Sample records for advanced underground coal

  1. Resource targets for advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Hoag, J. H.; Whipple, D. W.; Habib-Agahi, H.; Lavin, M. L.

    1982-01-01

    Resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems are identified. A comprehensive examination of conventional and unconventional coals with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry was made. The results indicate that the resource of primary importance is flat lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat lying multiple seams and thin seams (especially those in Appalachia). Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions of subregions, but the limited tonnage available places them in a position of tertiary importance.

  2. Underground Coal Preparation System and Applications

    NASA Astrophysics Data System (ADS)

    Wei, Cao; DeYong, Shang; BaoNing, Zhang

    2018-03-01

    The underground coal preparation is a cutting-edge technology of the coal industry worldwide. This paper introduced the meaning of implementing the underground coal preparation, and the practical applications of underground mechanical moving screen jig, underground heavy medium shallow slot and underground air jigger. Through analyzing the main separation equipment and the advantages and disadvantages of three primary processes from aspects of process complexity, slime water treatment, raw coal preparation, etc., the difference among technology investment, construction scale, production cost and economic benefit is concluded.

  3. Advanced geophysical underground coal gasification monitoring

    DOE PAGES

    Mellors, Robert; Yang, X.; White, J. A.; ...

    2014-07-01

    Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Activemore » and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.« less

  4. Requirements for the conceptual design of advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lavin, M. L.

    1981-01-01

    Conceptual design requirements are presented for underground coal mining systems having substantially improved performance in the areas of production cost and miner safety. Mandatory performance levels are also set for miner health, environmental impact, and coal recovery. In addition to mandatory design goals and constraints, a number of desirable system characteristics are identified which must be assessed in terms of their impact on production cost and their compatibility with other system elements. Although developed for the flat lying, moderately thick seams of Central Appalachia, these requirements are designed to be easily adaptable to other coals.

  5. 78 FR 73471 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension...), MSHA published a Request for Information on Refuge Alternatives for Underground Coal Mines. The RFI...

  6. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension... Alternatives for Underground Coal Mines. The RFI comment period had been scheduled to close on October 7, 2013...

  7. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Administration 30 CFR Parts 7 and 75 Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal... Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Limited reopening of the... for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of Appeals...

  8. A life-cycle description of underground coal mining

    NASA Technical Reports Server (NTRS)

    Lavin, M. L.; Borden, C. S.; Duda, J. R.

    1978-01-01

    An initial effort to relate the major technological and economic variables which impact conventional underground coal mining systems, in order to help identify promising areas for advanced mining technology is described. The point of departure is a series of investment analyses published by the United States Bureau of Mines, which provide both the analytical framework and guidance on a choice of variables.

  9. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Reopen... coal mines. The U.S. Court of Appeals for the District of Columbia Circuit remanded a training... for refuge alternatives in underground coal mines. On January 13, 2009, the United Mine Workers of...

  10. VRLane: a desktop virtual safety management program for underground coal mine

    NASA Astrophysics Data System (ADS)

    Li, Mei; Chen, Jingzhu; Xiong, Wei; Zhang, Pengpeng; Wu, Daozheng

    2008-10-01

    VR technologies, which generate immersive, interactive, and three-dimensional (3D) environments, are seldom applied to coal mine safety work management. In this paper, a new method that combined the VR technologies with underground mine safety management system was explored. A desktop virtual safety management program for underground coal mine, called VRLane, was developed. The paper mainly concerned about the current research advance in VR, system design, key techniques and system application. Two important techniques were introduced in the paper. Firstly, an algorithm was designed and implemented, with which the 3D laneway models and equipment models can be built on the basis of the latest mine 2D drawings automatically, whereas common VR programs established 3D environment by using 3DS Max or the other 3D modeling software packages with which laneway models were built manually and laboriously. Secondly, VRLane realized system integration with underground industrial automation. VRLane not only described a realistic 3D laneway environment, but also described the status of the coal mining, with functions of displaying the run states and related parameters of equipment, per-alarming the abnormal mining events, and animating mine cars, mine workers, or long-wall shearers. The system, with advantages of cheap, dynamic, easy to maintenance, provided a useful tool for safety production management in coal mine.

  11. 78 FR 48593 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... conduct research and tests concerning the use of refuge chambers in underground coal mines, and to report... of Information MSHA will post all comments and information on the Internet without change, including... actions. NIOSH finalized its Research Report on Refuge Alternatives for Underground Coal Mines (NIOSH...

  12. Overall requirements for an advanced underground coal extraction system. [environment effects, miner health and safety, production cost, and coal conservation

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.; Lavin, M. L.

    1980-01-01

    Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.

  13. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  14. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  15. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  16. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  17. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    PubMed Central

    Zhao, Yiming; Zhang, Nong; Si, Guangyao

    2016-01-01

    Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG) material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine. PMID:27775657

  18. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on...

  19. 77 FR 4834 - Proposed Extension of Existing Information Collection; Refuge Alternatives for Underground Coal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... Extension of Existing Information Collection; Refuge Alternatives for Underground Coal Mines AGENCY: Mine... Underground Coal Mines DATES: Submit comments on or before April 2, 2012. ADDRESSES: Comments must be.... Title: Refuge Alternatives for Underground Coal Mines. OMB Number: 1219-0146. Affected Public: Business...

  20. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds...

  1. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds...

  2. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds...

  3. [Effect of underground work on cardiovascular system 
in coal miners].

    PubMed

    Lai, Zhiwei; Wang, Xiaoye; Tan, Hongzhuan; Huang, Yaoyu; Lu, Changcheng

    2015-10-01

    To study the effect of underground work on cardiovascular system health in coal miners.
 Male coal miners, who received electrocardiographic examinations between June, 2013 and August, 2014 in Hunan Prevention and Treatment Institute for Occupational Diseases to exclude pneumoconiosis, were enrolled for this study (n=3 134). Miners with 2 years or more underground work experience were selected as the exposed group (n=2 370), while miners without underground work experience were selected as the control group (n=764). The prevalence of electrocardiographic abnormalities and the influential factors were compared between the 2 groups.
 The prevalences of electrocardiographic abnormalities, hypertension, heart rate abnormalities and cardiovascular system abnormalities in the exposed group vs the control group were 37.6% vs 25.4%, 20.5% vs 13.4%, 5.7% vs 6.0%, 49.8% vs 35.2%, respectively. The cardiovascular system abnormalities were correlated with the underground work (OR=3.128, 95% CI: 1.969-4.970), the underground work experience (OR=1.205, 95% CI: 1.070-1.358) and the type of works (mining worker OR=1.820, 95% CI: 1.527-2.169; auxiliary worker OR=1.937, 95% CI: 1.511-2.482; other worker OR=3.291, 95%CI: 2.120-5.109).
 Underground work may increase the prevalence of cardiovascular system abnormalities for coal miners. The longer the coal miners work in underground, the higher the risk of the cardiovascular system abnormalities they are.

  4. 76 FR 35801 - Examinations of Work Areas in Underground Coal Mines and Pattern of Violations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ..., 1219-AB73 Examinations of Work Areas in Underground Coal Mines and Pattern of Violations AGENCY: Mine... public hearings on the Agency's proposed rules for Examinations of Work Areas in Underground Coal Mines... Underground Coal Mines' submissions, and with ``RIN 1219-AB73'' for Pattern of Violations' submissions...

  5. 76 FR 25277 - Examinations of Work Areas in Underground Coal Mines and Pattern of Violations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ..., 1219-AB73 Examinations of Work Areas in Underground Coal Mines and Pattern of Violations AGENCY: Mine... four public hearings on the Agency's proposed rules for Examinations of Work Areas in Underground Coal... 1219-AB75'' for Examinations of Work Areas in Underground Coal Mines' submissions, and with ``RIN 1219...

  6. Application of Paste Backfill in Underground Coal Fires

    NASA Astrophysics Data System (ADS)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  7. Health requirements for advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1980-01-01

    Health requirements were developed as long range goals for future advanced coal extraction systems which would be introduced into the market in the year 2000. The goal of the requirements is that underground coal miners work in an environment that is as close as possible to the working conditions of the general population, that they do not exceed mortality and morbidity rates resulting from lung diseases that are comparable to those of the general population, and that their working conditions comply as closely as possible to those of other industries as specified by OSHA regulations. A brief technique for evaluating whether proposed advanced systems meet these safety requirements is presented, as well as a discussion of the costs of respiratory disability compensation.

  8. Underground thermal generation of hydrocarbons from dry, southwestern coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderborgh, N.E.; Elliott, G.R.B.

    1978-01-01

    The LASL underground coal conversion concept produces intermediate-BTU fuel gas for nearby industries such as ''minemouth'' electric power plants, plus major byproducts in the form of liquid and gaseous hydrocarbons for feedstocks to chemical plants e.g., substitute natural gas (SNG) producers. The concept involves controlling the water influx and drying the coal, generating hydrocarbons, by pyrolysis and finally gasifying the residual char with O/sub 2//CO/sub 2/ or air/CO/sub 2/ mixtures to produce industrial fuel gases. Underground conversion can be frustrated by uncontrolled water in the coal bed. Moisture can (a) prevent combustion, (b) preclude fuel gas formation by lowering reactionmore » zone temperatures and creating kinetic problems, (c) ruin product gas quality by dropping temperatures into a thermodynamically unsatisfactory regime, (d) degrade an initially satisfactory fuel gas by consuming carbon monoxide, (e) waste large amounts of heat, and (f) isolate reaction zones so that the processing will bypass blocks of coal.« less

  9. Prevalence and Associated Factors of Depressive Symptoms among Chinese Underground Coal Miners

    PubMed Central

    Liu, Li; Wang, Lie; Chen, Jie

    2014-01-01

    Although underground coal miners are quite susceptible to depressive symptoms due to a highly risky and stressful working environment, few studies have focused on this issue. The purpose of the study was to evaluate the prevalence of depressive symptoms and to explore its associated factors in this population. A cross-sectional survey was conducted in a coal-mining population in northeast China. A set of self-administered questionnaires was distributed to 2500 underground coal miners (1,936 effective respondents). Depressive symptoms, effort-reward imbalance (ERI), overcommitment (OC), perceived physical environment (PPE), work-family conflict (WFC), and some demographic and working characteristics were measured anonymously. The prevalence of depressive symptoms was 62.8%, and the mean level was 20.00 (9.99). Hierarchical linear regression showed that marital status, education, monthly income, and weekly working time were significantly associated with depressive symptoms. A high level of depressive symptoms was significantly associated with high ERI, PPE, WFC, and OC. Accordingly, most Chinese underground coal miners probably have depressive symptoms that are mainly predicted by some occupational psychosocial factors. Efforts should be made to develop strategies to reduce ERI and OC, improve physical working environment, and care for workers' family well-being, thereby mitigating the risk of depression among Chinese underground coal miners. PMID:24707503

  10. Prevalence and associated factors of depressive symptoms among Chinese underground coal miners.

    PubMed

    Liu, Li; Wang, Lie; Chen, Jie

    2014-01-01

    Although underground coal miners are quite susceptible to depressive symptoms due to a highly risky and stressful working environment, few studies have focused on this issue. The purpose of the study was to evaluate the prevalence of depressive symptoms and to explore its associated factors in this population. A cross-sectional survey was conducted in a coal-mining population in northeast China. A set of self-administered questionnaires was distributed to 2500 underground coal miners (1,936 effective respondents). Depressive symptoms, effort-reward imbalance (ERI), overcommitment (OC), perceived physical environment (PPE), work-family conflict (WFC), and some demographic and working characteristics were measured anonymously. The prevalence of depressive symptoms was 62.8%, and the mean level was 20.00 (9.99). Hierarchical linear regression showed that marital status, education, monthly income, and weekly working time were significantly associated with depressive symptoms. A high level of depressive symptoms was significantly associated with high ERI, PPE, WFC, and OC. Accordingly, most Chinese underground coal miners probably have depressive symptoms that are mainly predicted by some occupational psychosocial factors. Efforts should be made to develop strategies to reduce ERI and OC, improve physical working environment, and care for workers' family well-being, thereby mitigating the risk of depression among Chinese underground coal miners.

  11. Fast and safe gas detection from underground coal fire by drone fly over.

    PubMed

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Regional price targets appropriate for advanced coal extraction

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Whipple, D. M.

    1980-01-01

    A methodology is presented for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed is a supply and demand model that focuses on underground mining since the advanced technology is expected to be developed for these reserves by the target years. Coal reserve data and the cost of operating a mine are used to obtain the minimum acceptable selling price that would induce the producer to bring the mine into production. Based on this information, market supply curves can be generated. Demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. The results show a growth in the size of the markets for compliance and low sulphur coal regions. A significant rise in the real price of coal is not expected even by the year 2000. The model predicts heavy reliance on mines with thick seams, larger block size and deep overburden.

  13. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... Agency's proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in... proposed rule for Proximity Detection Systems on Continuous Mining Machines in Underground Coal Mines. Due...

  14. 76 FR 11187 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards... rule addressing Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health..., and weekly examinations of underground coal mines. This extension gives commenters an additional 30...

  15. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  16. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  17. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  18. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  19. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  20. A Closed Network Queue Model of Underground Coal Mining Production, Failure, and Repair

    NASA Technical Reports Server (NTRS)

    Lohman, G. M.

    1978-01-01

    Underground coal mining system production, failures, and repair cycles were mathematically modeled as a closed network of two queues in series. The model was designed to better understand the technological constraints on availability of current underground mining systems, and to develop guidelines for estimating the availability of advanced mining systems and their associated needs for spares as well as production and maintenance personnel. It was found that: mine performance is theoretically limited by the maintainability ratio, significant gains in availability appear possible by means of small improvements in the time between failures the number of crews and sections should be properly balanced for any given maintainability ratio, and main haulage systems closest to the mine mouth require the most attention to reliability.

  1. Influence of Geological Structure on Coal and Gas Outburst Occurrences in Turkish Underground Coal Mines

    NASA Astrophysics Data System (ADS)

    Esen, Olgun; Özer, Samet Can; Fişne, Abdullah

    2015-04-01

    Coal and gas outbursts are sudden and violent releases of gas and in company with coal that result from a complex function of geology, stress regime with gas pressure and gas content of the coal seam. The phenomena is referred to as instantaneous outbursts and have occurred in virtually all the major coal producing countries and have been the cause of major disasters in the world mining industry. All structures from faults to joints and cleats may supply gas or lead to it draining away. Most geological structures influence the way in which gas can drain within coal seams. From among all the geological factors two groups can be distinguished: parameters characterising directly the occurrence and geometry of the coal seams; parameters characterising the tectonic disturbances of the coal seams and neighbouring rocks. Also dykes may act as gas barriers. When the production of the coal seam is advanced in mine working areas, these barriers are failed mostly in the weak and mylonitized zones. Geology also plays a very important role in the outburst process. Coal seams of complex geological structure including faults, folds, and fractured rocks are liable to outbursts if coal seams and neighbouring rocks have high gas content level. The purpose of the study is to enlighten the coal industry in Turkey to improving mine safety in underground coal production and decrease of coal and gas outburst events due to increasing depth of mining process. In Turkey; the years between 1969 and 2013, the number of 90 coal and gas outbursts took place in Zonguldak Hard Coal Basin in both Kozlu and Karadon Collieries. In this study the liability to coal and gas outburst of the coal seams are investigated by measuring the strength of coal and the rock pressure. The correlation between these measurements and the event locations shows that the geological structures resulted in 52 events out of 90 events; 19 events close to the fault zones, 25 events thorough the fault zones and 8 events in

  2. A study of leakage rates through mine seals in underground coal mines

    PubMed Central

    Schatzel, Steven J.; Krog, Robert B.; Mazzella, Andrew; Hollerich, Cynthia; Rubinstein, Elaine

    2015-01-01

    The National Institute for Occupational Safety and Health conducted a study on leakage rates through underground coal mine seals. Leakage rates of coal bed gas into active workings have not been well established. New seal construction standards have exacerbated the knowledge gap in our understanding of how well these seals isolate active workings near a seal line. At a western US underground coal mine, we determined seal leakage rates ranged from about 0 to 0.036 m3/s for seven 340 kPa seals. The seal leakage rate varied in essentially a linear manner with variations in head pressure at the mine seals. PMID:26322119

  3. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  4. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  5. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  6. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated coal mines, notification by the operator... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75...

  7. Research of Characteristics of the Low Voltage Power Line in Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Wei, Shaoliang; Qin, Shiqun; Gao, Wenchang; Cheng, Fengyu; Cao, Zhongyue

    The power line communications (PLCs) can count on existing electrical connections reaching each corner in the locations where such applications are required, so signal transmission over power lines is nowadays gaining more and more interest for applications like internet. The research of characteristics of the low voltage power line is the fundamental and importance task. This work presents a device to test the characteristics of the low voltage power line. The low voltage power line channel characteristics overground and the channel characteristics underground were tested in using this device. Experiments show that, the characteristics are different between the PLCs channel underground coal mine and the PLC channel overground. Different technology should be adopted to structure the PLCs channel model underground coal mine and transmit high speed digital signal. But how to use the technology better to the high-speed digital communication under coal mine is worth of further studying.

  8. An overview of the geological controls in underground coal gasification

    NASA Astrophysics Data System (ADS)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  9. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    PubMed Central

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  10. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  11. Psycho-social aspects of productivity in underground coal mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akin, G.

    1981-10-01

    The psychosocial aspects of productivity in underground coal mining were investigated. The following topics were studied: (1) labor productivity in deep mines and the explanations for productivity changes; (2) current concepts and research on psychosocial factors in productivity; (3) a survey of experiments in productivity improvement (4) the impact of the introduction of new technology on the social system and the way that it accomplishes production (5) a clinical study of a coal mining operation, model described how production is actually accomplished by workers at the coal face; and (6) implications and recommendations for new technology design, implementation and ongoingmore » management.« less

  12. Underground Coal Gasification - Experience of ONGC

    NASA Astrophysics Data System (ADS)

    Jain, P. K.

    2017-07-01

    Underground Coal Gasification (UCG) is expected to be game changer for nation like ours that requires large amounts of energy but have few natural resources other than coal. ONGC, being an integrated energy company and due to synergy between E & P operations and UCG, envisaged opportunities in UCG business. Its first campaign on UCG started in 1980s. With its initiative, a National Committee for UCG was constituted with representatives from Ministry of Petroleum, Dept. of Coal, CSIR, CMPDIL, State of Gujarat and ONGC for experimenting a pilot. It was decided in mid-1986 to carry out a UCG pilot in Sobhasan area of Mehsana district which was to be funded by OIDB. Two information wells were drilled to generate geological, geophysical, geo-hydrological data and core/coal samples. 3-D seismic survey data of Mehsana area was processed and interpreted and geological model was prepared. Basic designing of pilot project, drilling and completion, strategy of process wells and designing of surface facilities were carried out. The project could not be pursued further due to escalation in cost and contractual difficulty with design consultant. ONGC second UCG campaign commenced with signing of an agreement of collaboration (AOC) with Skochinsky Institute of Mining (SIM), Russia on 25th November 2004 for Underground Coal Gasification (UCG). In parallel, MOUs were signed with major coal and power companies, namely, Gujarat Industries Power Company Ltd (GIPCL), Gujarat Mineral Development Corporation Ltd (GMDC), Coal India Ltd (CIL), Singareni Colliery Company Ltd (SCCL) and NLC India Ltd. Under the AOC, suitability study was carried out for different sites belonging to MOU companies. Only Vastan mine block, Nani Naroli, Surat, Gujarat was found to be suitable for UCG. Therefore, subsequent stages of detailed characterization & pilot layout, detailed engineering design were taken up for Vastan site. After enormous efforts for quite long since 2006, in the absence of UCG policy

  13. Evaluating the feasibility of underground coal gasification in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Harju, J.A.; Schmit, C.R.

    Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south ofmore » Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.« less

  14. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  15. Global Development of Commercial Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Blinderman, M. S.

    2017-07-01

    Global development of Underground Coal Gasification (UCG) is considered here in light of latest trends of energy markets and environmental regulations in the countries that have been traditional proponents of UCG. The latest period of UCG development triggered by initial success of the Chinchilla UCG project (1997-2006) has been characterized by preponderance of privately and share-market funded developments. The deceleration of UCG commercialization has been in part caused by recent significant decrease of world oil, gas and coal prices. Another substantial factor was lack of necessary regulations governing extraction and conversion of coal by UCG method in the jurisdictions where the UCG projects were proposed and developed. Along with these objective causes there seem to have been more subjective and technical reasons for a slowdown or cancelation of several significant UCG projects, including low efficiency, poor environmental performance, and inability to demonstrate technology at a sufficient scale and/or at a competitive cost. Latest proposals for UCG projects are briefly reviewed.

  16. Sensing underground coal gasification by ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kotyrba, Andrzej; Stańczyk, Krzysztof

    2017-12-01

    The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.

  17. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Deo, M.; Edding, E.G.

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand themore » feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO 2 storage. In order to help determine the amount of CO 2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.« less

  18. A Look into Miners' Health in Prevailing Ambience of Underground Coal Mine Environment

    NASA Astrophysics Data System (ADS)

    Dey, N. C.; Pal, S.

    2012-04-01

    Environmental factors such as noise, vibration, illumination, humidity, temperature and air velocity, etc. do play a major role on the health, comfort and efficient performance of underground coal miners at work. Ergonomics can help to promote health, efficiency and well being of miners and to make best use of their capabilities within the ambit of underground coal mine environment. Adequate work stretch and work-rest scheduling have to be determined for every category of miners from work physiology point of view so as to keep better health of the miners in general and to have their maximum efficiency at work in particular.

  19. Effect of the 2.0 mg/m3 coal mine dust standard on underground environmental dust levels.

    PubMed

    Parobeck

    1975-08-01

    The 1969 Federal Coal Mine Health and Safety Act established environmental dust standards for underground coal mines. The Act requires that the average concentration of respirable dust in the active workings of a mine be maintained at or below 3.0 mg/m3; and, that effective December 30, 1972, the 3.0 mg/m3 standard be reduced to 2.0 mg/m3. This paper discusses the current status of dust levels in our underground coal mines, the effect of the 2.0 mg/m3 standard on underground dust levels, and associates the current levels with specific operations and occupations. The comparison is made between current levels and those existing prior to December 30, 1972.

  20. State-of-the-art study of resource characterization and planning for underground coal mining. Final technical report as of June 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, D.; Ingham, W.; Kauffman, P.

    With the rapid developments taking place in coal mining technology and due to high investment costs, optimization of the structure of underground coal mines is crucial to the success of the mining project. The structure of a mine, once it is developed, cannot be readily changed and has a decisive influence on the productivity, safety, economics, and production capacity of the mine. The Department of Energy desires to ensure that the resource characterization and planning activity for underground coal mining will focus on those areas that offer the most promise of being advanced. Thus, this project was undertaken by Managementmore » Engineers Incorporated to determine the status in all aspects of the resource characterization and planning activities for underground coal mining as presently performed in the industry. The study team conducted a comprehensive computerized literature search and reviewed the results. From this a selection of the particularly relevant sources were annotated and a reference list was prepared, catalogued by resource characterization and mine planning activity. From this data, and discussions with industry representatives, academia, and research groups, private and federal, an assessment and evaluation was made of the state-of-the-art of each element in the resource characterization and mine planning process. The results of this analysis lead to the identifcation of areas requiring research and, specifically, those areas where DOE research efforts may be focused.« less

  1. 77 FR 43721 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards... effectiveness of information collection requirements contained in the final rule on Examinations of Work Areas... requirements in MSHA's final rule on Examinations of Work Areas in Underground Coal Mines for Violations of...

  2. Underground coal miners' foot and boot problems.

    PubMed

    Wood, G; Marr, S; Berry, G; Nubé, V; Cole, J

    1999-11-01

    The New South Wales (NSW) Joint Coal Board Health and Safety Trust funded an investigation into foot problems reported by 400 randomly selected underground coal miners from 15 mines in NSW. Miners were interviewed and their responses were entered directly into laptop computers. Digital cameras were also used to take pictures of skin conditions and miners' posture. Observations of the skin results indicate that miners find gumboots to be hot, sweaty and uncomfortable. Skin breakdown and tinea, is frequent and disabling and responsible for absences from the workforce that are costly for both miner and employer. A more comfortable and better designed boot is needed, fabricated in waterproof leather together with socks that 'wick' the moisture away from the foot. Socks worn were of varying components and washed at irregular intervals, indicating a need for regular changes of socks and improved hygiene.

  3. Proceedings of second annual underground coal gasification symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuck, L Z

    The Second Annual Underground Coal Gasification Symposium was sponsored by the Morgantown Energy Research Center of the US Energy Research and Development Administration and held at Morgantown, WV, August 10-12, 1976. Fifty papers of the proceedings have been entered individually into EDB and ERA. While the majority of the contribution involved ERDA's own work in this area, there were several papers from universities, state organizations, (industrial, engineering or utility companies) and a few from foreign countries. (LTN)

  4. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    PubMed Central

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  5. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research.

    PubMed

    Murphy, M M

    2016-02-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  6. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    NASA Astrophysics Data System (ADS)

    Murphy, M. M.

    2016-02-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  7. Serum angiotensin-converting enzyme is elevated in association with underground coal mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, A.B.; Cale, W.F.; Lapp, N.L.

    1991-10-01

    Serum angiotensin-converting enzyme activity (SACE) and lysozyme activity were measured in a group of 40 underground coal miners and two control groups, 20 subjects with sarcoidosis and 15 normal non-dust-exposed volunteers. The miners were grouped first according to whether they had recent exposure (still actively mining or retired three years or less prior to measurement) or temporally more distant exposure (retired more than three years prior to measurement). Secondly, they were grouped as to whether or not they had coal workers' pneumoconiosis (CWP). The subjects with sarcoidosis were grouped according to disease activity. As expected, the subjects with active sarcoidosismore » had elevated SACE activity compared with normal subjects. The coal miners as a group did not have elevation of their SACE activity. However, the coal miners with recent exposure had elevated SACE activity (57.1 {plus minus} 3.9 U/ml) compared with normal controls (43.8 {plus minus} 1.5 U/ml, p = 0.007). The SACE activity in miners without recent exposure was not elevated (39.8 {plus minus} 1.3 U/ml) compared with the normal controls. No increase in SACE activity was found when the miners were grouped according to the presence or absence of CWP. In contrast, the miners' serum lysozyme activity was not elevated. Since alveolar macrophages are a potential source of SACE, elevation of SACE activity in underground coal miners may reflect alveolar macrophage activation caused by increased pulmonary mixed coal mine dust burden. Furthermore, since both SACE and serum lysozyme are elevated in association with silicosis, these findings may confirm that the macrophage responses to inhaled silica and coal dust differ.« less

  8. Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry

    NASA Astrophysics Data System (ADS)

    Yang, Zefa; Li, Zhiwei; Zhu, Jianjun; Yi, Huiwei; Feng, Guangcai; Hu, Jun; Wu, Lixin; Preusse, Alex; Wang, Yunjia; Papst, Markus

    2018-01-01

    It is crucial to locate underground goafs (i.e., mined-out areas) resulting from coal mining and define their spatial dimensions for effectively controlling the induced damages and geohazards. Traditional geophysical techniques for locating and defining underground goafs, however, are ground-based, labour-consuming and costly. This paper presents a novel space-based method for locating and defining the underground goaf caused by coal extraction using Interferometric Synthetic Aperture Radar (InSAR) techniques. As the coal mining-induced goaf is often a cuboid-shaped void and eight critical geometric parameters (i.e., length, width, height, inclined angle, azimuth angle, mining depth, and two central geodetic coordinates) are capable of locating and defining this underground space, the proposed method reduces to determine the eight geometric parameters from InSAR observations. Therefore, it first applies the Probability Integral Method (PIM), a widely used model for mining-induced deformation prediction, to construct a functional relationship between the eight geometric parameters and the InSAR-derived surface deformation. Next, the method estimates these geometric parameters from the InSAR-derived deformation observations using a hybrid simulated annealing and genetic algorithm. Finally, the proposed method was tested with both simulated and two real data sets. The results demonstrate that the estimated geometric parameters of the goafs are accurate and compatible overall, with averaged relative errors of approximately 2.1% and 8.1% being observed for the simulated and the real data experiments, respectively. Owing to the advantages of the InSAR observations, the proposed method provides a non-contact, convenient and practical method for economically locating and defining underground goafs in a large spatial area from space.

  9. Government regulation of occupational safety: underground coal mine accidents 1973-75.

    PubMed Central

    Boden, L I

    1985-01-01

    The purpose of this paper is to determine the influence of federal mine safety inspections on underground coal mine accidents. An economic incentives model is developed to relate federal enforcement activities to accident rates. The determinants of accident rates are analyzed for 535 coal mines during the period 1973-75. Estimates based on these data when applied to the model indicate that increasing inspections by 25 per cent would have produced a 13 per cent decline in fatal accidents and an 18 per cent decline in disabling accidents. PMID:3985237

  10. Government regulation of occupational safety: underground coal mine accidents 1973-75.

    PubMed

    Boden, L I

    1985-05-01

    The purpose of this paper is to determine the influence of federal mine safety inspections on underground coal mine accidents. An economic incentives model is developed to relate federal enforcement activities to accident rates. The determinants of accident rates are analyzed for 535 coal mines during the period 1973-75. Estimates based on these data when applied to the model indicate that increasing inspections by 25 per cent would have produced a 13 per cent decline in fatal accidents and an 18 per cent decline in disabling accidents.

  11. The three-dimensional shapes of underground coal miners' feet do not match the internal dimensions of their work boots.

    PubMed

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2018-04-01

    Mining work boots provide an interface between the foot and the ground, protecting and supporting miners' feet during lengthy coal mining shifts. Although underground coal miners report the fit of their work boots as reasonable to good, they frequently rate their boots as uncomfortable, suggesting that there is a mismatch between the shape of their feet and their boots. This study aimed to identify whether dimensions derived from the three-dimensional scans of 208 underground coal miners' feet (age 38.3 ± 9.8 years) differed from the internal dimensions of their work boots. The results revealed underground coal miners wore boots that were substantially longer than their feet, possibly because boots available in their correct length were too narrow. It is recommended boot manufacturers reassess the algorithms used to create boot lasts, focusing on adjusting boot circumference at the instep and heel relative to increases in foot length. Practitioner Summary: Fit and comfort ratings suggest a mismatch between the shape of underground coal miners' feet and their boots exists. This study examined whether three-dimensional scans of 208 miners' feet differed from their boot internal dimensions. Miners wore boots substantially longer than their feet, possibly due to inadequate width.

  12. Geological and Rock Mechanics Perspectives for Underground Coal Gasification in India

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Singh, Rajendra

    2017-07-01

    The geological resources of coal in India are more than 308 billion tonnes upto a depth of 1200 m, out of which proved reserve has been reported at around 130 billion tonnes. There is an increasing requirement to increase the energy extraction efficiency from coal as the developmental prospects of India increase. Underground coal gasification (UCG) is a potential mechanism which may be utilized for extraction of deep-seated coal reserves. Some previous studies suggest that lignites from Gujarat and Rajasthan, along with tertiary coals from northeastern India can be useful from the point of view of UCG. We discuss some geological literature available for these areas. Coming to the rock mechanics perspectives, during UCG the rock temperature is considerable high. At this temperature, most empirical models of rock mechanics may not be applied. In this situation, the challenges for numerical modelling of UCG sites increases manifold. We discuss some of the important modelling geomechanical issues related to UCG in India.

  13. Groundwater-quality data associated with abandoned underground coal mine aquifers in West Virginia, 1973-2016: Compilation of existing data from multiple sources

    USGS Publications Warehouse

    McAdoo, Mitchell A.; Kozar, Mark D.

    2017-11-14

    This report describes a compilation of existing water-quality data associated with groundwater resources originating from abandoned underground coal mines in West Virginia. Data were compiled from multiple sources for the purpose of understanding the suitability of groundwater from abandoned underground coal mines for public supply, industrial, agricultural, and other uses. This compilation includes data collected for multiple individual studies conducted from July 13, 1973 through September 7, 2016. Analytical methods varied by the time period of data collection and requirements of the independent studies.This project identified 770 water-quality samples from 294 sites that could be attributed to abandoned underground coal mine aquifers originating from multiple coal seams in West Virginia.

  14. Underground coal mining section data

    NASA Technical Reports Server (NTRS)

    Gabrill, C. P.; Urie, J. T.

    1981-01-01

    A set of tables which display the allocation of time for ten personnel and eight pieces of underground coal mining equipment to ten function categories is provided. Data from 125 full shift time studies contained in the KETRON database was utilized as the primary source data. The KETRON activity and delay codes were mapped onto JPL equipment, personnel and function categories. Computer processing was then performed to aggregate the shift level data and generate the matrices. Additional, documented time study data were analyzed and used to supplement the KETRON databased. The source data including the number of shifts are described. Specific parameters of the mines from which there data were extracted are presented. The result of the data processing including the required JPL matrices is presented. A brief comparison with a time study analysis of continuous mining systems is presented. The procedures used for processing the source data are described.

  15. Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect.

    PubMed

    Kapusta, Krzysztof; Stańczyk, Krzysztof

    2015-02-01

    The effect of coal rank on the composition and toxicity of water effluents resulting from two underground coal gasification experiments with distinct coal samples (lignite and hard coal) was investigated. A broad range of organic and inorganic parameters was determined in the sampled condensates. The physicochemical tests were supplemented by toxicity bioassays based on the luminescent bacteria Vibrio fischeri as the test organism. The principal component analysis and Pearson correlation analysis were adopted to assist in the interpretation of the raw experimental data, and the multiple regression statistical method was subsequently employed to enable predictions of the toxicity based on the values of the selected parameters. Significant differences in the qualitative and quantitative description of the contamination profiles were identified for both types of coal under study. Independent of the coal rank, the most characteristic organic components of the studied condensates were phenols, naphthalene and benzene. In the inorganic array, ammonia, sulphates and selected heavy metals and metalloids were identified as the dominant constituents. Except for benzene with its alkyl homologues (BTEX), selected polycyclic aromatic hydrocarbons (PAHs), zinc and selenium, the values of the remaining parameters were considerably greater for the hard coal condensates. The studies revealed that all of the tested UCG condensates were extremely toxic to V. fischeri; however, the average toxicity level for the hard coal condensates was approximately 56% higher than that obtained for the lignite. The statistical analysis provided results supporting that the toxicity of the condensates was most positively correlated with the concentrations of free ammonia, phenols and certain heavy metals. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Respiratory impairment and symptoms as predictors of early retirement with disability in US underground coal miners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, R.G.; Trent, R.B.

    1984-08-01

    A five-year prospective study of 1,394 United States underground coal miners was undertaken to study the effects of respiratory impairment on the rate of early retirement with disability (ERD). Using a logistic regression analysis, ERD was found to be related to reported persistent phlegm after adjustment was made for other respiratory symptoms, respiratory function measurements, cigarette smoking, and some demographic characteristics. No prediction of ERD occurred for spirometrically determined measures of respiratory function. The data thus give limited support to the hypothesis that early retirement with disability in underground coal miners can be predicted prospectively by measures of respiratory symptoms.

