment (FIRE) burning plasma experiment is examined with 0-D systems analysis, equilibrium and ideal-MHD stability, radio-frequency current-drive analysis, and full discharge dynamic simulations. These analyses have identified the required parameters for attractive burning AT plasmas, and indicate that these are feasible within the engineering constraints of the device.
Short wavelength trapped electron modes in tokamak plasmas
NASA Astrophysics Data System (ADS)
Zhang, N.; Gong, X. Y.; Dong, J. Q.; Huang, Q. H.; Gong, L.; Li, J. C.
2016-04-01
The collisionless trapped electron modes in the short wavelength region k⊥ρs>1 (SWTEMs) are studied with the gyrokinetic integral eigenmode equation in tokamak plasmas. Here, we present a systematic study of the correlation between the SWTEMs and short wavelength ion temperature gradient (SWITG) modes. The kθρs spectra of TEM have double humps in the short wavelength and long wavelength regions, respectively. The SWITG modes with trapped electron effects taking into account have broader kθρs spectra. Dependences of growth rate and real frequency of SWTEMs on the various parameters, such as ion temperature gradient (ηi), the temperature gradient of trapped electrons (ηe), toroidicity (ɛn), magnetic shear ( s ̂ ), safety factor (q), and the ratio of temperature (Te/Ti), are investigated in detail. It is found that the SWTEMs propagate in the electron diamagnetic drift direction and require temperature gradient of trapped electrons ηe exceeding thresholds. Moreover, the ion temperature gradient has a strong stabilizing effect on the SWTEMs. The SWTEMs become stable in both regimes of toroidicity ɛn > 0.1 and magnetic shear s ̂>0.5 regardless of the fraction of trapped electrons. In addition, the properties of short wavelength ITG (SWITG) modes are discussed with different ratio of trapped electrons. It is found that trapped electrons of greater fraction have a stronger destabilizing effect on the SWTEM and SWITG modes. These results are significant for the electrons anomalous transport experiments in the future.
Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma
Xu, Liqing; Zhang, Jizong; Chen, Kaiyun E-mail: lqhu@ipp.cas.cn; Hu, Liqun E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao
2015-12-15
Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.
NASA Astrophysics Data System (ADS)
Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.
2013-10-01
We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport.
LIDAR Thomson scattering for advanced tokamaks. Final report
Molvik, A.W.; Lerche, R.A.; Nilson, D.G.
1996-03-18
The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.
Impurity effects on trapped electron mode in tokamak plasmas
NASA Astrophysics Data System (ADS)
Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.
2016-07-01
The effects of impurity ions on the trapped electron mode (TEM) in tokamak plasmas are numerically investigated with the gyrokinetic integral eigenmode equation. It is shown that in the case of large electron temperature gradient ( η e ), the impurity ions have stabilizing effects on the TEM, regardless of peaking directions of their density profiles for all normalized electron density gradient R / L n e . Here, R is the major radius and L n e is the electron density gradient scale length. In the case of intermediate and/or small η e , the light impurity ions with conventional inwardly (outwardly) peaked density profiles have stabilizing effects on the TEM for large (small) R / L n e , while the light impurity ions with steep inwardly (outwardly) peaked density profiles can destabilize the TEM for small (large) R / L n e . Besides, the TEM driven by density gradient is stabilized (destabilized) by the light carbon or oxygen ions with inwardly (outwardly) peaked density profiles. In particular, for flat and/or moderate R / L n e , two independent unstable modes, corresponding respectively to the TEM and impurity mode, are found to coexist in plasmas with impurity ions of outwardly peaked density profiles. The high Z tungsten impurity ions play a stronger stabilizing role in the TEM than the low Z impurity ions (such as carbon and oxygen) do. In addition, the effects of magnetic shear and collision on the TEM instability are analyzed. It is shown that the collisionality considered in this work weakens the trapped electron response, leading to a more stable TEM instability, and that the stabilizing effects of the negative magnetic shear on the TEM are more significant when the impurity ions with outwardly peaked density profile are taken into account.
The non-resonant kink modes triggering strong sawtooth-like crashes in the EAST tokamak
NASA Astrophysics Data System (ADS)
Li, Erzhong; Igochine, V.; Dumbrajs, O.; Xu, L.; Chen, K.; Shi, T.; Hu, L.
2014-12-01
Evolution of the safety factor (q) profile during L-H transitions in the Experimental Advanced Superconducting Tokamak (EAST) was accompanied by strong core crashes prior to regular sawtooth behavior. These crashes appeared in the absence of q = 1 (q is the safety factor) rational surface inside the plasma. Analysis indicates that the m/n = 2/1 tearing mode is destabilized and phase-locked with the m/n = 1/1 non-resonant kink mode (the q = 1 rational surface is absent) due to the self-consistent evolution of plasma profiles as the L-H transition occurs (m and n are the poloidal and toroidal mode numbers, respectively). The growing m/n = 1/1 mode destabilizes the m/n = 2/2 kink mode which eventually triggers the strong crash due to an anomalous heat conductivity, as predicted by the transport model of stochastic magnetic fields using experimental parameters. It is also shown that the magnetic topology changes with the amplitude of m/n = 2/2 mode and the value of center safety factor in a reasonable range.
Global MHD Mode Stabilization and Control for Tokamak Disruption Avoidance
NASA Astrophysics Data System (ADS)
Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Hanson, J. M.; Park, Y. S.; Bell, R. E.; Gates, D. A.; Gerhardt, S. P.; Goumiri, I.; Grierson, B.; Holcomb, C.
2015-11-01
The near-complete elimination of plasma disruptions in fusion-producing tokamaks is the present ``grand challenge'' for stability research. Meeting this goal requires multiple approaches, important components of which are prediction, stabilization, and control of global MHD instabilities. Research on NSTX and its upgrade is synergizing these elements to make quantified progress on this challenge. Initial results from disruption characterization and prediction analyses describe physical disruption event chains in NSTX. Analysis of NSTX and DIII-D experiments show that stabilization of global modes is dominated by precession drift and bounce orbit resonances respectively. Stability therefore depends on the plasma rotation profile. A model-based rotation profile controller for NSTX-U using both neutral beams and neoclassical toroidal viscosity is shown in simulations to evolve profiles away from unstable states. Active RWM control is addressed using dual field component sensor feedback and a model-based RWM state-space controller. Comparison of measurements and synthetic diagnostics is examined for off-normal event handling. A planned 3D coil system upgrade can allow RWM control close to the ideal n = 1 with-wall limit. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-AC02-09CH11466.
Halo current diagnostic system of experimental advanced superconducting tokamak.
Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J
2015-10-01
The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well. PMID:26520954
Halo current diagnostic system of experimental advanced superconducting tokamak
Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.
2015-10-15
The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.
Zhu, Y. B. Liu, D.; Heidbrink, W. W.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Wan, B. N.; Li, J. G.
2014-11-15
Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.
Neoclassical tearing mode seeding by coupling with infernal modes in low-shear tokamaks
NASA Astrophysics Data System (ADS)
Kleiner, A.; Graves, J. P.; Brunetti, D.; Cooper, W. A.; Halpern, F. D.; Luciani, J.-F.; Lütjens, H.
2016-09-01
A numerical and an analytical study of the triggering of resistive MHD modes in tokamak plasmas with low magnetic shear core is presented. Flat q profiles give rise to fast growing pressure driven MHD modes, such as infernal modes. It has been shown that infernal modes drive fast growing islands on neighbouring rational surfaces. Numerical simulations of such instabilities in a MAST-like configuration are performed with the initial value stability code XTOR-2F in the resistive frame. The evolution of magnetic islands are computed from XTOR-2F simulations and an analytical model is developed based on Rutherford’s theory in combination with a model of resistive infernal modes. The parameter {{Δ }\\prime} is extended from the linear phase to the non-linear phase. Additionally, the destabilising contribution due to a helically perturbed bootstrap current is considered. Comparing the numerical XTOR-2F simulations to the model, we find that coupling has a strong destabilising effect on (neoclassical) tearing modes and is able to seed 2/1 magnetic islands in situations when the standard NTM theory predicts stability.
Development on JET of advanced tokamak operations for ITER
NASA Astrophysics Data System (ADS)
Tuccillo, A. A.; Crisanti, F.; Litaudon, X.; Baranov, Yu. F.; Becoulet, A.; Becoulet, M.; Bertalot, L.; Castaldo, C.; Challis, C. D.; Cesario, R.; DeBaar, M. R.; de Vries, P. C.; Esposito, B.; Frigione, D.; Garzotti, L.; Giovannozzi, E.; Giroud, C.; Gorini, G.; Gormezano, C.; Hawkes, N. C.; Hobirk, J.; Imbeaux, F.; Joffrin, E.; Lomas, P. J.; Mailloux, J.; Mantica, P.; Mantsinen, M. J.; Mazon, D.; Moreau, D.; Murari, A.; Pericoli-Ridolfini, V.; Rimini, F.; Sips, A. C. C.; Sozzi, C.; Tudisco, O.; Van Eester, D.; Zastrow, K.-D.; work-programme contributors, JET-EFDA
2006-02-01
Recent research on advanced tokamak in JET has focused on scenarios with both monotonic and reversed shear q-profiles having plasma parameters as relevant as possible for extrapolation to ITER. Wide internal transport barriers (ITBs), r/a ~ 0.7, are formed at ITER relevant triangularity δ ~ 0.45 and moderate plasma current, IP = 1.5-2.5 MA, with ne/nG ~ 60% when ELMs are moderated by Ne injection. At higher current (IP <= 3.5 MA, δ ~ 0.25) wide ITBs sitting at r/a >= 0.5, in the positive shear region, have been developed. Generally MHD events terminate these barriers otherwise limited in strength by power availability. ITBs with core density close to Greenwald value, Te ~ Ti and low toroidal rotation (4 times lower than standard ITBs) are obtained in plasma target preformed by opportune timing of lower hybrid current drive (LHCD), pellet injection and a small amount of NBI power. Wide ITBs, r/a ~ 0.6, of moderate strength, can be sustained without impurities accumulation for a time close to neoclassical resistive time in 3 T/1.8 MA discharges that exhibit reversed magnetic shear profiles and type-III ELMy edge. These discharges have been extended to the maximum duration allowed by JET subsystems (20 s) bringing to the record of injected energy in a JET discharge: E ~ 330 MJ. Portability of ITB physics has been addressed through dedicated similarity experiments. The ITB is identified as a layer of reduced diffusivity studying the propagation of the heat wave generated by modulating the ICRF mode conversion (MC) electron heating. Impressive results, QDT ~ 0.25, are obtained in these deuterium discharges with 3He minority when the MC layer is located in the core. The ion behaviour has been investigated in pure LHCD electron ITBs optimizing the 3He minority concentration for direct ion heating. Preliminary results of particle transport, studied via injection of a trace of tritium and an Ar-Ne mixture, will be presented.
Thome, Kathreen E. [University of Wisconsin-Madison] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)
2016-04-27
This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak,' Phys. Rev. Lett. 116, 175001 (2016).
Global gyrokinetic stability of collisionless microtearing modes in large aspect ratio tokamaks
Swamy, Aditya K.; Ganesh, R.; Chowdhury, J.; Brunner, S.; Vaclavik, J.; Villard, L.
2014-08-15
Linear full radius gyrokinetic calculations show the existence of unstable microtearing modes (MTMs) in purely collisionless, high temperature, large aspect ratio tokamak plasmas. The present study takes into account fully gyrokinetic highly passing ions and electrons. The global 2-D structures of the collisionless mode with full radius coupling of the poloidal modes is obtained and compared with another electromagnetic mode, namely, the Alfvén Ion Temperature Gradient (AITG) mode (or Kinetic Ballooning Mode, KBM) for the same equilibrium profile. Several important characteristics of the modes are brought out and compared, such as a clear signature in the symmetry properties of the two modes, the plasma–β dependence, and radial and poloidal length scales of the electrostatic and magnetic vector potential fluctuations. Extensive parameter scans for this collisionless microtearing mode reveal the scaling of the growth rate with β and the electron temperature gradient η{sub e}. Scans at different β values show an inverse relationship between the η{sub e} threshold and β, leading to a stability diagram, and implying that the mode might exist at moderate to strong temperature gradients for finite β plasmas in large aspect ratio tokamaks. In contrast to small aspect ratio tokamaks where the trapped electron magnetic drift resonance is found to be important, in large aspect ratio tokamaks, a strong destabilization due to the magnetic drift resonance of passing electrons is observed and is identified as a possible collisionless drive mechanism for the collisionless MTM.
Theory of energetic/alpha particle effects on magnetohydrodynamic modes in tokamaks
Chen, L.; White, R.B.; Rewoldt, G.; Colestock, P.; Rutherford, P.H.; Chen, Y.P.; Ke, F.J.; Tsai, S.T.; Bussac, M.N.
1989-01-01
The presence of energetic particles is shown to qualitatively modify the stability properties of ideal as well as resistive magnetohydrodynamic (MHD) modes in tokamaks. Specifically, we demonstrate that, consistent with highpower ICRF heating experiments in JET, high energy trapped particles can effectively stabilize the sawtooth mode, providing a possible route to stable high current tokamak operation. An alternative stabilization scheme employing barely circulating energetic particles is also proposed. Finally, we present analytical and numerical studies on the excitations of high-n MHD modes via transit resonances with circulating alpha particles. 14 refs., 3 figs.
Lee, H.G.; Lee, J.H.; Johnson, D.; Ellis, R.; Feder, R.; Park, H.
2004-10-01
The core and edge Thomson systems on Korea Superconducting Tokamak Advanced Research employ two different sets of lens collection optics. Their collection systems are positioned in the front end of a long reentrant cassette for optimum viewing coverage and optical throughput. Both systems collect the scattered light from a single tangential beam of multiple 50-Hz Nd:YAG lasers and image the scattering volume from core to edge with 40 spatial points. In order to obtain a higher resolution of 5 mm, the edge system has more spatial channels than the core system. Pressure-free heat shield windows, which will absorb the radiation heat flux, are mounted in front of large vacuum windows to protect them from the radiation heat load during long-pulse discharges.
Integrated modeling of temperature profiles in L-mode tokamak discharges
Rafiq, T.; Kritz, A. H.; Tangri, V.; Pankin, A. Y.; Voitsekhovitch, I.; Budny, R. V.
2014-12-15
Simulations of doublet III-D, the joint European tokamak, and the tokamak fusion test reactor L-mode tokamak plasmas are carried out using the PTRANSP predictive integrated modeling code. The simulation and experimental temperature profiles are compared. The time evolved temperature profiles are computed utilizing the Multi-Mode anomalous transport model version 7.1 (MMM7.1) which includes transport associated with drift-resistive-inertial ballooning modes (the DRIBM model [T. Rafiq et al., Phys. Plasmas 17, 082511 (2010)]). The tokamak discharges considered involved a broad range of conditions including scans over gyroradius, ITER like current ramp-up, with and without neon impurity injection, collisionality, and low and high plasma current. The comparison of simulation and experimental temperature profiles for the discharges considered is shown for the radial range from the magnetic axis to the last closed flux surface. The regions where various modes in the Multi-Mode model contribute to transport are illustrated. In the simulations carried out using the MMM7.1 model it is found that: The drift-resistive-inertial ballooning modes contribute to the anomalous transport primarily near the edge of the plasma; transport associated with the ion temperature gradient and trapped electron modes contribute in the core region but decrease in the region of the plasma boundary; and neoclassical ion thermal transport contributes mainly near the center of the discharge.
Advanced ICRF antenna design for R-TOKAMAK
NASA Astrophysics Data System (ADS)
Kako, E.; Ando, R.; Ichimura, M.; Ogawa, Y.; Amano, T.; Watari, T.
1986-01-01
The advanced ICRF antennas designed for the R-TOKAMAK (a proposal in the Institute of Plasma Physics, Nagoya University) are described. They are a standard loop antenna and a panel heater antenna for fast wave heating, and a waveguide antenna for ion Bernstein wave heating. The standard loop antenna is made of Al-alloy and has a simple structure to install because of radioactivation by D-T neutrons. For high power heating, a new type antenna called Panel heater antenna is proposed. It has a wide radiation area and is able to select a parallel wave number k. The field pattern of the panel heater antenna is measured. The feasibility of the waveguide antenna is discussed for ion Bernstein wave heating. The radiation from the aperture of the double ridge waveguide is experimentally estimated with a load simulating the plasma.
Development of precision measurement network of experimental advanced superconducting tokamak
NASA Astrophysics Data System (ADS)
Yu, Liandong; Zhao, Huining; Zhang, Wei; Li, Weishi; Deng, Huaxia; Song, Yuntao; Gu, Yongqi
2014-12-01
In order to obtain accurate position of the inner key components in the experimental advanced superconducting tokamak (EAST), a combined optical measurement method which is comprised of a laser tracker (LT) and articulated coordinate measuring machine (CMM) has been brought forward. LT, which is an optical measurement instrument and has a large measurement range and high accuracy, is employed for establishing the precision measurement network of EAST, and the articulated CMM is also employed for measuring the inner key components of EAST. The measurement uncertainty analyzed by the Unified Spatial Metrology Network (USMN) is 0.20 mm at a confidence probability of 95.44%. The proposed technology is appropriate for the inspection of the reconstruction of the EAST.
Peeling-off of the external kink modes at tokamak plasma edge
Zheng, L. J.; Furukawa, M.