  17. A survey of atmospheric monitoring systems in U.S. underground coal mines

    PubMed Central

    Rowland, J.H.; Harteis, S.P.; Yuan, L.

    2018-01-01

    In 1995 and 2003, the U.S. Mine Safety and Health Administration (MSHA) conducted surveys to determine the number of atmospheric monitoring systems (AMS) that were being used in underground coal mines in the United States. The survey reports gave data for the different AMS manufacturers, the different types of equipment monitored, and the different types of gas sensors and their locations. Since the last survey in 2003, MSHA has changed the regulation requirements for early fire detection along belt haulage entries. As of Dec. 31, 2009, point-type heat sensors are prohibited for use for an early fire detection system. Instead, carbon monoxide (CO) sensors are now required. This report presents results from a new survey and examines how the regulation changes have had an impact on the use of CO sensors in underground coal mines in the United States. The locations and parameters monitored by AMS and CO systems are also discussed. PMID:29674789

  18. Current experiences in applied underground coal gasification

    NASA Astrophysics Data System (ADS)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  19. Siting of prison complex above abandoned underground coal mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, G.G.

    1998-10-01

    This paper discusses in detail the process undertaken to mitigate the effects of any future mine subsidence on prison structures proposed above old abandoned underground workings. The site for a proposed prison complex purchased by the state of Indiana was located in west-central Indiana and was undermined by an old abandoned room and pillar mine. Based on a study of the mine map and subsurface verification of the extent of mining it was determined that all prison buildings and important structures could be placed above solid coal to the north. However, one masonry building was located within the potential drawmore » zone of mine works that still contained significant mine voids. Based on empirical data the subsidence potential was estimated and the building was designed accordingly to be mine subsidence resistant. It was decided that a phase 2 prison complex should be constructed adjacent to and just south of the phase 1 complex. This complex would be directly above the underground workings. Subsequently, an extensive subsurface investigation program was undertaken to (1) ascertain whether or not mine areas where buildings would be located were already collapsed and thus only nominal, if any, subsidence could occur in the future and (2) verify the presence of solid coal areas within the mine as indicated on the mine map. Based on all the site information gathered subsidence profiles were developed from an empirical database of subsidence events in the Illinois coal basin. As a result of this work many structures on the site required no or nominal subsidence considerations. However, for others that could be affected potentially by future subsidence movement preliminary subsidence resistant designs were completed using the expected level of potential subsidence movement.« less

  20. Industrial Internet of Things: (IIoT) applications in underground coal mines.

    PubMed

    Zhou, C; Damiano, N; Whisner, B; Reyes, M

    2017-12-01

    The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure.

  1. [Influencing factors for trauma-induced tibial infection in underground coal mine].

    PubMed

    Meng, W Z; Guo, Y J; Liu, Z K; Li, Y F; Wang, G Z

    2016-07-20

    Objective: To investigate the influencing factors for trauma-induced tibial infection in underground coal mine. Methods: A retrospective analysis was performed for the clinical data of 1 090 patients with tibial fracture complicated by bone infection who were injured in underground coal mine and admitted to our hospital from January 1995 to August 2015, including the type of trauma, injured parts, severity, and treatment outcome. The association between risk factors and infection was analyzed. Results: Among the 1 090 patients, 357 had the clinical manifestations of acute and chronic bone infection, 219 had red and swollen legs with heat pain, and 138 experienced skin necrosis, rupture, and discharge of pus. The incidence rates of tibial infection from 1995 to 2001, from 2002 to 2008, and from 2009 to 2015 were 31%, 26.9%, and 20.2%, respectively. The incidence rate of bone infection in the proximal segment of the tibia was significantly higher than that in the middle and distal segments (42.1% vs 18.9%/27.1%, P <0.01) . As for patients with different types of trauma (Gustilo typing) , the patients with type III fracture had a significantly higher incidence rate of bone infection than those with type I/II infection (52.8% vs 21.8%/24.6%, P <0.01) . The incidence rates of bone infection after bone traction, internal fixation with steel plates, fixation with external fixator, and fixation with intramedullary nail were 20.7%, 43.5%, 21.4%, and 26.1%, respectively, suggesting that internal fixation with steel plates had a significantly higher incidence rate of bone infection than other fixation methods ( P <0.01) . The multivariate logistic regression analysis showed that the position of tibial fracture and type of fracture were independent risk factors for bone infection. Conclusion: There is a high incidence rate of trauma-induced tibial infection in workers in underground coal mine. The position of tibial fracture and type of fracture are independent risk factors

  2. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    NASA Astrophysics Data System (ADS)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  3. Underground Coal Gasification Research Program near Hanna, Carbon County, Wyoming: Environmental impact assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In the fall of 1972, the Laramie Energy Research Center initiated an in situ coal gasification experiment in Hanna, Wyoming. The objective was to test the feasibility of underground gasification in a deep, thick seam of western subbituminous coal and, if feasible, to maximize gas heating value while sustaining stable gas production rates and achieving a high coal utilization efficiency. The coal seam was ignited on March 28, 1973, in a 30-foot seam 400 feet deep. The ''burn'' was maintained for a year, until March 22, 1974, when air injection was stopped. The combustion zone was extinguished by the naturalmore » influx of seam water in approximately three months. This report discusses the environmental inpacts of this program on the area and provides details of the program. 13 refs., 7 figs., 11 tabs.« less

  4. Computational Studies for Underground Coal Gasification (UCG) Process

    NASA Astrophysics Data System (ADS)

    Chatterjee, Dipankar

    2017-07-01

    Underground coal gasification (UCG) is a well proven technology in order to access the coal lying either too deep underground, or is otherwise too costly to be extracted using the conventional mining methods. UCG product gas is commonly used as a chemical feedstock or as fuel for power generation. During the UCG process, a cavity is formed in the coal seam during its conversion to gaseous products. The cavity grows in a three-dimensional fashion as the gasification proceeds. The UCG process is indeed a result of several complex interactions of various geo-thermo-mechanical processes such as the fluid flow, heat and mass transfer, chemical reactions, water influx, thermo-mechanical failure, and other geological aspects. The rate of the growth of this cavity and its shape will have a significant impact on the gas flow patterns, chemical kinetics, temperature distributions, and finally the quality of the product gas. It has been observed that there is insufficient information available in the literature to provide clear insight into these issues. It leaves us with a great opportunity to investigate and explore the UCG process, both from the experimental as well as theoretical perspectives. In the development and exploration of new research, experiment is undoubtedly very important. However, due to the excessive cost involvement with experimentation it is not always recommended for the complicated process like UCG. Recently, with the advent of the high performance computational facilities it is quite possible to make alternative experimentation numerically of many physically involved problems using certain computational tools like CFD (computational fluid dynamics). In order to gain a comprehensive understanding of the underlying physical phenomena, modeling strategies have frequently been utilized for the UCG process. Keeping in view the above, the various modeling strategies commonly deployed for carrying out mathematical modeling of UCG process are described here in

  5. 75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 18 and 75 RIN 1219-AB34 High-Voltage Continuous Mining Machine Standard for Underground Coal Mines Correction In rule document 2010-7309 beginning on page 17529 in the issue of Tuesday, April 6, 2010, make the following correction...

  6. Effects of coal mine subsidence in the Sheridan, Wyoming, area

    USGS Publications Warehouse

    Dunrud, C. Richard; Osterwald, Frank W.

    1980-01-01

    Analyses of the surface effects of past underground coal mining in the Sheridan, Wyoming, area suggest that underground mining of strippable coal deposits may damage the environment more over long periods of time than would modern surface mining, provided proper restoration procedures are followed after surface mining. Subsidence depressions and pits are a continuing hazard to the environment and to man's activities in the Sheridan, Wyo., area above abandoned underground mines in weak overburden less than about 60 m thick and where the overburden is less than about 10-15 times the thickness of coal mined. In addition, fires commonly start by spontaneous ignition when water and air enter the abandoned mine workings via subsidence cracks and pits. The fires can then spread to unmined coal as they create more cavities, more subsidence, and more cracks and pits through which air can circulate. In modern surface mining operations the total land surface underlain by minable coal is removed to expose the coal. The coal is removed, the overburden and topsoil are replaced, and the land is regraded and revegetated. The land, although disturbed, can be more easily restored and put back into use than can land underlain by abandoned underground mine workings in areas where the overburden is less than about 60 m thick or less than about 10-15 times the thickness of coal mined. The resource recovery of modern surface mining commonly is much greater than that of underground mining procedures. Although present-day underground mining technology is advanced as compared to that of 25-80 years ago, subsidence resulting from underground mining of thick coal beds beneath overburden less than about 60 m thick can still cause greater damage to surface drainage, ground water, and vegetation than can properly designed surface mining operations. This report discusses (11 the geology and surface and underground effects of former large-scale underground coal mining in a 50-km 2 area 5-20 km

  7. Geologic considerations in underground coal mining system design

    NASA Technical Reports Server (NTRS)

    Camilli, F. A.; Maynard, D. P.; Mangolds, A.; Harris, J.

    1981-01-01

    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucy is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach.

  8. Mining injuries in Serbian underground coal mines -- a 10-year study.

    PubMed

    Stojadinović, Saša; Svrkota, Igor; Petrović, Dejan; Denić, Miodrag; Pantović, Radoje; Milić, Vitomir

    2012-12-01

    Mining, especially underground coal mining, has always been a dangerous occupation. Injuries, unfortunately, even those resulting in death, are one of the major occupational risks that all miners live with. Despite the fact that all workers are aware of the risk, efforts must be and are being made to increase the safety of mines. Injury monitoring and data analysis can provide us with valuable data on the causes of accidents and enable us to establish a correlation between the conditions in the work environment and the number of injuries, which can further lead to proper preventive measures. This article presents the data on the injuries in Serbian coal mines during a 10-year period (2000-2009). The presented results are only part of an ongoing study whose aim is to assess the safety conditions in Serbian coal mines and classify them according to that assessment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The Increase of Power Efficiency of Underground Coal Mining by the Forecasting of Electric Power Consumption

    NASA Astrophysics Data System (ADS)

    Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya

    2017-11-01

    In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.

  10. Feasibility study for underground coal gasification at the Krabi coal mine site, Thailand: Volume 1. Progress report, December 1--31, 1995; Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Schmit, C.R.

    The report, conducted by Energy and Environmental Research Center, was funded by the US Trade and Development Agency. The objective of this report was to determine the technical, environmental and economic feasibility of developing, demonstrating, and commercializing underground coal gasification (UCG) at the Krabi coal mine site in Southern Thailand. This is Volume 1, the Progress Report for the period December 1, 1995, through December 31, 1995.

  11. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).

    PubMed

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-11-01

    The surveys of radon concentrations in the Underground Tourist Route "Coal Mine" were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004-2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m(-3) and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route "Coal Mine". The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8-9 a.m. to 7-8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on radon

  12. The commercial feasibility of underground coal gasification in southern Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solc, J.; Young, B.C.; Harju, J.A.

    Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A projectmore » to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.« less

  13. Steam jacket dynamics in underground coal gasification

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas

    2017-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.

  14. Occupational hazard evaluation model underground coal mine based on unascertained measurement theory

    NASA Astrophysics Data System (ADS)

    Deng, Quanlong; Jiang, Zhongan; Sun, Yaru; Peng, Ya

    2017-05-01

    In order to study how to comprehensively evaluate the influence of several occupational hazard on miners’ physical and mental health, based on unascertained measurement theory, occupational hazard evaluation indicator system was established to make quantitative and qualitative analysis. Determining every indicator weight by information entropy and estimating the occupational hazard level by credible degree recognition criteria, the evaluation model was programmed by Visual Basic, applying the evaluation model to occupational hazard comprehensive evaluation of six posts under a coal mine, and the occupational hazard degree was graded, the evaluation results are consistent with actual situation. The results show that dust and noise is most obvious among the coal mine occupational hazard factors. Excavation face support workers are most affected, secondly, heading machine drivers, coal cutter drivers, coalface move support workers, the occupational hazard degree of these four types workers is II mild level. The occupational hazard degree of ventilation workers and safety inspection workers is I level. The evaluation model could evaluate underground coal mine objectively and accurately, and can be employed to the actual engineering.

  15. Economic baselines for current underground coal mining technology

    NASA Technical Reports Server (NTRS)

    Mabe, W. B.

    1979-01-01

    The cost of mining coal using a room pillar mining method with continuous miner and a longwall mining system was calculated. Costs were calculated for the years 1975 and 2000 time periods and are to be used as economic standards against which advanced mining concepts and systems will be compared. Some assumptions were changed and some internal model stored data was altered from the original calculations procedure chosen, to obtain a result that more closely represented what was considered to be a standard mine. Coal seam thicknesses were varied from one and one-half feet to eight feet to obtain the cost of mining coal over a wide range. Geologic conditions were selected that had a minimum impact on the mining productivity.

  16. Advanced coal cleaning meets acid rain emission limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boron, D.J.; Matoney, J.P.; Albrecht, M.C.

    1987-03-01

    The following processes were selected for study: fine-coal, heavy-medium cyclone separation/flotation, advanced flotation, Dow true heavy liquid separation, Advanced Energy Dynamics (AED) electrostatic separation, and National Research Council of Canada oil agglomeration. Advanced coal cleaning technology was done for the state of New York to investigate methods to use high sulfur coal in view of anticipated lower SO/sub 2/ emission limits.

  17. Application of underground microseismic monitoring for ground failure and secure longwall coal mining operation: A case study in an Indian mine

    NASA Astrophysics Data System (ADS)

    Ghosh, G. K.; Sivakumar, C.

    2018-03-01

    Longwall mining technique has been widely used around the globe due to its safe mining process. However, mining operations are suspended when various problems arise like collapse of roof falls, cracks and fractures propagation in the roof and complexity in roof strata behaviors. To overcome these colossal problems, an underground real time microseismic monitoring technique has been implemented in the working panel-P2 in the Rajendra longwall underground coal mine at South Eastern Coalfields Limited (SECL), India. The target coal seams appears at the panel P-2 within a depth of 70 m to 76 m. In this process, 10 to 15 uniaxial geophones were placed inside a borehole at depth range of 40 m to 60 m located over the working panel-P2 with high rock quality designation value for better seismic signal. Various microseismic events were recorded with magnitude ranging from -5 to 2 in the Richter scale. The time-series processing was carried out to get various seismic parameters like activity rate, potential energy, viscosity rate, seismic moment, energy index, apparent volume and potential energy with respect to time. The used of these parameters helped tracing the events, understanding crack and fractures propagation and locating both high and low stress distribution zones prior to roof fall occurrence. In most of the cases, the events were divided into three stage processes: initial or preliminary, middle or building, and final or falling. The results of this study reveal that underground microseismic monitoring provides sufficient prior information of underground weighting events. The information gathered during the study was conveyed to the mining personnel in advance prior to roof fall event. This permits to take appropriate action for safer mining operations and risk reduction during longwall operation.

  18. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    NASA Astrophysics Data System (ADS)

    Ilse, Jürgen

    2010-05-01

    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  19. Profitability and occupational injuries in U.S. underground coal mines.

    PubMed

    Asfaw, Abay; Mark, Christopher; Pana-Cryan, Regina

    2013-01-01

    Coal plays a crucial role in the U.S. economy yet underground coal mining continues to be one of the most dangerous occupations in the country. In addition, there are large variations in both profitability and the incidence of occupational injuries across mines. The objective of this study was to examine the association between profitability and the incidence rate of occupational injuries in U.S. underground coal mines between 1992 and 2008. We used mine-specific data on annual hours worked, geographic location, and the number of occupational injuries suffered annually from the employment and accident/injury databases of the Mine Safety and Health Administration, and mine-specific data on annual revenue from coal sales, mine age, workforce union status, and mining method from the U.S. Energy Information Administration. A total of 5669 mine-year observations (number of mines×number of years) were included in our analysis. We used a negative binomial random effects model that was appropriate for analyzing panel (combined time-series and cross-sectional) injury data that were non-negative and discrete. The dependent variable, occupational injury, was measured in three different and non-mutually exclusive ways: all reported fatal and nonfatal injuries, reported nonfatal injuries with lost workdays, and the 'most serious' (i.e. sum of fatal and serious nonfatal) injuries reported. The total number of hours worked in each mine and year examined was used as an exposure variable. Profitability, the main explanatory variable, was approximated by revenue per hour worked. Our model included mine age, workforce union status, mining method, and geographic location as additional control variables. After controlling for other variables, a 10% increase in real total revenue per hour worked was associated with 0.9%, 1.1%, and 1.6% decrease, respectively, in the incidence rates of all reported injuries, reported injuries with lost workdays, and the most serious injuries reported

  20. Profitability and occupational injuries in U.S. underground coal mines☆

    PubMed Central

    Asfaw, Abay; Mark, Christopher; Pana-Cryan, Regina

    2015-01-01

    Background Coal plays a crucial role in the U.S. economy yet underground coal mining continues to be one of the most dangerous occupations in the country. In addition, there are large variations in both profitability and the incidence of occupational injuries across mines. Objective The objective of this study was to examine the association between profitability and the incidence rate of occupational injuries in U.S. underground coal mines between 1992 and 2008. Data and method We used mine-specific data on annual hours worked, geographic location, and the number of occupational injuries suffered annually from the employment and accident/injury databases of the Mine Safety and Health Administration, and mine-specific data on annual revenue from coal sales, mine age, workforce union status, and mining method from the U.S. Energy Information Administration. A total of 5669 mine-year observations (number of mines × number of years) were included in our analysis. We used a negative binomial random effects model that was appropriate for analyzing panel (combined time-series and cross-sectional) injury data that were non-negative and discrete. The dependent variable, occupational injury, was measured in three different and non-mutually exclusive ways: all reported fatal and nonfatal injuries, reported nonfatal injuries with lost workdays, and the ‘most serious’ (i.e. sum of fatal and serious nonfatal) injuries reported. The total number of hours worked in each mine and year examined was used as an exposure variable. Profitability, the main explanatory variable, was approximated by revenue per hour worked. Our model included mine age, workforce union status, mining method, and geographic location as additional control variables. Results After controlling for other variables, a 10% increase in real total revenue per hour worked was associated with 0.9%, 1.1%, and 1.6% decrease, respectively, in the incidence rates of all reported injuries, reported injuries with lost

  1. Design and implementation of the monitoring system for underground coal fires in Xinjiang region, China

    NASA Astrophysics Data System (ADS)

    Li-bo, Dang; Jia-chun, Wu; Yue-xing, Liu; Yuan, Chang; Bin, Peng

    2017-04-01

    Underground coal fire (UCF) is serious in Xinjiang region of China. In order to deal with this problem efficiently, a UCF monitoring System, which is based on the use of wireless communication technology and remote sensing images, was designed and implemented by Xinjiang Coal Fire Fighting Bureau. This system consists of three parts, i.e., the data collecting unit, the data processing unit and the data output unit. For the data collecting unit, temperature sensors and gas sensors were put together on the sites with depth of 1.5 meter from the surface of coal fire zone. Information on these sites' temperature and gas was transferred immediately to the data processing unit. The processing unit was developed by coding based on GIS software. Generally, the processed datum were saved in the computer by table format, which can be displayed on the screen as the curve. Remote sensing image for each coal fire was saved in this system as the background for each monitoring site. From the monitoring data, the changes of the coal fires were displayed directly. And it provides a solid basis for analyzing the status of coal combustion of coal fire, the gas emission and possible dominant direction of coal fire propagation, which is helpful for making-decision of coal fire extinction.

  2. Investigating dynamic underground coal fires by means of numerical simulation

    NASA Astrophysics Data System (ADS)

    Wessling, S.; Kessels, W.; Schmidt, M.; Krause, U.

    2008-01-01

    Uncontrolled burning or smoldering of coal seams, otherwise known as coal fires, represents a worldwide natural hazard. Efficient application of fire-fighting strategies and prevention of mining hazards require that the temporal evolution of fire propagation can be sufficiently precise predicted. A promising approach for the investigation of the temporal evolution is the numerical simulation of involved physical and chemical processes. In the context of the Sino-German Research Initiative `Innovative Technologies for Detection, Extinction and Prevention of Coal Fires in North China,' a numerical model has been developed for simulating underground coal fires at large scales. The objective of such modelling is to investigate observables, like the fire propagation rate, with respect to the thermal and hydraulic parameters of adjacent rock. In the model, hydraulic, thermal and chemical processes are accounted for, with the last process complemented by laboratory experiments. Numerically, one key challenge in modelling coal fires is to circumvent the small time steps resulting from the resolution of fast reaction kinetics at high temperatures. In our model, this problem is solved by means of an `operator-splitting' approach, in which transport and reactive processes of oxygen are independently calculated. At high temperatures, operator-splitting has the decisive advantage of allowing the global time step to be chosen according to oxygen transport, so that time-consuming simulation through the calculation of fast reaction kinetics is avoided. Also in this model, because oxygen distribution within a coal fire has been shown to remain constant over long periods, an additional extrapolation algorithm for the coal concentration has been applied. In this paper, we demonstrate that the operator-splitting approach is particularly suitable for investigating the influence of hydraulic parameters of adjacent rocks on coal fire propagation. A study shows that dynamic propagation

  3. Underground Coal Mining: Relationship between Coal Dust Levels and Pneumoconiosis, in Two Regions of Colombia, 2014

    PubMed Central

    Torres Rey, Carlos Humberto; Ibañez Pinilla, Milciades; Briceño Ayala, Leonardo; Checa Guerrero, Diana Milena; Morgan Torres, Gloria; Groot de Restrepo, Helena; Varona Uribe, Marcela

    2015-01-01

    In Colombia, coal miner pneumoconiosis is considered a public health problem due to its irreversibility, high cost on diagnosis, and lack of data related to its prevalence in the country. Therefore, a cross-sectional study was carried out in order to determine the prevalence of pneumoconiosis in underground coal mining workers in two regions of Colombia. The results showed a 35.9% prevalence of pneumoconiosis in the study group (42.3% in region 1 and 29.9% in region 2). An association was found between a radiologic diagnosis of pneumoconiosis and a medium risk level of exposure to carbon dust (OR: 2.901, 95% CI: 0.937, 8.982), medium size companies (OR: 2.301, 95% CI: 1.260–4.201), length of mining work greater than 25 years (OR: 3.222, 95% CI: 1.806–5.748), and a history of smoking for more than one year (OR: 1.479, 95% CI: 0.938–2.334). These results establish the need to generate an intervention strategy aimed at preventing the identified factors, as well as a timely identification and effective treatment of pneumoconiosis in coal miners, in which the commitment of the General Health and Social Security System and the workers compensation system is ensured. PMID:26366418

  4. The siting of a prison complex above an abandoned underground coal mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, G.G.

    1997-12-31

    This paper discusses in detail the process undertaken to mitigate the effects of any future mine subsidence on prison structures proposed above old abandoned underground workings. The site for a proposed prison complex purchased by the State of Indiana was located in west-central Indiana and was undermined by an old abandoned room and pillar mine. The original plan for construction consisted of one phase. Based on a study of the mine map and subsurface verification of the extent of mining it was determined that all prison buildings and important structures could be placed above solid coal to the north. Onemore » masonry building, however, was located within the potential draw zone of mine works which still contained significant mine voids. Based on empirical data the subsidence potential was estimated and the building was accordingly designed to be mine subsidence resistant. It was decided that a phase two prison complex should be constructed adjacent to and just south of the Phase I complex. This complex would be directly above the underground workings. The first stage of design was to minimize subsidence potential by positioning the exposure of significant structures to the subjacent mining assuming the mine map was sufficiently accurate. Subsequently, an extensive subsurface investigation program was then undertaken to: (1) ascertain whether or not mine areas where buildings would be located were already collapsed and thus only nominal, if any, subsidence could occur in the future; and (2) verify the presence of solid coal areas within the mine as indicated on the mine map. Based on all the site information gathered subsidence profiles were developed from an empirical data base of subsidence events in the Illinois Coal Basin. As a result of this work many structures on the site required no or nominal subsidence considerations.« less

  5. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground sanitary facilities; maintenance... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary facilities; maintenance. Sanitary toilets shall be regularly maintained in...

  6. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground sanitary facilities; maintenance... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary facilities; maintenance. Sanitary toilets shall be regularly maintained in...

  7. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground sanitary facilities; maintenance... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary facilities; maintenance. Sanitary toilets shall be regularly maintained in...

  8. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground sanitary facilities; maintenance... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary facilities; maintenance. Sanitary toilets shall be regularly maintained in...

  9. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground sanitary facilities; maintenance... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary facilities; maintenance. Sanitary toilets shall be regularly maintained in...

  10. A feasibility study for underground coal gasification at Krabi Mine, Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solc, J.; Steadman, E.N.; Boysen, J.E.

    A study to evaluate the technical, economical, and environmental feasibility of underground coal gasification (UCG) in the Krabi Mine, Thailand, was conducted by the Energy and Environmental Research Center (EERC) in cooperation with B.C. Technologies (BCT) and the Electricity Generating Authority of Thailand (EGAT). The selected coal resource was found suitable to fuel a UCG facility producing 460,000 MJ/h (436 million Btu/h) of 100--125 Btu/scf gas for 20 years. The raw UCG gas could be produced for a selling price of $1.94/MMBtu. The UCG facility would require a total investment of $13.8 million for installed capital equipment, and annual operatingmore » expenses for the facility would be $7.0 million. The UCG gas could be either cofired in a power plant currently under construction or power a 40 MW simple-cycle gas turbine or a 60 MW combined-cycle power plant.« less

  11. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-voltage equipment supplying power to such equipment receiving power from resistance grounded systems shall... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage...

  12. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  13. 30 CFR 75.343 - Underground shops.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground shops. 75.343 Section 75.343...-3 through § 75.1107-16, or be enclosed in a noncombustible structure or area. (b) Underground shops... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground...

  14. Forecast of long term coal supply and mining conditions: Model documentation and results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A coal industry model was developed to support the Jet Propulsion Laboratory in its investigation of advanced underground coal extraction systems. The model documentation includes the programming for the coal mining cost models and an accompanying users' manual, and a guide to reading model output. The methodology used in assembling the transportation, demand, and coal reserve components of the model are also described. Results presented for 1986 and 2000, include projections of coal production patterns and marginal prices, differentiated by coal sulfur content.

  15. Debilitating lung disease among surface coal miners with no underground mining tenure.

    PubMed

    Halldin, Cara N; Reed, William R; Joy, Gerald J; Colinet, Jay F; Rider, James P; Petsonk, Edward L; Abraham, Jerrold L; Wolfe, Anita L; Storey, Eileen; Laney, A Scott

    2015-01-01

    To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner's lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor.

  16. Geohydrology and potential hydrologic effects of underground coal mining in the Rapid Creek Basin, Mesa County, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1986-01-01

    The U.S. Bureau of Land Management may lease additional coal tracts in the Rapid Creek basin, Colorado. Springs in this basin are used as a water supply for the town of Palisade. The geohydrology of the basin is described and the potential hydrologic effects of underground coal mining in the basin summarized. Geologic formations in the basin consists of Cretaceous sandstone and shale, Tertiary sandstone, shale, and basalt, and unconsolidated deposits of Quaternary age. Some sandstone and coal beds are permeable, although bedrock in the basin typically is a confining bed. Unconsolidated deposits contain aquifers that are the source of spring discharge. Stream discharge was measured on Rapid and Cottonwood Creeks, and inventories were made of 7 reservoirs, 25 springs, and 12 wells. Specific conductance of streams ranged from 320 to 1,050 microsiemens/cm at 25C; pH ranged from 7.8 to 8.6. Specific conductance of springs ranged from 95 to 1,050 microsiemens/cm at 25C; pH ranged from 6.8 to 8.3. Discharge from the basin includes about 18,800 acre-ft/yr as evapotranspiration, 1,300 acre-ft/yr as springflow, 1,280 acre-ft/yr as streamflow, and negligible groundwater flow in bedrock. With appropriate mining methods, underground mining would not decrease flow in basin streams or from springs. The potential effects of mining-caused subsidence might include water-pipeline damage and temporary dewatering of bedrock adjacent to coal mining. (Author 's abstract)

  17. Final Report of the Advanced Coal Technology Work Group

    EPA Pesticide Factsheets

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  18. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  19. 30 CFR 75.343 - Underground shops.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground shops. 75.343 Section 75.343... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground shops shall be equipped with an automatic fire suppression system meeting the requirements of § 75.1107...

  20. 30 CFR 75.343 - Underground shops.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground shops. 75.343 Section 75.343... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground shops shall be equipped with an automatic fire suppression system meeting the requirements of § 75.1107...

  1. 30 CFR 75.343 - Underground shops.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground shops. 75.343 Section 75.343... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground shops shall be equipped with an automatic fire suppression system meeting the requirements of § 75.1107...

  2. 30 CFR 75.343 - Underground shops.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground shops. 75.343 Section 75.343... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground shops shall be equipped with an automatic fire suppression system meeting the requirements of § 75.1107...

  3. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Ray, Sutapa; Dey, Kaushik

    2018-04-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  4. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be stored...

  5. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be stored...

  6. Process modelling and simulation of underground coal gasification: A Review of work done at IIT Bombay

    NASA Astrophysics Data System (ADS)

    Sharma, Surabhi; Mahajani, Sanjay M.

    2017-07-01

    This paper presents the summary of the work performed over the last decade, at IIT Bombay by the UCG group. The overall objective is to determine the feasibility of a given coal for underground coal gasification and then determine the capacity of a single pair of well through modelling and simulation. It would help one to design a UCG facility for the desired rate of gas production. The simulator developed in this study seeks inputs on four important aspects: Kinetics of all the reactions under the conditions of interest, heat and mass transfer limitations, if any, the flow patterns inside the cavity and lastly the thermo-mechanical failure of the coal. Each of them requires detailed studies in laboratory. Indian Lignite from one of the reserves was chosen as a case study.

  7. Quantifying Fugitive Methane Emissions at an Underground Coal Fire Using Cavity Ring-Down Spectroscopy Technology

    NASA Astrophysics Data System (ADS)

    Fleck, D.; Gannon, L.; Kim-Hak, D.; Ide, T.

    2016-12-01

    Understanding methane emissions is of utmost importance due to its greenhouse warming potential. Methane emissions can occur from a variety of natural and anthropogenic sources which include wetlands, landfills, oil/gas/coal extraction activities, underground coal fires, and natural gas distribution systems. Locating and containing these emissions are critical to minimizing their environmental impacts and economically beneficial when retrieving large fugitive amounts. In order to design a way to mitigate these methane emissions, they must first be accurately quantified. One such quantification method is to measure methane fluxes, which is a measurement technique that is calculated based on rate of gas accumulation in a known chamber volume over methane seepages. This allows for quantification of greenhouse gas emissions at a localized level (sub one meter) that can complement remote sensing and other largescale modeling techniques to further paint the picture of emission points. High performance analyzers are required to provide both sufficient temporal resolution and precise concentration measurements in order to make these measurements over only minutes. A method of measuring methane fluxes was developed using the latest portable, battery-powered Cavity Ring-Down Spectroscopy analyzer from Picarro (G4301). In combination with a mobile accumulation chamber, the instrument allows for rapid measurement of methane and carbon dioxide fluxes over wide areas. For this study, methane fluxes that were measured at an underground coal fire near the Four Corners region using the Picarro analyzer are presented. The flux rates collected demonstrate the ability for the analyzer to detect methane fluxes across many orders of magnitude. Measurements were accompanied by simultaneously geotagging the measurements with GPS to georeferenced the data. Methane flux data were instrumental in our ability to characterize the extent and the migration of the underground fire. In the future

  8. Debilitating Lung Disease Among Surface Coal Miners With No Underground Mining Tenure

    PubMed Central

    Halldin, Cara N.; Reed, William R.; Joy, Gerald J.; Colinet, Jay F.; Rider, James P.; Petsonk, Edward L.; Abraham, Jerrold L.; Wolfe, Anita L.; Storey, Eileen; Laney, A. Scott

    2015-01-01

    Objective To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Methods Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Results Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner’s lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Conclusions Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor. PMID:25563541

  9. Women and men coal miners: coping with gender integration underground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yount, K.R.

    The central purpose of this research is to initiate a theoretical understanding of the integration of women into traditionally-male, physical-labor jobs. The primary sources of data consist of in depth interviews with women and men underground coal miners and company personnel, and field notes collected during participant observation work in mining communities. Part I addresses the relationship between conditions of production and modes of interaction in underground mines. Personality traits conceived as aspects of masculinity are traced to efforts to cope with the stressors of engaging in physical labor in a work setting characterized by lack of work autonomy, amore » high degree of threat, and a high degree of interdependence for task accomplishment. Part II focuses on situational and individual factors affecting the integration of women in the workplace. Although most women miners are satisfied with their work, a gender based division of labor has arisen in which women are concentrated in low-prestige laborer positions. The processes involved in undermining a woman's work reputation and self-concept are summarized and forms of discrimination that recreate aspects of the female sterotype and lead to the development of sex segregation in the workplace are to the development of sex segregation in the workplace are discussed.« less

  10. A practical application of photogrammetry to performing rib characterization measurements in an underground coal mine using a DSLR camera

    PubMed Central

    Slaker, Brent A.; Mohamed, Khaled M.

    2017-01-01

    Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health (NIOSH). A commercially available, digital single-lens reflex (DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject, camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio (F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study. PMID:28663826

  11. A practical application of photogrammetry to performing rib characterization measurements in an underground coal mine using a DSLR camera.

    PubMed

    Slaker, Brent A; Mohamed, Khaled M

    2017-01-01

    Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health (NIOSH). A commercially available, digital single-lens reflex (DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject, camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio (F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study.

  12. Subsidence Induced by Underground Extraction

    USGS Publications Warehouse

    Galloway, Devin L.

    2016-01-01

    Subsidence induced by underground extraction is a class of human-induced (anthropogenic) land subsidence that principally is caused by the withdrawal of subsurface fluids (groundwater, oil, and gas) or by the underground mining of coal and other minerals.

  13. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    NASA Astrophysics Data System (ADS)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  14. NATIONAL ASSESSMENT OF ENVIRONMENTAL AND ECONOMIC BENEFITS FROM METHANE CONTROL AND UTILIZATION TECHNOLOGIES AT U.S. UNDERGROUND COAL MINES

    EPA Science Inventory

    The report gives results of EPA research into the emission processes and control strategies associated with underground coal mines in the U.S. (NOTE: Methane is a greenhouse gas in the atmosphere which ranks behind carbon dioxide as the second largest contributor to global warmin...