2014-08-15
It is pointed out that there is a current jump between the edge plasma inside the last closed flux surface and the scrape-off layer and that the current jump can lead the external kink modes to convert to the tearing modes, due to the current interchange effects [L. J. Zheng and M. Furukawa, Phys. Plasmas 17, 052508 (2010)]. The magnetic reconnection in the presence of tearing modes subsequently causes the tokamak edge plasma to be peeled off to link to the divertors. In particular, the peeling or peeling-ballooning modes can become the “peeling-off” modes in this sense. This phenomenon indicates that the tokamak edge confinement can be worse than the expectation based on the conventional kink mode picture.
Two-fluid Analysis of the Geodesic Acoustic Mode in Tokamaks
Hirose, Akira; Weiland, Jan
2011-10-03
In most analysis reported so far on the geodesic acoustic mode (GAM) in tokamaks, the current along the magnetic field has been assumed to vanish, J{sub ||} = 0. The parallel electron current associated with low frequency modes in tokamaks is large even in electrostatic limit and tends to short-circuit the cross-field electric field. The collisionless electrostatic GAM as predicted in the original work (Winsor, et al.) does not exist. The GAM only modifies the Alfven frequency. The finding in this study suggests that electrostatic GAM should be confined at the edge where the electron collision frequency is high.
The high beta tokamak-extended pulse magnetohydrodynamic mode control research program
NASA Astrophysics Data System (ADS)
Maurer, D. A.; Bialek, J.; Byrne, P. J.; De Bono, B.; Levesque, J. P.; Li, B. Q.; Mauel, M. E.; Navratil, G. A.; Pedersen, T. S.; Rath, N.; Shiraki, D.
2011-07-01
The high beta tokamak-extended pulse (HBT-EP) magnetohydrodynamic (MHD) mode control research program is studying ITER relevant internal modular feedback control coil configurations and their impact on kink mode rigidity, advanced digital control algorithms and the effects of plasma rotation and three-dimensional magnetic fields on MHD mode stability. A new segmented adjustable conducting wall has been installed on the HBT-EP and is made up of 20 independent, movable, wall shell segments instrumented with three distinct sets of 40 saddle coils, totaling 120 in-vessel modular feedback control coils. Each internal coil set has been designed with varying toroidal angular coil coverage of 5, 10 and 15°, spanning the toroidal angle range of an ITER port plug based internal coil to test resistive wall mode (RWM) interaction and multimode MHD plasma response to such highly localized control fields. In addition, we have implemented 336 new poloidal and radial magnetic sensors to quantify the applied three-dimensional fields of our control coils along with the observed plasma response. This paper describes the design and implementation of the new control shell incorporating these control and sensor coils on the HBT-EP, and the research program plan on the upgraded HBT-EP to understand how best to optimize the use of modular feedback coils to control instability growth near the ideal wall stabilization limit, answer critical questions about the role of plasma rotation in active control of the RWM and the ferritic resistive wall mode, and to improve the performance of MHD control systems used in fusion experiments and future burning plasma systems.
NASA Astrophysics Data System (ADS)
Liu, S. C.; Shao, L. M.; Zweben, S. J.; Xu, G. S.; Guo, H. Y.; Cao, B.; Wang, H. Q.; Wang, L.; Yan, N.; Xia, S. B.; Zhang, W.; Chen, R.; Chen, L.; Ding, S. Y.; Xiong, H.; Zhao, Y.; Wan, B. N.; Gong, X. Z.; Gao, X.
2012-12-01
Gas puff imaging (GPI) offers a direct and effective diagnostic to measure the edge turbulence structure and velocity in the edge plasma, which closely relates to edge transport and instability in tokamaks. A dual GPI diagnostic system has been installed on the low field side on experimental advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6°. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130×130 mm (radial versus poloidal) objective plane. A fast camera is used to capture the light emission from the image plane with a speed up to 390 804 frames/s with 64×64 pixels and an exposure time of 2.156 μs. The spatial resolution of the system is 2 mm at the objective plane. A total amount of 200 Pa.L helium gas is puffed into the plasma edge for each GPI viewing region for about 250 ms. The new GPI diagnostic has been applied on EAST for the first time during the recent experimental campaign under various plasma conditions, including ohmic, L-mode, and type-I, and type-III ELMy H-modes. Some of these initial experimental results are also presented.
Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q
2015-02-01
A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development. PMID:25699449
Pseudo-MHD ballooning modes in tokamak plasmas
Callen, J.D.; Hegna, C.C.
1996-08-01
The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant {open_quotes}pseudo-MHD{close_quotes} model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for {alpha} > s{sup 2}(2 {sup 7/3}/9) (r{sub p}/R{sub 0}) or-d{radical}{Beta}/dr > (2{sup 1/6} /3)(s/ R{sub 0q}), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas.
Ideal magnetohydrodynamic stability of the tokamak high-confinement-mode edge region
NASA Astrophysics Data System (ADS)
Wilson, H. R.; Connor, J. W.; Field, A. R.; Fielding, S. J.; Miller, R. L.; Lao, L. L.; Ferron, J. R.; Turnbull, A. D.
1999-05-01
The ideal magnetohydrodynamic (MHD) stability of the tokamak edge is analyzed, with particular emphasis on radially localized instabilities; it is proposed that these are responsible for edge pressure gradient limits and edge localized modes (ELMS). Data and stability calculations from DIII-D [to appear in Proceedings of the 16th International Conference on Fusion Energy, Yokohama (International Atomic Energy Agency, Vienna, 1998), Paper No. IAEA-F1-CN-69/EX8/1] tokamak equilibria indicate that two types of instability are important: the ballooning mode (driven by pressure gradient) and the peeling mode (driven by current density). The characteristics of these instabilities, and their coupling, are described based on a circular cross-section, large aspect ratio model of the tokamak equilibrium. In addition, preliminary results are presented from an edge MHD stability code which is being developed to analyze general geometry tokamak equilibria; an interpretation of the density threshold to access the high-confinement-mode (H-mode), observed on COMPASS-D [Plasma Phys. Controlled Fusion 38, 1091 (1996)] is provided by these results. Experiments on DIII-D and the stability calculations indicate how to control ELMs by plasma shaping.
Dynamics of the ballooning mode and the relation to edge-localized modes in a spherical tokamak
Khan, R.; Mizuguchi, N.; Nakajima, N.; Hayashi, T.
2007-06-15
Nonlinear simulations based on the magnetohydrodynamic model have been executed to reveal the dynamics of the ballooning mode in the spherical tokamak plasma. The simulation results have reproduced the characteristic features of the edge-localized mode crash phase, where the filamentary structures are formed along the magnetic field in the edge region, and separated from the core plasma. Moreover, the finite Larmor radius effect is addressed.
ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS
WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE
2004-10-01
A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.
ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS
WALTZ,R.E; CANDY,J; HINTON,F.L; ESTRADA-MILA,C; KINSEY,J.E
2004-10-01
A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.
The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study
Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.
2014-03-05
Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.
The ARIES Advanced and Conservative Tokamak Power Plant Study
Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; EL-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Rader, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.
2015-12-22
Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦ^{total} _{N} of 5.75, an H98 of 1.65, an n/n_{Gr} of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦ^{total}_{N} of 2.5, an H₉₈ of 1.25, an n/n_{Gr} of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.
The ARIES Advanced and Conservative Tokamak Power Plant Study
Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; et al
2015-12-22
Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, anmore » n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less
Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks*
NASA Astrophysics Data System (ADS)
Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.
2016-06-01
The theory of tokamak stability to nonlinear "ballooning" displacements of elliptical magnetic flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some experiments.
Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks.
Ham, C J; Cowley, S C; Brochard, G; Wilson, H R
2016-06-10
The theory of tokamak stability to nonlinear "ballooning" displacements of elliptical magnetic flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some experiments. PMID:27341237
M = 1 internal kink mode in the plateau and banana regimes in tokamaks
Mikhailovskii, A.B.; Tsypin, V.S.
1983-01-01
A theory is derived for the m = 1 internal kink mode of a tokamak in the plateau and banana regimes. The growth rate for this mode in the plateau regime is shown to be smaller by a factor of a/R than the MHD prediction (a and R are the minor and major radii of the torus). The growth rate in the banana regime is higher than in the plateau regime and approaches the standard MHD value.
Global Geodesic Acoustic Modes Driven by Energetic Particles in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Nazikian, R.; Fu, G. Y.; Gorelenkov, N. N.; Kramer, G. J.; Austin, M. E.; Berk, H. L.; Heidbrink, W. W.; McKee, G. R.; Shafer, M. W.; Strait, E. J.; van Zeeland, M. A.
2009-11-01
Intense axisymmetric oscillations driven by suprathermal passing ions injected in the direction counter to the toroidal plasma current are observed in the DIII-D tokamak. Strong bursting and frequency chirping coincide with large (10-15%) drops in the neutron emission, suggesting that the mode is very effective in displacing beam ions from the plasma core. BES measurements of density fluctuations indicate an outward propagating mode of large radial extent. The large density to temperature ratio of the mode confirms a dominant compressional contribution to the pressure perturbation, indicative of the Geodesic Acoustic Mode (GAM).
Mechanism of Stabilization of Ballooning Modes by Toroidal Rotation Shear in Tokamaks
Furukawa, M.; Tokuda, S.
2005-05-06
A ballooning perturbation in a toroidally rotating tokamak is expanded by square-integrable eigenfunctions of an eigenvalue problem associated with ballooning modes in a static plasma. Especially a weight function is chosen such that the eigenvalue problem has only the discrete spectrum. The eigenvalues evolve in time owing to toroidal rotation shear, resulting in a countably infinite number of crossings among them. The crossings cause energy transfer from an unstable mode to the infinite number of stable modes; such transfer works as the stabilization mechanism of the ballooning mode.
Kinetic ballooning modes at the tokamak transport barrier with negative magnetic shear
Yamagiwa, M.; Hirose, A.; Elia, M.
1997-11-01
Stability of the kinetic ballooning modes is investigated for plasma parameters at the internal transport barrier in tokamak discharges with negative magnetic shear employing a kinetic shooting code with long shooting distance. It is found that the second stability regime with respect to the pressure gradient parameter, which was predicted for negative shear [A. Hirose and M. Elia, Phys. Rev. Lett. {bold 76}, 628 (1996)], can possibly disappear. The mode with comparatively low toroidal mode number and mode frequency below 100 kHz is found to be destabilized marginally only around the transport barrier characterized by steep pressure and density gradients. {copyright} {ital 1997 American Institute of Physics.}
Edge plasma boundary layer generated by kink modes in tokamaks
Zakharov, Leonid E.
2011-06-15
This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate {delta}-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the {delta}-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.
Edge plasma boundary layer generated by kink modes in tokamaks
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.
2011-06-01
This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.
Stability of n = 1 internal modes in tokamaks
Manickam, J.
1983-12-01
An extensive numerical study has been carried out for internal modes with toroidal mode number unity. These are internal kink modes, when the q = 1 surface falls within the plasma, and have a ballooning characteristic when q/sub axis/ > 1. Both modes show a dependence on the pressure and have a second region of stability at high ..beta... A parameter survey has been conducted, varying the geometry, i.e., aspect ratio, ellipticity, triangularity, etc. and the current profiles, through the pressure and safety factor. The principal results show that the modes are dependent on the geometry and are strongly stabilized by high-order, noncircular effects. Broader pressure profiles and reduced shear are favorable for limiting the instability.
Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge
Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.
2013-05-08
Here, the edge of a tokamak in a high confinement (H mode) regime is characterized by steep density gradients and a large radial electric field. Recent analytical studies demonstrated that the presence of a strong radial electric field consistent with a subsonic pedestal equilibrium modifies the conventional results of the neoclassical formalism developed for the core region. In the present work we make use of the recently developed gyrokinetic code COGENT to numerically investigate neoclassical transport in a tokamak edge including the effects of a strong radial electric field. The results of numerical simulations are found to be in goodmore » qualitative agreement with the theoretical predictions and the quantitative discrepancy is discussed. In addition, the present work investigates the effects of a strong radial electric field on the relaxation of geodesic acoustic modes (GAMs) in a tokamak edge. Numerical simulations demonstrate that the presence of a strong radial electric field characteristic of a tokamak pedestal can enhance the GAM decay rate, and heuristic arguments elucidating this finding are provided.« less
Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge
Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.
2013-05-08
Here, the edge of a tokamak in a high confinement (H mode) regime is characterized by steep density gradients and a large radial electric field. Recent analytical studies demonstrated that the presence of a strong radial electric field consistent with a subsonic pedestal equilibrium modifies the conventional results of the neoclassical formalism developed for the core region. In the present work we make use of the recently developed gyrokinetic code COGENT to numerically investigate neoclassical transport in a tokamak edge including the effects of a strong radial electric field. The results of numerical simulations are found to be in good qualitative agreement with the theoretical predictions and the quantitative discrepancy is discussed. In addition, the present work investigates the effects of a strong radial electric field on the relaxation of geodesic acoustic modes (GAMs) in a tokamak edge. Numerical simulations demonstrate that the presence of a strong radial electric field characteristic of a tokamak pedestal can enhance the GAM decay rate, and heuristic arguments elucidating this finding are provided.
A resistive magnetodynamics analysis of sawtooth driven tearing modes in tokamak plasmas
NASA Astrophysics Data System (ADS)
Guo, Wenping; Wang, Jiaqi; Liu, Dongjian; Wang, Xiaogang
2016-06-01
In this paper, a resistive magnetohydrodynamics model is applied to study the effect of sawtooth driven on classical/neoclassical tearing modes in tokamak plasmas. In a model of forced reconnection, the sawtooth is considered as a boundary disturbance for m >1 modes and causes the islands growth of m/n = 2/1 and 3/2 modes through toroidal coupling. Theoretical and numerical analyses show that the linear growth of the modes is driven by precursors of the sawtooth through the linear mode coupling, while differential rotation has great effect on both the linear and the nonlinear development of the modes. It is believed that the tearing mode can be suppressed by control of the sawtooth by radio frequency heating or current drive.
Small-action Particles in a Tokamak in the Presence of an n = 1 Mode
R.B. White; V.V. Lutsenko; Ya. I. Kolesnichenko; Yu. V. Yakovenko
1999-11-01
It is found that an m = n = 1 mode with the amplitude exceeding a certain threshold can lead to stochastic motion of energetic ions in tokamaks, the large orbit width particles (potatoes) being most easily affected. An n = 1 mode can redistribute particles also in the absence of stochasticity but only when the perturbation is quickly switched on/off, e.g., due to sawtooth crash. In the latter case, the perturbation results in regular motion of particles around a certain helical orbit, at which a resonance driven by the mode but having no amplitude threshold takes place.
Non-linear evolution of double tearing modes in tokamaks
Fredrickson, E.; Bell, M.; Budny, R.V.; Synakowski, E.
1999-12-17
The delta prime formalism with neoclassical modifications has proven to be a useful tool in the study of tearing modes in high beta, collisionless plasmas. In this paper the formalism developed for the inclusion of neoclassical effects on tearing modes in monotonic q-profile plasmas is extended to plasmas with hollow current profiles and double rational surfaces. First, the classical formalism of tearing modes in the Rutherford regime in low beta plasmas is extended to q profiles with two rational surfaces. Then it is shown that this formalism is readily extended to include neoclassical effects.
First results on fast wave current drive in advanced tokamak discharges in DIII-D
Prater, R.; Cary, W.P.; Baity, F.W.
1995-07-01
Initial experiments have been performed on the DIII-D tokamak on coupling, direct electron heating, and current drive by fast waves in advanced tokamak discharges. These experiments showed efficient central heating and current drive in agreement with theory in magnitude and profile. Extrapolating these results to temperature characteristic of a power plant (25 keV) gives current drive efficiency of about 0.3 MA/m{sup 2}.
Neoclassical Tearing Mode Analysis in Spherical Tokamak Burning Plasmas
NASA Astrophysics Data System (ADS)
Kurita, Daiki; Yamazaki, Kozo; Arimoto, Hideki; Oishi, Tetsutarou; Shoji, Tatsuo
For stabilization of neoclassical tearing mode (NTM), non-resonant helical field (NRHF) is investigated. The time variation of magnetic island is described by modified Rutherford equation. In this work, plasma parameter change due to NTM is analyzed using 1.5-dimensional transport code TOTAL. In ST plasma, magnetic island at 3/2 mode grows by bootstrap current and the central temperature decreases. If NRHF is added, the effect of bootstrap current decreases and NTM is stabilized.
Geodesic mode instability driven by electron and ion fluxes in tokamaks
Elfimov, A. G. Camilo de Souza, F.; Galvão, R. M. O.
2015-11-15
The effect of the parallel electron current and plasma flux on Geodesic Acoustic Modes (GAM) in a tokamak is analyzed by kinetic theory taking into the account the ion Landau damping and diamagnetic drifts. It is shown that the electron current and plasma flow, modeled by shifted Maxwell distributions of electrons and ions, may overcome the ion Landau damping generating the GAM instability when the parallel electron current velocity is larger than the effective parallel GAM phase velocity of sidebands, Rqω. The instability is driven by the electron current and the parallel ion flux cross term. Possible applications to tokamak experiments are discussed. The existence of the geodesic ion sound mode due to plasma flow is shown.
Characterization of peeling modes in a low aspect ratio tokamak
NASA Astrophysics Data System (ADS)
Bongard, M. W.; Thome, K. E.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Redd, A. J.; Schlossberg, D. J.