  15. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the

  16. Citation-related reliability analysis for a pilot sample of underground coal mines.

    PubMed

    Kinilakodi, Harisha; Grayson, R Larry

    2011-05-01

    The scrutiny of underground coal mine safety was heightened because of the disasters that occurred in 2006-2007, and more recently in 2010. In the aftermath of the 2006 incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address various issues related to emergency preparedness and response, escape from an emergency situation, and protection of miners. The National Mining Association-sponsored Mine Safety Technology and Training Commission study highlighted the role of risk management in identifying and controlling major hazards, which are elements that could come together and cause a mine disaster. In 2007 MSHA revised its approach to the "Pattern of Violations" (POV) process in order to target unsafe mines and then force them to remediate conditions in their mines. The POV approach has certain limitations that make it difficult for it to be enforced. One very understandable way to focus on removing threats from major-hazard conditions is to use citation-related reliability analysis. The citation reliability approach, which focuses on the probability of not getting a citation on a given inspector day, is considered an analogue to the maintenance reliability approach, which many mine operators understand and use. In this study, the citation reliability approach was applied to a stratified random sample of 31 underground coal mines to examine its potential for broader application. The results clearly show the best-performing and worst-performing mines for compliance with mine safety standards, and they highlight differences among different mine sizes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  18. Fluid placement of fixated scrubber sludge to reduce surface subsidence and to abate acid mine drainage in abandoned underground coal mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meiers, R.J.; Golden, D.; Gray, R.

    1995-12-31

    Indianapolis Power and Light Company (IPL) began researching the use of fluid placement techniques of the fixated scrubber sludge (FSS) to reduce surface subsidence from underground coal mines to develop an economic alternative to low strength concrete grout. Abandoned underground coal mines surround property adjacent to IPL`s coal combustion by-product (CCBP) landfill at the Petersburg Generating Station. Landfill expansion into these areas is in question because of the high potential for sinkhole subsidence to develop. Sinkholes manifesting at the surface would put the integrity of a liner or runoff pond containment structure for a CCBP disposal facility at risk. Themore » fluid placement techniques of the FSS as a subsidence abatement technology was demonstrated during an eight week period in September, October, and November 1994 at the Petersburg Generating Station. The success of this technology will be determined by the percentage of the mine void filled, strength of the FSS placed, and the overall effects on the hydrogeologic environment. The complete report for this project will be finalized in early 1996.« less

  19. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  20. Medium frequency propagation characteristics of different transmission lines in an underground coal mine

    PubMed Central

    Li, Jingcheng; Waynert, Joseph A.; Whisner, Bruce G.

    2015-01-01

    A medium frequency (MF) communication system operating in an underground coal mine couples its signals to a long conductor, which acts as an MF transmission line (TL) in a tunnel to permit communications among transceivers along the line. The TL is generally the longest signal path for the system, and its propagation characteristics will have a major impact on the performance of the MF communication system. In this study, the propagation characteristics of three types of MF TLs in two layouts—on the roof and on the floor of a coal mine tunnel—were obtained in an effort to understand the propagation characteristics of different TLs in different locations. The study confirmed a low MF signal loss on all of these TLs. The study also found that the TLs in different layouts had substantially different propagation characteristics. The propagation characteristics of these different TLs in different layouts are presented in the paper. PMID:26203349

  1. The Video Collaborative Localization of a Miner's Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines.

    PubMed

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-09-29

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner's lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner's lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner's lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner's lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels.

  2. Numerical modeling of a subsidence induced by underground coal gasification, including thermal effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, D.E.; Dass, S.T.; Shaw, D.E.

    During normal coal extraction roof collapse is controlled, thermal effects are absent and existing data is useless for the formation of numerical models of underground coal gasification(PGU). Thermal deformation occurs during PGU to the extent that rock is deformed, the roof collapses, rock settles, and changes occur in the water-bearing layers, and so forth. As PGU progresses, changes occur in the geometry, size, and other characteristics of the volume of the reaction. Data derived from plastic coal in New Mexico (USA) is used to construct a numerical model. This coal was bedded at a depth of 259 meters where itmore » was stratified throughout a mixture of rock. Core drilling was conducted and a geological column was constructed to induce a PGY combustion front with temperatures of 900 degrees. Temperatures of 600 and 300 degrees were encountered 6.1 and 12.2 meters from the front, respectively. A short distance from the front, in a direction away from the placticized material, the temperature of the rock matched the 27 degree temperature in the surrounding rock. Correlational relationships were obtained for stress in rock under different conditions and these correlations were used to appraise the effect of heat on the rock. It was suggested that the heating of rock did, at times, serve to support the roof rock. Similarly, during periods of cooling, this effect lessened. Comparative and optimal test results are appraised with the aid of the numerical model.« less

  3. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    PubMed Central

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-01-01

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660

  4. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    PubMed

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  5. Analysis of occupational health hazards and associated risks in fuzzy environment: a case research in an Indian underground coal mine.

    PubMed

    Samantra, Chitrasen; Datta, Saurav; Mahapatra, Siba Sankar

    2017-09-01

    This paper presents a unique hierarchical structure on various occupational health hazards including physical, chemical, biological, ergonomic and psychosocial hazards, and associated adverse consequences in relation to an underground coal mine. The study proposes a systematic health hazard risk assessment methodology for estimating extent of hazard risk using three important measuring parameters: consequence of exposure, period of exposure and probability of exposure. An improved decision making method using fuzzy set theory has been attempted herein for converting linguistic data into numeric risk ratings. The concept of 'centre of area' method for generalized triangular fuzzy numbers has been explored to quantify the 'degree of hazard risk' in terms of crisp ratings. Finally, a logical framework for categorizing health hazards into different risk levels has been constructed on the basis of distinguished ranges of evaluated risk ratings (crisp). Subsequently, an action requirement plan has been suggested, which could provide guideline to the managers for successfully managing health hazard risks in the context of underground coal mining exercise.

  6. Methane Content Estimation in DuongHuy Coal Mine

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Thinh; Mijał, Waldemar; Dang, Vu Chi; Nguyen, Thi Tuyet Mai

    2018-03-01

    Methane hazard has always been considered for underground coal mining as it can lead to methane explosion. In Quang Ninh province, several coal mines such as Mạo Khe coal mine, Khe Cham coal mine, especially Duong Huy mine that have high methane content. Experimental data to examine contents of methane bearing coal seams at different depths are not similar in Duong coal mine. In order to ensure safety, this report has been undertaken to determine a pattern of changing methane contents of coal seams at different exploitation depths in Duong Huy underground coal mine.

  7. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  8. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  9. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  10. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  11. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  12. The Video Collaborative Localization of a Miner’s Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines

    PubMed Central

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-01-01

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner’s lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner’s lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner’s lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner’s lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels. PMID:26426023

  13. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  14. A risk-based decision support framework for selection of appropriate safety measure system for underground coal mines.

    PubMed

    Samantra, Chitrasen; Datta, Saurav; Mahapatra, Siba Sankar

    2017-03-01

    In the context of underground coal mining industry, the increased economic issues regarding implementation of additional safety measure systems, along with growing public awareness to ensure high level of workers safety, have put great pressure on the managers towards finding the best solution to ensure safe as well as economically viable alternative selection. Risk-based decision support system plays an important role in finding such solutions amongst candidate alternatives with respect to multiple decision criteria. Therefore, in this paper, a unified risk-based decision-making methodology has been proposed for selecting an appropriate safety measure system in relation to an underground coal mining industry with respect to multiple risk criteria such as financial risk, operating risk, and maintenance risk. The proposed methodology uses interval-valued fuzzy set theory for modelling vagueness and subjectivity in the estimates of fuzzy risk ratings for making appropriate decision. The methodology is based on the aggregative fuzzy risk analysis and multi-criteria decision making. The selection decisions are made within the context of understanding the total integrated risk that is likely to incur while adapting the particular safety system alternative. Effectiveness of the proposed methodology has been validated through a real-time case study. The result in the context of final priority ranking is seemed fairly consistent.

  15. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  16. Advanced physical fine coal cleaning: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-12-01

    The contract objective was to demonstrate Advanced Energy Dynamics, Inc., (AED) Ultrafine Coal (UFC) electrostatic physical fine coal cleaning process as capable of: producing clean coal products of no greater than 2% ash; significantly reducing the pyritic sulfur content below that achievable with state-of-the-art coal cleaning; recovering over 80% of the available energy content in the run-of-mine coal; producing product and refuse with surface moisture below 30%. Originally the demonstration was to be of a Charger/Disc System at the Electric Power Research Institute (EPRI) Coal Quality Development Center (CQDC) at Homer City, Pennsylvania. As a result of the combination ofmore » Charger/Disc System scale-up problems and parallel development of an improved Vertical-Belt Separator, DOE issued a contract modification to perform additional laboratory testing and optimization of the UFC Vertical-Belt Separator System at AED. These comparative test results, safety analyses and an economic analysis are discussed in this report. 29 refs., 25 figs., 41 tabs.« less

  17. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  18. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  19. Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes.

    PubMed

    Sinitsky, Maxim Yu; Minina, Varvara I; Gafarov, Nikolay I; Asanov, Maxim A; Larionov, Aleksey V; Ponasenko, Anastasia V; Volobaev, Valentin P; Druzhinin, Vladimir G

    2016-11-01

    Coal miners are exposed to coal dust, containing mineral particles, inorganic compounds and polycyclic aromatic hydrocarbons, and to ionizing radiation. These factors can induce oxidative stress and promote inflammation that leads to DNA damage. The aim of this investigation is to analyse the degree of DNA damage in miners working in underground coal mines in Kemerovo Region (Russian Federation) using the cytokinesis-block micronucleus assay (CBMN) in peripheral blood lymphocytes. The exposed group included 143 coal miners (mean age = 50.11±7.36 years; mean length of service in coal mining conditions = 23.26±9.66 years). As a control group, we have used venous blood extracted from 127 healthy non-exposed men. The mean age in this group was 47.67±8.45 years. We have discovered that coal miners are characterized by a significant increase in the frequency of binucleated lymphocytes with micronuclei (MN), nucleoplasmic bridges (NPBs) and protrusions (NBUDs) compared to non-exposed donors. In addition, we report, for the first time, a reduction of cell proliferation in a cohort of coal miners. These data are evidence of the genotoxic and cytostatic effects of occupational harmful factors of the coal mining industry. No correlation between the level of chromosome damage and age, smoking status or length of service in coal mining conditions were discovered. We suggest that the CBMN assay would be useful in biomonitoring studies to monitor hygiene and prevention strategies in occupational settings in coal mining countries. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The ground-water system and possible effects of underground coal mining in the Trail Mountain area, central Utah

    USGS Publications Warehouse

    Lines, Gregory C.

    1985-01-01

    The ground-water system was studied in the Trail Mountain area in order to provide hydrologic information needed to assess the hydrologic effects of underground coal mining. Well testing and spring data indicate that water occurs in several aquifers. The coal-bearing Blackhawk-Star Point aquifer is regional in nature and is the source of most water in underground mines in the region. One or more perched aquifers overlie the Blackhawk-Star Point aquifer in most areas of Trail Mountain.Aquifer tests indicate that the transmissivity of the Blackhawk-Star Point aquifer, which consists mainly of sandstone, siltstone, and shale, ranges from about 20 to 200 feet squared per day in most areas of Trail Mountain. The specific yield of the aquifer was estimated at 0.05, and the storage coefficient is about IxlO"6 per foot of aquifer where confined.The main sources of recharge to the multiaquifer system are snowmelt and rain, and water is discharged mainly by springs and by leakage along streams. Springs that issue from perched aquifers are sources of water for livestock and wildlife on Trail Mountain.Water in all aquifers is suitable for most uses. Dissolved solids concentrations range from about 250 to 700 milligrams per liter, and the predominant dissolved constituents generally are calcium, magnesium, and bicarbonate. Future underground coal mines will require dewatering when they penetrate the Blackhawk-Star Point aquifer. A finitedifference, three-dimensional computer model was used to estimate the inflow of water to various lengths and widths of a hypothetical dewatered mine and to estimate drawdowns of potentiometric surfaces in the partly dewatered aquifer. The estimates were made for a range of aquifer properties and premining hydraulic gradients that were similar to those on Trail Mountain. The computer simulations indicate that mine inflows could be several hundred gallons per minute and that potentiometric surfaces of the partly dewatered aquifer could be drawn

  1. A Search-and-Rescue Robot System for Remotely Sensing the Underground Coal Mine Environment

    PubMed Central

    Gao, Junyao; Zhao, Fangzhou; Liu, Yi

    2017-01-01

    This paper introduces a search-and-rescue robot system used for remote sensing of the underground coal mine environment, which is composed of an operating control unit and two mobile robots with explosion-proof and waterproof function. This robot system is designed to observe and collect information of the coal mine environment through remote control. Thus, this system can be regarded as a multifunction sensor, which realizes remote sensing. When the robot system detects danger, it will send out signals to warn rescuers to keep away. The robot consists of two gas sensors, two cameras, a two-way audio, a 1 km-long fiber-optic cable for communication and a mechanical explosion-proof manipulator. Especially, the manipulator is a novel explosion-proof manipulator for cleaning obstacles, which has 3-degree-of-freedom, but is driven by two motors. Furthermore, the two robots can communicate in series for 2 km with the operating control unit. The development of the robot system may provide a reference for developing future search-and-rescue systems. PMID:29065560

  2. Coal face measurement system for underground use

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A measurement system was developed for the Eickhoff longwall shearer to determine the contour of the coal face as it mines coal. Contour data are obtained by an indirect measurement technique based on evaluating the motion of the shearer during mining. Starting from a known location, points along the coal face are established through a knowledge of the machines' positions and yaw movements as it moves past the coal face. The hardware and system operation procedures are described. The tests of system performance and their results are reported.

  3. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  4. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  5. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  6. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  7. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  8. Production of Hydrogen from Underground Coal Gasification

    DOEpatents

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  9. Field Investigation of a Roof Fall Accident and Large Roadway Deformation Under Geologically Complex Conditions in an Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Xue, Sheng; Jiang, Yaodong; Deng, Daixin; Shi, Suzhen; Zhang, Dengqiang

    2018-06-01

    An investigation was undertaken to study the characteristics of large roadway deformation and driving force of roof fall in a geologically complex zone at Huangyanhui underground coal mine, Shanxi Province, China, and to determine the main factors contributing to a roof fall accident that occurred in this mine. A series of field tests were conducted in the mine to study the geological structures, in situ stress, excavation-damaged zones of the roadway, roof-to-floor and sidewall convergences, roof separation, bolts loading and island coal pillar stress. The results of these tests have revealed that the driving force of the large roadway deformation and roof fall was not the activation of the karst collapsed pillars or concentration stress in island coal pillar, but high levels of horizontal tectonic stress and fault slip were induced by mining activities.

  10. ENVIRONMENTAL IMPACT ON PHYSIOLOGICAL RESPONSES OF UNDERGROUND COAL MINERS IN THE EASTERN PART OF INDIA.

    PubMed

    Dey, Netai Chandra; Nath, Suva; Sharma, Gourab Dhara; Mallik, Avijit

    2014-12-01

    Coal in India is extracted generally by semi-mechanized and mechanized underground mining methods. The Bord and Pillar (B & P) mining method still continues to be popular where deployment of manual miners is more than that of other mining methods. The study is conducted at haulage based mine of Eastern Coalfields of West Bengal. Underground miners confront with a lot of hazards like extreme hostile environment, awkward working posture, dust, noise as well as low luminosity. It is difficult to delay the onset of fatigue. In order to study the physiological responses of trammers, various parameters like working heart rates, net cardiac cost and relative cardiac cost including recovery heart rate patterns are recorded during their work at site. Workload classification of trammers has been done following various scales of heaviness. The effect of environment on the physiological responses has been observed and suitable recommendations are made. The work tasks are bound to induce musculoskeletal problems and those problems could be better managed through rationalizing the work-rest scheduling.

  11. Integrated Positioning for Coal Mining Machinery in Enclosed Underground Mine Based on SINS/WSN

    PubMed Central

    Hui, Jing; Wu, Lei; Yan, Wenxu; Zhou, Lijuan

    2014-01-01

    To realize dynamic positioning of the shearer, a new method based on SINS/WSN is studied in this paper. Firstly, the shearer movement model is built and running regularity of the shearer in coal mining face has been mastered. Secondly, as external calibration of SINS using GPS is infeasible in enclosed underground mine, WSN positioning strategy is proposed to eliminate accumulative error produced by SINS; then the corresponding coupling model is established. Finally, positioning performance is analyzed by simulation and experiment. Results show that attitude angle and position of the shearer can be real-timely tracked by integrated positioning strategy based on SINS/WSN, and positioning precision meet the demand of actual working condition. PMID:24574891

  12. Underground mineral extraction

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  13. Is there an association of circulatory hospitalizations independent of mining employment in coal-mining and non-coal-mining counties in west virginia?

    PubMed

    Talbott, Evelyn O; Sharma, Ravi K; Buchanich, Jeanine; Stacy, Shaina L

    2015-04-01

    Exposures associated with coal mining activities, including diesel fuel exhaust, products used in coal processing, and heavy metals and other forms of particulate matter, may impact the health of nearby residents. We investigated the relationships between county-level circulatory hospitalization rates (CHRs) in coal and non-coal-mining communities of West Virginia, coal production, coal employment, and sociodemographic factors. Direct age-adjusted CHRs were calculated using West Virginia hospitalizations from 2005 to 2009. Spatial regressions were conducted to explore associations between CHR and total, underground, and surface coal production. After adjustment, neither total, nor surface, nor underground coal production was significantly related to rate of hospitalization for circulatory disease. Our findings underscore the significant role sociodemographic and behavioral factors play in the health and well-being of coal mining communities.

  14. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  15. Human health and safety risks management in underground coal mines using fuzzy TOPSIS.

    PubMed

    Mahdevari, Satar; Shahriar, Kourosh; Esfahanipour, Akbar

    2014-08-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  17. 30 CFR 75.1712-6 - Underground sanitary facilities; installation and maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground sanitary facilities; installation... Miscellaneous § 75.1712-6 Underground sanitary facilities; installation and maintenance. (a) Except as provided in § 75.1712-7, each operator of an underground coal mine shall provide and maintain one sanitary...

  18. 30 CFR 75.1712-6 - Underground sanitary facilities; installation and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground sanitary facilities; installation... Miscellaneous § 75.1712-6 Underground sanitary facilities; installation and maintenance. (a) Except as provided in § 75.1712-7, each operator of an underground coal mine shall provide and maintain one sanitary...

  19. 30 CFR 75.1712-6 - Underground sanitary facilities; installation and maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground sanitary facilities; installation... Miscellaneous § 75.1712-6 Underground sanitary facilities; installation and maintenance. (a) Except as provided in § 75.1712-7, each operator of an underground coal mine shall provide and maintain one sanitary...

  20. 30 CFR 75.1712-6 - Underground sanitary facilities; installation and maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground sanitary facilities; installation... Miscellaneous § 75.1712-6 Underground sanitary facilities; installation and maintenance. (a) Except as provided in § 75.1712-7, each operator of an underground coal mine shall provide and maintain one sanitary...

  1. 30 CFR 75.1712-6 - Underground sanitary facilities; installation and maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground sanitary facilities; installation... Miscellaneous § 75.1712-6 Underground sanitary facilities; installation and maintenance. (a) Except as provided in § 75.1712-7, each operator of an underground coal mine shall provide and maintain one sanitary...

  2. Cyclic flow underground coal gasification process

    DOEpatents

    Bissett, Larry A.

    1978-01-01

    The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.

  3. Key Technologies and Applications of Gas Drainage in Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Xue, Sheng; Cheng, Jiansheng; Li, Wenquan; Xiao, Jiaping

    2018-02-01

    It is the basis for the long-drilling directional drilling, precise control of the drilling trajectory and ensuring the effective extension of the drilling trajectory in the target layer. The technology can be used to complete the multi-branch hole construction and increase the effective extraction distance of the coal seam. The gas drainage and the bottom grouting reinforcement in the advanced area are realized, and the geological structure of the coal seam can be proved accurately. It is the main technical scheme for the efficient drainage of gas at home and abroad, and it is applied to the field of geological structure exploration and water exploration and other areas. At present, the data transmission method is relatively mature in the technology and application, including the mud pulse and the electromagnetic wave. Compared with the mud pulse transmission mode, the electromagnetic wave transmission mode has obvious potential in the data transmission rate and drilling fluid, and it is suitable for the coal mine. In this paper, the key technologies of the electromagnetic wave transmission mode are analyzed, including the attenuation characteristics of the electromagnetic transmission channel, the digital modulation scheme, the channel coding method and the weak signal processing technology. A coal mine under the electromagnetic wave drilling prototype is developed, and the ground transmission experiments and down hole transmission test are carried out. The main work includes the following aspects. First, the equivalent transmission line method is used to establish the electromagnetic transmission channel model of coal mine drilling while drilling, and the attenuation of the electromagnetic signal is measured when the electromagnetic channel measured. Second, the coal mine EM-MWD digital modulation method is developed. Third, the optimal linear block code which suitable for EM-MWD communication channel in coal mine is proposed. Fourth, the noise characteristics

  4. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  5. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  6. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  7. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  8. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  9. Data mining mining data: MSHA enforcement efforts, underground coal mine safety, and new health policy implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniesner, T.J.; Leeth, J.D.

    2004-09-15

    Using recently assembled data from the Mine Safety and Health Administration (MSHA) we shed new light on the regulatory approach to workplace safety. Because all underground coal mines are inspected quarterly, MSHA regulations will not be ineffective because of infrequent inspections. From over 200 different specifications of dynamic mine safety regressions we select the specification producing the largest MSHA impact. Even using results most favorable to the agency, MSHA is not currently cost effective. Almost 700,000 life years could be gained for typical miners if a quarter of MSHA's enforcement budget were reallocated to other programs (more heart disease screeningmore » or defibrillators at worksites).« less

  10. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  11. 77 FR 17099 - Proposed Extension of Existing Information Collection; Diesel-Powered Equipment for Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... combustible coal dust and explosive methane gas are present. This information collection request (ICR) was... underground coal mine where combustible coal dust and explosive methane gas are present. This information...

  12. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    NASA Astrophysics Data System (ADS)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could

  13. 43 CFR 3484.1 - Performance standards for exploration and surface and underground mining.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... officer. Operators/lessees of underground coal mines shall adopt measures consistent with known technology... subsequent operations on the quantity, quality, or pressure of ground water or mine gases only with the... mines—(1) Underground resource recovery. Underground mining operations shall be conducted so as to...

  14. 43 CFR 3484.1 - Performance standards for exploration and surface and underground mining.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... officer. Operators/lessees of underground coal mines shall adopt measures consistent with known technology... subsequent operations on the quantity, quality, or pressure of ground water or mine gases only with the... mines—(1) Underground resource recovery. Underground mining operations shall be conducted so as to...

  15. Zoning method for environmental engineering geological patterns in underground coal mining areas.

    PubMed

    Liu, Shiliang; Li, Wenping; Wang, Qiqing

    2018-09-01

    Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Review of fire test methods and incident data for portable electric cables in underground coal mines

    NASA Astrophysics Data System (ADS)

    Braun, E.

    1981-06-01

    Electrically powered underground coal mining machinery is connected to a load center or distribution box by electric cables. The connecting cables used on mobile machines are required to meet fire performance requirements defined in the Code of Federal Regulations. This report reviews Mine Safety and Health Administration's (MSHA) current test method and compares it to British practices. Incident data for fires caused by trailing cable failures and splice failures were also reviewed. It was found that the MSHA test method is more severe than the British but that neither evaluated grouped cable fire performance. The incident data indicated that the grouped configuration of cables on a reel accounted for a majority of the fires since 1970.

  17. Causes of coal-miner absenteeism. Information Circular/1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.H.; Randolph, R.F.

    The Bureau of Mines report describes several significant problems associated with absenteeism among underground coal miners. The vast empirical literature on employee absenteeism is reviewed, and a conceptual model of the factors that cause absenteeism among miners is presented. Portions of the model were empirically tested by performing correlational and multiple regression analyses on data collected from a group of 64 underground coal miners. The results of these tests are presented and discussed.

  18. Gas production strategy of underground coal gasification based on multiple gas sources.

    PubMed

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  19. ESTIMATE OF GLOBAL METHANE EMISSIONS FROM COAL MINES

    EPA Science Inventory

    Country-specific emissions of methane (CH4) from underground coal mines, surface coal mines, and coal crushing and transport operations are estimated for 1989. Emissions for individual countries are estimated by using two sets of regression equations (R2 values range from 0.56 to...

  20. 75 FR 17511 - Coal Mine Dust Sampling Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... Part III Department of Labor Mine Safety and Health Adminisration 30 CFR Parts 18, 74, and 75 Coal Mine Dust Sampling Devices; High-Voltage Continuous Mining Machine Standard for Underground Coal Mines...-AB61 Coal Mine Dust Sampling Devices AGENCY: Mine Safety and Health Administration, Labor. ACTION...

  1. Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialecka, Barbara

    One of the prospective methods of coal utilization, especially in case of coal resources which are not mineable by means of conventional methods, is underground coal gasification (UCG). This technology allows recovery of coal energy 'in situ' and thus avoid the health and safety risks related to people which are inseparable from traditional coal extraction techniques.In Poland most mining areas are characterized by numerous coal beds where extraction was ceased on account of technical and economic reasons or safety issues. This article presents estimates of Polish hard coal resources, broken down into individual mines, that can constitute the basis ofmore » raw materials for the gasification process. Five mines, representing more than 4 thousand tons, appear to be UCG candidates.« less

  2. 30 CFR 780.27 - Reclamation plan: Surface mining near underground mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Reclamation plan: Surface mining near underground mining. 780.27 Section 780.27 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  3. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining

    PubMed Central

    Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of “cantilever beam and elastic foundation beam” was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the

  4. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining.

    PubMed

    Yang, Jing-Hu; Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of "cantilever beam and elastic foundation beam" was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation

  5. CoalVal-A coal resource valuation program

    USGS Publications Warehouse

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  6. Thin seam miner/trench mining concepts for Illinois Basin surface coal mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudle, R.D.; Lall, V.

    1985-07-01

    A hybrid surface/underground mining concept, trench-auger mining is an attempt to increase the depth to which coal seams can be surface mined economically by reducing the amount of overburden which must be removed and reclaimed. In this concept the coal seam is first exposed by digging a series of parallel trenches 400 to 1200 ft apart with conventional surface mining equipment. After surface mining the coal from the bottom of the trench, the coal under the surface between the trenches would be extracted with extended-depth augers, operating from the bottoms of the trenches. The RSV Mining Equipment Co. of Hollandmore » has developed a Thin Seam Miner (TSM). The TSM is essentially a remotely controlled, continuous underground mining machine. The hydraulically driven drum cutter head and coal handling auger flights can be operated from a distance outside the underground mine workings. The purpose of this study is to develop and evaluate Thin Seam Miner/Trench Mining (TSM/TM) concepts for use under conditions existing in the Illinois Coal Basin.« less

  7. Lightweight monitoring and control system for coal mine safety using REST style.

    PubMed

    Cheng, Bo; Cheng, Xin; Chen, Junliang

    2015-01-01

    The complex environment of a coal mine requires the underground environment, devices and miners to be constantly monitored to ensure safe coal production. However, existing coal mines do not meet these coverage requirements because blind spots occur when using a wired network. In this paper, we develop a Web-based, lightweight remote monitoring and control platform using a wireless sensor network (WSN) with the REST style to collect temperature, humidity and methane concentration data in a coal mine using sensor nodes. This platform also collects information on personnel positions inside the mine. We implement a RESTful application programming interface (API) that provides access to underground sensors and instruments through the Web such that underground coal mine physical devices can be easily interfaced to remote monitoring and control applications. We also implement three different scenarios for Web-based, lightweight remote monitoring and control of coal mine safety and measure and analyze the system performance. Finally, we present the conclusions from this study and discuss future work. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. 30 CFR 780.27 - Reclamation plan: Surface mining near underground mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RECLAMATION AND OPERATION PLAN § 780.27 Reclamation plan: Surface mining near underground mining. For surface... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Reclamation plan: Surface mining near... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  9. Coal deposits of the United States

    USGS Publications Warehouse

    John, Nelson W.

    1987-01-01

    The coal fields of the Unites States can be divided into six major provinces. The Appalachian and Interior Provinces contain dominantly bituminous coal in strata of Pennsylvanian age. The coal seams are relatively thin and are mined both by surface and underground methods. Sulfyur content is low to moderate in the Appalachian Province, generally high in the Interior province. The Gulf Coastal Plain Province, in Texas and neighboring states, contains lignite of Eocene age. The seams are 3-25 ft (0.9-7.5 m) thick and are minded in large open pits. The Northern Great Plains Province has lignite and subbituminous coal of Cretaceous, Paleocene and Eocene age. The coal, largely very low in sulfur, occurs in beds up to 100 ft (30 m) thick and is strip-mined. The Rocky Mountain Province contains a great variety of coal deposits in numerous separate intermontane basins. Most of it is low-sulfur subbituminous to bituminous coal iof Creatceous and early Tertiary age. The seams range from a few feet to over 100 ft (30 m) thick. Strip-mining dominates but underground mines are important in Utah and Colorado. The Pacific Coast Province, which includes Alaska, contains enormous cola resources but has seen little mining. The coal is highly diverse in physical character and geologic setting. ?? 1987.

  10. A moving baseline for evaluation of advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Bickerton, C. R.; Westerfield, M. D.

    1981-01-01

    Results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000 are reported. Systems used were selected from contemporary coal mining technology and from conservation conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam extended to other seam thicknesses.

  11. 30 CFR 75.1712-8 - Application for waiver of location requirements for underground sanitary facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for underground sanitary facilities. 75.1712-8 Section 75.1712-8 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-8 Application for waiver of location requirements for underground sanitary facilities. Applications for waivers of the location requirements of § 75.1712-6 shall be...

  12. 30 CFR 75.1712-8 - Application for waiver of location requirements for underground sanitary facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for underground sanitary facilities. 75.1712-8 Section 75.1712-8 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-8 Application for waiver of location requirements for underground sanitary facilities. Applications for waivers of the location requirements of § 75.1712-6 shall be...

  13. 30 CFR 75.1712-8 - Application for waiver of location requirements for underground sanitary facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for underground sanitary facilities. 75.1712-8 Section 75.1712-8 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-8 Application for waiver of location requirements for underground sanitary facilities. Applications for waivers of the location requirements of § 75.1712-6 shall be...

  14. 30 CFR 75.1712-8 - Application for waiver of location requirements for underground sanitary facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for underground sanitary facilities. 75.1712-8 Section 75.1712-8 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-8 Application for waiver of location requirements for underground sanitary facilities. Applications for waivers of the location requirements of § 75.1712-6 shall be...

  15. 30 CFR 75.1712-8 - Application for waiver of location requirements for underground sanitary facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for underground sanitary facilities. 75.1712-8 Section 75.1712-8 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-8 Application for waiver of location requirements for underground sanitary facilities. Applications for waivers of the location requirements of § 75.1712-6 shall be...

  16. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    PubMed Central

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  17. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  18. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  19. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  20. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  1. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  2. Unexpected hydrologic perturbation in an abandoned underground coal mine: Response to surface reclamation?

    USGS Publications Warehouse

    Harper, D.; Olyphant, G.A.; Hartke, E.J.

    1990-01-01

    A reclamation project at the abandoned Blackhawk Mine site near Terre Haute, Indiana, lasted about four months and involved the burial of coarse mine refuse in shallow (less than 9 m) pits excavated into loess and till in an area of about 16 ha. An abandoned flooded underground coal mine underlies the reclamation site at a depth of about 38 m; the total area underlain by the mine is about 10 km2. The potentiometric levels associated with the mine indicate a significant (2.7 m) and prolonged perturbation of the deeper confined groundwater system; 14 months after completing reclamation, the levels began to rise linearly (at an average rate of 0.85 cm/d) for 11 months, then fell exponentially for 25 months, and are now nearly stable. Prominent subsidence features exist near the reclamation site. Subsidence-related fractures were observed in cores from the site, and such fractures may have provided a connection between the shallower and deeper groundwater systems. ?? 1990 Springer-Verlag New York Inc.

  3. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime

  4. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  5. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  6. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  7. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  8. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  9. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  10. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  11. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  12. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  13. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  14. [The Research Advancement and Conception of the Deep-underground Medicine].

    PubMed

    Xie, He-Ping; Liu, Ji-Feng; Gao, Ming-Zhong; Wan, Xue-Hong; Liu, Shi-Xi; Zou, Jian; Wu, Jiang; Ma, Teng-Fei; Liu, Yi-Lin; Bu, Hong; Li, Wei-Min

    2018-03-01

    The 21th century is the century of exploring and utilizing the underground space. In the future, more and more people will spend more and more time living or/and working in the underground space. However,we know little about the effect on the health of human caused by the underground environment. Herein,we systematically put forward the strategic conception of the deep-underground medicine,in order to reveal relative effects and mechanism of the potential factors in the deep underground space on human's physiological and psychological healthy,and to work out the corresponding countermeasures. The original deep-underground medicine includes the following items. ①To model different depth of underground environment according to various parameters (such as temperature,radiation,air pressure, rock,microorganism), and to explore their quantitative character and effects on human health and mechanism. ② To study the psychological change, maintenance of homeostasis and biothythm of organism in the deep underground space. ③ To learn the association between psychological healthy of human and the depth, structure, physical environment and working time of underground space. ④ To investigate the effect of different terrane and lithology on healthy of human and to deliberate their contribution on organism growth. ⑤ To research the character and their mechanism of growth,metabolism,exchange of energy,response of growth, aging and adaptation of cells living in deep underground space. ⑥ To explore the physiological feature,growth of microbiome and it's interaction with host in the deep underground space. ⑦ To develop deep-underground simulation space, the biologically medical technology and equipments. As a research basis,a deep-underground medical lab under a rock thickness of about 1 470 m has been built,which aims to operate the research of the effect on living organism caused by different depth of underground environment. Copyright© by Editorial Board of Journal

  15. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less

  16. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  17. Critical parameters for coarse coal underground slurry haulage systems

    NASA Technical Reports Server (NTRS)

    Maynard, D. P.

    1981-01-01

    Factors are identified which must be considered in meeting the requirements of a transportation system for conveying, in a pipeline, the coal mined by a continuous mining machine to a storage location neat the mine entrance or to a coal preparation plant located near the surface. For successful operation, the slurry haulage the system should be designed to operated in the turbulent flow regime at a flow rate at least 30% greater than the deposition velocity (slurry flow rate at which the solid particles tend to settle in the pipe). The capacity of the haulage system should be compatible with the projected coal output. Partical size, solid concentration, density, and viscosity of the suspension are if importance as well as the selection of the pumps, pipes, and valves. The parameters with the greatest effect on system performance ar flow velocity, pressure coal particle size, and solids concentration.

  18. 30 CFR 77.313 - Wet-coal feedbins; low-level indicators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  19. 30 CFR 77.313 - Wet-coal feedbins; low-level indicators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  20. 30 CFR 77.313 - Wet-coal feedbins; low-level indicators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  1. 30 CFR 77.313 - Wet-coal feedbins; low-level indicators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  2. 30 CFR 77.313 - Wet-coal feedbins; low-level indicators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  3. Geophysical examination of coal deposits

    NASA Astrophysics Data System (ADS)

    Jackson, L. J.