2014-11-01
Peeling modes are observed at the plasma edge in the Pegasus Toroidal Experiment under conditions of high edge current density (Jedge ˜ 0.1 MA m-2) and low magnetic field (B ˜ 0.1 T) present at near-unity aspect ratio. Their macroscopic properties are measured using external Mirnov coil arrays, Langmuir probes and high-speed visible imaging. The modest edge parameters and short pulse lengths of Pegasus discharges permit direct measurement of the internal magnetic field structure with an insertable array of Hall-effect sensors, providing the current profile and its temporal evolution. Peeling modes generate coherent, edge-localized electromagnetic activity with low toroidal mode numbers n ⩽ 3 and high poloidal mode numbers, in agreement with theoretical expectations of a low-n external kink structure. Coherent MHD fluctuation amplitudes are found to be strongly dependent on the experimentally measured Jedge/B peeling instability drive, consistent with theory. Peeling modes nonlinearly generate ELM-like, field-aligned filamentary structures that detach from the edge and propagate radially outward. The KFIT equilibrium code is extended with an Akima spline profile parameterization and an improved model for induced toroidal wall current estimation to obtain a reconstruction during peeling activity with its current profile constrained by internal Hall measurements. It is used to test the analytic peeling stability criterion and numerically evaluate ideal MHD stability. Both approaches predict instability, in agreement with experiment, with the latter identifying an unstable external kink.
Zonal flow modes in a tokamak plasma with dominantly poloidal mean flows
Zhou Deng
2010-10-15
The zonal flow eigenmodes in a tokamak plasma with dominantly poloidal mean flows are theoretically investigated. It is found that the frequencies of both the geodesic acoustic mode and the sound wave increase with respect to the poloidal Mach number. In contrast to the pure standing wave form in static plasmas, the density perturbations consist of a standing wave superimposed with a small amplitude traveling wave in the poloidally rotating plasma.
Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes
NASA Astrophysics Data System (ADS)
Westerhof, E.; Nielsen, S. K.; Oosterbeek, J. W.; Salewski, M.; de Baar, M. R.; Bongers, W. A.; Bürger, A.; Hennen, B. A.; Korsholm, S. B.; Leipold, F.; Moseev, D.; Stejner, M.; Thoen, D. J.
2009-09-01
In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power heating beam. The density determines the detailed phasing of the scattered radiation relative to the O-point passage. The scattering power depends strongly nonlinearly on the heating beam power.
Alpha-particle effects on ballooning flute modes in tokamaks
Andrushchenko, Z.N.; Bijko, A.Y.; Cheremnykh, O.K. )
1990-11-01
In this paper a more accurate dispersion equation for ideal ballooning flute modes in a plasma with alpha particles is obtained. It is shown that circulating and trapped alpha particles generate the eigenbranches of the mode oscillations with frequencies {omega} {approx lt} {omega}{sub *i}, where {omega}{sub *i}, is the ion drift frequency. The relevant growth rates and frequencies are found. It is ascertained that in the frequency range {omega}{sub *i} {lt} {omega} {lt} {bar {omega}{sub Db}}, where {bar {omega}{sub Db}} is the magnetic drift frequency average over a bounce period, trapped alpha particles may generate forced oscillations that influence the ideal ballooning flute mode stability boundary. It is shown that the stability may be improved for certain plasma parameters and trapped alpha-particle pressures.
Influence of driven current on resistive tearing mode in Tokamaks
NASA Astrophysics Data System (ADS)
Wang, S.; Ma, Z. W.; Zhang, W.
2016-05-01
The influence of driven current on the m /n =2 /1 resistive tearing mode is studied systematically using a three-dimensional toroidal magnetohydrodynamic code. A uniform driven current with Gaussian distribution in the radial direction is imposed around the unperturbed rational surface. It is found that the driven current can locally modify the profiles of the current and safety factor, such that the tearing mode becomes linearly stable. The stabilizing effect increases with the increase of the driven current Icd or the decrease of its width δcd , unless an excessively large driven current reverses the magnetic shear near the rational surface and drives other instabilities such as double or triple tearing modes. The stabilizing effect can be negligible or becomes reversed if the maximum driven current density is not at the unperturbed rational surface.
MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK
SCOVILLE, JT; LAHAYE, RJ
2002-10-01
OAK A271 MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK. Error field optimization on DIII-D tokamak plasma discharges has routinely been done for the last ten years with the use of the external ''n = 1 coil'' or the ''C-coil''. The optimum level of correction coil current is determined by the ability to avoid the locked mode instability and access previously unstable parameter space at low densities. The locked mode typically has toroidal and poloidal mode numbers n = 1 and m = 2, respectively, and it is this component that initially determined the correction coil current and phase. Realization of the importance of nearby n = 1 mode components m = 1 and m = 3 has led to a revision of the error field correction algorithm. Viscous and toroidal mode coupling effects suggested the need for additional terms in the expression for the radial ''penetration'' field B{sub pen} that can induce a locked mode. To incorporate these effects, the low density locked mode threshold database was expanded. A database of discharges at various toroidal fields, plasma currents, and safety factors was supplement4ed with data from an experiment in which the fields of the n = 1 coil and C-coil were combined, allowing the poloidal mode spectrum of the error field to be varied. A multivariate regression analysis of this new low density locked mode database was done to determine the low density locked mode threshold scaling relationship n{sub e} {proportional_to} B{sub T}{sup -0.01} q{sub 95}{sup -0.79} B{sub pen} and the coefficients of the poloidal mode components in the expression for B{sub pen}. Improved plasma performance is achieved by optimizing B{sub pen} by varying the applied correction coil currents.
Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks
L.E. Zakharov
2010-11-22
This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the δ-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.
Status of the COMPASS tokamak and characterization of the first H-mode
NASA Astrophysics Data System (ADS)
Pánek, R.; Adámek, J.; Aftanas, M.; Bílková, P.; Böhm, P.; Brochard, F.; Cahyna, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Grover, O.; Harrison, J.; Háček, P.; Havlíček, J.; Havránek, A.; Horáček, J.; Hron, M.; Imríšek, M.; Janky, F.; Kirk, A.; Komm, M.; Kovařík, K.; Krbec, J.; Kripner, L.; Markovič, T.; Mitošinková, K.; Mlynář, J.; Naydenkova, D.; Peterka, M.; Seidl, J.; Stöckel, J.; Štefániková, E.; Tomeš, M.; Urban, J.; Vondráček, P.; Varavin, M.; Varju, J.; Weinzettl, V.; Zajac, J.; the COMPASS team
2016-01-01
This paper summarizes the status of the COMPASS tokamak, its comprehensive diagnostic equipment and plasma scenarios as a baseline for the future studies. The former COMPASS-D tokamak was in operation at UKAEA Culham, UK in 1992–2002. Later, the device was transferred to the Institute of Plasma Physics of the Academy of Sciences of the Czech Republic (IPP AS CR), where it was installed during 2006–2011. Since 2012 the device has been in a full operation with Type-I and Type-III ELMy H-modes as a base scenario. This enables together with the ITER-like plasma shape and flexible NBI heating system (two injectors enabling co- or balanced injection) to perform ITER relevant studies in different parameter range to the other tokamaks (ASDEX-Upgrade, DIII-D, JET) and to contribute to the ITER scallings. In addition to the description of the device, current status and the main diagnostic equipment, the paper focuses on the characterization of the Ohmic as well as NBI-assisted H-modes. Moreover, Edge Localized Modes (ELMs) are categorized based on their frequency dependence on power density flowing across separatrix. The filamentary structure of ELMs is studied and the parallel heat flux in individual filaments is measured by probes on the outer mid-plane and in the divertor. The measurements are supported by observation of ELM and inter-ELM filaments by an ultra-fast camera.
An investigation of coupling of the internal kink mode to error field correction coils in tokamaks
NASA Astrophysics Data System (ADS)
Lazarus, E. A.
2013-12-01
The coupling of the internal kink to an external m/n = 1/1 perturbation is studied for profiles that are known to result in a saturated internal kink in the limit of a cylindrical tokamak. It is found from three-dimensional equilibrium calculations that, for A ≈ 30 circular plasmas and A ≈ 3 elliptical shapes, this coupling of the boundary perturbation to the internal kink is strong; i.e., the amplitude of the m/n = 1/1 structure at q = 1 is large compared with the amplitude applied at the plasma boundary. Evidence suggests that this saturated internal kink, resulting from small field errors, is an explanation for the TEXTOR and JET measurements of q0 remaining well below unity throughout the sawtooth cycle, as well as the distinction between sawtooth effects on the q-profile observed in TEXTOR and DIII-D. It is proposed that this excitation, which could readily be applied with error field correction coils, be explored as a mechanism for controlling sawtooth amplitudes in high-performance tokamak discharges. This result is then combined with other recent tokamak results to propose an L-mode approach to fusion in tokamaks.
NASA Astrophysics Data System (ADS)
Krishna Swamy, Aditya; Ganesh, Rajaraman; Brunner, Stephan; Vaclavik, Jan; Villard, Laurent
2015-11-01
Gyrokinetic simulations have found Collisionless Microtearing Modes (MTM) to be linearly unstable in sharp temperature gradient regions of tokamaks, typically with high magnetic shear. The collisionless MTM is driven by the magnetic drift resonance of passing electrons, aided by the closeness of Mode Rational Surfaces (MRS) arising due to the high shear. Here, the role of global safety factor profile variation on the MTM instability and global mode structure is studied, in particular in weak reverse shear (WRS) configurations in large aspect ratio tokamaks. At lower shear profiles, multiple MTM branches are found with tearing parity as well as mixed parity. The linear growth rates of MTM is found to be weakened and linearly unstable modes are found whose global mode structures of φ~ and Ã∥ exhibit Mixed Parity. For the same equilibrium profiles and parameters, AITG instability is also studied and global mode structures are compared with MTM. The growth rate spectrum is found to extend to shorter/mesoscale wavelengths in WRS. Several other characteristics of MTMs and AITG are recovered in the WRS configuration, such as the dependency on free energy source and on plasma β.
Landau damping of geodesic acoustic mode in toroidally rotating tokamaks
Ren, Haijun; Cao, Jintao
2015-06-15
Geodesic acoustic mode (GAM) is analyzed by using modified gyro-kinetic (MGK) equation applicable to low-frequency microinstabilities in a rotating axisymmetric plasma. Dispersion relation of GAM in the presence of arbitrary toroidal Mach number is analytically derived. The effects of toroidal rotation on the GAM frequency and damping rate do not depend on the orientation of equilibrium flow. It is shown that the toroidal Mach number M increases the GAM frequency and dramatically decreases the Landau damping rate.
Feasibility of large-{beta} tokamak stability to ballooning modes due to nonmonotonic q-profiles
Medvedev, M.V.; Yurchenko, E.I.
1994-12-01
The stability of high-temperature nondissipative plasmas to the flute instability ballooning modes in tokamak-like toroidal configurations is investigated at high plasma pressures. The analytical criterion of ballooning-mode stability at large toroidal numbers, discovered by O.P. Pogutse and E.I. Yurchenko, is used for stability assessment. In contrast to systems with monotonic safety-factor q-profiles, nonmonotonic q-profile systems are found to allow a considerable increase in the critical plasma pressure, provided that the pressure profile is properly chosen. The most preferred pressure profiles prove to be the peaked profiles. 13 refs., 12 figs., 5 tabs.
Geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field
Zhou, Deng
2015-09-15
The dispersion relation of geodesic acoustic modes in the tokamak plasma with an equilibrium radial electric field is derived and analyzed. Multiple branches of eigenmodes have been found, similar to the result given by the fluid model with a poloidal mass flow. Frequencies and damping rates of both the geodesic acoustic mode and the sound wave increase with respect to the strength of radial electric field, while the frequency and the damping rate of the lower frequency branch slightly decrease. Possible connection to the experimental observation is discussed.
Atomic physics effects on tokamak edge drift-tearing modes
Hahm, T.S.
1993-03-01
The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold {Delta}{sup Th}, produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.
Atomic physics effects on tokamak edge drift-tearing modes
Hahm, T.S.
1993-03-01
The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold [Delta][sup Th], produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.
Esposito, B; Granucci, G; Smeulders, P; Nowak, S; Martín-Solís, J R; Gabellieri, L
2008-02-01
Disruption avoidance by stabilization of MHD modes through injection of ECRH at different radial locations is reported. Disruptions have been induced in the FTU (Frascati Tokamak Upgrade) deuterium plasmas by Mo injection or by exceeding the density limit (D gas puffing). ECRH is triggered when the V(loop) exceeds a preset threshold value. Coupling between MHD modes (m/n=3/2, 2/1, 3/1) occurs before disruption. Direct heating of one coupled mode is sufficient to avoid disruptions, while heating close to the mode leads to disruption delay. These results could be relevant for the International Thermonuclear Experimental Reactor tokamak operation. PMID:18352292
G.Y. Fu; W. Park; H.R. Strauss; J. Breslau; J. Chen; S. Jardin; L.E. Sugiyama
2005-08-09
Global hybrid simulations of energetic particle effects on the n=1 internal kink mode have been carried out for tokamaks. For the International Thermonuclear Experimental Reactor (ITER) [ITER Physics Basis Editors et al., Nucl. Fusion 39:2137 (1999)], it is shown that alpha particle effects are stabilizing for the internal kink mode. However, the elongation of ITER reduces the stabilization effects significantly. Nonlinear simulations of the precessional drift fishbone instability for circular tokamak plasmas show that the mode saturates due to flattening of the particle distribution function near the resonance region. The mode frequency chirps down rapidly as the flattening region expands radially outward. Fluid nonlinearity reduces the saturation level.
Analysis of pedestal gradient characteristic on the Experimental Advanced Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Wang, Teng Fei; Han, Xiao Feng; Zang, Qing; Xiao, Shu Mei; Tian, Bao Gang; Hu, Ai Lan; Zhao, Jun Yu
2016-05-01
A pedestal database was built based on type I edge localized mode H-modes in the Experimental Advanced Superconducting Tokamak. The most common functional form hyperbolic tangent function (tanh) method is used to analyze pedestal characteristics. The pedestal gradient scales linearly with its pedestal top and the normalized pedestal pressure gradient α shows a strong correlation with electron collisionality. The connection among pedestal top value, gradient, and width is established with the normalized pedestal pressure gradient. In the core region of the plasma, the nature of the electron temperature stiffness reflects a proportionality between core and pedestal temperature while the increase proportion is lower than that expected in the high temperature region. However, temperature profile stiffness is limited or even disappears at the edge of the plasma, while the gradient length ratio ( ηe ) on the pedestal is important. The range of ηe is from 0.5 to 2, varying with the plasma parameters. The pedestal temperature brings a more significant impact on ηe than pedestal density.
Chen Yiping; Wang, F. Q.; Hu, L. Q.; Guo, H. Y.; Wu, Z. W.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Zha, X. J.
2013-02-15
In order to actively control power load on the divertor target plates and study the effect of radiative divertor on plasma parameters in divertor plasmas and heat fluxes to the targets, dedicated experiments with Ar impurity seeding have been performed on experimental advanced superconducting tokamak in typical L-mode discharge with single null divertor configuration, ohmic heating power of 0.5 MW, and lower hybrid wave heating power of 1.0 MW. Ar is puffed into the divertor plasma at the outer target plate near the separatrix strike point with the puffing rate 1.26 Multiplication-Sign 10{sup 20} s{sup -1}. The radiative divertor is formed during the Ar puffing. The SOL/divertor plasma in the L-mode discharge with radiative divertor has been modelled by using SOLPS5.2 code package [V. Rozhansky et al., Nucl. Fusion 49, 025007 (2009)]. The modelling shows the cooling of the divertor plasma due to Ar seeding and is compared with the experimental measurement. The changes of peak electron temperature and heat fluxes at the targets with the shot time from the modelling results are similar to the experimental measurement before and during the Ar impurity seeding, but there is a major difference in time scales when Ar affects the plasma in between experiment and modelling.
Adaptive stochastic output feedback control of resistive wall modes in tokamaks
Sun, Z.; Sen, A. K.; Longman, R. W.
2006-09-15
An adaptive optimal stochastic output feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The system dynamics is experimentally determined via the extended least square method with an exponential forgetting factor and covariance resetting. The optimal output feedback controller is redesigned online periodically based on the system identification. The output measurements and past control inputs are used to construct new control inputs. The adaptive output controller can stabilize the time dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly three times the inverse of the growth rate. The design procedure is simpler and the computation time is shorter than the state feedback method reported earlier in Sun, Sen, and Longman [Phys. Plasmas13, 012512 (2006)].
Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks
Sun, Z.; Sen, A.K.; Longman, R.W.
2006-01-15
An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.
Influence of toroidal rotation on resistive tearing modes in tokamaks
NASA Astrophysics Data System (ADS)
Wang, S.; Ma, Z. W.
2015-12-01
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.
Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.
Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H
2011-02-25
Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. PMID:21405577
Influence of toroidal rotation on resistive tearing modes in tokamaks
Wang, S.; Ma, Z. W.
2015-12-15
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.
Scaling of up–down asymmetric turbulent momentum flux with poloidal shaping mode number in tokamaks
NASA Astrophysics Data System (ADS)
Ball, Justin; Parra, Felix I.