    1981-04-01

    Geophysical techniques for the solution of mining problems and as an aid to mine planning are reviewed. Techniques of geophysical borehole logging are discussed. The responses of the coal seams to logging tools are easily recognized on the logging records. Cores for laboratory analysis are cut from selected sections of the borehole. In addition, information about the density and chemical composition of the coal may be obtained. Surface seismic reflection surveys using two dimensional arrays of seismic sources and detectors detect faults with throws as small as 3 m depths of 800 m. In geologically disturbed areas, good results have been obtained from three dimensional surveys. Smaller faults as far as 500 m in advance of the working face may be detected using in seam seismic surveying conducted from a roadway or working face. Small disturbances are detected by pulse radar and continuous wave electromagnetic methods either from within boreholes or from underground. Other geophysical techniques which explicit the electrical, magnetic, gravitational, and geothermal properties of rocks are described.

  4. Economic aspects of advanced coal-fired gas turbine locomotives

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  5. New cleaning technologies advance coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onursal, B.

    1984-05-01

    Alternative options are discussed for reducing sulfur dioxide emissions from coal burning utility and industrial sources. Test results indicate that it may be most advantageous to use the AED Process after coal preparation or on coals that do not need much ash removal. However, the developer claims that research efforts after 1981 have led to process improvements for producing clean coals containing 1.5% to 3% ash. This paper describes the test facility where a full-scale test of the AED Process is underway.

  6. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 260 with Black Thunder Mine subbituminous coal: Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In ordermore » to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)« less

  7. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...

  8. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...

  9. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...

  10. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...

  11. Occupational safety and health implications of increased coal utilization.

    PubMed Central

    Bridbord, K; Costello, J; Gamble, J; Groce, D; Hutchison, M; Jones, W; Merchant, J; Ortmeyer, C; Reger, R; Wagner, W L

    1979-01-01

    An area of major concern in considering increased coal production and utilization is the health and safety of increased numbers of workers who mine, process, or utilize coal. Hazards related to mining activities in the past have been especially serious, resulting in many mine related accidental deaths, disabling injuries, and disability and death from chronic lung disease. Underground coal mines are clearly less safe than surface mines. Over one-third of currently employed underground miners experience chronic lung disease. Other stresses include noise and extremes of heat and cold. Newly emphasized technologies of the use of diesel powered mining equipment and the use of longwall mining techniques may be associated with serious health effects. Workers at coal-fired power plants are also potentially at risk of occupational diseases. Occupational safety and health aspects of coal mining are understood well enough today to justify implementing necessary and technically feasible and available control measures to minimize potential problems associated with increased coal production and use in the future. Increased emphasis on safety and health training for inexperienced coal miners expected to enter the work force is clearly needed. The recently enacted Federal Mine Safety and Health Act of 1977 will provide impetus for increased control over hazards in coal mining. PMID:540621

  12. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  13. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  14. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  15. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  16. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  17. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  18. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. [Statutory Provisions] All welding, cutting, or soldering with arc or flame in all underground areas of a coal mine shall, whenever...

  19. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. [Statutory Provisions] All welding, cutting, or soldering with arc or flame in all underground areas of a coal mine shall, whenever...

  20. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. [Statutory Provisions] All welding, cutting, or soldering with arc or flame in all underground areas of a coal mine shall, whenever...

  1. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. [Statutory Provisions] All welding, cutting, or soldering with arc or flame in all underground areas of a coal mine shall, whenever...

  2. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. [Statutory Provisions] All welding, cutting, or soldering with arc or flame in all underground areas of a coal mine shall, whenever...

  3. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    PubMed

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  4. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...

  5. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...

  6. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...

  7. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...

  8. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...

  9. The Relationship between Elemental Carbon and Diesel Particulate Matter in Underground Metal/Nonmetal Mines in the United States and Coal Mines in Australia

    PubMed Central

    Noll, James; Gilles, Stewart; Wu, Hsin Wei; Rubinstein, Elaine

    2015-01-01

    In the United States, total carbon (TC) is used as a surrogate for determining diesel particulate matter (DPM) compliance exposures in underground metal/nonmetal mines. Since TC can be affected by interferences and elemental carbon (EC) is not, one method used to estimate the TC concentration is to multiply the EC concentration from the personal sample by a conversion factor to avoid the influence of potential interferences. Since there is no accepted single conversion factor for all metal/nonmetal mines, one is determined every time an exposure sample is taken by collecting an area sample that represents the TC/EC ratio in the miner's breathing zone and is away from potential interferences. As an alternative to this procedure, this article investigates the relationship between TC and EC from DPM samples to determine if a single conversion factor can be used for all metal/nonmetal mines. In addition, this article also investigates how well EC represents DPM concentrations in Australian coal mines since the recommended exposure limit for DPM in Australia is an EC value. When TC was predicted from EC values using a single conversion factor of 1.27 in 14 US metal/nonmetal mines, 95% of the predicted values were within 18% of the measured value, even at the permissible exposure limit (PEL) concentration of 160 μg/m3 TC. A strong correlation between TC and EC was also found in nine underground coal mines in Australia. PMID:25380085

  10. Coal without carbon: an investment plan for federal action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettus, A.; Tatsutani, M.

    2009-09-15

    This study examines several technologies for CCS that are not currently receiving adequate development support but that could - in the right policy environment - provide the kind of significant cost reductions (and significant improvements in efficiency) that could greatly accelerate broad, economically attractive CCS deployment. Clean Air Task Force selected these technology areas (though not the technologies themselves) and solicited reports from experts in each field to explore how these technologies might fit into a broader CCS deployment strategy. Each expert was asked to develop a research, development, and demonstration (RD&D) 'road map' that could efficiently move each technologymore » from the laboratory into the commercial mainstream. Because the chapter authors are either technical experts or commercial players and are not, for the most part, energy policy experts, subsequent work will translate their RD&D recommendations into actionable policy proposals. The heart of this report consists of four chapters on advanced coal and CCS technologies: underground coal gasification (UCG), written by Julio Friedmann at Lawrence Livermore National Laboratory; Next generation coal gasification (surface-based gasification) led by Eric Redman at Summit Power Group; Advanced technologies for post-combustion capture (PCC) of CO{sub 2}, led by Howard Herzog at Massachusetts Institute of Technology; and RD&D to speed commercialization of geological CO{sub 2} sequestration (GCS), led by Julio Friedmann. 12 refs., 5 figs., 2 tabs.« less

  11. Assessment and evaluation of noise controls on roof bolting equipment and a method for predicting sound pressure levels in underground coal mining

    NASA Astrophysics Data System (ADS)

    Matetic, Rudy J.

    Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting

  12. Evidence of Human Health Impacts from Uncontrolled Coal Fires in Jharia, India

    NASA Astrophysics Data System (ADS)

    Dhar, U.; Balogun, A. H.; Finkelman, R.; Chakraborty, S.; Olanipekun, O.; Shaikh, W. A.

    2017-12-01

    Uncontrolled coal fires and burning coal waste piles have been reported from dozens of countries. These fires can be caused by spontaneous combustion, sparks from machinery, lightning strikes, grass or forest fires, or intentionally. Both underground and surface coal fires mobilize potentially toxic elements such as sulfur, arsenic, selenium, fluorine, lead, and mercury as well as dangerous organic compounds such as benzene, toluene, xylene, ethylbenzene and deadly gases such as CO2 and CO. Despite the serious health problems that can be caused by uncontrolled coal fires it is rather surprising that there has been so little research and documentation of their health impacts. Underground coal fires in the Jharia region of India where more than a million people reside, have been burning for 100 years. Numerous villages exist above the underground fires exposing the residents daily to dangerous emissions. Local residents near the fire affected areas do their daily chores without concern about the intensity of nearby fires. During winter children enjoy the heat of the coal fires oblivious to the potentially harmful emissions. To determine if these uncontrolled coal fires have caused health problems we developed a brief questionnaire on general health indices and administered it to residents of the Jharia region. Sixty responses were obtained from residents of two villages, one proximal to the coal fires and one about 5 miles away from the fires. The responses were statistically analyzed using SAS 9.4. It was observed that at a significance level of 5%, villagers who lived more than 5 miles away from the fires had a 98.3% decreased odds of having undesirable health outcomes. This brief survey indicates the risk posed by underground coal fires and how it contributes to the undesirable health impacts. What remains is to determine the specific health issues, what components of the emissions cause the health problems, and what can be done to minimize these problems

  13. The effect of coal-bed methane water on spearmint and peppermint

    USDA-ARS?s Scientific Manuscript database

    Coal bed methane (CBM) is extracted from underground coal seams, flooded with water. In order to reduce the pressure and release the methane, the trapped water needs to be pumped out. The resulting ‘waste water’ is known as coal-bed methane water (CBMW). Major concerns with the use of CBMW are the h...

  14. Coal planer. [13 claims

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahre, K.; Nowak, H.D.

    1977-05-24

    A coal planer for use in an underground mine gallery comprises a central unit, a pair of loading heads arranged spaced from and to opposite sides of the central unit and a pair of intermediate units, respectively, located between the central unit and the loading heads and linked to the latter and the central unit. Each of the intermediate units is provided with a plurality of planning knives arranged vertically spaced from each other for cutting coal from the mine face during reciprocation of the coal planer in a direction parallel to the mine face, and with a bottom knifemore » adapted to cut into the sole of the mine gallery. 13 claims, 5 figures.« less

  15. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... 3461.1 Section 3461.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ENVIRONMENT Federal Lands Review: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal...

  16. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... 3461.1 Section 3461.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ENVIRONMENT Federal Lands Review: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal...

  17. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... 3461.1 Section 3461.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ENVIRONMENT Federal Lands Review: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal...

  18. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... 3461.1 Section 3461.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ENVIRONMENT Federal Lands Review: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal...

  19. Human action quality evaluation based on fuzzy logic with application in underground coal mining.

    PubMed

    Ionica, Andreea; Leba, Monica

    2015-01-01

    The work system is defined by its components, their roles and the relationships between them. Any work system gravitates around the human resource and the interdependencies between human factor and the other components of it. Researches in this field agreed that the human factor and its actions are difficult to quantify and predict. The objective of this paper is to apply a method of human actions evaluation in order to estimate possible risks and prevent possible system faults, both at human factor level and at equipment level. In order to point out the importance of the human factor influence on all the elements of the working systems we propose a fuzzy logic based methodology for quality evaluation of human actions. This methodology has a multidisciplinary character, as it gathers ideas and methods from: quality management, ergonomics, work safety and artificial intelligence. The results presented refer to a work system with a high degree of specificity, namely, underground coal mining and are valuable for human resources risk evaluation pattern. The fuzzy logic evaluation of the human actions leads to early detection of possible dangerous evolutions of the work system and alarm the persons in charge.

  20. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  1. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  2. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  3. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  4. Reducing float coal dust

    PubMed Central

    Patts, J.R.; Colinet, J.F.; Janisko, S.J.; Barone, T.L.; Patts, L.D.

    2016-01-01

    Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber. PMID:28018004

  5. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbonmore » capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.« less

  6. Upper Cretaceous bituminous coal deposits of the Olmos Formation, Maverick County, Texas

    USGS Publications Warehouse

    Hook, Robert W.; Warwick, Peter D.; SanFilipo, John R.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    This report describes the bituminous coal deposits of the Olmos Formation (Navarro Group, Upper Cretaceous; Figures 1, 2) of Maverick County in south Texas. Although these were not evaluated quantitatively as part of the current Gulf Coastal Plain coal-resource assessment, a detailed review is presented in this chapter.Prior to the late 1920s, these coal beds were mined underground on a large scale in the vicinity of Eagle Pass, Texas (Figure 1). Since the 1970s, Olmos Formation coals have been mined extensively in both underground and surface mines in nearby Coahuila, Mexico, to supply mine-mouth fuel for power generation at a plant nearby. A tract northeast of Eagle Pass was permitted in the late 1990s for surface mining. In east-central Maverick County, a coalbed methane field is being developed in coal beds of the lower part of the Olmos Formation (Barker et al., 2002; Scott, 2003).

  7. Production of High Energy Aviation Fuels from Advanced Coal Liquids. Phase 1.

    DTIC Science & Technology

    1987-04-01

    AD-A192 333 PRODUCTION OF HIGH ENERGY AVIATION FUELS FROM RDYANCED 1/1 COAL LIQUIDS PHASE 1(U) STRAT CO SALT LAKE CITY UT J DOWNEN APR 9? AFWRL-TR-87...OF HIGH ENERGY AVIATION FUELS FROM ADVANCED COAL LIQUIDS * JOHN DOWNEN STRAT CO. 4597 JUPITER DRIVE SALT LAKE CITY, UTAH 84124 APRIL 1987 FINAL REPORT...OAU TION NME or dokew AFo Prpulsin LCbrator NOA"TO INACCE1SPONONO II-TTEX Xuc*cait* 65502F 1 3005 I 20 r 63 Production of High Energy Aviation Fuels

  8. Literature survey of properties of synfuels derived from coal

    NASA Technical Reports Server (NTRS)

    Flores, F.

    1982-01-01

    A literature survey of the properties of synfuels for ground-based turbine applications is presented. The four major concepts for converting coal into liquid fuels (solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction), and the most important concepts for coal gasification (fixed bed, fluidized bed, entrained flow, and underground gasification) are described. Upgrading processes for coal derived liquid fuels are also described. Data presented for liquid fuels derived from various processes, including H-coal, synthoil, solvent refined coal, COED, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Typical composition, and property data is also presented for low and medium-BTU gases derived from the various coal gasification processes.

  9. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  10. Greening coal: breakthroughs and challenges in carbon capture and storage.

    PubMed

    Stauffer, Philip H; Keating, Gordon N; Middleton, Richard S; Viswanathan, Hari S; Berchtold, Kathryn A; Singh, Rajinder P; Pawar, Rajesh J; Mancino, Anthony

    2011-10-15

    Like it or not, coal is here to stay, for the next few decades at least. Continued use of coal in this age of growing greenhouse gas controls will require removing carbon dioxide from the coal waste stream. We already remove toxicants such as sulfur dioxide and mercury, and the removal of CO₂ is the next step in reducing the environmental impacts of using coal as an energy source (i.e., greening coal). This paper outlines some of the complexities encountered in capturing CO₂ from coal, transporting it large distances through pipelines, and storing it safely underground.

  11. Early detection of mine fire in underground by using smell detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohga, Kotaro; Higuchi, Kiyoshi

    1995-12-31

    In our laboratory, a new detection system using smell detectors was developed to detect the spontaneous combustion of coal and the combustion of other materials used underground. Laboratory experiments were carried out on several kinds of coals, including South African coals, and machine oil, wood and rubber used in belt conveyers. The following results were obtained: (1) Spontaneous combustion of coal can be detected earlier by smell detectors than by conventional CO detection methods. (2) There were no differences in the results using different kinds of coal. (3) Combustion d other materials can also be detected earlier by this systemmore » than by conventional detectors for gas and smoke. (4) Use of this detection system enables one to discern the source of the combustion gases, whether it be coal, wood, oil or rubber.« less

  12. Emissions from Coal Fires and Their Impact on the Environment

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of

  13. CO 2 Storage in Shallow Underground and Surface Coal Mines: Challenges and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Vyacheslav N.; Ackman, Terry E.; Soong, Yee

    2009-02-01

    For coal to be a viable energy source, its excessive CO 2 emissions must be curtailed. Sequestration of CO 2 and other greenhouse gases is a possibility, but success therein is preceded by a significant number of challenges. Perhaps the most onerous is the tradeoff between using deep mines that would better trap CO 2 against using shallower options that are more economical to access. In confronting this issue, a group of U.S. Department of Energy researchers argue that recent advances in the understanding of materials afforded by nanoscale mechanistic models point in a promising direction to develop better sequestrationmore » technologies.« less

  14. Automated Coal-Mine Shuttle Car

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.

  15. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  16. Quality of Selected Hungarian Coals

    USGS Publications Warehouse

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.; Fodor, B.; Gombar, G.

    2007-01-01

    As part of a program conducted jointly by the U.S. Geological Survey and the Hungarian Geological Survey under the auspices of the United States-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for analysis. The mine areas sampled represent most of the coal mined recently in Hungary. Almost all the coal is used to generate electricity. Coals from the five mines (four underground, one surface) reflect differences in age, depositional setting, organic and inorganic components of the original sediments, and deformational history. Classified according to the ranking system of the American Society for Testing and Materials, the coals range in rank from lignite B (Pliocene[?] coals) to high volatile A bituminous (Jurassic coals). With respect to grade classification, based on seam-weighted averages of moisture, ash, and sulfur contents: (1) all contain high moisture (more than 10 percent), (2) all except the Eocene coals are high (more than 15 percent) in ash yield, and (3) two (Jurassic and Eocene coals) are high in sulfur (more than 3 percent) and three (Cretaceous, Miocene, and Pliocene coals) have medium sulfur contents (1 to 3 percent). Average heat values range from 4,000 to 8,650 British thermal units per pound.

  17. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  18. 77 FR 64097 - Supplemental Environmental Impact Statement to the 2011 Final EIS for the Leasing and Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... Final EIS for the Leasing and Underground Mining of the Greens Hollow Federal Coal Lease Tract (UTU... Mining of the Greens Hollow Federal Coal Lease Tract UTU-84102. Supplemental analyses are required to... mining methods, with foreseeable access from existing adjacent leases. The Forest Service and BLM have...

  19. Coals of Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and onemore » surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less

  20. Pathological study of the prevalence of silicosis among coal miners in Iran: A case history

    NASA Astrophysics Data System (ADS)

    Zare Naghadehi, Masoud; Sereshki, Farhang; Mohammadi, F.

    2014-02-01

    One of the most hazardous diseases that is commonly associated with the coal mining industry is Silicosis which caused by dust inhalation. This disease occurs as a result of prolonged breathing of dust containing silica (quartz). The generation of coal mine dust during underground and surface coal mining is the most significant source of coal dust exposure. Silica dust develops scar tissue inside the lungs which reduces the lungs ability to extract oxygen from the air. All miners working in underground and surface coal mines are at risk of being exposed to mine dust containing silica. In this study, cases with pathologic diagnosis of silicosis during seven years period between 2000 and 2007 were retrieved, from the pathologic file of Department of Pathology, Massih Daneshvary Hospital in Iran. Results of this case study showed the great effects of dust exposure and inhalation from the viewpoint of symptoms especially between the miners.

  1. The influence of particle size distribution on dose conversion factors for radon progeny in the underground excavations of hard coal mine.

    PubMed

    Skubacz, Krystian; Wojtecki, Łukasz; Urban, Paweł

    2016-10-01

    In Polish underground mines, hazards caused by enhanced natural radioactivity occur. The sources of radiation exposure are short-lived radon decay products, mine waters containing radium 226 Ra and 228 Ra and the radioactive sediments that can precipitate out of these waters. For miners, the greatest exposure is usually due to short-lived radon decay products. The risk assessment is based on the measurement of the total potential alpha energy concentration (PAEC) and the evaluation of the related dose by using the dose conversion factor as recommended by relevant legal requirements. This paper presents the results of measurements of particle size distributions of ambient aerosols in an underground hard coal mine, the assessment of the radioactive particle size distribution of the short-lived radon decay products and the corresponding values of dose conversion factors. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometers to about 20 μm. The study therefore included practically the whole class of respirable particles. The results showed that the high concentration of ultrafine and fine aerosols measured can significantly affect the value of the dose conversion factors, and consequently the corresponding committed effective dose, to which the miners can be exposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Coal rib response during bench mining: A case study

    PubMed Central

    Sears, Morgan M.; Rusnak, John; Van Dyke, Mark; Rashed, Gamal; Mohamed, Khaled; Sloan, Michael

    2018-01-01

    In 2016, room-and-pillar mining provided nearly 40% of underground coal production in the United States. Over the past decade, rib falls have resulted in 12 fatalities, representing 28% of the ground fall fatalities in U.S. underground coal mines. Nine of these 12 fatalities (75%) have occurred in room-and-pillar mines. The objective of this research is to study the geomechanics of bench room-and-pillar mining and the associated response of high pillar ribs at overburden depths greater than 300 m. This paper provides a definition of the bench technique, the pillar response due to loading, observational data for a case history, a calibrated numerical model of the observed rib response, and application of this calibrated model to a second site. PMID:29862125

  3. Review of toxicity studies performed on an underground coal gasification condensate water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, F.P.

    1987-09-01

    Three studies related to the toxicity of underground coal gasification (UCG) waters have bee conducted: (1) toxicity study of UCG water and its fractions as determined by the Microtox test, (2) toxicity study of biotreated UCG water as determined by the Microtox test, and (3) toxicity study of UCG water to macroinvertebrates. The results of these studies are summarized herein. The gas condensate water from the UCG process is extremely toxic as determined by assays with photoluminescent bacteria (Microtox), benthic (bottom-dwelling) macroinvertebrates (mayflies), and Daphnia magna (water flea). Microtox bioassays reveal that the toxic components of the water reside inmore » both the organophilic and hydrophilic fractions, although the organophilic fraction is notably more toxic. A sequential treatment process reduced the toxicity of the UCG water, as measured by the Microtox test. Solvent extraction (to remove phenols) followed by ammonia stripping yielded a less toxic water. Additional treatment by activated sludge further reduced toxicity. Finally, the addition of powdered activated carbon to the activated sludge yielded the least toxic water. A bioassay technique was developed for lotic (running water) macroinvertebrates (Drunella doddsi and Iron longimanus). The toxicity results were compared with results from the traditional test animal, Daphnia magna. Short-term exposures to the UCG waters were more toxic to Daphnia magna than to Drunella doddsi or Iron longimanus, although the toxicity values begin to merge with longer test exposure. The greater toxicity seems to be related to a thinner exoskeleton. 26 refs., 2 figs., 6 tabs.« less

  4. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  5. Pilot Plant Program for the AED Advanced Coal Cleaning System. Phase II. Interim final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    Advanced Energy Dynamics, Inc. (AED), has developed a proprietary coal cleaning process which employs a combination of ionization and electrostatic separation to remove both sulfur and ash from dry pulverized coal. The Ohio Department of Energy sponsored the first part of a program to evaluate, develop, and demonstrate the process in a continuous-flow pilot plant. Various coals used by Ohio electric utilities were characterized and classified, and sulfur reduction, ash reduction and Btu recovery were measured. Sulfur removal in various coals ranged from 33 to 68% (on a Btu basis). Ash removal ranged from 17 to 59% (on a Btumore » basis). Ash removal of particles greater than 53 microns ranged from 46 to 88%. Btu recovery ranged from 90 to 97%. These results, especially the large percentage removal of ash particles greater than 53 microns, suggest that the AED system can contribute materially to improved boiler performance and availability. The study indicated the following potential areas for commercial utilization of the AED process: installation between the pulverizer and boiler of conventional coal-fired power utilities; reclamation of fine coal refuse; dry coal cleaning to supplement, and, if necessary, to take the place of conventional coal cleaning; upgrading coal used in: (1) coal-oil mixtures, (2) gasification and liquefaction processes designed to handle pulverized coal; and (3) blast furnaces for making steel, as a fuel supplement to the coke. Partial cleaning of coking coal blends during preheating may also prove economically attractive. Numerous other industrial processes which use pulverized coal such as the production of activated carbon and direct reduction of iron ore may also benefit from the use of AED coal cleaning.« less

  6. Protective and control relays as coal-mine power-supply ACS subsystem

    NASA Astrophysics Data System (ADS)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  7. Evaluation of ADAM/1 model for advanced coal extraction concepts

    NASA Technical Reports Server (NTRS)

    Deshpande, G. K.; Gangal, M. D.

    1982-01-01

    Several existing computer programs for estimating life cycle cost of mining systems were evaluated. A commercially available program, ADAM/1 was found to be satisfactory in relation to the needs of the advanced coal extraction project. Two test cases were run to confirm the ability of the program to handle nonconventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs.

  8. 77 FR 26046 - Proposed Extension of Existing Information Collection; Ground Control for Surface Coal Mines and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Extension of Existing Information Collection; Ground Control for Surface Coal Mines and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for... inspections and investigations in coal or other mines shall be made each year for the purposes of, among other...

  9. Electrical Resistivity Tomography for coal fire mapping over Jharia coal field, India

    NASA Astrophysics Data System (ADS)

    Pal, S. K.; Kumar, S.; Bharti, A. K.; Pathak, V. K.; Kumar, R.

    2016-12-01

    Over the decades, coal fires are serious global concern posing grievous hazards to the valuable energy resources, local environments and human life. The coal seam and coal mine fires may be initiated due to improper mining activities, exothermic reactions, lighting, forest fire and other anthropic activities, which burn the coal and may continue underground for decades. The burning of concealed coal seams is a complex process involving numerous ill-defined parameters. Generally, the coal exhibits resistivity of 100 to 500Ωm at normal temperature conditions. During the pyrolysis process, at temperatures greater than 6500C coal became a good conductor with a resistivity of approximately 1 Ωm. The present study deals with the mapping of coal fire over Jharia coal field, India using Electrical Resistivity Tomography (ERT). A state-of-the-art 61-channel 64 electrode FlashRES-Universal ERT data acquisition system has been used for data acquisition in the field. The ERT data have been collected using Gradient array and processed in FlashRES Universal survey data checking program for removing noisy data. Then, filtered output data have been inverted using a 2.5D resistivity inversion program. Low resistivity anomalies over 80m-125m and 320m-390m along the profile are inferred to be active coal fire in seam- XVI at a depth of 25m -35m(Figure 1). High resistivity anomaly over 445m - 510m at a depth of 25m -35m has been delineated, due to void associated with complete combustion of seam- XVI coal, followed by char and ash formation resulting from the coal seam fire. Results prove the efficacy of the ERT study comprising Gradient array for coal fire mapping over, Jharia coal field, India.

  10. Sunrise coal, an innovative New Indiana player continues to grow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchsbaum, L.

    2009-07-15

    Sunrise Coal LLC's Carliste (Indiana) underground mine began development in 2006. Today, the room and pillar operation has grown to a 3 million tpy four unit continuous miner mine. Its coal has low (0.06%) chlorine level and is now being purchased to blend down high chlorine in Illinois Basin coal. The article describes the mining operation and equipment traces the growth of the company, founded in the 1970s by Row and Steve Laswell, emphasizing its focus on employee safety. 5 photos.

  11. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  12. Hydrology of the North Fork of the Right Fork of Miller Creek, Carbon County, Utah, before, during, and after underground coal mining

    USGS Publications Warehouse

    Slaughter, C.B.; Freethey, G.W.; Spangler, L.E.

    1995-01-01

    From 1988-92 the U.S. Geological Survey, in cooperation with the Utah Division of Oil, Gas, and Mining, studied the effects of underground coal mining and the resulting subsidence on the hydrologic system near the North Fork of the Right Fork of Miller Creek, Carbon County, Utah. The subsidence caused open fractures at land surface, debris slides, and rockfalls in the canyon above the mined area. Land surface subsided and moved several feet horizontally. The perennial stream and a tributary upstream from the mined area were diverted below the ground by surface fractures where the overburden thickness above the Wattis coal seam is 300 to 500 feet. The reach downstream was dry but flow resumed where the channel traversed the Star Point Sandstone, which forms the aquifer below the coal seams where ground-water discharge provides new base flow. Concentrations of dissolved constituents in the stream water sampled just downstream from the mined area increased from about 300 mg/L (milligrams per liter) to more than 1,500 mg/L, and the water changed from primarily a magnesium calcium bicarbonate to primarily a magnesium sulfate type. Monitored water levels in two wells completed in the perched aquifer(s) above the mine indicate that fractures from subsidence- related deformation drained the perched aquifer in the Blackhawk Formation. The deformation also could have contributed to the decrease in discharge of three springs above the mined area, but discharge from other springs in the area did not change ubstantially; thus, the relation between subsidence and spring discharge, if any, is not clear. No significant changes in the chemical character of water discharging from springs were detected, but the dissolved-solids concentration in water collected from a perched sandstone aquifer overlying the mined coal seams increased during mining activity.

  13. Underground coal operators install several new longwall mining systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    2008-02-15

    Several new names appear in the annual US Longwall Census, but the population remains the same: 52 although the number of longwall mines dropped from 40 to 47. CONSOL Energy remains the leader with 12 faces. Robert E. Murray owns 8 longwall mines followed by Arch Coal with 5 and Foundation Coal with 3. West Virginia has 13 longwalls followed by 9 in Pennsylvania, 7 in Utah and 6 in Alabama. The article describes CONSOL Energy's operations. A detailed table gives for each longwall installation, the ownership, seam height, cutting height, panel width and length, overburden, number of gate entries,more » depth of cut, model of equipment used (shearer, haulage system, roof support, face conveyor, stage loader, crusher, electrical controls and voltage to face). 2 tabs.« less

  14. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  15. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  16. Advanced direct coal liquefaction concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    During the first quarter of FY 1993, the Project proceeded close to the Project Plan. The analysis of the feed material has been completed as far as possible. Some unplanned distillation was needed to correct the boiling range of the Black Thunder solvent used during the autoclave tests. Additional distillation will be required if the same solvent is to be used for the bench unit tests. A decision on this is still outstanding. The solvent to be used with Illinois No. 6 coal has not yet been defined. As a result, the procurement of the feed and the feed analysismore » is somewhat behind schedule. Agglomeration tests with Black Thunder coal indicates that small agglomerates can be formed. However, the ash removal is quite low (about 10%), which is not surprising in view of the low ash content of the coal. The first series of autoclave tests with Black Thunder coal was completed as planned. Also, additional runs are in progress as repeats of previous runs or at different operating conditions based on the data obtained so far. The results are promising indicating that almost complete solubilization (close to 90%) of Black Thunder coal can be achieved in a CO/H[sub 2]O environment at our anticipated process conditions. The design of the bench unit has been completed. In contrast to the originally planned modifications, the bench unit is now designed based on a computerized control and data acquisition system. All major items of equipment have been received, and prefabrication of assemblies and control panels is proceeding on schedule. Despite a slight delay in the erection of the structural steel, it is anticipated that the bench unit will be operational at the beginning of April 1993.« less

  17. Surfactant-aided coal dust suppression: A review of evaluation methods and influencing factors.

    PubMed

    Xu, Guang; Chen, Yinping; Eksteen, Jacques; Xu, Jialin

    2018-10-15

    There is an increasing trend in the occurrence of coal worker's pneumoconiosis even in developed countries such as the US and Australia who have believed such an issue have been well controlled in the past. Water spray is one of the most commonly applied methods for underground coal mines dust control, and research have shown the dust suppression efficiency can be greatly improved by adding surfactants. However, the literature appears to show inconsistent results that do not provide the coal mining industry with a clearly effective solution. The breakthrough in this field relies on the achievements in prior work, but an up-to-date critical review was not found. By critically reviewing prior studies, this paper highlights the advances in the surfactant-aided coal dust suppression technology. Firstly, the surfactant chemical structure, surfactant type and mechanism of surfactant adsorption were explained. Secondly, the commonly used surfactant efficiency evaluation methods were described. This is important for producing comparable and reproducible results. After that, key aspects of the influencing factors were discussed, which are essential for developing effective and robust dust suppression products. In the discussion on the challenges and further research directions, we suggest more focus should be on the dynamic interaction between the coal particle and water droplet in wind tunnels or well controlled onsite conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. 78 FR 35974 - Proposed Information Collection; Comment Request; Coal Mine Rescue Teams; Arrangements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Request; Coal Mine Rescue Teams; Arrangements for Emergency Medical Assistance and Transportation for... Part 49, Mine Rescue Teams, Subpart B--Mine Rescue Teams for Underground Coal Mines, sets standards related to the availability of mine rescue teams; alternate mine rescue capability for small and remote...

  19. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 262 with Black Thunder subbituminous coal: Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16`` catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MFmore » coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.« less

  20. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  1. Directional control-response compatibility relationships assessed by physical simulation of an underground bolting machine.

    PubMed

    Steiner, Lisa; Burgess-Limerick, Robin; Porter, William

    2014-03-01

    The authors examine the pattern of direction errors made during the manipulation of a physical simulation of an underground coal mine bolting machine to assess the directional control-response compatibility relationships associated with the device and to compare these results to data obtained from a virtual simulation of a generic device. Directional errors during the manual control of underground coal roof bolting equipment are associated with serious injuries. Directional control-response relationships have previously been examined using a virtual simulation of a generic device; however, the applicability of these results to a specific physical device may be questioned. Forty-eight participants randomly assigned to different directional control-response relationships manipulated horizontal or vertical control levers to move a simulated bolter arm in three directions (elevation, slew, and sump) as well as to cause a light to become illuminated and raise or lower a stabilizing jack. Directional errors were recorded during the completion of 240 trials by each participant Directional error rates are increased when the control and response are in opposite directions or if the direction of the control and response are perpendicular.The pattern of direction error rates was consistent with experiments obtained from a generic device in a virtual environment. Error rates are increased by incompatible directional control-response relationships. Ensuring that the design of equipment controls maintains compatible directional control-response relationships has potential to reduce the errors made in high-risk situations, such as underground coal mining.

  2. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    PubMed Central

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  3. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  4. Model for the prediction of subsurface strata movement due to underground mining

    NASA Astrophysics Data System (ADS)

    Cheng, Jianwei; Liu, Fangyuan; Li, Siyuan

    2017-12-01

    The problem of ground control stability due to large underground mining operations is often associated with large movements and deformations of strata. It is a complicated problem, and can induce severe safety or environmental hazards either at the surface or in strata. Hence, knowing the subsurface strata movement characteristics, and making any subsidence predictions in advance, are desirable for mining engineers to estimate any damage likely to affect the ground surface or subsurface strata. Based on previous research findings, this paper broadly applies a surface subsidence prediction model based on the influence function method to subsurface strata, in order to predict subsurface stratum movement. A step-wise prediction model is proposed, to investigate the movement of underground strata. The model involves a dynamic iteration calculation process to derive the movements and deformations for each stratum layer; modifications to the influence method function are also made for more precise calculations. The critical subsidence parameters, incorporating stratum mechanical properties and the spatial relationship of interest at the mining level, are thoroughly considered, with the purpose of improving the reliability of input parameters. Such research efforts can be very helpful to mining engineers’ understanding of the moving behavior of all strata over underground excavations, and assist in making any damage mitigation plan. In order to check the reliability of the model, two methods are carried out and cross-validation applied. One is to use a borehole TV monitor recording to identify the progress of subsurface stratum bedding and caving in a coal mine, the other is to conduct physical modelling of the subsidence in underground strata. The results of these two methods are used to compare with theoretical results calculated by the proposed mathematical model. The testing results agree well with each other, and the acceptable accuracy and reliability of the

  5. Modelling of Underground Coal Gasification Process Using CFD Methods / Modelowanie Procesu Podziemnego Zgazowania Węgla Kamiennego Z Zastosowaniem Metod CFD

    NASA Astrophysics Data System (ADS)

    Wachowicz, Jan; Łączny, Jacek Marian; Iwaszenko, Sebastian; Janoszek, Tomasz; Cempa-Balewicz, Magdalena

    2015-09-01

    The results of model studies involving numerical simulation of underground coal gasification process are presented. For the purpose of the study, the software of computational fluid dynamics (CFD) was selected for simulation of underground coal gasification. Based on the review of the literature, it was decided that ANSYS-Fluent will be used as software for the performance of model studies. The ANSYS- -Fluent software was used for numerical calculations in order to identify the distribution of changes in the concentration of syngas components as a function of duration of coal gasification process. The nature of the calculations was predictive. A geometric model has been developed based on construction data of the georeactor used during the researches in Experimental Mine "Barbara" and Coal Mine "Wieczorek" and it was prepared by generating a numerical grid. Data concerning the georeactor power supply method and the parameters maintained during the process used to define the numerical model. Some part of data was supplemented based on the literature sources. The main assumption was to base the simulation of the georeactor operation on a mathematical models describing reactive fluid flow. Components of the process gas and the gasification agent move along the gasification channel and simulate physicochemical phenomena associated with the transfer of mass and energy as well as chemical reactions (together with the energy effect). Chemical reactions of the gasification process are based on a kinetic equation which determines the course of a particular type of equation of chemical coal gasification. The interaction of gas with the surrounding coal layer has also been described as a part of the model. The description concerned the transport of thermal energy. The coal seam and the mass rock are treated as a homogeneous body. Modelling studies assumed the coal gasification process is carried out with the participation of separately oxygen and air as a gasification agent

  6. Methane drainage at the Minerales Monclova mines in the Sabinas coal basin, Coahuila, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, D.J.; Ponce, J.R.