2016-05-01
Breaking the up–down symmetry of tokamaks removes a constraint limiting intrinsic momentum transport, and hence toroidal rotation, to be small. Using gyrokinetic theory, we study the effect of different up–down asymmetric flux surface shapes on the turbulent transport of momentum. This is done by perturbatively expanding the gyrokinetic equation in large flux surface shaping mode number. It is found that the momentum flux generated by shaping that lacks mirror symmetry (which is necessarily up–down asymmetric) has a power law scaling with the shaping mode number. However, the momentum flux generated by mirror symmetric flux surface shaping (even if it is up–down asymmetric) decays exponentially with large shaping mode number. These scalings are consistent with nonlinear local gyrokinetic simulations and indicate that low mode number shaping effects (e.g. elongation, triangularity) are optimal for creating rotation. Additionally it suggests that breaking the mirror symmetry of flux surfaces may generate significantly more toroidal rotation.
Landau resonant modification of multiple kink mode contributions to 3D tokamak equilibria
King, J. D.; Strait, E. J.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; Lanctot, M. J.; Liu, Y. Q.; Logan, N.; Paz-Soldan, C.; Shiraki, D.; Turnbull, A. D.
2015-12-17
Detailed measurements of the plasma's response to applied magnetic perturbations provide experimental evidence that the form of three-dimensional (3D) tokamak equilibria, with toroidal mode number n = 1, is determined by multiple stable kink modes at high-pressure. For pressures greater than the ideal magnetohydrodynamic (MHD) stability limit, as calculated without a stabilizing wall, the 3D structure transitions in a way that is qualitatively predicted by an extended MHD model that includes kinetic wave-particle interactions. These changes in poloidal mode structure are correlated with the proximity of rotation profiles to thermal ion bounce and the precession drift frequencies suggesting that these kinetic resonances are modifying the relative amplitudes of the stable modes. These results imply that each kink may eventually be independently controlled.
Landau resonant modification of multiple kink mode contributions to 3D tokamak equilibria
King, J. D.; Strait, E. J.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; Lanctot, M. J.; Liu, Y. Q.; Logan, N.; Paz-Soldan, C.; Shiraki, D.; et al
2015-12-17
Detailed measurements of the plasma's response to applied magnetic perturbations provide experimental evidence that the form of three-dimensional (3D) tokamak equilibria, with toroidal mode number n = 1, is determined by multiple stable kink modes at high-pressure. For pressures greater than the ideal magnetohydrodynamic (MHD) stability limit, as calculated without a stabilizing wall, the 3D structure transitions in a way that is qualitatively predicted by an extended MHD model that includes kinetic wave-particle interactions. These changes in poloidal mode structure are correlated with the proximity of rotation profiles to thermal ion bounce and the precession drift frequencies suggesting that thesemore » kinetic resonances are modifying the relative amplitudes of the stable modes. These results imply that each kink may eventually be independently controlled.« less
Resistive toroidal stability of internal kink modes in circular and shaped tokamaks
NASA Astrophysics Data System (ADS)
Bondeson, A.; Vlad, G.; Lütjens, H.
1992-07-01
The linear resistive magnetohydrodynamical stability of the n=1 internal kink mode in tokamaks is studied numerically. The stabilizing influence of small aspect ratio [Holmes et al., Phys. Fluids B 1, 788 (1989)] is confirmed, but it is found that shaping of the cross section influences the internal kink mode significantly. For finite pressure and small resistivity, curvature effects at the q=1 surface make the stability sensitively dependent on shape, and ellipticity is destabilizing. Only a very restricted set of finite pressure equilibria is completely stable for q0 < 1. A typical result is that the resistive kink mode is slowed down by toroidal effects to a weak resistive tearing/interchange mode. It is suggested that weak resistive instabilities are stabilized during the ramp phase of the sawteeth by effects not included in linear resistive magnetohydrodynamics. Possible mechanisms for triggering a sawtooth crash are discussed.
Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas
Wang, W. X.; Hahm, T. S.; Ethier, S.; Zakharov, L. E.
2011-02-07
Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode. __________________________________________________
Active and passive kink mode studies in a tokamak with a movable ferromagnetic walla)
NASA Astrophysics Data System (ADS)
Levesque, J. P.; Hughes, P. E.; Bialek, J.; Byrne, P. J.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.
2015-05-01
High-resolution active and passive kink mode studies are conducted in a tokamak with an adjustable ferromagnetic wall near the plasma surface. Ferritic tiles made from 5.6 mm thick Hiperco® 50 alloy have been mounted on the plasma-facing side of half of the in-vessel movable wall segments in the High Beta Tokamak-Extended Pulse device [D. A. Maurer et al., Plasma Phys. Controlled Fusion 53, 074016 (2011)] in order to explore ferritic resistive wall mode stability. Low-activation ferritic steels are a candidate for structural components of a fusion reactor, and these experiments examine MHD stability of plasmas with nearby ferromagnetic material. Plasma-wall separation for alternating ferritic and non-ferritic wall segments is adjusted between discharges without opening the vacuum vessel. Amplification of applied resonant magnetic perturbations and plasma disruptivity are observed to increase when the ferromagnetic wall is close to plasma surface instead of the standard stainless steel wall. Rapidly rotating m / n = 3 / 1 external kink modes have higher growth rates with the nearby ferritic wall. Feedback suppression of kinks is still as effective as before the installation of ferritic material in vessel, in spite of increased mode growth rates.
Active and passive kink mode studies in a tokamak with a movable ferromagnetic wall
Levesque, J. P.; Hughes, P. E.; Bialek, J.; Byrne, P. J.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.
2015-05-15
High-resolution active and passive kink mode studies are conducted in a tokamak with an adjustable ferromagnetic wall near the plasma surface. Ferritic tiles made from 5.6 mm thick Hiperco{sup ®} 50 alloy have been mounted on the plasma-facing side of half of the in-vessel movable wall segments in the High Beta Tokamak-Extended Pulse device [D. A. Maurer et al., Plasma Phys. Controlled Fusion 53, 074016 (2011)] in order to explore ferritic resistive wall mode stability. Low-activation ferritic steels are a candidate for structural components of a fusion reactor, and these experiments examine MHD stability of plasmas with nearby ferromagnetic material. Plasma-wall separation for alternating ferritic and non-ferritic wall segments is adjusted between discharges without opening the vacuum vessel. Amplification of applied resonant magnetic perturbations and plasma disruptivity are observed to increase when the ferromagnetic wall is close to plasma surface instead of the standard stainless steel wall. Rapidly rotating m/n=3/1 external kink modes have higher growth rates with the nearby ferritic wall. Feedback suppression of kinks is still as effective as before the installation of ferritic material in vessel, in spite of increased mode growth rates.
Ballooning theory of the second kind-two dimensional tokamak modes
Xie, T.; Wang, A. K.; Zhang, Y. Z.; Mahajan, S. M.
2012-07-15
The 2-D ballooning transform, devised to study local high toroidal number (n) fluctuations in axisymmetric toroidal system (like tokamaks), yields a well-defined partial differential equation for the linear eigenmodes. In this paper, such a ballooning equation of the second kind is set up for ion temperature gradient driven modes pertinent to a 2-D non-dissipative fluid plasma; the resulting partial differential equation is numerically solved, to calculate the global eigenvalues, and the 2-D mode structure is presented graphically along with analytical companions. The radial localization of the mode results from translational symmetry breaking for growing modes and is a vivid manifestation of spontaneous symmetry breaking in tokamak physics. The eigenmode, poloidally ballooned at {theta}={+-}{pi}/2, is radially shifted from associated rational surface. The global eigenvalue is found to be very close to the value obtained in 1-D parameterized ({lambda}={+-}{pi}/2) case. The 2-D eigenmode theory is applied to estimate the toroidal seed Reynolds stress [Y. Z. Zhang, Nucl. Fusion Plasma Phys. 30, 193 (2010)]. The solution obtained from the relatively simplified ballooning theory is compared to the solution of the basic equation in original coordinate system (evaluated via FFTs); the agreement is rather good.
Phase locking of multi-helicity neoclassical tearing modes in tokamak plasmas
NASA Astrophysics Data System (ADS)
Fitzpatrick, Richard
2015-04-01
The attractive "hybrid" tokamak scenario combines comparatively high q95 operation with improved confinement compared with the conventional H98 ,y 2 scaling law. Somewhat unusually, hybrid discharges often exhibit multiple neoclassical tearing modes (NTMs) possessing different mode numbers. The various NTMs are eventually observed to phase lock to one another, giving rise to a significant flattening, or even an inversion, of the core toroidal plasma rotation profile. This behavior is highly undesirable because the loss of core plasma rotation is known to have a deleterious effect on plasma stability. This paper presents a simple, single-fluid, cylindrical model of the phase locking of two NTMs with different poloidal and toroidal mode numbers in a tokamak plasma. Such locking takes place via a combination of nonlinear three-wave coupling and conventional toroidal coupling. In accordance with experimental observations, the model predicts that there is a bifurcation to a phase-locked state when the frequency mismatch between the modes is reduced to one half of its original value. In further accordance, the phase-locked state is characterized by the permanent alignment of one of the X-points of NTM island chains on the outboard mid-plane of the plasma, and a modified toroidal angular velocity profile, interior to the outermost coupled rational surface, which is such that the core rotation is flattened, or even inverted.
Phase locking of multi-helicity neoclassical tearing modes in tokamak plasmas
Fitzpatrick, Richard
2015-04-15
The attractive “hybrid” tokamak scenario combines comparatively high q{sub 95} operation with improved confinement compared with the conventional H{sub 98,y2} scaling law. Somewhat unusually, hybrid discharges often exhibit multiple neoclassical tearing modes (NTMs) possessing different mode numbers. The various NTMs are eventually observed to phase lock to one another, giving rise to a significant flattening, or even an inversion, of the core toroidal plasma rotation profile. This behavior is highly undesirable because the loss of core plasma rotation is known to have a deleterious effect on plasma stability. This paper presents a simple, single-fluid, cylindrical model of the phase locking of two NTMs with different poloidal and toroidal mode numbers in a tokamak plasma. Such locking takes place via a combination of nonlinear three-wave coupling and conventional toroidal coupling. In accordance with experimental observations, the model predicts that there is a bifurcation to a phase-locked state when the frequency mismatch between the modes is reduced to one half of its original value. In further accordance, the phase-locked state is characterized by the permanent alignment of one of the X-points of NTM island chains on the outboard mid-plane of the plasma, and a modified toroidal angular velocity profile, interior to the outermost coupled rational surface, which is such that the core rotation is flattened, or even inverted.
Convective particle transport arising from poloidal inhomogeneity in tokamak H mode
Kasuya, N.; Itoh, K.
2005-09-15
In tokamak high-confinement modes (H modes), a large poloidal flow exists within an edge transport barrier, and the electrostatic potential and density profiles can be steep both in the radial and poloidal directions. The two-dimensional structures of the electrostatic potential, density, and flow velocity near the edge of a tokamak plasma are investigated. The analysis is carried out with the momentum conservation law using the shock ordering. For the case with a strong radial electric field (H-mode case), a particle flux is induced from asymmetry of the poloidal electric field in the transport barrier. This convective transport is found to depend weakly on collisionality, and changes its direction in accordance with the direction of the radial electric field, the toroidal magnetic field, and the plasma current. The divergence of a particle flux is a source of temporal variation of the density, and there are negative divergence regions both in the inward and outward flux cases. Thus this convective particle flux is a new candidate for the cause of the rapid establishment of the density pedestal after the onset of low to high confinement mode (L/H) transition.
NASA Astrophysics Data System (ADS)
Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook
2015-12-01
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.
Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook
2015-12-01
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method. PMID:26724028
Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook
2015-12-15
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.
Advances in Dust Detection and Removal for Tokamaks
NASA Astrophysics Data System (ADS)
Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.
2008-11-01
Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.
Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.
2015-01-01
Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized β_{N} ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches β_{N} = 5.28 with B_{T} = 6.75, while the peaked pressure case reaches β_{N} < 5.15. Fast particle magnetohydrodynamic stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×10^{20}/m^{3}, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/n_{Gr} = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.
Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.
2015-01-01
Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that themore » alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less
Charles Kessel, et al
2014-03-05
The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.
Observations of pressure gradient driven m = 1 internal kink mode in EAST tokamak
Xu Liqing; Hu Liqun; Chen Kaiyun; Li Erzhong; Wang Fudi; Xu Ming; Duan Yanmin; Shi Tonghui; Zhang Jizong; Zhou Ruijie; Chen Yebin
2012-12-15
Pressure gradient driven m = 1 internal kink mode destabilization that follows an L-H transition is observed in the operational region of the EAST tokamak, which manifests in periodic oscillations in soft x-ray (SXR) and Mirnov coil signals. Using tomography with the high resolution soft x-ray detection array, we find that the rotation direction of the 1/1 kink mode is in the ion diamagnetic drift direction in poloidal cross-section. A large displacement of the hot core is attributable to the shift of the 1/1 internal kink mode. In contrast to stationary oscillations with fixed frequency, various frequency chirping behavior is observed with this 1/1 kink mode. Furthermore, we also occasionally observe that a 2/1 neoclassical tearing mode (NTM) is triggered by a 1/1 internal kink mode via mode coupling in a high-performance plasma. The spatial structure of a 2/2 mode, which is the harmonic mode of the 1/1 kink mode, is also presented in this paper. Large amounts of medium-Z impurities accumulate in the central plasma region where the 1/1 kink mode instability bursts. Finally, we also find that the frequency beating associated with a 1/1 kink mode is a consequence of plasma rotation. Based on all of these observations, we propose that the plasma pressure gradient, the driving force in kink modes, is plausibly the product of an intense concentration of impurities, which are related to plasma rotation.
Observations of pressure gradient driven m = 1 internal kink mode in EAST tokamak
NASA Astrophysics Data System (ADS)
Xu, Liqing; Hu, Liqun; Chen, Kaiyun; Li, Erzhong; Wang, Fudi; Xu, Ming; Duan, Yanmin; Shi, Tonghui; Zhang, Jizong; Zhou, Ruijie; Chen, Yebin
2012-12-01
Pressure gradient driven m = 1 internal kink mode destabilization that follows an L-H transition is observed in the operational region of the EAST tokamak, which manifests in periodic oscillations in soft x-ray (SXR) and Mirnov coil signals. Using tomography with the high resolution soft x-ray detection array, we find that the rotation direction of the 1/1 kink mode is in the ion diamagnetic drift direction in poloidal cross-section. A large displacement of the hot core is attributable to the shift of the 1/1 internal kink mode. In contrast to stationary oscillations with fixed frequency, various frequency chirping behavior is observed with this 1/1 kink mode. Furthermore, we also occasionally observe that a 2/1 neoclassical tearing mode (NTM) is triggered by a 1/1 internal kink mode via mode coupling in a high-performance plasma. The spatial structure of a 2/2 mode, which is the harmonic mode of the 1/1 kink mode, is also presented in this paper. Large amounts of medium-Z impurities accumulate in the central plasma region where the 1/1 kink mode instability bursts. Finally, we also find that the frequency beating associated with a 1/1 kink mode is a consequence of plasma rotation. Based on all of these observations, we propose that the plasma pressure gradient, the driving force in kink modes, is plausibly the product of an intense concentration of impurities, which are related to plasma rotation.
Braking of tearing mode rotation by ferromagnetic conducting walls in tokamaks
Fitzpatrick, Richard
2015-09-15
An in-depth investigation of the braking of tearing mode rotation in tokamak plasmas via eddy currents induced in external ferromagnetic conducting structures is performed. In general, there is a “forbidden band” of tearing mode rotation frequencies that separates a branch of high-frequency solutions from a branch of low-frequency solutions. When a high-frequency solution crosses the upper boundary of the forbidden band, there is a bifurcation to a low-frequency solution, and vice versa. The bifurcation thresholds predicted by simple torque-balance theory (which takes into account the electromagnetic braking torque acting on the plasma, as well as the plasma viscous restoring torque, but neglects plasma inertia) are found to be essentially the same as those predicted by more complicated time-dependent mode braking theory (which takes inertia into account). Significant ferromagnetism causes otherwise electromagnetically thin conducting structures to become electromagnetically thick and also markedly decreases the critical tearing mode amplitude above which the mode “locks” to the conducting structures (i.e., the high-frequency to low-frequency bifurcation is triggered). On the other hand, if the ferromagnetism becomes too large, then the forbidden band of mode rotation frequencies is suppressed, and the mode frequency consequently varies smoothly and reversibly with the mode amplitude.
Braking of tearing mode rotation by ferromagnetic conducting walls in tokamaks
NASA Astrophysics Data System (ADS)
Fitzpatrick, Richard
2015-09-01
An in-depth investigation of the braking of tearing mode rotation in tokamak plasmas via eddy currents induced in external ferromagnetic conducting structures is performed. In general, there is a "forbidden band" of tearing mode rotation frequencies that separates a branch of high-frequency solutions from a branch of low-frequency solutions. When a high-frequency solution crosses the upper boundary of the forbidden band, there is a bifurcation to a low-frequency solution, and vice versa. The bifurcation thresholds predicted by simple torque-balance theory (which takes into account the electromagnetic braking torque acting on the plasma, as well as the plasma viscous restoring torque, but neglects plasma inertia) are found to be essentially the same as those predicted by more complicated time-dependent mode braking theory (which takes inertia into account). Significant ferromagnetism causes otherwise electromagnetically thin conducting structures to become electromagnetically thick and also markedly decreases the critical tearing mode amplitude above which the mode "locks" to the conducting structures (i.e., the high-frequency to low-frequency bifurcation is triggered). On the other hand, if the ferromagnetism becomes too large, then the forbidden band of mode rotation frequencies is suppressed, and the mode frequency consequently varies smoothly and reversibly with the mode amplitude.
The stability of ballooning modes in tokamaks with internal transport barriers
Webster, A.J.; Szwer, D.J.; Wilson, H.R.
2005-09-15
Modern tokamaks can produce transport barriers (TBs) - localized regions with an increased energy confinement. Previous studies have been unable to examine the stability of internal TBs to radially extended short-wavelength magnetohydrodynamic instabilities ('ballooning modes'), for the usual case with a sheared plasma flow and a magnetic shear that passes through zero near the TB. An established technique is adapted to study this situation, finding instability if (1) there is a low-pressure gradient, and if (2) the nearest 'resonant surface' at which a Fourier mode is resonant, is sufficiently close. Surprisingly, flow shear is no more stabilizing than for magnetic shears of order one. This is explained. Without a strongly stabilizing mechanism, ballooning modes will fundamentally limit a TB's radial extent, preventing them from extending across the entire plasma radius.
Low-frequency linear-mode regimes in the tokamak scrape-off layer
Mosetto, Annamaria; Halpern, Federico D.; Jolliet, Sebastien; Ricci, Paolo
2012-11-15
Motivated by the wide range of physical parameters characterizing the scrape-off layer (SOL) of existing tokamaks, the regimes of low-frequency linear instabilities in the SOL are identified by numerical and analytical calculations based on the linear, drift-reduced Braginskii equations, with cold ions. The focus is put on ballooning modes and drift wave instabilities, i.e., their resistive, inertial, and ideal branches. A systematic study of each instability is performed, and the parameter space region where they dominate is identified. It is found that the drift waves dominate at high R/L{sub n}, while the ballooning modes at low R/L{sub n}; the relative influence of resistive and inertial effects is discussed. Electromagnetic effects suppress the drift waves and, when the threshold for ideal stability is overcome, the ideal ballooning mode develops. Our analysis is a first stage tool for the understanding of turbulence in the tokamak SOL, necessary to interpret the results of non-linear simulations.
Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT
C.E. Kessel; T.K. Mau; S.C. Jardin; and F. Najmabadi
2001-06-05
An advanced tokamak plasma configuration is developed based on equilibrium, ideal-MHD stability, bootstrap current analysis, vertical stability and control, and poloidal-field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current-drive profiles from ray-tracing calculations in combination with optimized pressure profiles, beta(subscript N) values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower beta(subscript N) of 5.4. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal-field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field.
An Advanced Tokamak Fusion Nuclear Science Facility (FNSF-AT)
NASA Astrophysics Data System (ADS)
Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.
2010-11-01
A Fusion Development Facility (FDF) is a candidate for FNSF-AT. It is a compact steady-state machine of moderate gain that uses AT physics to provide the neutron fluence required for fusion nuclear science development. FDF is conceived as a double-null plasma with high elongation and triangularity, predicted to allow good confinement of high plasma pressure. Steady-state is achieved with high bootstrap current and radio frequency current drive. Neutral beam injection and 3D non-resonant magnetic field can provide edge plasma rotation for stabilization of MHD and access to Quiescent H-mode. The estimated power exhaust is somewhat lower than that of ITER because of higher core radiation and stronger tilting of the divertor plates. FDF is capable of further developing all elements of AT physics, qualifying them for an advanced performance DEMO. The latest concept has accounted for realistic neutron shielding and divertor implementation. Self-consistent evolution of the transport profiles and equilibrium will quantify the stability and confinement required to meet the FNS mission.
ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS
Campos, A.; Skinner, C.H.
2009-01-01
Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.
Diamagnetic Fishbone Mode Associated with Circulating Fast Ions in Spherical Tokamaks
Ya.I. Kolesnichenko; V.S. Marchenko; R.B. White
2001-06-19
Recently it was shown theoretically that high beta (beta is the ratio of the plasma pressure to the magnetic field pressure) inherent to plasmas of Spherical Tokamaks (ST) stabilizes the fishbone mode associated with the trapped particles. This prediction agrees with the experimental observations of the fishbone behavior on the Small Tight Aspect Ratio Tokamak (START). However, in the mentioned experiments the circulating particles rather than the trapped ones were dominant in the energetic ion population. Therefore, the theory of Kolesnichenko, et al. in Phys. Rev. Lett. 82 (1999) 3260 and Nuclear Fusion 40 (2000) 1731 is not sufficient to explain the START experiment and predict the behavior of the circulating-particle-induced fishbone mode in future experiments on STs. Thus, a new theory is required, which stimulated the fulfillment of this present work. There are two fishbone branches: the high-frequency (precession) branch and the low-frequency (diamagnetic) one. In this work, we restrict ourselves with the study of the low-frequency branch. The stability of this branch associated with the circulating particles in a low-beta plasma was studied by Betti, et al. in Phys. Rev. Lett. 70 (1993) 3428; no attempts to consider high beta plasmas were done yet.
Repetitive transport bursts in simulations of edge-localized modes in tokamaks
Kleva, Robert G.; Guzdar, Parvez N.
2006-07-15
The character of particle and energy transport in simulations of tokamak edge turbulence is determined by the magnitude of the density gradient. Edge turbulence becomes increasingly intermittent as the edge density gradient increases. Beyond a critical limit in the edge density gradient, the transport is dominated by short, repetitive bursts of particles and energy outward toward the wall. These bursts are extremely ballooning in character, strongly localized on the large major radius side of the torus. The duration of a burst is given by the ballooning mode growth time t{sub 0}=(RL{sub n}){sup 1/2}/c{sub s}, where c{sub s} is the sound speed, R is the major radius of the torus, and L{sub n} is the density gradient scale length. The bursts are coherent in structure with a poloidal scale size L{sub 0} that is proportional to the square root of the plasma resistivity {eta}. With further increases in the edge density gradient, the fluxes of energy and particles in the bursts become much larger in magnitude. The particle and energy bursts seen in the simulations are similar to the bursts in D{sub {alpha}} radiation seen during edge-localized modes in tokamaks.
Simulation of fast-ion-driven Alfvén eigenmodes on the Experimental Advanced Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Hu, Youjun; Todo, Y.; Pei, Youbin; Li, Guoqiang; Qian, Jinping; Xiang, Nong; Zhou, Deng; Ren, Qilong; Huang, Juan; Xu, Liqing
2016-02-01
Kinetic-MHD hybrid simulations are carried out to investigate possible fast-ion-driven modes on the Experimental Advanced Superconducting Tokamak. Three typical kinds of fast-ion-driven modes, namely, toroidicity-induced Alfvén eigenmodes, reversed shear Alfvén eigenmodes, and energetic-particle continuum modes, are observed simultaneously in the simulations. The simulation results are compared with the results of an ideal MHD eigenvalue code, which shows agreement with respect to the mode frequency, dominant poloidal mode numbers, and radial location. However, the modes in the hybrid simulations take a twisted structure on the poloidal plane, which is different from the results of the ideal MHD eigenvalue code. The twist is due to the radial phase variation of the eigenfunction, which may be attributed to the non-perturbative kinetic effects of the fast ions. By varying the stored energy of fast ions to change the fast ion drive in the simulations, it is demonstrated that the twist (i.e., the radial phase variation) is positively correlated with the fast ion drive.
Electromechanical modelling and design for phase control of locked modes in the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Olofsson, K. E. J.; Choi, W.; Humphreys, D. A.; La Haye, R. J.; Shiraki, D.; Sweeney, R.; Volpe, F. A.; Welander, A. S.
2016-04-01
A basic nonlinear electromechanical model is developed for the interaction between a pre-existing near-saturated tearing-mode, a conducting wall, active coils internal to the wall, and active coils external to the wall. The tearing-mode is represented by a perturbed helical surface current and its island has a small but finite moment of inertia. The model is shown to have several properties that are qualitatively consistent with the experimental observations of mode-wall and mode-coil interactions. The main purpose of the model is to guide the design of a phase control system for locked modes (LMs) in tokamaks. Such a phase controller may become an important component in integrated disruption avoidance systems. A realistic feedback controller for the LM phase is designed and tested for the electromechanical model. The results indicate that a simple fixed-gain controller can perform phase control of LMs with a range of sizes, and at arbitrary misalignment relative to a realistically dimensioned background error field. The basic model is expected to be a useful minimal dynamical system representation also for other aspects of mode-wall-coil interactions.
Two-dimensional structure and particle pinch in tokamak H mode.
Kasuya, Naohiro; Itoh, Kimitaka
2005-05-20
Two-dimensional structures of the electrostatic potential, density, and flow velocity near the edge of a tokamak plasma are investigated. The model includes the nonlinearity in bulk-ion viscosity and turbulence-driven shear viscosity. For the case with the strong radial electric field (H mode), a two-dimensional structure in a transport barrier is obtained, giving a poloidal shock with a solitary radial electric field profile. The inward particle pinch is induced from this poloidal asymmetric electric field, and increases as the radial electric field becomes stronger. The abrupt increase of this inward ion and electron flux at the onset of L- to H-mode transition explains the rapid establishment of the density pedestal, which is responsible for the observed spontaneous self-reorganization into an improved confinement regime. PMID:16090180
Two-Dimensional Structure and Particle Pinch in Tokamak H Mode
Kasuya, Naohiro; Itoh, Kimitaka
2005-05-20
Two-dimensional structures of the electrostatic potential, density, and flow velocity near the edge of a tokamak plasma are investigated. The model includes the nonlinearity in bulk-ion viscosity and turbulence-driven shear viscosity. For the case with the strong radial electric field (H mode), a two-dimensional structure in a transport barrier is obtained, giving a poloidal shock with a solitary radial electric field profile. The inward particle pinch is induced from this poloidal asymmetric electric field, and increases as the radial electric field becomes stronger. The abrupt increase of this inward ion and electron flux at the onset of L- to H-mode transition explains the rapid establishment of the density pedestal, which is responsible for the observed spontaneous self-reorganization into an improved confinement regime.
A theory for the pressure pedestal in high (H) mode tokamak discharges
NASA Astrophysics Data System (ADS)
Guzdar, P. N.; Mahajan, S. M.; Yoshida, Z.
2005-03-01
When a tokamak plasma makes a transition into the good or the high confinement H mode, the edge density and pressure steepen and develop a very sharp pressure pedestal. Prediction of the height and width of this pressure profile has been actively pursued so as to provide a reliable extrapolation to future burning plasma devices. The double-Beltrami two-fluid equilibria of Mahajan and Yoshida [Phys. Plasmas 7, 635 (2000)] are invoked and extended to derive scalings for the edge pedestal width and height with plasma parameters: these scalings come out in agreement with the established semiempirical scalings. The theory predictions are also compared with limited published H-mode data and the agreement is found to be very encouraging.
Mikhailovskii, A. B.; Novakovaskii, S. V.; Smolyakov, A. I.
1988-12-01
A theory is derived for the interaction of high-energy trapped particleswith ballooning modes in a tokamak with a high-..beta.. plasma. A dispersionrelation is derived to describe the ballooning modes in the presence ofsuch particles; the effects of the high plasma ..beta.. are taken into account.The stability boundary for ballooning modes with zero and finite frequenciesis studied. The effects of finite bananas on the stability of ballooningmodes with zero frequencies are determined.
Energetic Particle Effects Can Explain the Low Frequency of Alfvin Modes in the DIII-D Tokamak
Gorelenkov, N.N.; Heidbrink, W.W.
2001-01-31
During beam injection in the DIII-D tokamak, modes with lower frequencies than expected for toroidicity-induced Alfvin eigenmodes (TAE) are often observed. We present the analysis of one of these ''beta-induced Alfvin eigenmodes'' (BAE) with a high-n stability code HINST that includes the effect of the energetic ions on the mode frequency. It shows that the ''BAE'' could be the theoretically predicted resonant-TAE (RTAE), which is also called an energetic-particle mode (EPM).
Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT
S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West
2003-10-07
The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.
Manifestations of the geodesic acoustic mode driven by energetic ions in tokamaks
NASA Astrophysics Data System (ADS)
Kolesnichenko, Ya I.; Lutsenko, V. V.; Yakovenko, Yu V.; Lepiavko, B. S.; Grierson, B.; Heidbrink, W. W.; Nazikian, R.
2016-04-01
Effects of the energetic-ion-driven Geodesic Acoustic modes (GAM and E-GAM) on the toroidally passing energetic ions and the concomitant change of the neutron yield of beam-plasma fusion reactions in tokamaks are considered. It is shown that due to large perturbations of the plasma density, the resonant energetic ions driving the instability can be considerably slowed down for a few tens of the particle transit periods, which is much less than the collisional slowing down time. The time of the collisionless slowing down is actually determined by the period of the particle motion within the resonance island arising because of the GAM / E-GAM. Being trapped in the island, the resonant particles can not only lose their energy but also gain it. One more effect of GAMs is the flattening on the distribution function of the resonant particles. Due to conservation of the canonical angular momentum during a GAM / E-GAM instability, the change of the particle energy is accompanied by a radial displacement of the resonant particle for a distance up to the poloidal Larmor radius of energetic ions. The particles are displaced inwards or outwards, depending on the direction of their motion along the magnetic field. Expressions describing the change of the neutron yield due to GAM modes are derived. It is found that the distortion of the velocity distribution of the resonant particles can lead to a considerable drop of the neutron emission even when effects of the particle radial displacement are small. The developed theory is applied to an E-GAM experiment on the DIII-D tokamak. Relations for the period of the motion within the resonance island of passing (both well passing and marginally passing) particles and the width of the resonance of the energetic particles with GAM modes and low-frequency Alfvén modes are derived.
On the non-stiffness of edge transport in L-mode tokamak plasmas
Sauter, O.; Brunner, S.; Kim, D.; Merlo, G.; Behn, R.; Coda, S.; Duval, B. P.; Federspiel, L.; Goodman, T. P.; Karpushov, A.; Merle, A.; Team, TCV; Camenen, Y.
2014-05-15
Transport analyses using first-principle turbulence codes and 11/2 -D transport codes usually study radial transport properties between the tokamak plasma magnetic axis and a normalized minor radius around 0.8. In this region, heat transport shows significantly stiff properties resulting in temperature scalelength values (R∕L{sub T}) that are relatively independent of the level of the radial heat flux. We have studied experimentally in the tokamak à configuration variable [F. Hofmann et al., Plasma Phys. Controlled Fusion 36, B277 (1994)] the radial electron transport properties of the edge region, close to the last closed flux surface, namely, between ρ{sub V}=√(V/V{sub edge})=0.8 to 1. It is shown that electron transport is not stiff in this region and high R∕L{sub Te} values (∼20–40) can be attained even for L-mode confinement. We can define a “pedestal” location, already in L-mode regimes, where the transport characteristics change from constant logarithmic gradient, inside ρ{sub V} = 0.8, to constant gradient between 0.8 and 1.0. In particular, we demonstrate, with well resolved T{sub e} and n{sub e} profiles, that the confinement improvement with plasma current I{sub p}, with or without auxiliary heating, is due to this non-stiff edge region. This new result is used to explain the significant confinement improvement observed with negative triangularity, which could not be explained by theory to date. Preliminary local gyrokinetic simulations are now consistent with an edge, less stiff, region that is more sensitive to triangularity than further inside. We also show that increasing the electron cyclotron heating power increases the edge temperature inverse scalelength, in contrast to the value in the main plasma region. The dependence of confinement on density in ohmic plasmas is also studied and brings new insight in the understanding of the transition between linear and saturated confinement regimes, as well as of the density limit and
A study of tearing modes via electron cyclotron emission from tokamak plasmas
Ren, C.
1998-07-01
This thesis studies several tearing mode problems from both theoretical and experimental points of view. A major part of this thesis is to demonstrate that Electron Cyclotron Emission (ECE) is an excellent diagnostic for studying an MHD mode structure and its properties in a tokamak plasma. It is shown that an MHD mode can be detected from the electron temperature fluctuations measured by ECE. The amplitude and phase profiles of the fluctuations contain detailed information about the mode structure. The ECE fluctuation phase profile indicates the magnetic island deformation due to the combination of sheared flow and viscosity. A model is presented to relate qualitatively the observed phase gradient to the local magnetic field, flow velocity shear and viscosity in a 2D slab geometry, using an ideal Ohm`s law and the plasma momentum equation including flow and viscosity. Numerical solution of the resultant Grad-Shafranov-like equation describing the deformed island shows that the experimentally observed value of the phase gradient can be obtained under realistic parameters for the shear in the flow velocity and viscosity. A new approach to the tearing mode stability boundary and saturation level is also presented.
Braking of Tearing Mode Rotation by Ferromagnetic Conducting Walls in Tokamaks
NASA Astrophysics Data System (ADS)
Fitzpatrick, Richard
2015-11-01
An in-depth investigation of the braking of tearing mode rotation in tokamak plasmas via eddy currents induced in external ferromagnetic conducting structures is performed. In general, there is a ``forbidden band'' of tearing mode rotation frequencies that separates a branch of high-frequency solutions from a branch of low-frequency solutions. When a high-frequency solution crosses the upper boundary of the forbidden band there is a bifurcation to a low-frequency solution, and vice versa. The bifurcation thresholds predicted by simple torque-balance theory (which takes into account the electromagnetic braking torque acting on the plasma, as well as the plasma viscous restoring torque, but neglects plasma inertia) are found to be essentially the same as those predicted by more complicated time-dependent mode braking theory (which takes inertia into account). Significant ferromagnetism causes otherwise electromagnetically thin conducting structures to become electromagnetically thick, and also markedly decreases the critical tearing mode amplitude above which the mode ``locks'' to the conducting structures (i.e., the high-frequency to low-frequency bifurcation is triggered). This research was funded by the U.S. Department of Energy under contract DE-FG02-04ER-54742.