    Minerales Monclova S.A. De C.V. (MIMOSA) operates five underground longwall mines in the Gassy Los Olmos Coals of the Sabinas Basin in the state of Coahuila in Northern Mexico. Because of high in-situ gas contents and high cleat and natural fracture permeability, MIMOSA has had to incorporate a system of methane drainage in advance of mining in order to safely and cost effectively exploit their reserves. In the early 1990s Resource Enterprises (REI) conducted reservoir characterization tests, numerical simulations, and Coal Mine Methane (CMM) production tests at a nearby mine property in the same basin. Using this information REI approachedmore » MIMOSA and recommended the mine-wide implementation of a degasification system that involves long in-seam directionally drilled boreholes. REI was contracted to conduct the drilling, and to date has drilled over 26,000 m (85,000 ft) of in-seam borehole in advance of mining developments, reducing gas contents significantly below in-situ values. This paper discusses the basis for the degasification program recommended at the MIMOSA mines, and presents the impact of its mine-wide application on MIMOSA's mining operations over the last six years. The paper focuses on the degasification system's impacts on methane emissions into mine workings, coal production, and ventilation demands. It also presents lessons learned by the degasification planners in implementing in-seam methane drainage. The paper presents actual CMM production data, measurements of methane emissions and advance rates at development sections, and mine methane liberations.« less

  7. Underground Coalfires as an Incentive and Challenge to THMC Modeling

    NASA Astrophysics Data System (ADS)

    Wuttke, Manfred W.; Fischer, Christian; Gusat, Dorel; Meyer, Uwe; Schmidt, Martin

    2010-05-01

    Spontaneous combustion of coal has become a world wide problem often caused by technical operations in coal mining areas. It affects human activities locally but even more important globally through the contribution to global warming by emitting substantial amounts of greenhouse gases like carbondioxid. Investigations of underground coalfires so far mainly with the aim of their mitigation have revealed a network of complex interactions between thermal, hydraulic, mechanical and chemical processes in this unique systems. Numerical modeling at the moment is only at the brink of being helpful to support the fire fighting in the field, but has already served as a tool to test the overall understanding of coal fire processes and to estimate their environmental impacts. This work aims at summarizing the status of THMC modeling of underground coalfires, mainly from the perspective of the Sino-German Coalfire Project, and gives an overview of the open questions and challenges to rise to if one is up to comprehensive and meaningful modeling work. The main topics are: The fluid transport through fractured porous media is driven by chemical processes at high temperatures causing high pressure gradients. Transport processes occur on different timescales. Thermal and mechanical stresses cause fracturing in the porous media on a huge range of scales, thus constantly changing the pathways for oxygen supply and exhaust gas removal. To investigate any extinction process one has to consider multi phase transport with phase changes (evaporation and condensation of water, transport of mud and cementation, etc.). To interpret surface signatures like temperature anomalies one has to link the underground processes to atmospheric heat transport including radiation. Coal fires are highly individual, threedimensional systems in general without any symmetry. Other problems in geoscience and geoengineering (like nuclear waste deposition, geothermal energy utilization, carbon dioxide

  8. Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths

    NASA Astrophysics Data System (ADS)

    Czaja, Piotr; Kamiński, Paweł; Klich, Jerzy; Tajduś, Antoni

    2014-10-01

    Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground

  9. [Thermal load at workstations in the underground coal mining: Results of research carried out in 6 coal mines].

    PubMed

    Słota, Krzysztof; Słota, Zbigniew; Kułagowska, Ewa

    Statistics shows that almost half of Polish extraction in underground mines takes place at workstations where temperature exceeds 28°C. The number of employees working in such conditions is gradually increasing, therefore, the problem of safety and health protection is still growing. In the present study we assessed the heat load of employees at different workstations in the mining industry, taking into account current thermal conditions and work costs. The evaluation of energy cost of work was carried out in 6 coal mines. A total of 221 miners employed at different workstations were assessed. Individual groups of miners were characterized and thermal safety of the miners was assessed relying on thermal discomfort index. The results of this study indicate considerable differences in the durations of analyzed work processes at individual workstations. The highest average energy cost was noted during the work performed in the forehead. The lowest value was found in the auxiliary staff. The calculated index of discomfort clearly indicated numerous situations in which the admissible range of thermal load exceeded the parameters of thermal load safe for human health. It should be noted that the values of average labor cost fall within the upper, albeit admissible, limits of thermal load. The results of the study indicate that in some cases work in mining is performed in conditions of thermal discomfort. Due to high variability and complexity of work conditions it becomes necessary to verify the workers' load at different workstations, which largely depends on the environmental conditions and work organization, as well as on the performance of workers themselves. Med Pr 2016;67(4):477-498. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  11. Application and Prospects of High-strength Lightweight Materials used in Coal mine

    NASA Astrophysics Data System (ADS)

    He, Pan

    2017-09-01

    This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.

  12. Nonspecific airway hyperreactivity in nonsmoking bituminous coal miners demonstrated by quantitative methacholine inhalation challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgel, D.W.; Roe, R.

    Because nonsmoking underground bituminous coal miners often have symptoms of chronic bronchitis and because a high proportion of patients with chronic bronchitis have nonspecific airway hyperreactivity, we hypothesized that coal miners would have a higher prevalence of nonspecific airway hyperreactivity than nonminer nonsmoking control subjects. By use of a quantitative methacholine provocative inhalation challenge test, we evaluated 22 underground bituminous coal miners and 41 nonminer age- and sex-matched control subjects from the same community. We found that a significantly higher proportion of miners had reactivity to inhalation of 100 mg/ml or less of methacholine, X2 = 6.19, p less thanmore » 0.02. The slope of phase III of the single-breath nitrogen washout test was higher in the reactive miners than in the nonreactive miners and reactive control subjects, even though the reactive miners had only been working underground 8 +/- 3 (SEM) years. Within the reactive miner subgroup, the higher the reactivity to methacholine, the more abnormal the slope of phase III of the single-breath nitrogen test, r = 0.79. Miners had more symptoms than controls; the presence of methacholine reactivity was not associated with increased symptoms. We conclude that the bituminous coal miners in our study had an increased prevalence of nonspecific airway hyperreactivity and that within the reactive miner subgroup there was evidence of early airways disease. We speculate that the nonspecific airway hyperreactivity may be related to, and also be an indicator of, lung injury in coal miners.« less

  13. Technogenic effect of liquidation of coal mines on earth’s entrails: hydrogeochemical aspect

    NASA Astrophysics Data System (ADS)

    Tarasenko, I. A.; Zinkov, A. V.; Chudaev, O. V.; Vetoshkina, A. V.; Holodilov, I. I.

    2017-10-01

    The authors of the paper have established the geochemical features of the composition of underground waters and regularities of their formation in the areas of the liquidated coal mines of Russia and Ukraine. It is shown that the mine flood resulted in the formation of technogenic waters which geochemical specificity originates in the feeding field and is transformed in the direction of the filtration flow. It depends on the geological structure of sedimentary basins and the presence in the coal and supra-coal beds of the marine, salt-bearing and freshwater groups of geological formations. The water types are distinguished characterizing the conditions and processes of their formation that may be the regional markers in the hydrochemical and geological constructions. The technogenic waters influenced the safety of the underground waters, sources of water supply of the regions, and surface water channels. The pollutions are of local character in space.

  14. Method for in situ biological conversion of coal to methane

    DOEpatents

    Volkwein, Jon C.

    1995-01-01

    A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.

  15. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Andrew Kramer

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition regionmore » at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.« less

  16. The Coal-Seq III Consortium. Advancing the Science of CO 2 Sequestration in Coal Seam and Gas Shale Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koperna, George

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3more » expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was

  17. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    NASA Astrophysics Data System (ADS)

    Borowski, Marek; Kuczera, Zbigniew

    2018-03-01

    Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location

  18. Method for control of subsurface coal gasification

    DOEpatents

    Komar, Charles A.

    1976-12-14

    The burn front in an in situ underground coal gasification operation is controlled by utilizing at least two parallel groups of vertical bore holes disposed in the coalbed at spaced-apart locations in planes orthogonal to the plane of maximum permeability in the coalbed. The combustion of the coal is initiated in the coalbed adjacent to one group of the bore holes to establish a combustion zone extending across the group while the pressure of the combustion supporting gas mixture and/or the combustion products is regulated at each well head by valving to control the burn rate and maintain a uniform propagation of the burn front between the spaced-apart hole groups to gasify virtually all the coal lying therebetween.

  19. Hydrology of coal-lease areas near Durango, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1985-01-01

    The U.S. Bureau of Land Management leases Federal lands and minerals for coal mining near Durango, Colorado. This report addresses the hydrologic suitability of those lands for coal leasing; the report describes the general hydrology of the Durango area and, more specifically, the hydrology of the Stollsteimer Creek study area 32 miles east of the Durango and the Hay Gulch study area, 12 miles southwest of Durango. The most productive aquifers in the Durango study area are Quaternary alluvium and the tertiary Animas Formation. Water wells completed in alluvium typically yield 5 to 20 gallons/min; wells completed is the Animas Formation yield as much as 50 gallons/min. Water quality in these aquifers is variable, but it generally is suitable for domestic use. The coal-bearing Cretaceous Fruitland and Menefee Formations are mined by surface methods at the Chimney Rock Mine in the Stollsteimer Creek study area and by underground methods at the National King Coal Mine in the Hay Gulch study area. Effects of surface mining in the Stollsteimer Creek area are: (1) Dewatering of an alluvial aquifer; and (2) Local degradation of alluvium water quality by spoil-pile effluent. Effects of underground mining in the Hay Gulch area are: (1) Introduction of water with greater dissolved-solids concentrations into the upper Hay Gulch alluvium from mine runoff; (2) Subsidence fracturing which could dewater streams and the alluvial aquifer. (USGS)

  20. Development of Laser Scanner for Full Cross-Sectional Deformation Monitoring of Underground Gateroads

    PubMed Central

    Yang, Qianlong; Zhang, Zhenyu; Liu, Xiaoqian; Ma, Shuqi

    2017-01-01

    The deformation of underground gateroads tends to be asymmetric and complex. Traditional instrumentation fails to accurately and conveniently monitor the full cross-sectional deformation of underground gateroads. Here, a full cross-sectional laser scanner was developed, together with a visualization software package. The developed system used a polar coordinate measuring method and the full cross-sectional measurement was shown by 360° rotation of a laser sensor driven by an electrical motor. Later on, the potential impact of gateroad wall flatness, roughness, and geometrical profile, as well as coal dust environment on the performance of the developed laser scanner will be evaluated. The study shows that high-level flatness is favorable in the application of the developed full cross-sectional deformation monitoring system. For a smooth surface of gateroad, the sensor cannot receive reflected light when the incidence angle of laser beam is large, causing data loss. Conversely, the roughness surface shows its nature as the diffuse reflection light can be received by the sensor. With regards to coal dust in the measurement environment, fine particles of floating coal dust in the air can lead to the loss of measurement data to some extent, due to scattering of the laser beam. PMID:28590449

  1. Organic coal-water fuel: Problems and advances (Review)

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Strizhak, P. A.; Chernetskii, M. Yu.

    2016-10-01

    The study results of ignition of organic coal-water fuel (OCWF) compositions were considered. The main problems associated with investigation of these processes were identified. Historical perspectives of the development of coal-water composite fuel technologies in Russia and worldwide are presented. The advantages of the OCWF use as a power-plant fuel in comparison with the common coal-water fuels (CWF) were emphasized. The factors (component ratio, grinding degree of solid (coal) component, limiting temperature of oxidizer, properties of liquid and solid components, procedure and time of suspension preparation, etc.) affecting inertia and stability of the ignition processes of suspensions based on the products of coaland oil processing (coals of various types and metamorphism degree, filter cakes, waste motor, transformer, and turbine oils, water-oil emulsions, fuel-oil, etc.) were analyzed. The promising directions for the development of modern notions on the OCWF ignition processes were determined. The main reasons limiting active application of the OCWF in power generation were identified. Characteristics of ignition and combustion of coal-water and organic coal-water slurry fuels were compared. The effect of water in the composite coal fuels on the energy characteristics of their ignition and combustion, as well as ecological features of these processes, were elucidated. The current problems associated with pulverization of composite coal fuels in power plants, as well as the effect of characteristics of the pulverization process on the combustion parameters of fuel, were considered. The problems hindering the development of models of ignition and combustion of OCWF were analyzed. It was established that the main one was the lack of reliable experimental data on the processes of heating, evaporation, ignition, and combustion of OCWF droplets. It was concluded that the use of high-speed video recording systems and low-inertia sensors of temperature and gas

  2. Detection of underground voids in Ohio by use of geophysical methods

    USGS Publications Warehouse

    Munk, Jens; Sheets, R.A.

    1997-01-01

    Geophysical methods are generally classified as electrical, potential field, and seismic methods. Each method type relies on contrasts of physical properties in the subsurface. Forward models based on the physical properties of air- and water-filled voids within common geologic materials indicate that several geophysical methods are technically feasible for detection of subsurface voids in Ohio, but ease of use and interpretation varies widely between the methods. Ground-penetrating radar is the most rapid and cost-effective method for collection of subsurface data in areas associated with voids under roadways. Electrical resistivity, gravity, or seismic reflection methods have applications for direct delineation of voids, but data-collection and analytical procedures are more time consuming. Electrical resistivity, electromagnetic, or magnetic methods may be useful in locating areas where conductive material, such as rail lines, are present in abandoned underground coal mines. Other electrical methods include spontaneous potential and very low frequency (VLF); these latter two methods are considered unlikely candidates for locating underground voids in Ohio. Results of ground-penetrating radar surveys at three highway sites indicate that subsurface penetration varies widely with geologic material type and amount of cultural interference. Two highway sites were chosen over abandoned underground coal mines in eastern Ohio. A third site in western Ohio was chosen in an area known to be underlain by naturally occurring voids in lime stone. Ground-penetrating radar surveys at Interstate 470, in Belmont County, Ohio, indicate subsurface penetration of less than 15 feet over a mined coal seam that was known to vary in depth from 0 to 40 feet. Although no direct observations of voids were made, anomalous areas that may be related to collapse structures above voids were indicated. Cultural interference dominated the radar records at Interstate 70, Guernsey County, Ohio

  3. Respiratory predictors of disability days: a five year prospective study of U. S. coal miners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, R.G.; Trent, R.B.

    1985-01-01

    A 5-year prospective analysis tests the hypothesis that coal miners who have impaired respiratory health also experience greater numbers of disability days due to occupational injury. Occupational and respiratory health information collected for the period 1977 through 1981 by the National Institute for Occupational Safety and Health (NIOSH) on 1,118 U.S. underground coal miners was linked to coal miner injury records collected under a mandatory reporting system by the Mine Safety and Health Administration (MSHA). Respiratory impairment, based on spirometric measures, and a questionnaire measure of chronic bronchitis symptoms, after adjustment for cigarette smoking and total years of underground mining,more » did not provide statistically significant prediction of average disability days. In addition, respiratory impairment did not predict the number of episodes of occupational injuries resulting in days lost from work.« less

  4. Development and application of the Safe Performance Index as a risk-based methodology for identifying major hazard-related safety issues in underground coal mines

    NASA Astrophysics Data System (ADS)

    Kinilakodi, Harisha

    The underground coal mining industry has been under constant watch due to the high risk involved in its activities, and scrutiny increased because of the disasters that occurred in 2006-07. In the aftermath of the incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address the various issues related to a safe working environment in the mines. Risk analysis in any form should be done on a regular basis to tackle the possibility of unwanted major hazard-related events such as explosions, outbursts, airbursts, inundations, spontaneous combustion, and roof fall instabilities. One of the responses by the Mine Safety and Health Administration (MSHA) in 2007 involved a new pattern of violations (POV) process to target mines with a poor safety performance, specifically to improve their safety. However, the 2010 disaster (worst in 40 years) gave an impression that the collective effort of the industry, federal/state agencies, and researchers to achieve the goal of zero fatalities and serious injuries has gone awry. The Safe Performance Index (SPI) methodology developed in this research is a straight-forward, effective, transparent, and reproducible approach that can help in identifying and addressing some of the existing issues while targeting (poor safety performance) mines which need help. It combines three injury and three citation measures that are scaled to have an equal mean (5.0) in a balanced way with proportionate weighting factors (0.05, 0.15, 0.30) and overall normalizing factor (15) into a mine safety performance evaluation tool. It can be used to assess the relative safety-related risk of mines, including by mine-size category. Using 2008 and 2009 data, comparisons were made of SPI-associated, normalized safety performance measures across mine-size categories, with emphasis on small-mine safety performance as compared to large- and

  5. Urinary bladder cancer risk factors in an area of former coal, iron, and steel industries in Germany.

    PubMed

    Krech, Eugen; Selinski, Silvia; Blaszkewicz, Meinolf; Bürger, Hannah; Kadhum, Thura; Hengstler, Jan G; Truss, Michael C; Golka, Klaus

    2017-01-01

    This study was performed to investigate the frequency of bladder cancer in patients with an occupational history such as underground hard coal mining and/or painting after the structural change in the local industry. A total of 206 patients with bladder cancer and 207 controls were enlisted regarding occupational and nonoccupational bladder cancer risk factors by questionnaire. The phase II enzymes N-acetyltransferase 2 (NAT2), glutathione S-transferases M1 (GSTM1), and T1 (GSTT1) and the single nucleotide polymorphism (SNP) rs11892031[A/C] reported to be associated with bladder cancer in genome-wide association studies were genotyped. The bladder cancer risk in varnishers and underground hard coal miners was increased as previously shown in a study in this area performed in the 1980s. The occupation of a car mechanic was associated with a significantly elevated bladder cancer risk and higher in the case of underground hard coal miners even though the mine was closed in 1987. The frequency of GSTM1 negative genotype was comparable in cases and controls (53% versus 54%). In the case of NAT2, the slow NAT2 genotype was more frequent (62% versus 58%) and ultra-slow NAT2 genotype (NAT2*6A and/or *7B alleles only) was 23% versus 15%. An occupational history of a varnisher or an underground hard coal miner remains a risk factor for bladder cancer occurrence. Data indicate that in the case of bladder cancer, GSTM1 is a susceptibility factor related to environmental and/or occupational exposure.

  6. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advancedmore » digital control/optimization phase of the project.« less

  7. [Study on the determinants of Helicobacter pylori infection among coal miners].

    PubMed

    Fan, Hong-Min; Yuan, Ju-Xiang; Xu, Ying-Jun; Tian, Li-Min

    2004-06-01

    To study the prevalence and determinants of Helicobacter pylori (H. pylori) infection among coal miners and to seek for competent preventive measures. 425 coal miners from three coal mines, Tangshan, Daxing, and baodian were chosen under stratified random cluster sampling. Face to face interview was conducted to fill the unified questionnaires by trained interviewers. 306 subjects underwent gastroenduoscopy to detect the situation of the gastroenduodenal diseases, according to the Sydney System of diagnosis. Mucosa biopsies were also undertaken according to the regulated location for culture of H. pylori and for pathological examination. Blood samples were obtained to detect the anti-HpU-IgG by enzyme-linked immunosorbent assay (ELISA). H. pylori infection was determined through culture and ELISA but confirmed under the standards set at the National Congress on Gastroduodenal Diseases in 1999. Among 425 eligible coal miners being tested, 297 (69.9%) were H. pylori positive and the rate for those working underground (74.0%) was higher than that of those working on ground (P=0.004). No difference was found among coal miners between the three mines (P >0.05). Age, living conditions in childhood, number of current family members, the amount of alcohol intake and ways of eating at home were strongly associated with the status of H. pylori infection. Difference of H. pylori infection prevalences between the underground and the aboveground coal miners was noticed. Determinants that influencing the H. pylori infection would include socioeconomic factors, individual habits and ways of eating at home.

  8. Technology and development requirements for advanced coal conversion systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A compendium of coal conversion process descriptions is presented. The SRS and MC data bases were utilized to provide information paticularly in the areas of existing process designs and process evaluations. Additional information requirements were established and arrangements were made to visit process developers, pilot plants, and process development units to obtain information that was not otherwise available. Plant designs, process descriptions and operating conditions, and performance characteristics were analyzed and requirements for further development identified and evaluated to determine the impact of these requirements on the process commercialization potential from the standpoint of economics and technical feasibility. A preliminary methodology was established for the comparative technical and economic assessment of advanced processes.

  9. A Critical Study on the Underground Environment of Coal Mines in India-an Ergonomic Approach

    NASA Astrophysics Data System (ADS)

    Dey, Netai Chandra; Sharma, Gourab Dhara

    2013-04-01

    Ergonomics application on underground miner's health plays a great role in controlling the efficiency of miners. The job stress in underground mine is still physically demanding and continuous stress due to certain posture or movement of miners during work leads to localized muscle fatigue creating musculo-skeletal disorders. A good working environment can change the degree of job heaviness and thermal stress (WBGT values) can directly have the effect on stretch of work of miners. Out of many unit operations in underground mine, roof bolting keeps an important contribution with regard to safety of the mine and miners. Occupational stress of roof bolters from ergonomic consideration has been discussed in the paper.

  10. Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatmentmore » of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.« less

  11. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek

    2012-11-30

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grindingmore » and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.« less

  12. Tube bundle system: for monitoring of coal mine atmosphere.

    PubMed

    Zipf, R Karl; Marchewka, W; Mohamed, K; Addis, J; Karnack, F

    2013-05-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine.

  13. Optimal location of emergency stations in underground mine networks using a multiobjective mathematical model.

    PubMed

    Lotfian, Reza; Najafi, Mehdi

    2018-02-26

    Background Every year, many mining accidents occur in underground mines all over the world resulting in the death and maiming of many miners and heavy financial losses to mining companies. Underground mining accounts for an increasing share of these events due to their special circumstances and the risks of working therein. Thus, the optimal location of emergency stations within the network of an underground mine in order to provide medical first aid and transport injured people at the right time, plays an essential role in reducing deaths and disabilities caused by accidents Objective The main objective of this study is to determine the location of emergency stations (ES) within the network of an underground coal mine in order to minimize the outreach time for the injured. Methods A three-objective mathematical model is presented for placement of ES facility location selection and allocation of facilities to the injured in various stopes. Results Taking into account the radius of influence for each ES, the proposed model is capable to reduce the maximum time for provision of emergency services in the event of accident for each stope. In addition, the coverage or lack of coverage of each stope by any of the emergency facility is determined by means of Floyd-Warshall algorithm and graph. To solve the problem, a global criterion method using GAMS software is used to evaluate the accuracy and efficiency of the model. Conclusions 7 locations were selected from among 46 candidates for the establishment of emergency facilities in Tabas underground coal mine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.

  15. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust

    PubMed Central

    Barone, T. L.; Patts, J. R.; Janisko, S. J.; Colinet, J. F.; Patts, L. D.; Beck, T. W.; Mischler, S. E.

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374

  16. Chemical and mineralogical characterization of highly and less reactive coal from Northern Natal and Venda-Pafuri coalfields in South Africa

    NASA Astrophysics Data System (ADS)

    Kataka, M. O.; Matiane, A. R.; Odhiambo, B. D. O.

    2018-01-01

    Spontaneous combustion of coal is a major hazard associated with the coal mining industry over centuries. It also a major cause of underground fires in South African collieries and in opencast operations, spoil heaps and stockpiles. Spontaneous combustion incidents are manifested in all major aspects of coal mining namely, underground mining, surface mining, including during sea-borne transportation, storage and waste disposal. Previous studies indicate that there are various factors (both intrinsic and extrinsic) that influence the spontaneous combustion of coals. This paper characterizes highly reactive coal from the Vryheid coalfields and less reactive coal from at Venda-Pafuri coalfield, to identify and delineate some intrinsic coal parameters that are considered to be most critical in terms of heat 'generation' and relationships between the two coals types by tracing their similarities and differences in their spontaneous combustion parameters. Various tests were carried out to characterize these coals in terms of their intrinsic properties, namely: ultimate, proximate, petrographic analysis and Glasser spontaneous tests. The ultimate and proximate analysis showed that spontaneous coal has high contents of carbon, oxygen, and volatile matter as compared to non-spontaneous coal, making it more susceptible to spontaneous combustion. Non-spontaneous coal has higher ash content than the spontaneous coal. Furthermore, the petrographic analysis showed that spontaneous coal has high total reactivity compared to the non-spontaneous coal. Results from Glasser spontaneous test indicate that spontaneous coal absorbs more oxygen than non-spontaneous coal, which explains why spontaneous coal is more susceptible to spontaneous combustion. High reactive coal has low values of critical self-heating temperature (CSHT), indicating that this coal has potential of spontaneous ignition.

  17. Coal supply and cost under technological and environmental uncertainty

    NASA Astrophysics Data System (ADS)

    Chan, Melissa

    This thesis estimates available coal resources, recoverability, mining costs, environmental impacts, and environmental control costs for the United States under technological and environmental uncertainty. It argues for a comprehensive, well-planned research program that will resolve resource uncertainty, and innovate new technologies to improve recovery and environmental performance. A stochastic process and cost (constant 2005) model for longwall, continuous, and surface mines based on current technology and mining practice data was constructed. It estimates production and cost ranges within 5-11 percent of 2006 prices and production rates. The model was applied to the National Coal Resource Assessment. Assuming the cheapest mining method is chosen to extract coal, 250-320 billion tons are recoverable. Two-thirds to all coal resource can be mined at a cost less than 4/mmBTU. If U.S. coal demand substantially increases, as projected by alternate Energy Information Administration (EIA), resources might not last more than 100 years. By scheduling cost to meet EIA projected demand, estimated cost uncertainty increases over time. It costs less than 15/ton to mine in the first 10 years of a 100 year time period, 10-30/ton in the following 50 years, and 15-$90/ton thereafter. Environmental impacts assessed are subsidence from underground mines, surface mine pit area, erosion, acid mine drainage, air pollutant and methane emissions. The analysis reveals that environmental impacts are significant and increasing as coal demand increases. Control technologies recommended to reduce these impacts are backfilling underground mines, surface pit reclamation, substitution of robotic underground mining systems for surface pit mining, soil replacement for erosion, placing barriers between exposed coal and the elements to avoid acid formation, and coalbed methane development to avoid methane emissions during mining. The costs to apply these technologies to meet more stringent

  18. A Review of Underground Coal Gasification Research and Development in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camp, D. W.

    An intense and productive period of research and development on underground coal gasification (UCG) took place in the United States from the mid-1970’s through the late 1980’s. It began with the translation and review of Soviet literature and ended with the Rocky Mountain 1 field test. This demonstrated the feasibility of newly-developed technologies that form the basis of many UCG projects around the world today. This period began with little domestic understanding of UCG and ended with an accurate observation-based conceptual model and a corresponding predictive multi-physics mathematical model of the process. The many accomplishments of this period form themore » main content of this report. This report also covers recent U.S. activities and accomplishments during the period 2004-2015, and touches briefly on the Bureau of Mines efforts between 1948 and 1963. Most of the activities were funded by the United States Department of Energy and its predecessors. While private/commercially-funded activities are reviewed here, the emphasis is on government-funded work. It has a much greater extent of publicly available reports and papers, and they generally contain much greater technical detail. Field tests were the marquis activities around which an integrated multi-faceted program was built. These are described in detail in Section 4. Highlights from modeling efforts are briefly covered, as the program was integrated and well-rounded, with field results informing models and vice-versa. The primary goal of this report is to review what has been learned about UCG from the U.S. experience in aggregate. This includes observations, conclusions, lessons-learned, phenomena understood, and technology developed. The latter sections of this report review these things.« less

  19. Hydrologic reconnaissance of the Kolob, Alton, and Kaiparowits Plateau coal fields, south-central Utah

    USGS Publications Warehouse

    Plantz, Gerald G.

    1985-01-01

    The study area in south-central Utah (fig. 1) is noted for its large coal reserves in the Alton, Kolob, and Kaiparowits Plateau coal fields. The area also is noted for its scenic beauty and general scarcity of water. Although there has been very little development of the coal resources through 1983, there is a potential for large-scale development with both surface- and underground-mining methods. Mining of coal could have significant effects on the quantity and quality of the water resources. The purpose of this atlas is to define the surface- and ground-water resources of the area and to identify the potential effects on these resources by coal mining.

  20. 78 FR 49061 - Valuation of Federal Coal for Advance Royalty Purposes and Information Collection Applicable to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... use available information technology (for example: Spreadsheet programs, i.e., Microsoft Excel, web...) 231- 3221, or by email at [email protected] . SUPPLEMENTARY INFORMATION: I. Background A. Pre... part 1218, subpart I, titled ``Federal Coal Advance Royalty.'' B. The EPAct On August 8, 2005, the...

  1. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 March 1995--31 May 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, V.M.; Wright, M.A.

    1995-12-31

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADM unit1-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM unit1-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whosemore » lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}0.5H{sub 2}O) phase. In the second and third quarters the focus of research has been on developing protocols for the formation of advanced brake composites and structural composites. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disks from coal combustion residues. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites.« less

  2. A Review of Mine Rescue Ensembles for Underground Coal Mining in the United States.

    PubMed

    Kilinc, F Selcen; Monaghan, William D; Powell, Jeffrey B

    The mining industry is among the top ten industries nationwide with high occupational injury and fatality rates, and mine rescue response may be considered one of the most hazardous activities in mining operations. In the aftermath of an underground mine fire, explosion or water inundation, specially equipped and trained teams have been sent underground to fight fires, rescue entrapped miners, test atmospheric conditions, investigate the causes of the disaster, or recover the dead. Special personal protective ensembles are used by the team members to improve the protection of rescuers against the hazards of mine rescue and recovery. Personal protective ensembles used by mine rescue teams consist of helmet, cap lamp, hood, gloves, protective clothing, boots, kneepads, facemask, breathing apparatus, belt, and suspenders. While improved technology such as wireless warning and communication systems, lifeline pulleys, and lighted vests have been developed for mine rescuers over the last 100 years, recent research in this area of personal protective ensembles has been minimal due to the trending of reduced exposure of rescue workers. In recent years, the exposure of mine rescue teams to hazardous situations has been changing. However, it is vital that members of the teams have the capability and proper protection to immediately respond to a wide range of hazardous situations. Currently, there are no minimum requirements, best practice documents, or nationally recognized consensus standards for protective clothing used by mine rescue teams in the United States (U.S.). The following review provides a summary of potential issues that can be addressed by rescue teams and industry to improve potential exposures to rescue team members should a disaster situation occur. However, the continued trending in the mining industry toward non-exposure to potential hazards for rescue workers should continue to be the primary goal. To assist in continuing this trend, the mining industry

  3. A Review of Mine Rescue Ensembles for Underground Coal Mining in the United States

    PubMed Central

    Kilinc, F. Selcen; Monaghan, William D.; Powell, Jeffrey B.

    2016-01-01

    The mining industry is among the top ten industries nationwide with high occupational injury and fatality rates, and mine rescue response may be considered one of the most hazardous activities in mining operations. In the aftermath of an underground mine fire, explosion or water inundation, specially equipped and trained teams have been sent underground to fight fires, rescue entrapped miners, test atmospheric conditions, investigate the causes of the disaster, or recover the dead. Special personal protective ensembles are used by the team members to improve the protection of rescuers against the hazards of mine rescue and recovery. Personal protective ensembles used by mine rescue teams consist of helmet, cap lamp, hood, gloves, protective clothing, boots, kneepads, facemask, breathing apparatus, belt, and suspenders. While improved technology such as wireless warning and communication systems, lifeline pulleys, and lighted vests have been developed for mine rescuers over the last 100 years, recent research in this area of personal protective ensembles has been minimal due to the trending of reduced exposure of rescue workers. In recent years, the exposure of mine rescue teams to hazardous situations has been changing. However, it is vital that members of the teams have the capability and proper protection to immediately respond to a wide range of hazardous situations. Currently, there are no minimum requirements, best practice documents, or nationally recognized consensus standards for protective clothing used by mine rescue teams in the United States (U.S.). The following review provides a summary of potential issues that can be addressed by rescue teams and industry to improve potential exposures to rescue team members should a disaster situation occur. However, the continued trending in the mining industry toward non-exposure to potential hazards for rescue workers should continue to be the primary goal. To assist in continuing this trend, the mining industry

  4. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines

    PubMed Central

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-01

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500

  5. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines.

    PubMed

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-28

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes' placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper.

  6. Corrosion of rock anchors in US coal mines

    NASA Astrophysics Data System (ADS)

    Bylapudi, Gopi

    The mining industry is a major consumer of rock bolts in the United States. Due to the high humidity in the underground mining environment, the rock bolts corrode and loose their load bearing capacity which in turn reduces the life expectancy of the ground support and, thus, creates operational difficulties and number of safety concerns[1]. Research on rock anchor corrosion has not been adequately extensive in the past and the effects of several factors in the mine atmosphere and waters are not clearly understood. One of the probable reasons for this lack of research may be attributed to the time required for gathering meaningful data that makes the study of corrosion quite challenging. In this particular work underground water samples from different mines in the Illinois coal basin were collected and the major chemical content was analyzed and used for the laboratory testing. The corrosion performance of the different commercial rock anchors was investigated by techniques such as laboratory immersion tests in five different corrosion chambers, and potentiodynamic polarization tests in simulated ground waters based on the Illinois coal basin. The experiments were conducted with simulate underground mining conditions (corrosive). The tensile strengths were measured for the selected rock anchors taken every 3 months from the salt spray corrosion chambers maintained at different pH values and temperatures. The corrosion potential (Ecorr ), corrosion current (Icorr) and the corresponding corrosion rates (CR) of the selected commercial rock bolts: #5, #6, #6 epoxy coated and #7 forged head rebar steels, #6 and #7 threaded head rebar steels were measured at the solution pH values of 5 and 8 at room temperature. The open circuit potential (OCP) values of the different rock anchors were recorded in 3 selected underground coal mines (A, B & C) in the Illinois coal basin and the data compared with the laboratory electrochemical tests for analyzing the life of the rock

  7. UNDERGROUNG PLACEMENT OF COAL PROCESSING WASTE AND COAL COMBUSTION BY-PRODUCTS BASED PASTE BACKFILL FOR ENHANCED MINING ECONOMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.P. Chugh; D. Biswas; D. Deb

    2002-06-01

    This project has successfully demonstrated that the extraction ratio in a room-and-pillar panel at an Illinois mine can be increased from the current value of approximately 56% to about 64%, with backfilling done from the surface upon completion of all mining activities. This was achieved without significant ground control problems due to the increased extraction ratio. The mined-out areas were backfilled from the surface with gob, coal combustion by-products (CCBs), and fine coal processing waste (FCPW)-based paste backfill containing 65%-70% solids to minimize short-term and long-term surface deformations risk. This concept has the potential to increase mine productivity, reduce miningmore » costs, manage large volumes of CCBs beneficially, and improve the miner's health, safety, and environment. Two injection holes were drilled over the demonstration panel to inject the paste backfill. Backfilling was started on August 11, 1999 through the first borehole. About 9,293 tons of paste backfill were injected through this borehole with a maximum flow distance of 300-ft underground. On September 27, 2000, backfilling operation was resumed through the second borehole with a mixture of F ash and FBC ash. A high-speed auger mixer (new technology) was used to mix solids with water. About 6,000 tons of paste backfill were injected underground through this hole. Underground backfilling using the ''Groutnet'' flow model was simulated. Studies indicate that grout flow over 300-foot distance is possible. Approximately 13,000 tons of grout may be pumped through a single hole. The effect of backfilling on the stability of the mine workings was analyzed using SIUPANEL.3D computer program and further verified using finite element analysis techniques. Stiffness of the backfill mix is most critical for enhancing the stability of mine workings. Mine openings do not have to be completely backfilled to enhance their stability. Backfill height of about 50% of the seam height is

  8. Longevity of acid discharges from underground mines located above the regional water table.

    PubMed

    Demchak, J; Skousen, J; McDonald, L M

    2004-01-01

    The duration of acid mine drainage flowing out of underground mines is important in the design of watershed restoration and abandoned mine land reclamation projects. Past studies have reported that acid water flows from underground mines for hundreds of years with little change, while others state that poor drainage quality may last only 20 to 40 years. More than 150 above-drainage (those not flooded after abandonment) underground mine discharges from Pittsburgh and Upper Freeport coal seams were located and sampled during 1968 in northern West Virginia, and we revisited 44 of those sites in 1999-2000 and measured water flow, pH, acidity, Fe, sulfate, and conductivity. We found no significant difference in flows between 1968 and 1999-2000. Therefore, we felt the water quality data could be compared and the data represented real changes in pollutant concentrations. There were significant water quality differences between year and coal seam, but no effect of disturbance. While pH was not significantly improved, average total acidity declined 79% between 1968 and 1999-2000 in Pittsburgh mines (from 66.8 to 14 mmol H+ L(-1)) and 56% in Upper Freeport mines (from 23.8 to 10.4 mmol H+ L(-1)). Iron decreased an average of about 80% across all sites (from an average of 400 to 72 mg L(-1)), while sulfate decreased between 50 and 75%. Pittsburgh seam discharge water was much worse in 1968 than Upper Freeport seam water. Twenty of our 44 sites had water quality information in 1980, which served as a midpoint to assess the slope of the decline in acidity and metal concentrations. Five of 20 sites (25%) showed an apparent exponential rate of decline in acidity and iron, while 10 of 20 sites (50%) showed a more linear decline. Drainage from five Upper Freeport sites increased in acidity and iron. While it is clear that surface mines and below-drainage underground mines improve in discharge quality relatively rapidly (20-40 years), above-drainage underground mines are not as

  9. Mining geology of the Pond Creek seam, Pikeville Formation, Middle Pennsylvanian, in part of the Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Popp, J.T.

    1999-01-01

    The Pond Creek seam is one of the leading producers of coal in the Eastern Kentucky Coal Field. The geologic factors that affect mining were investigated in several underground mines and categorized in terms of coal thickness, coal quality, and roof control. The limits of mining and thick coal are defined by splitting along the margin of the coal body. Within the coal body, local thickness variation occurs because of (1) leader coal benches filling narrow, elongated depressions, (2) rider coal benches coming near to or merging with the main bench, (3) overthrust coal benches being included along paleochannel margins, (4) cutouts occuring beneath paleochannels, and (5) very hard and unusual rock partings occuring along narrow, elongated trends. In the study area, the coal is mostly mined as a compliance product: sulfur contents are less than 1% and ash yields are less than 10%. Local increases in sulfur occur beneath sandstones, and are inferred to represent post-depositional migration of fluids through porous sands into the coal. Run-of-mine quality is also affected by several mine-roof conditions and trends of densely concentrated rock partings, which lead to increased in- and out-of-seam dilution and overall ash content of the mined coal. Roof control is largely a function of a heterolithic facies mosaic of coastal-estuarine origin, regional fracture trends, and unloading stress related to varying mine depth beneath the surface. Lateral variability of roof facies is the rule in most mines. The largest falls occur beneath modern valleys and parallel fractures, along paleochannel margins, within tidally affected 'stackrock,' and beneath rider coals. Shale spalling, kettlebottoms, and falls within other more isolated facies also occur. Many of the lithofacies, and falls related to bedding weaknesses within or between lithofacies, occur along northeast-southwest trends, which can be projected in advance of mining. Fracture-related falls occur independently of

  10. Effects of underground mining and mine collapse on the hydrology of selected basins in West Virginia

    USGS Publications Warehouse

    Hobba, William A.

    1993-01-01

    The effects of underground mining and mine collapse on areal hydrology were determined at one site where the mined bed of coal lies above major streams and at two sites where the bed of coal lies below major streams. Subsidence cracks observed at land surface generally run parallel to predominant joint sets in the rocks. The mining and subsidence cracks increase hydraulic conductivity and interconnection of water-bearing rock units, which in turn cause increased infiltration of precipitation and surface water, decreased evapotranspiration, and higher base flows in some small streams. Water levels in observation wells in mined areas fluctuate as much as 100 ft annually. Both gaining and losing streams are found in mined areas. Mine pumpage and drainage can cause diversion of water underground from one basin to another. Areal and single-well aquifer tests indicated that near-surface rocks have higher transmissivity in a mine-subsided basin than in unmined basins. Increased infiltration and circulation through shallow subsurface rocks increase dissolved mineral loads in streams, as do treated and untreated contributions from mine pumpage and drainage. Abandoned and flooded underground mines make good reservoirs because of their increased transmissivity and storage. Subsidence cracks were not detectable by thermal imagery, but springs and seeps were detectable.

  11. Hazard mitigation in coal mines

    NASA Astrophysics Data System (ADS)

    Rashmi, R. V.; Devalal, Shilpa; Jacob, Anjali; Vidhyapathi, C. M.

    2017-11-01

    Today’s world witnesses increased number of mine accidents caused due to explosion and fire. When the methane gas concentration goes high, it causes fire leading to explosion. In this paper, an IoT based system is proposed to ensure safety to the mine workers in underground collieries. The proposed system consists of DHT-11 sensor to monitor the temperature and humidity of coal mines. When the gas sensor detects high methane gas level, blower is activated so that the atmospheric air can be pumped in from outside to dilute the gas concentration. The smoke sensor is also used to detect the fire. In case of any abnormality in any of these parameters the buzzer sounds. All these parameters are uploaded to the cloud directly so that the people at the control station can be well informed of the underground mines.

  12. Detecting and characterizing coal mine related seismicity in the Western U.S. using subspace methods

    NASA Astrophysics Data System (ADS)

    Chambers, Derrick J. A.; Koper, Keith D.; Pankow, Kristine L.; McCarter, Michael K.

    2015-11-01

    We present an approach for subspace detection of small seismic events that includes methods for estimating magnitudes and associating detections from multiple stations into unique events. The process is used to identify mining related seismicity from a surface coal mine and an underground coal mining district, both located in the Western U.S. Using a blasting log and a locally derived seismic catalogue as ground truth, we assess detector performance in terms of verified detections, false positives and failed detections. We are able to correctly identify over 95 per cent of the surface coal mine blasts and about 33 per cent of the events from the underground mining district, while keeping the number of potential false positives relatively low by requiring all detections to occur on two stations. We find that most of the potential false detections for the underground coal district are genuine events missed by the local seismic network, demonstrating the usefulness of regional subspace detectors in augmenting local catalogues. We note a trade-off in detection performance between stations at smaller source-receiver distances, which have increased signal-to-noise ratio, and stations at larger distances, which have greater waveform similarity. We also explore the increased detection capabilities of a single higher dimension subspace detector, compared to multiple lower dimension detectors, in identifying events that can be described as linear combinations of training events. We find, in our data set, that such an advantage can be significant, justifying the use of a subspace detection scheme over conventional correlation methods.

  13. Fatality rates and regulatory policies in bituminous coal mining, United States, 1959-1981.

    PubMed

    Weeks, J L; Fox, M

    1983-11-01

    In the eleven years prior to the passage of the Federal Coal Mine Health and Safety Act of 1969, fatality rates changed little for underground miners and were increasing for surface miners. Following implementation of the 1969 Act, both rates decreased. Beginning in 1979, and continuing into the first six months of 1982, both rates increased. These associations suggest that current relaxation of regulations and policies for coal mine safety are unwarranted.

  14. Low back pain and lumbar angles in Turkish coal miners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarikaya, S.; Ozdolap, S.; Gumustas, S.

    This study was designed to assess the incidence of low back pain among Turkish coal miners and to investigate the relationship between angles of the lumbar spine and low back pain in coal miners. Fifty underground workers (Group I) and 38 age-matched surface workers (Group II) were included in the study. All the subjects were asked about low back pain in the past 5 years. The prevalence of low back pain was higher in Group I than in Group II (78.0%, 32.4%, respectively, P {lt} 0.001). The results of the study showed that low back pain occurred in 78.0% ofmore » Turkish coal miners. Although the nature of the occupation may have influenced coal miners' lumbar spinal curvature, lumbar angles are not a determinant for low back pain in this population. Further extensive studies involving ergonomic measurements are needed to validate our results for Turkish coal mining industry.« less

  15. Coal companies hope to receive carbon credits for methane reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-09-30

    Each year, underground coal mining in the USA liberates 2.4 million tonnes of coal mine methane (CMM), of which less than 30% is recovered and used. One barrier to CMM recovery is cost. Drainage, collection, and utilization systems are complex and expensive to install. Two coal mines have improved the cost equation, however, by signing on to earn money for CMM emissions they are keeping out of the atmosphere. Jim Walter Resources and PinnOak Resources have joined a voluntary greenhouse gas reduction trading program called the Chicago Climate Exchange (CCX) to turn their avoided emissions into carbon credits. The examplemore » they set may encourage other coal mining companies to follow suit, and may bring new projects on the line that would otherwise have not gone forward. 2 refs., 1 fig.« less

  16. Method of underground mining by pillar extraction

    DOEpatents

    Bowen, Ray J.; Bowen, William R.

    1980-08-12

    A method of sublevel caving and pillar and top coal extraction for mining thick coal seams includes the advance mining of rooms and crosscuts along the bottom of a seam to a height of about eight feet, and the retreat mining of the top coal from the rooms, crosscuts and portions of the pillars remaining from formation of the rooms and cross-cuts. In the retreat mining, a pocket is formed in a pillar, the top coal above the pocket is drilled, charged and shot, and then the fallen coal is loaded by a continuous miner so that the operator remains under a roof which has not been shot. The top coal from that portion of the room adjacent the pocket is then mined, and another pocket is formed in the pillar. The top coal above the second pocket is mined followed by the mining of the top coal of that portion of the room adjacent the second pocket, all by use of a continuous miner which allows the operator to remain under a roof portion which has not been shot.

  17. Chronic respiratory effects of exposure to diesel emissions in coal mines.

    PubMed

    Ames, R G; Hall, D S; Reger, R B

    1984-01-01

    A 5-yr prospective design was employed to test the hypothesis that exposure to diesel emissions leads to chronic respiratory effects among underground coal miners. Changes in respiratory function and development of chronic respiratory symptoms were measured during a 5-yr study period (i.e., 1977 to 1982) in 280 diesel-exposed and 838 control miners from Eastern and Western United States underground coal mines. Spirometry measures of respiratory function included forced expiratory volume in 1 sec (FEV1.0), forced vital capacity (FVC), and forced expiratory flow rate at 50% of FVC (FEF50). Chronic respiratory symptom measures, which included chronic cough, chronic phlegm, and breathlessness, were obtained by questionnaires, as were smoking status and occupational history. Based upon these data, the pattern of evidence did not support the hypothesis either in an age-adjusted comparison of diesel vs. nondiesel miners or in an internal analysis by cumulative years of diesel exposure.

  18. Manual of good practices for sanitation in coal mining operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of the manual was to act as a guideline, setting reasonable recommendations relative to mine sanitation which will enable mines to install adequate facilities and make appropriate alterations conserving and improving the health and welfare of the mine worker. A systematic evaluation was undertaken of the sanitation facilities and maintenance at coal mines. Consideration was given to central facilities including building, floors, walls, partitions, ceilings, lockers, baskets and benches, showers, toilets, lavatories, lighting, ventilation and temperature control, and maintenance. Also discussed were food vending machines, water source, water quality, water treatment, water delivery systems for underground and surfacemore » mines, sanitary waste disposal, workplace toilets in underground and surface mines, refuse control and handling for underground and surface mines, and pest control.« less

  19. New technology of underground structures the framework of restrained urban conditions

    NASA Astrophysics Data System (ADS)

    Pleshko, Mikhail; Pankratenko, Alexander; Revyakin, Alexey; Shchekina, Ekaterina; Kholodova, Svetlana

    2018-03-01

    In the paper was indicated the essentiality of large-scale underground space development and high-rise construction of cities in Russia. The basic elements of transport facilities construction effective technology without traffic restriction are developed. Unlike the well-known solutions, it offers the inclusion of an advanced lining in the construction that strengthens the soil mass. The fundamental principles of methods for determining stress in advanced support and monitoring of underground construction, providing the application of pressure sensors, strain sensors and displacement sensors are considered.

  20. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research intomore » the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.« less

  1. Experimental study on the confinement-dependent characteristics of a Utah coal considering the anisotropy by cleats

    PubMed Central

    Kim, Bo-Hyun; Walton, Gabriel; Larson, Mark K.; Berry, Steve

    2018-01-01

    Characterizing a coal from an engineering perspective for design of mining excavations is critical in order to prevent fatalities, as underground coal mines are often developed in highly stressed ground conditions. Coal pillar bursts involve the sudden expulsion of coal and rock into the mine opening. These events occur when relatively high stresses in a coal pillar, left for support in underground workings, exceed the pillar’s load capacity causing the pillar to rupture without warning. This process may be influenced by cleating, which is a type of joint system that can be found in coal rock masses. As such, it is important to consider the anisotropy of coal mechanical behavior. Additionally, if coal is expected to fail in a brittle manner, then behavior changes, such as the transition from extensional to shear failure, have to be considered and reflected in the adopted failure criteria. It must be anticipated that a different failure mechanism occurs as the confinement level increases and conditions for tensile failure are prevented or strongly diminished. The anisotropy and confinement dependency of coal behavior previously mentioned merit extensive investigation. In this study, a total of 84 samples obtained from a Utah coal mine were investigated by conducting both unconfined and triaxial compressive tests. The results showed that the confining pressure dictated not only the peak compressive strength but also the brittleness as a function of the major to the minor principal stress ratio. Additionally, an s-shaped brittle failure criterion was fitted to the results, showing the development of confinement-dependent strength. Moreover, these mechanical characteristics were found to be strongly anisotropic, which was associated with the orientation of the cleats relative to the loading direction. PMID:29780272

  2. Respiratory disease mortality among US coal miners; results after 37 years of follow-up

    PubMed Central

    Graber, Judith M; Stayner, Leslie T; Cohen, Robert A; Conroy, Lorraine M; Attfield, Michael D

    2015-01-01

    Objectives To evaluate respiratory related mortality among underground coal miners after 37 years of follow-up. Methods Underlying cause of death for 9033 underground coal miners from 31 US mines enrolled between 1969 and 1971 was evaluated with life table analysis. Cox proportional hazards models were fitted to evaluate the exposure-response relationships between cumulative exposure to coal mine dust and respirable silica and mortality from pneumoconiosis, chronic obstructive pulmonary disease (COPD) and lung cancer. Results Excess mortality was observed for pneumoconiosis (SMR=79.70, 95% CI 72.1 to 87.67), COPD (SMR=1.11, 95% CI 0.99 to 1.24) and lung cancer (SMR=1.08; 95% CI 1.00 to 1.18). Coal mine dust exposure increased risk for mortality from pneumoconiosis and COPD. Mortality from COPD was significantly elevated among ever smokers and former smokers (HR=1.84, 95% CI 1.05 to 3.22; HRK=1.52, 95% CI 0.98 to 2.34, respectively) but not current smokers (HR=0.99, 95% CI 0.76 to 1.28). Respirable silica was positively associated with mortality from pneumoconiosis (HR=1.33, 95% CI 0.94 to 1.33) and COPD (HR=1.04, 95% CI 0.96 to 1.52) in models controlling for coal mine dust. We saw a significant relationship between coal mine dust exposure and lung cancer mortality (HR=1.70; 95% CI 1.02 to 2.83) but not with respirable silica (HR=1.05; 95% CI 0.90 to 1.23). In the most recent follow-up period (2000–2007) both exposures were positively associated with lung cancer mortality, coal mine dust significantly so. Conclusions Our findings support previous studies showing that exposure to coal mine dust and respirable silica leads to increased mortality from malignant and non-malignant respiratory diseases even in the absence of smoking. PMID:24186945

  3. Underground gas storage in the Leyden lignite mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meddles, R.M.

    1978-01-01

    Underground gas storage in the Leyden lignite mine by Public Service Co. of Colorado was preceded by careful studies of mine records with respect to geologic conditions and investigation of the gas-sealing potential of the rocks surrounding the cavern. The water level in shaft No. 3 in Sept. 1958 was about 100 ft above the coal seam at that point. Wells were drilled into the mine up-dip (east) of the structurally highest point that a mine shaft intersected the coal seams, and gas was injected into the mine, using the mine water as a seal. At least the up-dip partmore » of the mine was gas-tight, and tests were expanded to the rest of the mine, which also proved to be gas-tight. All that remained to complete the preparation of the mine for permanent gas storage was sealing of the old mine shafts.« less

  4. Mass Casualty Incidents in the Underground Mining Industry: Applying the Haddon Matrix on an Integrative Literature Review.

    PubMed

    Engström, Karl Gunnar; Angrén, John; Björnstig, Ulf; Saveman, Britt-Inger

    2018-02-01

    Underground mining is associated with obvious risks that can lead to mass casualty incidents. Information about such incidents was analyzed in an integrated literature review. A literature search (1980-2015) identified 564 modern-era underground mining reports from countries sharing similar occupational health legislation. These reports were condensed to 31 reports after consideration of quality grading and appropriateness to the aim. The Haddon matrix was used for structure, separating human factors from technical and environmental details, and timing. Most of the reports were descriptive regarding injury-creating technical and environmental factors. The influence of rock characteristics was an important pre-event environmental factor. The organic nature of coal adds risks not shared in hard-rock mines. A sequence of mechanisms is commonly described, often initiated by a human factor in interaction with technology and step-wise escalation to involve environmental circumstances. Socioeconomic factors introduce heterogeneity. In the Haddon matrix, emergency medical services are mainly a post-event environmental issue, which were not well described in the available literature. The US Quecreek Coal Mine incident of 2002 stands out as a well-planned rescue mission. Evaluation of the preparedness to handle underground mining incidents deserves further scientific attention. Preparedness must include the medical aspects of rescue operations. (Disaster Med Public Health Preparedness. 2018;12:138-146).

  5. Insertion loss of noise barriers on an aboveground, full-scale model longwall coal mining shearer.

    PubMed

    Sweeney, Daniel D; Slagley, Jeremy M; Smith, David A

    2010-05-01

    The U.S. mining industry struggles with hazardous noise and dust exposures in underground mining. Specifically, longwall coal mine shearer operators are routinely exposed to noise levels at 151% of the allowable daily dose, and approximately 20% exceed regulatory dust levels. In the current study, a partial barrier was mounted on the full-scale mock shearer at the National Institute for Occupational Safety and Health Pittsburgh Research Laboratory. A simulated, full-scale, coal mine longwall shearer operation was employed to test the feasibility of utilizing a barrier to separate the shearer operator from the direct path of the noise and dust source during mining operations. In this model, noise levels at the operators' positions were reduced by 2.6 to 8.2 A-weighted decibels (dBA) from the application of the test barriers. Estimated insertion loss underground was 1.7 to 7.3 dBA. The barrier should be tested in an underground mining operation to determine if it can reduce shearer operators' noise exposure to below regulatory limits.

  6. A Course in Coal Science and Technology.

    ERIC Educational Resources Information Center

    Wheelock, T. D.

    1978-01-01

    This course introduces graduate students and advanced undergraduates to coal science and technology. Topics include: (1) the nature and occurrence of coal, (2) its chemical and physical characteristics, (3) methods of cleaning and preparing coal, and (4) processes for converting coal into clean solid, liquid, and gaseous fuels, as well as coke.…

  7. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas

    2014-05-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be

  8. Development of minimum standards for hardwoods used in producing underground coal mine timbers

    Treesearch

    Floyd G. Timson

    1978-01-01

    This note presents minimum standards for raw material used in the production of sawn, split, and round timbers for the underground mining industry. The standards are based on a summary of information gathered from many mine-timber producers.

  9. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions.

    PubMed

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  10. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions

    PubMed Central

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  11. Alaska coal geology, resources, and coalbed methane potential

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  12. Numerical Modelling by FLAC on Coal Fires in North China

    NASA Astrophysics Data System (ADS)

    Gusat, D.; Drebenstedt, C.

    2009-04-01

    Coal fires occur in many countries all over the world (e.g. Australia, China, India, Indonesia, USA and Russia) in underground and on surface. In China the most coal fires occur especially in the North. Economical and environmental damages are the negative effects of the coal fires: coal fires induce open fractures and fissures within the seam and neighbouring rocks. So that these are the predominant pathways for oxygen flow and exhaust gases from a coal fire. All over northern China there are a large number of coal fires, which cause and estimated yearly coal loss of between 100 and 200 million tons ([1], [2], [3]). Spontaneous combustion is a very complicated process and is influenced by number of factors. The process is an exothermic reaction in which the heat generated is dissipated by conduction to the surrounding environment, by radiation, by convection to the ventilation flow, and in some cases by evaporation of moisture from the coal [4]. The coal fires are very serious in China, and the dangerous extent of spontaneous combustion is bad which occupies about 72.9% in mining coal seams. During coal mining in China, the coal fires of spontaneous combustion are quite severity. The dangerous of coal spontaneous combustion has been in 56% of state major coalmines [5]. The 2D and 3D-simulation models describing coal fire damages are strong tools to predict fractures and fissures, to estimate the risk of coal fire propagation into neighbouring seams, to test and evaluate coal fire fighting and prevention methods. The numerical simulations of the rock mechanical model were made with the software for geomechanical and geotechnical calculations, the programs FLAC and FLAC3D [6]. To fight again the coal fires, exist several fire fighting techniques. Water, slurries or liquefied nitrogen can be injected to cool down the coal or cut of air supply with the backfill and thereby extinct the fire. Air supply also can be cut of by covering the coal by soil or sealing of the

  13. Epidemiological data on US coal miners' pneumoconiosis, 1960 to 1988.

    PubMed

    Attfield, M D; Castellan, R M

    1992-07-01

    Statistics on prevalence of pneumoconiosis among working underground coal miners based on epidemiologic data collected between 1960 and 1988 are presented. The main intent was to examine the time-related trend in prevalence, particularly after 1969, when substantially lower dust levels were mandated by federal act. Data from studies undertaken between 1960 and 1968 were collected and compared. Information for the period 1969 to 1988 was extracted from a large ongoing national epidemiologic study. Tenure-specific prevalence rates and summary statistics derived from the latter data for four consecutive time intervals within the 19-year period were calculated and compared. The results indicate a reduction in pneumoconiosis over time. The trend is similar to that seen in a large radiologic surveillance program of underground miners operated concurrently. Although such factors as x-ray reader variation, changes in x-ray standards, and worker self-selection for examination may have influenced the findings to some extent, adjusted summary rates reveal a reduction in prevalence concurrent with reductions in coal mine dust levels mandated by federal act in 1969.

  14. An Impact of Mechanical Stress in Coal Briquettes on Sorption of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Mirosław

    2017-09-01

    The presence of gases (methane or carbon dioxide) in hard coal is connected with numerous threats for miners employed in underground mining facilities. When analyzing the coal-methane system, it is necessary to determine the relationship between pressure and gas sorption. Such a relationship should be determined under conditions similar to the natural ones - when it comes to both temperature and pressure. The present paper discusses the results of research conducted with the use of coal briquettes under the state of mechanical stress. Carbon dioxide sorption isotherms were determined for different values of stress affecting the coal material. For five coal samples collected in different mines of the Upper Silesian Coal Basin, Langmuir's sorption isotherms were determined. The results point to significant impact that mechanical stress has upon the sorption process. It is about 1 percent of the value obtained for coal not subjected to stress per 1 MPa. The research results can also prove useful when analyzing hard coal seams from the perspective of their carbon dioxide sequestration abilities.

  15. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  16. Application of ERTS-1 imagery to fracture related mine safety hazards in the coal mining industry. [Indiana

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.; Leshendok, T. V.

    1974-01-01

    The author has identified the following significant results. New fracture detail of Indiana has been observed and mapped from ERTS-1 imagery. Studies so far indicate a close relationship between the directions of fracture traces mapped from the imagery, fractures measured on bedrock outcrops, and fractures measured in the underground mines. First hand observations and discussions with underground mine operators indicate good correlation of mine hazard maps prepared from ERTS-1/aircraft imagery and actual roof falls. The inventory of refuse piles/slurry ponds of the coal field of Indiana has identified over 225 such sites from past mining operations. These data will serve the State Legislature in making tax decisions on coal mining which take on increased importance because of the energy crisis.

  17. Coal Combustion Science quarterly progress report, April--June 1992. Task 1, Coal devolatilization: Task 2, Coal char combustion; Task 3, Fate of mineral matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  18. Hazards and occupational risk in hard coal mines - a critical analysis of legal requirements

    NASA Astrophysics Data System (ADS)

    Krause, Marcin

    2017-11-01

    This publication concerns the problems of occupational safety and health in hard coal mines, the basic elements of which are the mining hazards and the occupational risk. The work includes a comparative analysis of selected provisions of general and industry-specific law regarding the analysis of hazards and occupational risk assessment. Based on a critical analysis of legal requirements, basic assumptions regarding the practical guidelines for occupational risk assessment in underground coal mines have been proposed.

  19. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entiremore » vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no

  20. A preliminary review of coal exploration activities conducted by the government of Armenia and the coal resource potential of Armenia

    USGS Publications Warehouse

    Warwick, Peter D.; Pierce, B.S.; Landis, E.R.

    1993-01-01

    A coal resource assessment team from the U.S. Geological Survey (USGS), in cooperation with the Armenian Department of Underground Resources (DUR) and elements of the Ministry of Energy and Fuel, has completed an initial visit to Armenia under the auspices of the U.S. Agency for International Development JUSAID). The visit included discussions of the coal resources, identification of problems associated with on-going exploration and development activities, and field visits to selected solid fuel areas. The USGS team will return in November with a draft of the final report for discussion of conclusions and recommendations with Armenian counterparts, representatives of USAID, and the American Embassy. The final report, which will contain tabulated coal-sample analytical results and detailed recommendations, will be submitted to the USAID by the end of December 1993.Preliminary conclusions are that: 1) Armenia has usable deposits of coal that could form a viable, though relatively small, component of Armenia's energy budget; 2) on-going exploration and development activities must be augmented and expedited to increase understanding of the coal resource potential and subsequent utilization; 3) deficiencies in supplies (primarily fuel) and equipment (replacement of aging parts and units) have greatly reduced the gathering of necessary resource data; and 4) training of Armenian counterparts in conducting and managing coal exploration activities is desirable.

  1. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false State-administered program-Hydraulic Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Alabama § 147.52...

  2. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandiamore » National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.« less

  3. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, R.W.

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stagesmore » are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.« less

  4. Paleoslumps in coal-bearing strata of the Breathitt Group (Pennsylvanian), Eastern Kentucky Coal Field, U.S.A

    USGS Publications Warehouse

    Greb, S.F.; Weisenfluh, G.A.

    1996-01-01

    The benefits of geologic analysis for roof-control studies and hazard prediction in coal mines are well documented. Numerous case studies have illustrated the importance of recognizing geologic features such as paleochannels, coal riders, and kettlebottoms in mine roofs. Relatively understudied features, in terms of mining, are paleoslumps. Paleoslumps represent ancient movement and rotation of semi-consolidated sediment. Because bedding in paleoslumps is deformed or inclined, these features cause instability in mine roofs, haul roads, surface highwalls, and other excavations. Various types of paleoslumps above coals in the Eastern Kentucky Coal Field were studied in order to aid in their recognition and prediction in mines. The paleoslumps studied all showed characteristic slump-deformation features, although some differences in magnitude of deformation and overall slump size were noted. Coals beneath slumps often exhibited folding, reverse displacements, truncation, clastic dikes, and locally increased thickness. Slumps are inferred to have been triggered by a wide range of mechanisms, such as loading of water-saturated sediment on rigid substrates, synsedimentary faulting, and over-pressurization of channel margin and bar slopes. Analysis of paleoslumps in underground mines, where paleoslumps are viewed from beneath rather than in profile is difficult, since characteristic bed rotation may not be conspicuous. Sudden increases in bed-dip angle inferred from changes in rock type or bedding contacts in the roof; occurrence of bounding, polished rotation surfaces; or roof irregularity and occurrence of loading features may indicate the presence of paleoslumps. Another key to recognition may be the sudden appearance of over-thickened coal, which can occur because of slump-created paleotopography, synsedimentary faults, and slump-generated overthrusting. In addition, steeply inclined, folded, or transported coal marginal to paleoslumps can create apparent increases in

  5. Respiratory disease and suicide among US coal miners: is there a relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, R.G.

    A case-control study was performed to test whether or not respiratory disease in coal miners presented a risk for suicide. While coal miners in general do not experience elevated rates of suicide, coal miners with respiratory disease have been found to have high rates of psychiatric disability, especially depressive reactions. Further, depression has been related to suicide. To test the hypothesis, 50 suicide deaths from four National Institute for Occupational Safety and Health cohorts of coal miners were matched by age at death to two series of controls, a noncancer, nonaccident control series, and a cancer control series. Using oddsmore » ratios (tested by chi-square) the risks of obstructive lung disease and coal workers pneumoconiosis were evaluated together with the risks of years of underground mining, cigarette smoking at the time of cohort creation, and ever having smoked cigarettes. Neither respiratory disease was found to pose a statistically elevated risk of suicide in this sample of U.S. white male coal miners.« less

  6. Development of advanced capitalism: a case study of retired coal miners in southern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legeay, S.P.

    1980-01-01

    This dissertation develops a critical analysis of changes in American society during the last fifty years. It is focused in particular on the southern West Virginia coal fields, and examines the changes in class structure (specifically, coal miners), the labor process, the union, class consciousness, community and leisure. The study is grounded within a theoretical perspective that is dialectical. It is concerned with the interaction between specific social categories (such as the union) and the greater whole of capitalist development. It is centrally concerned with continuing a research orientation to which the Frankfurt School gave a powerful contribution: the developmentmore » of advanced capitalism in the modern epoch. The study utilizes life-history interviews with retired coal miners, almost all of whom had experience with the exploitive company towns of an earlier time. Thus, techniques for the study of oral history are instrumental in developing an analysis of social developments, inasmuch as they provide data appropriate for an analysis of the transformation from early to late capitalism. Finally, this dissertation examines a problem central to dialectical theory, that of the relation between theory and praxis, by approaching the life histories as exemplifications of collective (i.e., social) experience. It integrates the biographical experience of individual miners with the theoretical dimensions of political economy in early and late capitalism. The current crisis in the coal fields is examined, with a view to possible transformation.« less

  7. Morbidity of British coal miners in 1961-62

    PubMed Central

    Liddell, F. D. K.

    1973-01-01

    Liddell, F. D. K. (1973). Brit. J. industr. Med.,30, 1-14. Morbidity of British coal miners in 1961-62. The British coal mining population in 1961 is described, in terms of the 29 084men covered in a 5% sample census, by age, type of employment, coalfield, size of community, degree of mechanization, and other factors. Over a quarter of the men were in jobs not considered specific to coalmining, although nearly half of such men were working underground. The Ministry of Pensions and National Insurance provided records of over 34 000 spells of incapacity due to sickness for these men. Miners were found to suffer much more incapacity for work than men in other employment, even in those non-mining tasks considered to be very arduous. Among miners at the face, elsewhere underground, and on the surface, the lowest paid had the highest rate of incapacity. Incapacity from most causes was also found to vary between coalfields and with size of residential community, and to depend on the men's financial responsibilities, category of pneumoconiosis, and depth of working, but not on the degree of mechanization. A relationship was observed between seam height and the incidence of new spells of beat knee. PMID:4685296

  8. The Fox Guarding the Chicken Coop: Monitoring Exposure to Respirable Coal Mine Dust, 1969–2000

    PubMed Central

    Weeks, James L.

    2003-01-01

    Following passage of the Coal Mine Health and Safety Act of 1969, underground coal mine operators were required to take air samples in order to monitor compliance with the exposure limit for respirable dust, a task essential for the prevention of pneumoconiosis among coal workers. Miners objected, claiming that having the mine operators perform this task was like “having the fox guard the chicken coop.” This article is a historical narrative of mining industry corruption and of efforts to reform the program of monitoring exposure to coal mine dust. Several important themes common to the practice of occupational health are illustrated; most prominently, that employers should not be expected to regulate themselves. PMID:12893602

  9. Pulmonary function of U.S. coal miners related to dust exposure estimates.

    PubMed

    Attfield, M D; Hodous, T K

    1992-03-01

    This study of 7,139 U.S. coal miners used linear regression analysis to relate estimates of cumulative dust exposure to several pulmonary function variables measured during medical examinations undertaken between 1969 and 1971. The exposure data included newly derived cumulative dust exposure estimates for the period up to time of examination based on large data bases of underground airborne dust sampling measurements. Negative associations were found between measures of cumulative exposure and FEV1, FVC, and the FEV1/FVC ratio (p less than 0.001). In general, the relationships were similar to those reported for British coal miners. Overall, the results demonstrate an adverse effect of coal mine dust exposure on pulmonary function that occurs even in the absence of radiographically detected pneumoconiosis.

  10. 77 FR 56717 - Specifications for Medical Examinations of Underground Coal Miners

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... 1977 (Pub. L. 95-164, 30 U.S.C. 801 et seq.) (Mine Act). The statutes included an enforceable 2... (30 U.S.C. 843(a)). Chest radiographs taken for the CWHSP are assessed by qualified and licensed... consult with NIOSH on the development of criteria for medical tests for coal miners (30 U.S.C. 902(f)(1)(D...

  11. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  12. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.

    PubMed

    Grové, T; Van Dyk, T; Franken, A; Du Plessis, J

    2014-01-01

    Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts containing crystalline silica. The purpose of this study (funded by the Mine Health and Safety Council of South Africa) was to evaluate the individual contributions of underground coal mining tasks to the respirable dust and respirable silica dust concentrations in an underground section by sampling the respirable dust concentrations at the intake and return of each task. The identified tasks were continuous miner (CM) cutting, construction, transfer of coal, tipping, and roof bolting. The respirable dust-generating hierarchy of the tasks from highest to lowest was: transfer of coal > CM right cutting > CM left cutting > CM face cutting > construction > roof bolting > tipping; and for respirable silica dust: CM left cutting > construction > transfer of coal > CM right cutting. Personal exposure levels were determined by sampling the exposures of workers performing tasks in the section. Respirable dust concentrations and low concentrations of respirable silica dust were found at the intake air side of the section, indicating that air entering the section is already contaminated. The hierarchy for personal respirable dust exposures was as follows, from highest to lowest: CM operator > cable handler > miner > roof bolt operator > shuttle car operator, and for respirable silica dust: shuttle car operator > CM operator > cable handler > roof bolt operator > miner. Dust control methods to lower exposures should include revision of the position of workers with regard to the task performed, positioning of the tasks with regard to the CM cutting, and proper use of the line curtains to direct ventilation appropriately. The correct use of respiratory protection should also be encouraged.

  13. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey.

    PubMed

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-12-16

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed.

  14. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey

    PubMed Central

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-01-01

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed. PMID:27999258

  15. Preliminary Toxicological Analysis of the Effect of Coal Slurry Impoundment Water on Human Liver Cells

    USGS Publications Warehouse

    Bunnell, Joseph E.

    2008-01-01

    Coal is usually 'washed' with water and a variety of chemicals to reduce its content of sulfur and mineral matter. The 'washings' or 'coal slurry' derived from this process is a viscous black liquid containing fine particles of coal, mineral matter, and other dissolved and particulate substances. Coal slurry may be stored in impoundments or in abandoned underground mines. Human health and environmental effects potentially resulting from leakage of chemical substances from coal slurry into drinking water supplies or aquatic ecosystems have not been systematically examined. Impoundments are semipermeable, presenting the possibility that inorganic and organic substances, some of which may be toxic, may contaminate ground or surface water. The Agency for Toxic Substances and Disease Registry, part of the Centers for Disease Control and Prevention, has concluded that well water in Mingo County, West Virginia, constitutes a public health hazard.

  16. Instrumentation for optimizing an underground coal-gasification process

    NASA Astrophysics Data System (ADS)

    Seabaugh, W.; Zielinski, R. E.

    1982-06-01

    While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.

  17. Horizontal hydraulic conductivity estimates for intact coal barriers between closed underground mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mccoy, K.J.; Donovan, J.J.; Leavitt, B.R.

    2006-08-15

    Unmined blocks of coal, called barriers, separate and restrict horizontal leakage between adjacent bituminous coal mines. Understanding the leakage rate across such barriers is important in planning mine closure and strongly affects recharge calculations for postmining flooding. This study presents upper-limit estimates for hydraulic conductivity (K) of intact barriers in two closed mines at moderate depth (75-300 m) in the Pittsburgh coal basin. The estimates are based on pumping rates from these mines for the years ranging from 1992 to 2000. The two mines do not approach the outcrop and are sufficiently deep that vertical infiltration is thought to bemore » negligible. Similarly, there are no saturated zones on the pumped mines' side of shared barriers with other mines, and therefore pumping is the only outflow. Virtually all of the pumping is attributed to leakage across or over the top of barriers shared with upgradient flooded mines. The length of shared barriers totals 24 km for the two mines, and the barriers range in thickness from 15 to 50 m. K values calculated independently for each of the 9 years of the pumping record ranged from 0.037 m/d to 0.18 m/d using an isotropic model of barrier flow. Using an anisotropic model for differential K in the face cleat (K{sub f}) and butt cleat (K{sub b}) directions, results range from 0.074 to 0.34 m/d for K{sub f} and from 0.022 to 0.099 m/d for K{sub b}.« less

  18. Control order and visuomotor strategy development for joystick-steered underground shuttle cars.

    PubMed

    Cloete, Steven; Zupanc, Christine; Burgess-Limerick, Robin; Wallis, Guy

    2014-09-01

    In this simulator-based study, we aimed to quantify performance differences between joystick steering systems using first-order and second-order control, which are used in underground coal mining shuttle cars. In addition, we conducted an exploratory analysis of how users of the more difficult, second-order system changed their behavior over time. Evidence from the visuomotor control literature suggests that higher-order control devices are not intuitive, which could pose a significant risk to underground mine personnel, equipment, and infrastructure. Thirty-six naive participants were randomly assigned to first- and second-order conditions and completed three experimental trials comprising sequences of 90 degrees turns in a virtual underground mine environment, with velocity held constant at 9 km/h(-1). Performance measures were lateral deviation, steering angle variability, high-frequency steering content, joystick activity, and cumulative time in collision with the virtual mine wall. The second-order control group exhibited significantly poorer performance for all outcome measures. In addition, a series of correlation analyses revealed that changes in strategy were evident in the second-order group but not the first-order group. Results were consistent with previous literature indicating poorer performance with higher-order control devices and caution against the adoption of the second-order joystick system for underground shuttle cars. Low-cost, portable simulation platforms may provide an effective basis for operator training and recruitment.

  19. Flooded Underground Coal Mines: A Significant Source of Inexpensive Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watzlaf, G.R.; Ackman, T.E.

    2007-04-01

    Many mining regions in the United States contain extensive areas of flooded underground mines. The water within these mines represents a significant and widespread opportunity for extracting low-grade, geothermal energy. Based on current energy prices, geothermal heat pump systems using mine water could reduce the annual costs for heating to over 70 percent compared to conventional heating methods (natural gas or heating oil). These same systems could reduce annual cooling costs by up to 50 percent over standard air conditioning in many areas of the country. (Formatted full-text version is released by permission of publisher)

  20. Fire Risk Assessment of Some Indian Coals Using Radial Basis Function (RBF) Technique

    NASA Astrophysics Data System (ADS)

    Nimaje, Devidas; Tripathy, Debi Prasad

    2017-04-01

    Fires, whether surface or underground, pose serious and environmental problems in the global coal mining industry. It is causing huge loss of coal due to burning and loss of lives, sterilization of coal reserves and environmental pollution. Most of the instances of coal mine fires happening worldwide are mainly due to the spontaneous combustion. Hence, attention must be paid to take appropriate measures to prevent occurrence and spread of fire. In this paper, to evaluate the different properties of coals for fire risk assessment, forty-nine in situ coal samples were collected from major coalfields of India. Intrinsic properties viz. proximate and ultimate analysis; and susceptibility indices like crossing point temperature, flammability temperature, Olpinski index and wet oxidation potential method of Indian coals were carried out to ascertain the liability of coal to spontaneous combustion. Statistical regression analysis showed that the parameters of ultimate analysis provide significant correlation with all investigated susceptibility indices as compared to the parameters of proximate analysis. Best correlated parameters (ultimate analysis) were used as inputs to the radial basis function network model. The model revealed that Olpinski index can be used as a reliable method to assess the liability of Indian coals to spontaneous combustion.

  1. Assessment of pore pressures and specific storage within sedimentary strata overlying underground mines

    NASA Astrophysics Data System (ADS)

    Timms, W.; David, K.; Barbour, L. S.

    2016-12-01

    Realistic values of specific storage (Ss) for groundwater systems are important to determine the spatial extent and timing of c pore pressure changes when the groundwater system is stressed. However, numerical groundwater models of underground excavations typically assume constant literature values of Ss. One part of our research program utilised high frequency pore pressure data to evaluate variability and changes in Ss within sedimentary strata overlying a longwall coal mine. Pore pressure data from a vertical series of 6 vibrating wire piezometers (50 to 278 m depth) recording at hourly intervals were compared with barometric pressure data over a period of several years, including data before and during mining. The site was located near the centre of a longwall panel that extracted 3 m of coal at a depth of 330 m. The data was processed to calculate loading efficiency and Ss values by multi-method analyses of barometric and earth tide responses. In situ Ss results varied over one to two orders of magnitude and indicated that Ss changed before and after excavation of underlying coal seams. The vertical leakage of groundwater within the constrained zone ( 10 to 150 m depth) was found to be limited, although some degree of vertical hydraulic connectivity was observed. Depressurization was evident in the fractured zone directly overlying the coal seam, and Ss changes at 250 m depth indicated this confined aquifer may have become unconfined. Our results demonstrate that high frequency pore pressure data can provide realistic Ss values. In situ Ss values were an order of magnitude lower than Ss measured by geomechnical tests of cores, and were significantly different to textbook values set in most local groundwater models. The timing and extent of groundwater level drawdown predicted by models may therefore be underestimated. We have shown, for the first time, that variability of Ss can be significant, and that these changes can provide important insights into how

  2. A commitment to coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, Q.

    2006-07-15

    Quin Shea explores the need for power generated with coal and the advanced technologies that will generate that power more efficiently and cleanly in the future. The article considers the air and waste challenges of using coal, including progress toward reducing emissions of SO{sub 2}, NOx, and mercury; efforts to address CO{sub 2}, including voluntary programs like the Climate Challenge, Power Partners, and the Asia-Pacific Partnership on Clean Development and Climate; and the regulation and beneficial use of coal-combustion byproducts (e.g., fly ash, bottom ash, flue gas desulfurization materials, boiler slag). 17 refs.

  3. Coal Mine Roadway Stability in Soft Rock: A Case Study

    NASA Astrophysics Data System (ADS)

    Shen, Baotang

    2014-11-01

    Roadway instability has always been a major concern in deep underground coal mines where the surrounding rock strata and coal seams are weak and the in situ stresses are high. Under the high overburden and tectonic stresses, roadways could collapse or experience excessive deformation, which not only endangers mining personnel but could also reduce the functionality of the roadway and halt production. This paper describes a case study on the stability of roadways in an underground coal mine in Shanxi Province, China. The mine was using a longwall method to extract coal at a depth of approximately 350 m. Both the coal seam and surrounding rock strata were extremely weak and vulnerable to weathering. Large roadway deformation and severe roadway instabilities had been experienced in the past, hence, an investigation of the roadway failure mechanism and new support designs were needed. This study started with an in situ stress measurement programme to determine the stress orientation and magnitude in the mine. It was found that the major horizontal stress was more than twice the vertical stress in the East-West direction, perpendicular to the gateroads of the longwall panel. The high horizontal stresses and low strength of coal and surrounding rock strata were the main causes of roadway instabilities. Detailed numerical modeling was conducted to evaluate the roadway stability and deformation under different roof support scenarios. Based on the modeling results, a new roadway support design was proposed, which included an optimal cable/bolt arrangement, full length grouting, and high pre-tensioning of bolts and cables. It was expected the new design could reduce the roadway deformation by 50 %. A field experiment using the new support design was carried out by the mine in a 100 m long roadway section. Detailed extensometry and stress monitorings were conducted in the experimental roadway section as well as sections using the old support design. The experimental section

  4. Observations on the Occupational Life History of the Coal Face Worker at Two Collieries

    PubMed Central

    Edmonds, O. P.; Kerr, D. S.

    1960-01-01

    Coal-face work is well known to be arduous and dangerous; it is performed in an unnatural environment even where conditions are good. Few men can continue this work until the age of retirement. They usually seek alternative employment either outside the industry or within the other major occupational groups at a colliery. The latter comprise the surface workers and those employed underground other than at the coal-face. This paper is concerned with those who stay within the industry. From a study of 73 workers who left the coal-face at two collieries, it indicates (1) the extent to which migration to alternative employment occurs each year, and (2) the resultant distribution of ex coal-face workers among these other occupational groups. The length of effective working life of the coal-miner on the coal-face, the reasons which precipitate his leaving it, and the type of work which he is able to do are also described. This information is of economic importance but it is mainly of value in assessing the effects of coal-face work upon the health of the coal-miner. PMID:13819356

  5. Bituminous coal production in the Appalachian Basin; past, present, and future

    USGS Publications Warehouse

    Milici, R.C.

    1999-01-01

    This report on Appalachian basin coal production consists of four maps and associated graphs and tables, with links to the basic data that were used to construct the maps. Plate 1 shows the time (year) of maximum coal production, by county. For illustration purposes, the years of maximum production are grouped into decadal units. Plate 2 shows the amount of coal produced (tons) during the year of maximum coal production for each county. Plate 3 illustrates the cumulative coal production (tons) for each county since about the beginning of the 20th century. Plate 4 shows 1996 annual production by county. During the current (third) cycle of coal production in the Appalachian basin, only seven major coal-producing counties (those with more than 500 million tons cumulative production), including Greene County, Pa.; Boone, Kanawha, Logan, Mingo, and Monongalia Counties, W.Va.; and Pike County, Ky., exhibit a general increase in coal production. Other major coal-producing counties have either declined to a small percentage of their maximum production or are annually maintaining a moderate level of production. In general, the areas with current high coal production have large blocks of coal that are suitable for mining underground with highly efficient longwall methods, or are occupied by very large scale, relatively low cost surface mining operations. The estimated cumulative production for combined bituminous and anthracite coal is about 100 billion tons or less for the Appalachian basin. In general, it is anticipated that the remaining resources will be progressively of lower quality, will cost more to mine, and will become economical only as new technologies for extraction, beneficiation, and consumption are developed, and then only if prices for coal increase.

  6. acme: The Amendable Coal-Fire Modeling Exercise. A C++ Class Library for the Numerical Simulation of Coal-Fires

    NASA Astrophysics Data System (ADS)

    Wuttke, Manfred W.

    2017-04-01

    At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in

  7. New technological methods for protecting underground waters from agricultural pollution

    NASA Astrophysics Data System (ADS)

    Mavlyanov, Gani

    2015-04-01

    The agricultural production on the irrigated grounds can not carry on without mineral fertilizers, pesticides and herbicides. Especially it is shown in Uzbekistan, in cultivation of cotton. There is an increase in mineralization, rigidity, quantity of heavy metals, phenols and other pollutions in the cotton fields. Thus there is an exhaustion of stocks of fresh underground waters. In the year 2003 we were offered to create the ecological board to prevent pollution to get up to a level of subsoil waters in the top 30 centimeter layer of the ground. We carried out an accumulation and pollution processing. This layer possesses a high adsorbing ability for heavy metals, mineral oil, mineral fertilizers remnants, defoliants and pesticides. In order to remediate a biological pollution treatment processing should be take into account. The idea is consisted in the following. The adsorption properties of coal is all well-known that the Angren coal washing factories in Tashkent area have collected more than 10 million tons of the coal dust to mix with clays. We have picked up association of anaerobic microorganisms which, using for development, destroys nutrients of coal waste pollutions to a harmless content for people. Coal waste inoculation also are scattered by these microorganisms on the field before plowing. Deep (up to 30 cm) plowing brings them on depth from 5 up to 30 cm. Is created by a plough a layer with necessary protective properties. The norm of entering depends on the structure of ground and the intensity of pollutions. Laboratory experiments have shown that 50% of pollutions can be treated by the ecological board and are processed up to safe limit.

  8. Measurement and modeling of advanced coal conversion processes, Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  9. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    NASA Astrophysics Data System (ADS)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  10. Coal Fires in the United States: A Case Study in Government Inattention

    NASA Astrophysics Data System (ADS)

    McCurdy, K. M.

    2006-12-01

    Coal fires occur in all coal producing nations. Like most other environmental problems fires are not confined by political boundaries. Important economic coal seams in the United States are found across the Inter-montaine west, the Midwest, and Appalachia. The age of these deposits differs, as does the grade and sulfur content of the coal, the mining techniques utilized for exploitation of this resource, and the markets in which the coal is traded. Coal fires are ordinary occurrences under extraordinary conditions. Every coal bed exposed in an underground or surface mine has the potential to ignite. These fires are spread thinly over the political geography and over time, so that constituencies rarely coalesce to petition government to address the coal fire problem. Coal fires produce serious problems with long term consequences for society. They threaten mine safety, consume a non-renewable resource, and produce toxic gases with serious health effects for local populations. Additionally, as coal production in the developing world intensifies, these problems worsen. The lack of government attention to coal fires is due to the confluence of at least four independent political factors: 1) The separated powers, federated system in which decisions in the United States are made; 2) Low levels of political energy available in Congress to be expended on coal fires, measured by the magnitude of legislative majorities and seniority; 3) The mid-twentieth century model of scientific and technical information moving indirectly to legislators through the bureaucratic agencies; 4) The chronic and diffuse nature of fires across space and time.

  11. Simulation Experiment and Acoustic Emission Study on Coal and Gas Outburst

    NASA Astrophysics Data System (ADS)

    Li, Hui; Feng, Zengchao; Zhao, Dong; Duan, Dong

    2017-08-01

    A coal and gas outburst is an extreme hazard in underground mining. The present paper conducts a laboratory simulation of a coal and gas outburst combined with acoustic emission analysis. The experiment uses a three-dimensional stress loading system and a PCI-2 acoustic emission monitoring system. Furthermore, the development of a coal and gas outburst is numerically studied. The results demonstrate that the deformation and failure of a coal sample containing methane under three-dimensional stress involves four stages: initial compression, elastic deformation, plastic deformation and failure. The development of internal microscale fractures within a coal sample containing methane is reflected by the distribution of acoustic emission events. We observed that the deformation and failure zone for a coal sample under three-dimensional stress has an ellipsoid shape. Primary acoustic emission events are generated at the weak structural surface that compresses with ease due to the external ellipsoid-shaped stress. The number of events gradually increases until an outburst occurs. A mathematical model of the internal gas pressure and bulk stress is established through an analysis of the internal gas pressure and bulk stress of a coal sample, and it is useful for reproducing experimental results. The occurrence of a coal and gas outburst depends not only on the in situ stress, gas pressure and physical and mechanical characteristics of the coal mass but also on the free weak surface of the outburst outlet of the coal mass. It is more difficult for an outburst to occur from a stronger free surface.

  12. Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    PubMed Central

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines. PMID:22574048

  13. Anchor-free localization method for mobile targets in coal mine wireless sensor networks.

    PubMed

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes' location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.

  14. Influence of Coal Industry Enterprises on Biodiversity (on the Example of Formicidae)

    NASA Astrophysics Data System (ADS)

    Blinova, Svetlana; Dobrydina, Tatiana

    2017-11-01

    The fauna, the population density and the types of ants' nests on the territory affected by the coal industry have been studied. It has been found that the level of environmental contamination influences all the indicators: the minimum indices of density, 1-2 species of ants and only underground nests near the pollution sources. On the contrary, in the areas with a weak influence of coal enterprises, 9 species with a maximum density of up to 15.2 nests / m2 have been observed with predominance of nests in the form of earthen mounds. Lasius niger are the most resistant to pollution, while the Myrmica do not stand such an impact.

  15. Numerical modeling of underground storage system for natural gas

    NASA Astrophysics Data System (ADS)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  16. Rescue complex for coal mines

    NASA Astrophysics Data System (ADS)

    Yungmeyster, D. A.; Urazbakhtin, R. Yu

    2017-10-01

    The mining industry was potentially dangerous at all times, even with the use of modern equipment in mines, accidents continue to occur, including catastrophic ones. Accidents in mines are due to the presence of specific features in the conduct of mining operations. These include the inconsistency of mining and geological conditions, the contamination of the mine atmosphere due to the release of gases from minerals, the presence of self-igniting coal strata, which creates the danger of underground fires, gas explosions. The main cause of accidents is the irresponsibility of both the manager and the personnel who violate the safety rules during mining operations.

  17. Early distinction system of mine fire in underground by using a neural-network system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohga, Kotaro; Higuchi, Kiyoshi

    1996-12-31

    In our laboratory, a new detection system using smell detectors was developed to detect the spontaneous combustion of coal and the combustion of other materials used underground. The results of experiments clearly the combustion of materials can be detected earlier by this detection system than by conventional detectors for gas and smoke, and there were significant differences between output data from each smell detector for coal, rubber, oil and wood. In order to discern the source of combustion gases, we have been developing a distinction system using a neural-network system. It has shown successful results in laboratory tests. This papermore » describes our detection system using smell detectors and our distinction system which uses a neural-network system, and presents results of experiments using both systems.« less

  18. Possibilities of Effective Inertisation of Self-Heating Places in Goaf of Longwall in Hard Coal Mines

    NASA Astrophysics Data System (ADS)

    Szlązak, Nikodem; Piergies, Kazimierz

    2016-12-01

    Underground fires in coal mines belong to the most common hazards, the exposure to which frequently requires long term and costly rescue operations. It is mainly connected with the specific character of underground excavations which have limited volume. This makes the maximum permissible concentration of harmful gases rapidly exceeded and may also cause changes in air flow direction. The most certain way of improving a safety situation in Polish coal mining industry is taking early prevention steps. One of the prevention methods is inertisation of the atmosphere in longwall goaf. These activities rely on partial or total replacement of air or combustible atmosphere by inert gas. Thanks to them the risk of spontaneous fires hazard and gas explosion decreases. The main reason for the use of inert gases is to reduce the oxygen content to a limit which prevents further development of fire. This article presents methods for assessing inert gas to replace oxygen in the atmosphere in goaf.

  19. High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania.

    PubMed

    Mamuya, Simon H D; Bråtveit, Magne; Mwaiselage, Julius; Mashalla, Yohana J S; Moen, Bente E

    2006-03-01

    Labour-intensive mines are numerous in several developing countries, but dust exposure in such mines has not been adequately characterized. The aim of this study was to identify and quantify the determinants of respirable dust and quartz exposure among underground coal mine workers in Tanzania. Personal respirable dust samples (n = 134) were collected from 90 underground workers in June-August 2003 and July-August 2004. The development team had higher exposure to respirable dust and quartz (geometric means 1.80 and 0.073 mg m(-3), respectively) than the mining team (0.47 and 0.013 mg m(-3)), the underground transport team (0.14 and 0.006 mg m(-3)) and the underground maintenance team (0.58 and 0.016 mg m(-3)). The percentages of samples above the threshold limit values (TLVs) of 0.9 mg m(-3) for respirable bituminous coal dust and 0.05 mg m(-3) for respirable quartz, respectively, were higher in the development team (55 and 47%) than in the mining team (20 and 9%). No sample for the underground transport team exceeded the TLV. Drilling in the development was the work task associated with the highest exposure to respirable dust and quartz (17.37 and 0.611 mg m(-3), respectively). Exposure models were constructed using multiple regression model analysis, with log-transformed data on either respirable dust or quartz as the dependent variable and tasks performed as the independent variables. The models for the development section showed that blasting and pneumatic drilling times were major determinants of respirable dust and quartz, explaining 45.2 and 40.7% of the variance, respectively. In the mining team, only blasting significantly determined respirable dust. Immediate actions for improvements are suggested to include implementing effective dust control together with improved training and education programmes for the workers. Dust and quartz in this underground mine should be controlled by giving priority to workers performing drilling and blasting in the

  20. Hydrology and subsidence potential of proposed coal-lease tracts in Delta County, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1983-01-01

    Potential subsidence from underground coal mining and associated hydrologic impacts were investigated at two coal-lease tracts in Delta County, Colorado. Alteration of existing flow systems could affect water users in the surrounding area. The Mesaverde Formation transmits little ground water because of the neglibile transmissivity of the 1,300 feet of fine-grained sandstone, coal , and shale comprising the formation. The transmissivities of coal beds within the lower Mesaverde Formation ranged from 1.5 to 16.7 feet squared per day, and the transmissivity of the upper Mesaverde Formation, based on a single test, was 0.33 foot squared per day. Transmissivities of the alluvium ranged from 108 to 230 feet squared per day. The transmissivity of unconsolidated Quaternary deposits, determined from an aquifer test, was about 1,900 feet squared per day. Mining beneath Stevens Gulch and East Roatcap Creek could produce surface expressions of subsidence. Subsidence fractures could partly drain alluvial valley aquifers or streamflow in these mines. (USGS)

  1. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  2. Underground Explosions

    DTIC Science & Technology

    2015-09-09

    AVC‐VTN‐15‐G06 “Underground  Explosions”  By  Vitaly  V. Adushkin and Alexander...Language Book "UNDERGROUND EXPLOSIONS" Drs. Vitaly V. Adushkin and Alexander A. Spivak Dr. Anastasia Stroujkova and Professor Paul Richards Weston...SAQMMA13M2475 DOS/AVC/MNA UNLIMITED “Underground Explosions”, a Russian language book authored by Drs. Vitaly V. Adushkin and Alexander A. Spivak has been

  3. Development of sensitized pick coal interface detector system

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.

    1982-01-01

    One approach for detection of the coal interface is measurement of pick cutting loads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telemetry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder. The design of components in the test data system were finalized, the required instruments were assembled, the instrument system was evaluated in an above-ground simulation test, and an underground test series to obtain tape recorded sensor data was conducted.

  4. The enviornmental assessment of a contemporary coal mining system

    NASA Technical Reports Server (NTRS)

    Dutzi, E. J.; Sullivan, P. J.; Hutchinson, C. F.; Stevens, C. M.

    1980-01-01

    A contemporary underground coal mine in eastern Kentucky was assessed in order to determine potential off-site and on-site environmental impacts associated with the mining system in the given environmental setting. A 4 section, continuous room and pillor mine plan was developed for an appropriate site in eastern Kentucky. Potential environmental impacts were identified, and mitigation costs determined. The major potential environmental impacts were determined to be: acid water drainage from the mine and refuse site, uneven subsidence of the surface as a result of mining activity, and alteration of ground water aquifers in the subsidence zone. In the specific case examined, the costs of environmental impact mitigation to levels prescribed by regulations would not exceed $1/ton of coal mined, and post mining land values would not be affected.

  5. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 December 1994--28 February 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, V.M.; Wright, M.A.

    1995-12-31

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first two quarters of the project, the thrust of the work directed towards characterizing the various coal combustion residues and FGD residue, i.e., scrubber sludge. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADK unit l-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM, unit l-6), bottom ash, and scrubbermore » sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}.0.5H{sub 2}O) phase. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disk,- from coal combustion residues. This has been achieved. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites. Also, these results along with mechanical behavior of the fabricated disks lead us to believe that the combination of surface altered PCC fly ash and scrubber sludge particles, together ed ash particles are ideal for our composite materials.« less

  6. LIBS Analysis for Coal

    NASA Astrophysics Data System (ADS)

    E. Romero, Carlos; De Saro, Robert

    Coal is a non-uniform material with large inherent variability in composition, and other important properties, such as calorific value and ash fusion temperature. This quality variability is very important when coal is used as fuel in steam generators, since it affects boiler operation and control, maintenance and availability, and the extent and treatment of environmental pollution associated with coal combustion. On-line/in situ monitoring of coal before is fed into a boiler is a necessity. A very few analytical techniques like X-ray fluorescence and prompt gamma neutron activation analysis are available commercially with enough speed and sophistication of data collection for continuous coal monitoring. However, there is still a need for a better on-line/in situ technique that has higher selectivity, sensitivity, accuracy and precision, and that is safer and has a lower installation and operating costs than the other options. Laser induced breakdown spectroscopy (LIBS) is ideal for coal monitoring in boiler applications as it need no sample preparation, it is accurate and precise it is fast, and it can detect all of the elements of concern to the coal-fired boiler industry. LIBS data can also be adapted with advanced data processing techniques to provide real-time information required by boiler operators nowadays. This chapter summarizes development of LIBS for on-line/in situ coal applications in utility boilers.

  7. US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, R.A.

    1997-05-01

    The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systemsmore » has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.« less

  8. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{submore » x} burners, advanced overfire systems, and digital control system.« less

  9. In Brief: Coal mining regulations

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-12-01

    The U.S. Department of the Interior (DOI) announced on 18 November measures to strengthen the oversight of state surface coal mining programs and to promulgate federal regulations to protect streams affected by surface coal mining operations. DOI's Office of Surface Mining Reclamation and Enforcement (OSM) is publishing an advance notice of a proposed rule about protecting streams from adverse impacts of surface coal mining operations. A rule issued by the Bush administration in December 2008 allows coal mine operators to place excess excavated materials into streams if they can show it is not reasonably possible to avoid doing so. “We are moving as quickly as possible under the law to gather public input for a new rule, based on sound science, that will govern how companies handle fill removed from mountaintop coal seams,” according to Wilma Lewis, assistant secretary for Land and Minerals Management at DOI.

  10. Blood antioxidant enzymes as markers of exposure or effect in coal miners.

    PubMed Central

    Perrin-Nadif, R; Auburtin, G; Dusch, M; Porcher, J M; Mur, J M

    1996-01-01

    OBJECTIVE--To investigate if blood Cu++/Zn++ superoxide dismutase, glutathione peroxidase, catalase, and total plasma antioxidant activities could be markers of biological activity resulting from exposure to respirable coal mine dust in active miners, and of pneumoconiosis in retired miners. METHODS--Blood samples were randomly obtained from active surface workers (n = 30) and underground miners (n = 34), and from retired miners without (n = 21), and with (n = 33) pneumoconiosis. Antioxidant enzyme activities and total plasma antioxidants were measured in erythrocytes and plasma. Non-parametric tests were completed by analyses of covariance to compare antioxidants between groups, taking into account potential confounding factors (age, smoking history (pack-years)). RESULTS--Erythrocyte Cu++/Zn++ superoxide dismutase activity was significantly higher in the group of underground miners than the group of surface workers. The differences in total plasma antioxidants and plasma glutathione peroxidase activity between both groups were related to age. Glutathione peroxidase activity increased in the plasma of retired miners with pneumoconiosis, compared with retired miners without pneumoconiosis. No differences were found either in erythrocyte antioxidant enzyme activities or in total plasma antioxidants between the groups of retired miners without and with pneumoconiosis. CONCLUSIONS--In this study, erythrocyte Cu++/Zn++ superoxide dismutase activity may be considered as a marker of effect of respirable coal mine dust in exposed workers. This result is in agreement with the hypothesis that reactive oxygen species are involved in cell injury induced by coal mine dust, and may be predictive of the degree of inflammation and pneumoconiosis induced by coal mine dust. The increase in glutathione peroxidase activity in the plasma of retired miners with pneumoconiosis may be the result of a response to the increasing hydrogen peroxide (H2O2) production due to the disease

  11. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.

    PubMed

    Scheepers, P T J; Micka, V; Muzyka, V; Anzion, R; Dahmann, D; Poole, J; Bos, R P

    2003-07-01

    A field study was conducted in two mines in order to determine the most suitable strategy for ambient exposure assessment in the framework of a European study aimed at validation of biological monitoring approaches for diesel exhaust (BIOMODEM). Exposure to dust and particle-associated 1-nitropyrene (1-NP) was studied in 20 miners of black coal by the long wall method (Czech Republic) and in 20 workers in oil shale mining by the room and pillar method (Estonia). The study in the oil shale mine was extended to include 100 workers in a second phase (main study). In each mine half of the study population worked underground as drivers of diesel-powered trains (black coal) and excavators (oil shale). The other half consisted of workers occupied in various non-diesel production assignments. Exposure to diesel exhaust was studied by measurement of inhalable and respirable dust at fixed locations and by personal air sampling of respirable dust. The ratio of geometric mean inhalable to respirable dust concentration was approximately two to one. The underground/surface ratio of respirable dust concentrations measured at fixed locations and in the breathing zones of the workers was 2-fold or greater. Respirable dust was 2- to 3-fold higher in the breathing zone than at fixed sampling locations. The 1-NP content in these dust fractions was determined by gas chromatography-mass spectrometry/mass spectrometry and ranged from 0.003 to 42.2 ng/m(3) in the breathing zones of the workers. In mine dust no 1-NP was detected. In both mines 1-NP was observed to be primarily associated with respirable particles. The 1-NP concentrations were also higher underground than on the surface (2- to 3-fold in the coal mine and 10-fold or more in the oil shale mine). Concentrations of 1-NP in the breathing zones were also higher than at fixed sites (2.5-fold in the coal mine and 10-fold in the oil shale mine). For individual exposure assessment personal air sampling is preferred over air sampling

  12. Mercury emission from coal seam fire at Wuda, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Liang, Yanci; Liang, Handong; Zhu, Shuquan

    2014-02-01

    The underground coal seam fire in the Wuda, Inner Mongolia of china is one of the most serious coal fires in the world with a history over 50 years and endangers the neighboring downwind urban area. To investigate the potential mercury emission and migration from the coal seam fire, in situ real-time measurement of total gaseous mercury (TGM) concentration using Lumex RA-915 + mercury analyzer were implemented on the fire zone and the urban area. The results show an average TGM concentration of 464 ng m-3 in the fumes released from surface vents and cracks on the fire zone, which leads to an elevated TGM concentration of 257 ng m-3 (211-375 ng m-3) in the near-surface air at the fire zone and 89 ng m-3 (23-211 ng m-3) at the peripheral area. The average TGM concentration in the adjoining downwind urban area of Wuda is 33 ng m-3. This result suggests that the coal seam fire may not only contribute to the global mercury inventory but also be a novel source for mercury pollution in the urban areas. The scenario of urban areas being adjacent to coal seam fires is not limited to Wuda but relatively common in northern China and elsewhere. Whether there are other cities under influence of coal seam fires merits further investigation.

  13. Alcohol consumption in the Australian coal mining industry.

    PubMed

    Tynan, Ross J; Considine, Robyn; Wiggers, John; Lewin, Terry J; James, Carole; Inder, Kerry; Kay-Lambkin, Frances; Baker, Amanda L; Skehan, Jaelea; Perkins, David; Kelly, Brian J

    2017-03-01

    To investigate patterns of alcohol use within the coal mining industry, and associations with the personal, social, workplace and employment characteristics. 8 mine sites across 3 eastern Australian states were surveyed, selected to encompass key geographic characteristics (accessibility and remoteness) and mine type (open cut and underground). Problematic alcohol use was measured using the Alcohol Use Disorders Identification Test (AUDIT) to determine: (1) overall risky or hazardous drinking behaviour; and (2) frequency of single-occasion drinking (6 or more drinks on 1 occasion). A total of 1457 employees completed the survey, of which 45.7% of male and 17.0% of female participants reported levels of alcohol use within the range considered as risky or hazardous, considerably higher than the national average. Hierarchical linear regression revealed a significant contribution of many individual level factors associated with AUDIT scores: younger age, male, current smoking status; illicit substance use; previous alcohol and other drug use (AOD) problems; and higher psychological distress. Workplace factors associated with alcohol use included working in mining primarily for the high remuneration, and the type of mining, with underground miners reporting higher alcohol use than open-cut miners. Our findings provide support for the need to address alcohol use in the coal mining industry over and above routine on-site testing for alcohol use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Occupational risk factors for prostate cancer in an area of former coal, iron, and steel industries in Germany. Part 2: results from a study performed in the 1990s.

    PubMed

    Krech, Sabina; Selinski, Silvia; Bürger, Hannah; Hengstler, Jan G; Jedrusik, Peter; Hodzic, Jasmin; Knopf, H-Jürgen; Golka, Klaus

    2016-01-01

    Currently, there is no established occupational risk factor for prostate cancer. However, in the 1980s, a hospital-based case-control study in the greater Dortmund area showed an elevated risk for hard coal miners and, based on few cases, for painters and varnishers. Therefore, approximately 10 yr later, a similar study regarding prostate cancer was performed in this area. In total, 292 patients with prostate cancer who underwent radical prostatectomy and 313 controls who underwent transurethral resection of a benign prostatic hyperplasia were investigated by questionnaire. All of them were operated on between 1995 and 1999. This study showed a decreased risk for prostate cancer in hard coal miners (odds ratio [OR] = 0.67, 95% confidence interval [CI] = 0.44-1.03). Occupational exposures related to an elevated risk for prostate cancer were exposures to combustion products (20% cases vs. 11% controls), colorants and dyes (19 vs. 13%), and cutting fluids (8 vs. 6%). The different prostate cancer risks for underground coal miners in two studies with a time interval of approximately 10 yr are striking. Factors to be discussed are the introduction of prostate-specific antigen (PSA) screening for prostate cancer and investigation of cases that underwent radical prostatectomy, where the disease in general is locally confined. Working conditions in the local underground coal mines improved over time but did not change markedly in the period of interest. In essence, the present study does not corroborate an elevated prostate cancer risk in former underground hard coal miners from the greater Dortmund area.

  15. Optical Tracker For Longwall Coal Shearer

    NASA Technical Reports Server (NTRS)

    Poulsen, Peter D.; Stein, Richard J.; Pease, Robert E.

    1989-01-01

    Photographic record yields information for correction of vehicle path. Tracking system records lateral movements of longwall coal-shearing vehicle. System detects lateral and vertical deviations of path of vehicle moving along coal face, shearing coal as it goes. Rides on rails in mine tunnel, advancing on toothed track in one of rails. As vehicle moves, retroreflective mirror rides up and down on teeth, providing series of pulsed reflections to film recorder. Recorded positions of pulses, having horizontal and vertical orientations, indicate vertical and horizontal deviations, respectively, of vehicle.

  16. Prediction of coal grindability from exploration data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, M.; Hazen, K.

    1970-08-01

    A general prediction model for the Hardgrove grindability index was constructed from 735 coal samples using the proximate analysis, heating value, and sulfur content. The coals used to develop the general model ranged in volatile matter from 12.8 to 49.2 percent, dry basis, and had grindability indexes ranging from 35 to 121. A restricted model applicable to bituminous coals having grindabilities in the 40 to 110 range was developed from the proximate analysis and the petrographic composition of the coal. The prediction of coal grindability within a single seam was also investigated. The results reported support the belief that mechanicalmore » properties of the coal are related to both chemical and petrographic factors of the coal. The mechanical properties coal may be forecast in advance of mining, because the variables used as input to the prediction models can be measured from drill core samples collected during exploration.« less

  17. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill dust control at underground areas of underground mines. 72.630 Section 72.630 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall...

  18. Remediation of coal mining wastewaters using chitosan microspheres.

    PubMed

    Geremias, R; Pedrosa, R C; Benassi, J C; Fávere, V T; Stolberg, J; Menezes, C T B; Laranjeira, M C M

    2003-12-01

    This study aimed to evaluate the potential use of chitosan and chitosan/poly(vinylalcohol) microspheres incorporating with tetrasulphonated copper (II) phthalocyanine (CTS/PVA/TCP) in the remediation of coal mining wastewaters. The process was monitored by toxicity tests both before and after adsorption treatments with chitosan and microspheres. Physicochemical parameters, including pH and trace-metal concentration, as well as bioindicators of water pollution were used to that end. Wastewater samples colleted from drainage of underground coal mines, decantation pools, and contaminated rivers were scrutinized. Acute toxicity tests were performed using the Brine Shrimp Test (BST) in order to evaluate the remediation efficiency of different treatments. The results showed that the pH of treated wastewater samples were improved to values close to neutrality. Chitosan treatments were also effective in removing trace-metals. Pre-treatment with chitosan followed by microsphere treatment (CTS/PVA/TCP) was more effective in decreasing toxicity than the treatment using only chitosan. This was probably due to the elimination of pollutants other than trace-metals. Thus, the use of chitosan and microspheres is an adequate alternative towards remediation of water pollution from coal mining.

  19. Split-estate negotiations: the case of coal-bed methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayley H. Chouinard; Christina Steinhoff

    Coal-bed methane is an emerging contributor to the US energy supply. Split estates, where landowners control the surface and the energy companies lease the rights to the underground gas from the federal government, often impede successful negotiations for methane extraction. We provide an extensive form representation of the dynamic game of the negotiation process for subsurface access. We then solve for a set of Nash equilibrium outcomes associated with the split estate negotiations. By examining the optimal offers we can identify methods to improve the likelihood of negotiations that do not break down and result in the gas developer resortingmore » to the use of a bond. We examine how changes in transaction costs or entitlements will affect the outcomes, and support our finds with anecdotal evidence from actual negotiations for coal-bed methane access. 55 refs.« less

  20. Congress examines administration's coal research priorities

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-10-01

    While the Obama administration has proposed a shift in coal research funding to further emphasize carbon capture and sequestration (CCS) programs in its fiscal year (FY) 2012 budget request, Republicans and several witnesses at a 13 October hearing of a subcommittee of the House of Representatives' Committee on Science, Space, and Technology questioned those priorities, called for additional federal funding for coal research, and defended the use of coal as a major part of the U.S. energy sector. The administration's FY 2012 budget requests 291.4 million to fund the Department of Energy's (DOE) CCS and power systems program while zeroing out funding for DOE's fuels and power systems program (which includes funding for coal research) and shifting some of its line items to the CCS program. The FY 2011 continuing resolution has funded the fuels and power systems program at 400.2 million, including 142 million for carbon sequestration, 64.8 million for innovations for existing plants, and funding for other subprograms such as advanced integrated gasification combined cycle (52.9 million), fuel cells (49.8 million), and advanced research ($47.6 million).

  1. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed Central

    Hill, R D; Bates, E R

    1979-01-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617

  2. Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways

    PubMed Central

    Litton, Charles D.; Perera, Inoka Eranda

    2015-01-01

    Large-scale experiments were conducted in an above-ground gallery to simulate typical fires that develop along conveyor belt transport systems within underground coal mines. In the experiments, electrical strip heaters, imbedded ~5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-meter-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe located approximately 20 m downstream of the coal for continuous measurement of CO, CO2, and O2 as the fire progressed through the stages of smoldering coal, flaming coal, and flaming conveyor belt. Also located approximately 20 m from the fire origin and approximately 0.5 m below the roof of the gallery were two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles. Located upstream of the fire origin and also along the wall of the gallery at approximately 14 m and 5 m upstream were two video cameras capable of both smoke and flame detection. During the experiments, alarm times of the smoke detectors and video cameras were measured while the smoke obscuration and total smoke mass were continually measured. Twelve large-scale experiments were conducted using three different types of fire-resistant conveyor belts and four air velocities for each belt. The air velocities spanned the range from 1.0 m/s to 6.9 m/s. The results of these experiments are compared to previous large-scale results obtained using a smaller fire gallery and much narrower (1.07-m) conveyor belts to determine if the fire detection criteria previously developed (1) remained valid for the wider conveyor belts. Although some differences between these and the previous experiments did occur, the results, in general, compare very favorably. Differences are duly noted and their impact on fire

  3. Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways.

    PubMed

    Litton, Charles D; Perera, Inoka Eranda

    2012-07-01

    Large-scale experiments were conducted in an above-ground gallery to simulate typical fires that develop along conveyor belt transport systems within underground coal mines. In the experiments, electrical strip heaters, imbedded ~5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-meter-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe located approximately 20 m downstream of the coal for continuous measurement of CO, CO 2 , and O 2 as the fire progressed through the stages of smoldering coal, flaming coal, and flaming conveyor belt. Also located approximately 20 m from the fire origin and approximately 0.5 m below the roof of the gallery were two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles. Located upstream of the fire origin and also along the wall of the gallery at approximately 14 m and 5 m upstream were two video cameras capable of both smoke and flame detection. During the experiments, alarm times of the smoke detectors and video cameras were measured while the smoke obscuration and total smoke mass were continually measured. Twelve large-scale experiments were conducted using three different types of fire-resistant conveyor belts and four air velocities for each belt. The air velocities spanned the range from 1.0 m/s to 6.9 m/s. The results of these experiments are compared to previous large-scale results obtained using a smaller fire gallery and much narrower (1.07-m) conveyor belts to determine if the fire detection criteria previously developed (1) remained valid for the wider conveyor belts. Although some differences between these and the previous experiments did occur, the results, in general, compare very favorably. Differences are duly noted and their impact on fire

  4. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst.

    PubMed

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types.

  5. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst

    PubMed Central

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types. PMID:28727738

  6. Coal Utilization in Schools: Issues and Answers.

    ERIC Educational Resources Information Center

    Pusey, Robert H.

    Coal, at one-third the cost of natural gas and one-fifth the cost of oil, is our cheapest source of energy and is also in abundant supply. Because of significant technological advances, coal-fired equipment now approaches the clean and automatic operational characteristics of gas- and oil-fired boilers. For these reasons, and because schools are…

  7. World market: A survey of opportunities for advanced coal-fired systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, N.A.H.

    1995-06-01

    Although there is a wide range of forecasts for the future of World energy demand and consumption over the next 25 years, all forecasts show marked increases being required for all forms of fossil fuels even when optimistic projections are made for the future adoption of Nuclear and Renewable energy. It is also generally expected that coal usage will in this period experience its greatest growth (a doubling) in the Asia-Pacific region dominated demographically by China and India. In this paper, energy projections and the extent and nature of the coal reserves available worldwide are examined. While most coal technologiesmore » can handle a variety of feedstocks, there are often economic factors that will determine the preferred selection. The matching of technology to coal type and other factors is examined with particular reference to the Asia Pacific region. Oil usage is similarly forecast to experience a comparable growth in this region. Over 70% of the World`s oil reserves are heavy oils and refinery crudes are increasing in gravity and sulfur content. The clean coal technologies of gasification and fluid bed combustion can also use low value petroleum residuals as feedstocks. There is therefore a nearer term market opportunity to incorporate such technologies into cogeneration and coproduction schemes adjacent to refineries resulting in extremely efficient use of these resources.« less

  8. Study of the effect of bacteria on the disappearance and transformation of CO in the sealed fire zone of coal mine

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaowei; Wu, Shibo; Deng, Jun; Yang, Yifan; Jiang, Hua; Wang, Kai

    2017-01-01

    When the underground coal mine gob area has been sealed due to the coal spontaneous combustion, under the low oxygen and potentially high temperature environment, the CO concentration could drop sharply and disappear quickly. But it could rise rapidly after re-opening. These indicate that the disappearance is the only index for coal burnt out. In order to find a way how let CO disappear, experiments have been conducted using the newly developed experiment setup for three samples, raw, watered and bacteria-free coal sample. The CO and CO2 concentration have been monitored and analyzed. The results show the bacteria in the coal do consume CO and increase the chance of CO transfer to CO2. These results reveal how let CO disappear in a sealed zone from a new aspect. And the accuracy was improved when used gas index to determine combustion status for coal spontaneous combustion.

  9. Coal cleaning: An underutilized solution?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, R.L.

    1995-12-31

    Custom Coals Corporation is based in Pittsburgh, Pennsylvania. It is involved in the construction and operation of advanced coal cleaning facilities. The company has initially chosen to focus on Pennsylvania`s vast reserves of coal, because these coal provide a superior feedstock for the Technology. In a $76 million project co-sponsored by the U.S. Department of Energy, Custom Coals is constructing its first coal cleaning facility. The DOE chose to participate with the company in the project pursuant to a competition it sponsored under Round IV of Its Clean Cod Technology program. Thirty-one companies submitted 33 projects seeking approximately $2.3 billionmore » of funding against the $600 million available. The company`s project was one of nine proposals accepted and was the only pre-combustion cleaning technology awarded. The project includes both the construction of a 500 ton per hour coal cleaning facility utilizing the company`s proprietary technologies and a series of power plant test bums on a variety of U.S. coals during a 12-month demonstration program. Three U.S. coal seams - Sewickley, Lower Freeport and Illinois No. 5 - will supply the initial feedstock for the demonstration project. These seams represent a broad range of raw cod qualifies. The processed coals will then be distributed to a number of generating stations for combustion. The 300 megawatt Martins Creek Plant of Pennsylvania Power & Light Co., near Allentown, Pennsylvania, will burn Carefree Coal, the 60 megawatt Whitewater Valley Power Station of Richmond Power and Light (in Indiana) and the Ashtabula, Ohio unit of Centerior Energy will burn Self-Scrubbing Coal. Following these demonstrations, the plant will begin full-scale commercial operation, providing two million tons of Pennsylvania compliance coals to electric power utilities.« less

  10. Abstracts and research accomplishments of university coal research projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  11. The Wasatch Plateau coal field, Utah

    USGS Publications Warehouse

    Spieker, Edmund M.

    1931-01-01

    The Wasatch Plateau, the northeasternmost of the great group of high plateaus in central and southern Utah, is underlain by a succession of Cretaceous rocks that, contain valuable coal beds, and the eastern part of the plateau, in which the coal is accessible, is generally known as the Wasatch Plateau coal field. This field and its continuation east of Price River the Book Cliffs coal field contain excellent coal of bituminous rank and together form the largest and most productive coal area in Utah. Coal from these fields has long been highly esteemed by users of western fuels and commands an important position in the fuel markets of the West.Mining of the coal began in a small way with the earliest settlements in this part of Utah. As population increased and transcontinental railroads were built, large mines were, opened and commercial development has advanced until at the present time most of the places accessible by existing railroads are the scenes of large mining enterprises, and the volume of coal passing out to the fuel-consuming centers of the West has reached an annual average of about 4,800,000 tons. The area now undergoing exploitation, however, is small compared with the part yet undeveloped, and the present examination of the field has shown clearly that the great bulk of its coal remains, constituting a reserve of many millions of tons.

  12. Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1994--March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    A detailed evaluation of the bench unit data on Black Thunder feedstocks was completed. The results show that in a once-through operation using counterflow, reactor technology coal conversions in excess of 90% could be obtained, giving distillable oil yields in the range 60--65 wt % on MAF coal. The remaining non-distillable oil fraction which represents 20--25 wt % on MAF coal is a source of additional distillable oil in further processing, for example, bottoms recycle operation. C{sub 1}-C{sub 3} gas yields were generally in the order of 6--8 wt %. In autoclave studies, Illinois No. 6 coal was found tomore » be much less reactive than Black Thunder coal, and did not respond well to solubilization with carbon monoxide/steam. Process severity was, therefore, increased for bench unit operations on Illinois No. 6 coal, and work has concentrated on the use of hydrogen rather than carbon monoxide for solubilization. Preliminary coking studies on the resid from bench unit runs on Black Thunder coal were also carried out. Distillable liquid yields of 55--60 wt % were obtained. The technical and economic study to be carried out by Kilborn Engineering Company has been initiated.« less

  13. Process for blending coal with water immiscible liquid

    DOEpatents

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  14. Advanced technology applications for second and third general coal gasification systems

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.

  15. In-plant testing of a novel coal cleaning circuit using advanced technologies. Final technical report, September 1, 1995--August 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honaker, R.Q.; Reed, S.; Mohanty, M.K.

    1997-05-01

    A circuit comprised of advanced fine coal cleaning technologies was evaluated in an operating preparation plant to determine circuit performance and to compare the performance with current technologies used to treat -16 mesh fine coal. The circuit integrated a Floatex hydrosizer, a Falcon enhanced gravity concentrator and a Jameson flotation cell. A Packed-Column was used to provide additional reductions in the pyritic sulfur and ash contents by treatment of the Floatex-Falcon-Jameson circuit product. For a low sulfur Illinois No. 5 coal, the pyritic sulfur content was reduced from 0.67% to 0.34% at a combustible recovery of 93.2%. The ash contentmore » was decreased from 27.6% to 5.84%, which equates to an organic efficiency of 95% according to gravity-based washability data. The separation performance achieved on a high sulfur Illinois No. 5 coal resulted in the rejection of 72.7% of the pyritic sulfur and 82.3% of the ash-forming material at a recovery of 8 1 %. Subsequent pulverization of the cleaned product and retreatment in a Falcon concentrator and Packed-Column resulted in overall circuit ash and pyritic sulfur rejections of 89% and 93%, respectively, which yielded a pyritic sulfur content reduction from 2.43% to 0.30%. This separation reduced the sulfur dioxide emission rating of an Illinois No. 5 coal from 6.21 to 1.75 lbs SO{sub 2}/MBTU, which is Phase I compliance coal. A comparison of the results obtained from the Floatex-Falcon-Jameson circuit with those of the existing circuit revealed that the novel fine coal circuit provides 10% to 20% improvement in mass yield to the concentrate while rejecting greater amounts of ash and pyritic sulfur.« less

  16. Coal Combustion Science quarterly progress report, April--June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  17. A study of mining-induced seismicity in Czech mines with longwall coal exploitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holub, K.

    2007-01-15

    A review is performed for the data of local and regional seismographical networks installed in mines of the Ostrava-Karvina Coal Basin (Czech Republic), where underground anthracite mining is carried out and dynamic events occur in the form of rockbursts. The seismological and seismoacoustic observations data obtained in panels that are in limiting state are analyzed. This aggregate information is a basic for determining hazardous zones and assigning rockburst prevention measures.

  18. Life Cycle Assessment of Coal-fired Power Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (thismore » tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).« less

  19. Development and Application of High Strength TMCP Plate for Coal Mining Machinery

    NASA Astrophysics Data System (ADS)

    Yongqing, Zhang; Aimin, Guo; Liandeng, Yao

    Coal, as the most major energy in China, accounted for about 70% of China's primary energy production and consumption. While the percentage of coal as the primary energy mix would drop in the future due to serious smog pollution partly resulted from coal-burning, the market demand of coal will maintain because the progressive process of urbanization. In order to improve productivity and simultaneously decrease safety accidents, fully-mechanized underground mining technology based on complete equipment of powered support, armored face conveyor, shearer, belt conveyor and road-header have obtained quick development in recent years, of which powered support made of high strength steel plate accounts for 65 percent of total equipment investment, so, the integrated mechanical properties, in particular strength level and weldability, have a significant effects on working service life and productivity. Take hydraulic powered supports as example, this paper places priority to introduce the latest development of high strength steel plates of Q550, Q690 and Q890, as well as metallurgical design conception and production cost-benefits analysis between QT plate and TMCP plate. Through production and application practice, TMCP or DQ plate demonstrate great economic advantages compared with traditional QT plate.

  20. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  1. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China.

    PubMed

    Kong, Biao; Li, Zenghua; Yang, Yongliang; Liu, Zhen; Yan, Daocheng

    2017-10-01

    In recent years, the ecology, security, and sustainable development of modern mines have become the theme of coal mine development worldwide. However, spontaneous combustion of coal under conditions of oxygen supply and automatic exothermic heating during coal mining lead to coalfield fires. Coal spontaneous combustion (CSC) causes huge economic losses and casualties, with the toxic and harmful gases produced during coal combustion not only polluting the working environment, but also causing great damage to the ecological environment. China is the world's largest coal producer and consumer; however, coal production in Chinese mines is seriously threatened by the CSC risk. Because deep underground mining methods are commonly adopted in Chinese coal mines, coupling disasters are frequent in these mines with the coalfield fires becoming increasingly serious. Therefore, in this study, we analyzed the development mechanism of CSC. The CSC risk assessment was performed from the aspects of prediction, detection, and determination of the "dangerous area" in a coal mine (i.e., the area most susceptible to fire hazards). A new geophysical method for CSC determination is proposed and analyzed. Furthermore, the main methods for CSC fire prevention and control and their advantages and disadvantages are analyzed. To eventually construct CSC prevention and control integration system, future developmental direction of CSC was given from five aspects. Our results can present a reference for the development of CSC fire prevention and control technology and promote the protection of ecological environment in China.

  2. Coal-fired high performance power generating system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can bemore » achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.« less

  3. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly progress report, July--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, C.W.; Gutterman, C.; Chander, S.

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash usingmore » commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.« less

  4. Health effects of coal technologies: research needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidizedmore » bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.« less

  5. Coal-Based Fuel-Cell Powerplants

    NASA Technical Reports Server (NTRS)

    Ferral, J. F.; Pappano, A. W.; Jennings, C. N.

    1986-01-01

    Report assesses advanced technologyy design alternatives for integrated coal-gasifier/fuel-cell powerplants. Various gasifier, cleanup, and fuelcell options evaluated. Evaluation includes adjustments to assumed performances and costs of proposed technologies where required. Analysis identifies uncertainties remaining in designs and most promising alternatives and research and development required to develop these technologies. Bulk of report summary and detailed analysis of six major conceptual designs and variations of each. All designs for plant that uses Illinois No. 6 coal and produces 675 MW of net power.

  6. Geochemistry of coalbed gas - a review

    USGS Publications Warehouse

    Clayton, J.L.

    1998-01-01

    Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greehouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greenhouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.

  7. Removal of ash, sulfur, and trace elements of environmental concern from eight selected Illinois coals

    USGS Publications Warehouse

    Demir, I.

    1998-01-01

    Release analysis (RA) and float-sink (F-S) data were generated to assess the beneficiation potential of washed coals from selected Illinois coal preparation plants through the use of advanced physical cleaning at -60 mesh size. Generally, the F-S process removed greater amounts of ash, sulfur, and trace elements of environmental concern from the coals than the RA process, indicating that the cleanability of Illinois coals by advanced methods can be estimated best by F-S testing. At an 80%-combustibles recovery, the ash yield in the clean F-S products decreased by 47-75%, relative to the parent coals. Average decreases for the elements As(67%), Cd(78%), Hg(73%), Mn(71%), and P(66%) exceeded the average decrease for ash yield (55%). Average decreases for other elements were: Co(31%), Cr(27%), F(39%), Ni(25%), Pb(50%), S(28%), Sb(20%), Se(39), Th(32%), and U(8%). Only Be was enriched (up to 120%) in the clean products relative to the parent coals. These results suggested that the concentration of elements with relatively high atmospheric mobilities (As, Cd, F, Hg, Pb, and Se) during coal combustion can be reduced substantially in Illinois coals through the use of advanced physical cleaning. Advanced physical cleaning can be effective also for the removal of inorganic S. Environmental risks from the emission of other elements with enrichment or relatively low cleanabilities could be small because these elements generally have very low concentrations in Illinois coals or are largely retained in solid residues during coal combustion. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  8. Advanced direct coal liquefaction concepts. Quarterly report, April 1, 1993--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    Construction and commissioning of the bench unit for operation of the first stage of the process was completed. Solubilization of Black Thunder coal using carbon monoxide and steam was successfully demonstrated in the counterflow reactor system. The results were comparable with those obtained in the autoclave with the exception that coal solubilization at the same nominal residence times was slightly lower. The bench unit has now been modified for two stage operation. The Wilsonville process derived solvent for Black Thunder coal (V-1074) was found to be essentially as stable as the previous solvent used in the autoclave runs (V-178 +more » 320) at reactor conditions. This solvent (V-1074) is, therefore, being used in the bench unit tests. Carbon monoxide may be replaced by synthesis gas for the coal solubilization step in the process. However, in autoclave tests, coal conversion was found to be dependent on the amount of carbon monoxide present in the synthesis gas. Coal conversions ranged from 88% for pure carbon monoxide to 67% for a 25:75 carbon monoxide/hydrogen mixture at equivalent conditions. Two stage liquefaction tests were completed in the autoclave using a disposable catalyst (FeS) and hydrogen in the second stage. Increased coal conversion, higher gas and oil and lower asphaltene and preasphaltene yields were observed as expected. However, no hydrogen consumption was observed in the second stage. Other conditions, in particular, alternate catalyst systems will be explored.« less

  9. Underground laboratories in Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw; Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  10. Underground laboratories in Asia

    NASA Astrophysics Data System (ADS)

    Lin, Shin Ted; Yue, Qian

    2015-08-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  11. Coal workers' pneumoconiosis in the United States: regional differences 40 years after implementation of the 1969 Federal Coal Mine Health and Safety Act.

    PubMed

    Suarthana, Eva; Laney, A Scott; Storey, Eileen; Hale, Janet M; Attfield, Michael D

    2011-12-01

    To assess whether the recent increases in the prevalence of coal workers' pneumoconiosis (CWP) in the USA reflect increased measured exposures over recent decades, and to identify other potential causative factors. The observed CWP prevalence was calculated for 12,408 underground coal miner participants in the Coal Workers' Health Surveillance Program for the period 2005-2009, stratified by the Mine Safety and Health Administration (MSHA) geographical districts. The predicted prevalence was estimated using a published exposure-response model from a large epidemiological study among U.S. coal miners using dust exposure, tenure, miner's age and coal rank as predictors. χ2 Testing was performed to compare the observed versus predicted CWP prevalence. Observed prevalence was significantly higher than predicted prevalence in MSHA districts 4-7 (central Appalachian region) (10.1% vs. 4.2%; prevalence ratio (PR) 2.4; p<0.001) and significantly lower than predicted in other regions (1.6% vs. 3.6%; PR 0.4; p<0.001). The central Appalachian region had a significantly older workforce with greater mining tenure, a lower proportion of mines with 200 or more employees, and lower seam heights. Significant lower average compliance dust concentrations were reported for this region. The observed CWP prevalence substantially exceeded predicted levels in central Appalachia. However, the increased prevalence was not explained by the measured levels of dust exposures. Likely contributing factors include mine size and low seam mining, which may be associated with higher exposure to silica. Further study is needed to characterise the responsible factors for the elevated CWP rates in central Appalachia.

  12. Advanced direct coal liquefaction concepts. Quarterly report, July 1--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    All the reports required for completion of the contract were submitted this quarter. A proposal for further work in Phase 2 was also submitted. The technical and economic assessment of the process was completed. The results show that for the base case scenario (25% equity, 15% after tax DCF-ROE) coal derived synthetic crude oil can be produced at just below US $30 per barrel. The study was based on the production of 75,000 BPD of C{sub 4+} synthetic crude oil from Black Thunder coal for subsequent processing in a conventional petroleum refinery from Black Thunder (Wyoming) subbituminous coal.

  13. Development and Application of TMCP Steel Plate in Coal Mining Machinery

    NASA Astrophysics Data System (ADS)

    Yongqing, Zhang; Liandeng, Yao; aimin, Guo; Sixin, Zhao; Guofa, Wang

    Coal, as the most major energy in China, accounted for about 70% of China's primary energy production and consumption. While the percentage of coal as the primary energy mix would drop in the future due to serious smog pollution partly resulted from coal-burning, the market demand of coal will maintain because the progressive process of urbanization. In order to improve productivity and simultaneously decrease safety accidents, fully-mechanized underground mining technology based on complete equipment of powered support, armored face conveyor, shearer, belt conveyor and road-header have obtained quick development in recent years, of which powered support made of high strength steel plate accounts for 65 percent of total equipment investment, so, the integrated mechanical properties, in particular strength level and weldability, have a significant effects on working service life and productivity. Take hydraulic powered supports as example, this paper places priority to introduce the latest development of high strength steel plates of Q550, Q690 and Q890 for powered supports, as well as metallurgical design conception and production cost-benefits analysis between QT plate and TMCP plate. Through production and application practice, TMCP or DQ plate demonstrate great economic advantages compared with traditional QT plate.

  14. A method for estimating the probability of lightning causing a methane ignition in an underground mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacks, H.K.; Novak, T.

    2008-03-15

    During the past decade, several methane/air explosions in abandoned or sealed areas of underground coal mines have been attributed to lightning. Previously published work by the authors showed, through computer simulations, that currents from lightning could propagate down steel-cased boreholes and ignite explosive methane/air mixtures. The presented work expands on the model and describes a methodology based on IEEE Standard 1410-2004 to estimate the probability of an ignition. The methodology provides a means to better estimate the likelihood that an ignition could occur underground and, more importantly, allows the calculation of what-if scenarios to investigate the effectiveness of engineering controlsmore » to reduce the hazard. The computer software used for calculating fields and potentials is also verified by comparing computed results with an independently developed theoretical model of electromagnetic field propagation through a conductive medium.« less

  15. Advanced technology applications for second and third generation coal gasification systems. Appendix

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    Sixteen coal conversion processes are described and their projected goals listed. Tables show the reactants used, products derived, typical operating data, and properties of the feed coal. A history of the development of each process is included along with a drawing of the chemical reactor used.

  16. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    NASA Astrophysics Data System (ADS)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  17. 3D Geological Modeling of CoalBed Methane (CBM) Resources in the Taldykuduk Block Karaganda Coal Basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Sadykov, Raman; Kiponievich Ogay, Evgeniy; Royer, Jean-Jacques; Zhapbasbayev, Uzak; Panfilova, Irina

    2015-04-01

    Coal Bed Methane (CBM) is gas stored in coal layers. It can be extracted from wells after hydraulic fracturing and/or solvent injection, and secondary recovery techniques such as CO2 injection. Karaganda Basin is a very favorable candidate region to develop CBM production for the following reasons: (i) Huge gas potential; (ii) Available technologies for extracting and commercializing the gas produced by CBM methods; (iii) Experience in degassing during underground mining operations for safety reasons; (iv) Local needs in energy for producing electricity for the industrial and domestic market. The objectives of this work are to model the Taldykuduk block coal layers and their properties focusing on Coal Bed Methane production. It is motivated by the availability of large coal bed methane resources in Karaganda coal basin which includes 4 300 Bm3 equivalent 2 billion tons of coal (B = billion = 109) with gas content 15-25 m3/t of coal (for comparison San Juan basin (USA) has < 20 m3/t). The CBM reserves estimations are about: Saransk block, 26.3 Bm3 and Taldykuduk block, 23.5 Bm3. Methane (CH4) can be considered as an environmentally-friendly fuel compared to coal. Actually, the methane extracted during mining is released in the atmosphere, collecting it for recovering energy will reduce CO2 equivalent emissions by 36 Mt, good news regarding climate warming issues. The exploitation method will be based on a EOR technology consisting in injecting CO2 which replaces methane in pores because it has a higher adsorption capacity than CH4; exploiting CBM by CO2 injection provides thus a safe way to sequestrate CO2 in adsorbed form. The 3D geological model was built on Gocad/Skua using the following available data set: 926 wells and large area (7 x 12 km). No seismic data; coal type and chemical components (S, ash, …); unreliable available cross-section & maps due to old acquisition; quality mature coal; complex heterogeneous fractures network reported on geological cross

  18. Biogeochemistry of microbial coal-bed methane

    USGS Publications Warehouse

    Strc, D.; Mastalerz, Maria; Dawson, K.; MacAlady, J.; Callaghan, A.V.; Wawrik, B.; Turich, C.; Ashby, M.

    2011-01-01

    Microbial methane accumulations have been discovered in multiple coal-bearing basins over the past two decades. Such discoveries were originally based on unique biogenic signatures in the stable isotopic composition of methane and carbon dioxide. Basins with microbial methane contain either low-maturity coals with predominantly microbial methane gas or uplifted coals containing older, thermogenic gas mixed with more recently produced microbial methane. Recent advances in genomics have allowed further evaluation of the source of microbial methane, through the use of high-throughput phylogenetic sequencing and fluorescent in situ hybridization, to describe the diversity and abundance of bacteria and methanogenic archaea in these subsurface formations. However, the anaerobic metabolism of the bacteria breaking coal down to methanogenic substrates, the likely rate-limiting step in biogenic gas production, is not fully understood. Coal molecules are more recalcitrant to biodegradation with increasing thermal maturity, and progress has been made in identifying some of the enzymes involved in the anaerobic degradation of these recalcitrant organic molecules using metagenomic studies and culture enrichments. In recent years, researchers have attempted lab and subsurface stimulation of the naturally slow process of methanogenic degradation of coal. Copyright ?? 2011 by Annual Reviews. All rights reserved.

  19. An evaluation of processing InSAR Sentinel-1A/B data for correlation of mining subsidence with mining induced tremors in the Upper Silesian Coal Basin (Poland)

    NASA Astrophysics Data System (ADS)

    Krawczyk, Artur; Grzybek, Radosław

    2018-01-01

    The Satellite Radar Interferometry is one of the common methods that allow to measure the land subsidence caused by the underground black coal excavation. The interferometry images processed from the repeat-pass Synthetic Aperture Radar (SAR) systems give the spatial image of the terrain subjected to the surface subsidence over mining areas. Until now, the InSAR methods using data from the SAR Systems like ERS-1/ERS-2 and Envisat-1 were limited to a repeat-pass cycle of 35-day only. Recently, the ESA launched Sentinel-1A and 1B, and together they can provide the InSAR coverage in a 6-day repeat cycle. The studied area was the Upper Silesian Coal Basin in Poland, where the underground coal mining causes continuous subsidence of terrain surface and mining tremors (mine-induced seismicity). The main problem was with overlapping the subsidence caused by the mining exploitation with the epicentre tremors. Based on the Sentinel SAR images, research was done in regard to the correlation between the short term ground subsidence range border and the mine-induced seismicity epicentres localisation.

  20. Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1993--March 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1993-07-01

    Five barrels of a Wilsonville process derived solvent (V-1074) from Black Thunder coal were obtained. This material boils within the preferred gas oil range, is more aromatic than previous solvents, and will therefore be used for the bench unit studies. Several repeat runs were performed in the autoclave to confirm the results of the matrix study. In addition, runs were carried out with different catalysts, with agglomerates and with the V-1074 solvent. The results of the autoclave runs were analyzed with respect to coal conversion, CO conversion, oil yield, hydrogen consumption and oxygen removal. It was concluded that the bestmore » operating conditions for the first stage operation was a temperature of at least 390{degrees}C, residence time of at least 30 minutes, cold CO pressure of at least 600 psig and potassium carbonate catalyst (2% wt on total feed). The data also indicated however, that the coal conversion goes through a maximum, and too high a severity leads to retrograde reaction and lower coal solubilization. The scope for increasing temperature and time is therefore limited. Petrographic examination of the THF insoluble resids from the autoclave program indicated a maximum coal conversion of about 90% for Black Thunder coal. The bench unit construction was also essentially completed and the bench unit program to be carded out in the next twelve months was defined.« less