Peeling-Ballooning Mode Analysis in Shifted-Circle Tokamak Equilibria
NASA Astrophysics Data System (ADS)
Burke, B.; Kruger, S. E.; Hegna, C. C.; Snyder, P. B.; Sovinec, C. R.; Zhu, P.
2009-11-01
Progress in understanding edge localized modes (ELMs) has been made by investigating the stability properties of edge localized peeling-ballooning modes. We focus on the evolution of ideal MHD modes over a large spectrum in two shifted-circle tokamak equilibria, using the extended-MHD code NIMROD. The TOQ-generated equilibria model a H-mode plasma with a pedestal pressure profile and parallel edge currents. A vacuum region is prescribed by a resistivity profile that transitions from a small to very large value at a specified location. The vacuum model is benchmarked against the linear ideal MHD codes ELITE & GATO. We demonstrate vacuum effects on the stability by adjusting the vacuum location relative to the pedestal pressure region. Ballooning-like instabilities dominate distant vacuum cases, whereas peeling mode physics is expected to dominate as the vacuum approaches the pedestal. Numerical simulations of the early nonlinear stages of edge localized MHD instabilities are presented. Comparisons between equilibria that have ``ballooning'' dominated instabilities relative to equilibria that are ``peeling'' dominated are made.
Using a local gyrokinetic code to study global ion temperature gradient modes in tokamaks
NASA Astrophysics Data System (ADS)
Abdoul, P. A.; Dickinson, D.; Roach, C. M.; Wilson, H. R.
2015-06-01
In this paper the global eigenmode structures of linear ion temperature gradient (ITG) modes in tokamak plasmas are obtained using a novel technique which combines results from the local gyrokinetic code GS2 with analytical theory to reconstruct global properties. Local gyrokinetic calculations are performed for a range of radial flux surfaces, x, and ballooning phase angles, p, to map out the local complex mode frequency, Ω0(x, p) = ω0(x, p) + iγ0(x, p) for a single toroidal mode number, n. Taylor expanding Ω0 about a reference surface at x = 0, and employing the Fourier-ballooning representation leads to a second order ODE for the amplitude envelope, A(p), which describes how the local results are combined to form the global mode. The equilibrium profiles impact on the variation of Ω0(x, p) and hence influence the global mode structure. The simulations presented here are based upon a global extension to the CYCLONE base case and employ the circular Miller equilibrium model. In an equilibrium with radially varying profiles of a/LT and a/Ln, peaked at x = 0, and with all other equilibrium profiles held constant, including ηi = Ln/LT, Ω0(x, p) is found to have a stationary point. The reconstructed global mode sits at the outboard mid-plane of the tokamak, with global growth rate, γ ∼ Max[γ0]. Including the radial variation of other equilibrium profiles like safety factor and magnetic shear, leads to a mode that peaks away from the outboard mid-plane, with a reduced global growth rate. Finally, the influence of toroidal flow shear has also been investigated through the introduction of a Doppler shift, {ω0}\\to {ω0}-nΩ φ\\prime x , where Ωϕ is the equilibrium toroidal flow, and a prime denotes the radial derivative. The equilibrium profile variations introduce an asymmetry into the global growth rate spectrum with respect to the sign of Ω φ\\prime , such that the maximum growth rate is achieved with non-zero shearing, consistent with recent global
Stabilization of the external kink and control of the resistive wall mode in tokamaks
Garofalo, A.M.; Turnbull, A.D.; Strait, E.J.
1999-01-01
One promising approach to maintaining stability of high beta tokamak plasmas is the use of a conducting wall near the plasma to stabilize low-n ideal MHD instabilities. However, with a resistive wall, either plasma rotation or active feedback control is required to stabilize the more slowly growing resistive wall modes (RWMs). Experiments in the DIII-D, PBHX-M, and HBT-EP tokamaks have demonstrated that plasmas with a nearby conducting wall can remain stable to the n = 1 ideal external kink above the beta limit predicted with the wall at infinity, with durations in DIII-D up to 30 times {tau}{sub w}, the resistive wall time constant. More recently, detailed, reproducible observation of the n = 1 RWM has been possible in DIII-D plasmas above the no-wall beta limit. The DIII-D measurements confirm characteristics common to several RWM theories. The mode is destabilized as the plasma rotation at the q = 3 surface decreases below a critical frequency of 1 to 7 kHz. The measured mode growth times of 2 to 8 ms agree with measurements and numerical calculations of the dominant DIII-D vessel eigenmode time constants, {tau}{sub w}. From its onset, the RWM has little or no toroidal rotation and rapidly reduces the plasma rotation to zero. Both DIII-D and HBT-EP have adopted the smart shell concept as an initial approach to control of these slowly growing RWMs; external coils are controlled by a feedback loop designed to make the resistive wall appear perfectly conducting by maintaining a net zero radial field at the wall. Initial experiment results from DIII-D have yielded encouraging results.
Evidence of Neoclassical Toroidal Viscosity on the Neoclassical Tearing Modes in TCV tokamak
NASA Astrophysics Data System (ADS)
Nowak, S.; Lazzaro, E.; Sauter, O.; Canal, G.; Duval, B.; Federspiel, L.; Karpushov, A. N.; Kim, D.; Reimerdes, H.; Rossel, J.; Wagner, D.; the Tcv Team
2012-12-01
The interplay between the plasma toroidal rotation and the onset of magnetohydrodynamics instabilities, such as the Neoclassical Tearing Modes (NTMs), is an important issue for tokamak performance. An interesting mechanism characterizing this interaction is the breaking of axisymmetry due to the NTM helical structure, which is the source of a magnetic viscous drag parallel to the toroidal field. This effect, known as Neoclassical Toroidal Viscosity (NTV) depends on magnetic island width, and is responsible of the nearly global slowing down of the toroidal velocity across the profile. In the TCV tokamak the spontaneous plasma toroidal rotation profile, observed even in absence of other external momentum sources [1], can be modified by nearly central electron cyclotron heating (ECH) with a slight poloidal asymmetry and current drive (ECCD) [1,2,3]. The evidence of NTV effect on the plasma toroidal velocity profile of TCV is apparent as a pronounced flattening at the onset of m/n=3/2 and 2/1 tearing instabilities in the neoclassical regime in TCV discharges (Ip~150 kA, ne_av~2 1019 m-3 Te~3 keV) with 1.5 MW EC ramp up/down phases. Comparison of the measured and calculated toroidal plasma velocity is performed using the NTV formulation [4,5] applicable in the collisionless regimes. The different aspects of the NTM onset associated both with the ECH-coECCD effect on the current profile and with NTV observed in several TCV discharges are discussed, in the frame of classical and neoclassical tearing modes theory applied to 3/2 and 2/1 modes.
Profile control of advanced tokamak plasmas in view of continuous operation
NASA Astrophysics Data System (ADS)
Mazon, D.
2015-07-01
The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.
Geodesic acoustic modes in toroidally rotating tokamaks with an arbitrary β
Ren, Haijun; Li, Ding; Chu, Paul K
2013-07-15
Theoretical research on the geodesic acoustic mode (GAM) induced by the equilibrium toroidal rotation flow (ETRF) in the tokamak plasmas with an arbitrary β is performed by using the ideal magnetohydrodynamic model, where β is the ratio of the plasma pressure and magnetic field pressure. Two equations determining the poloidal displacement ξ{sub θ} and the divergence of the Lagrangian perturbation are obtained and suitable for arbitrary cross-section tokamaks with large-aspect-ratios. The dispersion relations are then derived for two different coupling patterns by assuming ξ{sub ±2}=0 and ξ{sub ±4}=0, respectively, where ξ{sub m}=(1/2π)∫ξ{sub θ}e{sup imθ}dθ with θ being the poloidal angle under the circular cross-section condition. In both patterns, the ETRF will increase the frequencies of the GAMs but β can decrease them. The GAM for ξ{sub ±2}=0 has a larger frequency than GAM for ξ{sub ±4}=0.
Equilibrium and ballooning mode stability of an axisymmetric tensor pressure tokamak
Cooper, W.A.; Bateman, G.; Nelson, D.B.; Kammash, T.
1980-08-01
A force balance relation, a representation for the poloidal beta (..beta../sub p/), and expressions for the current densities are derived from the MHD equilibrium relations for an axisymmetric tensor pressure tokamak. Perpendicular and parallel beam pressure components are evaluated from a distribution function that models high energy neutral particle injection. A double adiabatic energy principle is derived from that of Kruskal and Oberman, with correction terms added. The energy principle is then applied to an arbitrary cross-section axisymmetric tokamak to examine ballooning instabilities of large toroidal mode number. The resulting Euler equation is remarkably similar to that of ideal MHD. Although the field-bending term is virtually unaltered, the driving term is modified because the pressures are no longer constant on a flux surface. Either a necessary or a sufficient marginal stability criterion for a guiding center plasma can be derived from this equation whenever an additional stabilizing element unique to the double adiabatic theory is either kept or neglected, respectively.
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Belli, E.; Bodi, K.; Candy, J.; Chang, C. S.; Cohen, R. H.; Colella, P.; Dimits, A. M.; Dorr, M. R.; Gao, Z.; Hittinger, J. A.; Ko, S.; Krasheninnikov, S.; McKee, G. R.; Nevins, W. M.; Rognlien, T. D.; Snyder, P. B.; Suh, J.; Umansky, M. V.
2009-06-01
We present edge gyrokinetic simulations of tokamak plasmas using the fully non-linear (full-f) continuum code TEMPEST. A non-linear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson equation. We demonstrate the following. (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high q (tokamak safety factor), and are necessary to explain the damping observed in our TEMPEST q-scans and consistent with the experimental measurements of the scaling of the GAM amplitude with edge q95 in the absence of obvious evidence that there is a strong q-dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and parallel flow characteristics qualitatively like those observed in experiments.
Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.
2014-09-15
This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.
Liu, X; Zhao, H L; Liu, Y; Li, E Z; Han, X; Domier, C W; Luhmann, N C; Ti, A; Hu, L Q; Zhang, X D
2014-09-01
This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems. PMID:25273727
Advanced Tokamak Regimes in Alcator C-Mod with Lower Hybrid Current Drive
NASA Astrophysics Data System (ADS)
Parker, R.; Bonoli, P.; Gwinn, D.; Hutchinson, I.; Porkolab, M.; Ramos, J.; Bernabei, S.; Hosea, J.; Wilson, R.
1999-11-01
Alcator C-Mod has been proposed as a test-bed for developing advanced tokamak scenarios owing to its strong shaping, relatively long pulse length capability at moderate field, e.g. t ~ L/R at B = 5T and T_eo ~ 7keV, and the availability of strong ICRF heating. We plan to exploit this capability by installing up to 4 MW RF power at 4.6 GHz for efficient off-axis current drive by lower hybrid waves. By launching LH waves with a grill whose n_xx spectrum can be dynamically controlled over the range 2 < n_xx < 3.5, the driven current profile can be modified so that, when combined with bootstrap current in high ɛβ_pol regimes, q_min > 2. Such reversed or nearly zero shear regimes have already been proposed as the basis of an advanced tokamak burning-plasma experiment-ATBX (M. Porkolab et al, IAEA-CN-69/FTP/13, IAEA,Yokohama 1998.), and could provide the basis for a demonstration power reactor. Theoretical and experimental basis for this advanced tokamak research program on C-Mod, including design of the lower hybrid coupler, its spectrum and current drive capabilities will be presented.
Han, X.; Liu, X.; Liu, Y. Li, E. Z.; Hu, L. Q.; Gao, X.; Domier, C. W.; Luhmann, N. C.
2014-07-15
A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.
Ma, Wendong; Hu, Huaichuan; Shan, Jiafang; Xu, Handong; Wang, Mao; Wu, Zege; Zhu, Liang
2013-01-01
The lower hybrid current drive (LHCD) is an effective approach for auxiliary heating and non-inductive current drive in the experimental advanced superconducting tokamak. The 6 MW/4.6 GHz LHCD system is being designed and installed with twenty-four 250 KW/4.6 GHz high power klystron amplifiers. The test bench operating at 250 KW/4.6 GHz in continuous wave mode has been set up, which can test and train microwave components for the 6 MW/4.6 GHz LHCD system. In this paper, the system architecture and software of the microwave test bench are presented. Moreover, the test results of these klystrons and microwave units are described here in detail. The long term operation of the test bench and improved performance of all microwave component samples indicated that the related technologies on test bench can be applied in the large scale LHCD systems. PMID:23387646
Han, X; Liu, X; Liu, Y; Domier, C W; Luhmann, N C; Li, E Z; Hu, L Q; Gao, X
2014-07-01
A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104-168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ~500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented. PMID:25085139
Effect of heating on the suppression of tearing modes in tokamaks.
Classen, I G J; Westerhof, E; Domier, C W; Donné, A J H; Jaspers, R J E; Luhmann, N C; Park, H K; van de Pol, M J; Spakman, G W; Jakubowski, M W
2007-01-19
The suppression of (neoclassical) tearing modes is of great importance for the success of future fusion reactors like ITER. Electron cyclotron waves can suppress islands, both by driving noninductive current in the island region and by heating the island, causing a perturbation to the Ohmic plasma current. This Letter reports on experiments on the TEXTOR tokamak, investigating the effect of heating, which is usually neglected. The unique set of tools available on TEXTOR, notably the dynamic ergodic divertor to create islands with a fully known driving term, and the electron cyclotron emission imaging diagnostic to provide detailed 2D electron temperature information, enables a detailed study of the suppression process and a comparison with theory. PMID:17358689
Global particle simulation of lower hybrid wave propagation and mode conversion in tokamaks
NASA Astrophysics Data System (ADS)
Bao, J.; Lin, Z.; Kuley, A.
2015-12-01
Particle-in-cell simulation of lower hybrid (LH) waves in core plasmas is presented with a realistic electron-to-ion mass ratio in toroidal geometry. Due to the fact that LH waves mainly interact with electrons to drive the current, ion dynamic is described by cold fluid equations for simplicity, while electron dynamic is described by drift kinetic equations. This model could be considered as a new method to study LH waves in tokamak plasmas, which has advantages in nonlinear simulations. The mode conversion between slow and fast waves is observed in the simulation when the accessibility condition is not satisfied, which is consistent with the theory. The poloidal spectrum upshift and broadening effects are observed during LH wave propagation in the toroidal geometry.
Effect of high-energy particles on ballooning flute modes in a tokamak
Boiko, A.Y.; Cheremnykh, O.K.
1988-08-01
A dispersion relation for ideal ballooning flute modes is derived for a tokamak with a finite pressure (..beta../sub theta/approx. =1), a large aspect ratio, circular magnetic surfaces, and a group of high-energy particles assuming that the potential wells are shallow. In addition to waves which are already known, this dispersion relation describes two neutrally stable natural wave branches with frequencies ..omega..approx. <..omega../sub */, where ..omega../sub */ is the ion drift frequency. Either untrapped or trapped ions can excited one of these branches (with the higher frequency) and can damp the other (with the lower frequency). Analytic expressions are derived for the growth rate and the damping rate. The results found here can be used to explain the fishbone oscillations which have been observed experimentally.
SUSTAINED STABILIZATION OF THE RESISTIVE WALL MODE BY PLASMA ROTATION IN THE DIII-D TOKAMAK
GAROFALO,A.M; STRAIT,E.J; JOHNSON,L.C; LA HAYE,R.J; LAZARUS,E.A; NAVRATIL,G.A; OKABAYASHI,M; SCOVILLE,J.T; TAYLOR,T.S; TURNBULL,A.D; AND THE DIII-D TEAM
2001-10-01
OAK-B135 A path to sustained stable operation, at plasma pressure up to twice the ideal magnetohydrodynamic (MHD) n = 1 free-boundary pressure limit, has been discovered in the DIII-D tokamak. Tuning the correction of the intrinsic magnetic field asymmetries so as to minimize plasma rotation decay during the high beta phase and increasing the angular momentum injection, have allowed maintaining the plasma rotation above that needed for stabilization of the resistive wall mode (RWM). A new method to determine the improved magnetic field correction uses feedback to sense and minimize the resonant plasma response to the non-axisymmetric field. At twice the free-boundary pressure limit, a disruption precursor is observed, which is consistent with having reached the ''ideal wall'' pressure limit predicted by stability calculations.
The interaction between fishbone modes and shear Alfvén waves in tokamak plasmas
NASA Astrophysics Data System (ADS)
He, Hongda; Liu, Yueqiang; Dong, J. Q.; Hao, G. Z.; Wu, Tingting; He, Zhixiong; Zhao, K.
2016-05-01
The resonant interaction between the energetic particle triggered fishbone mode and the shear Alfvén waves is computationally investigated and firmly demonstrated based on a tokamak plasma equilibrium, using the self-consistent MHD-kinetic hybrid code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503). This type of continuum resonance, occurring critically due to the mode’s toroidal rotation in the plasma frame, significantly modifies the eigenmode structure of the fishbone instability, by introducing two large peaks of the perturbed parallel current density near but offside the q = 1 rational surface (q is the safety factor). The self-consistently computed radial plasma displacement substantially differs from that being assumed in the conventional fishbone theory.
Global particle simulation of lower hybrid wave propagation and mode conversion in tokamaks
Bao, J.; Lin, Z.; Kuley, A.
2015-12-10
Particle-in-cell simulation of lower hybrid (LH) waves in core plasmas is presented with a realistic electron-to-ion mass ratio in toroidal geometry. Due to the fact that LH waves mainly interact with electrons to drive the current, ion dynamic is described by cold fluid equations for simplicity, while electron dynamic is described by drift kinetic equations. This model could be considered as a new method to study LH waves in tokamak plasmas, which has advantages in nonlinear simulations. The mode conversion between slow and fast waves is observed in the simulation when the accessibility condition is not satisfied, which is consistent with the theory. The poloidal spectrum upshift and broadening effects are observed during LH wave propagation in the toroidal geometry.
Stability analysis of internal ideal modes in low-shear tokamaks
Wahlberg, C.; Graves, J. P.
2007-11-15
The stability of internal, ideal modes in tokamaks with low magnetic shear in the plasma core is analyzed. For equilibria with large aspect ratio, a parabolic pressure profile and a flat q profile in the core, an exact solution of the ideal magnetohydrodynamic (MHD) stability equations is found. The solution includes the eigenfunctions and the complete spectra of two distinctly different MHD phenomena: A family of fast-growing, Mercier-unstable global eigenmodes localized in a low-shear region with q<1, and another, related family of stable, global eigenmodes existing in plasmas with q>1 in the core. In the latter case the solution in addition includes one unstable eigenmode, if beta is larger than a critical value depending on the width of the low-shear region and on the q-profile in the edge region.
Yang, J H; Yang, X F; Hu, L Q; Zang, Q; Han, X F; Shao, C Q; Sun, T F; Chen, H; Wang, T F; Li, F J; Hu, A L
2013-08-01
A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST. PMID:24007102
Yang, J. H.; Hu, L. Q.; Zang, Q.; Han, X. F.; Shao, C. Q.; Sun, T. F.; Chen, H.; Wang, T. F.; Li, F. J.; Hu, A. L.; Yang, X. F.
2013-08-15
A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.
Hybrid simulation of energetic particle effects on tearing modes in tokamak plasmas
Cai Huishan; Fu Guoyong
2012-07-15
The effects of energetic ions on stability of tearing mode are investigated by global kinetic/MHD hybrid simulations in a low beta tokamak plasma. The kinetic effects of counter circulating energetic ions from the non-adiabatic response are found to be strongly destabilizing while the effects from the adiabatic response are stabilizing. The net effect with both adiabatic and non-adiabatic contributions is destabilizing. On the other hand, the kinetic effects of co-circulating energetic ions from the non-adiabatic response are calculated to be weakly stabilizing while the corresponding adiabatic contribution is destabilizing for small energetic ion beta. The net effect is weakly stabilizing. The dependence of kinetic effects on energetic ion beta, gyroradius, and speed is studied systematically and the results agree in large part with the previous analytic results for the kinetic effects of circulating particles. For trapped energetic ions, their effects on tearing mode stability are dominated by the adiabatic response due to large banana orbit width and strong poloidal variation of particle pressure. The net effect of trapped energetic particles on tearing modes is much more destabilizing as compared to that of counter circulating particles at the same beta value.
Study of high-N modes in tokamaks using a high speed nonlocal gyrokinetic model
NASA Astrophysics Data System (ADS)
Elia, Michael Aldo
Gyrokinetic theory has been used to derive a system of integral equations which nonlocally describe low frequency, short wavelength modes in a plasma of axisymmetrical toroidal geometry with low-beta and circular nonconcentric flux surfaces with small Shafranov shift. The eigenmode equations contain the two potential approximation in ϕ and A ∥ with full finite Larmor radius and trapped electron effects in the collisionless limit. The analysis makes use of the so-called "ballooning formalism" to lowest order in 1/n which yields a radially local calculation for the eigenfrequencies and the eigenfunctions. This representation, in conjunction with an efficient numerical algorithm, allows the eigenfrequencies to be computed with sufficient accuracy and high speed for arbitrary high- n modes in the drift and shear-Alfven branches. This is the main accomplishment of this work. Test cases using artificial and actual tokamak experimental discharge parameters for the collisionless-trapped-electron, ion-temperature-gradient and ballooning modes have been benchmarked with the premium, comprehensive kinetic formulation of Rewoldt exhibiting favourable results.
Transitions Out of High-Confinement Mode to Lower Confinement Regimes in Tokamaks
NASA Astrophysics Data System (ADS)
Eldon, David
A high-resolution edge Thomson Scattering (TS) system was developed and installed on the DIII-D tokamak, and was then used to study the back transition from High Confinement (H-mode) to Low Confinement (L-mode) in DIII-D. The transient event seen to initiate some back transition sequences is superficially similar to a large type-I ELM, which is described by the linear ideal MHD theory of peeling-ballooning modes. Detailed edge pedestal profile evolution studies during the back transition show that the plasma does not exceed this linear stability limit during the back transition, indicating that the transient is not a type-I ELM event. The E x B shearing rate oE x B and turbulence decorrelation rate oT were then compared before the H-L sequence. The results show that the back transition sequence begins while oE x B is still well above oT, indicating that the sequences observed in these experiments are not triggered by the collapse of the E x B shear layer. Further investigation is made to characterize a coherent density fluctuation whose behavior is linked to back transition sequences. Strategies for avoiding the transient are tested and a reliable method for producing a "soft'' back transition is identified. Such cases are compared to the class of "hard'' transitions in which the pedestal pressure gradient rapidly relaxes.
Influence of hot beam ions on MHD ballooning modes in tokamaks
Rewoldt, G.; Tang, W.M.
1984-07-01
It has recently been proposed that the presence of high energy ions from neutral beam injection can have a strong stabilizing effect on kinetically-modified ideal MHD ballooning modes in tokamaks. In order to assess realistically the importance of such effects, a comprehensive kinetic stability analysis, which takes into account the integral equation nature of the basic problem, has been applied to this investigation. In the collisionless limit, the effect of adding small fractions of hot beam ions is indeed found to be strongly stabilizing. On the other hand, for somewhat larger fractions of hot ions, a new beam-driven mode is found to occur with a growth rate comparable in magnitude to the growth rate of the MHD ballooning mode in the absence of hot ions. This implies that there should be an optimal density of hot particles which minimizes the strength of the relevant instabilities. Employing non-Maxwellian equilibrium distribution functions to model the beam species makes a quantitative, but not qualitative, difference in the results. Adding collisions to the calculation tends to reduce considerably the stabilizing effect of the hot ions.
Nonlinear evolution of resistive wall mode in a cylindrical tokamak with poloidal rotation
Sato, M.; Nakajima, N.
2006-10-15
Nonlinear simulations of resistive wall modes (RWMs) with a Doppler shift dominant equilibrium poloidal rotation have been carried out by using reduced magnetohydrodynamic equations in a low beta cylindrical tokamak, where the core plasma is surrounded by a cold plasma with a high resistivity. When the equilibrium poloidal rotation frequency is small and the Doppler shift is predominant, the wall mode becomes unstable, which is one of the RWMs nearly locked to the resistive wall. Since the slowing down torque increases with equilibrium poloidal rotation frequency and the poloidal rotation decreases to almost zero near the plasma surface before the saturation, the nonlinear saturation level does not depend on either the equilibrium poloidal rotation frequency or the density of the cold plasma. When the equilibrium poloidal rotation frequency becomes larger than a critical value, the plasma mode rotating to the resistive wall becomes unstable. When the cold plasma has the same density as that in the core plasma, neither the centrifugal force nor the Coriolis force has any effect. In such a case, as the equilibrium poloidal rotation frequency increases, the magnetic flux is so hard to diffuse into the resistive wall that the slowing down torque decreases and the rotation tends to survive in the nonlinear phase, which makes the saturation level decrease.
Kinetic calculation of the resistive wall mode and fishbone-like mode instability in tokamak
NASA Astrophysics Data System (ADS)
Hao, G. Z.; Yang, S. X.; Liu, Y. Q.; Wang, Z. X.; Wang, A. K.; He, H. D.
2016-06-01
Kinetic effects of both trapped thermal and energetic particles on the resistive wall mode (RWM) and on the fishbone-like mode (FLM) are investigated in theory. Here, the trapped thermal particles include both ions and electrons. The FLM is driven by trapped energetic particles. The results demonstrate that thermal particle collisions can either stabilize or destabilize the RWM, depending on the energetic particle pressure βh . Furthermore, the critical value of βh for triggering the FLM is increased when the thermal particle contribution is taken into account. The critical value sensitively depends on the plasma collision frequency. In addition, the plasma inertia is found to have a negligible influence on the FLM.
Wahlberg, C.
2009-11-15
Analytical theory and two different magnetohydrodynamical stability codes are used in a study of the effects of toroidal plasma rotation on the stability of the ideal, internal kink mode in tokamaks. The focus of the paper is on the role that the centrifugal effects on the plasma equilibrium play for the stability of this mode, and results from one code where centrifugal effects are self-consistently included (CASTOR-FLOW) [E. Strumberger et al., Nucl. Fusion 45, 1156 (2005)] are compared with the results from another code where such effects are not taken into account (MISHKA-F) [I. T. Chapman et al., Phys. Plasmas 13, 062511 (2006)]. It is found that, even at rather modest flow speeds, the centrifugal effects are very important for the stability of the internal kink mode. While the results from the two codes can be quite similar for certain profiles in the plasma, completely opposite results are obtained for other profiles. A very good agreement between analytical theory and the numerical results are, both for inconsistent and consistent equilibria, found for plasmas with large aspect ratio. From the analytical theory, the distinctly different stability properties of equilibria with and without centrifugal effects included can be traced to the stabilizing effect of the geodesic acoustic mode (GAM) induced by the plasma rotation. This GAM exists solely as a consequence of the nonuniform plasma density and pressure created by the centrifugal force on the flux surfaces, and a stabilizing coupling of the internal kink instability to this mode cannot therefore take place if the centrifugal effects are not included in the equilibrium. In addition to the GAM stabilization, the effects of the radial profiles of the plasma density and rotation velocity are also found to be significant, and the importance of these effects increases with decreasing aspect ratio.
Simulations of the L-H transition on experimental advanced superconducting Tokamak
Weiland, Jan
2014-12-15
We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, “Recent experiments in the EAST and HT-7 superconducting tokamaks,” Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α – α{sub d} diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode.
Studies of Feedback Stabilization of Axisymmetric Modes in Deformable Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Ward, David John
A new linear MHD stability code, NOVA-W, is described and applied to the study of the feedback stabilization of the axisymmetric mode in deformable tokamak plasmas. The NOVA-W code is a modification of the non-variational MHD stability code NOVA^1 that includes the effects of resistive passive conductors and active feedback circuits. The vacuum calculation has been reformulated in terms of the perturbed poloidal flux to allow the inclusion of perturbed toroidal currents outside the plasma. The boundary condition at the plasma-vacuum interface relates the instability displacement to the perturbed poloidal flux. This allows a solution of the linear MHD stability equations with the feedback effects included. The code has been tested for the case of passive stabilization against a simplified analytic model and against a different numerical calculation for a realistic tokamak configuration. The comparisons demonstrate the accuracy of the NOVA-W results. The utility and performance of the NOVA-W code are demonstrated for calculations of varying configurations of passive conductors. Active feedback calculations are performed for the CIT tokamak design demonstrating the effect of varying the position of the flux loops which provide the measurements of vertical displacement. The results compare well to those of earlier calculations using a less efficient nonlinear code. The NOVA-W code is used to examine the effects of plasma deformability on feedback stabilization. It is seen that plasmas with shaped cross sections have unstable motion different from a rigid shift. Plasma equilibria with large triangularity show particularly significant deviations from a uniform rigid shift. Furthermore, the placement of passive conductors is shown to modify the non-rigid components of the motion in a way that reduces the stabilizing effects of these conductors. The eigenfunction is also modified under the effects of active feedback. This deformation is seen to depend strongly on the
Energetic-particle-induced electromagnetic geodesic acoustic mode in tokamak plasmas
Wang, Lingfeng He, Zhixiong; He, Hongda; Shen, Y.; Dong, J. Q.
2014-07-15
Energetic-particle-induced kinetic electromagnetic geodesic acoustic modes (EKEGAMs) are numerically studied in low β (=plasma pressure/magnetic pressure) tokamak plasmas. The parallel component of the perturbed vector potential is considered along with the electrostatic potential perturbation. The effects of finite Larmor radius and finite orbit width of the bulk and energetic ions as well as electron parallel dynamics are all taken into account in the dispersion relation. Systematic harmonic and ordering analysis are performed for frequency and growth rate spectra of the EKEGAMs, assuming (kρ{sub i})∼q{sup −3}∼β≪1, where q, k, and ρ{sub i} are the safety factor, radial component of the EKEGAMs wave vector, and the Larmor radius of the ions, respectively. It is found that there exist critical β{sub h}/β{sub i} values, which depend, in particular, on pitch angle of energetic ions and safety factor, for the mode to be driven unstable. The EKEGAMs may also be unstable for pitch angle λ{sub 0}B<0.4 in certain parameter regions. Finite β effect of the bulk ions is shown to have damping effect on the EKEGAMs. Modes with higher radial wave vectors have higher growth rates. The damping from electron dynamics is found decreasing with decrease of the temperature ratio T{sub e}/T{sub i}. The modes are easily to be driven unstable in low safety factor q region and high temperature ratio T{sub h}/T{sub i} region. The harmonic features of the EKEGAMs are discussed as well.
Linear stability and nonlinear dynamics of the fishbone mode in spherical tokamaks
Wang, Feng; Liu, J. Y.; Fu, G. Y.; Breslau, J. A.
2013-10-15
Extensive linear and nonlinear simulations have been carried out to investigate the energetic particle-driven fishbone instability in spherical tokamak plasmas with weakly reversed q profile and the q{sub min} slightly above unity. The global kinetic-MHD hybrid code M3D-K is used. Numerical results show that a fishbone instability is excited by energetic beam ions preferentially at higher q{sub min} values, consistent with the observed appearance of the fishbone before the “long-lived mode” in MAST and NSTX experiments. In contrast, at lower q{sub min} values, the fishbone tends to be stable. In this case, the beam ion effects are strongly stabilizing for the non-resonant kink mode. Nonlinear simulations show that the fishbone saturates with strong downward frequency chirping as well as radial flattening of the beam ion distribution. An (m, n) = (2, 1) magnetic island is found to be driven nonlinearly by the fishbone instability, which could provide a trigger for the (2, 1) neoclassical tearing mode sometimes observed after the fishbone instability in NSTX.
Adapting 3D Equilibrium Reconstruction to Reconstruct Weakly 3D H-mode Tokamaks
NASA Astrophysics Data System (ADS)
Cianciosa, M. R.; Hirshman, S. P.; Seal, S. K.; Unterberg, E. A.; Wilcox, R. S.; Wingen, A.; Hanson, J. D.
2015-11-01
The application of resonant magnetic perturbations for edge localized mode (ELM) mitigation breaks the toroidal symmetry of tokamaks. In these scenarios, the axisymmetric assumptions of the Grad-Shafranov equation no longer apply. By extension, equilibrium reconstruction tools, built around these axisymmetric assumptions, are insufficient to fully reconstruct a 3D perturbed equilibrium. 3D reconstruction tools typically work on systems where the 3D components of signals are a significant component of the input signals. In nominally axisymmetric systems, applied field perturbations can be on the order of 1% of the main field or less. To reconstruct these equilibria, the 3D component of signals must be isolated from the axisymmetric portions to provide the necessary information for reconstruction. This presentation will report on the adaptation to V3FIT for application on DIII-D H-mode discharges with applied resonant magnetic perturbations (RMPs). Newly implemented motional stark effect signals and modeling of electric field effects will also be discussed. Work supported under U.S. DOE Cooperative Agreement DE-AC05-00OR22725.
Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER
NASA Astrophysics Data System (ADS)
Eich, T.; Leonard, A. W.; Pitts, R. A.; Fundamenski, W.; Goldston, R. J.; Gray, T. K.; Herrmann, A.; Kirk, A.; Kallenbach, A.; Kardaun, O.; Kukushkin, A. S.; LaBombard, B.; Maingi, R.; Makowski, M. A.; Scarabosio, A.; Sieglin, B.; Terry, J.; Thornton, A.; ASDEX Upgrade Team; EFDA Contributors, JET
2013-09-01
A multi-machine database for the H-mode scrape-off layer power fall-off length, λq in JET, DIII-D, ASDEX Upgrade, C-Mod, NSTX and MAST has been assembled under the auspices of the International Tokamak Physics Activity. Regression inside the database finds that the most important scaling parameter is the poloidal magnetic field (or equivalently the plasma current), with λq decreasing linearly with increasing Bpol. For the conventional aspect ratio tokamaks, the regression finds \\lambda_{q} \\propto B_{tor}^{-0.8} \\cdot q_{95}^{1.1} \\cdot P_{SOL}^{0.1} \\cdot R_{geo}^{0} , yielding λq,ITER ≅ 1 mm for the baseline inductive H-mode burning plasma scenario at Ip = 15 MA. The experimental divertor target heat flux profile data, from which λq is derived, also yield a divertor power spreading factor (S) which, together with λq, allows an integral power decay length on the target to be estimated. There are no differences in the λq scaling obtained from all-metal or carbon dominated machines and the inclusion of spherical tokamaks has no significant influence on the regression parameters. Comparison of the measured λq with the values expected from a recently published heuristic drift based model shows satisfactory agreement for all tokamaks.
M. Murakami; H.E. St.John; T.A. Casper; M.S. Chu; J.C. DeBoo; C.M. Greenfield; J.E. Kinsey; L.L. Lao; R.J. La Haye; Y.R. Lin-Liu; T.C. Luce; P.A. Politzer; B.W. Rice; G.M. Staebler; T.S. Taylor; M.R. Wade
1999-12-01
The status of modeling work focused on developing the advanced tokamak scenarios in DIII-D is discussed. The objectives of the work are two-fold: (1) to develop AT scenarios with ECCD using time-dependent transport simulations, coupled with heating and current drive models, consistent with MHD equilibrium and stability; and (2) to use time-dependent simulations to help plan experiments and to understand the key physics involved. Time-dependent simulations based on transport coefficients derived from experimentally achieved target discharges are used to perform AT scenario modeling. The modeling indicates off-axis ECCD with approximately 3 MW absorbed power can maintain high-performance discharges with q{sub min} > 1 for 5 to 10 s. The resultant equilibria are calculated to be stable to n = 1 pressure driven modes. The plasma is well into the second stability regime for high-n ballooning modes over a large part of the plasma volume. The role of continuous localized ECCD is studied for stabilizing m/n = 2/1 tearing modes. The progress towards validating current drive and transport models, consistent with experimental results, and developing self-consistent, integrated high performance AT scenarios is discussed.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.
Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X
2015-02-01
A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST. PMID:25725839
Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations
Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.
1986-06-01
Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.
Physics design requirements for the Tokamak Physics Experiment (TPX)
Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Nevins, W.M.; Porkolab, M.; Ulrickson, M.
1993-11-01
The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust.
Experimental studies of neoclassical tearing modes on the MAST spherical tokamak
NASA Astrophysics Data System (ADS)
Snape, Jack
Neoclassical tearing modes (NTMs) are plasma instabilities that can limit the performance of tokamaks and cause a termination of the plasma if allowed to grow. Systems to mitigate NTMs exist but have significant power requirements, which motivates further study of the mechanisms that lead to their growth in order to assist in the development of NTM avoidance strategies. NTMs typically require a seed magnetic island, above some threshold width, before they become unstable. The best available description of this threshold is the modified Rutherford equation (MRE) for NTM evolution; a combination of different models, which includes the effect of transport on NTM stability. Finite transport across magnetic field lines means that magnetic islands smaller than a critical width, w_c, do not completely flatten the pressure profiles and have a reduced bootstrap current perturbation, which leads to a threshold width, w_th. This thesis describes novel measurements of NTMs with mode structure m/n=2/1 on the MAST spherical tokamak (ST), which have allowed a direct evaluation of the effect of transport on island behaviour for the first time on an ST. Temperature profiles obtained with the upgraded Thomson scattering system on MAST have been used to constrain the solutions of a heat transport equation for a magnetic island, allowing the experimental determination of w_c, an important parameter in the MRE. The measured value of w_c = 0.7pm 0.2cm obtained for an ensemble of MAST discharges is used in an analysis of the MRE for 2/1 NTM onset and saturation on MAST. By using a probabilistic method for parameter and error estimation, which takes account of the experimental uncertainty on measured equilibrium parameters, it is found that the temporal evolution of the island size is well described by marginally, classically unstable NTMs (that is, Delta'>0) with strongly destabilising bootstrap current and stabilising curvature terms. Finally, an analysis of two beta ramp
Rotational stabilization of the resistive wall modes in tokamaks with a ferritic wall
Pustovitov, V. D.; Yanovskiy, V. V.
2015-03-15
The dynamics of the rotating resistive wall modes (RWMs) is analyzed in the presence of a uniform ferromagnetic resistive wall with μ{sup ^}≡μ/μ{sub 0}≤4 (μ is the wall magnetic permeability, and μ{sub 0} is the vacuum one). This mimics a possible arrangement in ITER with ferromagnetic steel in test blanket modules or in future experiments in JT-60SA tokamak [Y. Kamada, P. Barabaschi, S. Ishida, the JT-60SA Team, and JT-60SA Research Plan Contributors, Nucl. Fusion 53, 104010 (2013)]. The earlier studies predict that such a wall must provide a destabilizing influence on the plasma by reducing the beta limit and increasing the growth rates, compared to the reference case with μ{sup ^}=1. This is true for the locked modes, but the presented results show that the mode rotation changes the tendency to the opposite. At μ{sup ^}>1, the rotational stabilization related to the energy sink in the wall becomes even stronger than at μ{sup ^}=1, and this “external” effect develops at lower rotation frequency, estimated as several kHz at realistic conditions. The study is based on the cylindrical dispersion relation valid for arbitrary growth rates and frequencies. This relation is solved numerically, and the solutions are compared with analytical dependences obtained for slow (s/d{sub w}≫1) and fast (s/d{sub w}≪1) “ferromagnetic” rotating RWMs, where s is the skin depth and d{sub w} is the wall thickness. It is found that the standard thin-wall modeling becomes progressively less reliable at larger μ{sup ^}, and the wall should be treated as magnetically thick. The analysis is performed assuming only a linear plasma response to external perturbations without constraints on the plasma current and pressure profiles.
Rotational stabilization of the resistive wall modes in tokamaks with a ferritic wall
NASA Astrophysics Data System (ADS)
Pustovitov, V. D.; Yanovskiy, V. V.
2015-03-01
The dynamics of the rotating resistive wall modes (RWMs) is analyzed in the presence of a uniform ferromagnetic resistive wall with μ ̂≡μ/μ0≤4 ( μ is the wall magnetic permeability, and μ0 is the vacuum one). This mimics a possible arrangement in ITER with ferromagnetic steel in test blanket modules or in future experiments in JT-60SA tokamak [Y. Kamada, P. Barabaschi, S. Ishida, the JT-60SA Team, and JT-60SA Research Plan Contributors, Nucl. Fusion 53, 104010 (2013)]. The earlier studies predict that such a wall must provide a destabilizing influence on the plasma by reducing the beta limit and increasing the growth rates, compared to the reference case with μ ̂=1 . This is true for the locked modes, but the presented results show that the mode rotation changes the tendency to the opposite. At μ ̂>1 , the rotational stabilization related to the energy sink in the wall becomes even stronger than at μ ̂=1 , and this "external" effect develops at lower rotation frequency, estimated as several kHz at realistic conditions. The study is based on the cylindrical dispersion relation valid for arbitrary growth rates and frequencies. This relation is solved numerically, and the solutions are compared with analytical dependences obtained for slow ( s /dw≫1 ) and fast ( s /dw≪1 ) "ferromagnetic" rotating RWMs, where s is the skin depth and dw is the wall thickness. It is found that the standard thin-wall modeling becomes progressively less reliable at larger μ ̂ , and the wall should be treated as magnetically thick. The analysis is performed assuming only a linear plasma response to external perturbations without constraints on the plasma current and pressure profiles.
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-19
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
NASA Astrophysics Data System (ADS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more
Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak
Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.
2014-11-15
To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.
Plasma interaction with tungsten samples in the COMPASS tokamak in ohmic ELMy H-modes
NASA Astrophysics Data System (ADS)
Dimitrova, M.; Weinzettl, V.; Matejicek, J.; Popov, Tsv; Marinov, S.; Costea, S.; Dejarnac, R.; Stöckel, J.; Havlicek, J.; Panek, R.
2016-03-01
This paper reports experimental results on plasma interaction with tungsten samples with or without pre-grown He fuzz. Under the experimental conditions, arcing was observed on the fuzzy tungsten samples, resulting in localized melting of the fuzz structure that did not extend into the bulk. The parallel power flux densities were obtained from the data measured by Langmuir probes embedded in the divertor tiles on the COMPASS tokamak. Measurements of the current-voltage probe characteristics were performed during ohmic ELMy H-modes reached in deuterium plasmas at a toroidal magnetic field BT = 1.15 T, plasma current Ip = 300 kA and line-averaged electron density ne = 5×1019 m-3. The data obtained between the ELMs were processed by the recently published first-derivative probe technique for precise determination of the plasma potential and the electron energy distribution function (EEDF). The spatial profile of the EEDF shows that at the high-field side it is Maxwellian with a temperature of 5 -- 10 eV. The electron temperatures and the ion-saturation current density obtained were used to evaluate the radial distribution of the parallel power flux density as being in the order of 0.05 -- 7 MW/m2.
Observation of ion-cyclotron-frequency mode-conversion flow drive in tokamak plasmas.
Lin, Y; Rice, J E; Wukitch, S J; Greenwald, M J; Hubbard, A E; Ince-Cushman, A; Lin, L; Porkolab, M; Reinke, M L; Tsujii, N
2008-12-01
Strong toroidal flow (Vphi) and poloidal flow (Vtheta) have been observed in D-3He plasmas with ion cyclotron range of frequencies (ICRF) mode-conversion (MC) heating on the Alcator C-Mod tokamak. The toroidal flow scales with the rf power Prf (up to 30 km/s per MW), and is significantly larger than that in ICRF minority heated plasmas at the same rf power or stored energy. The central Vphi responds to Prf faster than the outer regions, and the Vphi(r) profile is broadly peaked for r/a < or =0.5. Localized (0.3 < or = r/a < or =0.5) Vtheta appears when Prf > or =1.5 MW and increases with power (up to 0.7 km/s per MW). The experimental evidence together with numerical wave modeling suggests a local flow drive source due to the interaction between the MC ion cyclotron wave and 3He ions. PMID:19113561
Overview of JT-60U results towards the establishment of advanced tokamak operation
NASA Astrophysics Data System (ADS)
Oyama, N.; JT-60 Team
2009-10-01
Recent JT-60U experimental results towards the establishment of advanced tokamak (AT) operation are reviewed. We focused on the further expansion of the operational regime of AT plasmas towards higher βN regime with wall stabilization. After the installation of ferritic steel tiles in 2005, the high power heating in a large plasma cross-section in which the wall stabilization is expected has been possible. In 2007, the modification of power supply of NBIs improved the flexibility of the heating profile in long-pulse plasmas. The investigation of key physics issues for the establishment of steady-state AT operation is also in progress using new diagnostics and improved heating systems. In weak magnetic shear plasma, high βN ~ 3 exceeding the ideal MHD limit without a conducting wall ( \\beta_N^{{\\scriptsize{\\mbox{no-wall}}}} ) is sustained for ~5 s (~3τR) with RWM stabilization by a toroidal rotation at the q = 2 surface. External current drivers of negative-ion based NB and lower-hybrid waves together with a large bootstrap current fraction (fBS) of 0.5 can sustain the whole plasma current of 0.8 MA for 2 s (1.5τR). In reversed magnetic shear plasma, high βN ~ 2.7 (βp ~ 2.3) exceeding \\beta_N^{{\\scriptsize{\\mbox{no-wall}}}} with qmin ~ 2.4 (q95 ~ 5.3), HH98(y,2) ~ 1.7 and fBS ~ 0.9 is obtained with wall stabilization. These plasma parameters almost satisfy the requirement of ITER steady-state scenario. In long-pulse plasmas with positive magnetic shear, a high βNHH98(y,2) of 2.6 with βN ~ 2.6 and HH98(y,2) ~ 1 is sustained for 25 s, significantly longer than the current diffusion time (~14τR) without neoclassical tearing modes (NTMs). A high G-factor, \\beta_NH_{89P}/q_{95}^{2} (a major of fusion gain), of 0.54 and a large fBS > 0.43 are suitable for ITER hybrid operation scenario. Based on the plasma for ITER hybrid operation scenario, the high βN of 2.1 with good thermal plasma confinement of HH98(y,2) > 0.85 is sustained for longer than 12 s at
NASA Astrophysics Data System (ADS)
Furukawa, M.; Yoshida, Z.; Tokuda, S.
2005-07-01
Eigenfunction expansions of fields encounter practical difficulty when the generating operator has continuous spectra (as is common in magnetohydrodynamics theories). An appropriate "weight function" may remove the singularity of the eigenfunctions belonging to the continuous spectrum and the complete set of regularized (square-integrable) eigenfunctions can be obtained. As an example, this method has been applied for ballooning modes in toroidally rotating tokamaks. While the weight function truncates the long-term behavior of modes, the regularized eigenfunctions can describe transient behavior within a finite time.
NASA Astrophysics Data System (ADS)
Marinoni, A.; Rost, J. C.; Porkolab, M.; Hubbard, A. E.; Osborne, T. H.; White, A. E.; Whyte, D. G.; Rhodes, T. L.; Davis, E. M.; Ernst, D. R.; Burrell, K. H.
2015-09-01
The I-mode regime, routinely observed on the Alcator C-Mod tokamak, is characterized by an edge energy transport barrier without an accompanying particle barrier and with broadband instabilities, known as weakly coherent modes (WCM), believed to regulate particle transport at the edge. Recent experiments on the DIII-D tokamak exhibit I-mode characteristics in various physical quantities. These DIII-D plasmas evolve over long periods, lasting several energy confinement times, during which the edge electron temperature slowly evolves towards an H-mode-like profile, while maintaining a typical L-mode edge density profile. During these periods, referred to as I-mode phases, the radial electric field at the edge also gradually reaches values typically observed in H-mode. Density fluctuations measured with the phase contrast imaging diagnostic during I-mode phases exhibit three features typically observed in H-mode on DIII-D, although they develop progressively with time and without a sharp transition: the intensity of the fluctuations is reduced; the frequency spectrum is broadened and becomes non-monotonic; two dimensional space-time spectra appear to approach those in H-mode, showing phase velocities of density fluctuations at the edge increasing to about 10 km s-1. However, in DIII-D there is no clear evidence of the WCM. Preliminary linear gyro-kinetic simulations are performed in the pedestal region with the GS2 code and its recently upgraded model collision operator that conserves particles, energy and momentum. The increased bootstrap current and flow shear generated by the temperature pedestal are shown to decrease growth rates, thus possibly generating a feedback mechanism that progressively stabilizes fluctuations.
Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C.
2001-02-02
First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement.
Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S
2015-07-01
A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties. PMID:26233377
Lampert, M.; Anda, G.; Réfy, D.; Zoletnik, S.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Nam, Y. U.
2015-07-15
A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.
2015-02-15
A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.
The study of heat flux for disruption on experimental advanced superconducting tokamak
NASA Astrophysics Data System (ADS)
Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen
2016-05-01
Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Zakharov, L. E.; Xie, H.; Chen, Z. X.
2015-02-01
A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.
CONTROL OF MHD STABILITY IN DIII-D ADVANCED TOKAMAK DISCHARGES
STRAIT,EJ; BIALEK,J; CHANCE,MS; CHU,MS; EDGELL,DH; FERRON,JR; GREENFIELD,CM; GAROFALO,AM; HUMPHREYS,DA; JACKSON,GL; JAYAKUMAR,RJ; JERNIGAN,TC; KIM,JS; LA HAYE,RJ; LAO,LL; LUCE,TC; MAKOWSKI,MA; MURAKAMI,M; NAVRATIL,GA; OKABAYASHI,M; PETTY,CC; REIMERDES,H; SCOVILLE,JT; TURNBULL,AD; WADE,MR; WALKER,ML; WHYTE,DG; DIII-D TEAM
2003-06-01
OAK-B135 Advanced tokamak research in DIII-D seeks to optimize the tokamak approach for fusion energy production, leading to a compact, steady state power source. High power density implies operation at high toroidal beta, {beta}{sub T}=
2{micro}{sub 0}/B{sub T}{sup 2}, since fusion power density increases roughly as the square of the plasma pressure. Steady-state operation with low recirculating power for current drive implies operation at high poloidal beta, {beta}{sub P} =
2{micro}{sub 0}/{sup 2}, in order to maximize the fraction of self-generated bootstrap current. Together, these lead to a requirement of operation at high normalized beta, {beta}{sub N} = {beta}{sub T}(aB/I), since {beta}{sub P}{beta}{sub T} {approx} 25[(1+{kappa}{sup 2})/2] ({beta}{sub N}/100){sup 2}. Plasmas with high normalized beta are likely to operate near one or more stability limits, so control of MHD stability in such plasmas is crucial.
NASA Astrophysics Data System (ADS)
Xiong, H.; Xu, G. S.; Sun, Y.; Wan, B. N.; Yan, N.; Wang, H. Q.; Wang, F. D.; Naulin, V.
2013-12-01
Intrinsic rotation has been observed in lower hybrid current-driven (LHCD) H-mode plasmas with type-III edge-localized modes (ELMs) on Experimental Advanced Superconducting Tokamak (EAST), and it is found that the edge toroidal rotation accelerated before the onset of the ELM burst. Magnetic perturbation analysis shows there is a perturbation amplitude growth below 30 kHz corresponding to the edge rotation acceleration. Using the filament model, the neoclassical toroidal viscosity (NTV) code shows there is a co-current NTV torque at the edge, which may be responsible for the edge rotation acceleration. For maximum displacement ∼1 cm and toroidal mode number n=15, the calculated torque density is ∼0.44 N/m2, comparable with the average edge toroidal angular momentum change rate ∼1.24 N/m2. Here, the 1 cm maximum magnetic surface displacement estimated from the experimental observation corresponds to a maximum magnetic perturbation ∼ 10-3-10-2 T, in accordance with magnetic perturbation measurements during ELMs. By varying n from 10 to 20, the magnitude of the edge NTV torque density is mainly ∼0.1-1 N/m2. This significant co-current torque indicates that the NTV theory may be important in rotation problems during ELMs in H-mode plasmas. To better illuminate the problem, magnetic surface deformation obtained from other codes is desired for a more accurate calculation.
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept