Science.gov

Sample records for adverse structural remodeling

  1. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms

    PubMed Central

    Liu, Yonggang; Goodson, Jamie M.; Zhang, Bo; Chin, Michael T.

    2015-01-01

    Exposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation. PMID:26042051

  2. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling

    PubMed Central

    Medzikovic, Lejla; Schumacher, Cees A.; Verkerk, Arie O.; van Deel, Elza D.; Wolswinkel, Rianne; van der Made, Ingeborg; Bleeker, Natascha; Cakici, Daniella; van den Hoogenhof, Maarten M. G.; Meggouh, Farid; Creemers, Esther E.; Ann Remme, Carol; Baartscheer, Antonius; de Winter, Robbert J.; de Vries, Carlie J. M.; Arkenbout, E. Karin; de Waard, Vivian

    2015-01-01

    Distinct stressors may induce heart failure. As compensation, β-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca2+ ([Ca2+]i). However, chronic β-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by β-adrenergic stimulation, but its role in cardiac remodelling is still unclear. We show high and rapid Nur77 upregulation in cardiomyocytes stimulated with β-adrenergic agonist isoproterenol. Nur77 knockdown in culture resulted in hypertrophic cardiomyocytes. Ventricular cardiomyocytes from Nur77-deficient (Nur77-KO) mice exhibited elevated diastolic and systolic [Ca2+]i and prolonged action potentials compared to wild type (WT). In vivo, these differences resulted in larger cardiomyocytes, increased expression of hypertrophic genes, and more cardiac fibrosis in Nur77-KO mice upon chronic isoproterenol stimulation. In line with the observed elevated [Ca2+]i, Ca2+-activated phosphatase calcineurin was more active in Nur77-KO mice compared to WT. In contrast, after cardiac pressure overload by aortic constriction, Nur77-KO mice exhibited attenuated remodelling compared to WT. Concluding, Nur77-deficiency results in significantly altered cardiac Ca2+ homeostasis and distinct remodelling outcome depending on the type of insult. Detailed knowledge on the role of Nur77 in maintaining cardiomyocyte Ca2+ homeostasis and the dual role Nur77 plays in cardiac remodelling will aid in developing personalized therapies against heart failure. PMID:26486271

  3. Essential role of sympathetic endothelin A receptors for adverse cardiac remodeling

    PubMed Central

    Lehmann, Lorenz H.; Rostosky, Julia S.; Buss, Sebastian J.; Kreusser, Michael M.; Krebs, Jutta; Mier, Walter; Enseleit, Frank; Spiger, Katharina; Hardt, Stefan E.; Wieland, Thomas; Haass, Markus; Lüscher, Thomas F.; Schneider, Michael D.; Parlato, Rosanna; Gröne, Hermann-Josef; Haberkorn, Uwe; Yanagisawa, Masashi; Katus, Hugo A.; Backs, Johannes

    2014-01-01

    In preclinical studies, endothelin receptor A (ETA) antagonists (ETAi) attenuated the progression of heart failure (HF). However, clinical HF trials failed to demonstrate beneficial effects of ETAi. These conflicting data may be explained by the possibility that established HF drugs such as adrenergic receptor blockers interfered with the mechanism of ETAi action in clinical trials. Here we report that mice lacking ETA only in sympathetic neurons (SN-KO) showed less adverse structural remodeling and cardiac dysfunction in response to pathological pressure overload induced by transverse aortic constriction (TAC). In contrast, mice lacking ETA only in cardiomyocytes (CM-KO) were not protected. TAC led to a disturbed sympathetic nerve function as measured by cardiac norepinephrine (NE) tissue levels and [124I]-metaiodobenzylguanidine-PET, which was prevented in SN-KO. In a rat model of HF, ETAi improved cardiac and sympathetic nerve function. In cocultures of cardiomyocytes (CMs) and sympathetic neurons (SNs), endothelin-1 (ET1) led to a massive NE release and exaggerated CM hypertrophy compared with CM monocultures. ETA-deficient CMs gained a hypertrophic response through wild-type SNs, but ETA-deficient SNs failed to mediate exaggerated CM hypertrophy. Furthermore, ET1 mediated its effects indirectly via NE in CM-SN cocultures through adrenergic receptors and histone deacetylases, resulting in activation of the prohypertrophic transcription factor myocyte enhancer factor 2. In conclusion, sympathetic ETA amplifies ET1 effects on CMs through adrenergic signaling pathways. Thus, antiadrenergic therapies may blunt potentially beneficial effects of ETAi. Taken together, this may indicate that patients with β blocker intolerance or disturbed sympathetic nerve function could be evaluated for a potential benefit from ETAi. PMID:25197047

  4. TNF-α inhibition attenuates adverse myocardial remodeling in a rat model of volume overload

    PubMed Central

    Jobe, Lynetta J.; Meléndez, Giselle C.; Levick, Scott P.; Du, Yan; Brower, Gregory L.

    2009-01-01

    Tumor necrosis factor (TNF)-α is a proinflammatory cytokine that has been implicated in the pathogenesis of heart failure. In contrast, we have recently shown that myocardial levels of TNF-α are acutely elevated in the aortocaval (AV) fistula model of heart failure. Based on these observations, we hypothesized that progression of adverse myocardial remodeling secondary to volume overload would be prevented by inhibition of TNF-α with etanercept. Furthermore, a principal objective of this study was to elucidate the effect of TNF-α inhibition during different phases of the myocardial remodeling process. Eight-week-old male Sprague-Dawley rats were randomly divided into the following three groups: sham-operated controls, untreated AV fistulas, and etanercept-treated AV fistulas. Each group was further subdivided to study three different time points consisting of 3 days, 3 wk, and 8 wk postfistula. Etanercept was administered subcutaneously at 1 mg/kg body wt. Etanercept prevented collagen degradation at 3 days and significantly attenuated the decrease in collagen at 8 wk postfistula. Although TNF-α antagonism did not prevent the initial ventricular dilatation at 3 wk postfistula, etanercept was effective at significantly attenuating the subsequent ventricular hypertrophy, dilatation, and increased compliance at 8 wk postfistula. These positive adaptations achieved with etanercept administration translated into significant functional improvements. At a cellular level, etanercept also markedly attenuated increases in cardiomyocyte length, width, and area at 8 wk postfistula. These observations demonstrate that TNF-α has a pivotal role in adverse myocardial remodeling and that treatment with etanercept can attenuate the progression to heart failure. PMID:19666842

  5. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy.

    PubMed

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E; Puppala, Dheeraj; Armoundas, Antonis A; Hindle, Allyson; Bloch, Kenneth D; Buys, Emmanuel S; Scherrer-Crosbie, Marielle

    2015-07-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1(-/-)) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1(-/-) mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1(-/-) mice. UCP1(-/-) mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1(-/-) mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1(-/-) BAT transplanted to either UCP1(-/-) or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1(-/-) mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1(-/-) mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. PMID:25968336

  6. The Emerging Prominence of the Cardiac Mast Cell as a Potent Mediator of Adverse Myocardial Remodeling

    PubMed Central

    Janicki, Joseph S.; Brower, Gregory L.; Levick, Scott P.

    2015-01-01

    Cardiac mast cells store and release a variety of biologically active mediators, several of which have been implicated in the activation of matrix metalloproteinases in the volume-overloaded heart, while others are involved in the fibrotic process in pressure-overloaded hearts. Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic cardiac volume overload. Also, there is evolving evidence implicating the cardiac mast cell as having a major role in the adverse remodeling underlying these cardiovascular disorders. Thus, the cardiac mast cell is the focus of this chapter that begins with a historical background, followed by sections on methods for their isolation and characterization, endogenous secretagogues, phenotype, and ability of estrogen to alter their phenotype so as to provide cardioprotection. Finally the role of mast cells in myocardial remodeling secondary to a sustained cardiac volume overload, hypertension, and ischemic injury and future research directions are discussed. PMID:25388248

  7. The Adverse Impact of Diabetes Mellitus on Left Ventricular Remodeling and Function in Patients with Severe Aortic Stenosis

    PubMed Central

    Lindman, Brian R.; Arnold, Suzanne V.; Madrazo, José A.; Zajarias, Alan; Johnson, Stephanie N.; Pérez, Julio E.; Mann, Douglas L.

    2011-01-01

    Background The diabetic heart exhibits increased left ventricular (LV) mass and reduced ventricular function. However, this relationship has not been studied in patients with aortic stenosis (AS), a disease process that causes LV hypertrophy and dysfunction through a distinct mechanism of pressure overload. The aim of this study was to determine how diabetes mellitus (DM) impacts LV remodeling and function in patients with severe AS. Methods and Results Echocardiograms were performed on 114 patients with severe AS [mean aortic valve area (AVA) 0.6 cm2] and included measures of LV remodeling and function. Multivariable linear regression models investigated the independent effect of DM on these aspects of LV structure and function. Compared to non-diabetics (n=60), diabetics (n=54) had increased LV mass, LV end-systolic dimension, LV end-diastolic dimension, and decreased LV ejection fraction (EF) and longitudinal systolic strain (p<0.01 for all). In multivariable analyses adjusting for age, sex, systolic BP, AVA, BSA, and coronary disease, DM was an independent predictor of increased LV mass (β=26g, p=0.01), LV end-systolic dimension (β=0.5cm, p=0.008), and LV end-diastolic dimension (β=0.3cm, p=0.025). After additionally adjusting for LV mass, DM was associated with reduced longitudinal systolic strain (β=1.9%, p=0.023) and a trend toward reduced EF (β=−5%, p=0.09). Among diabetics, insulin use (as a marker of disease severity) was associated with larger LV end-systolic dimension and worse LV function. LV mass was a strong predictor of reduced EF and systolic strain (p<0.001 for both). Conclusions DM has an additive adverse effect on hypertrophic remodeling—increased LV mass and larger cavity dimensions—and is associated with reduced systolic function in patients with AS beyond known factors of pressure overload. PMID:21357546

  8. Cardiac CaM Kinase II Genes δ and γ Contribute to Adverse Remodeling but Redundantly Inhibit Calcineurin-Induced Myocardial Hypertrophy

    PubMed Central

    Kreusser, Michael M.; Lehmann, Lorenz H.; Keranov, Stanislav; Hoting, Marc-Oscar; Oehl, Ulrike; Kohlhaas, Michael; Reil, Jan-Christian; Neumann, Kay; Schneider, Michael D.; Hill, Joseph A.; Dobrev, Dobromir; Maack, Christoph; Maier, Lars S.; Gröne, Hermann-Josef; Katus, Hugo A.; Olson, Eric N.; Backs, Johannes

    2014-01-01

    Background Ca2+-dependent signaling through CaM Kinase II (CaMKII) and calcineurin was suggested to contribute to adverse cardiac remodeling. However, the relative importance of CaMKII versus calcineurin for adverse cardiac remodeling remained unclear. Methods and Results We generated double-knockout mice (DKO) lacking the 2 cardiac CaMKII genes δ and γ specifically in cardiomyocytes. We show that both CaMKII isoforms contribute redundantly to phosphorylation not only of phospholamban, ryanodine receptor 2, and histone deacetylase 4, but also calcineurin. Under baseline conditions, DKO mice are viable and display neither abnormal Ca2+ handling nor functional and structural changes. On pathological pressure overload and β-adrenergic stimulation, DKO mice are protected against cardiac dysfunction and interstitial fibrosis. But surprisingly and paradoxically, DKO mice develop cardiac hypertrophy driven by excessive activation of endogenous calcineurin, which is associated with a lack of phosphorylation at the auto-inhibitory calcineurin A site Ser411. Likewise, calcineurin inhibition prevents cardiac hypertrophy in DKO. On exercise performance, DKO mice show an exaggeration of cardiac hypertrophy with increased expression of the calcineurin target gene RCAN1-4 but no signs of adverse cardiac remodeling. Conclusions We established a mouse model in which CaMKII’s activity is specifically and completely abolished. By the use of this model we show that CaMKII induces maladaptive cardiac remodeling while it inhibits calcineurin-dependent hypertrophy. These data suggest inhibition of CaMKII but not calcineurin as a promising approach to attenuate the progression of heart failure. PMID:25124496

  9. Circulating Endothelial Cells and Endothelial Function predict Major Adverse Cardiac Events and Early Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Magdy, Abdel Hamid; Bakhoum, Sameh; Sharaf, Yasser; Sabry, Dina; El-Gengehe, Ahmed T; Abdel-Latif, Ahmed

    2016-01-01

    Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) are mobilized from the bone marrow and increase in the early phase after ST-elevation myocardial infarction (STEMI). The aim of this study was to assess the prognostic significance of CECs and indices of endothelial dysfunction in patients with STEMI. In 78 patients with acute STEMI, characterization of CD34+/VEGFR2+ CECs, and indices of endothelial damage/dysfunction such as brachial artery flow mediated dilatation (FMD) were determined. Blood samples for CECs assessment and quantification were obtained within 24 hours of admission and FMD was assessed during the index hospitalization. At 30 days follow up, the primary composite end point of major cardiac adverse events (MACE) consisting of all-cause mortality, recurrent non-fatal MI, or heart failure and the secondary endpoint of early adverse left ventricular (LV) remodeling were analyzed. The 17 patients (22%) who developed MACE had significantly higher CEC level (P = 0.004), vWF level (P =0.028), and significantly lower FMD (P = 0.006) compared to the remaining patients. Logistic regression analysis showed that CECs level and LV ejection fraction were independent predictors of MACE. The areas under the receiver operating characteristic curves (ROC) for CEC level, FMD, and the logistic model with both markers were 0.73, 0.75, and 0.82 respectively for prediction of the MACE. The 16 patients who developed the secondary endpoint had significantly higher CEC level compared to remaining patients (p =0.038). In conclusion, increased circulating endothelial cells and endothelial dysfunction predicted the occurrence of major adverse cardiac events and adverse cardiac remodeling in patients with STEMI. PMID:26864952

  10. Structural remodeling of unweighted soleus myotendinous junction in monkey.

    PubMed

    Roffino, Sandrine; Carnino, Alain; Chopard, Angèle; Mutin, Murielle; Marini, Jean-François

    2006-03-01

    This study describes the morphology of the soleus myotendinous junction (MTJ) in the Rhesus monkey. Ultrastructural observations revealed a structural complexity that probably reflects functional adaptations. We also studied ultrastructural modifications of the MTJ in response to 14 days of hypokinesia and microgravity (Bion 11 mission). The reduced limb mobility of the animals, placed in a safety seat aboard the satellite, induced a sarcolemmal remodeling that was enhanced by the microgravity conditions. Signs of MTJ remodeling such as alterations of contractile apparatus and myofilament-anchoring structures, T-tubule dilation, and autophagic vacuoles could be ascribed to the microgravity. PMID:16545758

  11. Deficiency of MAPK-activated protein kinase 2 (MK2) prevents adverse remodelling and promotes endothelial healing after arterial injury.

    PubMed

    Kapopara, P R; von Felden, J; Soehnlein, O; Wang, Y; Napp, L C; Sonnenschein, K; Wollert, K C; Schieffer, B; Gaestel, M; Bauersachs, J; Bavendiek, U

    2014-12-01

    Maladaptive remodelling of the arterial wall after mechanical injury (e. g. angioplasty) is characterised by inflammation, neointima formation and media hypertrophy, resulting in narrowing of the affected artery. Moreover, mechanical injury of the arterial wall causes loss of the vessel protecting endothelial cell monolayer. Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), a major downstream target of p38 MAPK, regulates inflammation, cell migration and proliferation, essential processes for vascular remodelling and re-endothelialisation. Therefore, we investigated the role of MK2 in remodelling and re-endothelialisation after arterial injury in genetically modified mice in vivo. Hypercholesterolaemic low-density-lipoprotein-receptor-deficient mice (ldlr-/-) were subjected to wire injury of the common carotid artery. MK2-deficiency (ldlr-/-/mk2-/-) nearly completely prevented neointima formation, media hypertrophy, and lumen loss after injury. This was accompanied by reduced proliferation and migration of MK2-deficient smooth muscle cells. In addition, MK2-deficiency severely reduced monocyte adhesion to the arterial wall (day 3 after injury, intravital microscopy), which may be attributed to reduced expression of the chemokine ligands CCL2 and CCL5. In line, MK2-deficiency significantly reduced the content of monocytes, neutrophiles and lymphocytes of the arterial wall (day 7 after injury, flow cytometry). In conclusion, in a model of endothelial injury (electric injury), MK2-deficiency strongly increased proliferation of endothelial cells and improved re-endothelialisation of the arterial wall after injury. Deficiency of MK2 prevents adverse remodelling and promotes endothelial healing of the arterial wall after injury, suggesting that MK2-inhibition is a very attractive intervention to prevent restenosis after percutaneous therapeutic angioplasty. PMID:25120198

  12. Association of the Frontal QRS-T Angle with Adverse Cardiac Remodeling, Impaired Left and Right Ventricular Function, and Worse Outcomes in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Selvaraj, Senthil; Ilkhanoff, Leonard; Burke, Michael A.; Freed, Benjamin H.; Lang, Roberto M.; Martinez, Eva E.; Shah, Sanjiv J.

    2013-01-01

    Background No prior studies have investigated the association of QRS-T angle with cardiac structure/function and outcomes in heart failure with preserved ejection fraction (HFpEF). We hypothesized that increased frontal QRS-T angle is associated with worse cardiac function/remodeling and adverse outcomes in HFpEF. Methods We prospectively studied 376 patients with HFpEF (i.e. symptomatic HF with left ventricular [LV] ejection fraction >50%.) The frontal QRS-T angle was calculated from the 12-lead electrocardiogram. Patients were divided into tertiles by frontal QRS-T angle (0–26°, 27–75°, and 76–179°), and clinical, laboratory, and echocardiographic data were compared among groups. Cox proportional hazards analyses were performed to determine the association between QRS-T angle and outcomes. Results The mean age of the cohort was 64±13 years, 65% were women, and the mean QRS-T angle was 61±51°. Patients with increased QRS-T angle were older, had a lower body-mass index, more frequently had coronary artery disease, diabetes, chronic kidney disease, and atrial fibrillation, and had higher B-type natriuretic peptide (BNP) levels (P<0.05 for all comparisons). After multivariable adjustment, patients with increased QRS-T angle had higher BNP levels in addition to higher LV mass index, worse diastolic function parameters, more right ventricular (RV) remodeling, and worse RV systolic function (P<0.05 for all associations). QRS-T angle was independently associated with the composite outcome of cardiovascular hospitalization or death on multivariable analysis, even after adjusting for BNP (HR for the highest QRS-T tertile = 2.0, 95% CI 1.2–3.4; P=0.008). Conclusions In HFpEF, increased QRS-T angle is independently associated with worse left and right ventricular function/remodeling and adverse outcomes. PMID:24075945

  13. Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study

    PubMed Central

    Krogh-Madsen, Trine; Abbott, Geoffrey W.; Christini, David J.

    2012-01-01

    Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength - electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely. PMID:22383869

  14. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction.

    PubMed

    Beaumont, Eric; Southerland, Elizabeth M; Hardwick, Jean C; Wright, Gary L; Ryan, Shannon; Li, Ying; KenKnight, Bruce H; Armour, J Andrew; Ardell, Jeffrey L

    2015-10-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions. PMID:26276818

  15. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction

    PubMed Central

    Tejada, Thor; Tan, Lin; Torres, Rebecca A.; Calvert, John W.; Lambert, Jonathan P.; Zaidi, Madiha; Husain, Murtaza; Berce, Maria D.; Naib, Hussain; Pejler, Gunnar; Abrink, Magnus; Graham, Robert M.; Lefer, David J.; Naqvi, Nawazish; Husain, Ahsan

    2016-01-01

    Heart disease is a leading cause of death in adults. Here, we show that a few days after coronary artery ligation and reperfusion, the ischemia-injured heart elaborates the cardioprotective polypeptide, insulin-like growth factor-1 (IGF-1), which activates IGF-1 receptor prosurvival signaling and improves cardiac left ventricular systolic function. However, this signaling is antagonized by the chymase, mouse mast cell protease 4 (MMCP-4), which degrades IGF-1. We found that deletion of the gene encoding MMCP-4 (Mcpt4), markedly reduced late, but not early, infarct size by suppressing IGF-1 degradation and, consequently, diminished cardiac dysfunction and adverse structural remodeling. Our findings represent the first demonstration to our knowledge of tissue IGF-1 regulation through proteolytic degradation and suggest that chymase inhibition may be a viable therapeutic approach to enhance late cardioprotection in postischemic heart disease. PMID:27274047

  16. Hyperinsulinemia adversely affects lung structure and function.

    PubMed

    Singh, Suchita; Bodas, Manish; Bhatraju, Naveen K; Pattnaik, Bijay; Gheware, Atish; Parameswaran, Praveen Kolumam; Thompson, Michael; Freeman, Michelle; Mabalirajan, Ulaganathan; Gosens, Reinoud; Ghosh, Balaram; Pabelick, Christina; Linneberg, Allan; Prakash, Y S; Agrawal, Anurag

    2016-05-01

    There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly (P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype. PMID:26919895

  17. Fibroblast Growth Factor-9 Enhances M2 Macrophage Differentiation and Attenuates Adverse Cardiac Remodeling in the Infarcted Diabetic Heart

    PubMed Central

    Singla, Dinender K.; Singla, Reetu D.; Abdelli, Latifa S.; Glass, Carley

    2015-01-01

    Inflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear. The current study was undertaken to assess monocyte infiltration and the role of fibroblast growth factor-9 (FGF-9) on monocyte to macrophage differentiation and cardioprotection in the diabetic infarcted heart. Db/db diabetic mice were assigned to sham, myocardial infarction (MI), and MI+FGF-9 groups. MI was induced by permanent coronary artery ligation and animals were subjected to 2D transthoracic echocardiography two weeks post-surgery. Immunohistochemical and immunoassay results from heart samples collected suggest significantly increased infiltration of monocytes (Mean ± SEM; MI: 2.02% ± 0.23% vs. Sham 0.75% ± 0.07%; p<0.05) and associated pro-inflammatory cytokines (TNF-α, MCP-1, and IL-6), adverse cardiac remodeling (Mean ± SEM; MI: 33% ± 3.04% vs. Sham 2.2% ± 0.33%; p<0.05), and left ventricular dysfunction (Mean ± SEM; MI: 35.4% ± 1.25% vs. Sham 49.19% ± 1.07%; p<0.05) in the MI group. Importantly, treatment of diabetic infarcted myocardium with FGF-9 resulted in significantly decreased monocyte infiltration (Mean ± SEM; MI+FGF-9: 1.39% ± 0.1% vs. MI: 2.02% ± 0.23%; p<0.05), increased M2 macrophage differentiation (Mean ± SEM; MI+FGF-9: 4.82% ± 0.86% vs. MI: 0.85% ± 0.3%; p<0.05) and associated anti-inflammatory cytokines (IL-10 and IL-1RA), reduced adverse remodeling (Mean ± SEM; MI+FGF-9: 11.59% ± 1.2% vs. MI: 33% ± 3.04%; p<0.05), and improved cardiac function (Fractional shortening, Mean ± SEM; MI+FGF-9: 41.51% ± 1.68% vs. MI: 35.4% ± 1.25%; p<0.05). In conclusion, our data suggest FGF-9 possesses novel therapeutic potential in its ability to

  18. Increased systolic load causes adverse remodeling of fetal aortic and mitral valves.

    PubMed

    Tibayan, Frederick A; Louey, Samantha; Jonker, Sonnet; Espinoza, Herbert; Chattergoon, Natasha; You, Fanglei; Thornburg, Kent L; Giraud, George

    2015-12-15

    While abnormal hemodynamic forces alter fetal myocardial growth, little is known about whether such insults affect fetal cardiac valve development. We hypothesized that chronically elevated systolic load would detrimentally alter fetal valve growth. Chronically instrumented fetal sheep received either a continuous infusion of adult sheep plasma to increase fetal blood pressure, or a lactated Ringer's infusion as a volume control beginning on day 126 ± 4 of gestation. After 8 days, mean arterial pressure was higher in the plasma infusion group (63.0 mmHg vs. 41.8 mmHg, P < 0.05). Mitral annular septal-lateral diameter (11.9 mm vs. 9.1 mm, P < 0.05), anterior leaflet length (7.7 mm vs. 6.4 mm, P < 0.05), and posterior leaflet length (P2; 4.0 mm vs. 3.0 mm, P < 0.05) were greater in the elevated load group. mRNA levels of Notch-1, TGF-β2, Wnt-2b, BMP-1, and versican were suppressed in aortic and mitral valve leaflets; elastin and α1 type I collagen mRNA levels were suppressed in the aortic valves only. We conclude that sustained elevated arterial pressure load on the fetal heart valve leads to anatomic remodeling and, surprisingly, suppression of signaling and extracellular matrix genes that are important to valve development. These novel findings have important implications on the developmental origins of valve disease and may have long-term consequences on valve function and durability. PMID:26354842

  19. Hierarchical Structure and Repair of Bone: Deformation, Remodelling, Healing

    NASA Astrophysics Data System (ADS)

    Fratzl, Peter; Weinkamer, Richard

    The design of natural materials follows a radically different paradigm as compared to engineering materials: organs are growing rather than being fabricated. As a main consequence, adaptation to changing conditions remains possible during the whole lifetime of a biological material. As a typical example of such a biological material, bone is constantly laid down by bone forming cells, osteoblasts, and removed by bone resorbing cells, osteoclasts. With this remodelling cycle of bone resorption and formation, the skeleton is able to adapt to changing needs at all levels of structural hierarchy. The hierarchical structure of bone is summarized in the second part of this chapter.

  20. Remodeling of tissue-engineered bone structures in vivo.

    PubMed

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L; Merkle, Hans P; Meinel, Lorenz

    2013-09-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106-212 μm), medium (212-300 μm), and large pore diameter ranges (300-425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter, all implants integrated well, vascularization was advanced, and bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  1. Remodeling of tissue-engineered bone structures in vivo

    PubMed Central

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J.; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L.; Merkle, Hans P.; Meinel, Lorenz

    2013-01-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106 – 212 μm), medium (212 – 300 μm) and large pore diameter ranges (300 – 425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter all implants integrated well, vascularization was advanced and, bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  2. Beneficial effect of simvastatin and pravastatin treatment on adverse cardiac remodelling and glomeruli loss in spontaneously hypertensive rats.

    PubMed

    Bezerra, Daniele G; Mandarim-de-Lacerda, Carlos A

    2005-04-01

    The aim of the present study was to investigate the possibility of different effects of the hydrophobic statin simvastatin and the hydrophilic statin pravastatin on the remodelling process in the overloaded left ventricle and renal cortex of SHRs (spontaneously hypertensive rats). Fifteen SHRs were treated for 40 days with simvastatin, pravastatin or placebo (water) via orogastric administration. Left ventricle and renal cortex were examined by light microscopy and stereology. LV (left ventricular) cardiomyocyte nuclei (N[cmn]) and glomeruli (N[gl]) numbers were estimated by the dissector method. BP (blood pressure) and serum triacylglycerols (triglycerides) were lower in the statin-treated groups than in the untreated control group. The volume density of the interstitial connective tissue was smaller and length density of the intramyocardial arteries, as well as the arteries/cardiomyocyte ratio, was greater in the statin-treated groups than in the control group. No difference was observed between the two statin-treated groups. The cross-sectional cardiomyocyte area was significantly smaller in the simvastatin-treated group than in the control or pravastatin-treated groups, and it was smaller in the pravastatin-treated group than in the control group. N[cmn] and N[gl] were greater in the two statin-treated groups than in the control group, but no significant difference was observed between the two statin-treated groups. In conclusion, administration of the statins simvastatin and pravastatin to SHRs effectively prevented the elevation in BP and serum triaclyglycerols, and also attenuated adverse cardiac and kidney remodelling by preventing LV hypertrophy, enhancing myocardial vascularization with the decrease in interstitial fibrosis and attenuating cardiomyocyte and glomerular loss. PMID:15610072

  3. Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts

    PubMed Central

    Murray, David B.; Voloshenyuk, Tetyana G.; Brower, Gregory L.; Bradley, Jessica M.; Janicki, Joseph S.

    2010-01-01

    We have previously reported gender differences in ventricular remodeling and development of heart failure using the aortocaval fistula model of chronic volume overload in rats. In contrast to males, female rats exhibited no adverse ventricular remodeling and less mortality in response to volume overload. This gender-specific cardioprotection was lost following ovariectomy and was partially restored using estrogen replacement. However, it is not known if estrogen treatment would be as effective in males. The purpose of this study was to evaluate the structural and functional effects of estrogen in male rats subjected to chronic volume overload. Four groups of male rats were studied at 3 days and 8 wk postsurgery as follows: fistula and sham-operated controls, with and without estrogen treatment. Biochemical and histological studies were performed at 3 days postsurgery, with chronic structural and functional effects studied at 8 wk. Measurement of systolic and diastolic pressure-volume relationships was obtained using a blood-perfused isolated heart preparation. Both fistula groups developed significant ventricular hypertrophy after 8 wk of volume overload. Untreated rats with fistula exhibited extensive ventricular dilatation, which was coupled with a loss of systolic function. Estrogen attenuated left ventricular dilatation and maintained function in treated rats. Estrogen treatment was also associated with a reduction in oxidative stress and circulating endothelin-1 levels, as well as prevention of matrix metalloproteinase-2 and -9 activation and breakdown of ventricular collagen in the early stage of remodeling. These data demonstrate that estrogen attenuates ventricular remodeling and disease progression in male rats subjected to chronic volume overload. PMID:19933421

  4. Structural stability and functional remodeling of high-density lipoproteins.

    PubMed

    Gursky, Olga

    2015-09-14

    Lipoproteins are protein-lipid nanoparticles that transport lipids in circulation and are central in atherosclerosis and other disorders of lipid metabolism. Apolipoproteins form flexible structural scaffolds and important functional ligands on the particle surface and direct lipoprotein metabolism. Lipoproteins undergo multiple rounds of metabolic remodeling that is crucial to lipid transport. Important aspects of this remodeling, including apolipoprotein dissociation and particle fusion, are mimicked in thermal or chemical denaturation and are modulated by free energy barriers. Here we review the biophysical studies that revealed the kinetic mechanism of lipoprotein stabilization and unraveled its structural basis. The main focus is on high-density lipoprotein (HDL). An inverse correlation between stability and functions of various HDLs in cholesterol transport suggests the functional role of structural disorder. A mechanism for the conformational adaptation of the major HDL proteins, apoA-I and apoA-II, to the increasing lipid load is proposed. Together, these studies help understand why HDL forms discrete subclasses separated by kinetic barriers, which have distinct composition, conformation and functional properties. Understanding these properties may help improve HDL quality and develop novel therapies for cardiovascular disease. PMID:25749369

  5. Left ventricular structure and remodeling in patients with COPD

    PubMed Central

    Pelà, Giovanna; Li Calzi, Mauro; Pinelli, Silvana; Andreoli, Roberta; Sverzellati, Nicola; Bertorelli, Giuseppina; Goldoni, Matteo; Chetta, Alfredo

    2016-01-01

    Background Data on cardiac alterations such as left ventricular (LV) hypertrophy, diastolic dysfunction, and lower stroke volume in patients with COPD are discordant. In this study, we investigated whether early structural and functional cardiac changes occur in patients with COPD devoid of manifest cardiovascular disease, and we assessed their associations with clinical and functional features. Methods Forty-nine patients with COPD belonging to all Global Initiative for Chronic Obstructive Lung Disease (GOLD) classes were enrolled and compared with 36 controls. All subjects underwent clinical history assessment, lung function testing, blood pressure measurement, electrocardiography, and conventional and Doppler tissue echocardiography. Patients were also subjected to computed tomography to quantify emphysema score. Results Patients with COPD had lower LV cavity associated with a marked increase in relative wall thickness (RWT), suggesting concentric remodeling without significant changes in LV mass. RWT was significantly associated with ratio of the forced expiratory volume in 1 second to the forced vital capacity and emphysema score and was the only cardiac parameter that – after multivariate analysis – significantly correlated with COPD conditions in all individuals. Receiver operating characteristic curve analysis showed that RWT (with a cutoff point of 0.42) predicted the severity of COPD with 83% specificity and 56% sensitivity (area under the curve =0.69, 95% confidence interval =0.59–0.81). Patients with COPD showed right ventricular to be functional but no structural changes. Conclusion Patients with COPD without evident cardiovascular disease exhibit significant changes in LV geometry, resulting in concentric remodeling. In all individuals, RWT was significantly and independently related to COPD. However, its prognostic role should be determined in future studies. PMID:27257378

  6. Relationship between Left Ventricular Structural and Metabolic Remodelling in Type 2 Diabetes Mellitus

    PubMed Central

    Levelt, Eylem; Mahmod, Masliza; Piechnik, Stefan K.; Ariga, Rina; Francis, Jane M.; Rodgers, Christopher T.; Clarke, William T.; Sabharwal, Nikant; Schneider, Jurgen E.; Karamitsos, Theodoros D.; Clarke, Kieran; Rider, Oliver J.; Neubauer, Stefan

    2016-01-01

    Concentric left ventricular (LV) remodelling is associated with adverse cardiovascular events and is frequently observed in patients with type 2 diabetes mellitus (T2DM). Despite this, the cause of concentric remodelling in diabetes, per se, is unclear, but may be related to cardiac steatosis and impaired myocardial energetics. Thus, we investigated the relationship amongst myocardial metabolic changes and LV remodelling in T2DM. Forty-six non-hypertensive T2DM patients and twenty matched controls underwent cardiovascular magnetic resonance to assess LV remodelling (LV mass to LV end diastolic volume ratio-LVMVR), function, pre- and post-contrast tissue characterisation using T1 mapping, 1H-, 31P-magnetic resonance spectroscopy for myocardial triglyceride content (MTG) and phosphocreatine to ATP ratio (PCr/ATP) respectively. When compared to body mass index and blood pressure matched controls, diabetes was associated with: concentric LV remodelling, higher MTG, impaired myocardial energetics and impaired systolic strain indicating a subtle contractile dysfunction. Importantly, cardiac steatosis independently predicted concentric remodelling and systolic strain. Extracellular volume fraction was unchanged, indicating absence of fibrosis. In conclusion, cardiac steatosis may contribute to LV concentric remodelling and contractile dysfunction in diabetes. As cardiac steatosis is modifiable, strategies aimed at reducing myocardial triglyceride may be beneficial in reversing concentric remodelling and improving contractile function in the diabetic heart. PMID:26438611

  7. CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons

    ERIC Educational Resources Information Center

    Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine

    2012-01-01

    The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…

  8. Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia–reperfusion injury: A preclinical study of a porous polyurethane material in a porcine model

    PubMed Central

    Hashizume, Ryotaro; Fujimoto, Kazuro L.; Hong, Yi; Guan, Jianjun; Toma, Catalin; Tobita, Kimimasa; Wagner, William R.

    2013-01-01

    Objective Myocardial infarction (MI) can lead to irreversible adverse left ventricular remodeling resulting in subsequent severe dysfunction. The objective of this study was to investigate the potential for biodegradable, elastomeric patch implantation to positively alter the remodeling process after MI in a porcine model. Methods Yorkshire pigs underwent a 60-minute catheter balloon occlusion of the left circumflex artery. Two weeks after MI animals underwent epicardial placement of a biodegradable, porous polyurethane (poly(ester urethane)urea; PEUU) patch (MI+PEUU, n = 7) or sham surgery (MI+sham, n = 8). Echocardiography before surgery and at 4 and 8 weeks after surgery measured the end-diastolic area (EDA) and fractional area change (% FAC). All animals were humanely killed 8 weeks after surgery and hearts were histologically assessed. Results At 8 weeks, echocardiography revealed greater EDA values in the MI+sham group (23.6 ± 6.6 cm2 , mean ± standard deviaation) than in the MI+PEUU group (15.9 ± 2.5 cm2) (P < .05) and a lower %FAC in the MI+sham group (24.8 ± 7.6) than in the MI+PEUU group (35.9 ± 7.8) (P < .05). The infarcted ventricular wall was thicker in the MI+PEUU group (1.56 ± 0.5 cm) than in the MI+sham group (0.91 ± 0.24 cm) (P < .01). Conclusions Biodegradable elastomeric PEUU patch implantation onto the porcine heart 2 weeks post-MI attenuated left ventricular adverse remodeling and functional deterioration and was accompanied by increased neovascularization. These findings, although limited to a 2-month follow-up, may suggest an attractive clinical option to moderate post-MI cardiac failure. PMID:23219497

  9. Structural analysis of the RSC chromatin-remodeling complex.

    PubMed

    Asturias, Francisco J; Chung, Wen-Hsiang; Kornberg, Roger D; Lorch, Yahli

    2002-10-15

    Electron microscopy of the RSC chromatin-remodeling complex reveals a ring of protein densities around a central cavity. The size and shape of the cavity correspond closely to those of a nucleosome. Results of nuclease protection analysis are consistent with nucleosome binding in the cavity. Such binding could explain the ability of RSC to expose nucleosomal DNA in the presence of ATP without loss of associated histones. PMID:12368485

  10. Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages.

    PubMed

    Tate, Mitchel; Robinson, Emma; Green, Brian D; McDermott, Barbara J; Grieve, David J

    2016-01-01

    In addition to its' established metabolic and cardioprotective effects, glucagon-like peptide-1 (GLP-1) reduces post-infarction heart failure via preferential actions on the extracellular matrix (ECM). Here, we investigated whether the GLP-1 mimetic, exendin-4, modulates cardiac remodelling in experimental diabetes by specifically targeting inflammatory/ECM pathways, which are characteristically dysregulated in this setting. Adult mice were subjected to streptozotocin (STZ) diabetes and infused with exendin-4/insulin/saline from 0 to 4 or 4-12 weeks. Exendin-4 and insulin improved metabolic parameters in diabetic mice after 12 weeks, but only exendin-4 reduced cardiac diastolic dysfunction and interstitial fibrosis in parallel with altered ECM gene expression. Whilst myocardial inflammation was not evident at 12 weeks, CD11b-F4/80(++) macrophage infiltration at 4 weeks was increased and reduced by exendin-4, together with an improved cytokine profile. Notably, media collected from high glucose-treated macrophages induced cardiac fibroblast differentiation, which was prevented by exendin-4, whilst several cytokines/chemokines were differentially expressed/secreted by exendin-4-treated macrophages, some of which were modulated in STZ exendin-4-treated hearts. Our findings suggest that exendin-4 preferentially protects against ECM remodelling and diastolic dysfunction in experimental diabetes via glucose-dependent modulation of paracrine communication between infiltrating macrophages and resident fibroblasts, thereby indicating that cell-specific targeting of GLP-1 signalling may be a viable therapeutic strategy in this setting. PMID:26597728

  11. Assessment of Left Ventricular Structural Remodelling in Patients with Diabetic Cardiomyopathy by Cardiovascular Magnetic Resonance.

    PubMed

    Shang, Yongning; Zhang, Xiaochun; Chen, Liu; Leng, Weiling; Lei, Xiaotian; Yang, Qi; Liang, Ziwen; Wang, Jian

    2016-01-01

    Background. Diabetic cardiomyopathy (DCM) is always accompanied with alteration of left ventricular structure and function. The aims of this study were to assess the structural remodelling in patients with DCM by cardiovascular magnetic resonance (CMR) and correlation of structural remodelling with severity of DCM. Methods. Twenty-five patients (53.8 ± 8.8 years, 52.0% males) with DCM and thirty-one normal healthy controls (51.9 ± 13.6 years, 45.2% males) were scanned by CMR cine to assess function and structure of left ventricular. Length of diabetic history and results of cardiac echocardiography (E', A', and E'/A') were also measured. Results. Compared with normal controls group, DCM group was associated with significantly increased ratio of left ventricular mass at end diastole to end-diastolic volume (MVR) (P < 0.05) and no significant difference was in mass at end diastole (P > 0.05). The ratio correlated with both length of diabetic history and echocardiographic Doppler tissue imaging E' (all P < 0.05). Conclusions. CMR can be a powerful technique to assess LV remodelling, and MVR may be considered as an imaging marker to evaluate the severity of LV remodelling in patients with DCM. PMID:27419144

  12. Assessment of Left Ventricular Structural Remodelling in Patients with Diabetic Cardiomyopathy by Cardiovascular Magnetic Resonance

    PubMed Central

    Zhang, Xiaochun; Leng, Weiling

    2016-01-01

    Background. Diabetic cardiomyopathy (DCM) is always accompanied with alteration of left ventricular structure and function. The aims of this study were to assess the structural remodelling in patients with DCM by cardiovascular magnetic resonance (CMR) and correlation of structural remodelling with severity of DCM. Methods. Twenty-five patients (53.8 ± 8.8 years, 52.0% males) with DCM and thirty-one normal healthy controls (51.9 ± 13.6 years, 45.2% males) were scanned by CMR cine to assess function and structure of left ventricular. Length of diabetic history and results of cardiac echocardiography (E′, A′, and E′/A′) were also measured. Results. Compared with normal controls group, DCM group was associated with significantly increased ratio of left ventricular mass at end diastole to end-diastolic volume (MVR) (P < 0.05) and no significant difference was in mass at end diastole (P > 0.05). The ratio correlated with both length of diabetic history and echocardiographic Doppler tissue imaging E′ (all P < 0.05). Conclusions. CMR can be a powerful technique to assess LV remodelling, and MVR may be considered as an imaging marker to evaluate the severity of LV remodelling in patients with DCM. PMID:27419144

  13. Intracoronary Delivery of Self-Assembling Heart-Derived Microtissues (“Cardiospheres”) for Prevention of Adverse Remodeling in a Pig Model of Convalescent Myocardial Infarction

    PubMed Central

    Gallet, Romain; Tseliou, Eleni; Dawkins, James; Middleton, Ryan; Valle, Jackelyn; Angert, David; Reich, Heidi; Luthringer, Daniel; Kreke, Michelle; Smith, Rachel; Marbán, Linda; Marbán, Eduardo

    2015-01-01

    Background Preclinical studies in rodents and pigs indicate that the self-assembling microtissues known as cardiospheres (CSp) may be more effective than dispersed CSp-derived cells (CDCs). However, the more desirable intracoronary (IC) route has been assumed to be unsafe for CSp delivery: CSp are large (30-150 μm), raising concerns about likely micro-embolization. We questioned these negative assumptions by evaluating the safety and efficacy of optimized IC delivery of CSp in a porcine model of convalescent MI. Methods and Results First, we standardized the size of CSp by modifying culture conditions. Then, dosage was determined by infusing escalating doses of CSp in the LAD of naïve pigs, looking for acute adverse effects. Finally in a randomized efficacy study, 14 mini-pigs received allogeneic CSp (1.3×106) or vehicle one month following MI. Animals underwent MRI before infusion and 1 month later to assess left ventricular (LV) ejection fraction (EF), scar mass and viable mass. In the dosing study, we did not observe any evidence of micro-embolization after CSp infusion. In the post-MI study, CSp preserved LV function, reduced scar mass and increased viable mass whereas placebo did not. Moreover, CSp decreased collagen content, and increased vessel densities and myocardial perfusion. Importantly, IC CSp decreased LV end diastolic pressure and increased cardiac output. Conclusions Intracoronary delivery of CSp is safe. Intracoronary CSp are also remarkably effective in decreasing scar, halting adverse remodeling, increasing myocardial perfusion and improving hemodynamic status post-MI in pigs. Thus, CSp may be viable therapeutic candidates for IC infusion in selected myocardial disorders. PMID:25953823

  14. Rapid Surface Cooling by ThermoSuit System Dramatically Reduces Scar Size, Prevents Post-Infarction Adverse Left Ventricular Remodeling, and Improves Cardiac Function in Rats

    PubMed Central

    Dai, Wangde; Herring, Michael J; Hale, Sharon L; Kloner, Robert A

    2015-01-01

    Background The long-term effects of transient hypothermia by the non-invasive ThermoSuit apparatus on myocardial infarct (MI) scar size, left ventricular (LV) remodeling, and LV function were assessed in rat MI model. Methods and Results Rats were randomized to normothermic or hypothermic groups (n=14 in each group) and subjected to 30 minutes coronary artery occlusion and 6 weeks of reperfusion. For hypothermia therapy, rats were placed into the ThermoSuit apparatus at 2 minutes after the onset of coronary artery occlusion, were taken out of the apparatus when the core body temperature reached 32°C (in ≈8 minutes), and were then allowed to rewarm. After 6 weeks of recovery, rats treated with hypothermia demonstrated markedly reduced scar size (expressed as % of left ventricular area: hypothermia, 6.5±1.1%; normothermia, 19.4±1.7%; P=1.3×10−6); and thicker anterior LV wall (hypothermia, 1.57±0.09 mm; normothermia, 1.07±0.05 mm; P=3.4×10−5); decreased postmortem left ventricular volume (hypothermia, 0.45±0.04 mL; normothermia, 0.6±0.03 mL; P=0.028); and better LV fractional shortening by echocardiography (hypothermia, 37.2±2.8%; normothermia, 18.9±2.3%; P=0.0002) and LV ejection fraction by LV contrast ventriculography (hypothermia, 66.8±2.3%; normothermia, 56.0±2.0%; P=0.0014). Conclusions Rapid, transient non-invasive surface cooling with the ThermoSuit apparatus in the acute phase of MI decreased scar size by 66.5%, attenuated adverse post-infarct left ventricular dilation and remodeling, and improved cardiac function in the chronic phase of experimental MI. PMID:26116692

  15. Aliskiren protecting atrial structural remodeling from rapid atrial pacing in a canine model.

    PubMed

    Zhao, Zhiqiang; Chen, Yan; Li, Weimin; Wang, Xinghua; Li, Jian; Yang, Wansong; Cheng, Lijun; Liu, Tong; Liu, Enzhao; Li, Guangping

    2016-08-01

    Atrial fibrillation (AF) contributing to the increasing mortality risk is the most common disease in clinical practice. Owing to the side effects and relative inefficacy of current antiarrhythmic drugs, some research focuses on renin-angiotensin-aldosterone system (RAS) for finding out the new treatment of AF. The purpose of this study is to confirm whether aliskiren as a proximal inhibitor of renin, which completely inhibits RAS, has beneficial effects on atrial structural remodeling in AF. In this study, rapid atrial pacing was induced at 500 beats per minute for 2 weeks in a canine model. A different dose of aliskiren was given orally for 2 weeks before rapid atrial pacing. HE staining and Masson's staining were used for analysis of myocardial fibrosis. TGF-β1, signal pathways, and pro-inflammatory cytokines were shown for the mechanism of structural remodeling after the treatment of aliskiren. Serious atrial fibrosis was induced by rapid atrial pacing, followed by the elevated TGF-β1, upregulated MEK and ERK1/2, and increased inflammatory factors. Aliskiren could apparently improve myocardial fibrosis by reducing the expression of TGF-β1, inhibiting MEK and ERK1/2 signal pathways, and decreasing IL-18 and TLR4 in both serum and atrial tissue. In conclusion, aliskiren could prevent atrial structural remodeling from rapid atrial pacing for 2 weeks. Aliskiren may play a potential beneficial role in the treatment of AF induced by rapid atrial pacing. PMID:27118660

  16. Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus

    PubMed Central

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa

    2015-01-01

    ABSTRACT The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. PMID:25589659

  17. Structural remodeling of bacteriophage T4 and host membranes during infection initiation.

    PubMed

    Hu, Bo; Margolin, William; Molineux, Ian J; Liu, Jun

    2015-09-01

    The first stages of productive bacteriophage infections of bacterial host cells require efficient adsorption to the cell surface followed by ejection of phage DNA into the host cytoplasm. To achieve this goal, a phage virion must undergo significant structural remodeling. For phage T4, the most obvious change is the contraction of its tail. Here, we use skinny E. coli minicells as a host, along with cryo-electron tomography and mutant phage virions, to visualize key structural intermediates during initiation of T4 infection. We show for the first time that most long tail fibers are folded back against the tail sheath until irreversible adsorption, a feature compatible with the virion randomly walking across the cell surface to find an optimal site for infection. Our data confirm that tail contraction is triggered by structural changes in the baseplate, as intermediates were found with remodeled baseplates and extended tails. After contraction, the tail tube penetrates the host cell periplasm, pausing while it degrades the peptidoglycan layer. Penetration into the host cytoplasm is accompanied by a dramatic local outward curvature of the cytoplasmic membrane as it fuses with the phage tail tip. The baseplate hub protein gp27 and/or the ejected tape measure protein gp29 likely form the transmembrane channel for viral DNA passage into the cell cytoplasm. Building on the wealth of prior biochemical and structural information, this work provides new molecular insights into the mechanistic pathway of T4 phage infection. PMID:26283379

  18. Structural remodeling of bacteriophage T4 and host membranes during infection initiation

    PubMed Central

    Hu, Bo; Margolin, William; Molineux, Ian J.; Liu, Jun

    2015-01-01

    The first stages of productive bacteriophage infections of bacterial host cells require efficient adsorption to the cell surface followed by ejection of phage DNA into the host cytoplasm. To achieve this goal, a phage virion must undergo significant structural remodeling. For phage T4, the most obvious change is the contraction of its tail. Here, we use skinny E. coli minicells as a host, along with cryo-electron tomography and mutant phage virions, to visualize key structural intermediates during initiation of T4 infection. We show for the first time that most long tail fibers are folded back against the tail sheath until irreversible adsorption, a feature compatible with the virion randomly walking across the cell surface to find an optimal site for infection. Our data confirm that tail contraction is triggered by structural changes in the baseplate, as intermediates were found with remodeled baseplates and extended tails. After contraction, the tail tube penetrates the host cell periplasm, pausing while it degrades the peptidoglycan layer. Penetration into the host cytoplasm is accompanied by a dramatic local outward curvature of the cytoplasmic membrane as it fuses with the phage tail tip. The baseplate hub protein gp27 and/or the ejected tape measure protein gp29 likely form the transmembrane channel for viral DNA passage into the cell cytoplasm. Building on the wealth of prior biochemical and structural information, this work provides new molecular insights into the mechanistic pathway of T4 phage infection. PMID:26283379

  19. Neural circuit remodeling and structural plasticity in the cortex during chronic pain

    PubMed Central

    Kim, Woojin

    2016-01-01

    Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain. PMID:26807017

  20. Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Colleran, P. N.; Wilkerson, M. K.; McCurdy, M. R.; Muller-Delp, J.

    2000-01-01

    Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).

  1. Mechanical properties and structure of isolated pulmonary arteries remodeled by chronic hyperoxia.

    PubMed

    Coflesky, J T; Jones, R C; Reid, L M; Evans, J N

    1987-08-01

    Normobaric hyperoxia is known to cause pulmonary hypertension with major restructuring of the walls of large and small pulmonary arteries. This study reports the effects of 21 days of exposure to 87% oxygen on the resting and active mechanical properties and structure of pulmonary arterial segments. Segments from the hilar region, extrapulmonary and proximal preacinar, and selected distal preacinar regions were studied. Resting and active (KCl-induced) tension:circumference curves were determined for each vessel. Morphometric measures were made of vessels fixed at a standard circumference using computerized planimetry. The areas of the media and adventitia as well as vessel wall thickness were increased in hyperoxic vessels. The walls of segments from the hypertensive rats demonstrated an increased stiffness based upon analysis of vessel resting tension:circumference relationships while the tangent modulus (a measure of stiffness normalized to tissue dimensions) was unchanged. Paradoxically, despite medial hypertrophy in the pulmonary vessels remodeled by hyperoxia, active tension was reduced. This study reveals that the resulting hypertensive state is not readily explained by an inherent increase in the maximal contractile capabilities of the remodeled vessel. Rather, obliteration of vessels in combination with increased resting stiffness appear to be the basis for pulmonary hypertension induced in hyperoxia. PMID:3619198

  2. Structural Basis for Membrane Binding and Remodeling by the Exomer Secretory Vesicle Cargo Adaptor

    PubMed Central

    Paczkowski, Jon E.; Fromme, J. Christopher

    2014-01-01

    Summary Cargo adaptor subunits of vesicle coat protein complexes sort transmembrane proteins to distinct membrane compartments in eukaryotic cells. The exomer complex is the only cargo adaptor known to sort proteins at the trans-Golgi network into secretory vesicles. Exomer function is regulated by the Arf1 GTPase, a master regulator of trafficking at the Golgi. We report the structure of exomer bound to two copies of Arf1. Exomer interacts with each Arf1 molecule via two surfaces; one is a non-canonical interface that regulates GTP hydrolysis. The structure uncovers an unexpected membrane-proximal hydrophobic element that exomer uses in cooperation with Arf1 to remodel membranes. Given the constrained motion of the exomer hinge region, we envision that exomer dynamically positions multiple membrane insertion elements to drive membrane fission. In contrast to other known cargo adaptors, exomer therefore couples two functions, cargo sorting and membrane fission, into a single complex. PMID:25203211

  3. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures

    PubMed Central

    Naughton, Catherine; Avlonitis, Nicolaos; Corless, Samuel; Prendergast, James G.; Mati, Ioulia K.; Eijk, Paul P.; Cockroft, Scott L.; Bradley, Mark; Ylstra, Bauke; Gilbert, Nick

    2013-01-01

    DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling we used biotinylated-trimethylpsoralen as a DNA structure probe to show the genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF binding sites. Under-wound domains are transcriptionally active, enriched in topoisomerase I, “open” chromatin fibers and DNaseI sites, but are depleted of topoisomerase II. Furthermore DNA supercoiling impacts on additional levels of chromatin compaction as under-wound domains are cytologically decondensed, topologically constrained, and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation providing an evolutionary purpose for clustering genes along chromosomes. PMID:23416946

  4. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures.

    PubMed

    Naughton, Catherine; Avlonitis, Nicolaos; Corless, Samuel; Prendergast, James G; Mati, Ioulia K; Eijk, Paul P; Cockroft, Scott L; Bradley, Mark; Ylstra, Bauke; Gilbert, Nick

    2013-03-01

    DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling, we used biotinylated trimethylpsoralen as a DNA structure probe to show that the human genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF insulator protein-binding sites. Underwound domains are transcriptionally active and enriched in topoisomerase I, 'open' chromatin fibers and DNase I sites, but they are depleted of topoisomerase II. Furthermore, DNA supercoiling affects additional levels of chromatin compaction as underwound domains are cytologically decondensed, topologically constrained and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation, providing an evolutionary purpose for clustering genes along chromosomes. PMID:23416946

  5. Mechanism of chromatin remodeling.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2010-02-23

    Results from biochemical and structural studies of the RSC chromatin-remodeling complex prompt a proposal for the remodeling mechanism: RSC binding to the nucleosome releases the DNA from the histone surface and initiates DNA translocation (through one or a small number of DNA base pairs); ATP binding completes translocation, and ATP hydrolysis resets the system. Binding energy thus plays a central role in the remodeling process. RSC may disrupt histone-DNA contacts by affecting histone octamer conformation and through extensive interaction with the DNA. Bulging of the DNA from the octamer surface is possible, and twisting is unavoidable, but neither is the basis of remodeling. PMID:20142505

  6. Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1

    PubMed Central

    Butryn, Agata; Schuller, Jan M; Stoehr, Gabriele; Runge-Wollmann, Petra; Förster, Friedrich; Auble, David T; Hopfner, Karl-Peter

    2015-01-01

    Swi2/Snf2 ATPases remodel substrates such as nucleosomes and transcription complexes to control a wide range of DNA-associated processes, but detailed structural information on the ATP-dependent remodeling reactions is largely absent. The single subunit remodeler Mot1 (modifier of transcription 1) dissociates TATA box-binding protein (TBP):DNA complexes, offering a useful system to address the structural mechanisms of Swi2/Snf2 ATPases. Here, we report the crystal structure of the N-terminal domain of Mot1 in complex with TBP, DNA, and the transcription regulator negative cofactor 2 (NC2). Our data show that Mot1 reduces DNA:NC2 interactions and unbends DNA as compared to the TBP:DNA:NC2 state, suggesting that Mot1 primes TBP:NC2 displacement in an ATP-independent manner. Electron microscopy and cross-linking data suggest that the Swi2/Snf2 domain of Mot1 associates with the upstream DNA and the histone fold of NC2, thereby revealing parallels to some nucleosome remodelers. This study provides a structural framework for how a Swi2/Snf2 ATPase interacts with its substrate DNA:protein complex. DOI: http://dx.doi.org/10.7554/eLife.07432.001 PMID:26258880

  7. Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling

    PubMed Central

    Zeev-Ben-Mordehai, Tzviya; Weberruß, Marion; Lorenz, Michael; Cheleski, Juliana; Hellberg, Teresa; Whittle, Cathy; El Omari, Kamel; Vasishtan, Daven; Dent, Kyle C.; Harlos, Karl; Franzke, Kati; Hagen, Christoph; Klupp, Barbara G.; Antonin, Wolfram; Mettenleiter, Thomas C.; Grünewald, Kay

    2015-01-01

    Summary Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC), which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling. PMID:26711332

  8. ANXA2 enhances the progression of hepatocellular carcinoma via remodeling the cell motility associated structures.

    PubMed

    Shi, Hongyan; Xiao, Li; Duan, Wei; He, Huimin; Ma, Lele; Da, Miaomiao; Duan, Yan; Wang, Qian; Wu, Huayi; Song, Xigui; Hou, Yingchun

    2016-06-01

    Hepatocellular carcinoma (HCC) ranks as the fifth most common malignancy worldwide. The detailed mechanism of signal regulation for HCC progression is still not known, and the high motility of cancer cells is known as a core property for cancer progression maintenance. Annexin A2 (ANXA2), a calcium-dependent phospholipids binding protein is highly expressed in HCC. To study the roles the excessively expressed ANXA2 during the progression of HCC, we inhibited the ANXA2 expression in SMMC-7721 cells using RNAi, followed by the analysis of cell growth, apoptosis and cell motility. To explore the relationship between the cell behaviors and its structures, the microstructure changes were observed under fluorescence microscopy, laser scanning confocal microscopy and electron microscopy. Our findings demonstrated that down-regulation of ANXA2 results in decreased the cell proliferation and motility, enhanced apoptosis, suppressed cell pseudopodia/filopodia, inhibited expression of F-actin and β-tubulin, and inhibited or depolymerized Lamin B. The cell contact inhibition was also analyzed in the paper. Take together, our results indicate that ANXA2 plays an important role to enhance the malignant behaviors of HCC cells, and the enhancement is closely based on its remodeling to cell structures. PMID:27060670

  9. Structural remodeling of the heart and its premotor cardioinhibitory vagal neurons following T5 spinal cord transection

    PubMed Central

    Lujan, Heidi L.; Janbaih, Hussein

    2014-01-01

    Midthoracic spinal cord injury (SCI) is associated with enhanced cardiac sympathetic activity and reduced cardiac parasympathetic activity. The enhanced cardiac sympathetic activity is associated with sympathetic structural plasticity within the stellate ganglia, spinal cord segments T1–T4, and heart. However, changes to cardiac parasympathetic centers rostral to an experimental SCI are relatively unknown. Importantly, reduced vagal activity is a predictor of high mortality. Furthermore, this autonomic dysregulation promotes progressive left ventricular (LV) structural remodeling. Accordingly, we hypothesized that midthoracic spinal cord injury is associated with structural plasticity in premotor (preganglionic parasympathetic neurons) cardioinhibitory vagal neurons located within the nucleus ambiguus as well as LV structural remodeling. To test this hypothesis, dendritic arborization and morphology (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac projecting premotor cardioinhibitory vagal neurons located within the nucleus ambiguus were determined in intact (sham transected) and thoracic level 5 transected (T5X) rats. In addition, LV chamber size, wall thickness, and collagen content (Masson trichrome stain and structural analysis) were determined. Midthoracic SCI was associated with structural changes within the nucleus ambiguus and heart. Specifically, following T5 spinal cord transection, there was a significant increase in cardiac parasympathetic preganglionic neuron dendritic arborization, soma area, maximum dendritic length, and number of intersections/animal. This parasympathetic structural remodeling was associated with a profound LV structural remodeling. Specifically, T5 spinal cord transection increased LV chamber area, reduced LV wall thickness, and increased collagen content. Accordingly, results document a dynamic interaction between the heart and its parasympathetic innervation. PMID:24610530

  10. Biaxial Creep Resistance and Structural Remodeling of the Aortic and Mitral Valves in Pregnancy.

    PubMed

    Pierlot, Caitlin M; Moeller, Andrew D; Lee, J Michael; Wells, Sarah M

    2015-08-01

    Pregnancy produces rapid, dramatic volume-overload changes to the maternal circulation. This paper examines pregnancy-induced structural-mechanical changes in bovine aortic and mitral heart valve leaflets. Valve leaflets were harvested from non-pregnant heifers and pregnant cows. Dimensions, biaxial extensibility and creep resistance were assessed and related to changes in the collagen network: histological leaflet and anatomic layer thicknesses plus collagen crimp, and biochemical collagen content. Collagen stability and crosslinking were assessed thermomechanically. Pregnancy altered both aortic and mitral valve leaflets. Both valves demonstrated biphasic changes in leaflet stretch, decreasing in early pregnancy and recovering by late pregnancy. Creep in leaflets from both valves was minimal and decreased even further with pregnancy in the mitral valve. There were valve-specific changes in preconditioning areal extension with pregnancy: increasing in the aortic valve and decreasing in the mitral valve. Leaflet area increased dramatically (84% aortic, 56% mitral), with thickening mainly in the fibrosa, accompanied by increases in collagen content (8% aortic, 16% mitral): together suggesting synthesis of new collagen. Collagen crimp was almost completely lost in pregnancy, with the denaturation temperature decreased by approximately 2 °C. Mature and total crosslinking increased, curiously without a significant increase in immature crosslinking. Mature aortic and mitral heart valve leaflets in the maternal cardiovascular system remodel substantially and similarly-despite their different embryological origins. PMID:25564325

  11. Exogenous Expression of Human Protamine 1 (hPrm1) Remodels Fibroblast Nuclei into Spermatid-like Structures

    PubMed Central

    Iuso, Domenico; Czernik, Marta; Toschi, Paola; Fidanza, Antonella; Zacchini, Federica; Feil, Robert; Curtet, Sandrine; Buchou, Thierry; Shiota, Hitoshi; Khochbin, Saadi; Ptak, Grazyna Ewa; Loi, Pasqualino

    2015-01-01

    Summary Protamines confer a compact structure to the genome of male gametes. Here, we find that somatic cells can be remodeled by transient expression of protamine 1 (Prm1). Ectopically expressed Prm1 forms scattered foci in the nuclei of fibroblasts, which coalescence into spermatid-like structures, concomitant with a loss of histones and a reprogramming barrier, H3 lysine 9 methylation. Protaminized nuclei injected into enucleated oocytes efficiently underwent protamine to maternal histone TH2B exchange and developed into normal blastocyst stage embryos in vitro. Altogether, our findings present a model to study male-specific chromatin remodeling, which can be exploited for the improvement of somatic cell nuclear transfer. PMID:26628361

  12. Outer Membrane Remodeling: The Structural Dynamics and Electrostatics of Rough Lipopolysaccharide Chemotypes.

    PubMed

    Dias, Roberta P; da Hora, Gabriel C A; Ramstedt, Madeleine; Soares, Thereza A

    2014-06-10

    Lipopolysaccharides (LPS) are the primary constituent of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. Gram-negative bacteria can synthesize modified forms of LPS in response to environmental stimuli or due to genetic mutations, a process known as outer membrane remodeling. Chemical modifications of the LPS modulate the integrity and antibiotic susceptibility of bacterial outer membranes. It also governs microbial adhesion to tissues and artificial material surfaces. We have extended a previous model of the rough LPS to include four novel chemotypes rmlC, galU, LPS Re, and Lipid-A. Atomistic molecular dynamics (MD) simulations were performed for outer membrane models constituted of each LPS chemotypes and 1,2-dipalmitoyl-3-phosphatidylethanolamine. It is shown that the decrease in the LPS polysaccharide chain length leads to a significant increase in the diffusion coefficients for the Ca(2+) counterions, increase in acyl chain packing (decrease in membrane fluidity), and attenuation of the negative potential across the LPS surface as positive counterions becomes more exposed to the solvent. The electrostatic potential on the LPS surfaces reflects heterogeneous charge distributions with increasingly larger patches of positive and negative potentials as the polysaccharide chain length decreases. Such a pattern originates from the spatial arrangement of charged phosphate-Ca(2+) clusters in the LPS inner-core that becomes exposed in the membrane surface as monosaccharide units are lost in the shortest chemotypes LPS Re and Lipid-A. These MD-derived conformational ensembles reproduce experimental trends and provide atom-level structural information on the rough LPS chemotypes that can help to rationalize antibiotic resistance and bacterial adhesion processes. PMID:26580769

  13. Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions.

    PubMed

    Hecht, E E; Gutman, D A; Khreisheh, N; Taylor, S V; Kilner, J; Faisal, A A; Bradley, B A; Chaminade, T; Stout, D

    2015-07-01

    Human ancestors first modified stones into tools 2.6 million years ago, initiating a cascading increase in technological complexity that continues today. A parallel trend of brain expansion during the Paleolithic has motivated over 100 years of theorizing linking stone toolmaking and human brain evolution, but empirical support remains limited. Our study provides the first direct experimental evidence identifying likely neuroanatomical targets of natural selection acting on toolmaking ability. Subjects received MRI and DTI scans before, during, and after a 2-year Paleolithic toolmaking training program. White matter fractional anisotropy (FA) showed changes in branches of the superior longitudinal fasciculus leading into left supramarginal gyrus, bilateral ventral precentral gyri, and right inferior frontal gyrus pars triangularis. FA increased from Scan 1-2, a period of intense training, and decreased from Scan 2-3, a period of reduced training. Voxel-based morphometry found a similar trend toward gray matter expansion in the left supramarginal gyrus from Scan 1-2 and a reversal of this effect from Scan 2-3. FA changes correlated with training hours and with motor performance, and probabilistic tractography confirmed that white matter changes projected to gray matter changes and to regions that activate during Paleolithic toolmaking. These results show that acquisition of Paleolithic toolmaking skills elicits structural remodeling of recently evolved brain regions supporting human tool use, providing a mechanistic link between stone toolmaking and human brain evolution. These regions participate not only in toolmaking, but also in other complex functions including action planning and language, in keeping with the hypothesized co-evolution of these functions. PMID:24859884

  14. Functional and Structural Remodeling of Glutamate Synapses in Prefrontal and Frontal Cortex Induced by Behavioral Stress

    PubMed Central

    Musazzi, Laura; Treccani, Giulia; Popoli, Maurizio

    2015-01-01

    Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles, but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress. Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes – including those consequent to chronic stress – induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches. PMID

  15. Functional significance of the discordance between transcriptional profile and left ventricular structure/function during reverse remodeling

    PubMed Central

    Topkara, Veli K.; Chambers, Kari T.; Yang, Kai-Chien; Tzeng, Huei-Ping; Evans, Sarah; Weinheimer, Carla; Kovacs, Attila; Robbins, Jeffrey; Barger, Philip; Mann, Douglas L.

    2016-01-01

    To elucidate the mechanisms for reverse LV remodeling, we generated a conditional (doxycycline [dox] off) transgenic mouse tetracycline transactivating factor–TRAF2 (tTA-TRAF2) that develops a dilated heart failure (HF) phenotype upon expression of a proinflammatory transgene, TNF receptor–associated factor 2 (TRAF2), and complete normalization of LV structure and function when the transgene is suppressed. tTA-TRAF2 mice developed a significant increase in LV dimension with decreased contractile function, which was completely normalized in the tTA-TRAF2 mice fed dox for 4 weeks (tTA-TRAF2dox4W). Normalization of LV structure and function was accompanied by partial normalization (~60%) of gene expression associated with incident HF. Similar findings were observed in patients with dilated cardiomyopathy who underwent reverse LV remodeling following mechanical circulatory support. Persistence of the HF gene program was associated with an exaggerated hypertrophic response and increased mortality in tTA-TRAF2dox4W mice following transaortic constriction (TAC). These effects were no longer observed following TAC in tTA-TRAF2dox8W, wherein there was a more complete (88%) reversal of the incident HF genes. These results demonstrate that reverse LV remodeling is associated with improvements in cardiac myocyte biology; however, the persistence of the abnormal HF gene program may be maladaptive following perturbations in hemodynamic loading conditions. PMID:27158672

  16. Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation

    PubMed Central

    Ainslie, Philip N.; Hughes, Michael G.; Stöhr, Eric J.; Cotter, James D.; Nio, Amanda Q. X.; Shave, Rob

    2014-01-01

    Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged exposure in Sherpa, a highly adapted HA population. To investigate short-term adaptation and potential long-term cardiac remodeling, we studied ventricular structure and function in Sherpa at 5,050 m (n = 11; 31 ± 13 yr; mass 68 ± 10 kg; height 169 ± 6 cm) and lowlanders at sea level (SL) and following 10 ± 3 days at 5,050 m (n = 9; 34 ± 7 yr; mass 82 ± 10 kg; height 177 ± 6 cm) using conventional and speckle-tracking echocardiography. At HA, PASP was higher in Sherpa and lowlanders compared with lowlanders at SL (both P < 0.05). Sherpa had smaller right-ventricular (RV) and LV stroke volumes than lowlanders at SL with lower RV systolic strain (P < 0.05) but similar LV systolic mechanics. In contrast to LV systolic mechanics, LV diastolic, untwisting velocity was significantly lower in Sherpa compared with lowlanders at both SL and HA. After partial acclimatization, lowlanders demonstrated no change in the RV end-diastolic area; however, both RV strain and LV end-diastolic volume were reduced. In conclusion, short-term hypoxia induced a reduction in RV systolic function that was also evident in Sherpa following chronic exposure. We propose that this was consequent to a persistently higher PASP. In contrast to the RV, remodeling of LV volumes and normalization of systolic mechanics indicate structural and functional adaptation to HA. However, altered LV diastolic relaxation after chronic hypoxic exposure may reflect differential remodeling of systolic and diastolic LV function. PMID:24876358

  17. Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation.

    PubMed

    Stembridge, Mike; Ainslie, Philip N; Hughes, Michael G; Stöhr, Eric J; Cotter, James D; Nio, Amanda Q X; Shave, Rob

    2014-08-01

    Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged exposure in Sherpa, a highly adapted HA population. To investigate short-term adaptation and potential long-term cardiac remodeling, we studied ventricular structure and function in Sherpa at 5,050 m (n = 11; 31 ± 13 yr; mass 68 ± 10 kg; height 169 ± 6 cm) and lowlanders at sea level (SL) and following 10 ± 3 days at 5,050 m (n = 9; 34 ± 7 yr; mass 82 ± 10 kg; height 177 ± 6 cm) using conventional and speckle-tracking echocardiography. At HA, PASP was higher in Sherpa and lowlanders compared with lowlanders at SL (both P < 0.05). Sherpa had smaller right-ventricular (RV) and LV stroke volumes than lowlanders at SL with lower RV systolic strain (P < 0.05) but similar LV systolic mechanics. In contrast to LV systolic mechanics, LV diastolic, untwisting velocity was significantly lower in Sherpa compared with lowlanders at both SL and HA. After partial acclimatization, lowlanders demonstrated no change in the RV end-diastolic area; however, both RV strain and LV end-diastolic volume were reduced. In conclusion, short-term hypoxia induced a reduction in RV systolic function that was also evident in Sherpa following chronic exposure. We propose that this was consequent to a persistently higher PASP. In contrast to the RV, remodeling of LV volumes and normalization of systolic mechanics indicate structural and functional adaptation to HA. However, altered LV diastolic relaxation after chronic hypoxic exposure may reflect differential remodeling of systolic and diastolic LV function. PMID:24876358

  18. Structural remodeling of coronary resistance arteries: effects of age and exercise training

    PubMed Central

    Hanna, Mina A.; Taylor, Curtis R.; Chen, Bei; La, Hae-Sun; Maraj, Joshua J.; Kilar, Cody R.; Behnke, Bradley J.; Delp, Michael D.

    2014-01-01

    Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins. PMID:25059239

  19. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP.

    PubMed

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R; Grøntved, Lars; Hager, Gordon L; Nussinov, Ruth; Keskin, Ozlem; Gursoy, Attila

    2015-09-15

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate to regulate gene expression. This study suggests models for the assembly of the SWI/SNF-A (SWItch/Sucrose-NonFermentable) complex and its interaction with the GR. We used the PRISM algorithm (PRotein Interactions by Structural Matching) to predict the three-dimensional complex structures of the target proteins. The structural models indicate that BAF57 and/or BAF250 mediate the interaction between the GR and the SWI/SNF-A complex, corroborating experimental data. They further suggest that a BAF60a/BAF155 and/or BAF60a/BAF170 interaction is critical for association between the core and variant subunits. Further, we model the interaction between GR and CCAAT-enhancer-binding proteins (C/EBPs), since the GR can regulate gene expression indirectly by interacting with other transcription factors like C/EBPs. We observe that GR can bind to bZip domains of the C/EBPα homodimer as both a monomer and dimer of the DNA-binding domain. In silico mutagenesis of the predicted interface residues confirm the importance of these residues in binding. In vivo analysis of the computationally suggested mutations reveals that double mutations of the leucine residues (L317D+L335D) may disrupt the interaction between GR and C/EBPα. Determination of the complex structures of the GR is of fundamental relevance to understanding its interactions and functions, since the function of a protein or a

  20. Structure and membrane remodeling activity of ESCRT-III helical polymers

    DOE PAGESBeta

    McCullough, John; Clippinger, Amy K.; Talledge, Nathaniel; Skowyra, Michael L.; Saunders, Marissa G.; Naismith, Teresa V.; Colf, Leremy A.; Afonine, Pavel; Arthur, Christopher; Sundquist, Wesley I.; et al

    2015-12-18

    The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises “open” CHMP1B subunits that interlock in an elaborate domain-swapped architecturemore » and is encircled by an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. In conclusion, our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.« less

  1. Structure and membrane remodeling activity of ESCRT-III helical polymers

    SciTech Connect

    McCullough, John; Clippinger, Amy K.; Talledge, Nathaniel; Skowyra, Michael L.; Saunders, Marissa G.; Naismith, Teresa V.; Colf, Leremy A.; Afonine, Pavel; Arthur, Christopher; Sundquist, Wesley I.; Hanson, Phyllis I.; Frost, Adam

    2015-12-18

    The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises “open” CHMP1B subunits that interlock in an elaborate domain-swapped architecture and is encircled by an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. In conclusion, our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.

  2. Stress-induced structural remodeling in hippocampus: Prevention by lithium treatment

    NASA Astrophysics Data System (ADS)

    Wood, Gwendolyn E.; Young, L. Trevor; Reagan, Lawrence P.; Chen, Biao; McEwen, Bruce S.

    2004-03-01

    Chronic restraint stress, psychosocial stress, as well as systemic or oral administration of the stress-hormone corticosterone induces a morphological reorganization in the rat hippocampus, in which adrenal steroids and excitatory amino acids mediate a reversible remodeling of apical dendrites on CA3 pyramidal cell neurons of the hippocampus. This stress-induced neuronal remodeling is accompanied also by behavioral changes, some of which can be prevented with selective antidepressant and anticonvulsive drug treatments. Lithium is an effective treatment for mood disorders and has neuroprotective effects, which may contribute to its therapeutic properties. Thus, we wanted to determine whether lithium treatment could prevent the effects of chronic stress on CA3 pyramidal cell neuroarchitecture and the associated molecular and behavioral measures. Chronic lithium treatment prevented the stress-induced decrease in dendritic length, as well as the stress-induced increase in glial glutamate transporter 1 (GLT-1) mRNA expression and the phosphorylation of cAMP-response element binding in the hippocampus. Lithium treatment, however, did not prevent stress effects on behavior in the open field or the plus-maze. These data demonstrate that chronic treatment with lithium can protect the hippocampus from potentially deleterious effects of chronic stress on glutamatergic activation, which may be relevant to its therapeutic efficacy in the treatment of major depressive disorder and bipolar disorder.

  3. Structure and membrane remodeling activity of ESCRT-III helical polymers

    PubMed Central

    McCullough, John; Clippinger, Amy K.; Talledge, Nathaniel; Skowyra, Michael L.; Saunders, Marissa G.; Naismith, Teresa V.; Colf, Leremy A.; Afonine, Pavel; Arthur, Christopher; Sundquist, Wesley I.; Hanson, Phyllis I.; Frost, Adam

    2015-01-01

    The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 Å resolution cryo-EM reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, CHMP1B and IST1. The inner strand comprises “open” CHMP1B subunits that interlock in an elaborate domain-swapped architecture, and is encircled by an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively-curved membranes in vitro and in vivo. Our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature. PMID:26634441

  4. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling.

    PubMed

    Johnson, Jill R; Wiley, Ryan E; Fattouh, Ramzi; Swirski, Filip K; Gajewska, Beata U; Coyle, Anthony J; Gutierrez-Ramos, José-Carlos; Ellis, Russ; Inman, Mark D; Jordana, Manel

    2004-02-01

    It is now fully appreciated that asthma is a disease of a chronic nature resulting from intermittent or continued aeroallergen exposure leading to airway inflammation. To investigate responses to continuous antigen exposure, mice were exposed to either house dust mite extract (HDM) or ovalbumin intranasally for five consecutive days, followed by 2 days of rest, for up to seven consecutive weeks. Continuous exposure to HDM, unlike ovalbumin, elicited severe and persistent eosinophilic airway inflammation. Flow cytometric analysis demonstrated an accumulation of CD4+ lymphocytes in the lung with elevated expression of inducible costimulator a marker of T cell activation, and of T1/ST2, a marker of helper T Type 2 effector cells. We also detected increased and sustained production of helper T cell Type 2-associated cytokines by splenocytes of HDM-exposed mice on in vitro HDM recall. Histologic analysis of the lung showed evidence of airway remodeling in mice exposed to HDM, with goblet cell hyperplasia, collagen deposition, and peribronchial accumulation of contractile tissue. In addition, HDM-exposed mice demonstrated severe airway hyperreactivity to methacholine. Finally, these responses were studied for up to 9 weeks after cessation of HDM exposure. We observed that whereas airway inflammation resolved fully, the remodeling changes did not resolve and airway hyperreactivity resolved only partly. PMID:14597485

  5. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation.

    PubMed

    Bernardo, Bianca C; Sapra, Geeta; Patterson, Natalie L; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A; McMullen, Julie R

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions. PMID:26660322

  6. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation

    PubMed Central

    Bernardo, Bianca C.; Sapra, Geeta; Patterson, Natalie L.; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A.; McMullen, Julie R.

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions. PMID:26660322

  7. The Fun30 Chromatin Remodeler Fft3 Controls Nuclear Organization and Chromatin Structure of Insulators and Subtelomeres in Fission Yeast

    PubMed Central

    Khorosjutina, Olga; Persson, Jenna; Smialowska, Agata; Javerzat, Jean-Paul; Ekwall, Karl

    2015-01-01

    In eukaryotic cells, local chromatin structure and chromatin organization in the nucleus both influence transcriptional regulation. At the local level, the Fun30 chromatin remodeler Fft3 is essential for maintaining proper chromatin structure at centromeres and subtelomeres in fission yeast. Using genome-wide mapping and live cell imaging, we show that this role is linked to controlling nuclear organization of its targets. In fft3∆ cells, subtelomeres lose their association with the LEM domain protein Man1 at the nuclear periphery and move to the interior of the nucleus. Furthermore, genes in these domains are upregulated and active chromatin marks increase. Fft3 is also enriched at retrotransposon-derived long terminal repeat (LTR) elements and at tRNA genes. In cells lacking Fft3, these sites lose their peripheral positioning and show reduced nucleosome occupancy. We propose that Fft3 has a global role in mediating association between specific chromatin domains and the nuclear envelope. PMID:25798942

  8. A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling

    NASA Astrophysics Data System (ADS)

    Madeo, Angela; George, D.; Lekszycki, T.; Nierenberger, Mathieu; Rémond, Yves

    2012-08-01

    We propose a second gradient, two-solids, continuum mixture model with variable masses to describe the effect of micro-structure on mechanically-driven remodelling of bones grafted with bio-resorbable materials. A one-dimensional numerical simulation is addressed showing the potentialities of the proposed generalized continuum model. In particular, we show that the used second gradient model allows for the description of some micro-structure-related size effects which are known to be important in hierarchically heterogeneous materials like reconstructed bones. Moreover, the influence of the introduced second gradient parameters on the final percentages of replacement of artificial bio-material with natural bone tissue is presented and discussed.

  9. Nonisothermal turbulent boundary-layer adverse pressure gradient large scale thermal structure measurements

    SciTech Connect

    Bagheri, N.; White, B.R.; Lei, T.

    1994-01-01

    Hot-wire anemometry measurements in an incompressible turbulent boundary-layer flow over a heated flat plate under equilibrium adverse-pressure-gradient conditions (beta = 1.8) were made for two different temperature difference cases (10 and 15 C) between the wall and the freestream. Space-time correlations of temperature fluctuations (T`) were obtained with a pair of subminiature temperature fluctuation probes. The mean convection velocities, the mean inclination angles, and coherence characteristics of the T` large-scale structure were determined. The present temperature structures measurements for a nonisothermal boundary layer are compared to the zero-pressure-gradient case with identical temperature differences previously reported, in which the mean convection velocity of the T` structure was a function of position y(sup +) and independent of the limited temperature-difference cases tested. The three major findings of the present study, as compared to the zero-pressure-gradient case, are (1) the mean convection speed of the T` structure under beta = 1.8 pressure-gradient conditions was found to be substantially lower in the logarithmic core region than the zero-pressure-gradient case. Additionally, the mean convection speed is felt by the authors to be a function of pressure-gradient parameter beta; (2) the mean inclination angle of the T` structure to the wall under the adverse-pressure-gradient flow was 32 deg, which compares favorably to the 30-deg value of the zero-pressure-gradient case; and (3) the limited data suggests that the mean convection velocity of the T` structure is a function of y(sup +) and independent of the limited temperature-difference cases tested. 11 refs.

  10. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling. PMID:17386182

  11. Early structural remodeling and deuterium oxide-derived protein metabolic responses to eccentric and concentric loading in human skeletal muscle

    PubMed Central

    Franchi, Martino V; Wilkinson, Daniel J; Quinlan, Jonathan I; Mitchell, William K; Lund, Jonathan N; Williams, John P; Reeves, Neil D; Smith, Kenneth; Atherton, Philip J; Narici, Marco V

    2015-01-01

    We recently reported that the greatest distinguishing feature between eccentric (ECC) and concentric (CON) muscle loading lays in architectural adaptations: ECC favors increases in fascicle length (Lf), associated with distal vastus lateralis muscle (VL) hypertrophy, and CON increases in pennation angle (PA). Here, we explored the interactions between structural and morphological remodeling, assessed by ultrasound and dual x-ray absorptiometry (DXA), and long-term muscle protein synthesis (MPS), evaluated by deuterium oxide (D2O) tracing technique. Ten young males (23 ± 4 years) performed unilateral resistance exercise training (RET) three times/week for 4 weeks; thus, one-leg trained concentrically while the contralateral performed ECC exercise only at 80% of either CON or ECC one repetition maximum (1RM). Subjects consumed an initial bolus of D2O (150 mL), while a 25-mL dose was thereafter provided every 8 days. Muscle biopsies from VL midbelly (MID) and distal myotendinous junction (MTJ) were collected at 0 and 4-weeks. MPS was then quantified via GC–pyrolysis–IRMS over the 4-week training period. Expectedly, ECC and CON RET resulted in similar increases in VL muscle thickness (MT) (7.5% vs. 8.4%, respectively) and thigh lean mass (DXA) (2.3% vs. 3%, respectively), albeit through distinct remodeling: Lf increasing more after ECC (5%) versus CON (2%) and PA increasing after CON (7% vs. 3%). MPS did not differ between contractile modes or biopsy sites (MID-ECC: 1.42 vs. MID-CON: 1.4% day−1; MTJ-ECC: 1.38 vs. MTJ-CON: 1.39% day−1). Muscle thickness at MID site increased similarly following ECC and CON RET, reflecting a tendency for a contractile mode-independent correlation between MPS and MT (P = 0.07; R2 = 0.18). We conclude that, unlike MT, distinct structural remodeling responses to ECC or CON are not reflected in MPS; the molecular mechanisms of distinct protein deposition, and/or the role of protein breakdown in mediating these responses

  12. Early structural and metabolic cardiac remodelling in response to inducible adipose triglyceride lipase ablation

    PubMed Central

    Kienesberger, Petra C.; Pulinilkunnil, Thomas; Nagendran, Jeevan; Young, Martin E.; Bogner-Strauss, Juliane G.; Hackl, Hubert; Khadour, Rammy; Heydari, Emma; Haemmerle, Guenter; Zechner, Rudolf; Kershaw, Erin E.; Dyck, Jason R. B.

    2013-01-01

    Aims While chronic alterations in cardiac triacylglycerol (TAG) metabolism and accumulation are associated with cardiomyopathy, it is unclear whether TAG catabolizing enzymes such as adipose triglyceride lipase (ATGL) play a role in acquired cardiomyopathies. Importantly, germline deletion of ATGL leads to marked cardiac steatosis and heart failure in part through reducing peroxisome proliferator-activated receptor α (PPARα) activity and subsequent fatty acid oxidation (FAO). However, whether ATGL deficiency specifically in adult cardiomyocytes contributes to impaired PPARα activity, cardiac function, and metabolism is not known. Methods and results To study the effects of acquired cardiac ATGL deficiency on cardiac PPARα activity, function, and metabolism, we generated adult mice with tamoxifen-inducible cardiomyocyte-specific ATGL deficiency (icAtglKO). Within 4–6 weeks following ATGL ablation, icAtglKO mice had markedly increased myocardial TAG accumulation, fibrotic remodelling, and pathological hypertrophy. Echocardiographic analysis of hearts in vivo revealed that contractile function was moderately reduced in icAtglKO mice. Analysis of energy metabolism in ex vivo perfused working hearts showed diminished FAO rates which was not paralleled by markedly impaired PPARα target gene expression. Conclusions This study shows that acquired cardiomyocyte-specific ATGL deficiency in adult mice is sufficient to promote fibrotic and hypertrophic cardiomyopathy and impair myocardial FAO in the absence of markedly reduced PPARα signalling. PMID:23708736

  13. Structural Heterogeneity and Environmentally Regulated Remodeling of Francisella tularensis subspecies novicida Lipid A Characterized by Tandem Mass Spectrometry

    PubMed Central

    Shaffer, Scott A.; Harvey, Megan D.; Goodlett, David R.; Ernst, Robert K.

    2009-01-01

    The structural characterization of environmentally-regulated lipid A derived from Francisella tularensis subspecies novicida (Fn) U112 is described using negative electrospray ionization with a linear ion trap Fourier transform ion cyclotron resonance (IT-FT-ICR) hybrid mass spectrometer. The results indicate that a unique profile of lipid A molecular structures are synthesized in response to Fn growth at 25 °C versus 37 °C. Molecular species were found to be tetra-acylated, sharing a conserved glucosamine disaccharide backbone, a galactosamine-1-phosphate linked to the reducing glucosamine, and multiple O- and N-linked fatty acyl groups. Deprotonated molecules were interrogated by MSn scanning techniques at both high and nominal mass resolution and were found to be complex heterogeneous mixtures where structures differed based on the positions and identities of the O- and N-linked fatty acyl substituents. For the dominant ion series, which consisted of five peaks, 30 unique lipid A structures were identified. Estimates for the relative abundance of each structure were derived from MS relative abundance ratios and fragment ion ratios from comparable dissociation pathways from MS2 through MS4 experiments. The results suggest a remodeling pathway in which the amide linked fatty acid of the reducing glucosamine favors a 3-hydroxyhexadecanoic acid substituent for growth conditions at 25 °C versus a 3-hydroxyoctadecanoic acid substituent for growth conditions at 37 °C. PMID:17446084

  14. Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI

    PubMed Central

    Chan, Russell W.; Ho, Leon C.; Zhou, Iris Y.; Gao, Patrick P.; Chan, Kevin C.; Wu, Ed X.

    2015-01-01

    Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline) and seventeen days after mating (G17). G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner. PMID:26658306

  15. Duration of early adversity and structural brain development in post-institutionalized adolescents.

    PubMed

    Hodel, Amanda S; Hunt, Ruskin H; Cowell, Raquel A; Van Den Heuvel, Sara E; Gunnar, Megan R; Thomas, Kathleen M

    2015-01-15

    For children reared in institutions for orphaned or abandoned children, multiple aspects of the early environment deviate from species-typical experiences, which may lead to alterations in neurobehavioral development. Although the effects of early deprivation and early life stress have been studied extensively in animal models, less is known about implications for human brain development. This structural neuroimaging study examined the long-term neural correlates of early adverse rearing environments in a large sample of 12-14 year old children (N = 110) who were internationally adopted from institutional care as young children (median age at adoption = 12 months) relative to a same age, comparison group reared with their biological families in the United States. History of institutional rearing was associated with broad changes in cortical volume even after controlling for variability in head size. Results suggested that prefrontal cortex was especially susceptible to early adversity, with significant reductions in volume (driven primarily by differences in surface area rather than cortical thickness) in post-institutionalized youth. Hippocampal volumes showed an association with duration of institutional care, with later-adopted children showing the smallest volumes relative to non-adopted controls. Larger amygdala volumes were not detected in this sample of post-institutionalized children. These data suggest that this temporally discrete period of early deprivation is associated with persisting alterations in brain morphology even years after exposure. Furthermore, these alterations are not completely ameliorated by subsequent environmental enrichment by early adolescence. PMID:25451478

  16. Determining molecular predictors of adverse drug reactions with causality analysis based on structure learning

    PubMed Central

    Liu, Mei; Cai, Ruichu; Hu, Yong; Matheny, Michael E; Sun, Jingchun; Hu, Jun; Xu, Hua

    2014-01-01

    Objective Adverse drug reaction (ADR) can have dire consequences. However, our current understanding of the causes of drug-induced toxicity is still limited. Hence it is of paramount importance to determine molecular factors of adverse drug responses so that safer therapies can be designed. Methods We propose a causality analysis model based on structure learning (CASTLE) for identifying factors that contribute significantly to ADRs from an integration of chemical and biological properties of drugs. This study aims to address two major limitations of the existing ADR prediction studies. First, ADR prediction is mostly performed by assessing the correlations between the input features and ADRs, and the identified associations may not indicate causal relations. Second, most predictive models lack biological interpretability. Results CASTLE was evaluated in terms of prediction accuracy on 12 organ-specific ADRs using 830 approved drugs. The prediction was carried out by first extracting causal features with structure learning and then applying them to a support vector machine (SVM) for classification. Through rigorous experimental analyses, we observed significant increases in both macro and micro F1 scores compared with the traditional SVM classifier, from 0.88 to 0.89 and 0.74 to 0.81, respectively. Most importantly, identified links between the biological factors and organ-specific drug toxicities were partially supported by evidence in Online Mendelian Inheritance in Man. Conclusions The proposed CASTLE model not only performed better in prediction than the baseline SVM but also produced more interpretable results (ie, biological factors responsible for ADRs), which is critical to discovering molecular activators of ADRs. PMID:24334612

  17. Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling subunit YL1.

    PubMed

    Liang, Xiaoping; Shan, Shan; Pan, Lu; Zhao, Jicheng; Ranjan, Anand; Wang, Feng; Zhang, Zhuqiang; Huang, Yingzi; Feng, Hanqiao; Wei, Debbie; Huang, Li; Liu, Xuehui; Zhong, Qiang; Lou, Jizhong; Li, Guohong; Wu, Carl; Zhou, Zheng

    2016-04-01

    Histone variant H2A.Z, a universal mark of dynamic nucleosomes flanking gene promoters and enhancers, is incorporated into chromatin by SRCAP (SWR1), an ATP-dependent, multicomponent chromatin-remodeling complex. The YL1 (Swc2) subunit of SRCAP (SWR1) plays an essential role in H2A.Z recognition, but how it achieves this has been unclear. Here, we report the crystal structure of the H2A.Z-binding domain of Drosophila melanogaster YL1 (dYL1-Z) in complex with an H2A.Z-H2B dimer at 1.9-Å resolution. The dYL1-Z domain adopts a new whip-like structure that wraps over H2A.Z-H2B, and preferential recognition is largely conferred by three residues in loop 2, the hyperacidic patch and the extended αC helix of H2A.Z. Importantly, this domain is essential for deposition of budding yeast H2A.Z in vivo and SRCAP (SWR1)-catalyzed histone H2A.Z replacement in vitro. Our studies distinguish YL1-Z from known H2A.Z chaperones and suggest a hierarchical mechanism based on increasing binding affinity facilitating H2A.Z transfer from SRCAP (SWR1) to the nucleosome. PMID:26974124

  18. Structure of Pneumococcal Peptidoglycan Hydrolase LytB Reveals Insights into the Bacterial Cell Wall Remodeling and Pathogenesis*

    PubMed Central

    Bai, Xiao-Hui; Chen, Hui-Jie; Jiang, Yong-Liang; Wen, Zhensong; Huang, Yubin; Cheng, Wang; Li, Qiong; Qi, Lei; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375–Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a “T-shaped” pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases. PMID:25002590

  19. Examination of the Factorial Structure of Adverse Childhood Experiences and Recommendations for Three Subscale Scores

    PubMed Central

    Ford, Derek C.; Merrick, Melissa T.; Parks, Sharyn E.; Breiding, Matthew J.; Gilbert, Leah K.; Edwards, Valerie J.; Dhingra, Satvinder S.; Barile, John P.; Thompson, William W.

    2015-01-01

    Objective The purpose of the current investigation is to assess and validate the factor structure of the Behavioral Risk Factor Surveillance System’s (BRFSS) Adverse Childhood Experience (ACE) module. Method ACE data available from the 2009 BRFSS survey were fit using exploratory factor analysis (EFA) to estimate an initial factorial structure. The exploratory solution was then validated using confirmatory factor analysis (CFA) with data from the 2010 BRFSS survey. Lastly, ACE factors were tested for measurement invariance using multiple group factor analysis. Results EFA results suggested that a 3-factor solution adequately fit the data. Examination of factor loadings and item content suggested the factors represented the following construct areas: Household Dysfunction, Emotional/Physical Abuse, and Sexual Abuse. Subsequent CFA results confirmed the 3-factor solution and provided preliminary support for estimation of an overall latent ACE score summarizing the responses to all available items. Measurement invariance was supported across both gender and age. Conclusions Results of this study provides support for the use of the current ACE module scoring algorithm, which uses the sum of the number of items endorsed to estimate exposure. However, the results also suggest potential benefits to estimating 3 separate composite scores to estimate the specific effects of exposure to Household Dysfunction, Emotional/Physical Abuse, and Sexual Abuse. PMID:26430532

  20. Beneficial Effects of Qili Qiangxin Capsule on Lung Structural Remodeling in Ischemic Heart Failure via TGF-β1/Smad3 Pathway

    PubMed Central

    He, Yaoyao; Du, Bai; Fan, Huiting; Cao, Jian; Liu, Zi Wang; Zhao, Yonglie; Zhao, Mingjing; Zhao, Yizhou; Zhao, Xin; Cui, Xiangning

    2015-01-01

    Qili qiangxin (QL) capsule is a traditional Chinese medicine that is widely used for the treatment of patients with chronic heart failure (CHF) of all etiologies, although the exact mechanisms of action remain unclear. CHF leads to pulmonary vascular remodelling and thickening of the alveolar-capillary barrier that may be important mechanisms in the poor clinical outcome in patients with end-stage heart failure. We examined whether QL could improve lung injury in ischemic CHF by reducing lung remodeling. Rats with myocardial infarct received QL (1.0 g/kg/day) for 4 weeks. Echocardiographic and morphometric measurements were obtained followed by echocardiography, histological staining, and immunohistochemical analysis of lung sections. CHF caused significant lung structural remodeling evidenced by collagen deposition and thickening of the alveolar septa after myocardial infarct that were greatly improved by QL. Lung weight increased after infarct with no evidence of pulmonary edema and was normalized by QL. QL also reduced lung transforming growth factor-β1 (TGF-β1), p-Smad3, tumor necrosis factor-α (TNF-α), and Toll-like receptor-4 (TLR4) expression. Thus, QL reduces lung remodeling associated with CHF, mainly by suppressing the TGF-β1/Smad3 signaling pathway. The mechanism may also involve inhibition of TLR4 intracellular signaling. PMID:26604970

  1. Structural remodeling during amyloidogenesis of physiological Nα-acetylated α-synuclein.

    PubMed

    Gallea, J Ignacio; Sarroukh, Rabia; Yunes-Quartino, Pablo; Ruysschaert, Jean-Marie; Raussens, Vincent; Celej, M Soledad

    2016-05-01

    The misfolding and aggregation of the presynaptic protein α-synuclein (AS) into amyloid fibrils is pathognomonic of Parkinson's disease, though the mechanism by which this structural conversion occurs is largely unknown. Soluble oligomeric species that accumulate as intermediates in the process of fibril formation are thought to be highly cytotoxic. Recent studies indicate that oligomer-to-fibril AS transition plays a key role in cell toxicity and progression of neurodegeneration. We previously demonstrated that a subgroup of oligomeric AS species are ordered assemblies possessing a well-defined pattern of intermolecular contacts which are arranged into a distinctive antiparallel β-sheet structure, as opposed to the parallel fibrillar fold. Recently, it was demonstrated that the physiological form of AS is N-terminally acetylated (Ac-AS). Here, we first showed that well-characterized conformational ensembles of Ac-AS, namely monomers, oligomers and fibrils, recapitulate many biophysical features of the nonacetylated protein, such as hydrodynamic, tinctorial, structural and membrane-leakage properties. Then, we relied on ATR-FTIR spectroscopy to explore the structural reorganization during Ac-AS fibrillogenesis. We found that antiparallel β-sheet transient intermediates are built-up at early stages of aggregation, which then evolve to parallel β-sheet fibrils through helix-rich/disordered species. The results are discussed in terms of regions of the protein that might participate in this structural rearrangement. Our work provides new insights into the complex conformational reorganization occurring during Ac-AS amyloid formation. PMID:26845568

  2. Histone H3 Lysine 14 (H3K14) Acetylation Facilitates DNA Repair in a Positioned Nucleosome by Stabilizing the Binding of the Chromatin Remodeler RSC (Remodels Structure of Chromatin)*

    PubMed Central

    Duan, Ming-Rui; Smerdon, Michael J.

    2014-01-01

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage. PMID:24515106

  3. Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling

    PubMed Central

    TerBush, Allan D.

    2012-01-01

    FtsZ, a cytoskeletal GTPase, forms a contractile ring for cell division in bacteria and chloroplast division in plants. Whereas bacterial Z rings are composed of a single FtsZ, those in chloroplasts contain two distinct FtsZ proteins, FtsZ1 and FtsZ2, whose functional relationship is poorly understood. We expressed fluorescently tagged FtsZ1 and FtsZ2 in fission yeast to investigate their intrinsic assembly and dynamic properties. FtsZ1 and FtsZ2 formed filaments with differing morphologies when expressed separately. FRAP showed that FtsZ2 filaments were less dynamic than FtsZ1 filaments and that GTPase activity was essential for FtsZ2 filament turnover but may not be solely responsible for FtsZ1 turnover. When coexpressed, the proteins colocalized, consistent with coassembly, but exhibited an FtsZ2-like morphology. However, FtsZ1 increased FtsZ2 exchange into coassembled filaments. Our findings suggest that FtsZ2 is the primary determinant of chloroplast Z-ring structure, whereas FtsZ1 facilitates Z-ring remodeling. We also demonstrate that ARC3, a regulator of chloroplast Z-ring positioning, functions as an FtsZ1 assembly inhibitor. PMID:23128242

  4. Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI

    SciTech Connect

    Horton, John R.; Elgar, Stuart J.; Khan, Seema I.; Zhang, Xing; Wade, Paul A.; Cheng, Xiaodong

    2008-09-17

    The SANT (Swi3, Ada2, N-Cor, and TFIIIB) module was first described as a putative DNA-binding domain with strong similarity to the helix-turn-helix DNA binding domain of Myb-related proteins. The X-ray structure of the C-terminal one third portion of the ATPase ISWI of Drosophila melangoaster, containing both SANT and SLIDE (SANT-Like ISWI Domain), confirmed the overall helix-turn-helix structural architecture of SANT as well as SLIDE. However, the DNA-contacting residues in Myb are not conserved in SANT and the structurally corresponding residues in the ISWI SANT domain are acidic, and therefore incompatible with DNA interaction. Recent studies suggested that SANT domains might be a histone-tail-binding module, including the DNA binding SANT domain of c-Myb. Here they present the X-ray structure of Xenopus laevis ISWI SANT domain, derived from limited proteolysis of a C-terminal fragment of ISWI protein.

  5. Atrial structural remodeling in patients with atrial chronic fibrillations and in animal models.

    PubMed

    Laky, D; Parascan, Liliana; Cândea, V

    2011-01-01

    Arrhythmia's atrium fibrillation (AF) is the most often met in clinical setting and it is associated with an increased in mortality risk. For profound the structural changes in chronic AF, we are studied the morphological changes of atrium biopsies to be effected at 175 patients. With sustained AF malformative and valvular acquired cardiac diseases operated under extracorporeal circulation. Similar studies we are effected to 11 dogs with partial coronary obstructions to a made periodical EKG investigations. The morphological changes mainly concern accommodation (dedifferentiation) of cardiomyocytes (particularly at experimental model) and mal-accommodation (degeneration of cells with fibrosis replacement features) particularly in acquired valvular diseases. These changes were often interfered. Over study, maintain the hypothesis that the structural changes to be an accommodation more than degenerative response to AF. PMID:21424038

  6. Redox regulation of vascular remodeling.

    PubMed

    Karimi Galougahi, Keyvan; Ashley, Euan A; Ali, Ziad A

    2016-01-01

    Vascular remodeling is a dynamic process of structural and functional changes in response to biochemical and biomechanical signals in a complex in vivo milieu. While inherently adaptive, dysregulation leads to maladaptive remodeling. Reactive oxygen species participate in homeostatic cell signaling in tightly regulated- and compartmentalized cellular circuits. It is well established that perturbations in oxidation-reduction (redox) homeostasis can lead to a state of oxidative-, and more recently, reductive stress. We provide an overview of the redox signaling in the vasculature and review the role of oxidative- and reductive stress in maladaptive vascular remodeling. Particular emphasis has been placed on essential processes that determine phenotype modulation, migration and fate of the main cell types in the vessel wall. Recent advances in systems biology and the translational opportunities they may provide to specifically target the redox pathways driving pathological vascular remodeling are discussed. PMID:26483132

  7. Photoreceptor degeneration, structural remodeling and glial activation: a morphological study on a genetic mouse model for pericyte deficiency.

    PubMed

    Genové, G; Mollick, T; Johansson, K

    2014-10-24

    Interaction between pericytes and endothelial cells via platelet-derived growth factor B (PDGF-B) signaling is critical for the development of the retinal microvasculature. The PDGF-B retention motif controls the spatial distribution range of the growth factor in the vicinity of its producing endothelial cells allowing its recognition by PDGF receptor beta-(PDGFR-β)-carrying pericytes; this promotes recruitment of pericytes to the vascular basement membrane. Impairment of the PDGF-B signaling mechanism causes development of vascular abnormalities, and in the retina this consequently leads to defects in the neurological circuitry. The vascular pathology in the pdgf-b(ret/ret) (PDGF-B retention motif knockout) mouse retina has been previously reported; our study investigates the progressive neuronal defects and changes in the retinal morphology of this pericyte-deficient mouse model. Immunohistochemical analysis revealed retinal injuries to occur as early as postnatal day (P) 10 with substantial damage progressing from P15 and onward. Vascular abnormalities were apparent from P10, however, prominent neuronal defects were mostly observed from P15, beginning with the compromised integrity of the laminated retinal structure characterized by the presence of rosettes and focally distorted regions. Photoreceptor degeneration was observed by loss of both rod and cone cells, including the disassembly and altered structure of their synaptic terminals. Significant shortening of cone outer segments was observed from P10 and later stages; however, decrease in cone density was only observed at P28. Disorganization and dendrite remodeling of rod bipolar cells also added to the diminished neural and synaptic integrity. Moreover, in response to retinal injuries, Müller and microglial cells were observed to be in the reactive phenotype from P15 and onward. Such a sequence of events indicates that the pdgf-b(ret/ret) mouse model displays a short time frame between P10 and P15

  8. Expression Profiling after Prolonged Experimental Febrile Seizures in Mice Suggests Structural Remodeling in the Hippocampus

    PubMed Central

    Jongbloets, Bart C.; van Gassen, Koen L. I.; Kan, Anne A.; Olde Engberink, Anneke H. O.; de Wit, Marina; Wolterink-Donselaar, Inge G.; Groot Koerkamp, Marian J. A.; van Nieuwenhuizen, Onno; Holstege, Frank C. P.; de Graan, Pierre N. E.

    2015-01-01

    Febrile seizures are the most prevalent type of seizures among children up to 5 years of age (2–4% of Western-European children). Complex febrile seizures are associated with an increased risk to develop temporal lobe epilepsy. To investigate short- and long-term effects of experimental febrile seizures (eFS), we induced eFS in highly febrile convulsion-susceptible C57BL/6J mice at post-natal day 10 by exposure to hyperthermia (HT) and compared them to normotherm-exposed (NT) mice. We detected structural re-organization in the hippocampus 14 days after eFS. To identify molecular candidates, which entrain this structural re-organization, we investigated temporal changes in mRNA expression profiles eFS 1 hour to 56 days after eFS. We identified 931 regulated genes and profiled several candidates using in situ hybridization and histology at 3 and 14 days after eFS. This is the first study to report genome-wide transcriptome analysis after eFS in mice. We identify temporal regulation of multiple processes, such as stress-, immune- and inflammatory responses, glia activation, glutamate-glutamine cycle and myelination. Identification of the short- and long-term changes after eFS is important to elucidate the mechanisms contributing to epileptogenesis. PMID:26684451

  9. Mini-chromosome maintenance complexes form a filament to remodel DNA structure and topology

    PubMed Central

    Slaymaker, Ian M.; Fu, Yang; Toso, Daniel B.; Ranatunga, Nimna; Brewster, Aaron; Forsburg, Susan L.; Zhou, Z. Hong; Chen, Xiaojiang S.

    2013-01-01

    Deregulation of mini-chromosome maintenance (MCM) proteins is associated with genomic instability and cancer. MCM complexes are recruited to replication origins for genome duplication. Paradoxically, MCM proteins are in excess than the number of origins and are associated with chromatin regions away from the origins during G1 and S phases. Here, we report an unusually wide left-handed filament structure for an archaeal MCM, as determined by X-ray and electron microscopy. The crystal structure reveals that an α-helix bundle formed between two neighboring subunits plays a critical role in filament formation. The filament has a remarkably strong electro-positive surface spiraling along the inner filament channel for DNA binding. We show that this MCM filament binding to DNA causes dramatic DNA topology change. This newly identified function of MCM to change DNA topology may imply a wider functional role for MCM in DNA metabolisms beyond helicase function. Finally, using yeast genetics, we show that the inter-subunit interactions, important for MCM filament formation, play a role for cell growth and survival. PMID:23361460

  10. Structural insights into the cooperative remodeling of membranes by amphiphysin/BIN1

    PubMed Central

    Adam, Julia; Basnet, Nirakar; Mizuno, Naoko

    2015-01-01

    Amphiphysin2/BIN1 is a crescent-shaped N-BAR protein playing a key role in forming deeply invaginated tubes in muscle T-tubules. Amphiphysin2/BIN1 structurally stabilizes tubular formations in contrast to other N-BAR proteins involved in dynamic membrane scission processes; however, the molecular mechanism of the stabilizing effect is poorly understood. Using cryo-EM, we investigated the assembly of the amphiphysin/BIN1 on a membrane tube. We found that the N-BAR domains self-assemble on the membrane surface in a highly cooperative manner. Our biochemical assays and 3D reconstructions indicate that the N-terminal amphipathic helix H0 plays an important role in the initiation of the tube assembly and further in organizing BAR-mediated polymerization by locking adjacent N-BAR domains. Mutants that lack H0 or the tip portion, which is also involved in interactions of the neighboring BAR unit, lead to a disruption of the polymer organization, even though tubulation can still be observed. The regulatory region of amphiphysin/BIN1 including an SH3 domain does not have any apparent involvement in the polymer lattice. Our study indicates that the H0 helix and the BAR tip are necessary for efficient and organized self-assembly of amphiphysin/N-BAR. PMID:26487375

  11. STRUCTURAL REMODELING OF PROTEOGLYCANS UPON RETINOIC ACID-INDUCED DIFFERENTIATION OF NCCIT CELLS*

    PubMed Central

    Gasimli, Leyla; Stansfield, Hope E.; Nairn, Alison V.; Liu, Haiying; Paluh, Janet L.; Yang, Bo; Dordick, Jonathan S.; Moremen, Kelley W.; Linhardt, Robert J.

    2012-01-01

    Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increasingly lineage restricted. We examined retinoic acid-induced changes in the cellular proteoglycan composition of the well-characterized teratocarcinoma line NCCIT. Our analysis revealed changes in the abundance of transcripts for genes encoding core proteins, enzymes that are responsible for early and late linkage region biosynthesis, as well as enzymes for GAG chain extension and modification. Transcript levels for genes encoding core proteins used as backbones for polysaccharide synthesis revealed highly significant increases in expression of lumican and decorin, 1500-fold and 2800-fold, respectively. Similarly, glypican 3, glypican 5, versican and glypican 6 showed increases between 5 and 70-fold. Significant decreases in biglycan, serglycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 were observed. Disaccharide analysis of the glycans in heparin/heparan sulfate and chondroitin/dermatan sulfate revealed retinoic acid-induced changes restricted to chondroitin/dermatan sulfate glycans. Our study provides the first detailed analysis of changes in the glycosaminoglycan profile of human pluripotent cells upon treatment with the retinoic acid morphogen. PMID:23053635

  12. Structural remodeling of proteoglycans upon retinoic acid-induced differentiation of NCCIT cells.

    PubMed

    Gasimli, Leyla; Stansfield, Hope E; Nairn, Alison V; Liu, Haiying; Paluh, Janet L; Yang, Bo; Dordick, Jonathan S; Moremen, Kelley W; Linhardt, Robert J

    2013-07-01

    Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increasingly lineage restricted. We examined retinoic acid-induced changes in the cellular proteoglycan composition of the well-characterized teratocarcinoma line NCCIT. Our analysis revealed changes in the abundance of transcripts for genes encoding core proteins, enzymes that are responsible for early and late linkage region biosynthesis, as well as enzymes for GAG chain extension and modification. Transcript levels for genes encoding core proteins used as backbones for polysaccharide synthesis revealed highly significant increases in expression of lumican and decorin, 1,500-fold and 2,800-fold, respectively. Similarly, glypican 3, glypican 5, versican and glypican 6 showed increases between 5 and 70-fold. Significant decreases in biglycan, serglycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 were observed. Disaccharide analysis of the glycans in heparin/heparan sulfate and chondroitin/dermatan sulfate revealed retinoic acid-induced changes restricted to chondroitin/dermatan sulfate glycans. Our study provides the first detailed analysis of changes in the glycosaminoglycan profile of human pluripotent cells upon treatment with the retinoic acid morphogen. PMID:23053635

  13. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis.

    PubMed

    Große, Lena; Wurm, Christian A; Brüser, Christian; Neumann, Daniel; Jans, Daniel C; Jakobs, Stefan

    2016-02-15

    The Bcl-2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro-apoptotic proteins. Yet the mechanistic details of the Bax-induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring-like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super-resolution data provide direct evidence in support of large Bax-delineated pores in the mitochondrial outer membrane as being crucial for Bax-mediated MOMP in cells. PMID:26783364

  14. Rk1, a ginsenoside, is a new blocker of vascular leakage acting through actin structure remodeling.

    PubMed

    Maeng, Yong-Sun; Maharjan, Sony; Kim, Jeong-Hun; Park, Jeong-Hill; Suk Yu, Young; Kim, Young-Myoung; Kwon, Young-Guen

    2013-01-01

    Endothelial barrier integrity is essential for vascular homeostasis and increased vascular permeability and has been implicated in many pathological processes, including diabetic retinopathy. Here, we investigated the effect of Rk1, a ginsenoside extracted from sun ginseng, on regulation of endothelial barrier function. In human retinal endothelial cells, Rk1 strongly inhibited permeability induced by VEGF, advanced glycation end-product, thrombin, or histamine. Furthermore, Rk1 significantly reduced the vessel leakiness of retina in a diabetic mouse model. This anti-permeability activity of Rk1 is correlated with enhanced stability and positioning of tight junction proteins at the boundary between cells. Signaling experiments revealed that Rk1 induces phosphorylation of myosin light chain and cortactin, which are critical regulators for the formation of the cortical actin ring structure and endothelial barrier. These findings raise the possibility that ginsenoside Rk1 could be exploited as a novel prototype compound for the prevention of human diseases that are characterized by vascular leakage. PMID:23894330

  15. Alterations in the expression of atrial calpains in electrical and structural remodeling during aging and atrial fibrillation.

    PubMed

    Xu, Guo-Jun; Gan, Tian-Yi; Tang, Bao-Peng; Chen, Zu-Heng; Mahemuti, Ailiman; Jiang, Tao; Song, Jian-Guo; Guo, Xia; Li, Yao-Dong; Zhou, Xian-Hui; Zhang, Yu; Li, Jin-Xin

    2013-11-01

    The aim of this study was to investigate the correlation between the change in the expression of atrial calpains and electrical, molecular and structural remodeling during aging and atrial fibrillation (AF). Adult and aged canines in sinus rhythm (SR) and with persistent AF (induced by rapid atrial pacing) were investigated. A whole-cell patch clamp was used to measure the L-type Ca2+ current (ICa-L) in cells in the left atrium. The mRNA and protein expression of the L-type calcium channel alc subunit (LVDCCa1c) and calpains were measured by quantitative (q)PCR and western blot analysis. Histopathological and ultrastructural changes were analyzed via light and electron microscopy. The quantity of apoptotic myocytes was determined by a terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL) assay. In SR groups, atrial cells of the aged canines exhibited a longer action potential (AP) duration to 90% repolarization (APD90), lower AP plateau potential and peak ICa-L current densities (P<0.05). In the adult and aged groups, AF led to a higher maximum diastolic potential, an increase in AP amplitude and decreases in APD90, AP plateau potential and peak ICa-L densities (P<0.05). Compared with the control group, the mRNA and protein expression levels of LVDCCa1c were decreased in the aged groups; however, the mRNA and protein expression of calpain 1 was increased in the adult and the aged groups with AF (P<0.05). Samples of atrial tissue exhibited abnormal histopathological and ultrastructural changes, such as accelerated fibrosis and apoptosis with aging and in AF. Age-related alterations in atrial tissues were attributed to the increased expression of calpain 1. The general pathophysiological alterations in normal aged atria may therefore produce a substrate that is conducive to AF. PMID:24043247

  16. Validation of geometric measurements of the left atrium and pulmonary veins for analysis of reverse structural remodeling following ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.

    2012-03-01

    Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.

  17. Long-range effects of histone point mutations on DNA remodeling revealed from computational analyses of SIN-mutant nucleosome structures

    PubMed Central

    Xu, Fei; Colasanti, Andrew V.; Li, Yun; Olson, Wilma K.

    2010-01-01

    The packaging of DNA into nucleosomes impedes the binding and access of molecules involved in its processing. The SWI/SNF multi-protein assembly, found in yeast, is one of many regulatory factors that stimulate the remodeling of DNA required for its transcription. Amino-acid point mutations in histones H3 or H4 partially bypass the requirement of the SWI/SNF complex in this system. The mechanisms underlying the observed remodeling, however, are difficult to discern from the crystal structures of nucleosomes bearing these so-called SIN (SWI/SNF INdependent) mutations. Here, we report detailed analyses of the conformations and interactions of the histones and DNA in these assemblies. We find that the loss of direct protein–DNA contacts near point-mutation sites, reported previously, is coupled to unexpected additional long-range effects, i.e. loss of intermolecular contacts and accompanying DNA conformational changes at sequentially and spatially distant sites. The SIN mutations seemingly transmit information relevant to DNA binding across the nucleosome. The energetic cost of deforming the DNA to the states found in the SIN-mutant structures helps to distinguish the mutants that show phenotypes in yeast from those that do not. Models incorporating these deformed dimer steps suggest ways that nucleosomal DNA may be remodeled during its biological processing. PMID:20647418

  18. The response of the pulmonary circulation and right ventricle to exercise: exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series)

    PubMed Central

    Roberts, Timothy; Claessen, Guido

    2014-01-01

    Abstract There is unequivocal evidence that exercise results in considerable health benefits. These are the result of positive hormonal, metabolic, neuronal, and structural changes brought about by the intermittent physiological challenge of exercise. However, there is evolving evidence that intense exercise may place disproportionate physiological stress on the right ventricle (RV) and the pulmonary circulation. Both echocardiographic and invasive studies are consistent in demonstrating that pulmonary arterial pressures increase progressively with exercise intensity, such that the harder one exercises, the greater the load on the RV. This disproportionate load can result in fatigue or damage of the RV if the intensity and duration of exercise is sufficiently prolonged. This is distinctly different from the load imposed by exercise on the left ventricle (LV), which is moderated by a greater capacity for reductions in systemic afterload. Finally, given the increasing RV demand during exercise, it may be hypothesized that chronic exercise–induced cardiac remodeling (the so-called athlete’s heart) may also disproportionately affect the RV. Indeed, there is evidence, although somewhat inconsistent, that RV volume increases may be relatively greater than those for the LV. Perhaps more importantly, there is a suggestion that chronic endurance exercise may cause electrical remodeling, predisposing some athletes to serious arrhythmias originating from the RV. Thus, a relatively consistent picture is emerging of acute stress, prolonged fatigue, and long-term remodeling, which all disproportionately affect the RV. Thus, we contend that the RV should be considered a potential Achilles’ heel of the exercising heart. PMID:25621154

  19. The response of the pulmonary circulation and right ventricle to exercise: exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series).

    PubMed

    La Gerche, André; Roberts, Timothy; Claessen, Guido

    2014-09-01

    There is unequivocal evidence that exercise results in considerable health benefits. These are the result of positive hormonal, metabolic, neuronal, and structural changes brought about by the intermittent physiological challenge of exercise. However, there is evolving evidence that intense exercise may place disproportionate physiological stress on the right ventricle (RV) and the pulmonary circulation. Both echocardiographic and invasive studies are consistent in demonstrating that pulmonary arterial pressures increase progressively with exercise intensity, such that the harder one exercises, the greater the load on the RV. This disproportionate load can result in fatigue or damage of the RV if the intensity and duration of exercise is sufficiently prolonged. This is distinctly different from the load imposed by exercise on the left ventricle (LV), which is moderated by a greater capacity for reductions in systemic afterload. Finally, given the increasing RV demand during exercise, it may be hypothesized that chronic exercise-induced cardiac remodeling (the so-called athlete's heart) may also disproportionately affect the RV. Indeed, there is evidence, although somewhat inconsistent, that RV volume increases may be relatively greater than those for the LV. Perhaps more importantly, there is a suggestion that chronic endurance exercise may cause electrical remodeling, predisposing some athletes to serious arrhythmias originating from the RV. Thus, a relatively consistent picture is emerging of acute stress, prolonged fatigue, and long-term remodeling, which all disproportionately affect the RV. Thus, we contend that the RV should be considered a potential Achilles' heel of the exercising heart. PMID:25621154

  20. Nucleosome dynamics during chromatin remodeling in vivo

    PubMed Central

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    ABSTRACT Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  1. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  2. Predictive modeling of structured electronic health records for adverse drug event detection

    PubMed Central

    2015-01-01

    Background The digitization of healthcare data, resulting from the increasingly widespread adoption of electronic health records, has greatly facilitated its analysis by computational methods and thereby enabled large-scale secondary use thereof. This can be exploited to support public health activities such as pharmacovigilance, wherein the safety of drugs is monitored to inform regulatory decisions about sustained use. To that end, electronic health records have emerged as a potentially valuable data source, providing access to longitudinal observations of patient treatment and drug use. A nascent line of research concerns predictive modeling of healthcare data for the automatic detection of adverse drug events, which presents its own set of challenges: it is not yet clear how to represent the heterogeneous data types in a manner conducive to learning high-performing machine learning models. Methods Datasets from an electronic health record database are used for learning predictive models with the purpose of detecting adverse drug events. The use and representation of two data types, as well as their combination, are studied: clinical codes, describing prescribed drugs and assigned diagnoses, and measurements. Feature selection is conducted on the various types of data to reduce dimensionality and sparsity, while allowing for an in-depth feature analysis of the usefulness of each data type and representation. Results Within each data type, combining multiple representations yields better predictive performance compared to using any single representation. The use of clinical codes for adverse drug event detection significantly outperforms the use of measurements; however, there is no significant difference over datasets between using only clinical codes and their combination with measurements. For certain adverse drug events, the combination does, however, outperform using only clinical codes. Feature selection leads to increased predictive performance for both

  3. Application of the structured history taking of medication use tool to optimise prescribing for older patients and reduce adverse events.

    PubMed

    Cullinan, Shane; O'Mahony, Denis; Byrne, Stephen

    2016-04-01

    Background Older patients, due to polypharmacy, co-morbidities and often multiple prescribing doctors are particularly susceptible to medication history errors, leading to adverse drug events, patient harm and increased costs. Medication reconciliation at the point of admission to hospital can reduce medication discrepancies and adverse events. The Structured HIstory taking of Medication use (SHiM) tool was developed to provide a structure to the medication reconciliation process. There has been very little research with regards to SHiM, it's application to older patients and it's potential to reduce adverse events. Objective To determine whether application of SHiM could optimise older patients' prescriptions on admission to hospital, and in-turn reduce adverse events, compared to standard care. Setting A sub-study of a large clinical trial involving hospital inpatients over the age of 65 in five hospitals across Europe. Method A modified version of SHiM was used to obtain accurate drug histories for patients after the attending physician had obtained a medication list via standard methods. Discrepancies between the two lists were recorded and classified, and the clinical relevance of the discrepancies was determined. Whether discrepancies in patients' medication histories, as revealed by SHiM, resulted in actual clinical consequences was then investigated. As this study was carried out during the observation phase of the clinical trial, results were not communicated to the medical teams. Main outcome measure Discrepancies between medication lists and whether these resulted in clinical consequences. Results SHiM was applied to 123 patients. The mean age of the participants was 78 (±6). 200 discrepancies were identified. 90 patients (73 %) had at least one discrepancy with a median of 1.0 discrepancies per patient (IQR 0.00-2.25). 53 (26.5 %) were classified as 'unlikely to cause patient discomfort or clinical deterioration', 145 (72.5 %) as 'having potential

  4. Myofibroblast-mediated mechanisms of pathological remodelling of the heart.

    PubMed

    Weber, Karl T; Sun, Yao; Bhattacharya, Syamal K; Ahokas, Robert A; Gerling, Ivan C

    2013-01-01

    The syncytium of cardiomyocytes in the heart is tethered within a matrix composed principally of type I fibrillar collagen. The matrix has diverse mechanical functions that ensure the optimal contractile efficiency of this muscular pump. In the diseased heart, cardiomyocytes are lost to necrotic cell death, and phenotypically transformed fibroblast-like cells-termed 'myofibroblasts'-are activated to initiate a 'reparative' fibrosis. The structural integrity of the myocardium is preserved by this scar tissue, although at the expense of its remodelled architecture, which has increased tissue stiffness and propensity to arrhythmias. A persisting population of activated myofibroblasts turns this fibrous tissue into a living 'secretome' that generates angiotensin II and its type 1 receptor, and fibrogenic growth factors (such as transforming growth factor-β), all of which collectively act as a signal-transducer-effector signalling pathway to type I collagen synthesis and, therefore, fibrosis. Persistent myofibroblasts, and the resultant fibrous tissue they produce, cause progressive adverse myocardial remodelling, a pathological hallmark of the failing heart irrespective of its etiologic origin. Herein, we review relevant cellular, subcellular, and molecular mechanisms integral to cardiac fibrosis and consequent remodelling of atria and ventricles with a heterogeneity in cardiomyocyte size. Signalling pathways that antagonize collagen fibrillogenesis provide novel strategies for cardioprotection. PMID:23207731

  5. Interactions of early adversity with stress-related gene polymorphisms impact regional brain structure in females.

    PubMed

    Gupta, Arpana; Labus, Jennifer; Kilpatrick, Lisa A; Bonyadi, Mariam; Ashe-McNalley, Cody; Heendeniya, Nuwanthi; Bradesi, Sylvie; Chang, Lin; Mayer, Emeran A

    2016-04-01

    Early adverse life events (EALs) have been associated with regional thinning of the subgenual cingulate cortex (sgACC), a brain region implicated in the development of disorders of mood and affect, and often comorbid functional pain disorders, such as irritable bowel syndrome (IBS). Regional neuroinflammation related to chronic stress system activation has been suggested as a possible mechanism underlying these neuroplastic changes. However, the interaction of genetic and environmental factors in these changes is poorly understood. The current study aimed to evaluate the interactions of EALs and candidate gene polymorphisms in influencing thickness of the sgACC. 210 female subjects (137 healthy controls; 73 IBS) were genotyped for stress and inflammation-related gene polymorphisms. Genetic variation with EALs, and diagnosis on sgACC thickness was examined, while controlling for race, age, and total brain volume. Compared to HCs, IBS had significantly reduced sgACC thickness (p = 0.03). Regardless of disease group (IBS vs. HC), thinning of the left sgACC was associated with a significant gene-gene environment interaction between the IL-1β genotype, the NR3C1 haplotype, and a history of EALs (p = 0.05). Reduced sgACC thickness in women with the minor IL-1β allele, was associated with EAL total scores regardless of NR3C1 haplotype status (p = 0.02). In subjects homozygous for the major IL-1β allele, reduced sgACC with increasing levels of EALs was seen only with the less common NR3C1 haplotype (p = 0.02). These findings support an interaction between polymorphisms related to stress and inflammation and early adverse life events in modulating a key region of the emotion arousal circuit. PMID:25630611

  6. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  7. Chromatin Remodelers: From Function to Dysfunction

    PubMed Central

    Längst, Gernot; Manelyte, Laura

    2015-01-01

    Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development. PMID:26075616

  8. The Structural Basis of Functional Improvement in Response to Human Umbilical Cord Blood Stem Cell Transplantation in Hearts with Post-Infarct LV Remodeling

    PubMed Central

    Chen, Yong; Ye, Lei; Zhong, Jia; Li, Xin; Yan, Chen; Chandler, Margaret P.; Calvin, Steve; Xiao, Feng; Negia, Mesfin; Low, Walter C.; Zhang, Jianyi; Yu, Xin

    2015-01-01

    Cellular therapy for myocardial repair has been one of the most intensely investigated interventional strategies for acute myocardium infarction. Although the therapeutic potential of stem cells has been demonstrated in various studies, the underlying mechanisms for such improvement are poorly understood. In the present study, we investigated the long-term effects of stem cell therapy on both myocardial fiber organization and regional contractile function using a rat model of post-infarct remodeling. Human non-hematopoietic umbilical cord blood stem cells (nh-UCBSCs) were administered via tail vein to rats 2 days after infarct surgery. Animals were maintained without immunosuppressive therapy. In vivo and ex vivo MR imaging was performed on infarct hearts ten months after cell transplantation. Compared to the age-matched rats exposed to the identical surgery, both global and regional cardiac function of the nh-UCBSC-treated hearts, such as ejection fraction, ventricular strain and torsion, were significantly improved. More importantly, the treated hearts exhibited preserved fiber orientation and water diffusivities that were similar to those in sham-operated control hearts. These data provide the first evidence that nh-UCBSC treatment may prevent/delay untoward structural remodeling in post-infarct hearts, which supports the improved LV function observed in vivo in the absence of immunosuppression, suggesting a beneficial paracrine effect that occurred with the cellular therapy. PMID:24332083

  9. ToxAlerts: A Web Server of Structural Alerts for Toxic Chemicals and Compounds with Potential Adverse Reactions

    PubMed Central

    2012-01-01

    The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly

  10. Chromatin Remodeling Factors Isw2 and Ino80 Regulate Checkpoint Activity and Chromatin Structure in S Phase

    PubMed Central

    Lee, Laura; Rodriguez, Jairo; Tsukiyama, Toshio

    2015-01-01

    When cells undergo replication stress, proper checkpoint activation and deactivation are critical for genomic stability and cell survival and therefore must be highly regulated. Although mechanisms of checkpoint activation are well studied, mechanisms of checkpoint deactivation are far less understood. Previously, we reported that chromatin remodeling factors Isw2 and Ino80 attenuate the S-phase checkpoint activity in Saccharomyces cerevisiae, especially during recovery from hydroxyurea. In this study, we found that Isw2 and Ino80 have a more pronounced role in attenuating checkpoint activity during late S phase in the presence of methyl methanesulfonate (MMS). We therefore screened for checkpoint factors required for Isw2 and Ino80 checkpoint attenuation in the presence of MMS. Here we demonstrate that Isw2 and Ino80 antagonize checkpoint activators and attenuate checkpoint activity in S phase in MMS either through a currently unknown pathway or through RPA. Unexpectedly, we found that Isw2 and Ino80 increase chromatin accessibility around replicating regions in the presence of MMS through a novel mechanism. Furthermore, through growth assays, we provide additional evidence that Isw2 and Ino80 partially counteract checkpoint activators specifically in the presence of MMS. Based on these results, we propose that Isw2 and Ino80 attenuate S-phase checkpoint activity through a novel mechanism. PMID:25701287

  11. Enhancement of local bone remodeling in osteoporotic rabbits by biomimic multilayered structures on Ti6Al4V implants.

    PubMed

    Huang, Ling; Luo, Zhong; Hu, Yan; Shen, Xinkun; Li, Menghuan; Li, Liqi; Zhang, Yuan; Yang, Weihu; Liu, Peng; Cai, Kaiyong

    2016-06-01

    To enhance long-term survival of titanium implants in patients with osteoporosis, chitosan/gelatin multilayers containing bone morphogenetic protein 2(BMP2) and an antiosteoporotic agent of calcitonin (CT) are deposited on the Ti6Al4V (TC4) implants through layer-by-layer (LBL) electrostatic assembly technique. Here, the obtained titanium alloy implant (TC4/LBL/CT/BMP2) can regulate the release of loaded calcitonin and BMP2 agents in a sustaining manner to accelerate the bone formation and simultaneously inhibit bone resorption. In vitro results show that the bone-related cells on TC4/LBL/CT/BMP2 present the lowest production level of tartrate resistant acid phosphatase (TRAP) but the highest (p < 0.05) level of alkaline phosphatase (ALP) activity, osteocalcin production, mineralization capacity and osteoblast-related gene expression among all groups after treatment for 7 or 21 days, respectively. Besides, in vivo studies of micro-CT analysis, routine histological and immunohistochemical analysis also collectively demonstrate that the TC4/LBL/CT/BMP2 implant can dramatically promote the formation and remodeling of new bone in osteoporotic rabbits after implantation for 30 days and 90 days, respectively. In vivo push-out testing further confirms that the TC4/LBL/CT/BMP2 implant has the highest (p < 0.01) interfacial shear strength and favorable bone-implant osseointegration. Overall, this study establishes a simple and profound methodology to fabricate a biofunctional TC4 implant for the treatment of local osteoporotic fractures in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1437-1451, 2016. PMID:26822259

  12. STIM1-dependent Ca2+ microdomains are required for myofilament remodeling and signaling in the heart

    PubMed Central

    Parks, Cory; Alam, Mohammad Afaque; Sullivan, Ryan; Mancarella, Salvatore

    2016-01-01

    In non-excitable cells stromal interaction molecule 1 (STIM1) is a key element in the generation of Ca2+ signals that lead to gene expression, migration and cell proliferation. A growing body of literature suggests that STIM1 plays a key role in the development of pathological cardiac hypertrophy. However, the precise mechanisms involving STIM-dependent Ca2+ signaling in the heart are not clearly established. Here, we have investigated the STIM1-associated Ca2+ signals in cardiomyocytes and their relevance to pathological cardiac remodeling. We show that mice with inducible, cardiac-restricted, ablation of STIM1 exhibited left ventricular reduced contractility, which was corroborated by impaired single cell contractility. The spatial properties of STIM1-dependent Ca2+ signals determine restricted Ca2+ microdomains that regulate myofilament remodeling and activate spatially segregated pro-hypertrophic factors. Indeed, mice lacking STIM1 showed less adverse structural remodeling in response to pressure overload-induced cardiac hypertrophy. These results highlight how STIM1-dependent Ca2+ microdomains have a major impact on intracellular Ca2+ homeostasis, cytoskeletal remodeling and cellular signaling, even when excitation-contraction coupling is present. PMID:27150728

  13. The Effects of Chemotherapeutic Agents, Bleomycin, Etoposide, and Cisplatin, on Chromatin Remodeling in Male Rat Germ Cells.

    PubMed

    Bagheri-Sereshki, Negar; Hales, Barbara F; Robaire, Bernard

    2016-04-01

    The coadministration of bleomycin, etoposide, and cisplatin (BEP) has increased the survival rate of testicular cancer patients to over 90%. Previous studies have demonstrated that BEP induces germ cell damage during the final stages of spermatogenesis, when major chromatin remodeling occurs. Chromatin remodeling permits histone-protamine exchange, resulting in sperm head chromatin compaction. This process involves different epigenetic modifications of the core histones. The objective of these studies was to investigate the effects of BEP on epigenetic modifications to histones involved in chromatin remodeling. Brown Norway rats were treated with BEP, and their testes were removed to isolate pachytene spermatocytes and round spermatids by unit gravity sedimentation. Western blot analyses were conducted on extracted proteins to detect the expression of key modified histones. In a second cohort testes were prepared for immunohistochemical analysis. The stage-specific expression of each modified histone mark in rat spermatogenesis suggests the involvement of these modifications in chromatin remodeling. BEP treatment significantly increased expression of H3K9m and decreased that of tH2B (or Hist1h2ba) in pachytene spermatocytes, suggesting that nucleosomes were not destabilized to allow for transcription of genes involved in chromatin remodeling. Moreover, BEP treatment altered the expression of H4K8ac in round and elongating spermatids, suggesting that histone eviction was compromised, leading to a looser chromatin structure in mature spermatozoa. Less-compacted sperm chromatin, with alterations to the sperm epigenome, may have an adverse effect on male fertility. PMID:26911428

  14. Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling.

    PubMed

    Roberts, George G; Hudson, Alan P

    2006-08-01

    Transcriptome analyses using a wild-type strain of Saccharomyces cerevisiae were performed to assess the overall pattern of gene expression during the transition from glucose-based fermentative to glycerol-based respiratory growth. These experiments revealed a complex suite of metabolic and structural changes associated with the adaptation process. Alterations in gene expression leading to remodeling of various membrane transport systems and the cortical actin cytoskeleton were observed. Transition to respiratory growth was accompanied by alterations in transcript patterns demonstrating not only a general stress response, as seen in earlier studies, but also the oxidative and osmotic stress responses. In some contrast to earlier studies, these experiments identified modulation of expression for many genes specifying transcription factors during the transition to glycerol-based growth. Importantly and unexpectedly, an ordered series of changes was seen in transcript levels from genes encoding components of the TFIID, SAGA (Spt-Ada-Gcn5-Acetyltransferase), and SLIK (Saga LIKe) complexes and all three RNA polymerases, suggesting a modulation of structure for the basal transcriptional machinery during adaptation to respiratory growth. In concert with data given in earlier studies, the results presented here highlight important aspects of metabolic and other adaptations to respiratory growth in yeast that are common to utilization of multiple carbon sources. Importantly, they also identify aspects specific to adaptation of this organism to growth on glycerol as sole carbon source. PMID:16741729

  15. Frontiers in growth and remodeling.

    PubMed

    Menzel, Andreas; Kuhl, Ellen

    2012-06-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  16. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  17. A dynamic zone defines interneuron remodeling in the adult neocortex

    PubMed Central

    Lee, Wei-Chung Allen; Chen, Jerry L.; Huang, Hayden; Leslie, Jennifer H.; Amitai, Yael; So, Peter T.; Nedivi, Elly

    2008-01-01

    The contribution of structural remodeling to long-term adult brain plasticity is unclear. Here, we investigate features of GABAergic interneuron dendrite dynamics and extract clues regarding its potential role in cortical function and circuit plasticity. We show that remodeling interneurons are contained within a “dynamic zone” corresponding to a superficial strip of layers 2/3, and remodeling dendrites respect the lower border of this zone. Remodeling occurs primarily at the periphery of dendritic fields with addition and retraction of new branch tips. We further show that dendrite remodeling is not intrinsic to a specific interneuron class. These data suggest that interneuron remodeling is not a feature predetermined by genetic lineage, but rather, it is imposed by cortical laminar circuitry. Our findings are consistent with dynamic GABAergic modulation of feedforward and recurrent connections in response to top-down feedback and suggest a structural component to functional plasticity of supragranular neocortical laminae. PMID:19066223

  18. Lactate adversely affects the in vitro formation of endothelial cell tubular structures through the action of TGF-{beta}1

    SciTech Connect

    Schmid, Stephan A. . E-mail: leoni.kunz-schughart@oncoray.de; Gaumann, Andreas; Wondrak, Marit; Eckermann, Christoph; Schulte, Stephanie; Mueller-Klieser, Wolfgang; Wheatley, Denys N.; Kunz-Schughart, Leoni A.

    2007-07-15

    When lactate accumulation in a tumor microenvironment reaches an average concentration of 10-20 mM, it tends to reflect a high degree of malignancy. However, the hypothesis that tumor-derived lactate has a number of partially adverse biological effects on malignant and tumor-associated host cells requires further evidence. The present study attempted to evaluate the impact of lactate on the process of angiogenesis, in particular on the formation of tubular structures. The endothelial cell (EC) network in desmoplastic breast tumors is primarily located in areas of reactive fibroblastic stroma. We employed a fibroblast-endothelial cell co-culture model as in vitro angiogenesis system normally producing florid in vitro tubule formation to analyze this situation. In contrast to previous studies, we found that lactate significantly reduces EC network formation in a dose-dependent manner as quantified by semi-automated morphometric analyses following immunohistochemical staining. The decrease in CD31-positive tubular structures and the number of intersections was independent of VEGF supplementation and became more pronounced in the presence of protons. The number of cells, primarily of the fibroblast population, was reduced but cell loss could not be attributed to a decrease in proliferative activity or pronounced apoptotic cell death. Treatment with 10 mM lactate was accompanied by enhanced mRNA expression and release of TGF-{beta}1, which also shows anti-angiogenic activity in the model. Both TGF-{beta}1 and lactate induced myofibroblastic differentiation adjacent to the EC tubular structures. The lactate response on the EC network was diminished by TGF-{beta}1 neutralization, indicating a causal relationship between lactate and TGF-{beta}1 in the finely tuned processes of vessel formation and maturation which may also occur in vivo within tumor tissue.

  19. Niflumic Acid Attenuated Pulmonary Artery Tone and Vascular Structural Remodeling of Pulmonary Arterial Hypertension Induced by High Pulmonary Blood Flow In Vivo.

    PubMed

    Wang, Kai; Ma, Jianfa; Pang, Yusheng; Lao, Jinquan; Pan, Xuanren; Tang, Qiaoyun; Zhang, Feng; Su, Danyan; Qin, Suyuan; Shrestha, Arnav Prasad

    2015-10-01

    Calcium-activated chloride channels (CaCCs) play a vital role in regulating pulmonary artery tone during pulmonary arterial hypertension (PAH) induced by high blood flow. The role of CaCCs inhibitor niflumic acid (NFA) in vivo during this process requires further investigation. We established the PAH model by abdominal shunt surgery and treated with NFA in vivo. Fifty rats were randomly divided into normal, sham, shunt, NFA group 1 (0.2 mg/kg), and NFA group 2 (0.4 mg/kg). Pathological changes, right ventricle hypertrophy index, arterial wall area/vessel area, and arterial wall thickness/vessel external diameter were analyzed. Then contraction reactions of pulmonary arteries were measured. Finally, the electrophysiological characteristics of pulmonary arterial smooth muscle cells were investigated using patch-clamp technology. After 11 weeks of shunting, PAH developed, accompanied with increased right ventricle hypertrophy index, arterial wall area/vessel area, and arterial wall thickness/vessel external diameter. In the NFA treatment groups, the pressure and pathological changes were alleviated. The pulmonary artery tone in the shunt group increased, whereas it decreased after NFA treatment. The current density of CaCC was higher in the shunt group, and it was decreased in the NFA treatment groups. In conclusion, NFA attenuated pulmonary artery tone and structural remodeling in PAH induced by high pulmonary blood flow in vivo. CaCCs were involved and the augmented current density was alleviated by NFA treatment. PMID:26132368

  20. The role of midkine in skeletal remodelling

    PubMed Central

    Liedert, A; Schinke, T; Ignatius, A; Amling, M

    2014-01-01

    Bone tissue is subjected to continuous remodelling, replacing old or damaged bone throughout life. In bone remodelling, the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts ensure the maintenance of bone mass and strength. In early life, the balance of these cellular activities is tightly regulated by various factors, including systemic hormones, the mechanical environment and locally released growth factors. Age-related changes in the activity of these factors in bone remodelling can result in diseases with low bone mass, such as osteoporosis. Osteoporosis is a systemic and age-related skeletal disease characterized by low bone mass and structural degeneration of bone tissue, predisposing the patient to an increased fracture risk. The growth factor midkine (Mdk) plays a key role in bone remodelling and it is expressed during bone formation and fracture repair. Using a mouse deficient in Mdk, our group have identified this protein as a negative regulator of bone formation and mechanically induced bone remodelling. Thus, specific Mdk antagonists might represent a therapeutic option for diseases characterized by low bone mass, such as osteoporosis. Linked Articles This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4 PMID:24102259

  1. Chromatin-modifying and -remodeling complexes.

    PubMed

    Kornberg, R D; Lorch, Y

    1999-04-01

    Nucleosomes have long been known to inhibit DNA transactions on chromosomes and a remarkable abundance of multiprotein complexes that either enhance or relieve this inhibition have been described. Most is known about chromatin-remodeling complexes that perturb nucleosome structure. PMID:10322131

  2. The effects of adverse pressure gradients on momentum and thermal structures in transitional boundary layers. Part 2: Fluctuation quantities

    SciTech Connect

    Mislevy, S.P.; Wang, T.

    1996-10-01

    The effects of adverse pressure gradients on the thermal and momentum characteristics of a heated transitional boundary layer were investigated with free-stream turbulence ranging from 0.3 to 0.6 percent. Boundary layer measurements were conducted for two constant-K cases, K1 = {minus}0.51 {times} 10{sup {minus}6} and K2 = {minus}1.05 {times} 10{sup {minus}6}. The fluctuation quantities, u{prime}, v{prime}, t{prime}, the Reynolds shear stress ({ovr uv}), and the Reynolds heat fluxes ({ovr vt} and {ovr ut}) were measured. In general, u{prime}/U{sub {infinity}}, v{prime}/U{sub {infinity}}, and {ovr vt} have higher values across the boundary layer for the adverse pressure-gradient cases than they do for the baseline case (K = 0). The development of v{prime} for the adverse pressure gradients was more actively involved than that of the baseline. In the early transition region, the Reynolds shear stress distribution for the K2 case showed a near-wall shear developed at Y{sup +} = 70. For the baseline case, however, the maximum turbulent shear in the transition region was generated at Y{sup +} = 70, and no near-wall high-shear region was seen. Stronger adverse pressure gradients appear to produce more uniform and higher t{prime} in the near-wall region (Y{sup +} < 20) in both transitional and turbulent boundary layers. The instantaneous velocity signals did not show any clear turbulent/nonturbulent demarcations in the transition region. Increasingly stronger adverse pressure gradients seemed to produce large nonturbulent unsteadiness (or instability waves) at a similar magnitude as the turbulent spots could not be identified visually or through conventional conditional-sampling schemes. In addition, the streamwise evolution of eddy viscosity, turbulent thermal diffusivity, and Pr{sub t} are also presented.

  3. Immunoregulation of bone remodelling

    PubMed Central

    Singh, Ajai; Mehdi, Abbass A; Srivastava, Rajeshwer N; Verma, Nar Singh

    2012-01-01

    Remodeling, a continuous physiological process maintains the strength of the bones, which maintains a delicate balance between bone formation and resorption process. This review gives an insight to the complex interaction and correlation between the bone remodeling and the corresponding changes in host immunological environment and also summarises the most recent developments occuring in the understanding of this complex field. T cells, both directly and indirectly increase the expression of receptor activator of nuclear factor kB ligand (RANKL); a vital step in the activation of osteoclasts, thus positively regulates the osteoclastogenesis. Though various cytokines, chemikines, transcription factors and co-stimulatory molecules are shared by both skeletal and immune systems, but researches are being conducted to establish and analyse their role and / or control on this complex but vital process. The understanding of this part of research may open new horizons in the management of inflammatory and autoimmune diseases, resulting into bone loss and that of osteoporosis also. PMID:22837895

  4. The effects of adverse pressure gradients on momentum and thermal structures in transitional boundary layers. Part 1: Mean quantities

    SciTech Connect

    Mislevy, S.P.; Wang, T.

    1996-10-01

    The effects of adverse pressure gradients on the thermal and momentum characteristics of a heated transitional boundary layer were investigated with free-stream turbulence ranging from 0.3 to 0.6 %. The acceleration parameter, K, was kept constant along the test section. Both surface heat transfer and boundary layer measurements were conducted. The boundary layer measurements were conducted with a three-wire probe (two velocity wires and one temperature wire) for two representative cases, K1 = {minus}0.51 {times} 10{sup {minus}6} and K2 = {minus}1.05 {times} 10{sup {minus}6}. The surface heat transfer measurements were conducted for K values ranging from {minus}0.045 {times} 10{sup {minus}6} to {minus}1.44 {times} 10{sup {minus}6} over five divergent wall angles. The Stanton numbers of the cases with adverse pressure gradients were greater than that of the zero-pressure-gradient turbulent correlation in the low-Reynolds-number turbulent flow, and the difference increased as the adverse pressure gradient was increased. The adverse pressure gradient caused earlier transition onset and shorter transition length based on Re{sub x}, Re*{sub {delta}}, and Re{sub {theta}} in comparison to zero-pressure-gradient conditions. As expected, there was a reduction in skin friction as the adverse pressure gradient increased. In the U{sup +}-Y{sup +} coordinates, the adverse pressure gradients had a significant effect on the mean velocity profiles in the near-wall region for the late-laminar and early transition stations. The mean temperature profile was observed to precede the velocity profile in starting and ending the transition process, opposite to what occurred in favorable pressure gradient cases in previous studies. A curve fit of the turbulent temperature profile in the log-linear region for the K2 case gave a conduction layer thickness of Y{sup +}=9.8 and an average Pr{sub t}=0.71. The wake region of the turbulent mean temperature profile was significantly suppressed.

  5. Remodeling and Shuttling

    PubMed Central

    Rodrigueza, Wendi V.; Williams, Kevin Jon; Rothblat, George H.; Phillips, Michael C.

    2016-01-01

    In normal physiology, cells are exposed to cholesterol acceptors of different sizes simultaneously. The current study examined the possible interactions between two different classes of acceptors, one large (large unilamellar phospholipid vesicles, LUVs) and one small (HDL or other small acceptors), added separately or in combination to Fu5AH rat hepatoma cells. During a 24-hour incubation, LUVs of palmitoyl-oleoyl phosphatidylcholine at 1 mg phospholipid (PL) per milliliter extracted ≈20% of cellular unesterified cholesterol (UC) label and mass in a slow, continuous fashion (half-time [t½] for UC efflux was ≈50 hours) and human HDL3 at 25 μg PL per milliliter extracted ≈15% cellular UC label with no change in cellular cholesterol mass (t½ of ≈8 hours). In contrast, the combination of LUVs and HDL3 extracted over 90% of UC label (t½ of ≈4 hours) and ≈50% of the UC mass, indicating synergy. To explain this synergy, specific particle interactions were examined, namely, remodeling, in which the two acceptors alter each other’s composition and thus the ability to mobilize cellular cholesterol, and shuttling, in which the small acceptor ferries cholesterol from cells to the large acceptor. To examine remodeling, LUVs and HDL were coincubated and reisolated before application to cells. This HDL became UC depleted, PL enriched, and lost a small amount of apolipoprotein A-I. Compared with equivalent numbers of control HDL particles, remodeled HDL caused faster efflux (t½ ≈4 hours) and exhibited a greater capacity to sequester cellular cholesterol over 24 hours (≈38% versus ≈15% for control HDL), consistent with their enrichment in PL. Remodeled LUVs still extracted ≈20% of cellular UC. Thus, remodeling accounted for some but not all of the synergy between LUVs and HDL. To examine shuttling, several approaches were used. First, reisolation of particles after an 8-hour exposure to cells revealed that HDL contained very little of the cellular UC

  6. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  7. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  8. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  9. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  10. Using Extracellular Matrix Proteomics: To Understand Left Ventricular Remodeling

    PubMed Central

    Lindsey, Merry L.; Weintraub, Susan T.; Lange, Richard A.

    2011-01-01

    Survival following myocardial infarction (MI) has improved substantially over the last 40 years; however, the incidence of subsequent congestive heart failure has dramatically increased as a consequence. Discovering plasma markers that signify adverse cardiac remodeling may allow high-risk patients to be recognized earlier and may provide an improved way to assess treatment efficacy. Alterations in extracellular matrix (ECM) regulate cardiac remodeling following MI and potentially provide a large array of candidate indicators. The field of cardiac proteomics has progressed rapidly over the past 20 years, since publication of the first two-dimensional electrophoretic gels of left ventricle proteins. Proteomic approaches are now routinely utilized to better understand how the left ventricle responds to injury. In this review, we will discuss how methods have developed to allow comprehensive evaluation of the ECM proteome. We will explain how ECM proteomic data can be used to predict adverse remodeling for an individual patient and highlight future directions. Although this review will focus on the use of ECM proteomics to better understand post-MI remodeling responses, these approaches have applicability to a wide-range of cardiac pathologies, including pressure overload hypertrophy, viral myocarditis, and non-ischemic heart failure. PMID:22337931

  11. The multifactorial nature of microRNAs in vascular remodelling.

    PubMed

    Welten, S M J; Goossens, E A C; Quax, P H A; Nossent, A Y

    2016-05-01

    Vascular remodelling is a multifactorial process that involves both adaptive and maladaptive changes of the vessel wall through, among others, cell proliferation and migration, but also apoptosis and necrosis of the various cell types in the vessel wall. Vascular remodelling can be beneficial, e.g. during neovascularization after ischaemia, as well as pathological, e.g. during atherosclerosis and aneurysm formation. In recent years, it has become clear that microRNAs are able to target many genes that are involved in vascular remodelling processes and either can promote or inhibit structural changes of the vessel wall. Since many different processes of vascular remodelling are regulated by similar mechanisms and factors, both positive and negative vascular remodelling can be affected by the same microRNAs. A large number of microRNAs has been linked to various aspects of vascular remodelling and indeed, several of these microRNAs regulate multiple vascular remodelling processes, including both the adaptive processes angiogenesis and arteriogenesis as well as maladaptive processes of atherosclerosis, restenosis and aneurysm formation. Here, we discuss the multifactorial role of microRNAs and microRNA clusters that were reported to play a role in multiple forms of vascular remodelling and are clearly linked to cardiovascular disease (CVD). The microRNAs reviewed are miR-126, miR-155 and the microRNA gene clusters 17-92, 23/24/27, 143/145 and 14q32. Understanding the contribution of these microRNAs to the entire spectrum of vascular remodelling processes is important, especially as these microRNAs may have great potential as therapeutic targets for treatment of various CVDs. PMID:26912672

  12. Remodeling of Endogenous Mammary Epithelium by Breast Cancer Stem Cells

    PubMed Central

    Parashurama, Natesh; Lobo, Neethan A.; Ito, Ken; Mosley, Adriane R.; Habte, Frezghi G.; Zabala, Maider; Smith, Bryan R.; Lam, Jessica; Weissman, Irving L.; Clarke, Michael F.; Gambhir, Sanjiv S.

    2014-01-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC. PMID:22899386

  13. Remodeling of endogenous mammary epithelium by breast cancer stem cells.

    PubMed

    Parashurama, Natesh; Lobo, Neethan A; Ito, Ken; Mosley, Adriane R; Habte, Frezghi G; Zabala, Maider; Smith, Bryan R; Lam, Jessica; Weissman, Irving L; Clarke, Michael F; Gambhir, Sanjiv S

    2012-10-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC. PMID:22899386

  14. Detecting Adverse Events Using Information Technology

    PubMed Central

    Bates, David W.; Evans, R. Scott; Murff, Harvey; Stetson, Peter D.; Pizziferri, Lisa; Hripcsak, George

    2003-01-01

    Context: Although patient safety is a major problem, most health care organizations rely on spontaneous reporting, which detects only a small minority of adverse events. As a result, problems with safety have remained hidden. Chart review can detect adverse events in research settings, but it is too expensive for routine use. Information technology techniques can detect some adverse events in a timely and cost-effective way, in some cases early enough to prevent patient harm. Objective: To review methodologies of detecting adverse events using information technology, reports of studies that used these techniques to detect adverse events, and study results for specific types of adverse events. Design: Structured review. Methodology: English-language studies that reported using information technology to detect adverse events were identified using standard techniques. Only studies that contained original data were included. Main Outcome Measures: Adverse events, with specific focus on nosocomial infections, adverse drug events, and injurious falls. Results: Tools such as event monitoring and natural language processing can inexpensively detect certain types of adverse events in clinical databases. These approaches already work well for some types of adverse events, including adverse drug events and nosocomial infections, and are in routine use in a few hospitals. In addition, it appears likely that these techniques will be adaptable in ways that allow detection of a broad array of adverse events, especially as more medical information becomes computerized. Conclusion: Computerized detection of adverse events will soon be practical on a widespread basis. PMID:12595401

  15. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  16. Scar prevention and remodeling: a review of the medical, surgical, topical and light treatment approaches.

    PubMed

    Kerwin, Leonard Y; El Tal, Abdel Kader; Stiff, Mark A; Fakhouri, Tarek M

    2014-08-01

    Cosmetic, functional, and structural sequelae of scarring are innumerable, and measures exist to optimize and ultimately minimize these sequelae. To evaluate the innumerable methods available to decrease the cosmetic, functional, and structural repercussions of scarring, pubMed search of the English literature with key words scar, scar revision, scar prevention, scar treatment, scar remodeling, cicatrix, cicatrix treatment, and cicatrix remodeling was done. Original articles and reviews were examined and included. Seventy-nine manuscripts were reviewed. Techniques, comparisons, and results were reviewed and tabulated. Overall, though topical modalities are easier to use and are usually more attractive to the patient, the surgical approaches still prove to be superior and more reliable. However, advances in topical medications for scar modification are on the rise and a change towards medical treatment of scars may emerge as the next best approach. Comparison studies of the innumerable specific modalities for scar revision and prevention are impossible. Standardization of techniques is lacking. Scarring, the body's natural response to a wound, can create many adverse effects. At this point, the practice of sound, surgical fundamentals still trump the most advanced preventative methods and revision techniques. Advances in medical approaches are available, however, to assist the scarring process, which even the most advanced surgical fundamentals will ultimately lead to. Whether through newer topical therapies, light treatment, or classical surgical intervention, our treatment armamentarium of scars has expanded and will allow us to maximize scar prevention and to minimize scar morbidity. PMID:24697346

  17. Plant cell remodeling by autophagy

    PubMed Central

    Kim, Jimi; Lee, Han Nim; Chung, Taijoon

    2014-01-01

    Plant seedlings are not photoautotrophs until they are equipped with photosynthetic machinery. Some plant cells are remodeled after being exposed to light, and a group of peroxisomal proteins are degraded during the remodeling. Autophagy was proposed as one of the mechanisms for the degradation of peroxisomal proteins. We recently showed that ATG7-dependent autophagy is partially responsible for the degradation of obsolete peroxisomal proteins during Arabidopsis seedling growth. PMID:24492493

  18. Relationship between self-reported residential indoor remodeling and semen quality: a case-control study

    PubMed Central

    Miao, Mao-Hua; Li, Zheng; Li, De-Kun; Yan, Bei; Liang, Hong; Zhi, Er-Lei; Du, Hong-Wei; Yuan, Wei

    2015-01-01

    The present study examined the association between residential indoor remodeling and poor semen quality. Sperm donors aged 18–45 years old were recruited in Shanghai, China. Semen specimens were collected and analyzed. An in-person interview was conducted to obtain information on the history of indoor remodeling and potential confounders. A total of 70 participants with abnormal semen quality (case group) and 68 controls were examined. A total of 20 subjects reported indoor remodeling in the recent 24 months, and among them 17 subjects reported indoor remodeling in the recent 12 months. Compared with participants with no history of indoor remodeling, participants with a history of indoor remodeling in the recent 24 months were more than three times as likely to have poor sperm quality (adjusted odds ratio = 3.8, 95% confidence interval: 1.3–12.0) after controlling for potential confounders. The association was strengthened when the analysis was restricted to those who had indoor remodeling in the recent 12 months. Our findings provide preliminary evidence that indoor remodeling has an adverse effect on semen quality. PMID:25432500

  19. Link between vitamin D and airway remodeling

    PubMed Central

    Berraies, Anissa; Hamzaoui, Kamel; Hamzaoui, Agnes

    2014-01-01

    In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma. PMID:24729717

  20. Stepwise nucleosome translocation by RSC remodeling complexes.

    PubMed

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. PMID:26895087

  1. Stepwise nucleosome translocation by RSC remodeling complexes

    PubMed Central

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1–2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. DOI: http://dx.doi.org/10.7554/eLife.10051.001 PMID:26895087

  2. Vaccine Adverse Events

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Vaccines, Blood & Biologics Home Vaccines, Blood & Biologics Safety & Availability ( ... Center for Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More ...

  3. The role of the epithelium in airway remodeling in asthma.

    PubMed

    Davies, Donna E

    2009-12-01

    The bronchial epithelium is the barrier to the external environment and plays a vital role in protection of the internal milieu of the lung. It functions within the epithelial-mesenchymal trophic unit to control the local microenvironment and help maintain tissue homeostasis. However, in asthma, chronic perturbation of these homeostatic mechanisms leads to alterations in the structure of the airways, termed remodeling. Damage to the epithelium is now recognized to play a key role in driving airway remodeling. We have postulated that epithelial susceptibility to environmental stress and injury together with impaired repair responses results in generation of signals that act on the underlying mesenchyme to propagate and amplify inflammatory and remodeling responses in the submucosa. Many types of challenges to the epithelium, including pathogens, allergens, environmental pollutants, cigarette smoke, and even mechanical forces, can elicit production of mediators by the epithelium, which can be translated into remodeling responses by the mesenchyme. Several important mediators of remodeling have been identified, most notably transforming growth factor-beta, which is released from damaged/repairing epithelium or in response to inflammatory mediators, such as IL-13. The cross talk between the epithelium and the underlying mesenchyme to drive remodeling responses is considered in the context of subepithelial fibrosis and potential pathogenetic mechanisms linked to the asthma susceptibility gene, a disintegrin and metalloprotease (ADAM)33. PMID:20008875

  4. Remodelling the extracellular matrix in development and disease

    PubMed Central

    Bonnans, Caroline; Chou, Jonathan; Werb, Zena

    2015-01-01

    The extracellular matrix (ECM) is a highly dynamic structure that is present in all tissues and continuously undergoes controlled remodelling. This process involves quantitative and qualitative changes in the ECM, mediated by specific enzymes that are responsible for ECM degradation, such as metalloproteinases. The ECM interacts with cells to regulate diverse functions, including proliferation, migration and differentiation. ECM remodelling is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands. Dysregulation of ECM composition, structure, stiffness and abundance contributes to several pathological conditions, such as fibrosis and invasive cancer. A better understanding of how the ECM regulates organ structure and function and of how ECM remodelling affects disease progression will contribute to the development of new therapeutics. PMID:25415508

  5. Tetrahydrocurcumin Protects against Cadmium-Induced Hypertension, Raised Arterial Stiffness and Vascular Remodeling in Mice

    PubMed Central

    Sangartit, Weerapon; Kukongviriyapan, Upa; Donpunha, Wanida; Pakdeechote, Poungrat; Kukongviriyapan, Veerapol; Surawattanawan, Praphassorn; Greenwald, Stephen E.

    2014-01-01

    Background Cadmium (Cd) is a nonessential heavy metal, causing oxidative damage to various tissues and associated with hypertension. Tetrahydrocurcumin (THU), a major metabolite of curcumin, has been demonstrated to be an antioxidant, anti-diabetic, anti-hypertensive and anti-inflammatory agent. In this study, we investigated the protective effect of THU against Cd-induced hypertension, raised arterial stiffness and vascular remodeling in mice. Methods Male ICR mice received CdCl2 (100 mg/l) via drinking water for 8 weeks. THU was administered intragastrically at dose of 50 or 100 mg/kg/day concurrently with Cd treatment. Results Administration of CdCl2 significantly increased arterial blood pressure, blunted vascular responses to vasoactive agents, increased aortic stiffness, and induced hypertrophic aortic wall remodeling by increasing number of smooth muscle cells and collagen deposition, decreasing elastin, and increasing matrix metalloproteinase (MMP)-2 and MMP-9 levels in the aortic medial wall. Supplementation with THU significantly decreased blood pressure, improved vascular responsiveness, and reversed the structural and mechanical alterations of the aortas, including collagen and elastin deposition. The reduction on the adverse response of Cd treatment was associated with upregulated eNOS and downregulated iNOS protein expressions, increased nitrate/nitrite level, alleviated oxidative stress and enhanced antioxidant glutathione. Moreover, THU also reduced the accumulation of Cd in the blood and tissues. Conclusions Our results suggest that THU ameliorates cadmium-induced hypertension, vascular dysfunction, and arterial stiffness in mice through enhancing NO bioavailability, attenuating oxidative stress, improving vascular remodeling and decreasing Cd accumulation in other tissues. THU has a beneficial effect in moderating the vascular alterations associated with Cd exposure. PMID:25502771

  6. Echocardiographic Predictors for Left Ventricular Remodeling after Acute ST Elevation Myocardial Infarction with Low Risk Group: Speckle Tracking Analysis

    PubMed Central

    Na, Hyun-Min; Lee, Joo Myung; Cha, Myung-Jin; Yoon, Yeonyee E.; Lee, Seung-Pyo; Kim, Hyung-Kwan; Kim, Yong-Jin; Sohn, Dae-Won

    2016-01-01

    Background We sought to assess echocardiographic predictors of left ventricular (LV) adverse remodeling after successfully reperfused acute ST elevation myocardial infarction (STEMI). LV remodeling is commonly found in STEMI patients and it may suggest adverse outcome in acute myocardial infarction. We sought to identify whether 2D strain and torsion be independent parameters for prediction of LV adverse remodeling. Methods We investigated 208 patients with low-risk STEMI patients who had follow up echocardiography at 6 or more months. After clinical assessments, all patients received revascularization according to current guideline. LV remodeling was defined as > 20% increase in end-diastolic volume (EDV) at follow up. Results During the follow-up (11.9 ± 5.3 months), 53 patients (25.5%) showed LV remodeling. In univariate analysis, EDV, end-systolic volume, deceleration time (DT), CK-MB, and global longitudinal strain (GLS) were associated with LV remodeling. In multivariate analysis, EDV [hazard ratio (HR): 0.922, 95% confidence interval (CI): 0.897–0.948, p< 0.001], GLS (HR: 0.842, 95% CI: 0.728–0.974, p = 0.020), DT (HR: 0.989, 95% CI: 0.980–0.998, p = 0.023) and CK-MB (HR: 1.003, 95% CI: 1.000–1.005, p = 0.033) independently predicted LV remodeling. However, global circumferential strain, net twist, and twist or untwist rate were not associated with remodeling. Conclusion Of various parameters of speckle strain, only GLS predicted adverse remodeling in STEMI patients. PMID:27358705

  7. [Bone quality and strength relating with bone remodeling].

    PubMed

    Mori, Satoshi

    2016-01-01

    The bone has the functions of mineral reservoir and mechanical support as skeleton. Bone remodeling is the adult mode of bone metabolism, replacing old bone tissue to new one. Bone strength is determined by bone volume, structure and quality such as micro damage, degree of mineralization and collagen cross linkage, which are all controlled by bone remodeling. Bone strength decreases under high turn-over condition by decreasing bone volume and deterioration of bone structure, which also decreases under low turn-over condition by increased micro damage, increasing mineralization and AGE collagen cross linkage. PMID:26728527

  8. The Role of Reactive Oxygen Species in Microvascular Remodeling

    PubMed Central

    Staiculescu, Marius C.; Foote, Christopher; Meininger, Gerald A.; Martinez-Lemus, Luis A.

    2014-01-01

    The microcirculation is a portion of the vascular circulatory system that consists of resistance arteries, arterioles, capillaries and venules. It is the place where gases and nutrients are exchanged between blood and tissues. In addition the microcirculation is the major contributor to blood flow resistance and consequently to regulation of blood pressure. Therefore, structural remodeling of this section of the vascular tree has profound implications on cardiovascular pathophysiology. This review is focused on the role that reactive oxygen species (ROS) play on changing the structural characteristics of vessels within the microcirculation. Particular attention is given to the resistance arteries and the functional pathways that are affected by ROS in these vessels and subsequently induce vascular remodeling. The primary sources of ROS in the microcirculation are identified and the effects of ROS on other microcirculatory remodeling phenomena such as rarefaction and collateralization are briefly reviewed. PMID:25535075

  9. Hydrogen sulfide depletion contributes to microvascular remodeling in obesity.

    PubMed

    Candela, Joseph; Velmurugan, Gopal V; White, Carl

    2016-05-01

    Structural remodeling of the microvasculature occurs during obesity. Based on observations that impaired H2S signaling is associated with cardiovascular pathologies, the current study was designed to test the hypothesis that altered H2S homeostasis is involved in driving the remodeling process in a diet-induced mouse model of obesity. The structural and passive mechanical properties of mesenteric resistance arterioles isolated from 30-wk-old lean and obese mice were assessed using pressure myography, and vessel H2S levels were quantified using the H2S indicator sulfidefluor 7-AM. Remodeling gene expression was assessed using quantitative RT-PCR, and histological staining was used to quantify vessel collagen and elastin. Obesity was found to be associated with decreased vessel H2S concentration, inward hypertrophic remodeling, altered collagen-to-elastin ratio, and reduced vessel stiffness. In addition, mRNA levels of fibronectin, collagen types I and III, matrix metalloproteinases 2 and 9, and tissue inhibitor of metalloproteinase 1 were increased and elastin was decreased by obesity. Evidence that decreased H2S was responsible for the genetic changes was provided by experiments in which H2S levels were manipulated, either by inhibition of the H2S-generating enzyme cystathionine γ-lyase with dl-propargylglycine or by incubation with the H2S donor GYY4137. These data suggest that, during obesity, depletion of H2S is involved in orchestrating the genetic changes underpinning inward hypertrophic remodeling in the microvasculature. PMID:26993223

  10. Chemistry of bone remodelling preserved in extant and fossil Sirenia.

    PubMed

    Anné, Jennifer; Wogelius, Roy A; Edwards, Nicholas P; van Veelen, Arjen; Ignatyev, Konstantin; Manning, Phillip L

    2016-05-01

    Bone remodelling is a crucial biological process needed to maintain elemental homeostasis. It is important to understand the trace elemental inventories that govern these processes as malfunctions in bone remodelling can have devastating effects on an organism. In this study, we use a combination of X-ray techniques to map, quantify, and characterise the coordination chemistry of trace elements within the highly remodelled bone tissues of extant and extinct Sirenia (manatees and dugongs). The dense bone structure and unique body chemistry of sirenians represent ideal tissues for studying both high remodelling rates as well as unique fossilisation pathways. Here, elemental maps revealed uncorrelated patterning of Ca and Zn within secondary osteons in both extant and fossil sirenians, as well as elevated Sr within the connecting canals of fossil sirenians. Concentrations of these elements are comparable between extant and fossil material indicating geochemical processing of the fossil bone has been minimal. Zn was found to be bound in the same coordination within the apatite structure in both extant and fossil bone. Accurate quantification of trace elements in extant material was only possible when the organic constituents of the bone were included. The comparable distributions, concentrations, and chemical coordination of these physiologically important trace elements indicate the chemistry of bone remodelling has been preserved for 19 million years. This study signifies the powerful potential of merging histological and chemical techniques in the understanding of physiological processes in both extant and extinct vertebrates. PMID:26923825

  11. The role of microRNAs in arterial remodelling.

    PubMed

    Nazari-Jahantigh, M; Wei, Y; Schober, A

    2012-04-01

    Adaptive alterations of the vessel wall architecture, called vascular remodelling, can be found in arterial hypertension, during the formation of aneurysms, in restenosis after vascular interventions, and in atherosclerosis. MicroRNAs (miR) critically affect the main cellular players in arterial remodelling and may either promote or inhibit the structural changes in the vessel wall. They regulate the phenotype of smooth muscle cells (SMCs) and control the inflammatory response in endothelial cells and macrophages. In SMCs, different sets of miRs induce either a synthetic or contractile phenotype, respectively. The conversion into a synthetic SMC phenotype is a crucial event in arterial remodelling. Therefore, reprogramming of the SMC phenotype by miR targeting can modulate the remodelling process. Furthermore, the effects of stimuli that induce remodelling, such as shear stress, angiotensin II, oxidised low-density lipoprotein, or apoptosis, on endothelial cells are mediated by miRs. The endothelial cell-specific miR-126, for example, is transferred in microvesicles from apoptotic endothelial cells and plays a protective role in atherogenesis. The inflammatory response of the innate immune system, especially through macrophages, promotes arterial remodelling. miR-155 induces the expression of inflammatory cytokines, whereas miR-146a and miR-147 are involved in the resolution phase of inflammation. However, in vivo data on the role of miRs in vascular remodelling are still scarce, which are required to test the therapeutic potential of the available, highly effective miR inhibitors. PMID:22371089

  12. Rho Kinases and Cardiac Remodeling.

    PubMed

    Shimizu, Toru; Liao, James K

    2016-06-24

    Hypertensive cardiac remodeling is characterized by left ventricular hypertrophy and interstitial fibrosis, which can lead to heart failure with preserved ejection fraction. The Rho-associated coiled-coil containing kinases (ROCKs) are members of the serine/threonine protein kinase family, which mediates the downstream effects of the small GTP-binding protein RhoA. There are 2 isoforms: ROCK1 and ROCK2. They have different functions in different types of cells and tissues. There is growing evidence that ROCKs contribute to the development of cardiovascular diseases, including cardiac fibrosis, hypertrophy, and subsequent heart failure. Recent experimental studies using ROCK inhibitors, such as fasudil, have shown the benefits of ROCK inhibition in cardiac remodeling. Mice lacking each ROCK isoform also exhibit reduced myocardial fibrosis in a variety of pathological models of cardiac remodeling. Indeed, clinical studies with fasudil have suggested that ROCKs could be potential novel therapeutic targets for cardiovascular diseases. In this review, we summarize the current understanding of the roles of ROCKs in the development of cardiac fibrosis and hypertrophy and discuss their therapeutic potential for deleterious cardiac remodeling. (Circ J 2016; 80: 1491-1498). PMID:27251065

  13. The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress.

    PubMed

    Mlynárová, Ludmila; Nap, Jan-Peter; Bisseling, Ton

    2007-09-01

    One of the earliest responses of plants to environmental stress is establishing a temporary growth arrest that allows adaptation to adverse conditions. The response to abiotic stress requires the modulation of gene expression, which may be mediated by the alteration of chromatin structures. This alteration can be accomplished with the help of chromatin-remodeling enzymes, such as the various SWI/SNF classes of ATPases. Here, we investigate the role of the Arabidopsis SNF2/Brahma-type AtCHR12 chromatin-remodeling gene in plant growth and development in reaction to adverse environmental conditions. We show that the AtCHR12 chromatin-remodeling gene plays a vital role in mediating the temporary growth arrest of Arabidopsis that is induced upon perception of stress. Exposing an AtCHR12 overexpressing mutant to stress conditions leads to growth arrest of normally active primary buds, as well as to reduced growth of the primary stem. In contrast, the AtCHR12 knockout mutant shows less growth arrest than the wild-type when exposed to moderate stress. Without stress, mutant plants are indistinguishable from the wild-type, and the growth arrest response seems to depend on the severity of the stress applied. Modulation of AtCHR12 expression correlates with changes in expression of dormancy-associated genes. This is in agreement with the concept of AtCHR12 participation in priming the plants for the growth arrest response. Our data indicate that AtCHR12-associated growth arrest differs from DELLA-mediated growth restraint. This establishes AtCHR12 as a novel gene involved in the response repertoire of plants that permits flexible modulation of growth in adverse and/or otherwise limiting environments. PMID:17605754

  14. Remodeling Science Education

    ERIC Educational Resources Information Center

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  15. Pregnancy-induced remodeling of heart valves.

    PubMed

    Pierlot, Caitlin M; Moeller, Andrew D; Lee, J Michael; Wells, Sarah M

    2015-11-01

    Recent studies have demonstrated remodeling of aortic and mitral valves leaflets under the volume loading and cardiac expansion of pregnancy. Those valves' leaflets enlarge with altered collagen fiber architecture, content, and cross-linking and biphasic changes (decreases, then increases) in extensibility during gestation. This study extends our analyses to right-sided valves, with additional compositional measurements for all valves. Valve leaflets were harvested from nonpregnant heifers and pregnant cows. Leaflet structure was characterized by leaflet dimensions, and ECM composition was determined using standard biochemical assays. Histological studies assessed changes in cellular and ECM components. Leaflet mechanical properties were assessed using equibiaxial mechanical testing. Collagen thermal stability and cross-linking were assessed using denaturation and hydrothermal isometric tension tests. Pulmonary and tricuspid leaflet areas increased during pregnancy by 35 and 55%, respectively. Leaflet thickness increased by 20% only in the pulmonary valve and largely in the fibrosa (30% thickening). Collagen crimp length was reduced in both the tricuspid (61%) and pulmonary (42%) valves, with loss of crimped area in the pulmonary valve. Thermomechanics showed decreased collagen thermal stability with surprisingly maintained cross-link maturity. The pulmonary leaflet exhibited the biphasic change in extensibility seen in left side valves, whereas the tricuspid leaflet mechanics remained largely unchanged throughout pregnancy. The tricuspid valve exhibits a remodeling response during pregnancy that is significantly diminished from the other three valves. All valves of the heart remodel in pregnancy in a manner distinct from cardiac pathology, with much similarity valve to valve, but with interesting valve-specific responses in the aortic and tricuspid valves. PMID:26371175

  16. Myocardial reverse remodeling: how far can we rewind?

    PubMed

    Rodrigues, Patrícia G; Leite-Moreira, Adelino F; Falcão-Pires, Inês

    2016-06-01

    Heart failure (HF) is a systemic disease that can be divided into HF with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). HFpEF accounts for over 50% of all HF patients and is typically associated with high prevalence of several comorbidities, including hypertension, diabetes mellitus, pulmonary hypertension, obesity, and atrial fibrillation. Myocardial remodeling occurs both in HFrEF and HFpEF and it involves changes in cardiac structure, myocardial composition, and myocyte deformation and multiple biochemical and molecular alterations that impact heart function and its reserve capacity. Understanding the features of myocardial remodeling has become a major objective for limiting or reversing its progression, the latter known as reverse remodeling (RR). Research on HFrEF RR process is broader and has delivered effective therapeutic strategies, which have been employed for some decades. However, the RR process in HFpEF is less clear partly due to the lack of information on HFpEF pathophysiology and to the long list of failed standard HF therapeutics strategies in these patient's outcomes. Nevertheless, new proteins, protein-protein interactions, and signaling pathways are being explored as potential new targets for HFpEF remodeling and RR. Here, we review recent translational and clinical research in HFpEF myocardial remodeling to provide an overview on the most important features of RR, comparing HFpEF with HFrEF conditions. PMID:26993225

  17. Chromatin dynamics: Interplay between remodeling enzymes and histone modifications

    PubMed Central

    Swygert, Sarah G.; Peterson, Craig L.

    2014-01-01

    Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. PMID:24583555

  18. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders

    PubMed Central

    López, Alberto J.; Wood, Marcelo A.

    2015-01-01

    It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development. PMID:25954173

  19. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders.

    PubMed

    López, Alberto J; Wood, Marcelo A

    2015-01-01

    It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development. PMID:25954173

  20. Synaptic circuit remodelling by matrix metalloproteinases in health and disease

    PubMed Central

    Huntley, George W.

    2016-01-01

    Matrix metalloproteinases (MMPs) are extracellularly acting enzymes that have long been known to have deleterious roles in brain injury and disease. In particular, widespread and protracted MMP activity can contribute to neuronal loss and synaptic dysfunction. However, recent studies show that rapid and focal MMP-mediated proteolysis proactively drives synaptic structural and functional remodelling that is crucial for ongoing cognitive processes. Deficits in synaptic remodelling are associated with psychiatric and neurological disorders, and aberrant MMP expression or function may contribute to the molecular mechanisms underlying these deficits. This Review explores the paradigm shift in our understanding of the contribution of MMPs to normal and abnormal synaptic plasticity and function. PMID:23047773

  1. Dynamical DNA accessibility induced by chromatin remodeling and protein binding

    NASA Astrophysics Data System (ADS)

    Montel, F.; Faivre-Moskalenko, C.; Castelnovo, M.

    2014-11-01

    Chromatin remodeling factors are enzymes being able to alter locally chromatin structure at the nucleosomal level and they actively participate in the regulation of gene expression. Using simple rules for individual nucleosome motion induced by a remodeling factor, we designed simulations of the remodeling of oligomeric chromatin, in order to address quantitatively collective effects in DNA accessibility upon nucleosome mobilization. Our results suggest that accessibility profiles are inhomogeneous thanks to borders effects like protein binding. Remarkably, we show that the accessibility lifetime of DNA sequence is roughly doubled in the vicinity of borders as compared to its value in bulk regions far from the borders. These results are quantitatively interpreted as resulting from the confined diffusion of a large nucleosome depleted region.

  2. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    SciTech Connect

    Ostrup, Olga; Hyttel, Poul; Klaerke, Dan A.; Collas, Philippe

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  3. Probing Nucleosome Remodeling by Unzipping Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Michelle

    2006-03-01

    At the core of eukaryotic chromatin is the nucleosome, which consists of 147 bp of DNA wrapped 1.65 turns around an octamer of histone proteins. Even this lowest level of genomic compaction presents a strong barrier to DNA-binding cellular factors that are required for essential processes such as transcription, DNA replication, recombination and repair. Chromatin remodeling enzymes use the energy of ATP hydrolysis to regulate accessibility of the genetic code by altering chromatin structure. While remodeling enzymes have been the subject of extensive research in recent years, their precise mechanism remains unclear. In order to probe the structure of individual nucleosomes and their remodeling, we assembled a histone octamer onto a DNA segment containing a strong nucleosome positioning sequence. As the DNA double helix was unzipped through the nucleosome using a feedback-enhanced optical trap, the presence of the nucleosome was detected as a series of dramatic increases in the tension in the DNA, followed by sudden tension reductions. Analysis of the unzipping force throughout the disruption accurately revealed the spatial location and fine structure of the nucleosome to near base pair precision. Using this approach, we investigate how remodeling enzymes may alter the location and structure of a nucleosome.

  4. IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance

    PubMed Central

    Lu, Yi-Fan; Mauger, David M.; Goldstein, David B.; Urban, Thomas J.; Weeks, Kevin M.; Bradrick, Shelton S.

    2015-01-01

    Polymorphisms near the interferon lambda 3 (IFNL3) gene strongly predict clearance of hepatitis C virus (HCV) infection. We analyzed a variant (rs4803217 G/T) located within the IFNL3 mRNA 3′ untranslated region (UTR); the G allele (protective allele) is associated with elevated therapeutic HCV clearance. We show that the IFNL3 3′ UTR represses mRNA translation and the rs4803217 allele modulates the extent of translational regulation. We analyzed the structures of IFNL3 variant mRNAs at nucleotide resolution by SHAPE-MaP. The rs4803217 G allele mRNA forms well-defined 3′ UTR structure while the T allele mRNA is more dynamic. The observed differences between alleles are among the largest possible RNA structural alterations that can be induced by a single nucleotide change and transform the UTR from a single well-defined conformation to one with multiple dynamic interconverting structures. These data illustrate that non-coding genetic variants can have significant functional effects by impacting RNA structure. PMID:26531896

  5. Hard tissue remodeling using biofabricated coralline biomaterials.

    PubMed

    Vago, Razi; Plotquin, Daniel; Bunin, Alex; Sinelnikov, Igor; Atar, Dan; Itzhak, David

    2002-01-01

    Biotechnical and biomedical approaches were combined in an attempt to identify potential uses of biofabricated marine carbonate materials in biomedical applications, particularly as biomatrices for remodeling bone and cartilage tissue. After grafting, it is desirable for bone ingrowth to proceed as quickly as possible because the strength of the implanted region depends on a good mechanical bond forming between the implant and surrounding regions in the body. Ingrowth can take place as a result of growth of tissue and cells into the implanted porous material, or it may be promoted by transplanting cells seeded onto such a material. The rate at which ingrowth occurs is dependent on many factors, including pore size and the interconnectivity of the implanted structure. In vivo graftings into osteochondral defects demonstrated that our biofabricated porous material is highly biocompatible with cartilage and bone tissue. The biofabricated matrix was well incorporated into the biphasic osteochondral area. Resorption was followed by bone and cartilage formation, and after 4 months, the biomaterial had been replaced by new tissue. Ossification was induced and enhanced without introduction of additional factors. We believe that this is the first time that such biofabricated materials have been used for biomedical purposes. In face of the obvious environmental disadvantages of harvesting from limited natural resources, we propose the use of bioengineered coralline and other materials such as those cultured by our group under field and laboratory conditions as a possible biomatrix for hard tissue remodeling. PMID:11741712

  6. Advances in understanding cartilage remodeling

    PubMed Central

    Li, Yefu; Xu, Lin

    2015-01-01

    Cartilage remodeling is currently among the most popular topics in osteoarthritis research. Remodeling includes removal of the existing cartilage and replacement by neo-cartilage. As a loss of balance between removal and replacement of articular cartilage develops (particularly, the rate of removal surpasses the rate of replacement), joints will begin to degrade. In the last few years, significant progress in molecular understanding of the cartilage remodeling process has been made. In this brief review, we focus on the discussion of some current “controversial” observations in articular cartilage degeneration: (1) the biological effect of transforming growth factor-beta 1 on developing and mature articular cartilages, (2) the question of whether aggrecanase 1 (ADAMTS4) and aggrecanase 2 (ADAMTS5) are key enzymes in articular cartilage destruction, and (3) chondrocytes versus chondron in the development of osteoarthritis. It is hoped that continued discussion and investigation will follow to better clarify these topics. Clarification will be critical for those in search of novel therapeutic targets for the treatment of osteoarthritis. PMID:26380073

  7. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation.

    PubMed

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  8. Erythrocyte Stiffness during Morphological Remodeling Induced by Carbon Ion Radiation

    PubMed Central

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  9. Quantitative analysis of 3D extracellular matrix remodelling by pancreatic stellate cells

    PubMed Central

    Robinson, Benjamin K.; Cortes, Ernesto; Rice, Alistair J.; Sarper, Muge

    2016-01-01

    ABSTRACT Extracellular matrix (ECM) remodelling is integral to numerous physiological and pathological processes in biology, such as embryogenesis, wound healing, fibrosis and cancer. Until recently, most cellular studies have been conducted on 2D environments where mechanical cues significantly differ from physiologically relevant 3D environments, impacting cellular behaviour and masking the interpretation of cellular function in health and disease. We present an integrated methodology where cell-ECM interactions can be investigated in 3D environments via ECM remodelling. Monitoring and quantification of collagen-I structure in remodelled matrices, through designated algorithms, show that 3D matrices can be used to correlate remodelling with increased ECM stiffness observed in fibrosis. Pancreatic stellate cells (PSCs) are the key effectors of the stromal fibrosis associated to pancreatic cancer. We use PSCs to implement our methodology and demonstrate that PSC matrix remodelling capabilities depend on their contractile machinery and β1 integrin-mediated cell-ECM attachment. PMID:27170254

  10. Minor Groove Binder Distamycin Remodels Chromatin but Inhibits Transcription

    PubMed Central

    Majumder, Parijat; Banerjee, Amrita; Shandilya, Jayasha; Senapati, Parijat; Chatterjee, Snehajyoti; Kundu, Tapas K.; Dasgupta, Dipak

    2013-01-01

    The condensed structure of chromatin limits access of cellular machinery towards template DNA. This in turn represses essential processes like transcription, replication, repair and recombination. The repression is alleviated by a variety of energy dependent processes, collectively known as “chromatin remodeling”. In a eukaryotic cell, a fine balance between condensed and de-condensed states of chromatin helps to maintain an optimum level of gene expression. DNA binding small molecules have the potential to perturb such equilibrium. We present herein the study of an oligopeptide antibiotic distamycin, which binds to the minor groove of B-DNA. Chromatin mobility assays and circular dichroism spectroscopy have been employed to study the effect of distamycin on chromatosomes, isolated from the liver of Sprague-Dawley rats. Our results show that distamycin is capable of remodeling both chromatosomes and reconstituted nucleosomes, and the remodeling takes place in an ATP-independent manner. Binding of distamycin to the linker and nucleosomal DNA culminates in eviction of the linker histone and the formation of a population of off-centered nucleosomes. This hints at a possible corkscrew type motion of the DNA with respect to the histone octamer. Our results indicate that distamycin in spite of remodeling chromatin, inhibits transcription from both DNA and chromatin templates. Therefore, the DNA that is made accessible due to remodeling is either structurally incompetent for transcription, or bound distamycin poses a roadblock for the transcription machinery to advance. PMID:23460895

  11. Validation of High-Resolution Ultrasound Measurements of Intima-Media Thickness of the Radial Artery for the Assessment of Structural Remodeling.

    PubMed

    Stegemann, Emilia; Sansone, R; Stegemann, B; Kelm, M; Heiss, C

    2015-07-01

    Radial artery (RA) intima-media thickness (IMT) could be used to study short- and long-term structural vascular adaptation following transradial cardiac catheterization. We aimed at assessing the reliability and reproducibility of RA-IMT measurement. Using high-resolution ultrasound, we studied RA-IMT in 17 patients, who underwent transradial catheterization via the right RA 1 to 12 months before. Radial artery intima-media thickness was measured in both arms, with the left RA as control. Repeated measurements were performed by 2 examiners and offline analyses were performed by independent blinded interpreters. Radial artery intima-media thickness was highly reliable with an interclass correlation coefficient (ICC) of 0.911 [0.870-0.939], a high examiner (ICCexaminer 0.910 [0.883-0.931]), and interpreter agreement (ICCinterpreter 0.963 [0.954-0.971]). Intima-media thickness at the radial access site was significantly increased compared with the contralateral RA (0.30 ± 0.056 vs 0.41 ± 0.055 mm, P < .00001). Radial artery intima-media thickness can be measured reliably using high-resolution ultrasound. Initial data suggest that transradial catheterization leads to long-term structural adaption processes. PMID:25100749

  12. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  13. Protective role of heme oxygenase-1 in atrial remodeling.

    PubMed

    Yeh, Yung-Hsin; Hsu, Lung-An; Chen, Ying-Hwa; Kuo, Chi-Tai; Chang, Gwo-Jyh; Chen, Wei-Jan

    2016-09-01

    Structural and electrical remodeling in the atrium constitutes the main feature of atrial fibrillation (AF), which is characterized by increased oxidative stress. Heme oxygenase-1 (HO-1) is a potent anti-oxidant system that may provide protection against various oxidative stress-related diseases. The aim of this study is to investigate whether HO-1 has a protective effect on AF-related remodeling. Cultured atrium-derived myocytes (HL-1 cell line) were used to evaluate tachypacing-induced oxidative stress, structural, and electrical remodeling. Transforming growth factor-β (TGF-β) was utilized to assess collagen (a main fibrosis-related protein) expression in atrial fibroblasts. Tachypacing in HL-1 myocytes and treatment of atrial fibroblasts with TGF-β enhanced the expression of HO-1, both of which were mediated by the activation of nuclear factor erythroid-2-related factor 2. Over-expression of HO-1 in HL-1 cells attenuated tachypacing-induced oxidative stress, myofibril degradation, down-regulation of L-type calcium channel, and shortening of action potential duration. Furthermore, HO-1 over-expression in atrial fibroblasts blocked the up-regulation of collagen by TGF-β, implicating a protective role of HO-1 in structural and electrical remodeling in the atrium. In vivo, HO-1(-/-) mice exhibited a higher degree of oxidative stress, myofibril degradation, and collagen deposit in their atria than wild-type mice. Moreover, burst atrial pacing induced a greater susceptibility to AF in HO-1(-/-) mice than in wild-type mice. In conclusion, a negative-feedback regulation of HO-1 in activated atrial myocytes and fibroblasts may provide protection against AF-related remodeling and AF development. PMID:27562817

  14. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos

    PubMed Central

    Popken, Jens; Brero, Alessandro; Koehler, Daniela; Schmid, Volker J; Strauss, Axel; Wuensch, Annegret; Guengoer, Tuna; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2014-01-01

    Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape. PMID:25482066

  15. Adverse reactions to sulfites

    PubMed Central

    Yang, William H.; Purchase, Emerson C.R.

    1985-01-01

    Sulfites are widely used as preservatives in the food and pharmaceutical industries. In the United States more than 250 cases of sulfite-related adverse reactions, including anaphylactic shock, asthmatic attacks, urticaria and angioedema, nausea, abdominal pain and diarrhea, seizures and death, have been reported, including 6 deaths allegedly associated with restaurant food containing sulfites. In Canada 10 sulfite-related adverse reactions have been documented, and 1 death suspected to be sulfite-related has occurred. The exact mechanism of sulfite-induced reactions is unknown. Practising physicians should be aware of the clinical manifestations of sulfite-related adverse reactions as well as which foods and pharmaceuticals contain sulfites. Cases should be reported to health officials and proper advice given to the victims to prevent further exposure to sulfites. The food industry, including beer and wine manufacturers, and the pharmaceutical industry should consider using alternative preservatives. In the interim, they should list any sulfites in their products. PMID:4052897

  16. Dynamin, a membrane remodelling GTPase

    PubMed Central

    Ferguson, Shawn M.; De Camilli, Pietro

    2012-01-01

    Dynamin, the founding member of a family of dynamin-like GTPases (DLPs) implicated in membrane remodelling, has a critical role in endocytic membrane fission events. The use of complementary approaches, including live cell imaging, cell free-studies, X-ray crystallography and genetic studies in mice has greatly advanced our understanding of the mechanisms by which dynamin acts, its essential roles in cell physiology and the specific function of different dynamin isoforms. In addition, several connections between dynamin and human disease have also emerged that highlight specific contributions of this GTPase to the physiology of different tissues. PMID:22233676

  17. Atorvastatin Therapy during the Peri-Infarct Period Attenuates Left Ventricular Dysfunction and Remodeling after Myocardial Infarction

    PubMed Central

    Sato, Hiroshi; Bi, Qiuli; Hunt, Greg; Vincent, Robert J.; Peng, Yong; Shirk, Gregg; Dawn, Buddhadeb; Bolli, Roberto

    2011-01-01

    Although statins impart a number of cardiovascular benefits, whether statin therapy during the peri-infarct period improves subsequent myocardial structure and function remains unclear. Thus, we evaluated the effects of atorvastatin on cardiac function, remodeling, fibrosis, and apoptosis after myocardial infarction (MI). Two groups of rats were subjected to permanent coronary occlusion. Group II (n = 14) received oral atorvastatin (10 mg/kg/d) daily for 3 wk before and 4 wk after MI, while group I (n = 12) received equivalent doses of vehicle. Infarct size (Masson's trichrome-stained sections) was similar in both groups. Compared with group I, echocardiographic left ventricular ejection fraction (LVEF) and fractional area change (FAC) were higher while LV end-diastolic volume (LVEDV) and LV end-systolic and end-diastolic diameters (LVESD and LVEDD) were lower in treated rats. Hemodynamically, atorvastatin-treated rats exhibited significantly higher dP/dtmax, end-systolic elastance (Ees), and preload recruitable stroke work (PRSW) and lower LV end-diastolic pressure (LVEDP). Morphometrically, infarct wall thickness was greater in treated rats. The improvement of LV function by atorvastatin was associated with a decrease in hydroxyproline content and in the number of apoptotic cardiomyocyte nuclei. We conclude that atorvastatin therapy during the peri-infarct period significantly improves LV function and limits adverse LV remodeling following MI independent of a reduction in infarct size. These salubrious effects may be due in part to a decrease in myocardial fibrosis and apoptosis. PMID:21980426

  18. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region.

    PubMed Central

    Gong, Q H; McDowell, J C; Dean, A

    1996-01-01

    Much of our understanding of the process by which enhancers activate transcription has been gained from transient-transfection studies in which the DNA is not assembled with histones and other chromatin proteins as it is in the cell nucleus. To study the activation of a mammalian gene in a natural chromatin context in vivo, we constructed a minichromosome containing the human epsilon-globin gene and portions of the beta-globin locus control region (LCR). The minichromosomes replicate and are maintained at stable copy number in human erythroid cells. Expression of the minichromosomal epsilon-globin gene requires the presence of beta-globin LCR elements in cis, as is the case for the chromosomal gene. We determined the chromatin structure of the epsilon-globin gene in both the active and inactive states. The transcriptionally inactive locus is covered by an array of positioned nucleosomes extending over 1,400 bp. In minichromosomes with a (mu)LCR or DNase I-hypersensitive site 2 (HS2) which actively transcribe the epsilon-globin gene, the nucleosome at the promoter is altered or disrupted while positioning of nucleosomes in the rest of the locus is retained. All or virtually all minichromosomes are simultaneously hypersensitive to DNase I both at the promoter and at HS2. Transcriptional activation and promoter remodeling, as well as formation of the HS2 structure itself, depended on the presence of the NF-E2 binding motif in HS2. The nucleosome at the promoter which is altered upon activation is positioned over the transcriptional elements of the epsilon-globin gene, i.e., the TATA, CCAAT, and CACCC elements, and the GATA-1 site at -165. The simple availability of erythroid transcription factors that recognize these motifs is insufficient to allow expression. As in the chromosomal globin locus, regulation also occurs at the level of chromatin structure. These observations are consistent with the idea that one role of the beta-globin LCR is to maintain promoters free

  19. Scientists Trace Adversity's Toll

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2012-01-01

    The stress of a spelling bee or a challenging science project can enhance a student's focus and promote learning. But the stress of a dysfunctional or unstable home life can poison a child's cognitive ability for a lifetime, according to new research. Those studies show that stress forms the link between childhood adversity and poor academic…

  20. Osteocyte-Driven Bone Remodeling

    PubMed Central

    Bellido, Teresita

    2013-01-01

    Osteocytes, the most abundant cells in bone, have been long postulated to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. The discovery that the inhibitor of bone formation sclerostin is primarily expressed in osteocytes in bone and it is downregulated by anabolic stimuli provided a mechanism by which osteocytes influence the activity of osteoblasts. Advances of the last few years provided experimental evidence demonstrating that osteocytes also participate in the recruitment of osteoclasts and the initiation of bone remodeling. Apoptotic osteocytes trigger yet to be identified signals that attract osteoclast precursors to specific areas of bone, which in turn differentiate to mature, bone resorbing osteoclasts. Osteocytes are also the source of molecules that regulate generation and activity of osteoclasts, such as OPG and RANKL; and genetic manipulations of the mouse genome leading to loss or gain of function, or to altered expression of either molecule in osteocytes, markedly affect bone resorption. This review highlights these investigations and discusses how the novel concept of osteocyte-driven bone resorption and formation impacts our understanding of the mechanisms by which current therapies control bone remodeling. PMID:24002178

  1. HDL biogenesis, remodeling, and catabolism.

    PubMed

    Zannis, Vassilis I; Fotakis, Panagiotis; Koukos, Georgios; Kardassis, Dimitris; Ehnholm, Christian; Jauhiainen, Matti; Chroni, Angeliki

    2015-01-01

    In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research. PMID:25522986

  2. Intracranial pressure and skull remodeling

    PubMed Central

    McCulley, Timothy J.; Jordan Piluek, W.; Chang, Jessica

    2014-01-01

    In this article we review bony changes resulting from alterations in intracranial pressure (ICP) and the implications for ophthalmologists and the patients for whom we care. Before addressing ophthalmic implications, we will begin with a brief overview of bone remodeling. Bony changes seen with chronic intracranial hypotension and hypertension will be discussed. The primary objective of this review was to bring attention to bony changes seen with chronic intracranial hypotension. Intracranial hypotension skull remodeling can result in enophthalmos. In advanced disease enophthalmos develops to a degree that is truly disfiguring. The most common finding for which subjects are referred is ocular surface disease, related to loss of contact between the eyelids and the cornea. Other abnormalities seen include abnormal ocular motility and optic atrophy. Recognition of such changes is important to allow for diagnosis and treatment prior to advanced clinical deterioration. Routine radiographic assessment of bony changes may allow for the identification of patient with abnormal ICP prior to the development of clinically significant disease. PMID:25859141

  3. Induction of vascular remodeling in the lung by chronic house dust mite exposure.

    PubMed

    Rydell-Törmänen, Kristina; Johnson, Jill R; Fattouh, Ramzi; Jordana, Manel; Erjefält, Jonas S

    2008-07-01

    Structural changes to the lung are associated with chronic asthma. In addition to alterations to the airway wall, asthma is associated with vascular modifications, although this aspect of remodeling is poorly understood. We sought to evaluate the character and kinetics of vascular remodeling in response to chronic aeroallergen exposure. Because many ovalbumin-driven models used to investigate allergic airway disease do so in the absence of persistent airway inflammation, we used a protocol of chronic respiratory exposure to house dust mite extract (HDME), which has been shown to induce persistent airway inflammation consistent with that seen in humans with asthma. Mice were exposed to HDME intranasally for 7 or 20 consecutive weeks, and resolution of the inflammatory and remodeling response to allergen was investigated 4 weeks after the end of a 7-week exposure protocol. Measures of vascular remodeling, including total collagen deposition, procollagen I production, endothelial and smooth muscle cell proliferation, smooth muscle area, and presence of myofibroblasts, were investigated histologically in lung vessels of different sizes and locations. We observed an increase in total collagen content, which did not resolve upon cessation of allergen exposure. Other parameters were significantly increased after 7 and/or 20 weeks of allergen exposure but returned to baseline after allergen withdrawal. We conclude that respiratory HDME exposure induces airway remodeling and pulmonary vascular remodeling, and, in accordance with airway remodeling, some components of these structural changes may be irreversible. PMID:18314535

  4. An Analysis of the Residential Remodeling Occupation.

    ERIC Educational Resources Information Center

    Scruggs, Kenneth

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the residential remodeling occupation. The analysis only briefly covers the many areas of residential remodeling. The document opens with a brief introduction followed by a job description. The bulk of the…

  5. Bone remodeling and silicon deficiency in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alveolar bone undergoes continuous remodeling to meet physiologic and functional demands. The aim of the present work was to evaluate histologically and histomorphometrically the effect of silicon deficiency on bone modeling and remodeling in the periodontal cortical plate. Two groups of weaning mal...

  6. Multiscale Simulation of Protein Mediated Membrane Remodeling

    PubMed Central

    Ayton, Gary S.; Voth, Gregory A.

    2009-01-01

    Proteins interacting with membranes can result in substantial membrane deformations and curvatures. This effect is known in its broadest terms as membrane remodeling. This review article will survey current multiscale simulation methodologies that have been employed to examine protein-mediated membrane remodeling. PMID:19922811

  7. Characterizing matrix remodeling in collagen gels using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Levitz, David; Hinds, Monica T.; Hanson, Stephen R.; Jacques, Steven L.

    2010-02-01

    Optical coherence tomography (OCT) has shown promise at non-destructively characterizing engineered tissues such as collagen gels. However, as the collagen gels develop, the OCT images lose contrast of structures as the gels develop, making visual assessment difficult. Our group proposed quantitatively characterizing these gels by fitting the optical properties from the OCT signals. In this paper, we imaged collagen gels seeded with smooth muscle cells (SMCs) over a 5-day period and used the data to measure their optical properties. Our results showed that over time, the reflectivity of the samples increased 10-fold, corresponding to a decrease in anisotropy factor g, without much change in the scattering coefficient μs. Overall, the optical properties appeared to be dominated by scattering from the collagen matrix, not the cells. However, SMCs remodeled the collagen matrix, and this collagen remodeling by the cells is what causes the observed changes in optical properties. Moreover, the data showed that the optical properties were sensitive to the activity of matrix metalloproteinases (MMPs), enzymes that break down local collagen fibrils into smaller fragments. Blocking MMPs in the SMC gels greatly impeded both the remodeling process and change in optical properties at day 5. Treating day 1 acellular gels with MMP-8 for 3 hr managed to partially reproduce the remodeling observed in SMC gels at day 5. Altogether, we conclude that matrix remodeling in general, and MMPs specifically, greatly affect the local optical properties of the sample, and OCT is a unique tool that can assess MMP activity in collagen gels both non-destructively and label free.

  8. Effect of Microvascular Obstruction and Intramyocardial Hemorrhage by CMR on LV Remodeling and Outcomes After Myocardial Infarction

    PubMed Central

    Hamirani, Yasmin S.; Wong, Andrew; Kramer, Christopher M.; Salerno, Michael

    2015-01-01

    The goal of this systematic analysis is to provide a comprehensive review of the current cardiac magnetic resonance data on microvascular obstruction (MVO) and intramyocardial hemorrhage (IMH). Data related to the association of MVO and IMH in patients with acute myocardial infarction (MI) with left ventricular (LV) function, volumes, adverse LV remodeling, and major adverse cardiac events (MACE) were critically analyzed. MVO is associated with a lower ejection fraction, increased ventricular volumes and infarct size, and a greater risk of MACE. Late MVO is shown to be a stronger prognostic marker for MACE and cardiac death, recurrent MI, congestive heart failure/heart failure hospitalization, and follow-up LV end-systolic volumes than early MVO. IMH is associated with LV remodeling and MACE on pooled analysis, but because of limited data and heterogeneity in study methodology, the effects of IMH on remodeling require further investigation. PMID:25212800

  9. Perspectives on biomechanical growth and remodeling mechanisms in glaucoma⋆

    PubMed Central

    Grytz, Rafael; Girkin, Christopher A.; Libertiaux, Vincent; Downs, J. Crawford

    2012-01-01

    Glaucoma is a blinding diseases in which damage to the axons results in loss of retinal ganglion cells. Experimental evidence indicates that chronic intraocular pressure elevation initiates axonal insult at the level of the lamina cribrosa. The lamina cribrosa is a porous collagen structure through which the axons pass on their path from the retina to the brain. Recent experimental studies revealed the extensive structural changes of the lamina cribrosa and its surrounding tissues during the development and progression of glaucoma. In this perspective paper we review the experimental evidence for growth and remodeling mechanisms in glaucoma including adaptation of tissue anisotropy, tissue thickening/thinning, tissue elongation/shortening and tissue migration. We discuss the existing predictive computational approaches that try to elucidate the potential biomechanical basis of theses growth and remodeling mechanisms and highlight open questions, challenges, and avenues for further development. PMID:23109748

  10. SUN4 is essential for nuclear remodeling during mammalian spermiogenesis.

    PubMed

    Calvi, Alessandra; Wong, Arnette Shi Wei; Wright, Graham; Wong, Esther Sook Miin; Loo, Tsui Han; Stewart, Colin L; Burke, Brian

    2015-11-15

    One of the more dramatic examples of cellular reorganization occurs during spermiogenesis in which a roughly spherical spermatid is transformed into a mature sperm cell. A highlight of this process involves nuclear remodeling whereby the round spermatid nucleus is sculpted into an elongated and polar structure. This transformation in nuclear architecture features chromatin condensation, changes in the composition and organization of the nuclear lamina and redistribution and elimination of nuclear pore complexes. The manchette, a cytoplasmic microtubule-based structure is thought to play a crucial role in the remodeling process. Here we show that SUN4, a spermatid nuclear membrane protein has an essential function in coupling the manchette to the nuclear periphery. In the absence of SUN4, manchette microtubules appear highly disorganized and the nucleus itself fails to elongate. Consequently, mice deficient in SUN4 display globozoospermia with associated infertility. PMID:26417726

  11. CHANGES IN CARBOHYDRATE COORDINATED PARTITIONING AND CELL WALL REMODELING WITH STRESS-INDUCED PATHOGENESIS IN WHEAT SHEATHS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls are dynamic structures that undergo specific remodeling events during plant defense responses. Changes in the coordinated partitioning of carbohydrates between the cytosol and the extracellular milieu may direct sheath cell wall remodeling that occurs in a wheat-endophytic interacti...

  12. Assays for chromatin remodeling during nucleotide excision repair in Saccharomyces cerevisiae

    PubMed Central

    Zhang, Ling; Jones, Kristi; Smerdon, Michael J.; Gong, Feng

    2009-01-01

    How DNA repair proteins interact with the dynamic structure of chromatin is an emerging question. Chromatin structure impedes the access of repair proteins to sites of DNA damage. Several recent studies have implicated chromatin remodeling complexes in DNA repair. In this report we summarize the methods we used to investigate chromatin remodeling during nucleotide excision repair (NER) in vivo. We describe a procedure to analyze UV-induced chromatin remodeling at the silent mating-type locus HML using isolated nuclei from UV treated yeast cells. In addition, a method to capture transient protein-protein associations in chromatin is outlined. We have used the methods described here to demonstrate that the SWI/SNF chromatin remodeling complex is involved in chromatin rearrangement during NER. PMID:19336254

  13. Thyroid Hormone and Vascular Remodeling.

    PubMed

    Ichiki, Toshihiro

    2016-01-01

    Both hyperthyroidism and hypothyroidism affect the cardiovascular system. Hypothyroidism is known to be associated with enhanced atherosclerosis and ischemic heart diseases. The accelerated atherosclerosis in the hypothyroid state has been traditionally ascribed to atherogenic lipid profile, diastolic hypertension, and impaired endothelial function. However, recent studies indicate that thyroid hormone has direct anti-atherosclerotic effects, such as production of nitric oxide and suppression of smooth muscle cell proliferation. These data suggest that thyroid hormone inhibits atherogenesis through direct effects on the vasculature as well as modification of risk factors for atherosclerosis. This review summarizes the basic and clinical studies on the role of thyroid hormone in vascular remodeling. The possible application of thyroid hormone mimetics to the therapy of hypercholesterolemia and atherosclerosis is also discussed. PMID:26558400

  14. Calcium signalling remodelling and disease.

    PubMed

    Berridge, Michael J

    2012-04-01

    A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca2+ signals being set either too high or too low. Such subtle dysregulation of Ca2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease. PMID:22435804

  15. Making Microvascular Networks Work: Angiogenesis, Remodeling, and Pruning

    PubMed Central

    Secomb, Timothy W.

    2014-01-01

    The adequate and efficient functioning of the microcirculation requires not only numerous vessels providing a large surface area for transport but also a structure that provides short diffusion distances from capillaries to tissue and efficient distribution of convective blood flow. Theoretical models show how a combination of angiogenesis, remodeling, and pruning in response to hemodynamic and metabolic stimuli, termed “angioadaptation,” generates well organized, functional networks. PMID:25362638

  16. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    PubMed

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively. PMID:26981458

  17. [Adverse reaction of pseudoephedrine].

    PubMed

    López Lois, G; Gómez Carrasco, J A; García de Frías, E

    2005-04-01

    We present a case of a 7 years old girl who developed an episode of myoclonic movements and tremors after being medicated with a not well quantified amount of a pseudoephedrine/antihistamine combination. We want to highlight the potential toxicity of pseudoephedrine, usually administered as part of cold-syrup preparations which are used for symptomatic treatment of upper respiratory tract cough and congestion associated with the common cold and allergic rhinitis. Although these products are generally considered to be safe either by physicians and parents, we can't underestimate the potential adverse events and toxic effects that can occur when administering these medications. PMID:15826569

  18. Pay attention to cardiac remodeling in cancer cachexia.

    PubMed

    Zheng, Yawen; Chen, Han; Li, Xiaoqing; Sun, Yuping

    2016-07-01

    Cancer cachexia is a complex and multifaceted disease state characterized by fatigue, weakness, and loss of skeletal muscle and adipose tissue. Recently, the profound negative effects of cancer cachexia on cardiac tissue draw much attention, which is likely to contribute to mortality in tumor-bearing animals. The mechanism of cardiac remodeling is not so clear and involved with a series of molecular alterations. In cancer cachexia model, progressive loss of left ventricular mass and decrease in myocardial function is observed and cardiac autonomic functions are altered. Levels of several emerging cardiovascular neurohormones are found elevating in patients with cancer, but it is still controversial whether the changes could reflect the heart injury accurately. The remedy for cardiac remodeling has been explored. It is showed that exercise can modulate signaling pathways activated by wasting cytokines and impact on the resulting outcomes on heart adaptation. Some drugs, such as bisoprolol, spironolactone, perindopril, tandospirone, and simvastatin, can mitigate adverse effects of the tumor on the heart and prolong survival. PMID:27108265

  19. Screening for adverse events.

    PubMed

    Karson, A S; Bates, D W

    1999-02-01

    Adverse events (AEs) in medical patients are common, costly, and often preventable. Development of quality improvement programs to decrease the number and impact of AEs demands effective methods for screening for AEs on a routine basis. Here we describe the impact, types, and potential causes of AEs and review various techniques for identifying AEs. We evaluate the use of generic screening criteria in detail and describe a recent study of the sensitivity and specificity of individual generic screening criteria and combinations of these criteria. In general, the most sensitive screens were the least specific and no small sub-set of screens identified a large percentage of adverse events. Combinations of screens that were limited to administrative data were the least expensive, but none were particularly sensitive, although in practice they might be effective since routine screening is currently rarely done. As computer systems increase in sophistication sensitivity will improve. We also discuss recent studies that suggest that programs that screen for and identify AEs can be useful in reducing AE rates. While tools for identifying AEs have strengths and weaknesses, they can play an important role in organizations' quality improvement portfolios. PMID:10468381

  20. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer.

    PubMed

    Malik, Ruchi; Lelkes, Peter I; Cukierman, Edna

    2015-04-01

    The extracellular matrix (ECM) provides structural and biochemical signals that regulate cell function. A well-controlled balance between cells and surroundings (i.e., dynamic reciprocity) is crucial for regulating ECM architecture. During cancer progression, epithelial cells undergo genetic alterations which, together with stromal changes including ECM remodeling, disturb the homeostatic dynamics of the epithelium. A parallel organization of stromal ECM fibrils is associated with tumorigenic responses. In an emerging paradigm, continuous and progressive regulation via mechanical forces and aberrant signaling are believed to be responsible for tumor-associated ECM remodeling. In this review we discuss the discrete biomechanical and biochemical mechanisms that underlie these architectural changes and highlight their particular relevance to the regulation of the alignment of ECM in the mesenchymal stroma. PMID:25708906

  1. BIOMECHANICAL and BIOCHEMICAL REMODELING of STROMAL EXTRACELLULAR MATRIX IN CANCER

    PubMed Central

    Malik, Ruchi; Lelkes, Peter I; Cukierman, Edna

    2015-01-01

    The extracellular matrix (ECM) provides structural and biochemical signals that regulate cell function. A well-controlled balance between cells and surroundings (i.e., Dynamic Reciprocity) is crucial for regulating ECM architecture. During cancer progression, epithelial cells undergo genetic alterations, which together with stromal changes, including ECM remodeling, disturb the homeostatic dynamics of the epithelium. A parallel organization of stromal ECM fibrils is associated with tumorigenic responses. In an emerging paradigm, continuous and progressive regulation via mechanical forces and aberrant signaling are believed to be responsible for tumor-associated ECM remodeling. In this review, we discuss the discrete biomechanical and biochemical mechanisms that underlie these architectural changes and highlight their particular relevance to the regulation of the alignment of ECM in the mesenchymal stroma. PMID:25708906

  2. ISWI chromatin remodeling complexes in the DNA damage response

    PubMed Central

    Aydin, Özge Z; Vermeulen, Wim; Lans, Hannes

    2014-01-01

    Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA. PMID:25486562

  3. The solid state environment orchestrates embryonic development and tissue remodeling

    NASA Technical Reports Server (NTRS)

    Damsky, C. H.; Moursi, A.; Zhou, Y.; Fisher, S. J.; Globus, R. K.

    1997-01-01

    Cell interactions with extracellular matrix and with other cells play critical roles in morphogenesis during development and in tissue homeostasis and remodeling throughout life. Extracellular matrix is information-rich, not only because it is comprised of multifunctional structural ligands for cell surface adhesion receptors, but also because it contains peptide signaling factors, and proteinases and their inhibitors. The functions of these groups of molecules are extensively interrelated. In this review, three primary cell culture models are described that focus on adhesion receptors and their roles in complex aspects of morphogenesis and remodeling: the regulation of proteinase expression by fibronectin and integrins in synovial fibroblasts; the regulation of osteoblast differentiation and survival by fibronectin, and the regulation of trophoblast differentiation and invasion by integrins, cadherins and immunoglobulin family adhesion receptors.

  4. Pulmonary arterial remodeling revealed by microfocal x-ray tomography

    NASA Astrophysics Data System (ADS)

    Karau, Kelly L.; Molthen, Robert C.; Johnson, Roger H.; Dhyani, Anita H.; Haworth, Steven T.; Dawson, Christopher A.

    2001-05-01

    Animal models and micro-CT imaging are useful for understanding the functional consequences of, and identifying the genes involved in, the remodeling of vascular structures that accompanies pulmonary vascular disease. Using a micro-CT scanner to image contrast-enhanced arteries in excised lungs from fawn hooded rats (a strain genetically susceptible to hypoxia induced pulmonary hypertension), we found that portions of the pulmonary arterial tree downstream from a given diameter were morphometrically indistinguishable. This 'self-consistency' property provided a means for summarizing the pulmonary arterial tree architecture and mechanical properties using a parameter vector obtained from measurements of the contiguous set of vessel segments comprising the longest (principal) pathway and its branches over a range of vascular pressures. This parameter vector was used to characterize the pulmonary vascular remodeling that occurred in rats exposed to a hypoxic (11.5% oxygen) environment and provided the input to a hemodynamic model relating structure to function. The major effect of the remodeling was a longitudinally (pulmonary artery to arterioles) uniform decrease in vessel distensibility that resulted in a 90% increase in arterial resistance. Despite the almost uniform change in vessel distensibility, over 50% of the resistance increase was attributable to vessels with unstressed diameters less than 125 microns.

  5. Reconstructing protein remodeled membranes in molecular detail from mesoscopic models

    PubMed Central

    Lyman, Edward; Cui, Haosheng; Voth, Gregory A.

    2014-01-01

    We present a method for “inverse coarse graining,” rebuilding a higher resolution model from a lower resolution one, in order to rebuild protein coats for remodeled membranes of complex topology. The specific case of membrane remodeling by N-BAR domain containing proteins is considered here, although the overall method is general and thus applicable to other membrane remodeling phenomena. Our approach begins with a previously developed, discretized mesoscopic continuum membrane model (EM2) which has been shown to capture the reticulated membrane topologies often observed for N-BAR/liposome systems by electron microscopy (EM). The information in the EM2 model — directions of the local curvatures and a low resolution sample of the membrane surface — is then used to construct a coarse-grained (CG) system with one site per lipid and 26 sites per protein. We demonstrate the approach on pieces of EM2 structures with three different topologies that have been observed by EM: A tubule, a “Y” junction, and a torus. We show that the approach leads to structures that are stable under subsequent constant temperature CG simulation, and end by considering the future application of the methodology as a hybrid approach that combines experimental information with computer modeling. PMID:21503332

  6. Gender Differences in Non-Ischemic Myocardial Remodeling: Are They Due to Estrogen Modulation of Cardiac Mast Cells and/or Membrane Type 1 Matrix Metalloproteinase

    PubMed Central

    Janicki, Joseph S.; Spinale, Francis G.; Levick, Scott P.

    2013-01-01

    SUMMARY This review is focused on gender differences in cardiac remodeling secondary to sustained increases in cardiac volume (VO) and generated pressure (PO). Estrogen has been shown to favorably alter the course of VO-induced remodeling. That is, the VO-induced increased extracellular matrix proteolytic activity and mast cell degranulation responsible for the adverse cardiac remodeling in males and ovariectomized rodents do not occur in intact premenopausal females. While less is known regarding the mechanisms responsible for female cardioprotection in PO-induced stress, gender differences in remodeling have been reported indicating the ability of premenopausal females to adequately compensate. In view of the fact that, in male mice with PO, mast cells have been shown to play a role in the adverse remodeling suggests favorable estrogen modification of mast cell phenotype may also be responsible for cardioprotection in females with PO. Thus, while evidence is accumulating regarding premenopausal females being cardioprotected; there remains the need for in-depth studies to identify critical downstream molecular targets that are under the regulation of estrogen and relevant to cardiac remodeling. Such studies would result in the development of therapy which provides cardioprotection while avoiding the adverse effects of systemic estrogen delivery. PMID:23417570

  7. Collagen remodeling in photo-thermal damaged skin with optical coherence tomography and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shu-lian; Li, Hui; Zhang, Xiao-man; Yu, Lili

    2009-08-01

    Cutaneous photo-thermal damage is the common damages in clinical medicine; it is a complex and dynamic process that follows an orderly sequence of events. The sequence can be roughly divided into three distinct, yet sequentially overlapping phases-inflammation, granulation tissue formation, and tissue remodeling. Characteristic structural changes associated with each phase could provide a basis for photo-thermal damage assessment with imaging technologies. Monitoring the skin tissue response during the skin after irradiated by laser and tracing the process of skin remodeling would help to understand the mechanism of photo-thermal. Optical coherence tomography (OCT) and multiphoton microscopy (MPM) imaging were used to observe the process of the collagen remodeling in mouse dermis photo-thermal injured which after irradiated by intense pulsed light source (IPLs) in this paper. Our finding showed that the OCT and MPM techniques can image the process of collagen remodeling in mouse dermis.

  8. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair

    PubMed Central

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J.

    2012-01-01

    DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs) are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER) in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo. PMID:23109894

  9. Lead Poisoning in Remodeling of Old Homes

    ERIC Educational Resources Information Center

    Barnes, Bart

    1973-01-01

    An article based on Dr. Muriel D. Wolf's study of elevated blood lead levels in children and adults present during the remodeling of old homes. Lead poisoning examples, symptoms, and precautions are given. (ST)

  10. Bone Remodeling Under Pathological Conditions.

    PubMed

    Xiao, Wenmei; Li, Shuai; Pacios, Sandra; Wang, Yu; Graves, Dana T

    2016-01-01

    Bone is masterfully programmed to repair itself through the coupling of bone formation following bone resorption, a process referred to as coupling. In inflammatory or other conditions, the balance between bone resorption and bone formation shifts so that a net bone loss results. This review focuses on four pathologic conditions in which remodeling leads to net loss of bone, postmenopausal osteoporosis, arthritis, periodontal disease, and disuse bone loss, which is similar to bone loss associated with microgravity. In most of these there is an acceleration of the resorptive process due to increased formation of bone metabolic units. This initially leads to a net bone loss since the time period of resorption is much faster than the time needed for bone formation that follows. In addition, each of these processes is characterized by an uncoupling that leads to net bone loss. Mechanisms responsible for increased rates of bone resorption, i.e. the formation of more bone metabolic units, involve enhanced expression of inflammatory cytokines and increased expression of RANKL. Moreover, the reasons for uncoupling are discussed which range from a decrease in expression of growth factors and bone morphogenetic proteins to increased expression of factors that inhibit Wnt signaling. PMID:26599114

  11. Remodeling kitchens: A smorgasbord of energy savings

    SciTech Connect

    Sullivan, B.

    1995-09-01

    The kitchen is often the busiest room in the house and is most likely to remodeled repeatedly over the life of a house. The kitchen also represents a concentration of household energy use. Remodeling a kitchen can mean introducing a host of new energy-saving features or making major energy blunders. This article discusses ways to utilized the best features: layout and design; appliances; lighting; windows and skylights; ventilation; insulation and air sealing; water; household recycling; green building materials.

  12. Effect of material damping on bone remodelling.

    PubMed

    Misra, J C; Samanta, S

    1987-01-01

    This paper considers the effect of internal material damping on the stresses, strains, and surface and internal remodelling behaviour in a section of axisymmetrical bone with a force-fitted axially oriented medullary pin. The bone response to several loading situations is modelled using visco-elastic equations. An approximate method is developed to analyse the proposed mathematical model. By considering a numerical example, the effect of material damping on the remodelling stresses is quantified. PMID:3584150

  13. Chromatin remodeling by nucleosome disassembly in vitro.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2006-02-28

    The RSC chromatin-remodeling complex completely disassembles a nucleosome in the presence of the histone chaperone Nap1 and ATP. Disassembly occurs in a stepwise manner, with the removal of H2A/H2B dimers, followed by the rest of the histones and the release of naked DNA. RSC and related chromatin-remodeling complexes may be responsible for the removal of promoter nucleosomes during transcriptional activation in vivo. PMID:16492771

  14. Biomechanics of vascular mechanosensation and remodeling

    PubMed Central

    Baeyens, Nicolas; Schwartz, Martin A.

    2016-01-01

    Flowing blood exerts a frictional force, fluid shear stress (FSS), on the endothelial cells that line the blood and lymphatic vessels. The magnitude, pulsatility, and directional characteristics of FSS are constantly sensed by the endothelium. Sustained increases or decreases in FSS induce vessel remodeling to maintain proper perfusion of tissue. In this review, we discuss these mechanisms and their relevance to physiology and disease, and propose a model for how information from different mechanosensors might be integrated to govern remodeling. PMID:26715421

  15. ISMP Adverse Drug Reactions

    PubMed Central

    2013-01-01

    The purpose of this feature is to heighten awareness of specific adverse drug reactions (ADRs), discuss methods of prevention, and promote reporting of ADRs to the US Food and Drug Administration’s (FDA’s) MedWatch program (800-FDA-1088). If you have reported an interesting, preventable ADR to MedWatch, please consider sharing the account with our readers. Write to Dr. Mancano at ISMP, 200 Lakeside Drive, Suite 200, Horsham, PA 19044 (phone: 215-707-4936; e-mail: mmancano@temple.edu). Your report will be published anonymously unless otherwise requested. This feature is provided by the Institute for Safe Medication Practices (ISMP) in cooperation with the FDA’s MedWatch program and Temple University School of Pharmacy. ISMP is an FDA MedWatch partner. PMID:24421544

  16. Anti‐Remodeling and Anti‐Fibrotic Effects of the Neuregulin‐1β Glial Growth Factor 2 in a Large Animal Model of Heart Failure

    PubMed Central

    Galindo, Cristi L.; Kasasbeh, Ehab; Murphy, Abigail; Ryzhov, Sergey; Lenihan, Sean; Ahmad, Farhaan A.; Williams, Philip; Nunnally, Amy; Adcock, Jamie; Song, Yanna; Harrell, Frank E.; Tran, Truc‐Linh; Parry, Tom J.; Iaci, Jen; Ganguly, Anindita; Feoktistov, Igor; Stephenson, Matthew K.; Caggiano, Anthony O.; Sawyer, Douglas B.; Cleator, John H.

    2014-01-01

    Background Neuregulin‐1β (NRG‐1β) is a growth factor critical for cardiac development and repair with therapeutic potential for heart failure. We previously showed that the glial growth factor 2 (GGF2) isoform of NRG‐1β improves cardiac function in rodents after myocardial infarction (MI), but its efficacy in a large animal model of cardiac injury has not been examined. We therefore sought to examine the effects of GGF2 on ventricular remodeling, cardiac function, and global transcription in post‐MI swine, as well as potential mechanisms for anti‐remodeling effects. Methods and Results MI was induced in anesthetized swine (n=23) by intracoronary balloon occlusion. At 1 week post‐MI, survivors (n=13) received GGF2 treatment (intravenous, biweekly for 4 weeks; n=8) or were untreated (n=5). At 5 weeks post‐MI, fractional shortening was higher (32.8% versus 25.3%, P=0.019), and left ventricular (LV) end‐diastolic dimension lower (4.5 versus 5.3 cm, P=0.003) in GGF2‐treated animals. Treatment altered expression of 528 genes, as measured by microarrays, including collagens, basal lamina components, and matricellular proteins. GGF2‐treated pigs exhibited improvements in LV cardiomyocyte mitochondria and intercalated disk structures and showed less fibrosis, altered matrix structure, and fewer myofibroblasts (myoFbs), based on trichrome staining, electron microscopy, and immunostaining. In vitro experiments with isolated murine and rat cardiac fibroblasts demonstrate that NRG‐1β reduces myoFbs, and suppresses TGFβ‐induced phospho‐SMAD3 as well as αSMA expression. Conclusions These results suggest that GGF2/NRG‐1β prevents adverse remodeling after injury in part via anti‐fibrotic effects in the heart. PMID:25341890

  17. [Cutaneous adverse drug reactions].

    PubMed

    Lebrun-Vignes, B; Valeyrie-Allanore, L

    2015-04-01

    Cutaneous adverse drug reactions (CADR) represent a heterogeneous field including various clinical patterns without specific features suggesting drug causality. Exanthematous eruptions, urticaria and vasculitis are the most common forms of CADR. Fixed eruption is uncommon in western countries. Serious reactions (fatal outcome, sequelae) represent 2% of CADR: bullous reactions (Stevens-Johnson syndrome, toxic epidermal necrolysis), DRESS (drug reaction with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome) and acute generalized exanthematous pustulosis (AGEP). These forms must be quickly diagnosed to guide their management. The main risk factors are immunosuppression, autoimmunity and some HLA alleles in bullous reactions and DRESS. Most systemic drugs may induce cutaneous adverse reactions, especially antibiotics, anticonvulsivants, antineoplastic drugs, non-steroidal anti-inflammatory drugs, allopurinol and contrast media. Pathogenesis includes immediate or delayed immunologic mechanism, usually not related to dose, and pharmacologic/toxic mechanism, commonly dose-dependent or time-dependent. In case of immunologic mechanism, allergologic exploration is possible to clarify drug causality, with a variable sensitivity according to the drug and to the CADR type. It includes epicutaneous patch testing, prick test and intradermal test. However, no in vivo or in vitro test can confirm the drug causality. To determine the cause of the eruption, a logical approach based on clinical characteristics, chronologic factors and elimination of differential diagnosis is required, completed with a literature search. A reporting to pharmacovigilance network is essential in case of a serious CADR whatever the suspected drug and in any case if the involved drug is a newly marketed one or unusually related to cutaneous reactions. PMID:25458866

  18. Dynamics of the Ethanolamine Glycerophospholipid Remodeling Network

    PubMed Central

    Hermansson, Martin; Somerharju, Pentti; Chuang, Jeffrey

    2012-01-01

    Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of ethanolamine glycerophospholipid (PE) remodeling, using data from pulse-chase experiments and a novel bioinformatic network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1) sn1 and sn2 acyl positions are independently remodeled; (2) remodeling reaction rates are constant over time; and (3) acyl donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In constrast, fits of randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the established prevalence of saturated and unsaturated chains in the respective positions. The present study thus demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data. PMID:23251394

  19. Mitochondria, myocardial remodeling, and cardiovascular disease.

    PubMed

    Verdejo, Hugo E; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomás; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Munoz, Juan Pablo; Garcia, Lorena; Castro, Pablo F; Lavandero, Sergio

    2012-12-01

    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease. PMID:22972531

  20. Epigenomic regulation of oncogenesis by chromatin remodeling.

    PubMed

    Kumar, R; Li, D-Q; Müller, S; Knapp, S

    2016-08-25

    Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy. PMID:26804164

  1. Chromatin remodeling effects on enhancer activity.

    PubMed

    García-González, Estela; Escamilla-Del-Arenal, Martín; Arzate-Mejía, Rodrigo; Recillas-Targa, Félix

    2016-08-01

    During organism development, a diversity of cell types emerges with disparate, yet stable profiles of gene expression with distinctive cellular functions. In addition to gene promoters, the genome contains enhancer regulatory sequences, which are implicated in cellular specialization by facilitating cell-type and tissue-specific gene expression. Enhancers are DNA binding elements characterized by highly sophisticated and various mechanisms of action allowing for the specific interaction of general and tissue-specific transcription factors (TFs). However, eukaryotic organisms package their genetic material into chromatin, generating a physical barrier for TFs to interact with their cognate sequences. The ability of TFs to bind DNA regulatory elements is also modulated by changes in the chromatin structure, including histone modifications, histone variants, ATP-dependent chromatin remodeling, and the methylation status of DNA. Furthermore, it has recently been revealed that enhancer sequences are also transcribed into a set of enhancer RNAs with regulatory potential. These interdependent processes act in the context of a complex network of chromatin interactions, which together contributes to a renewed vision of how gene activation is coordinated in a cell-type-dependent manner. In this review, we describe the interplay between genetic and epigenetic aspects associated with enhancers and discuss their possible roles on enhancer function. PMID:27026300

  2. Remodeling of the Methylation Landscape in Breast Cancer Metastasis

    PubMed Central

    Reyngold, Marsha; Turcan, Sevin; Giri, Dilip; Kannan, Kasthuri; Walsh, Logan A.; Viale, Agnes; Drobnjak, Marija; Vahdat, Linda T.; Lee, William; Chan, Timothy A.

    2014-01-01

    The development of breast cancer metastasis is accompanied by dynamic transcriptome changes and dramatic alterations in nuclear and chromatin structure. The basis of these changes is incompletely understood. The DNA methylome of primary breast cancers contribute to transcriptomic heterogeneity and different metastatic behavior. Therefore we sought to characterize methylome remodeling during regional metastasis. We profiled the DNA methylome and transcriptome of 44 matched primary breast tumors and regional metastases. Striking subtype-specific patterns of metastasis-associated methylome remodeling were observed, which reflected the molecular heterogeneity of breast cancers. These divergent changes occurred primarily in CpG island (CGI)-poor areas. Regions of methylome reorganization shared by the subtypes were also observed, and we were able to identify a metastasis-specific methylation signature that was present across the breast cancer subclasses. These alterations also occurred outside of CGIs and promoters, including sequences flanking CGIs and intergenic sequences. Integrated analysis of methylation and gene expression identified genes whose expression correlated with metastasis-specific methylation. Together, these findings significantly enhance our understanding of the epigenetic reorganization that occurs during regional breast cancer metastasis across the major breast cancer subtypes and reveal the nature of methylome remodeling during this process. PMID:25083786

  3. Arrhythmogenic and metabolic remodelling of failing human heart.

    PubMed

    Gloschat, C R; Koppel, A C; Aras, K K; Brennan, J A; Holzem, K M; Efimov, I R

    2016-07-15

    Heart failure (HF) is a major cause of morbidity and mortality worldwide. The global burden of HF continues to rise, with prevalence rates estimated at 1-2% and incidence approaching 5-10 per 1000 persons annually. The complex pathophysiology of HF impacts virtually all aspects of normal cardiac function - from structure and mechanics to metabolism and electrophysiology - leading to impaired mechanical contraction and sudden cardiac death. Pharmacotherapy and device therapy are the primary methods of treating HF, but neither is able to stop or reverse disease progression. Thus, there is an acute need to translate basic research into improved HF therapy. Animal model investigations are a critical component of HF research. However, the translation from cellular and animal models to the bedside is hampered by significant differences between species and among physiological scales. Our studies over the last 8 years show that hypotheses generated in animal models need to be validated in human in vitro models. Importantly, however, human heart investigations can establish translational platforms for safety and efficacy studies before embarking on costly and risky clinical trials. This review summarizes recent developments in human HF investigations of electrophysiology remodelling, metabolic remodelling, and β-adrenergic remodelling and discusses promising new technologies for HF research. PMID:27019074

  4. Bone tissue remodeling and development: focus on matrix metalloproteinase functions.

    PubMed

    Paiva, Katiucia Batista Silva; Granjeiro, José Mauro

    2014-11-01

    Bone-forming cells originate from distinct embryological layers, mesoderm (axial and appendicular bones) and ectoderm (precursor of neural crest cells, which mainly form facial bones). These cells will develop bones by two principal mechanisms: intramembranous and endochondral ossification. In both cases, condensation of multipotent mesenchymal cells occurs, at the site of the future bone, which differentiate into bone and cartilage-forming cells. During long bone development, an initial cartilaginous template is formed and replaced by bone in a coordinated and refined program involving chondrocyte proliferation and maturation, vascular invasion, recruitment of adult stem cells and intense remodeling of cartilage and bone matrix. Matrix metalloproteinases (MMPs) are the most important enzymes for cleaving structural components of the extracellular matrix (ECM), as well as other non-ECM molecules in the ECM space, pericellular perimeter and intracellularly. Thus, the bioactive molecules generated act on several biological events, such as development, tissue remodeling and homeostasis. Since the discovery of collagenase in bone cells, more than half of the MMP members have been detected in bone tissues under both physiological and pathological conditions. Pivotal functions of MMPs during development and bone regeneration have been revealed by knockout mouse models, such as chondrocyte proliferation and differentiation, osteoclast recruitment and function, bone modeling, coupling of bone resorption and formation (bone remodeling), osteoblast recruitment and survival, angiogenesis, osteocyte viability and function (biomechanical properties); as such alterations in MMP function may alter bone quality. In this review, we look at the principal properties of MMPs and their inhibitors (TIMPs and RECK), provide an up-date on their known functions in bone development and remodeling and discuss their potential application to Bone Bioengineering. PMID:25157440

  5. Cardiac remodelling and RAS inhibition.

    PubMed

    Ferrario, Carlos M

    2016-06-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin-angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  6. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.

    PubMed

    Chazeau, Anaël; Giannone, Grégory

    2016-08-01

    In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity. PMID:27105623

  7. Changes in pulmonary arterial wall mechanical properties and lumenal architecture with induced vascular remodeling

    NASA Astrophysics Data System (ADS)

    Molthen, Robert C.; Heinrich, Amy E.; Haworth, Steven T.; Dawson, Christopher A.

    2004-04-01

    To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling.

  8. Two-photon imaging of collagen remodeling in RAFT tissue cultures

    NASA Astrophysics Data System (ADS)

    Wallace, Vincent P.; Coleno, Mariah L.; Yomo, Tatsuro; Sun, Chung-Ho; Tromberg, Bruce J.

    2001-04-01

    Tissue remodeling is associated with both normal and abnormal processes including wound healing, fibrosis and cancer. In skin, abnormal remodeling causes permanent structural changes that can lead to hypertropic scarring and keloid formation. Normal remodeling, although fast and efficient in skin, is still imperfect, and a connective tissue scar remains at the wound site1. As a result, methods are needed to optimize tissue remodeling in vivo in all cases of wound repair. Since fibroblast-mediated contraction of engineered 3-D collagen based tissues (RAFTs) represents an in vitro model of the tissue contraction and collagen remodeling that occurs in vivo, RAFT tissue contraction studies combined with two-photon microscopy (TPM) studies are used to provide information on ways to improve tissue remodeling in vivo. In the RAFT models discussed here, tissue contraction is modulated either by application of exogenous growth factors or photodynamic therapy. During tissue contraction, TPM is used to image changes in Collagen Type I fibers in the RAFT skin models. Tissues are imaged at depth at day 15 after modulation. TPM signal analysis shows that RAFT tissues having the highest collagen density have the fastest rate of decay of fluorescent signal with depth.

  9. Trabecular bone remodelling simulated by a stochastic exchange of discrete bone packets from the surface.

    PubMed

    Hartmann, M A; Dunlop, J W C; Bréchet, Y J M; Fratzl, P; Weinkamer, R

    2011-08-01

    Human bone is constantly renewed through life via the process of bone remodelling, in which individual packets of bone are removed by osteoclasts and replaced by osteoblasts. Remodelling is mechanically controlled, where osteocytes embedded within the bone matrix are thought to act as mechanical sensors. In this computational work, a stochastic model for bone remodelling is used in which the renewal of bone material occurs by exchange of discrete bone packets. We tested different hypotheses of how the mechanical stimulus for bone remodelling is integrated by osteocytes and sent to actor cells on the bone's surface. A collective (summed) signal from multiple osteocytes as opposed to an individual (maximal) signal from a single osteocyte was found to lead to lower inner porosity and surface roughness of the simulated bone structure. This observation can be interpreted in that collective osteocyte signalling provides an effective surface tension to the remodelling process. Furthermore, the material heterogeneity due to remodelling was studied on a network of trabeculae. As the model is discrete, the age of individual bone packets can be monitored with time. The simulation results were compared with experimental data coming from quantitative back scattered electron imaging by transforming the information about the age of the bone packet into a mineral content. Discrepancies with experiments indicate that osteoclasts preferentially resorb low mineralized, i.e. young, bone at the bone's surface. PMID:21616469

  10. Adverse antibiotic drug interactions.

    PubMed

    Bint, A J; Burtt, I

    1980-07-01

    There is enormous potential for drug interactions in patients who, today, often receive many drugs. Antibiotics are prominent amongst the groups of drugs commonly prescribed. Many interactions take place at the absorption stage. Antacids and antidiarrhoeal preparations, in particular, can delay and reduce the absorption of antibiotics such as tetracyclines and clindamycin, by combining with them in the gastrointestinal tract to form chelates or complexes. Other drugs can affect gastric motility, which in turn often controls the rate at which antibiotics are absorbed. Some broad spectrum antibiotics can alter the bacterial flora of the gut which may be related to malabsorption states. The potentiation of toxic side effects of one drug by another is a common type of interaction. Antibiotics which are implicated in this type of interaction are those which themselves possess some toxicity such as aminoglycosides, some cephalosporins, tetracyclines and colistin. Some of the most important adverse interactions with antibiotics are those which involve other drugs which have a low toxicity/efficacy ratio. These include anticoagulants such as warfarin, anticonvulsants such as phenytoin and phenobarbitone and oral antidiabetic drugs like tolbutamide. Risk of interaction arises when the metabolism of these drugs is inhibited by liver microsomal enzyme inhibitors such as some sulphonamides and chloramphenicol, or is enhanced by enzyme inducers such as rifampicin. PMID:6995091

  11. ADVERSE CUTANEOUS DRUG REACTION

    PubMed Central

    Nayak, Surajit; Acharjya, Basanti

    2008-01-01

    In everyday clinical practice, almost all physicians come across many instances of suspected adverse cutaneous drug reactions (ACDR) in different forms. Although such cutaneous reactions are common, comprehensive information regarding their incidence, severity and ultimate health effects are often not available as many cases go unreported. It is also a fact that in the present world, almost everyday a new drug enters market; therefore, a chance of a new drug reaction manifesting somewhere in some form in any corner of world is unknown or unreported. Although many a times, presentation is too trivial and benign, the early identification of the condition and identifying the culprit drug and omit it at earliest holds the keystone in management and prevention of a more severe drug rash. Therefore, not only the dermatologists, but all practicing physicians should be familiar with these conditions to diagnose them early and to be prepared to handle them adequately. However, we all know it is most challenging and practically difficult when patient is on multiple medicines because of myriad clinical symptoms, poorly understood multiple mechanisms of drug-host interaction, relative paucity of laboratory testing that is available for any definitive and confirmatory drug-specific testing. Therefore, in practice, the diagnosis of ACDR is purely based on clinical judgment. In this discussion, we will be primarily focusing on pathomechanism and approach to reach a diagnosis, which is the vital pillar to manage any case of ACDR. PMID:19967009

  12. Obstruction-induced pulmonary vascular remodeling.

    PubMed

    Chow, Ming-Jay; Zou, Yu; He, Huamei; McGowan, Francis X; Zurakowski, David; Zhang, Yanhang

    2011-11-01

    Pulmonary obstruction occurs in many common forms of congenital heart disease. In this study, pulmonary artery (PA) banding is used as a model for pulmonary stenosis. Significant remodeling of the vascular bed occurs as a result of a prolonged narrowing of the PAs, and here we quantify the biophysical and molecular changes proximal and distal to the obstruction. Main and branch PAs are harvested from banded and sham rabbits and their mechanical properties are assessed using a biaxial tensile tester. Measurements defined as initial and stiff slopes are taken, assuming a linear region at the start and end of the J-shaped stress-strain curves, along with a transitional knee point. Collagen, elastin assays, Movat's pentachrome staining, and Doppler protocols are used to quantify biochemical, structural, and physiological differences. The banded main PAs have significantly greater initial slopes while banded branch PAs have lower initial slopes; however, this change in mechanical behavior cannot be explained by the assay results as the elastin content in both main and branch PAs is not significantly different. The stiff slopes of the banded main PAs are higher, which is attributed to the significantly greater amounts of insoluble collagen. Shifting of the knee points reveals a decreased toe region in the main PAs but an opposite trend in the branch PAs. The histology results show a loss of integrity of the media, increase in ground substance, and dispersion of collagen in the banded tissue samples. This indicates other structural changes could have led to the mechanical differences in banded and normal tissue. PMID:22168741

  13. Analysis of arterial wall remodeling in hypertension based on lamellar modeling.

    PubMed

    Taghizadeh, Hadi; Tafazzoli-Shadpour, Mohammad; Shadmehr, Mohammad B

    2015-09-01

    Arterial wall remodels its geometry and mechanical properties in response to hypertension to maintain functionality. The elevated pressure is sensed through cellular mechanotransduction pathways, and extra extracellular matrix is synthesized, leading to thickening and stiffening. The present study enquires the response of aortic lamellar structure to hypertensive blood pressure regarding unchanged circumferential stress "profile" across the media as remodeling criterion. We tested the hypothesis that alterations in the thickness of structural layers contributes to maintain stress profile with least deviation from normotensive conditions. To test this notion, finite element analysis was recruited to evaluate stress profile, considering wall residual stress, and lamellar structure was adjusted through an optimization algorithm. Our results indicated 47% increased thickness of the aortic media that originates from nonhomogenous thickening of the microstructural units. The thickening and stiffening responses of the wall tissue were coupled, and the optimized pattern of hypertension-induced remodeling was established. PMID:26369443

  14. Obesity and carotid artery remodeling

    PubMed Central

    Kozakova, M; Palombo, C; Morizzo, C; Højlund, K; Hatunic, M; Balkau, B; Nilsson, P M; Ferrannini, E

    2015-01-01

    Background/Objective: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). Subjects/Methods: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy subjects with wide range of body weight (24–159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age). Results: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was significantly higher (28±3 μm) as compared with those in the lower quartiles (8±3, 16±4 and 16±3 μm, P=0.001, P<0.05 and P=0.01, respectively). In addition, CCA CWS decreased during the observational period in the highest LD quartile (from 54.2±8.6 to 51.6±7.4 kPa, P<0.0001). As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P<0.0001 for both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders). Conclusions: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could

  15. A fly's view of neuronal remodeling.

    PubMed

    Yaniv, Shiri P; Schuldiner, Oren

    2016-09-01

    Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618-635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website. PMID:27351747

  16. Prenatal programming: adverse cardiac programming by gestational testosterone excess.

    PubMed

    Vyas, Arpita K; Hoang, Vanessa; Padmanabhan, Vasantha; Gilbreath, Ebony; Mietelka, Kristy A

    2016-01-01

    Adverse events during the prenatal and early postnatal period of life are associated with development of cardiovascular disease in adulthood. Prenatal exposure to excess testosterone (T) in sheep induces adverse reproductive and metabolic programming leading to polycystic ovarian syndrome, insulin resistance and hypertension in the female offspring. We hypothesized that prenatal T excess disrupts insulin signaling in the cardiac left ventricle leading to adverse cardiac programming. Left ventricular tissues were obtained from 2-year-old female sheep treated prenatally with T or oil (control) from days 30-90 of gestation. Molecular markers of insulin signaling and cardiac hypertrophy were analyzed. Prenatal T excess increased the gene expression of molecular markers involved in insulin signaling and those associated with cardiac hypertrophy and stress including insulin receptor substrate-1 (IRS-1), phosphatidyl inositol-3 kinase (PI3K), Mammalian target of rapamycin complex 1 (mTORC1), nuclear factor of activated T cells -c3 (NFATc3), and brain natriuretic peptide (BNP) compared to controls. Furthermore, prenatal T excess increased the phosphorylation of PI3K, AKT and mTOR. Myocardial disarray (multifocal) and increase in cardiomyocyte diameter was evident on histological investigation in T-treated females. These findings support adverse left ventricular remodeling by prenatal T excess. PMID:27328820

  17. Prenatal programming: adverse cardiac programming by gestational testosterone excess

    PubMed Central

    Vyas, Arpita K.; Hoang, Vanessa; Padmanabhan, Vasantha; Gilbreath, Ebony; Mietelka, Kristy A.

    2016-01-01

    Adverse events during the prenatal and early postnatal period of life are associated with development of cardiovascular disease in adulthood. Prenatal exposure to excess testosterone (T) in sheep induces adverse reproductive and metabolic programming leading to polycystic ovarian syndrome, insulin resistance and hypertension in the female offspring. We hypothesized that prenatal T excess disrupts insulin signaling in the cardiac left ventricle leading to adverse cardiac programming. Left ventricular tissues were obtained from 2-year-old female sheep treated prenatally with T or oil (control) from days 30–90 of gestation. Molecular markers of insulin signaling and cardiac hypertrophy were analyzed. Prenatal T excess increased the gene expression of molecular markers involved in insulin signaling and those associated with cardiac hypertrophy and stress including insulin receptor substrate-1 (IRS-1), phosphatidyl inositol-3 kinase (PI3K), Mammalian target of rapamycin complex 1 (mTORC1), nuclear factor of activated T cells –c3 (NFATc3), and brain natriuretic peptide (BNP) compared to controls. Furthermore, prenatal T excess increased the phosphorylation of PI3K, AKT and mTOR. Myocardial disarray (multifocal) and increase in cardiomyocyte diameter was evident on histological investigation in T-treated females. These findings support adverse left ventricular remodeling by prenatal T excess. PMID:27328820

  18. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats

    PubMed Central

    Fernandes, S; Naumova, AV; Zhu, WZ; Laflamme, MA; Gold, J; Murry, CE

    2010-01-01

    Background Previous studies indicated that, in an acute myocardial infarction model, human embryonic stem cell-derived cardiomyocytes (hESC-CM) injected with a pro-survival cocktail (PSC) can preserve contractile function. Because patients with established heart failure may also benefit from cell transplantation, we evaluated the physiological effects of hESC-CM transplanted into a chronic model of myocardial infarction. Methods and Results Intramyocardial injection of hESC-CM with PSC was performed in nude rats at 1 month following ischemia-reperfusion. The left ventricular function of hESC-CM injected rats was evaluated at 1, 2 and 3 months after the cell injection procedure and was compared to 3 control groups (rats injected with serum-free media, PSC-only, or non-cardiac human cells in PSC). Histology at 3 months revealed that human cardiomyocytes survive, develop increased sarcomere organization and are still proliferating. Despite successful engraftment, both echocardiography and MRI analyses showed no significant difference in left ventricular structure or function between these 4 groups at any time point of the study, suggesting that human cardiomyocytes do not affect cardiac remodeling in a rat model of chronic myocardial infarction. Conclusion When injected into a chronic infarct model, hESC-CM can engraft, survive and form grafts with striated cardiomyocytes at least as well as was previously observed in an acute myocardial infarction model. However, although hESC-CM transplantation can attenuate the progression of heart failure in an acute model, the same hESC-CM injection protocol is insufficient to restore heart function or to alter adverse remodeling of a chronic myocardial infarction model. PMID:20854826

  19. Scar remodeling after strabismus surgery.

    PubMed Central

    Ludwig, I H

    1999-01-01

    limitation of versions, less separation of the tendons from sclera, and thicker appearance of the scar segments. The use of nonabsorbable sutures in the repair procedure reduced the recurrence rate. Histologic examination of the clinical stretched scar specimens showed dense connective tissue that was less well organized compared with normal tendon. In the tissue culture studies, cells cultured from the stretched scar specimens grew rapidly and were irregularly shaped. A high-molecular-weight protein was identified in the culture medium. By contrast, cells cultured from normal tendon (controls) grew more slowly and regularly, stopped growing at 4 days, and produced less total protein than cultured stretched scar specimens. In the animal model studies, the collagenase-treated sites showed elongated scars with increased collagen between the muscle and the sclera, as well as increased collagen creep rates, compared with the saline-treated controls. The use of nonabsorbable sutures in collagenase-treated animal model surgery sites was associated with shorter, thicker scars compared with similar sites sutured with absorbable sutures. CONCLUSIONS: A lengthened or stretched, remodeled scar between an operated muscle tendon and sclera is a common occurrence and is a factor contributing to the variability of outcome after strabismus repair, even years later. This abnormality may be revealed by careful exploration of previously operated muscles. Definitive repair requires firm reattachment of tendon to sclera with nonabsorbable suture support. Images FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 FIGURE 38 FIGURE 39 FIGURE 40 FIGURE 41 FIGURE 42 FIGURE 43 FIGURE 44 FIGURE 45 FIGURE 46 FIGURE 52

  20. Adverse Reactions to Hallucinogenic Drugs.

    ERIC Educational Resources Information Center

    Meyer, Roger E. , Ed.

    This reports a conference of psychologists, psychiatrists, geneticists and others concerned with the biological and psychological effects of lysergic acid diethylamide and other hallucinogenic drugs. Clinical data are presented on adverse drug reactions. The difficulty of determining the causes of adverse reactions is discussed, as are different…

  1. Post-Infarct biomaterials, left ventricular remodeling, and heart failure: Is good good enough?

    PubMed Central

    Zouein, Fouad A.; Zgheib, Carlos; Liechty, Kenneth W.; Booz, George W.

    2012-01-01

    Infarct expansion and extension of the border zone play a key role in the progression of heart failure after myocardial infarction. Increased wall stress, along with complex cellular and extracellular changes in the surviving myocardium, underlie these events and contributes to the adverse cardiac remodeling that drives ventricular dilation and progression of heart failure. Recently, there has been much interest in the development of biopolymers that can be injected into the infarcted myocardium in order to increase its stiffness and thus reduce mechanical stress on the surrounding myocardium. Here we discuss the findings of recent animal studies that have noted improvements in contractile function or cardiac remodeling using either natural or synthetic biomaterials, as well as several that did not. Besides offering physical support to the injured myocardium, injectable biomaterials could also serve the purpose of fostering cardiac repair by functioning as a protective scaffold for stem cell or drug delivery. PMID:22612796

  2. Reverse remodeling and recovery from cachexia in rats with aldosteronism.

    PubMed

    Cheema, Yaser; Zhao, Wenyuan; Zhao, Tieqiang; Khan, M Usman; Green, Kelly D; Ahokas, Robert A; Gerling, Ivan C; Bhattacharya, Syamal K; Weber, Karl T

    2012-08-15

    The congestive heart failure (CHF) syndrome with soft tissue wasting, or cachexia, has its pathophysiologic origins rooted in neurohormonal activation. Mechanical cardiocirculatory assistance reveals the potential for reverse remodeling and recovery from CHF, which has been attributed to device-based hemodynamic unloading whereas the influence of hormonal withdrawal remains uncertain. This study addresses the signaling pathways induced by chronic aldosteronism in normal heart and skeletal muscle at organ, cellular/subcellular, and molecular levels, together with their potential for recovery (Recov) after its withdrawal. Eight-week-old male Sprague-Dawley rats were examined at 4 wk of aldosterone/salt treatment (ALDOST) and following 4-wk Recov. Compared with untreated, age-/sex-/strain-matched controls, ALDOST was accompanied by 1) a failure to gain weight, reduced muscle mass with atrophy, and a heterogeneity in cardiomyocyte size across the ventricles, including hypertrophy and atrophy at sites of microscopic scarring; 2) increased cardiomyocyte and mitochondrial free Ca(2+), coupled to oxidative stress with increased H(2)O(2) production and 8-isoprostane content, and increased opening potential of the mitochondrial permeability transition pore; 3) differentially expressed genes reflecting proinflammatory myocardial and catabolic muscle phenotypes; and 4) reversal to or toward recovery of these responses with 4-wk Recov. Aldosteronism in rats is accompanied by cachexia and leads to an adverse remodeling of the heart and skeletal muscle at organ, cellular/subcellular, and molecular levels. However, evidence presented herein implicates that these tissues retain their inherent potential for recovery after complete hormone withdrawal. PMID:22730385

  3. Reverse remodeling and recovery from cachexia in rats with aldosteronism

    PubMed Central

    Cheema, Yaser; Zhao, Wenyuan; Zhao, Tieqiang; Khan, M. Usman; Green, Kelly D.; Ahokas, Robert A.; Gerling, Ivan C.; Bhattacharya, Syamal K.

    2012-01-01

    The congestive heart failure (CHF) syndrome with soft tissue wasting, or cachexia, has its pathophysiologic origins rooted in neurohormonal activation. Mechanical cardiocirculatory assistance reveals the potential for reverse remodeling and recovery from CHF, which has been attributed to device-based hemodynamic unloading whereas the influence of hormonal withdrawal remains uncertain. This study addresses the signaling pathways induced by chronic aldosteronism in normal heart and skeletal muscle at organ, cellular/subcellular, and molecular levels, together with their potential for recovery (Recov) after its withdrawal. Eight-week-old male Sprague-Dawley rats were examined at 4 wk of aldosterone/salt treatment (ALDOST) and following 4-wk Recov. Compared with untreated, age-/sex-/strain-matched controls, ALDOST was accompanied by 1) a failure to gain weight, reduced muscle mass with atrophy, and a heterogeneity in cardiomyocyte size across the ventricles, including hypertrophy and atrophy at sites of microscopic scarring; 2) increased cardiomyocyte and mitochondrial free Ca2+, coupled to oxidative stress with increased H2O2 production and 8-isoprostane content, and increased opening potential of the mitochondrial permeability transition pore; 3) differentially expressed genes reflecting proinflammatory myocardial and catabolic muscle phenotypes; and 4) reversal to or toward recovery of these responses with 4-wk Recov. Aldosteronism in rats is accompanied by cachexia and leads to an adverse remodeling of the heart and skeletal muscle at organ, cellular/subcellular, and molecular levels. However, evidence presented herein implicates that these tissues retain their inherent potential for recovery after complete hormone withdrawal. PMID:22730385

  4. Abnormal uterine artery remodelling in the stroke prone spontaneously hypertensive rat

    PubMed Central

    Small, Heather Y.; Morgan, Hannah; Beattie, Elisabeth; Griffin, Sinead; Indahl, Marie; Delles, Christian; Graham, Delyth

    2016-01-01

    Introduction The stroke prone spontaneously hypertensive rat (SHRSP) is an established model of human cardiovascular risk. We sought to characterise the uteroplacental vascular response to pregnancy in this model and determine whether this is affected by the pre-existing maternal hypertension. Methods Doppler ultrasound and myography were utilised to assess uterine artery functional and structural changes pre-pregnancy and at gestational day 18 in SHRSP (untreated and nifedipine treated) and in the normotensive Wistar-Kyoto (WKY) rat. Maternal adaptations to pregnancy were also assessed along with histology and expression of genes involved in oxidative stress in the placenta. Results SHRSP uterine arteries had a pulsatile blood flow and were significantly smaller (70906 ± 3903 μm2 vs. 95656 ± 8524 μm2 cross-sectional area; p < 0.01), had a significant increase in contractile response (57.3 ± 10.5 kPa vs 27.7 ± 1.9 kPa; p < 0.01) and exhibited impaired endothelium-dependent vasorelaxation (58.0 ± 5.9% vs 13.9 ± 4.6%; p < 0.01) compared to WKY. Despite significant blood pressure lowering, nifedipine did not improve uterine artery remodelling, function or blood flow in SHRSP. Maternal plasma sFLT-1/PlGF ratio (5.3 ± 0.3 vs 4.6 ± 0.1; p < 0.01) and the urinary albumin/creatinine ratio (1.9 ± 0.2 vs 0.6 ± 0.1; p < 0.01) was increased in SHRSP vs WKY. The SHRSP placenta had a significant reduction in glycogen cell content and an increase in Hif1α, Sod1 and Vegf. Discussion We conclude that the SHRSP exhibits a number of promising characteristics as a model of spontaneous deficient uteroplacental remodelling that adversely affect pregnancy outcome, independent of pre-existing hypertension. PMID:26612342

  5. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  6. Nonlinear neural mapping analysis of the adverse effects of drugs.

    PubMed

    Domine, D; Guillon, C; Devillers, J; Lacroix, R; Lacroix, J; Doré, J C

    1998-01-01

    Numerous drugs have been identified as presenting adverse effects towards the driving of vehicles. A large set of these drugs was compiled and classified into ten categories. Nonlinear neural mapping (N2M) was used to derive a typology of these molecules and also to link their adverse effects to therapeutic categories and structural information. PMID:9517012

  7. Interleukin-2/Anti-Interleukin-2 Immune Complex Attenuates Cardiac Remodeling after Myocardial Infarction through Expansion of Regulatory T Cells

    PubMed Central

    Zeng, Zhipeng; Yu, Kunwu; Chen, Long; Li, Weihua; Xiao, Hong; Huang, Zhengrong

    2016-01-01

    CD4+CD25+Foxp3+ regulatory T cells (Treg cells) have protective effects in wound healing and adverse ventricular remodeling after myocardial infarction (MI). We hypothesize that the interleukin- (IL-) 2 complex comprising the recombinant mouse IL-2/anti-IL-2 mAb (JES6-1) attenuates cardiac remodeling after MI through the expansion of Treg. Mice were subjected to surgical left anterior descending coronary artery ligation and treated with either PBS or IL-2 complex. The IL-2 complex significantly attenuates ventricular remodeling, as demonstrated by reduced infarct size, improved left ventricular (LV) function, and attenuated cardiomyocyte apoptosis. The IL-2 complex increased the percentage of CD4+CD25+Foxp3+ Treg cells, which may be recruited to the infarcted heart, and decreased the frequencies of IFN-γ- and IL-17-producing CD4+ T helper (Th) cells among the CD4+Foxp3− T cells in the spleen. Furthermore, the IL-2 complex inhibited the gene expression of proinflammatory cytokines as well as macrophage infiltrates in the infarcted myocardium and induced the differentiation of macrophages from M1 to M2 phenotype in border zone of infarcted myocardium. Our studies indicate that the IL-2 complex may serve as a promising therapeutic approach to attenuate adverse remodeling after MI through expanding Treg cells specifically. PMID:27144181

  8. Subdural hygroma after craniosynostosis remodeling surgery.

    PubMed

    Ganesh, Praveen; Nagarjuna, Muralidhara; Shetty, Samarth; Salins, Paul C

    2015-01-01

    Craniosynostosis is defined as the premature fusion of the cranial sutures and can cause functional impairment or cosmetic deformity. Surgical techniques for the correction of craniosynostosis have changed overtime, as so have the intraoperative and postoperative complications. Extensive surgeries involving fronto-orbital unit repositioning and cranial vault remodeling are associated with various complications. Intraoperative and postoperative hemorrhage, venous infarct, air embolism, hydrocephalus, cerebrospinal fluid leak, as well as meningitis are a few complications associated with cranial vault remodeling surgery. Postoperative complications can increase the morbidity and mortality associated with these procedures. Identification of the complications and their timely management should be a part of every craniofacial reconstruction team's training program.In this article, we report a case of subdural hygroma in an infant after cranial vault remodeling procedure. Subdural hygroma is a known complication following head injuries and represents 5% to 20% of posttraumatic intracranial mass lesions. However, subdural hygroma developing after a cranial procedure is rare and has not been reported in the literature. Identification of the complication, close monitoring of the change in subdural fluid volume, and tapping of the fluid through the craniotomy site if indicated form the mainstay of management of subdural hygroma that develops after cranial vault remodeling surgery. PMID:25469899

  9. Interleukin-20 promotes airway remodeling in asthma.

    PubMed

    Gong, Wenbin; Wang, Xin; Zhang, Yuguo; Hao, Junqing; Xing, Chunyan; Chu, Qi; Wang, Guicheng; Zhao, Jiping; Wang, Junfei; Dong, Qian; Liu, Tian; Zhang, Yuanyuan; Dong, Liang

    2014-12-01

    Previous studies have demonstrated that interleukin-20 (IL-20) is a pro-inflammatory cytokine, and it has been implicated in psoriasis, lupus nephritis, rheumatoid arthritis, atherosclerosis, and ulcerative colitis. Little is known about the effects of IL-20 in airway remodeling in asthma. The aim of our study was to demonstrate the function of IL-20 in airway remodeling in asthma. To identify the expression of IL-20 and its receptor, IL-20R1/IL-20R2, in the airway epithelium in bronchial tissues, bronchial biopsy specimens were collected from patients and mice with asthma and healthy subjects and stained with specific antibodies. To characterize the effects of IL-20 in asthmatic airway remodeling, we silenced and stimulated IL-20 in cell lines isolated from mice by shRNA and recombinant protein approaches, respectively, and detected the expression of α-SMA and FN-1 by Western blot analysis. First, overexpression of IL-20 and its receptor, IL-20R1/IL-20R2, was detected in the airway epithelium collected from patients and mice with asthma. Second, IL-20 increased the expression of fibronectin-1 and α-SMA, and silencing of IL-20 in mouse lung epithelial (MLE)-12 cells decreased the expression of fibronectin-1 and α-SMA. IL-20 may be a critical cytokine in airway remodeling in asthma. This study indicates that targeting IL-20 and/or its receptors may be a new therapeutic strategy for asthma. PMID:25028099

  10. Challenging Modernization: Remodelling the Education Workforce

    ERIC Educational Resources Information Center

    Butt, Graham; Gunter, Helen

    2005-01-01

    This special edition enables an in-depth look at the process of modernization of education in England, in relation to other international developments. In particular we focus on the reform of teachers? work by examining the antecedence of the current policy of remodelling through three articles based on the Evaluation of the Department for…

  11. Re-Modelling as De-Professionalisation

    ERIC Educational Resources Information Center

    Thompson, Meryl

    2006-01-01

    The article sets out the consequences of the British Government's remodelling agenda and its emphasis on less demarcation, for the professional status of teachers in England. It describes how the National Agreement on Raising Standards and Tackling Workload, reached between five of the six trade unions for teachers and headteachers paves the way…

  12. Arterial Remodeling Associates with CKD Progression

    PubMed Central

    Collin, Cédric; Karras, Alexandre; Laurent, Stéphane; Bozec, Erwan; Jacquot, Christian; Stengel, Bénédicte; Houillier, Pascal; Froissart, Marc; Boutouyrie, Pierre

    2011-01-01

    In CKD, large arteries remodel and become increasingly stiff. The greater pulsatile pressure reaching the glomerulus as a result of increased aortic stiffness could induce renal damage, suggesting that the stiffening and remodeling of large arteries could affect the progression of CKD. We measured carotid-femoral pulse wave velocity, aortic pressure and carotid remodeling and stiffness parameters in 180 patients with CKD (mean measured GFR, 32 ml/min per 1.73 m2) and followed them prospectively for a mean of 3.1 years. During follow-up, carotid stiffness significantly increased (+0.28 ± 0.05 m/s; P < 0.0001) but aortic stiffness did not. Carotid intima-media thickness decreased significantly during follow-up and the internal diameter of the carotid increased, producing increased circumferential wall stress (+2.08 ± 0.43 kPa/yr; P < 0.0001). In a linear mixed model, circumferential wall stress significantly associated with faster GFR decline after adjustment for risk factors of cardiovascular disease and progression of CKD. In a multivariable Cox model, carotid circumferential wall stress and pulse pressure independently associated with higher risk for ESRD. None of the arterial stiffness parameters associated with progression of CKD. In conclusion, maladaptive remodeling of the carotid artery and increased pulse pressure independently associate with faster decline of renal function and progression to ESRD. PMID:21493771

  13. Effect of culprit-lesion remodeling versus plaque rupture on three-year outcome in patients with acute coronary syndrome.

    PubMed

    Okura, Hiroyuki; Kobayashi, Yoshio; Sumitsuji, Satoru; Terashima, Mitsuyasu; Kataoka, Toru; Masutani, Motomaru; Ohyanagi, Mitsumasa; Shimada, Kenei; Taguchi, Haruyuki; Yasuga, Yuji; Takeda, Yoshihiro; Ohashi, Yoshitaka; Awano, Kojiro; Fujii, Kenichi; Mintz, Gary S

    2009-03-15

    To investigate intravascular ultrasound predictors of long-term clinical outcome in patients with acute coronary syndrome, 94 patients with a first acute coronary syndrome with both preintervention intravascular ultrasound imaging and long-term follow-up were enrolled in this study. Remodeling index was defined as external elastic membrane cross-sectional area at the target lesion divided by that at the proximal reference. Arterial remodeling was defined as either positive (PR: remodeling index >1.05) or intermediate/negative remodeling (remodeling index < or =1.05). Clinical events were death, myocardial infarction, and target-lesion revascularization. Patients were followed up for a mean of 3 years. PR was observed in 50 (53%), and intermediate/negative remodeling, in 44 (47%). During the 3-year follow-up, there were 20 target-lesion revascularization events and 5 deaths (2 cardiac and 3 noncardiac), but no myocardial infarctions. Patients with PR showed significantly lower major adverse cardiac event (MACE; death, myocardial infarction, and target-lesion revascularization)-free survival (log-rank p = 0.03). However, patients with plaque rupture showed a nonsignificant trend toward lower MACE-free survival (p = 0.13), but there were no significant differences in MACE-free survival between those with single versus multiple plaque ruptures. Using multivariate logistic regression analysis, only culprit lesion PR was an independent predictor of MACEs (p = 0.04). In conclusion, culprit-lesion remodeling rather than the presence or absence of culprit-lesion plaque rupture was a strong predictor of long-term (3-year) clinical outcome in patients with acute coronary syndrome. PMID:19268733

  14. THE IMPACT OF CHEMOTHERAPY AND RADIATION ON THE REMODELING OF ACELLULAR DERMAL MATRICES IN STAGED, PROSTHETIC BREAST RECONSTRUCTION

    PubMed Central

    Myckatyn, Terence M.; Cavallo, Jaime A.; Sharma, Ketan; Gangopadhyay, Noopur; Dudas, Jason R.; Roma, Andres A.; Baalman, Sara; Tenenbaum, Marissa M.; Matthews, Brent D.; Deeken, Corey R.

    2015-01-01

    Background An acellular dermal matrix (ADM) used in prosthetic breast reconstruction will typically incorporate, in time, with the overlying mastectomy skin flap. This remodeling process may be adversely impacted in patients that require chemotherapy and radiation therapies that influence neovascularization and cellular proliferation. Methods Multiple biopsies of the submuscular capsule and ADM were procured from 86 women (N=94 breasts) undergoing exchange of a tissue expander for a breast implant. These were divided by biopsy location : submuscular capsule (control) as well as superiorly, centrally and inferiorly along the ADM. Specimens were assessed grossly for incorporation and semi-quantitatively for cellular infiltration, cell type, fibrous encapsulation, scaffold degradation, extracellular matrix deposition, neovascularization, mean composite remodeling score, as well as Type I and III collagen area and ratio. Five oncologic treatment groups were compared : no adjuvant therapy (untreated), neoadjuvant chemotherapy ± radiation ; and chemotherapy ± radiation. Results ADM and submuscular capsule biopsies were procured 45 to 1805 days after ADM insertion and demonstrated a significant reduction in Type I collagen over time. Chemotherapy adversely impacted fibrous encapsulation relative to the untreated group (p=0.03). Chemotherapy with or without radiation adversely impacted Type I collagen area (p=0.02), cellular infiltration (p<0.01), extracellular matrix deposition (p<0.04), and neovascularization (p<0.01). Radiation exacerbated the adverse impact of chemotherapy for gross incorporation as well as several remodeling parameters. Neoadjuvant chemotherapy also caused a reduction in Type I (p=0.01) and III collagen (p=0.05), extracellular matrix deposition (p=0.03), and scaffold degradation (p=0.02). Conclusions Chemotherapy and radiation therapy limit ADM remodeling. PMID:25539350

  15. Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis

    PubMed Central

    Pitsouli, Chrysoula; Perrimon, Norbert

    2010-01-01

    Adult structures in holometabolous insects such as Drosophila are generated by groups of imaginal cells dedicated to the formation of different organs. Imaginal cells are specified in the embryo and remain quiescent until the larval stages, when they proliferate and differentiate to form organs. The Drosophila tracheal system is extensively remodeled during metamorphosis by a small number of airway progenitors. Among these, the spiracular branch tracheoblasts are responsible for the generation of the pupal and adult abdominal airways. To understand the coordination of proliferation and differentiation during organogenesis of tubular organs, we analyzed the remodeling of Drosophila airways during metamorphosis. We show that the embryonic spiracular branch tracheoblasts are multipotent cells that express the homeobox transcription factor Cut, which is necessary for their survival and normal development. They give rise to three distinct cell populations at the end of larval development, which generate the adult tracheal tubes, the spiracle and the epidermis surrounding the spiracle. Our study establishes the series of events that lead to the formation of an adult tubular structure in Drosophila. PMID:20940225

  16. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  17. Adverse possession of subsurface minerals

    SciTech Connect

    Bowles, P.N.

    1983-01-01

    Concepts applicable to adverse possession of subsurface minerals are generally the same as those that apply to adverse possession of all real estate. However, special requirements must be satisfied in order to perfect title to subsurface minerals by adverse possession, particularly when there has been a severance of the true title between surface and subsurface minerals. In those jurisdictions where senior and junior grants came from the state or commonwealth covering the same or some of the same land and in those areas where descriptions of land were vague or not carefully drawn, adverse possession serves to solidify land and mineral ownership. There may be some public, social, and economic justification in rewarding, with good title, those who take possession and use real estate for its intended use, including the extraction of subsurface minerals. 96 refernces.

  18. Alteration of Pulse Pressure Stimulates Arterial Wall Matrix Remodeling

    PubMed Central

    Yao, Qingping; Hayman, Danika M.; Dai, Qiuxia; Lindsey, Merry L.; Han, Hai-Chao

    2010-01-01

    The effect of pulse pressure on arterial wall remodeling remains unclear, although remodeling of the arterial wall under hypertensive pressure and elevated flow has been well documented. The objective of this study was to evaluate matrix remodeling in arteries under nonpulsatile and hyperpulsatile pressure as compared to arteries under normal pulsatile pressure. Using a novel ex vivo organ culture model that allowed us to change pressure pulsatility without changing mean pressure or flow, arteries were cultured for 7 days under normal, nonpulsatile, and hyperpulsatile pressures with the same mean pressure and flow rate. Fenestrae in internal elastic lamina (IEL), collagen content, connexin 43, and fibronectin proteins were examined in these arteries using confocal microscopy, immunoblotting, and immunohistochemistry. Our results showed that the mean fenestrae size and area fraction of fenestrae to total area of IEL decreased 51 % and 45 % in arteries cultured under nonpulsatile pressure and decreased 45 % and 54 % under hyperpulsatile pressure, respectively, compared to arteries under normal pulsatile pressure. There was no difference in fibronectin (FN) and collagen III levels among the three pulse groups, while collagen I and connexin 43 expression increased 80.8% and 35.3% in the hyperpulsatile arteries, respectively, but not in nonpulsatile arteries. In conclusion, our results demonstrated, for the first time, that an increase or elimination in pulse pressure from its normal physiologic level stimulates arterial wall matrix structural changes. Hyperpulsatile pressure has a more pronounced effect than the diminished pulse pressure, which may provide a mechanism for increased wall stiffness in arteries under hyperpulsatile pressure. PMID:19831481

  19. VEGF receptors mediate hypoxic remodeling of adult ovine carotid arteries.

    PubMed

    Adeoye, Olayemi O; Bouthors, Vincent; Hubbell, Margaret C; Williams, James M; Pearce, William J

    2014-10-01

    Recent studies suggest that VEGF contributes to hypoxic remodeling of arterial smooth muscle, although hypoxia produces only transient increases in VEGF that return to normoxic levels despite sustained changes in arterial structure and function. To explore how VEGF might contribute to long-term hypoxic vascular remodeling, this study explores the hypothesis that chronic hypoxia produces sustained increases in smooth muscle VEGF receptor density that mediate long-term vascular effects of hypoxia. Carotid arteries from adult sheep maintained at sea level or altitude (3,820 m) for 110 days were harvested and denuded of endothelium. VEGF levels were similar in chronically hypoxic and normoxic arteries, as determined by immunoblotting. In contrast, VEGF receptor levels were significantly increased by 107% (VEGF-R1) and 156% (VEGF-R2) in hypoxic compared with normoxic arteries. In arteries that were organ cultured 24 h with 3 nM VEGF, VEGF replicated effects of hypoxia on abundances of smooth muscle α actin (SMαA), myosin light chain kinase (MLCK), and MLC20 and the effects of hypoxia on colocalization of MLC20 with SMαA, as measured via confocal microscopy. VEGF did not replicate the effects of chronic hypoxia on colocalization of MLCK with SMαA or MLCK with MLC20, suggesting that VEGF's role in hypoxic remodeling is highly protein specific, particularly for contractile protein organization. VEGF effects in organ culture were inhibited by VEGF receptor blockers vatalinib (240 nM) and dasatinib (6.3 nM). These findings support the hypothesis that long-term upregulation of VEGF receptors help mediate sustained effects of hypoxia on the abundance and colocalization of contractile proteins in arterial smooth muscle. PMID:25038104

  20. Global remodeling of nucleosome positions in C. elegans

    PubMed Central

    2013-01-01

    Background Eukaryotic chromatin architecture is affected by intrinsic histone-DNA sequence preferences, steric exclusion between nucleosome particles, formation of higher-order structures, and in vivo activity of chromatin remodeling enzymes. Results To disentangle sequence-dependent nucleosome positioning from the other factors, we have created two high-throughput maps of nucleosomes assembled in vitro on genomic DNA from the nematode worm Caenorhabditis elegans. A comparison of in vitro nucleosome positions with those observed in a mixed-stage, mixed-tissue population of C. elegans cells reveals that in vivo sequence preferences are modified on the genomic scale. Indeed, G/C dinucleotides are predicted to be most favorable for nucleosome formation in vitro but not in vivo. Nucleosome sequence read coverage in vivo is distinctly lower in chromosome arms than in central regions; the observed changes in apparent nucleosome sequence specificity, likely due to genome-wide chromatin remodeler activity, contribute to the formation of these megabase-scale chromatin domains. We also observe that the majority of well-positioned in vivo nucleosomes do not occupy thermodynamically favorable sequences observed in vitro. Finally, we find that exons are intrinsically more amenable to nucleosome formation compared to introns. Nucleosome occupancy of introns and exons consistently increases with G/C content in vitro but not in vivo, in agreement with our observation that G/C dinucleotide enrichment does not strongly promote in vivo nucleosome formation. Conclusions Our findings highlight the importance of both sequence specificity and active nucleosome repositioning in creating large-scale chromatin domains, and the antagonistic roles of intrinsic sequence preferences and chromatin remodelers in C. elegans. Sequence read data has been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number SRA050182). Additional data, software and computational

  1. Tiotropium inhibits pulmonary inflammation and remodelling in a guinea pig model of COPD.

    PubMed

    Pera, T; Zuidhof, A; Valadas, J; Smit, M; Schoemaker, R G; Gosens, R; Maarsingh, H; Zaagsma, J; Meurs, H

    2011-10-01

    Airway remodelling and emphysema are major structural abnormalities in chronic obstructive pulmonary disease (COPD). In addition, pulmonary vascular remodelling may occur and contribute to pulmonary hypertension, a comorbidity of COPD. Increased cholinergic activity in COPD contributes to airflow limitation and, possibly, to inflammation and airway remodelling. This study aimed to investigate the role of acetylcholine in pulmonary inflammation and remodelling using an animal model of COPD. To this aim, guinea pigs were instilled intranasally with lipopolysaccharide (LPS) twice weekly for 12 weeks and were treated, by inhalation, with the long-acting muscarinic receptor antagonist tiotropium. Repeated LPS exposure induced airway and parenchymal neutrophilia, and increased goblet cell numbers, lung hydroxyproline content, airway wall collagen and airspace size. Furthermore, LPS increased the number of muscularised microvessels in the adventitia of cartilaginous airways. Tiotropium abrogated the LPS-induced increase in neutrophils, goblet cells, collagen deposition and muscularised microvessels, but had no effect on emphysema. In conclusion, tiotropium inhibits remodelling of the airways as well as pulmonary inflammation in a guinea pig model of COPD, suggesting that endogenous acetylcholine plays a major role in the pathogenesis of this disease. PMID:21349917

  2. The Three A's in Asthma - Airway Smooth Muscle, Airway Remodeling & Angiogenesis.

    PubMed

    Keglowich, L F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  3. The Three A’s in Asthma – Airway Smooth Muscle, Airway Remodeling & Angiogenesis

    PubMed Central

    Keglowich, L.F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  4. Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity

    PubMed Central

    Minerbi, Amir; Kahana, Roni; Goldfeld, Larissa; Kaufman, Maya; Marom, Shimon; Ziv, Noam E.

    2009-01-01

    Synaptic plasticity is widely believed to constitute a key mechanism for modifying functional properties of neuronal networks. This belief implicitly implies, however, that synapses, when not driven to change their characteristics by physiologically relevant stimuli, will maintain these characteristics over time. How tenacious are synapses over behaviorally relevant time scales? To begin to address this question, we developed a system for continuously imaging the structural dynamics of individual synapses over many days, while recording network activity in the same preparations. We found that in spontaneously active networks, distributions of synaptic sizes were generally stable over days. Following individual synapses revealed, however, that the apparently static distributions were actually steady states of synapses exhibiting continual and extensive remodeling. In active networks, large synapses tended to grow smaller, whereas small synapses tended to grow larger, mainly during periods of particularly synchronous activity. Suppression of network activity only mildly affected the magnitude of synaptic remodeling, but dependence on synaptic size was lost, leading to the broadening of synaptic size distributions and increases in mean synaptic size. From the perspective of individual neurons, activity drove changes in the relative sizes of their excitatory inputs, but such changes continued, albeit at lower rates, even when network activity was blocked. Our findings show that activity strongly drives synaptic remodeling, but they also show that significant remodeling occurs spontaneously. Whereas such spontaneous remodeling provides an explanation for “synaptic homeostasis” like processes, it also raises significant questions concerning the reliability of individual synapses as sites for persistently modifying network function. PMID:19554080

  5. Monitoring Vascular Permeability and Remodeling After Endothelial Injury in a Murine Model Using a Magnetic Resonance Albumin-Binding Contrast Agent

    PubMed Central

    Phinikaridou, Alkystis; Lorrio, Silvia; Zaragoza, Carlos; Botnar, René M.

    2015-01-01

    Background— Despite the beneficial effects of vascular interventions, these procedures may damage the endothelium leading to increased vascular permeability and remodeling. Re-endothelialization of the vessel wall, with functionally and structurally intact cells, is controlled by endothelial nitric oxide synthase (NOS3) and is crucial for attenuating adverse effects after injury. We investigated the applicability of the albumin-binding MR contrast agent, gadofosveset, to noninvasively monitor focal changes in vascular permeability and remodeling, after injury, in NOS3-knockout (NOS3−/−) and wild-type (WT) mice in vivo. Methods and Results— WT and NOS3−/− mice were imaged at 7, 15, and 30 days after aortic denudation or sham-surgery. T1 mapping (R1=1/T1, s−1) and delayed-enhanced MRI were used as measurements of vascular permeability (R1) and remodeling (vessel wall enhancement, mm2) after gadofosveset injection, respectively. Denudation resulted in higher vascular permeability and vessel wall enhancement 7 days after injury in both strains compared with sham-operated animals. However, impaired re-endothelialization and increased neovascularization in NOS3−/− mice resulted in significantly higher R1 at 15 and 30 days post injury compared with WT mice that showed re-endothelialization and lack of neovascularization (R1 [s−1]=15 days: NOS3−/−4.02 [interquartile range, IQR, 3.77–4.41] versus WT2.39 [IQR, 2.35–2.92]; 30 days: NOS3−/−4.23 [IQR, 3.94–4.68] versus WT2.64 [IQR, 2.33–2.80]). Similarly, vessel wall enhancement was higher in NOS3−/− but recovered in WT mice (area [mm2]=15 days: NOS3−/−5.20 [IQR, 4.68–6.80] versus WT2.13 [IQR, 0.97–3.31]; 30 days: NOS3−/−7.35 [IQR, 5.66–8.61] versus WT1.60 [IQR, 1.40–3.18]). Ex vivo histological studies corroborated the MRI findings. Conclusions— We demonstrate that increased vascular permeability and remodeling, after injury, can be assessed noninvasively using an

  6. Reverse Engineering Adverse Outcome Pathways

    SciTech Connect

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  7. The Chromodomains of the Chd1 Chromatin Remodeler Regulate DNA Access to the ATPase Motor

    SciTech Connect

    Hauk, G.; McKnight, J; Nodelman, I; Bowman, G

    2010-01-01

    Chromatin remodelers are ATP-driven machines that assemble, slide, and remove nucleosomes from DNA, but how the ATPase motors of remodelers are regulated is poorly understood. Here we show that the double chromodomain unit of the Chd1 remodeler blocks DNA binding and activation of the ATPase motor in the absence of nucleosome substrates. The Chd1 crystal structure reveals that an acidic helix joining the chromodomains can pack against a DNA-binding surface of the ATPase motor. Disruption of the chromodomain-ATPase interface prevents discrimination between nucleosomes and naked DNA and reduces the reliance on the histone H4 tail for nucleosome sliding. We propose that the chromodomains allow Chd1 to distinguish between nucleosomes and naked DNA by physically gating access to the ATPase motor, and we hypothesize that related ATPase motors may employ a similar strategy to discriminate among DNA-containing substrates.

  8. Modalities for Visualization of Cortical Bone Remodeling: The Past, Present, and Future.

    PubMed

    Harrison, Kimberly D; Cooper, David M L

    2015-01-01

    Bone's ability to respond to load-related phenomena and repair microdamage is achieved through the remodeling process, which renews bone by activating groups of cells known as basic multicellular units (BMUs). The products of BMUs, secondary osteons, have been extensively studied via classic two-dimensional techniques, which have provided a wealth of information on how histomorphology relates to skeletal structure and function. Remodeling is critical in maintaining healthy bone tissue; however, in osteoporotic bone, imbalanced resorption results in increased bone fragility and fracture. With increasing life expectancy, such degenerative bone diseases are a growing concern. The three-dimensional (3D) morphology of BMUs and their correlation to function, however, are not well-characterized and little is known about the specific mechanisms that initiate and regulate their activity within cortical bone. We believe a key limitation has been the lack of 3D information about BMU morphology and activity. Thus, this paper reviews methodologies for 3D investigation of cortical bone remodeling and, specifically, structures associated with BMU activity (resorption spaces) and the structures they create (secondary osteons), spanning from histology to modern ex vivo imaging modalities, culminating with the growing potential of in vivo imaging. This collection of papers focuses on the theme of "putting the 'why' back into bone architecture." Remodeling is one of two mechanisms "how" bone structure is dynamically modified and thus an improved 3D understanding of this fundamental process is crucial to ultimately understanding the "why." PMID:26322017

  9. Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of dietary fat intake on the development of left ventricular hypertrophy and accompanying structural and molecular remodeling in response to hypertension are not understood. The present study compared the effects of a high-fat versus a low-fat diet on development of left ventricular hype...

  10. Multiscale Characterization of Impact of Infarct Size on Myocardial Remodeling in an Ovine Infarct Model

    PubMed Central

    Zhang, Pei; Li, Tielou; Griffith, Bartley P; Wu, Zhongjun J

    2015-01-01

    The surviving myocardium initially compensates the loss of injured myocardium after myocardial infarction (MI) and gradually becomes progressively dysfunctional. There have been limited studies of the influence of infarct size on temporal and spatial alteration of myocardium during progressive myocardial remodeling. MI with three infarct sizes (15%, 25% and 35% of left ventricular wall) was created in an ovine infarction model. The progressive LV remodeling over a 12 week period was studied. Echocardiography, sonomicrometry, histological and molecular analyses were carried out to evaluate cardiac function, regional tissue contractile function and structural remodeling, and regional cardiomycyte hypertrophy and calcium handling proteins. The 15%, 25% and 35% MI groups at 12 weeks after MI had normalized LV end diastole volumes of 1.4±0.2, 1.7±0.3 and 2.0±0.4 mL/Kg, normalized end systole volumes of 1.0±0.1, 1.0±0.2 and 1.3±0.3 mL/Kg and LV ejection fractions of 43%±3%, 42%±6% and 34%±4%, respectively. They all differed from a sham group (p<0.05). All the three MI groups exhibited larger wall areal expansion (remodeling strain), larger cardiomyocyte size and altered expression of calcium handing proteins in the adjacent myocardium compared to the remote counterpart from the infarct. Significant correlation was found between myocardiocyte size and remodeling strain in the adjacent zone. A comparative analysis among the three MI groups showed that a larger infarct size (35% vs. 15% MI) was associated with larger remodeling strain, impairment severity of cellular structure and composition, and regional contractile function at regional tissue level and LV cardiac function at organ level. PMID:26540290

  11. Remodeling of Calcium Entry Pathways in Cancer.

    PubMed

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2016-01-01

    Ca(2+) entry pathways play important roles in control of many cellular functions, including long-term proliferation, migration and cell death. In recent years, it is becoming increasingly clear that, in some types of tumors, remodeling of Ca(2+) entry pathways could contribute to cancer hallmarks such as excessive proliferation, cell migration and invasion as well as resistance to cell death or survival. In this chapter we briefly review findings related to remodeling of Ca(2+) entry pathways in cancer with emphasis on the mechanisms that contribute to increased store-operated Ca(2+) entry (SOCE) and store-operated currents (SOCs) in colorectal cancer cells. Finally, since SOCE appears critically involved in colon tumorogenesis, the inhibition of SOCE by aspirin and other NSAIDs and its possible contribution to colon cancer chemoprevention is reviewed. PMID:27161240

  12. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  13. SHREC Silences Heterochromatin via Distinct Remodeling and Deacetylation Modules.

    PubMed

    Job, Godwin; Brugger, Christiane; Xu, Tao; Lowe, Brandon R; Pfister, Yvan; Qu, Chunxu; Shanker, Sreenath; Baños Sanz, José I; Partridge, Janet F; Schalch, Thomas

    2016-04-21

    Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1 and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus, SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci. PMID:27105116

  14. Protective Effects of Paricalcitol on Peritoneal Remodeling during Peritoneal Dialysis

    PubMed Central

    Stavenuiter, Andrea W. D.; Farhat, Karima; Vila Cuenca, Marc; Schilte, Margot N.; Keuning, Eelco D.; Paauw, Nanne J.; ter Wee, Pieter M.; Beelen, Robert H. J.; Vervloet, Marc G.

    2015-01-01

    Peritoneal dialysis (PD) is associated with structural and functional alterations of the peritoneal membrane, consisting of fibrosis, angiogenesis, and loss of ultrafiltration capacity. Vitamin D receptor activation (VDRA) plays an important role in mineral metabolism and inflammation, but also antiangiogenic and antifibrotic properties have been reported. Therefore, the effects of active vitamin D treatment on peritoneal function and remodeling were investigated. Rats were either kept naïve to PDF exposure or daily exposed to 10 mL PDF and were treated for five or seven weeks with oral paricalcitol or vehicle control. Non-PDF-exposed rats showed no peritoneal changes upon paricalcitol treatment. Paricalcitol reduced endogenous calcitriol but did not affect mineral homeostasis. However, upon PDF exposure, loss of ultrafiltration capacity ensued which was fully rescued by paricalcitol treatment. Furthermore, PD-induced ECM thickening was significantly reduced and omental PD-induced angiogenesis was less pronounced upon paricalcitol treatment. No effect of paricalcitol treatment on total amount of peritoneal cells, peritoneal leukocyte composition, and epithelial to mesenchymal transition (EMT) was observed. Our data indicates that oral VDRA reduces tissue remodeling during chronic experimental PD and prevents loss of ultrafiltration capacity. Therefore, VDRA is potentially relevant in the prevention of treatment technique failure in PD patients. PMID:26605330

  15. Integrative models of vascular remodeling during tumor growth

    PubMed Central

    Rieger, Heiko; Welter, Michael

    2015-01-01

    Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that is in many respects different from the hierarchically organized arterio-venous blood vessel network of the host tissues. Integrative models based on detailed experimental data and physical laws implement in silico the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. In this review, we give an overview over the current status of integrative models describing tumor growth, vascular remodeling, blood and interstitial fluid flow, drug delivery, and concomitant transformations of the microenvironment. © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. PMID:25808551

  16. Multifractal and Lacunarity Analysis of Microvascular Morphology and Remodeling

    PubMed Central

    Gould, Daniel J.; Vadakkan, Tegy J.; Poché, Ross A.; Dickinson, Mary E.

    2011-01-01

    Purpose Classical measures of vessel morphology including diameter and density are employed to study microvasculature in endothelial membrane labeled mice. These measurements prove sufficient for some studies; however they are less well suited for quantifying changes in microcirculatory networks lacking hierarchical structure. We demonstrate automated multifractal analysis and lacunarity may be used with classical methods to quantify microvascular morphology. Methods We present an automated extraction tool with a processing pipeline to characterize 2D representations of 3D microvasculature, using multifractal analysis and lacunarity. We apply our analysis on four tissues and the hyaloid vasculature during remodeling. Results We found that the vessel networks analyzed have multifractal geometries and that kidney microvasculature has the largest fractal dimension and the lowest lacunarity compared to microvasculature networks in the cortex, skin, and thigh muscle. Also, we found that during hyaloid remodeling, there were differences in multifractal spectra reflecting the functional transition from a space filling vasculature which nurtures the lens to a less dense vasculature as it regresses, permitting unobstructed vision. Conclusion Multifractal analysis and lacunarity are valuable additions to classical measures of vascular morphology and will have utility in future studies of normal, developing and pathological tissues. PMID:21166933

  17. Perspectives on biological growth and remodeling

    PubMed Central

    Ambrosi, D.; Ateshian, G. A.; Arruda, E. M.; Cowin, S. C.; Dumais, J.; Goriely, A.; Holzapfel, G. A.; Humphrey, J. D.; Kemkemer, R.; Kuhl, E.; Olberding, J. E.; Taber, L. A.; Garikipati, K.

    2011-01-01

    The continuum mechanical treatment of biological growth and remodeling has attracted considerable attention over the past fifteen years. Many aspects of these problems are now well-understood, yet there remain areas in need of significant development from the standpoint of experiments, theory, and computation. In this perspective paper we review the state of the field and highlight open questions, challenges, and avenues for further development. PMID:21532929

  18. Remodeling Components of the Tumor Microenvironment to Enhance Cancer Therapy

    PubMed Central

    Gkretsi, Vasiliki; Stylianou, Andreas; Papageorgis, Panagiotis; Polydorou, Christiana; Stylianopoulos, Triantafyllos

    2015-01-01

    Solid tumor pathophysiology is characterized by an abnormal microenvironment that guides tumor progression and poses barriers to the efficacy of cancer therapies. Most common among tumor types are abnormalities in the structure of the tumor vasculature and stroma. Remodeling the tumor microenvironment with the aim to normalize any aberrant properties has the potential to improve therapy. In this review, we discuss structural abnormalities of the tumor microenvironment and summarize the therapeutic strategies that have been developed to normalize tumors as well as their potential to enhance therapy. Finally, we present different in vitro models that have been developed to analyze and better understand the effects of the tumor microenvironment on cancer cell behavior. PMID:26528429

  19. Ventricular Remodeling in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Shah, Amil M.

    2014-01-01

    Heart failure with preserved ejection fraction (HFpEF) is common, increasing in prevalence, and causes substantial morbidity and mortality. HFpEF has commonly been viewed as an expression of advanced hypertensive heart disease, with a cardiac phenotype characterized by an increase in wall thickness-to-chamber radius ratio (concentric hypertrophy). However, marked clinical heterogeneity within this syndrome is now well appreciated, and is mirrored in the variability in left ventricular structure. A review of larger imaging studies from epidemiology and clinical trial cohorts demonstrate that while concentric LV remodeling is common, it is by no means universal and many patients demonstrate normal LV geometry or even an eccentric pattern. More detailed assessment of cardiac structure and function in broader HFpEF populations will be necessary to better define the prevalence, determinants, and prognostic relevance of these measures, which may in turn serve as a foundation to identify pathophysiologically relevant sub-phenotypes within this diverse syndrome. PMID:24097113

  20. A reconciliation of local and global models for bone remodeling through optimization theory.

    PubMed

    Subbarayan, G; Bartel, D L

    2000-02-01

    Remodeling rules with either a global or a local mathematical form have been proposed for load-bearing bones in the literature. In the local models, the bone architecture (shape, density) is related to the strains/energies sensed at any point in the bone, while in the global models, a criterion believed to be applicable to the whole bone is used. In the present paper, a local remodeling rule with a strain "error" form is derived as the necessary condition for the optimum of a global remodeling criterion, suggesting that many of the local error-driven remodeling rules may have corresponding global optimization-based criteria. The global criterion proposed in the present study is a trade-off between the cost of metabolic growth and use, mathematically represented by the mass, and the cost of failure, mathematically represented by the total strain energy. The proposed global criterion is shown to be related to the optimality criteria methods of structural optimization by the equivalence of the model solution and the fully stressed solution for statically determinate structures. In related work, the global criterion is applied to simulate the strength recovery in bones with screw holes left behind after removal of fracture fixation plates. The results predicted by the model are shown to be in good agreement with experimental results, leading to the conclusion that load-bearing bones are structures with optimal shape and property for their function. PMID:10790832

  1. Tissue Remodelling following Resection of Porcine Liver

    PubMed Central

    Nygård, Ingvild Engdal; Mortensen, Kim Erlend; Hedegaard, Jakob; Conley, Lene Nagstrup; Bendixen, Christian; Sveinbjørnsson, Baldur; Revhaug, Arthur

    2015-01-01

    Aim. To study genes regulating the extracellular matrix (ECM) and investigate the tissue remodelling following liver resection in porcine. Methods. Four pigs with 60% partial hepatectomy- (PHx-) induced liver regeneration were studied over six weeks. Four pigs underwent sham surgery and another four pigs were used as controls of the normal liver growth. Liver biopsies were taken upon laparotomy, after three and six weeks. Gene expression profiles were obtained using porcine-specific oligonucleotide microarrays. Immunohistochemical staining was performed and a proliferative index was assessed. Results. More differentially expressed genes were associated with the regulation of ECM in the resection group compared to the sham and control groups. Secreted protein acidic and rich in cysteine (SPARC) and collagen 1, alpha 2 (COL1A2) were both upregulated in the early phase of liver regeneration, validated by immunopositive cells during the remodelling phase of liver regeneration. A broadened connective tissue was demonstrated by Masson's Trichrome staining, and an immunohistochemical staining against pan-Cytokeratin (pan-CK) demonstrated a distinct pattern of migrating cells, followed by proliferating cell nuclear antigen (PCNA) positive nuclei. Conclusions. The present study demonstrates both a distinct pattern of PCNA positive nuclei and a deposition of ECM proteins in the remodelling phase of liver regeneration. PMID:26240819

  2. MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling

    PubMed Central

    McDonald, Robert A.; Hata, Akiko; MacLean, Margaret R.; Morrell, Nicholas W.; Baker, Andrew H.

    2012-01-01

    Vascular remodelling is an integral pathological process central to a number of cardiovascular diseases. The complex interplay between distinct cell populations in the vessel wall following vascular injury leads to inflammation, cellular dysfunction, pro-growth signals in the smooth muscle cell (SMC) compartment, and the acquisition of a synthetic phenotype. Although the signals for vascular remodelling are diverse in different pathological contexts, SMC proliferation and migration are consistently observed. It is therefore critical to elucidate key mechanisms central to these processes. MicroRNAs (miRNAs) are small non-coding sequences of RNA that have the capacity to regulate many genes, pathways, and complex biological networks within cells, acting either alone or in concert with one another. In diseases such as cancer and cardiac disease, the role of miRNA in disease pathogenesis has been documented in detail. In contrast, despite a great deal of interest in miRNA, relatively few studies have directly assessed the role of miRNA in vascular remodelling. The potential for modulation of miRNA to achieve therapeutic benefits in this setting is attractive. Here, we focus on the role of miRNA in vascular inflammation and remodelling associated with acute vascular injury (vein graft disease, angioplasty restenosis, and in-stent restenosis) as well as in vascular remodelling associated with the development of pulmonary arterial hypertension. PMID:22065733

  3. Depression Increases Sympathetic Activity and Exacerbates Myocardial Remodeling after Myocardial Infarction: Evidence from an Animal Experiment

    PubMed Central

    Liu, Tao; Yuan, Xiaoran; Ruan, Bing; Sun, Lifang; Tang, Yanhong; Yang, Bo; Hu, Dan; Huang, Congxin

    2014-01-01

    Depression is an independent risk factor for cardiovascular events and mortality in patients with myocardial infarction (MI). Excessive sympathetic activation and serious myocardial remodeling may contribute to this association. The aim of this study was to discuss the effect of depression on sympathetic activity and myocardial remodeling after MI. Wild-type (WT) rats were divided into a sham group (Sham), a myocardial infarction group (MI), a depression group (D), and a myocardial infarction plus depression group (MI+D). Compared with controls, the MI+D animals displayed depression-like behaviors and attenuated body weight gain. The evaluation of sympathetic activity showed an increased level in plasma concentrations of epinephrine and norepinephrine and higher expression of myocardial tyrosine hydroxylase in the MI+D group than the control groups (p<0.05 for all). Cardiac function and morphologic analyses revealed a decreased fractional shortening accompanied by increased left ventricular dimensions, thinning myocardium wall, and reduced collagen repair in the MI+D group compared with the MI group (p<0.05 for all). Frequent premature ventricular contractions, prolonged QT duration and ventricular repolarization duration, shorted effective refractory period, and increased susceptibility to ventricular arrhythmia were displayed in MI+D rats. These results indicate that sympathetic hyperactivation and exacerbated myocardial remodeling may be a plausible mechanism linking depression to an adverse prognosis after MI. PMID:25036781

  4. Biologics in dermatology: adverse effects.

    PubMed

    Sehgal, Virendra N; Pandhi, Deepika; Khurana, Ananta

    2015-12-01

    Biologics are a group of drugs that precisely affect certain specific steps in the immune response and are an extremely useful group when used in an appropriate setting. However, their use can often be a double-edged sword. Careful patient selection and thorough knowledge of adverse effects is a key to their successful use in various disorders. The initial enthusiasm has gradually given way to a more cautious approach wherein a balance is sought between clinical usefulness and expected side effects. The adverse effects of the biologics most commonly used in dermatology have been carefully listed for ready reference. The plausible causes of the adverse reactions are succinctly outlined along with their incriminating factor(s). Besides, in brief, the attention has been focused on their management. The content should provide an essential didactic content for educating the practitioner. PMID:26147909

  5. Arterial remodeling of basilar atherosclerosis in isolated pontine infarction.

    PubMed

    Feng, Chao; Hua, Ting; Xu, Yu; Liu, Xue-Yuan; Huang, Jing

    2015-04-01

    Isolated pontine infarctions are usually classified as paramedian pontine infarction (PPI) and lacunar pontine infarction (LPI). Although they have different shapes and locations, some recent studies proved that they might both be associated with basilar artery atherosclerosis in pathogenesis. This study aimed to explore the difference of basilar artery remodeling between two subtypes of pontine infarctions. Patients with PPI or LPI were scanned by High-resolution MRI (HR-MRI). The MR images of patients with basilar artery atherosclerosis were further analyzed to measure the vessel, lumen and wall areas at different segments of basilar arteries. Stenosis rate and remodeling index were calculated according to which arterial remodeling was divided into positive, intermediate and negative remodeling. Vascular risk factors and remodeling-related features were compared between PPI and LPI, and also between patients with and without positive remodeling. 34 patients with PPI and 21 patients with LPI had basilar artery atherosclerosis identified by HR-MRI. Positive remodeling was dominant in LPI group while in PPI group, three subtypes of remodeling were equal. Patients with positive remodeling had higher levels of low-density lipoprotein and homocysteine. Positive remodeling of basilar artery might reflect the low stability of basilar atherosclerotic plaques, which was more closely associated with LPI than PPI. PMID:25367406

  6. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling

    PubMed Central

    Broide, David H.

    2008-01-01

    Although histologic features of airway remodeling have been well characterized in asthma, the immunologic and inflammatory mechanisms that drive progression of asthma to remodeling are still incompletely understood. Conceptually, airway remodeling may be due to persistent inflammation and/or aberrant tissue repair mechanisms. It is likely that several immune and inflammatory cell types and mediators are involved in mediating airway remodeling. In addition, different features of airway remodeling are likely mediated by different inflammatory pathways. Several important candidate mediators of remodeling have been identified including TGF-β and Th2 cytokines (including IL-5 and IL-13), as well as VEGF, ADAM-33, and MMP-9. Mouse models of airway remodeling have provided important insight into potential mechanisms by which TGF-β activation of the Smad 2/3 signaling pathway may contribute to airway remodeling. Human studies have demonstrated that anti-IL-5 reduces levels of airway eosinophils expressing TGF-β, as well as levels of airway remodeling as assessed by bronchial biopsies. Further such studies confirming these observations, as well as alternate studies targeting additional individual cell types, cytokines, and mediators are needed in human subjects with asthma to determine the role of candidate mediators of inflammation on the development and progression of airway remodeling. PMID:18328887

  7. Role of atrial tissue remodeling on rotor dynamics: an in vitro study.

    PubMed

    Climent, Andreu M; Guillem, María S; Fuentes, Lucia; Lee, Peter; Bollensdorff, Christian; Fernández-Santos, María Eugenia; Suárez-Sancho, Susana; Sanz-Ruiz, Ricardo; Sánchez, Pedro Luis; Atienza, Felipe; Fernández-Avilés, Francisco

    2015-12-01

    The objective of this article is to present an in vitro model of atrial cardiac tissue that could serve to study the mechanisms of remodeling related to atrial fibrillation (AF). We analyze the modification on gene expression and modifications on rotor dynamics following tissue remodeling. Atrial murine cells (HL-1 myocytes) were maintained in culture after the spontaneous initiation of AF and analyzed at two time points: 3.1 ± 1.3 and 9.7 ± 0.5 days after AF initiation. The degree of electrophysiological remodeling (i.e., relative gene expression of key ion channels) and structural inhomogeneity was compared between early and late cell culture times both in nonfibrillating and fibrillating cell cultures. In addition, the electrophysiological characteristics of in vitro fibrillation [e.g., density of phase singularities (PS/cm(2)), dominant frequency, and rotor meandering] analyzed by means of optical mapping were compared with the degree of electrophysiological remodeling. Fibrillating cell cultures showed a differential ion channel gene expression associated with atrial tissue remodeling (i.e., decreased SCN5A, CACN1C, KCND3, and GJA1 and increased KCNJ2) not present in nonfibrillating cell cultures. Also, fibrillatory complexity was increased in late- vs. early stage cultures (1.12 ± 0.14 vs. 0.43 ± 0.19 PS/cm(2), P < 0.01), which was associated with changes in the electrical reentrant patterns (i.e., decrease in rotor tip meandering and increase in wavefront curvature). HL-1 cells can reproduce AF features such as electrophysiological remodeling and an increased complexity of the electrophysiological behavior associated with the fibrillation time that resembles those occurring in patients with chronic AF. PMID:26408535

  8. Albuminuria is Independently Associated with Cardiac Remodeling, Abnormal Right and Left Ventricular Function, and Worse Outcomes in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Katz, Daniel H.; Burns, Jacob A.; Aguilar, Frank G.; Beussink, Lauren; Shah, Sanjiv J.

    2014-01-01

    Objectives To determine the relationship between albuminuria and cardiac structure/function in heart failure with preserved ejection fraction (HFpEF). Background Albuminuria, a marker of endothelial dysfunction, has been associated with adverse cardiovascular outcomes in HFpEF. However, the relationship between albuminuria and cardiac structure/function in HFpEF has not been well studied. Methods We measured urinary albumin-to-creatinine ratio (UACR) and performed comprehensive echocardiography, including tissue Doppler imaging and right ventricular (RV) evaluation, in a prospective study of 144 patients with HFpEF. Multivariable-adjusted linear regression was used to determine the association between UACR and echocardiographic parameters. Cox proportional hazards analyses were used to determine the association between UACR and outcomes. Results The mean age was 66±11 years, 62% were female, and 42% were African-American. Higher UACR was associated with greater left ventricular (LV) mass, lower preload-recruitable stroke work, and lower global longitudinal strain. Higher UACR was also significantly associated with RV remodeling (for each doubling of UACR, RV wall thickness was 0.9 mm higher [95% confidence interval (CI) 0.05–0.14 mm; P=0.001, adjusted P=0.01]) and worse RV systolic function (for each doubling of UACR, RV fractional area change was 0.56% lower [95% CI 0.14–0.98%; P=0.01, adjusted P=0.03]. The association between UACR and RV parameters persisted after excluding patients with macroalbuminuria (UACR > 300 mg/g). Increased UACR was also independently associated with worse outcomes. Conclusions In HFpEF, increased UACR is a prognostic marker and is associated with increased RV and LV remodeling, and longitudinal systolic dysfunction. PMID:25282032

  9. Targeted disruption of the heat shock protein 20-phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy.

    PubMed

    Martin, Tamara P; Hortigon-Vinagre, Maria P; Findlay, Jane E; Elliott, Christina; Currie, Susan; Baillie, George S

    2014-01-01

    Phosphorylated heat shock protein 20 (HSP20) is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20-phosphodiesterase 4D (PDE4D) complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20-PDE4D interaction leads to attenuation of pathological cardiac remodelling. PMID:25426411

  10. Adversity and advancing nursing knowledge.

    PubMed

    Reed, Pamela G

    2008-04-01

    This column reports the theme of adversity addressed in reference to theoretical and metatheoretical considerations for advancing nursing knowledge. The development and content of three classic nursing theories are presented by Neuman representatives, and by theorists King and Roy. Topics for continued dialogue are identified as derived from the interface between philosophy of science issues and these theories. PMID:18378823

  11. Adverse Childhood Experiences and Hallucinations

    ERIC Educational Resources Information Center

    Whitfield, C.L.; Dube, S.R.; Felitti, V.J.; Anda, R.F.

    2005-01-01

    Objective:: Little information is available about the contribution of multiple adverse childhood experiences (ACEs) to the likelihood of reporting hallucinations. We used data from the ACE study to assess this relationship. Methods:: We conducted a survey about childhood abuse and household dysfunction while growing up, with questions about health…

  12. Adverse ocular reactions to drugs.

    PubMed Central

    Spiteri, M. A.; James, D. G.

    1983-01-01

    Drugs acting on various parts of the body may also affect the eye insidiously. Increased awareness of such drug toxicity by the prescribing doctor should encourage him to consider effects on the cornea, lens, retina, optic nerve and elsewhere when checking the patient's progress. The following review concerns adverse ocular effects of systemic drug administration. PMID:6356101

  13. Urbanicity, social adversity and psychosis

    PubMed Central

    Heinz, Andreas; Deserno, Lorenz; Reininghaus, Ulrich

    2013-01-01

    In recent years, there has been increasing interest in research on geographical variation in the incidence of schizophrenia and other psychoses. In this paper, we review the evidence on variation in incidence of schizophrenia and other psychoses in terms of place, as well as the individual- and area-level factors that account for this variation. We further review findings on potential mechanisms that link adverse urban environment and psychosis. There is evidence from earlier and more recent studies that urbanicity is associated with an increased incidence of schizophrenia and non-affective psychosis. In addition, considerable variation in incidence across neighbourhoods has been observed for these disorders. Findings suggest it is unlikely that social drift alone can fully account for geographical variation in incidence. Evidence further suggests that the impact of adverse social contexts – indexed by area-level exposures such as population density, social fragmentation and deprivation – on risk of psychosis is explained (confounding) or modified (interaction) by environmental exposures at the individual level (i.e., cannabis use, social adversity, exclusion and discrimination). On a neurobiological level, several studies suggest a close link between social adversity, isolation and stress on the one hand, and monoamine dysfunction on the other, which resembles findings in schizophrenia patients. However, studies directly assessing correlations between urban stress or discrimination and neurobiological alterations in schizophrenia are lacking to date. PMID:24096775

  14. Pyrvinium, a Potent Small Molecule Wnt Inhibitor, Promotes Wound Repair and Post-MI Cardiac Remodeling

    PubMed Central

    Saraswati, Sarika; Alfaro, Maria P.; Thorne, Curtis A.; Atkinson, James; Lee, Ethan; Young, Pampee P.

    2010-01-01

    Wnt signaling plays an important role in developmental and stem cell biology. To test the hypothesis that temporary inhibition of Wnt signaling will enhance granulation tissue and promote angiogenesis in tissue repair, we employed a recently characterized small molecule Wnt inhibitor. Pyrvinium is an FDA-approved drug that we identified as a Wnt inhibitor in a chemical screen for small molecules that stabilize β-catenin and inhibit Axin degradation. Our subsequent characterization of pyrvinium has revealed that its critical cellular target in the Wnt pathway is Casein Kinase 1α. Daily administration of pyrvinium directly into polyvinyl alcohol (PVA) sponges implanted subcutaneously in mice generated better organized and vascularized granulation tissue; this compound also increased the proliferative index of the tissue within the sponges. To evaluate its effect in myocardial repair, we induced a myocardial infarction (MI) by coronary artery ligation and administered a single intramyocardial dose of pyrvinium. Mice were evaluated by echocardiography at 7 and 30 days post-MI and treatment; post mortem hearts were evaluated by histology at 30 days. Pyrvinium reduced adverse cardiac remodeling demonstrated by decreased left ventricular internal diameter in diastole (LVIDD) as compared to a control compound. Increased Ki-67+ cells were observed in peri-infarct and distal myocardium of pyrvinium-treated animals. These results need to be further followed-up to determine if therapeutic inhibition of canonical Wnt may avert adverse remodeling after ischemic injury and its impact on myocardial repair and regeneration. PMID:21170416

  15. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria.

    PubMed

    Colman, Michael A; Aslanidi, Oleg V; Kharche, Sanjay; Boyett, Mark R; Garratt, Clifford; Hancox, Jules C; Zhang, Henggui

    2013-09-01

    Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche-Ramirez-Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca(2+) handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate

  16. Inhibition of chromatin remodeling by Polycomb Group protein Posterior Sex Combs is mechanistically distinct from nucleosome binding1

    PubMed Central

    Lo, Stanley M.; Francis, Nicole J.

    2010-01-01

    Polycomb Group (PcG) proteins are essential regulators of development that maintain gene silencing in Drosophila and mammals through alterations of chromatin structure. One key PcG protein, Posterior Sex Combs (PSC), is part of at least two complexes: Polycomb Repressive Complex 1 (PRC1) and dRING Associated Factors (dRAF). PRC1-class complexes compact chromatin and inhibit chromatin remodeling, while dRAF has E3 ligase activity for ubiquitylation of histone H2A; activities of both complexes can inhibit transcription. The noncovalent effects of PRC1-class complexes on chromatin can be recapitulated by PSC alone, and the region of PSC required for these activities is essential for PSC function in vivo. To understand how PSC interacts with chromatin to exert its repressive effects, we compared the ability of PSC to bind to and inhibit remodeling of various nucleosomal templates, and determined which regions of PSC are required for mononucleosome binding and inhibition of chromatin remodeling. We find that PSC binds mononucleosome templates but inhibits their remodeling poorly. Addition of linker DNA to mononucleosomes allows their remodeling to be inhibited, although higher concentrations of PSC are required than for inhibition of multi-nucleosome templates. The C-terminal region of PSC (aa 456-1603) is important for inhibition of chromatin remodeling, and we identified aa 456-909 as sufficient for stable nucleosome binding but not for inhibition of chromatin remodeling. Our data suggest distinct mechanistic steps between nucleosome binding and inhibition of chromatin remodeling. PMID:20873869

  17. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    PubMed

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  18. Chemistry and biology of chromatin remodeling agents: state of art and future perspectives of HDAC inhibitors.

    PubMed

    Rodriquez, Manuela; Aquino, Maurizio; Bruno, Ines; De Martino, Giovanni; Taddei, Maurizio; Gomez-Paloma, Luigi

    2006-01-01

    Chromatin remodeling is a fundamental phenomenon in the life of eukaryotic cells, bearing implications to numerous physiological and pathological phenomena. This review outlines the chemistry of natural and synthetic agents endowed with the ability to interfere with such biological function, with a particular emphasis on histone deacetylase (HDAC) inhibitors. Other aspects covered in this article comprise structure activity relationships (SAR) and modes of action at molecular level, including the description of crystal structures of enzyme-inhibitor complexes. PMID:16719774

  19. In Brief: Picturing the complex world of chromatin remodelling families.

    PubMed

    Witkowski, Leora; Foulkes, William D

    2015-12-01

    Over the past decade, chromatin remodelling emerged as one of the most important causes of both abnormal development and cancer. Although much has been written about one or another of the complexes, no recent concise summary of the chromatin remodelling families as a whole is available. In this short review, we introduce the family members, briefly summarize their role in developmental abnormalities and neoplasia, and outline the different ways in which these families remodel chromatin. PMID:26174723

  20. Control of bone remodelling by applied dynamic loads

    NASA Technical Reports Server (NTRS)

    Lanyon, L. E.; Rubin, C. T.

    1984-01-01

    The data showing the relationship between bone mass and peak strain magnitude prepared and submitted for publication. The data from experiments relating remodelling activity with static or dynamic loads were prepared and submitted for publication. Development of programs to relate the location of remodelling activity with he natural and artificial dynamic strain distributions continued. Experiments on the effect of different strain rates on the remodelling response continued.

  1. Chromatin Remodeling in Mammary Gland Differentiation and Breast Tumorigenesis

    PubMed Central

    Huang, Tim H.-M.; Esteller, Manel

    2010-01-01

    DNA methylation and histone modifications have essential roles in remodeling chromatin structure of genes necessary for multi-lineage differentiation of mammary stem/progenitor cells. The role of this well-defined epigenetic programming is to heritably maintain transcriptional plasticity of these loci over multiple cell divisions in the differentiated progeny. Epigenetic events can be deregulated in progenitor cells chronically exposed to xenoestrogen or inflammatory microenvironment. In addition, epigenetically mediated silencing of genes associated with tumor suppression can take place, resulting in clonal proliferation of undifferentiated or semidifferentiated cells. Alternatively, microRNAs that negatively regulate the expression of their protein-coding targets may become epigenetically repressed, leading to oncogenic expression of these genes. Here we further discuss interactions between DNA methylation and histone modifications that have significant contributions to the differentiation of mammary stem/progenitor cells and to tumor initiation and progression. PMID:20610549

  2. Stress-induced remodeling of hippocampal CA3 pyramidal neurons.

    PubMed

    McEwen, Bruce S

    2016-08-15

    The discovery of steroid hormone receptors in brain regions that mediate virtually every aspect of brain function has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the brain and the body via hormonal and neural pathways. The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as determining the behavioral and physiological responses to the stressor. The adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neurogenesis leading to neuronal replacement, dendritic remodeling, and synapse turnover. Stress causes an imbalance of neural circuitry subserving cognition, decision-making, anxiety and mood that can alter expression of those behaviors and behavioral states. The two Brain Research papers noted in this review played an important role in triggering these advances. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26740399

  3. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling

    PubMed Central

    Baum, Buzz

    2011-01-01

    The epithelial cadherin (E-cadherin)–catenin complex binds to cytoskeletal components and regulatory and signaling molecules to form a mature adherens junction (AJ). This dynamic structure physically connects neighboring epithelial cells, couples intercellular adhesive contacts to the cytoskeleton, and helps define each cell’s apical–basal axis. Together these activities coordinate the form, polarity, and function of all cells in an epithelium. Several molecules regulate AJ formation and integrity, including Rho family GTPases and Par polarity proteins. However, only recently, with the development of live-cell imaging, has the extent to which E-cadherin is actively turned over at junctions begun to be appreciated. This turnover contributes to junction formation and to the maintenance of epithelial integrity during tissue homeostasis and remodeling. PMID:21422226

  4. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes. PMID:25790500

  5. Specificity analysis of lectins and antibodies using remodeled glycoproteins.

    PubMed

    Iskratsch, Thomas; Braun, Andreas; Paschinger, Katharina; Wilson, Iain B H

    2009-03-15

    Due to their ability to bind specifically to certain carbohydrate sequences, lectins are a frequently used tool in cytology, histology, and glycan analysis but also offer new options for drug targeting and drug delivery systems. For these and other potential applications, it is necessary to be certain as to the carbohydrate structures interacting with the lectin. Therefore, we used glycoproteins remodeled with glycosyltransferases and glycosidases for testing specificities of lectins from Aleuria aurantia (AAL), Erythrina cristagalli (ECL), Griffonia simplicifolia (GSL I-B(4)), Helix pomatia agglutinin (HPA), Lens culinaris (LCA), Lotus tetragonolobus (LTA), peanut (Arachis hypogaeae) (PNA), Ricinus communis (RCA I), Sambucus nigra (SNA), Vicia villosa (VVA), and wheat germ (Triticum vulgaris) (WGA) as well as reactivities of anti-carbohydrate antibodies (anti-bee venom, anti-horseradish peroxidase [anti-HRP], and anti-Lewis(x)). After enzymatic remodeling, the resulting neoglycoforms display defined carbohydrate sequences and can be used, when spotted on nitrocellulose or in enzyme-linked lectinosorbent assays, to identify the sugar moieties bound by the lectins. Transferrin with its two biantennary complex N-glycans was used as scaffold for gaining diverse N-glycosidic structures, whereas fetuin was modified using glycosidases to test the specificities of lectins toward both N- and O-glycans. In addition, alpha(1)-acid glycoprotein and Schistosoma mansoni egg extract were chosen as controls for lectin interactions with fucosylated glycans (Lewis(x) and core alpha1,3-fucose). Our data complement and expand the existing knowledge about the binding specificity of a range of commercially available lectins. PMID:19123999

  6. Automatically Recognizing Medication and Adverse Event Information From Food and Drug Administration’s Adverse Event Reporting System Narratives

    PubMed Central

    Polepalli Ramesh, Balaji; Belknap, Steven M; Li, Zuofeng; Frid, Nadya; West, Dennis P

    2014-01-01

    Background The Food and Drug Administration’s (FDA) Adverse Event Reporting System (FAERS) is a repository of spontaneously-reported adverse drug events (ADEs) for FDA-approved prescription drugs. FAERS reports include both structured reports and unstructured narratives. The narratives often include essential information for evaluation of the severity, causality, and description of ADEs that are not present in the structured data. The timely identification of unknown toxicities of prescription drugs is an important, unsolved problem. Objective The objective of this study was to develop an annotated corpus of FAERS narratives and biomedical named entity tagger to automatically identify ADE related information in the FAERS narratives. Methods We developed an annotation guideline and annotate medication information and adverse event related entities on 122 FAERS narratives comprising approximately 23,000 word tokens. A named entity tagger using supervised machine learning approaches was built for detecting medication information and adverse event entities using various categories of features. Results The annotated corpus had an agreement of over .9 Cohen’s kappa for medication and adverse event entities. The best performing tagger achieves an overall performance of 0.73 F1 score for detection of medication, adverse event and other named entities. Conclusions In this study, we developed an annotated corpus of FAERS narratives and machine learning based models for automatically extracting medication and adverse event information from the FAERS narratives. Our study is an important step towards enriching the FAERS data for postmarketing pharmacovigilance. PMID:25600332

  7. Cardiovascular adverse effects of phenytoin.

    PubMed

    Guldiken, B; Rémi, J; Noachtar, Soheyl

    2016-05-01

    Phenytoin is an established drug in the treatment of acute repetitive seizures and status epilepticus. One of its main advantages over benzodiazepines is the less sedative effect. However, the possibility of cardiovascular adverse effects with the intravenous use of phenytoin cause a reluctance to its usage, and this has lead to a search for safer anticonvulsant drugs. In this study, we aimed to review the studies which evaluated the safety of phenytoin with respect to cardiovascular adverse effects. The original clinical trials and case reports listed in PUBMED in English language between the years of 1946-2014 were evaluated. As the key words, "phenytoin, diphenylhydantoin, epilepsy, seizure, cardiac toxicity, asystole, arrhythmia, respiratory arrest, hypotension, death" were used. Thirty-two clinical trials and ten case reports were identified. In the case reports, a rapid infusion rate (>50 mg/min) of phenytoin appeared as the major cause of increased mortality. In contrast, no serious cardiovascular adverse effects leading to death were met in the clinical trials which applied the recommended infusion rate and dosages. An infusion rate of 50 mg/min was reported to be safe for young patients. For old patients and patients with a cardiovascular co-morbidity, a slower infusion rate was recommended with a careful follow-up of heart rhythm and blood pressure. No cardiovascular adverse effect was reported in oral phenytoin overdoses except one case with a very high serum phenytoin level and hypoalbuminemia. Phenytoin is an effective and well tolerated drug in the treatment of epilepsy. Intravenous phenytoin is safe when given at recommended infusion rates and doses. PMID:26645393

  8. Effect of Brain-Derived Neurotrophic Factor Haploinsufficiency on Stress-Induced Remodeling of Hippocampal Neurons

    PubMed Central

    Magariños, A.M.; Li, C.J.; Toth, J. Gal; Bath, K.G.; Jing, D.; Lee, F.S.; McEwen, B.S.

    2010-01-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF±) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF± mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF± mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling. PMID:20095008

  9. Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model.

    PubMed

    Aguero, Jaume; Ishikawa, Kiyotake; Hadri, Lahouaria; Santos-Gallego, Carlos; Fish, Kenneth; Hammoudi, Nadjib; Chaanine, Antoine; Torquato, Samantha; Naim, Charbel; Ibanez, Borja; Pereda, Daniel; García-Alvarez, Ana; Fuster, Valentin; Sengupta, Partho P; Leopold, Jane A; Hajjar, Roger J

    2014-10-15

    In pulmonary hypertension (PH), right ventricular (RV) dysfunction and failure is the main determinant of a poor prognosis. We aimed to characterize RV structural and functional differences during adaptive RV remodeling and progression to RV failure in a large animal model of chronic PH. Postcapillary PH was created surgically in swine (n = 21). After an 8- to 14-wk follow-up, two groups were identified based on the development of overt heart failure (HF): PH-NF (nonfailing, n = 12) and PH-HF (n = 8). In both groups, invasive hemodynamics, pressure-volume relationships, and echocardiography confirmed a significant increase in pulmonary pressures and vascular resistance consistent with PH. Histological analysis also demonstrated distal pulmonary arterial (PA) remodeling in both groups. Diastolic dysfunction, defined by a steeper RV end-diastolic pressure-volume relationship and longitudinal strain, was found in the absence of HF as an early marker of RV remodeling. RV contractility was increased in both groups, and RV-PA coupling was preserved in PH-NF animals but impaired in the PH-HF group. RV hypertrophy was present in PH-HF, although there was evidence of increased RV fibrosis in both PH groups. In the PH-HF group, RV sarcoplasmic reticulum Ca(2+)-ATPase2a expression was decreased, and endoplasmic reticulum stress was increased. Aldosterone levels were also elevated in PH-HF. Thus, in the swine pulmonary vein banding model of chronic postcapillary PH, RV remodeling occurs at the structural, histological, and molecular level. Diastolic dysfunction and fibrosis are present in adaptive RV remodeling, whereas the onset of RV failure is associated with RV-PA uncoupling, defective calcium handling, and hyperaldosteronism. PMID:25158063

  10. Corticosteroid-induced neural remodeling predicts behavioral vulnerability and resilience

    PubMed Central

    Gourley, Shannon L.; Swanson, Andrew M.; Koleske, Anthony J.

    2013-01-01

    Neurons in distinct brain regions remodel in response to postnatal stressor exposure, and structural plasticity may underlie stress-related modifications in behavioral outcomes. Given the persistence of stress-related diseases such as depression, a critical next step in identifying the contributions of neural structure to psychopathology will be to identify brain circuits and cell types that fail to recover from stressor exposure. We enumerated dendritic spines during and after chronic stress hormone exposure in hippocampal CA1, deep-layer prefrontal cortex, and the basal amygdala and also reconstructed dendritic arbors of CA1 pyramidal neurons. Corticosterone modified dendritic spine density in these regions, but with the exception of the orbitofrontal cortex, densities normalized with a recovery period. Dendritic retraction of hippocampal CA1 neurons and anhedonic-like insensitivity to a sucrose solution also persisted despite a recovery period. Using mice with reduced gene dosage of p190rhogap, a cytoskeletal regulatory protein localized to dendritic spines, we next isolated structural correlates of both behavioral vulnerability (spine elimination) and resilience (spine proliferation) to corticosterone within the orbital cortex. Our findings provide novel empirical support for the perspective that stress-related structural reorganization of certain neuron populations can persist despite a “recovery” period from stressor exposure, and that these modifications may lay a structural foundation for stressor vulnerability—or resiliency—across the lifespan. PMID:23407965

  11. [Adverse events of psychotropic drugs].

    PubMed

    Watanabe, Koichiro; Kikuchi, Toshiaki

    2014-01-01

    The authors discuss adverse events which are often missed but clinicians should pay attention to in order to preserve patients'quality of life(QOL). Among mood stabilizers, lithium may cause a urinary volume increase, hyperparathyroidism, and serum calcium elevation; sodium valproate possibly increases androgenic hormone levels and the risk of polycystic ovary syndrome (PCOS) as well as hypothyroidism. Moreover, in addition to teratogenesis, it has been reported that fetal exposure to a higher dose of valproate is associated with a lower intelligence quotient and higher incidence of autism spectrum disorders in children. Antidepressants with a higher affinity for serotonin transporters might induce gastrointestinal bleeding, and some antidepressants cause sexual dysfunction more frequently than others. Activation syndrome is still a key side effect which should be noted. Regarding the adverse events of antipsychotics, subjective side effects unpleasant to patients such as dysphoria and a lower subjective well-being should not be overlooked. We clinicians have to cope with adverse events worsening the QOL of patients with psychiatric disorders and, therefore, we need to adopt appropriate counter-measures. PMID:24864567

  12. Bone remodeling adjacent to total hip replacements: A naturally occurring material design problem

    NASA Astrophysics Data System (ADS)

    Harrigan, Timothy P.; Hamilton, James J.

    1993-10-01

    The reaction of bone to orthopedic implants is an example of a self-adjusting material which changes from a ‘normal state’ to an altered state, based on the mechanical features of the implant and the loads applied to it. The changes in bone around cemented and uncemented femoral total hip components are well documented, and many numerical characterizations of the material reaction to stress have attempted to mimic the natural remodeling process. In this study we review the development of a simple material remodeling rule which yields a stable structure which is optimal and which allows a unique solution. We then use this algorithm to assess the effect of prosthesis stiffness and the presence of a compliant layer on bone remodeling around these implants. An axisymmetric model for axial loading is used to model changes in bone density through the thickness of the cancellous bone around the implants. With cortical remodeling left out of the simulation, the simulations showed density distributions that agreed in general with the results in the literature, and showed a marked difference in response if a compliant layer was added to the prosthesis.

  13. βA3/A1-crystallin in astroglial cells regulates retinal vascular remodeling during development

    PubMed Central

    Sinha, Debasish; Klise, Andrew; Sergeev, Yuri; Hose, Stacey; Bhutto, Imran A.; Hackler, Laszlo; Malpic-llanos, Tanya; Samtani, Sonia; Grebe, Rhonda; Goldberg, Morton F.; Hejtmancik, J. Fielding; Nath, Avindra; Zack, Donald J.; Fariss, Robert N.; McLeod, D. Scott; Sundin, Olof; Broman, Karl W.; Lutty, Gerard A.; Zigler, J. Samuel

    2016-01-01

    Vascular remodeling is a complex process critical to development of the mature vascular system. Astrocytes are known to be indispensable for initial formation of the retinal vasculature; our studies with the Nuc1 rat provide novel evidence that these cells are also essential in the retinal vascular remodeling process. Nuc1 is a spontaneous mutation in the Sprague–Dawley rat originally characterized by nuclear cataracts in the heterozygote and microphthalmia in the homozygote. We report here that the Nuc1 allele results from mutation of the βA3/A1-crystallin gene, which in the neural retina is expressed only in astrocytes. We demonstrate striking structural abnormalities in Nuc1 astrocytes with profound effects on the organization of intermediate filaments. While vessels form in the Nuc1 retina, the subsequent remodeling process required to provide a mature vascular network is deficient. Our data implicate βA3/A1-crystallin as an important regulatory factor mediating vascular patterning and remodeling in the retina. PMID:17931883

  14. Spatial and phenotypic characterization of vascular remodeling in a mouse model of asthma.

    PubMed

    Su, Xinming; Taniuchi, Namiko; Jin, Enjing; Fujiwara, Masakazu; Zhang, Lei; Ghazizadeh, Mohammad; Tashimo, Hiroyuki; Yamashita, Naomi; Ohta, Ken; Kawanami, Oichi

    2008-01-01

    Asthma is a chronic inflammatory disease characterized by airway wall remodeling in which vascular remodeling is thought to be a main contributor. Vascular endothelial growth factor (VEGF) is known as a major regulator of angiogenesis and enhancer of vascular permeability. Here, we define the spatial nature of vascular remodeling and the role of VEGF and its receptors (Flt-1 and Flk-1) in the allergic response in mice (A/J) susceptible to the development of allergen-induced airway hyperresponsiveness using morphometric and quantitative approaches. Increased vascularity, vasodilatation, and endothelial cell proliferation were found in the tracheal and bronchial walls in the early and late phases of asthma. Vascular changes were observed not only in small vessels but also in larger vessels. In contrast to normal control, lung tissue from the asthma model showed dual expression for CD31 and von Willebrand factor in the endothelial cells and alpha-smooth muscle actin and desmin in the mural cells of the vessels, suggesting a phenotypic and functional transformation. The mRNA levels of VEGF isoforms, VEGF(164) and VEGF(188), were significantly increased in the tracheal and lung tissue, respectively. In addition, the mRNA level of VEGF receptor Flk-1 was significantly increased in the trachea. These results establish the existence of vascular remodeling in the airways in a mouse model of allergic asthma and support a key role for the expression of unique VEGF isoform genes as mediators of structural changes. PMID:18334839

  15. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling.

    PubMed

    Oka, Toru; Xu, Jian; Kaiser, Robert A; Melendez, Jaime; Hambleton, Michael; Sargent, Michelle A; Lorts, Angela; Brunskill, Eric W; Dorn, Gerald W; Conway, Simon J; Aronow, Bruce J; Robbins, Jeffrey; Molkentin, Jeffery D

    2007-08-01

    The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults, the adult heart reexpresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn(-/-) mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn(-/-) hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn(-/-) hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy. PMID:17569887

  16. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling.

    PubMed

    Bottazzi, Barbara; Inforzato, Antonio; Messa, Massimo; Barbagallo, Marialuisa; Magrini, Elena; Garlanda, Cecilia; Mantovani, Alberto

    2016-06-01

    Pentraxins are a superfamily of fluid phase pattern recognition molecules conserved in evolution and characterized by a cyclic multimeric structure. C-reactive protein (CRP) and serum amyloid P component (SAP) constitute the short pentraxin arm of the superfamily. CRP and SAP are produced in the liver in response to IL-6 and are acute phase reactants in humans and mice respectively. In addition SAP has been shown to affect tissue remodelling and fibrosis by stabilizing all types of amyloid fibrils and by regulating monocyte to fibrocyte differentiation. Pentraxin 3 (PTX3) is the prototype of the long pentraxin arm. Gene targeted mice and genetic and epigenetic studies in humans suggest that PTX3 plays essential non-redundant roles in innate immunity and inflammation as well as in tissue remodelling. Recent studies have revealed the role of PTX3 as extrinsic oncosuppressor, able to tune cancer-related inflammation. In addition, at acidic pH PTX3 can interact with provisional matrix components promoting inflammatory matrix remodelling. Thus acidification during tissue repair sets PTX3 in a tissue remodelling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:26921689

  17. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life

    PubMed Central

    Davies, Elizabeth R.; Kelly, Joanne F.C.; Howarth, Peter H.; Wilson, David I.; Holgate, Stephen T.; Davies, Donna E.; Whitsett, Jeffrey A.; Haitchi, Hans Michael

    2016-01-01

    Asthma is a chronic inflammatory airways disease that usually begins in early life and involves gene-environment interactions. Although most asthma exhibits allergic inflammation, many allergic individuals do not have asthma. Here, we report how the asthma gene a disintegrin and metalloprotease 33 (ADAM33) acts as local tissue susceptibility gene that promotes allergic asthma. We show that enzymatically active soluble ADAM33 (sADAM33) is increased in asthmatic airways and plays a role in airway remodeling, independent of inflammation. Furthermore, remodeling and inflammation are both suppressed in Adam33-null mice after allergen challenge. When induced in utero or added ex vivo, sADAM33 causes structural remodeling of the airways, which enhances postnatal airway eosinophilia and bronchial hyperresponsiveness following subthreshold challenge with an aeroallergen. This substantial gene-environment interaction helps to explain the end-organ expression of allergic asthma in genetically susceptible individuals. Finally, we show that sADAM33-induced airway remodeling is reversible, highlighting the therapeutic potential of targeting ADAM33 in asthma. PMID:27489884

  18. Quantification of Three-Dimensional Cell-Mediated Collagen Remodeling Using Graph Theory

    PubMed Central

    Bilgin, Cemal Cagatay; Lund, Amanda W.; Can, Ali; Plopper, George E.; Yener, Bülent

    2010-01-01

    Background Cell cooperation is a critical event during tissue development. We present the first precise metrics to quantify the interaction between mesenchymal stem cells (MSCs) and extra cellular matrix (ECM). In particular, we describe cooperative collagen alignment process with respect to the spatio-temporal organization and function of mesenchymal stem cells in three dimensions. Methodology/Principal Findings We defined two precise metrics: Collagen Alignment Index and Cell Dissatisfaction Level, for quantitatively tracking type I collagen and fibrillogenesis remodeling by mesenchymal stem cells over time. Computation of these metrics was based on graph theory and vector calculus. The cells and their three dimensional type I collagen microenvironment were modeled by three dimensional cell-graphs and collagen fiber organization was calculated from gradient vectors. With the enhancement of mesenchymal stem cell differentiation, acceleration through different phases was quantitatively demonstrated. The phases were clustered in a statistically significant manner based on collagen organization, with late phases of remodeling by untreated cells clustering strongly with early phases of remodeling by differentiating cells. The experiments were repeated three times to conclude that the metrics could successfully identify critical phases of collagen remodeling that were dependent upon cooperativity within the cell population. Conclusions/Significance Definition of early metrics that are able to predict long-term functionality by linking engineered tissue structure to function is an important step toward optimizing biomaterials for the purposes of regenerative medicine. PMID:20927339

  19. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    PubMed Central

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  20. [Histamine in regulation of bone remodeling processes].

    PubMed

    Wiercigroch, Marek; Folwarczna, Joanna

    2013-01-01

    Bone remodeling is under autocrine, paracrine, endocrine and central nervous system control. One of the potential endogenous factors affecting bone remodeling is histamine, an endogenous amine which acts as a mediator of allergic reactions and neuromediator, and induces production of gastric acid. Histamine H₁ receptor antagonists are widely used in the treatment of allergic conditions, H₂ receptor antagonists in peptic ulcer disease, and betahistine (an H₃ receptor antagonist and H₁ receptor agonist) is used in the treatment of Ménière's disease. Excess histamine release in mastocytosis and allergic diseases may lead to development of osteoporosis. Clinical and population-based studies on the effects of histamine receptor antagonists on the skeletal system have not delivered unequivocal results. Expression of mRNA of histamine receptors has been discovered in bone cells (osteoblasts and osteoclasts). Histamine synthesis has been demonstrated in osteoclast precursors. Histamine increases bone resorption both by direct effects on osteoclast precursors and osteoclasts, and indirectly, by increasing the expression of RANKL in osteoblasts. In in vivo studies, H₁ and H₂ receptor antagonists exerted protective effects on the bone tissue, although not in all experimental models. In the present article, in vitro and in vivo studies conducted so far, concerning the effects of histamine and drugs modifying its activity on the skeletal system, have been reviewed. PMID:24018454

  1. Densitometric evaluation of periprosthetic bone remodeling

    PubMed Central

    Parchi, Paolo Domenico; Cervi, Valentina; Piolanti, Nicola; Ciapini, Gianluca; Andreani, Lorenzo; Castellini, Iacopo; Poggetti, Andrea; Lisanti, Michele

    2014-01-01

    Summary The application of Dual-energy X-ray absorptiometry (DEXA) in orthopaedic surgery gradually has been extended from the study of osteoporosis to different areas of interest like the study of the relation between bone and prosthetic implants. Aim of this review is to analyze changes that occur in periprosthetic bone after the implantation of a total hip arthroplasty (THA) or a total knee arthroplasty (TKA). In THA the pattern of adaptive bone remodeling with different cementless femoral stems varies and it appears to be strictly related to the design and more specifically to where the femoral stem is fixed on bone. Short stems with metaphyseal fixation allow the maintenance of a more physiologic load transfer to the proximal femur decreasing the entity of bone loss. Femoral bone loss after TKA seems to be related to the stress shielding induced by the implants while tibial bone remodeling seems to be related to postoperative changes in knee alignment (varus/valgus) and consequently in tibial load transfer. After both THA and TKA stress shielding seems to be an inevitable phenomenon that occurs mainly in the first year after surgery. PMID:25568658

  2. PARP inhibition and postinfarction myocardial remodeling.

    PubMed

    Halmosi, Robert; Deres, Laszlo; Gal, Roland; Eros, Krisztian; Sumegi, Balazs; Toth, Kalman

    2016-08-01

    Coronary artery disease accounts for the greatest proportion of cardiovascular diseases therefore it is the major cause of death worldwide. Its therapeutic importance is indicated by still high mortality of myocardial infarction, which is one of the most severe forms of CVDs. Moreover, the risk of developing heart failure is very high among survivors. Heart failure is accompanied by high morbidity and mortality rate, therefore this topic is in the focus of researchers' interest. After a myocardial infarct, at first ventricular hypertrophy develops as a compensatory mechanism to decrease wall stress but finally leads to left ventricular dilation. This phenomenon is termed as myocardial remodeling. The main characteristics of underlying mechanisms involve cardiomyocyte growth, vessel changes and increased collagen production, in all of which several mechanical stress induced neurohumoral agents, oxidative stress and signal transduction pathways are involved. The long term activation of these processes ultimately leads to left ventricular dilation and heart failure with decreased systolic function. Oxidative stress causes DNA breaks producing the activation of nuclear poly(ADP-ribose) polymerase-1 (PARP-1) enzyme that leads to energy depletion and unfavorable modulation of different kinase cascades (Akt-1/GSK-3β, MAPKs, various PKC isoforms) and thus it promotes the development of heart failure. Therefore inhibition of PARP enzyme could offer a promising new therapeutical approach to prevent the onset of heart failure among postinfarction patients. The purpose of this review is to give a comprehensive summary about the most significant experimental results and mechanisms in postinfarction remodeling. PMID:27392900

  3. Remodeling of the Fetal Collecting Duct Epithelium

    PubMed Central

    Hiatt, Michael J.; Ivanova, Larissa; Toran, Nuria; Tarantal, Alice F.; Matsell, Douglas G.

    2010-01-01

    Congenital urinary tract obstruction induces changes to the renal collecting duct epithelium, including alteration and depletion of intercalated cells. To study the effects of obstruction on the ontogeny of intercalated cell development, we examined normal and obstructed human fetal and postnatal kidneys. In the normal human fetal kidney, intercalated cells originated in the medullary collecting duct at 8 weeks gestation and remained most abundant in the inner medulla throughout gestation. In the cortex, intercalated cells were rare at 18 and 26 weeks gestation and observed at low abundance at 36 weeks gestation. Although early intercalated cells exhibit an immature phenotype, Type A intercalated cells predominated in the inner and outer medullae at 26 and 36 weeks gestation with other intercalated cell subtypes observed rarely. Postnatally, the collecting duct epithelium underwent a remodeling whereby intercalated cells become abundant in the cortex yet absent from the inner medulla. In 18-week obstructed kidneys with mild to moderate injury, the intercalated cells became more abundant and differentiated than the equivalent age-matched normal kidney. In contrast, more severely injured ducts of the late obstructed kidney exhibited a significant reduction in intercalated cells. These studies characterize the normal ontogeny of human intercalated cell development and suggest that obstruction induces premature remodeling and differentiation of the fetal collecting duct epithelium. PMID:20035053

  4. Abnormal bone remodelling in inflammatory arthritis

    PubMed Central

    Bogoch, Earl R.; Moran, Erica

    1998-01-01

    Osteopenia is responsible for substantial comorbidity in patients suffering from rheumatoid arthritis and is an important factor in the surgical management of joint disease. In animal models of bone loss stimulated by inflammatory arthritis, increased bone remodelling and altered microstructure of bone have been documented. The subchondral bone plate near the joint surface is narrow and perforated by vascular inflammatory invasion, and in the shaft the thin cortices are weakened by giant resorption defects. Biomechanical tests and a mathematical model of bone strength suggest that cortical defects, much larger than those found in normal osteonal remodelling, are principally responsible for the experimentally observed loss of strength. Similarly, these defects may explain the increased femoral fracture risk in rheumatoid arthritis. The osteoclast, the cell resorbing bone, is demonstrated in increased number and activity in rheumatoid arthritis and in animal models. Bisphosphonates, drugs that inhibit osteoclast function, have been shown experimentally to reduce both focal and generalized osteopenia and to prevent loss of bone strength. Bisphosphonates also protect articular cartilage from damage characteristic of inflammatory arthritis. The mechanism of chondroprotection may be prevention of subchondral bone resorption by the osteoclast and also an altered distribution of bone marrow cells. Thus, bisphosphonates, currently in clinical use for other bone metabolic diseases, appear to have potential as prophylaxis and treatment for osteopenia and joint damage in inflammatory arthritis. PMID:9711159

  5. Chromatin remodeling in cardiovascular development and physiology

    PubMed Central

    Han, Pei; Hang, Calvin T.; Yang, Jin; Chang, Ching-Pin

    2010-01-01

    Chromatin regulation provides an important means of controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various transcription factors in the fine regulation of gene expression, essential for all aspects of cardiovascular biology. Aberrant cardiac gene expression, triggered by a variety of pathological insults, can cause heart diseases in both animals and humans. The severity of cardiomyopathy and heart failure correlates strongly with abnormal cardiac gene expression. Therefore, controlling cardiac gene expression presents a promising approach to the treatment of human cardiomyopathy. This review focuses on the roles of ATP-dependent chromatin-remodeling factors and chromatin-modifying enzymes in the control of gene expression during cardiovascular development and disease. PMID:21293009

  6. Atrial remodeling, fibrosis, and atrial fibrillation.

    PubMed

    Jalife, José; Kaur, Kuljeet

    2015-08-01

    The fundamental mechanisms governing the perpetuation of atrial fibrillation (AF), the most common arrhythmia seen in clinical practice, are poorly understood, which explains in part why AF prevention and treatment remain suboptimal. Although some clinical parameters have been identified as predicting a transition from paroxysmal to persistent AF in some patients, the molecular, electrophysiological, and inflammation changes leading to such a progression have not been described in detail. Oxidative stress, atrial dilatation, calcium overload, inflammation, microRNAs, and myofibroblast activation are all thought to be involved in AF-induced atrial remodeling. However, it is unknown to what extent and at which time points such alterations influence the remodeling process that perpetuates AF. Here we postulate a working model that might open new pathways for future investigation into mechanisms of AF perpetuation. We start from the premise that the progression to AF perpetuation is the result of interplay among manifold signaling pathways with differing kinetics. Some such pathways have relatively fast kinetics (e.g., oxidative stress-mediated shortening of refractory period); others likely depend on molecular processes with slower kinetics (e.g., transcriptional changes in myocyte ion channel protein expression mediated through inflammation and fibroblast activation). We stress the need to fully understand the relationships among such pathways should one hope to identify novel, truly effective targets for AF therapy and prevention. PMID:25661032

  7. Cardiac remodeling in rats with renal failure shows interventricular differences.

    PubMed

    Svíglerová, Jitka; Kuncová, Jitka; Nalos, Lukás; Holas, Jaromír; Tonar, Zbynek; Rajdl, Daniel; Stengl, Milan

    2012-09-01

    Chronic renal failure (CRF) is associated with an increased incidence of cardiovascular diseases. Intensive research revealed a number of alterations in the heart during CRF; however, possible interventricular differences in CRF-induced cardiac remodeling have so far not been addressed. CRF was induced by two-stage surgical 5/6 nephrectomy (NX) in male Wistar rats. Cellular hypertrophy was quantified using immunohistological morphometric analysis. Contraction force and membrane potential were recorded in left and right ventricle papillary muscles with an isometric force transducer and high-resistance glass microelectrodes. Hypertrophy was present in the left ventricle (LV) of NX animals, but not in the right ventricle (RV) of NX animals, as documented by both ventricle/body weight ratios and cellular morphometric analysis of the cross-sectional area of myocytes. The contraction force was reduced in the LV of NX animals but increased in the RV of NX animals compared with sham-operated rats. Rest potentiation of contraction force was relatively more pronounced in the LV of NX rats. Fifty percent substitution of extracellular sodium with lithium significantly increased the contraction force only in the LV of NX animals. Action potential durations were shortened in both ventricles of CRF animals. Cardiac structural and contractile remodeling in CRF shows significant interventricular differences. CRF induces hypertrophy of the LV but not of the RV. LV hypertrophy was associated with a reduction of contraction force, whereas in the RV, the contraction force was enhanced. Partial recovery of contractile function of the LV by rest potentiation or lithium substitution indicates a role of the Na(+)/Ca(2+) exchanger in this phenomenon. PMID:22929800

  8. Epithelial Cell Proliferation Contributes to Airway Remodeling in Severe Asthma

    PubMed Central

    Cohen, Lance; E, Xueping; Tarsi, Jaime; Ramkumar, Thiruvamoor; Horiuchi, Todd K.; Cochran, Rebecca; DeMartino, Steve; Schechtman, Kenneth B.; Hussain, Iftikhar; Holtzman, Michael J.; Castro, Mario

    2007-01-01

    Rationale: Despite long-term therapy with corticosteroids, patients with severe asthma develop irreversible airway obstruction. Objectives: To evaluate if there are structural and functional differences in the airway epithelium in severe asthma associated with airway remodeling. Methods: In bronchial biopsies from 21 normal subjects, 11 subjects with chronic bronchitis, 9 subjects with mild asthma, and 31 subjects with severe asthma, we evaluated epithelial cell morphology: epithelial thickness, lamina reticularis (LR) thickness, and epithelial desquamation. Levels of retinoblastoma protein (Rb), Ki67, and Bcl-2 were measured, reflecting cellular proliferation and death. Terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL) was used to study cellular apoptosis. Measurements and Main Results: Airway epithelial and LR thickness was greater in subjects with severe asthma compared with those with mild asthma, normal subjects, and diseased control subjects (p = 0.009 and 0.033, respectively). There was no significant difference in epithelial desquamation between groups. Active, hypophosphorylated Rb expression was decreased (p = 0.002) and Ki67 was increased (p < 0.01) in the epithelium of subjects with severe asthma as compared with normal subjects, indicating increased cellular proliferation. Bcl-2 expression was decreased (p < 0.001), indicating decreased cell death suppression. There was a greater level of apoptotic activity in the airway biopsy in subjects with severe asthma as compared with the normal subjects using the TUNEL assay (p = 0.002), suggesting increased cell death. Conclusions: In subjects with severe asthma, as compared with subjects with mild asthma, normal subjects, and diseased control subjects, we found novel evidence of increased cellular proliferation in the airway contributing to a thickened epithelium and LR. These changes may contribute to the progressive decline in lung function and airway remodeling in patients with severe

  9. Aggravated Cardiac Remodeling post Aortocaval Fistula in Unilateral Nephrectomized Rats

    PubMed Central

    Gu, Ye; Zou, Wusong; Zhang, Mingjing; Zhu, Pengfei; Hu, Shao

    2015-01-01

    Background Aortocaval fistula (AV) in rat is a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Living donor kidney transplantation is regarded as beneficial to allograft recipients and not particularly detrimental to the donors. Impact of AV on animals with mild renal dysfunction is not fully understood. In this study, we explored the effects of AV in unilateral nephrectomized (UNX) rats. Methods Adult male Sprague-Dawley (SD) rats were divided into Sham (n = 10), UNX (right kidney remove, n = 10), AV (AV established between the levels of renal arteries and iliac bifurcation, n = 18) and UNX+AV (AV at one week after UNX, n = 22), respectively. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, fractional excretion of sodium, albuminuria, plasma creatinine, and cystatin C. Focal glomerulosclerosis (FGS) incidence was evaluated by renal histology. Cardiac function was measured by echocardiography and hemodynamic measurements. Results UNX alone induced compensatory left kidney enlargement, increased plasma creatinine and cystatin C levels, and slightly reduced glomerular filtration rate and increased FGS. AV induced significant cardiac enlargement and hypertrophy and reduced cardiac function and increased FGS, these changes were aggravated in UNX+AV rats. Conclusions Although UNX only induces minor renal dysfunction, additional chronic volume overload placement during the adaptation phase of the remaining kidney is associated with aggravated cardiac dysfunction and remodeling in UNX rats, suggesting special medical care is required for UNX or congenital monokidney subjects in case of chronic volume overload as in the case of pregnancy and hyperthyroidism to prevent further adverse cardiorenal events in these individuals. PMID:26252578

  10. National Remodelling Team: Evaluation Study (Year 2). Final Report

    ERIC Educational Resources Information Center

    Easton, Claire; Wilson, Rebekah; Sharp, Caroline

    2005-01-01

    This report sets out to provide the National Remodelling Team (NRT) with comprehensive details on stakeholders' views about the second year of the remodelling programme. This report is divided into nine chapters: (1) Introduction; (2) outlines the aims of the evaluation and the methodology used; (3) describes the findings from the survey of local…

  11. Chromatin-remodeling and the initiation of transcription.

    PubMed

    Lorch, Yahli; Kornberg, Roger D

    2015-11-01

    The nucleosome serves as a general gene repressor by the occlusion of regulatory and promoter DNA sequences. Repression is relieved by the SWI/SNF-RSC family of chromatin-remodeling complexes. Research reviewed here has revealed the essential features of the remodeling process. PMID:26537406

  12. Macrophage plasticity and polarization in tissue repair and remodelling.

    PubMed

    Mantovani, Alberto; Biswas, Subhra K; Galdiero, Maria Rosaria; Sica, Antonio; Locati, Massimo

    2013-01-01

    Mononuclear phagocyte plasticity includes the expression of functions related to the resolution of inflammation, tissue repair and remodelling, particularly when these cells are set in an M2 or an M2-like activation mode. Macrophages are credited with an essential role in remodelling during ontogenesis. In extraembryonic life, under homeostatic conditions, the macrophage trophic and remodelling functions are recapitulated in tissues such as bone, mammary gland, decidua and placenta. In pathology, macrophages are key components of tissue repair and remodelling that occur during wound healing, allergy, parasite infection and cancer. Interaction with cells bearing stem or progenitor cell properties is likely an important component of the role of macrophages in repair and remodelling. These properties of cells of the monocyte-macrophage lineage may represent a tool and a target for therapeutic exploitation. PMID:23096265

  13. Simulated Microgravity and Recovery-Induced Remodeling of the Left and Right Ventricle

    PubMed Central

    Zhong, Guohui; Li, Yuheng; Li, Hongxing; Sun, Weijia; Cao, Dengchao; Li, Jianwei; Zhao, Dingsheng; Song, Jinping; Jin, Xiaoyan; Song, Hailin; Yuan, Xinxin; Wu, Xiaorui; Li, Qi; Xu, Qing; Kan, Guanghan; Cao, Hongqing; Ling, Shukuan; Li, Yingxian

    2016-01-01

    Physiological adaptations to microgravity involve alterations in cardiovascular systems. These adaptations result in cardiac remodeling and orthostatic hypotension. However, the response of the left ventricle (LV) and right ventricle (RV) following hindlimb unloading (HU) and hindlimb reloading (HR) is not clear and the underlying mechanism remains to be understood. In this study, three groups of mice were subjected to HU by tail suspension for 28 days. Following this, two groups were allowed to recover for 7 or 14 days. The control group was treated equally, with the exception of tail suspension. Echocardiography was performed to detect the structure and function changes of heart. Compared with the control, the HU group of mice showed reduced LV-EF (ejection fraction), and LV-FS (fractional shortening). However, mice that were allowed to recover for 7 days after HU (HR-7d) showed increased LVIDs (systolic LV internal diameter) and LV Vols (systolic LV volume). Mice that recovered for 14 days (HR-14d) returned to the normal state. In comparison, RV-EF and RV-FS didn't recover to the normal conditions till being reloaded for 14 days. Compared with the control, RVIDd (diastolic RV internal diameter), and RV Vold (diastolic RV volume) were reduced in HU group and recovered to the normal conditions in HR-7d and HR-14d groups, in which groups RVIDs (systolic RV internal diameter) and RV Vols (systolic RV volume) were increased. Histological analysis and cardiac remodeling gene expression results indicated that HU induces left and right ventricular remodeling. Western blot demonstrated that the phosphorylation of HDAC4 and ERK1/2 and the ratio of LC3-II / LC3-I, were increased following HU and recovered following HR in both LV and RV, and the phosphorylation of AMPK was inhibited in both LV and RV following HU, but only restored in LV following HR for 14 days. These results indicate that simulated microgravity leads to cardiac remodeling, and the remodeling changes can

  14. Molecular analysis of arterial remodeling: a novel application of infrared imaging

    NASA Astrophysics Data System (ADS)

    Herman, Brad C.; Kundi, Rishi; Yamanouchi, Dai; Kent, K. Craig; Liu, Bo; Pleshko, Nancy

    2009-02-01

    Arterial remodeling, i.e. changes in size and/or structure of arteries, plays an important role in vascular disease. Conflicting findings have been reported as to whether an abundance of collagen causes inward or outward remodeling, phenomena that result in either a smaller or larger lumen, respectively. We hypothesize that the amount, type and quality of collagen influence the remodeling response. Here, we create mechanical injury to the rat carotid artery using a balloon catheter, and this leads to inward remodeling. Treatment of the artery with Connective Tissue Growth Factor (CTGF) causes outward remodeling. We investigated the arterial composition in injured CTGF-treated and non-CTGF-treated and sham CTGF-treated and non-CTGF treated arteries 14 days post-injury (n = 7-8 per group) using infrared imaging. A Perkin Elmer Spotlight Spectrum 300 FT-IR microscope was used for data collection. Cross-sections of paraffinembedded arteries were scanned at 2 cm-1 spectral resolution with spatial resolution of 6.25 μm/pixel, and data analyzed using Malvern Instruments ISys 5.0. Post-injury, we found a nearly 50% reduction in the average 1338/AM2 area ratio (correlated to collagen helical integrity). The most dramatic change was a 600% increase in the 1660/1690 peak height ratio, which has previously been related to collagen crosslink maturity. In all cases, CTGF treatment resulted in the observed changes in peak parameters normalized back to control values. Overall, these preliminary studies demonstrate that infrared imaging can provide insight into the underlying molecular changes that contribute to arterial disease.

  15. Cervical collagen network remodeling in normal pregnancy and disrupted parturition in Antxr2 deficient mice.

    PubMed

    Yoshida, Kyoko; Reeves, Claire; Vink, Joy; Kitajewski, Jan; Wapner, Ronald; Jiang, Hongfeng; Cremers, Serge; Myers, Kristin

    2014-02-01

    The remodeling of the cervix from a rigid barrier into a compliant structure, which dilates to allow for delivery, is a critical process for a successful pregnancy. Changes in the mechanical properties of cervical tissue during remodeling are hypothesized to be related to the types of collagen crosslinks within the tissue. To further understand normal and abnormal cervical remodeling, we quantify the material properties and collagen crosslink density of cervical tissue throughout pregnancy from normal wild-type and Anthrax Toxin Receptor 2 knockout (Antxr2-/-) mice. Antxr2-/- females are known to have a parturition defect, in part, due to an excessive accumulation of extracellular matrix proteins in the cervix, particularly collagen. In this study, we determined the mechanical properties in gestation-timed cervical samples by osmotic loading and measured the density of mature collagen crosslink, pyridinoline (PYD), by liquid chromatography tandem mass spectrometry (LC-MSMS). The equilibrium material response of the tissue to loading was investigated using a hyperelastic material model where the stresses in the material are balanced by the osmotic swelling tendencies of the glycosaminoglycans and the tensile restoring forces of a randomly-oriented crosslinked collagen fiber network. This study shows that the swelling response of the cervical tissue increased with decreasing PYD density in normal remodeling. In the Antxr2-/- mice, there was no significant increase in swelling volume or significant decrease in crosslink density with advancing gestation. By comparing the ECM-mechanical response relationships in normal and disrupted parturition mouse models this study shows that a reduction of collagen crosslink density is related to cervical softening and contributes to the cervical remodeling process. PMID:24390076

  16. [Adverse ocular effects of vaccinations].

    PubMed

    Ness, T; Hengel, H

    2016-07-01

    Vaccinations are very effective measures for prevention of infections but are also associated with a long list of possible side effects. Adverse ocular effects following vaccination have been rarely reported or considered to be related to vaccinations. Conjunctivitis is a frequent sequel of various vaccinations. Oculorespiratory syndrome and serum sickness syndrome are considered to be related to influenza vaccinations. The risk of reactivation or initiation of autoimmune diseases (e. g. uveitis) cannot be excluded but has not yet been proven. Overall the benefit of vaccination outweighs the possible but very low risk of ocular side effects. PMID:27357302

  17. Adverse Effects of Electroconvulsive Therapy.

    PubMed

    Andrade, Chittaranjan; Arumugham, Shyam Sundar; Thirthalli, Jagadisha

    2016-09-01

    Electroconvulsive therapy (ECT) is an effective treatment commonly used for depression and other major psychiatric disorders. We discuss potential adverse effects (AEs) associated with ECT and strategies for their prevention and management. Common acute AEs include headache, nausea, myalgia, and confusion; these are self-limiting and are managed symptomatically. Serious but uncommon AEs include cardiovascular, pulmonary, and cerebrovascular events; these may be minimized with screening for risk factors and by physiologic monitoring. Although most cognitive AEs of ECT are short-lasting, troublesome retrograde amnesia may rarely persist. Modifications of and improvements in treatment techniques minimize cognitive and other AEs. PMID:27514303

  18. Activation of GPR30 attenuates diastolic dysfunction and left ventricle remodelling in oophorectomized mRen2.Lewis rats

    PubMed Central

    Wang, Hao; Jessup, Jewell A.; Lin, Marina S.; Chagas, Clarissa; Lindsey, Sarah H.; Groban, Leanne

    2012-01-01

    Aims GPR30 is a novel oestrogen receptor expressed in various tissues, including the heart. We determined the role of GPR30 in the maintenance of left ventricular (LV) structure and diastolic function after the surgical loss of ovarian hormones in the female mRen2.Lewis rat, a model emulating the cardiac phenotype of the post-menopausal woman. Methods and results Bilateral oophorectomy (OVX) or sham surgery was performed in study rats; the selective GPR30 agonist, G-1 (50 µg/kg/day), or vehicle was given subcutaneously to OVX rats from 13–15 weeks of age. Similar to the cardiac phenotype of sham rats, G-1 preserved diastolic function and structure relative to vehicle-treated OVX littermates independent of changes in blood pressure. G-1 limited the OVX-induced increase in LV filling pressure, LV mass, wall thickness, interstitial collagen deposition, atrial natriuretic factor and brain natriuretic peptide mRNA levels, and cardiac NAD(P)H oxidase 4 (NOX4) expression. In vitro studies showed that G-1 inhibited angiotensin II-induced hypertrophy in H9c2 cardiomyocytes, evidenced by reductions in cell size, protein content per cell, and atrial natriuretic factor mRNA levels. The GPR30 antagonist, G15, inhibited the protective effects of both oestradiol and G-1 on this hypertrophy. Conclusion These data show that the GPR30 agonist G-1 mitigates the adverse effects of oestrogen loss on LV remodelling and the development of diastolic dysfunction in the study rats. This expands our knowledge of the sex-specific mechanisms underlying diastolic dysfunction and provides a potential therapeutic target for reducing the progression of this cardiovascular disease process in post-menopausal women. PMID:22328091

  19. Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling

    PubMed Central

    Dittmore, Andrew; Silver, Jonathan; Sarkar, Susanta K.; Marmer, Barry; Goldberg, Gregory I.; Neuman, Keir C.

    2016-01-01

    Fibrillar collagen, an essential structural component of the extracellular matrix, is remarkably resistant to proteolysis, requiring specialized matrix metalloproteinases (MMPs) to initiate its remodeling. In the context of native fibrils, remodeling is poorly understood; MMPs have limited access to cleavage sites and are inhibited by tension on the fibril. Here, single-molecule recordings of fluorescently labeled MMPs reveal cleavage-vulnerable binding regions arrayed periodically at ∼1-µm intervals along collagen fibrils. Binding regions remain periodic even as they migrate on the fibril, indicating a collective process of thermally activated and self-healing defect formation. An internal strain relief model involving reversible structural rearrangements quantitatively reproduces the observed spatial patterning and fluctuations of defects and provides a mechanism for tension-dependent stabilization of fibrillar collagen. This work identifies internal–strain-driven defects that may have general and widespread regulatory functions in self-assembled biological filaments. PMID:27402741

  20. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players.

    PubMed

    Eiben, Christopher B; Siegel, Justin B; Bale, Jacob B; Cooper, Seth; Khatib, Firas; Shen, Betty W; Players, Foldit; Stoddard, Barry L; Popovic, Zoran; Baker, David

    2012-02-01

    Computational enzyme design holds promise for the production of renewable fuels, drugs and chemicals. De novo enzyme design has generated catalysts for several reactions, but with lower catalytic efficiencies than naturally occurring enzymes. Here we report the use of game-driven crowdsourcing to enhance the activity of a computationally designed enzyme through the functional remodeling of its structure. Players of the online game Foldit were challenged to remodel the backbone of a computationally designed bimolecular Diels-Alderase to enable additional interactions with substrates. Several iterations of design and characterization generated a 24-residue helix-turn-helix motif, including a 13-residue insertion, that increased enzyme activity >18-fold. X-ray crystallography showed that the large insertion adopts a helix-turn-helix structure positioned as in the Foldit model. These results demonstrate that human creativity can extend beyond the macroscopic challenges encountered in everyday life to molecular-scale design problems. PMID:22267011

  1. Matrix Remodeling in Pulmonary Fibrosis and Emphysema.

    PubMed

    Kulkarni, Tejaswini; O'Reilly, Philip; Antony, Veena B; Gaggar, Amit; Thannickal, Victor J

    2016-06-01

    Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema. PMID:26741177

  2. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  3. Osteocytes: The master cells in bone remodelling.

    PubMed

    Prideaux, Matthew; Findlay, David M; Atkins, Gerald J

    2016-06-01

    Bone remodelling is an essential process for shaping and maintaining bone mass in the mature skeleton. During our lifetime bone is constantly being removed by osteoclasts and new bone is formed by osteoblasts. The activities of osteoclasts and osteoblasts must be regulated under a strict balance to ensure that bone homeostasis is maintained. Osteocytes, which form an extensive, multi-functional syncytium throughout the bone, are increasingly considered to be the cells that maintain this balance. Current research is elucidating key signalling pathways by which the osteocyte exerts control over the other cell types in bone and over its own activities, and potential ways in which these pathways may be exploited therapeutically. PMID:26927500

  4. Bone Remodeling and Energy Metabolism: New Perspectives

    PubMed Central

    de Paula, Francisco J. A.; Rosen, Clifford J.

    2013-01-01

    Bone mineral, adipose tissue and energy metabolism are interconnected by a complex and multilevel series of networks. Calcium and phosphorus are utilized for insulin secretion and synthesis of high energy compounds. Adipose tissue store lipids and cholecalciferol, which, in turn, can influence calcium balance and energy expenditure. Hormones long-thought to solely modulate energy and mineral homeostasis may influence adipocytic function. Osteoblasts are a target of insulin action in bone. Moreover, endocrine mediators, such as osteocalcin, are synthesized in the skeleton but regulate carbohydrate disposal and insulin secretion. Finally, osteoblasts and adipocytes originate from the same mesenchymal progenitor. The mutual crosstalk between osteoblasts and adipocytes within the bone marrow microenvironment plays a crucial role in bone remodeling. In the present review we provide an overview of the reciprocal control between bone and energy metabolism and its clinical implications. PMID:26273493

  5. Modalities for Visualization of Cortical Bone Remodeling: The Past, Present, and Future

    PubMed Central

    Harrison, Kimberly D.; Cooper, David M. L.

    2015-01-01

    Bone’s ability to respond to load-related phenomena and repair microdamage is achieved through the remodeling process, which renews bone by activating groups of cells known as basic multicellular units (BMUs). The products of BMUs, secondary osteons, have been extensively studied via classic two-dimensional techniques, which have provided a wealth of information on how histomorphology relates to skeletal structure and function. Remodeling is critical in maintaining healthy bone tissue; however, in osteoporotic bone, imbalanced resorption results in increased bone fragility and fracture. With increasing life expectancy, such degenerative bone diseases are a growing concern. The three-dimensional (3D) morphology of BMUs and their correlation to function, however, are not well-characterized and little is known about the specific mechanisms that initiate and regulate their activity within cortical bone. We believe a key limitation has been the lack of 3D information about BMU morphology and activity. Thus, this paper reviews methodologies for 3D investigation of cortical bone remodeling and, specifically, structures associated with BMU activity (resorption spaces) and the structures they create (secondary osteons), spanning from histology to modern ex vivo imaging modalities, culminating with the growing potential of in vivo imaging. This collection of papers focuses on the theme of “putting the ‘why’ back into bone architecture.” Remodeling is one of two mechanisms “how” bone structure is dynamically modified and thus an improved 3D understanding of this fundamental process is crucial to ultimately understanding the “why.” PMID:26322017

  6. Attenuated brain-derived neurotrophic factor and hypertrophic remodelling: the SABPA study.

    PubMed

    Smith, A J; Malan, L; Uys, A S; Malan, N T; Harvey, B H; Ziemssen, T

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) has been linked to neurological pathologies, but its role in cardiometabolic disturbances is limited. We aimed to assess the association between serum BDNF levels and structural endothelial dysfunction (ED) as determined by cross-sectional wall area (CSWA) and albumin/creatinine ratio (ACR) in black Africans. Ambulatory blood pressure (BP) and ultrasound CSWA values were obtained from 82 males and 90 females. Fasting blood and 8 h overnight urine samples were collected to determine serum BDNF and cardiometabolic risk markers, that is, glycated haemoglobin (HbA1c), lipids, inflammation and ACR. BDNF median split × gender interaction effects for structural ED justified stratification of BDNF into low and high (⩽/>1.37 ng ml(-1)) gender groups. BDNF values (0.86-1.98 ng ml(-1)) were substantially lower than reference ranges (6.97-42.6 ng ml(-1)) in the African gender cohort, independent of age and body mass index. No relationship was revealed between BDNF and renal function and was opposed by an inverse relationship between BDNF and CSWA (r=-0.17; P=0.03) in the African cohort. Linear regression analyses revealed a positive relationship between systolic BP and structural remodelling in the total cohort and low-BDNF gender groups. In the high-BDNF females, HbA1C was associated with structural remodelling. Attenuated or possible downregulated BDNF levels were associated with hypertrophic remodelling, and may be a compensatory mechanism for the higher BP in Africans. In addition, metabolic risk and hypertrophic remodelling in women with high BDNF underpin different underlying mechanisms for impaired neurotrophin homeostasis in men and women. PMID:24898921

  7. Adverse drug reactions in dermatology.

    PubMed

    Ferner, R E

    2015-03-01

    Adverse drug reactions (ADRs) - that is, unintended and harmful responses to medicines - are important to dermatologists because many present with cutaneous signs and because dermatological treatments can cause serious ADRs. The detection of ADRs to new drugs is often delayed because they have a long latency or are rare or unexpected. This means that ADRs to newer agents emerge only slowly after marketing. ADRs are part of the differential diagnosis of unusual rashes. A good drug history that includes details of drug dose, time-course of the reaction and factors that may make the patient more susceptible, will help. For example, Stevens-Johnson syndrome with abacavir is much commoner in patients with HLA-B*5701, and has a characteristic time course. Newer agents have brought newer reactions; for example, acneiform rashes associated with epidermal growth factor receptor inhibitors such as erlotinib. Older systemic agents used to treat skin disease, including corticosteroids and methotrexate, cause important ADRs. The adverse effects of newer biological agents used in dermatology are becoming clearer; for example, hypersensitivity reactions or loss of efficacy from antibody formation and progressive multifocal leucoencephalopathy due to reactivation of latent JC (John Cunningham) virus infections during efalizumab treatment. Unusual or serious harm from medicines, including ADRs, medication errors and overdose, should be reported. The UK Yellow Card scheme is online, and patients can report their own ADRs. PMID:25622648

  8. [Recipients adverse reactions: guidance supports].

    PubMed

    Bazin, A

    2010-12-01

    Since 1994, adverse effects of transfusion transmitted to the French haemovigilance network are registered on "e-fit", the database of the French agency for the safety of health products (Afssaps). In order to improve their analysis, guidance supports have been made by Afssaps working groups. Each support deals with a blood transfusion side effect and is composed of five parts including pathophysiological mechanisms, diagnostic criteria, management recommendations, etiologic investigations and rules of filing the notification form on e-fit. The major characteristics of sheets published or soon-to-be published are presented: transfusion-related acute lung injury, transfusion-transmitted bacterial infection, non-haemolytic febrile reaction, allergic reaction, transfusion-associated circulatory overload, hypotensive transfusion reaction, alloimmunization, erythrocyte incompatibility reaction and hemosiderosis. These new supports give relevant guidelines allowing a better analysis and evaluation of recipients' adverse reactions, particularly their diagnosis, gravity and accountability. They could also initiate studies in European and international haemovigilance and transfusion networks. PMID:21051267

  9. Adverse effects of plasma transfusion.

    PubMed

    Pandey, Suchitra; Vyas, Girish N

    2012-05-01

    Plasma utilization has increased over the past two decades, and there is a growing concern that many plasma transfusions are inappropriate. Plasma transfusion is not without risk, and certain complications are more likely with plasma than other blood components. Clinical and laboratory investigations of the patients suffering reactions after infusion of fresh-frozen plasma (FFP) define the etiology and pathogenesis of the panoply of adverse effects. We review here the pathogenesis, diagnosis, and management of the risks associated with plasma transfusion. Risks commonly associated with FFP include: 1) transfusion-related acute lung injury, 2) transfusion-associated circulatory overload, and 3) allergic and/or anaphylactic reactions. Other less common risks include 1) transmission of infections, 2) febrile nonhemolytic transfusion reactions, 3) red blood cell alloimmunization, and 4) hemolytic transfusion reactions. The effects of pathogen inactivation or reduction methods on these risks are also discussed. Fortunately, a majority of the adverse effects are not lethal and are adequately treated in clinical practice. PMID:22578374

  10. PNPLA3 mediates hepatocyte triacylglycerol remodeling.

    PubMed

    Ruhanen, Hanna; Perttilä, Julia; Hölttä-Vuori, Maarit; Zhou, You; Yki-Järvinen, Hannele; Ikonen, Elina; Käkelä, Reijo; Olkkonen, Vesa M

    2014-04-01

    The I148M substitution in patatin-like phospholipase domain containing 3 (PNPLA3(I148M)) determines a genetic form of nonalcoholic fatty liver disease. To elucidate the mode of PNPLA3 action in human hepatocytes, we studied effects of WT PNPLA3 (PNPLA3(WT)) and PNPLA3(I148M) on HuH7 cell lipidome after [(13)C]glycerol labeling, cellular turnover of oleic acid labeled with 17 deuterium atoms ([D17]oleic acid) in triacylglycerols (TAGs), and subcellular distribution of the protein variants. PNPLA3(I148M) induced a net accumulation of unlabeled TAGs, but not newly synthesized total [(13)C]TAGs. Principal component analysis (PCA) revealed that both PNPLA3(WT) and PNPLA3(I148M) induced a relative enrichment of TAGs with saturated FAs or MUFAs, with concurrent enrichment of polyunsaturated phosphatidylcholines. PNPLA3(WT) associated in PCA with newly synthesized [(13)C]TAGs, particularly 52:1 and 50:1, while PNPLA3(I148M) associated with similar preexisting TAGs. PNPLA3(WT) overexpression resulted in increased [D17]oleic acid labeling of TAGs during 24 h, and after longer incubations their turnover was accelerated, effects not detected with PNPLA3(I148M). PNPLA3(I148M) localized more extensively to lipid droplets (LDs) than PNPLA3(WT), suggesting that the substitution alters distribution of PNPLA3 between LDs and endoplasmic reticulum/cytosol. This study reveals a function of PNPLA3 in FA-selective TAG remodeling, resulting in increased TAG saturation. A defect in TAG remodeling activity likely contributes to the TAG accumulation observed in cells expressing PNPLA3(I148M). PMID:24511104

  11. "Adversative Conjunction": The Poetics of Linguistic Opposition.

    ERIC Educational Resources Information Center

    Wallerstein, Nicholas

    1992-01-01

    The general use of adversative conjunction in (primarily) English and U.S. poetry is outlined. The contention is that the adversative is not merely a grammatical convenience but sometimes a highly functional tool of rhetorical strategy. (36 references) (LB)

  12. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    SciTech Connect

    Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer; Campbell, Keith H.S. . E-mail: keith.campbell@nottingham.ac.uk

    2005-07-01

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells.

  13. The Redox State of Transglutaminase 2 Controls Arterial Remodeling

    PubMed Central

    van den Akker, Jeroen; VanBavel, Ed; van Geel, Remon; Matlung, Hanke L.; Guvenc Tuna, Bilge; Janssen, George M. C.; van Veelen, Peter A.; Boelens, Wilbert C.; De Mey, Jo G. R.; Bakker, Erik N. T. P.

    2011-01-01

    While inward remodeling of small arteries in response to low blood flow, hypertension, and chronic vasoconstriction depends on type 2 transglutaminase (TG2), the mechanisms of action have remained unresolved. We studied the regulation of TG2 activity, its (sub) cellular localization, substrates, and its specific mode of action during small artery inward remodeling. We found that inward remodeling of isolated mouse mesenteric arteries by exogenous TG2 required the presence of a reducing agent. The effect of TG2 depended on its cross-linking activity, as indicated by the lack of effect of mutant TG2. The cell-permeable reducing agent DTT, but not the cell-impermeable reducing agent TCEP, induced translocation of endogenous TG2 and high membrane-bound transglutaminase activity. This coincided with inward remodeling, characterized by a stiffening of the artery. The remodeling could be inhibited by a TG2 inhibitor and by the nitric oxide donor, SNAP. Using a pull-down assay and mass spectrometry, 21 proteins were identified as TG2 cross-linking substrates, including fibronectin, collagen and nidogen. Inward remodeling induced by low blood flow was associated with the upregulation of several anti-oxidant proteins, notably glutathione-S-transferase, and selenoprotein P. In conclusion, these results show that a reduced state induces smooth muscle membrane-bound TG2 activity. Inward remodeling results from the cross-linking of vicinal matrix proteins, causing a stiffening of the arterial wall. PMID:21901120

  14. Fiber optics in adverse environments

    SciTech Connect

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations.

  15. Intratracheal Bleomycin Causes Airway Remodeling and Airflow Obstruction in Mice

    PubMed Central

    Polosukhin, Vasiliy V.; Degryse, Amber L.; Newcomb, Dawn C.; Jones, Brittany R.; Ware, Lorraine B.; Lee, Jae Woo; Loyd, James E.; Blackwell, Timothy S.; Lawson, William E.

    2014-01-01

    Introduction In addition to parenchymal fibrosis, fibrotic remodeling of the distal airways has been reported in interstitial lung diseases. Mechanisms of airway wall remodeling, which occurs in a variety of chronic lung diseases, are not well defined and current animal models are limited. Methods We quantified airway remodeling in lung sections from subjects with idiopathic pulmonary fibrosis (IPF) and controls. To investigate intratracheal bleomycin as a potential animal model for fibrotic airway remodeling, we evaluated lungs from C57BL/6 mice after bleomycin treatment by histologic scoring for fibrosis and peribronchial inflammation, morphometric evaluation of subepithelial connective tissue volume density, TUNEL assay, and immunohistochemistry for transforming growth factor β1 (TGFβ1), TGFβ2, and the fibroblast marker S100A4. Lung mechanics were determined at 3 weeks post-bleomycin. Results IPF lungs had small airway remodeling with increased bronchial wall thickness compared to controls. Similarly, bleomycin treated mice developed dose-dependent airway wall inflammation and fibrosis and greater airflow resistance after high dose bleomycin. Increased TUNEL+ bronchial epithelial cells and peribronchial inflammation were noted by 1 week, and expression of TGFβ1 and TGFβ2 and accumulation of S100A4+ fibroblasts correlated with airway remodeling in a bleomycin dose-dependent fashion. Conclusions IPF is characterized by small airway remodeling in addition to parenchymal fibrosis, a pattern also seen with intratracheal bleomycin. Bronchial remodeling from intratracheal bleomycin follows a cascade of events including epithelial cell injury, airway inflammation, pro-fibrotic cytokine expression, fibroblast accumulation, and peribronchial fibrosis. Thus, this model can be utilized to investigate mechanisms of airway remodeling. PMID:22394287

  16. Adverse reactions to food additives.

    PubMed

    Simon, R A

    1986-01-01

    There are thousands of agents that are intentionally added to the food that we consume. These include preservatives, stabilizers, conditioners, thickeners, colorings, flavorings, sweeteners, antioxidants, etc. etc. Yet only a surprisingly small number have been associated with hypersensitivity reactions. Amongst all the additives, FD&C dyes have been most frequently associated with adverse reactions. Tartrazine is the most notorious of them all; however, critical review of the medical literature and current Scripps Clinic studies would indicate that tartrazine has been confirmed to be at best only occasionally associated with flares of urticaria or asthma. There is no convincing evidence in the literature of reactivity to the other azo or nonazo dyes. This can also be said of BHA/BHT, nitrites/nitrates and sorbates. Parabens have been shown to elicit IgE mediated hypersensitivity reactions when used as pharmaceutical preservatives; however, as with the other additives noted above, ingested parabens have only occasionally been associated with adverse reactions. MSG, the cause of the 'Chinese restaurant syndrome' has only been linked to asthma in one report. Sulfiting agents used primarily as food fresheners and to control microbial growth in fermented beverages have been established as the cause of any where from mild to severe and even fatal reactions in at least 5% of the asthmatic population. Other reactions reported to follow sulfite ingestion include anaphylaxis, gastro intestinal complaints and dermatological eruptions. The prevalence of these non asthmatic reactions is unknown. The mechanism of sulfite sensitive asthma is also unknown but most likely involves hyperreactivity to inhale SO2 in the great majority of cases; however, there are reports of IgE mediated reactions and other sulfite sensitive asthmatics have been found with low levels of sulfite oxidase; necessary to oxidize endogenous sulfite to sulfate. PMID:3302664

  17. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: Functional recovery and reverse remodeling

    PubMed Central

    Williams, Adam R.; Trachtenberg, Barry; Velazquez, Darcy L.; McNiece, Ian; Altman, Peter; Rouy, Didier; Mendizabal, Adam M.; Pattany, Pradip M.; Lopera, Gustavo A.; Fishman, Joel; Zambrano, Juan P.; Heldman, Alan W.; Hare, Joshua M.

    2012-01-01

    Rationale Transcatheter, intramyocardial injections of bone marrow derived cell therapy produces reverse remodeling in large animal models of ischemic cardiomyopathy. Objective We used cardiac magnetic resonance imaging (CMR) in patients with LV dysfunction related to remote myocardial infarction (MI) to test the hypothesis that bone marrow progenitor cell injection cause functional recovery of scarred myocardium and reverse remodeling. Methods and Results Eight patients (age 57.2±13.3) received transendocardial, intramyocardial injection of autologous bone marrow progenitor cells (mononuclear or mesenchymal stem cells) in LV scar and border zone. All patients tolerated the procedure with no serious adverse events. CMR at 1-year demonstrated a decrease in end-diastolic volume (208.7±20.4 vs. 167.4±7.32mL; p=0.03), a trend towards decreased end-systolic volume (142.4±16.5 vs. 107.6±7.4mL; p=0.06), decreased infarct size (p<0.05), and improved regional LV function by peak Ecc in the treated infarct zone (-8.1±1.0 vs. -11.4±1.3; p=0.04). Improvements in regional function were evident at 3 months, while the changes in chamber dimensions were not significant until 6 months. Improved regional function in the infarct zone strongly correlated with reduction of EDV (r2=0.69, p=0.04) and ESV (r2=0.83, p=0.01). Conclusions These data suggest that transcatheter, intramyocardial injections of autologous bone marrow progenitor cells improve regional contractility of a chronic myocardial scar and these changes predict subsequent reverse remodeling. The findings support the potential clinical benefits of this new treatment strategy and ongoing randomized clinical trials. PMID:21415390

  18. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling

    PubMed Central

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  19. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment

    PubMed Central

    Azevedo, Paula S.; Polegato, Bertha F.; Minicucci, Marcos F.; Paiva, Sergio A. R.; Zornoff, Leonardo A. M.

    2016-01-01

    Cardiac remodeling is defined as a group of molecular, cellular and interstitial changes that manifest clinically as changes in size, mass, geometry and function of the heart after injury. The process results in poor prognosis because of its association with ventricular dysfunction and malignant arrhythmias. Here, we discuss the concepts and clinical implications of cardiac remodeling, and the pathophysiological role of different factors, including cell death, energy metabolism, oxidative stress, inflammation, collagen, contractile proteins, calcium transport, geometry and neurohormonal activation. Finally, the article describes the pharmacological treatment of cardiac remodeling, which can be divided into three different stages of strategies: consolidated, promising and potential strategies. PMID:26647721

  20. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling.

    PubMed

    Genovese, Luca; Brendolan, Andrea

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  1. Early Childhood Adversity and Pregnancy Outcomes

    PubMed Central

    Smith, Megan V.; Gotman, Nathan; Yonkers, Kimberly A.

    2016-01-01

    Objectives To examine the association between adverse childhood experiences (ACEs) and pregnancy outcomes; to explore mediators of this association including psychiatric illness and health habits. Methods Exposure to ACEs was determined by the Early Trauma Inventory Self Report Short Form; psychiatric diagnoses were generated by the Composite International Diagnostic Interview administered in a cohort of 2303 pregnant women. Linear regression and structural equation modeling bootstrapping approaches tested for multiple mediators. Results Each additional ACE decreased birth weight by 16.33 g and decreased gestational age by 0.063. Smoking was the strongest mediator of the effect on gestational age. Conclusions ACEs have an enduring effect on maternal reproductive health, as manifested by mothers’ delivery of offspring that were of reduced birth weight and shorter gestational age. PMID:26762511

  2. Early Childhood Adversity and Pregnancy Outcomes.

    PubMed

    Smith, Megan V; Gotman, Nathan; Yonkers, Kimberly A

    2016-04-01

    Objectives To examine the association between adverse childhood experiences (ACEs) and pregnancy outcomes; to explore mediators of this association including psychiatric illness and health habits. Methods Exposure to ACEs was determined by the Early Trauma Inventory Self Report Short Form; psychiatric diagnoses were generated by the Composite International Diagnostic Interview administered in a cohort of 2303 pregnant women. Linear regression and structural equation modeling bootstrapping approaches tested for multiple mediators. Results Each additional ACE decreased birth weight by 16.33 g and decreased gestational age by 0.063. Smoking was the strongest mediator of the effect on gestational age. Conclusions ACEs have an enduring effect on maternal reproductive health, as manifested by mothers' delivery of offspring that were of reduced birth weight and shorter gestational age. PMID:26762511

  3. Control of Bone Remodeling by the Peripheral Sympathetic Nervous System

    PubMed Central

    Campbell, Preston; Ma, Yun

    2013-01-01

    The skeleton is no longer seen as a static, isolated, and mostly structural organ. Over the last two decades, a more complete picture of the multiple functions of the skeleton has emerged, and its interactions with a growing number of apparently unrelated organs have become evident. The skeleton not only reacts to mechanical loading and inflammatory, hormonal, and mineral challenges, but also acts of its own accord by secreting factors controlling the function of other tissues, including the kidney and possibly the pancreas and gonads. It is thus becoming widely recognized that it is by nature an endocrine organ, in addition to a structural organ and site of mineral storage and hematopoiesis. Consequently and by definition, bone homeostasis must be tightly regulated and integrated with the biology of other organs to maintain whole body homeostasis, and data uncovering the involvement of the central nervous system (CNS) in the control of bone remodeling support this concept. The sympathetic nervous system (SNS) represents one of the main links between the CNS and the skeleton, based on a number of anatomic, pharmacologic, and genetic studies focused on β-adrenergic receptor (βAR) signaling in bone cells. The goal of this report was to review the data supporting the role of the SNS and βAR signaling in the regulation of skeletal homeostasis. PMID:23765388

  4. Acute versus chronic exercise-induced left-ventricular remodeling.

    PubMed

    Weiner, Rory B; Baggish, Aaron L

    2014-11-01

    Exercise-induced cardiac remodeling (EICR) is the process by which the heart adapts to the physiologic stress of exercise. Non-invasive cardiovascular imaging has led to advances in the understanding of EICR, with sport-specific changes in left-ventricular (LV) structure and function being described; however, the majority of data stem from cross-sectional and short-duration longitudinal studies. Due to the paucity of long-term longitudinal EICR studies, the time course of this process and any distinct differentiation between acute and chronic adaptations remain largely unexplored. In order to clarify the natural history of EICR, longer duration longitudinal study is required. Such work will determine whether exercise-induced changes in myocardial structure and function occur in discrete stages. Examination of prolonged exposures to exercise training will also be necessary to determine normative values across the age and training spectrums of athletic patients. This information will help to distinguish the boundary between physiology and pathology in athletic patients. PMID:25300444

  5. Adverse events in healthcare: learning from mistakes.

    PubMed

    Rafter, N; Hickey, A; Condell, S; Conroy, R; O'Connor, P; Vaughan, D; Williams, D

    2015-04-01

    Large national reviews of patient charts estimate that approximately 10% of hospital admissions are associated with an adverse event (defined as an injury resulting in prolonged hospitalization, disability or death, caused by healthcare management). Apart from having a significant impact on patient morbidity and mortality, adverse events also result in increased healthcare costs due to longer hospital stays. Furthermore, a substantial proportion of adverse events are preventable. Through identifying the nature and rate of adverse events, initiatives to improve care can be developed. A variety of methods exist to gather adverse event data both retrospectively and prospectively but these do not necessarily capture the same events and there is variability in the definition of an adverse event. For example, hospital incident reporting collects only a very small fraction of the adverse events found in retrospective chart reviews. Until there are systematic methods to identify adverse events, progress in patient safety cannot be reliably measured. This review aims to discuss the need for a safety culture that can learn from adverse events, describe ways to measure adverse events, and comment on why current adverse event monitoring is unable to demonstrate trends in patient safety. PMID:25078411

  6. Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice.

    PubMed

    Duerr, Georg D; Dewald, Daniela; Schmitz, Eva J; Verfuerth, Luise; Keppel, Katharina; Peigney, Christine; Ghanem, Alexander; Welz, Armin; Dewald, Oliver

    2016-01-01

    Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT(-/-))-mice (n = 8-10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT(-/-)-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2(-/-)-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT(-/-)-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2(-/-)-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling. PMID:27403038

  7. Tissue Inhibitor of Metalloproteinase-2 Gene Delivery Ameliorates Post-Infarction Cardiac Remodeling

    PubMed Central

    Ramani, Ravi; Nilles, Kathleen; Gibson, Gregory; Burkhead, Benjamin; Mathier, Michael; McNamara, Dennis; McTiernan, Charles F.

    2011-01-01

    Hypothesis Adenoviral-mediated (AdV-T2) overexpression of TIMP-2 would blunt ventricular remodeling and improve survival in a murine model of chronic ischemic injury. Methods Male mice (n=124) aged 10–14 weeks underwent either 1) left coronary artery ligation to induce myocardial infarction (MI group, n=36), 2) myocardial injection of 6×1010 viral particles of AdV-T2 immediately post-MI (MI+T2 group, n=30), 3) myocardial injection of 6×1010 viral particles of a control adenovirus (MI+Ct, n=38), or 4) received no intervention (controls, n=20). On post-MI day 7, surviving mice (n=79) underwent echocardiographic, immunohistochemical and biochemical analysis. Results In infarcted animals, the MI+T2 group demonstrated improved survival (p< 0.02), better preservation of developed pressure and ventricular diameter (p<0.04), and the lowest expression and activity of MMP-2 and MMP-9 (P<0.04) compared with MI and MI+Ct groups.. All infarcted hearts displayed significantly increased inflammatory cell infiltration (p<0.04 versus control, MI, or MI+T2), with infiltration highest in the MI+Ct group and lowest in the MI+T2 group (p<0.04). Conclusions Adenoviral mediated myocardial delivery of the TIMP-2 gene improves post-MI survival and limits adverse remodeling in a murine model of myocardial infarction. PMID:21348952

  8. Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities

    PubMed Central

    Fiorini, Francesca; Bagchi, Debjani; Le Hir, Hervé; Croquette, Vincent

    2015-01-01

    RNA helicases are implicated in most cellular RNA-dependent events. In eukaryotes however, only few have been functionally characterized. Upf1 is a RNA helicase essential for nonsense-mediated mRNA decay (NMD). Here, using magnetic tweezers and bulk assays, we observe that human Upf1 is able to translocate slowly over long single-stranded nucleic acids with a processivity >10 kb. Upf1 efficiently translocates through double-stranded structures and protein-bound sequences, demonstrating that Upf1 is an efficient ribonucleoprotein complex remodeler. Our observation of processive unwinding by an eukaryotic RNA helicase reveals that Upf1, once recruited onto NMD mRNA targets, can scan the entire transcript to irreversibly remodel the mRNP, facilitating its degradation by the NMD machinery. PMID:26138914

  9. Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities

    NASA Astrophysics Data System (ADS)

    Fiorini, Francesca; Bagchi, Debjani; Le Hir, Hervé; Croquette, Vincent

    2015-07-01

    RNA helicases are implicated in most cellular RNA-dependent events. In eukaryotes however, only few have been functionally characterized. Upf1 is a RNA helicase essential for nonsense-mediated mRNA decay (NMD). Here, using magnetic tweezers and bulk assays, we observe that human Upf1 is able to translocate slowly over long single-stranded nucleic acids with a processivity >10 kb. Upf1 efficiently translocates through double-stranded structures and protein-bound sequences, demonstrating that Upf1 is an efficient ribonucleoprotein complex remodeler. Our observation of processive unwinding by an eukaryotic RNA helicase reveals that Upf1, once recruited onto NMD mRNA targets, can scan the entire transcript to irreversibly remodel the mRNP, facilitating its degradation by the NMD machinery.

  10. ACF chromatin remodeling complex mediates stress–induced depressive–like behavior

    PubMed Central

    Sun, HaoSheng; Damez–Werno, Diane M.; Scobie, Kimberly N.; Shao, Ning–Yi; Dias, Caroline; Rabkin, Jacqui; Koo, Ja Wook; Korb, Erica; Bagot, Rosemary C.; Ahn, Francisca H.; Cahill, Michael E.; Labonté, Benoit; Mouzon, Ezekiell; Heller, Elizabeth A.; Cates, Hannah; Golden, Sam A; Gleason, Kelly; Russo, Scott J; Andrews, Simon; Neve, Rachael; Kennedy, Pamela J.; Maze, Ian; Dietz, David M.; Allis, C. David; Turecki, Gustavo; Varga–Weisz, Patrick; Tamminga, Carol; Shen, Li; Nestler, Eric J.

    2015-01-01

    Improved treatment for major depressive disorder (MDD) remains elusive due to limited understanding of its underlying biological mechanisms. Stress–induced maladaptive transcriptional regulation within limbic neural circuits likely contributes to the development of MDD, possibly through epigenetic factors that regulate chromatin structure. We establish that persistent upregulation of the ACF ATP–dependent chromatin remodeling complex, occurring in the nucleus accumbens of stress–susceptible mice and depressed humans, is necessary for stress–induced depressive–like behaviors. Altered ACF binding after chronic stress is correlated with altered nucleosome positioning, particularly around the transcription start sites of affected genes. These alterations in ACF binding and nucleosome positioning are associated with repressed expression of genes implicated in susceptibility to stress. Together, we identify the ACF chromatin remodeling complex as a critical component in the development of susceptibility to depression and in regulating stress–related behaviors. PMID:26390241

  11. Age-associated Pro-inflammatory Remodeling and Functional Phenotype in the Heart and Large Arteries

    PubMed Central

    Wang, Mingyi; Shah, Ajay M

    2015-01-01

    The aging population is increasing dramatically. Aging–associated stress simultaneously drives proinflammatory remodeling, involving angiotensin II and other factors, in both the heart and large arteries. The structural remodeling and functional changes that occur with aging include cardiac and vascular wall stiffening, systolic hypertension and suboptimal ventricular-arterial coupling, features that are often clinically silent and thus termed a silent syndrome. These age-related effects are the result of responses initiated by cardiovascular proinflammatory cells. Local proinflammatory signals are coupled between the heart and arteries due to common mechanical and humoral messengers within a closed circulating system. Thus, targeting proinflammatory signaling molecules would be a promising approach to improve age-associated suboptimal ventricular-arterial coupling, a major predisposing factor for the pathogenesis of clinical cardiovascular events such as heart failure. PMID:25665458

  12. REMOD: A Tool for Analyzing and Remodeling the Dendritic Architecture of Neural Cells

    PubMed Central

    Bozelos, Panagiotis; Stefanou, Stefanos S.; Bouloukakis, Georgios; Melachrinos, Constantinos; Poirazi, Panayiota

    2016-01-01

    Dendritic morphology is a key determinant of how individual neurons acquire a unique signal processing profile. The highly branched dendritic structure that originates from the cell body, explores the surrounding 3D space in a fractal-like manner, until it reaches a certain amount of complexity. Its shape undergoes significant alterations under various physiological or neuropathological conditions. Yet, despite the profound effect that these alterations can have on neuronal function, the causal relationship between the two remains largely elusive. The lack of a systematic approach for remodeling neural cells and their dendritic trees is a key limitation that contributes to this problem. Such causal relationships can be inferred via the use of large-scale neuronal models whereby the anatomical plasticity of neurons is accounted for, in order to enhance their biological relevance and hence their predictive performance. To facilitate this effort, we developed a computational tool named REMOD that allows the structural remodeling of any type of virtual neuron. REMOD is written in Python and can be accessed through a dedicated web interface that guides the user through various options to manipulate selected neuronal morphologies. REMOD can also be used to extract meaningful morphology statistics for one or multiple reconstructions, including features such as sholl analysis, total dendritic length and area, path length to the soma, centrifugal branch order, diameter tapering and more. As such, the tool can be used both for the analysis and/or the remodeling of neuronal morphologies of any type. PMID:26778971

  13. BRG1-Mediated Chromatin Remodeling Regulates Differentiation and Gene Expression of T Helper Cells▿ †

    PubMed Central

    Wurster, Andrea L.; Pazin, Michael J.

    2008-01-01

    During T helper cell differentiation, distinct programs of gene expression play a key role in defining the immune response to an environmental challenge. How chromatin remodeling events at the associated cytokine loci control differentiation is not known. We found that the ATP-dependent remodeling enzyme subunit BRG1 was required for T helper 2 (Th2) differentiation and Th2 cytokine transcription. BRG1 binding to cytokine genes was regulated by the extent of differentiation, the extent of activation, and cell fate. BRG1 was required for some features of the chromatin structure in target genes (DNase I hypersensitivity and histone acetylation), suggesting that BRG1 remodeling activity was directly responsible for changes in gene expression. NFAT and STAT6 activity were required for BRG1 recruitment to the Th2 locus control region, and STAT6 associated with BRG1 in a differentiation-inducible manner, suggesting direct recruitment of BRG1 to the bound loci. Together, these findings suggest BRG1 interprets differentiation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. PMID:18852284

  14. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    SciTech Connect

    Persson, Jenna; Ekwall, Karl

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  15. REMOD: A Tool for Analyzing and Remodeling the Dendritic Architecture of Neural Cells.

    PubMed

    Bozelos, Panagiotis; Stefanou, Stefanos S; Bouloukakis, Georgios; Melachrinos, Constantinos; Poirazi, Panayiota

    2015-01-01

    Dendritic morphology is a key determinant of how individual neurons acquire a unique signal processing profile. The highly branched dendritic structure that originates from the cell body, explores the surrounding 3D space in a fractal-like manner, until it reaches a certain amount of complexity. Its shape undergoes significant alterations under various physiological or neuropathological conditions. Yet, despite the profound effect that these alterations can have on neuronal function, the causal relationship between the two remains largely elusive. The lack of a systematic approach for remodeling neural cells and their dendritic trees is a key limitation that contributes to this problem. Such causal relationships can be inferred via the use of large-scale neuronal models whereby the anatomical plasticity of neurons is accounted for, in order to enhance their biological relevance and hence their predictive performance. To facilitate this effort, we developed a computational tool named REMOD that allows the structural remodeling of any type of virtual neuron. REMOD is written in Python and can be accessed through a dedicated web interface that guides the user through various options to manipulate selected neuronal morphologies. REMOD can also be used to extract meaningful morphology statistics for one or multiple reconstructions, including features such as sholl analysis, total dendritic length and area, path length to the soma, centrifugal branch order, diameter tapering and more. As such, the tool can be used both for the analysis and/or the remodeling of neuronal morphologies of any type. PMID:26778971

  16. Effect of subchronic exposure to tetradifon on bone remodelling and metabolism in female rat.

    PubMed

    Badraoui, Riadh; Abdelmoula, Nouha Bouayed; Sahnoun, Zouhaier; Fakhfakh, Zouhaier; Rebai, Tarek

    2007-12-01

    This study investigates the effect of subchronic exposure to tetradifon, an organochlorine pesticide with an oestrogen-like structure, in female rat. A single cumulative dose of 2430 mg/kg BW was administrated orally for 12 female rats of 190 g BW. Twelve non-treated additional rats have served as controls. Animals were sacrificed after 6 and 12 weeks of treatment. We studied bone remodelling through histomorphometry and scanning electron microscopy (SEM) analyses. The serum and the right femora were used to determine phosphatase alkaline (AlkP) and/or calcium and phosphorus content. No sign of toxicity was observed until the end of the experiment. The SEM results revealed no structural alteration of the treated animal bone tissue. However, in both treated groups, we have noted an increase in the trabecular distance and a heterogeneous aspect of the endosteum that could be explained by bone-remodelling disturbance, with relative delay of ossification. Following histomorphomotric analysis, these results were coupled with significant increases in Tb.Th and OS/BS. Elsewhere, tetradifon intoxication increased significant serum AlkP level in the group treated for 12 weeks, which could be explained by an osteoblastic hyperactivity. Tetradifon intoxication decreased significantly bone calcium end phosphorus contents. Tetradifon seems not to exert major effects on bone remodelling. However, the osteoblastic hyperactivity could be explained by the oestrogen-like activity of tetradifon and its fatty metabolism. In fact, oestrogen inhibits bone remodelling, and enhances bone formation, which could result in an increase of the osteoid surface and explain the relative delay of ossification. PMID:18068648

  17. Postinfarct Left Ventricular Remodelling: A Prevailing Cause of Heart Failure

    PubMed Central

    Galli, Alessio; Lombardi, Federico

    2016-01-01

    Heart failure is a chronic disease with high morbidity and mortality, which represents a growing challenge in medicine. A major risk factor for heart failure with reduced ejection fraction is a history of myocardial infarction. The expansion of a large infarct scar and subsequent regional ventricular dilatation can cause postinfarct remodelling, leading to significant enlargement of the left ventricular chamber. It has a negative prognostic value, because it precedes the clinical manifestations of heart failure. The characteristics of the infarcted myocardium predicting postinfarct remodelling can be studied with cardiac magnetic resonance and experimental imaging modalities such as diffusion tensor imaging can identify the changes in the architecture of myocardial fibers. This review discusses all the aspects related to postinfarct left ventricular remodelling: definition, pathogenesis, diagnosis, consequences, and available therapies, together with experimental interventions that show promising results against postinfarct remodelling and heart failure. PMID:26989555

  18. 65. (Credit JTL) Filter room looking WSW across remodelled New ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. (Credit JTL) Filter room looking WSW across remodelled New York horizontal pressure filters (in foreground). - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  19. Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology

    PubMed Central

    Golestani, Reza; Jung, Jae-Joon; Sadeghi, Mehran M.

    2016-01-01

    Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation. PMID:27275836

  20. Emerging mechanisms of mRNP remodeling regulation

    PubMed Central

    Chen, Chyi-Ying A.

    2015-01-01

    The assembly and remodeling of the components of messenger ribonucleoprotein particles (mRNPs) are important in determining the fate of an mRNA. A combination of biochemical and cell biology research, recently complemented by genome-wide high-throughput approaches, has led to significant progress on understanding the formation, dynamics and function of mRNPs. These studies also advanced the challenging process of identifying the evolving constituents of individual mRNPs at various stages during an mRNA’s lifetime. While research on mRNP remodeling in general has been gaining momentum, there has been relatively little attention paid to the regulatory aspect of mRNP remodeling. Here, we discuss the results of some new studies and potential mechanisms for regulation of mRNP remodeling. PMID:24923990

  1. Remodeled second floor with stairs and stacks. This was formerly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Remodeled second floor with stairs and stacks. This was formerly the upper part of the original two story reading room. View to southwest. - San Bernardino Valley College, Library, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  2. Quantitation of maxillary remodeling. 1. A description of osseous changes relative to superimposition on metallic implants.

    PubMed

    Baumrind, S; Korn, E L; Ben-Bassat, Y; West, E E

    1987-01-01

    Lateral skull radiographs for a set of 31 human subjects were examined using computer-aided methods in an attempt to quantify modal trends of maxillary remodeling during the mixed dentition and adolescent growth periods. Cumulative changes in position of anterior nasal spine (ANS), posterior nasal spine (PNS), and Point A are reported at annual intervals relative to superimposition on previously placed maxillary metallic implants. This in vivo longitudinal study confirms at a high level of confidence earlier findings by Enlow, Björk, Melsen, and others to the effect that the superior surface of the maxilla remodels downward during the period of growth and development being investigated. However, the inter-individual variability is relatively large, the mean magnitudes of change are relatively small, and the rate of change appears to diminish by 13.5 years. For the 19 subjects for whom data were available for the time interval from 8.5 to 15.5 years, mean downward remodeling at PNS was 2.50 mm with a standard deviation of 2.23 mm. At ANS, corresponding mean value was 1.56 mm with a standard deviation of 2.92 mm. Mean rotation of the ANS-PNS line relative to the implant line was 1.1 degree in the "forward" direction. However, this rotational change was particularly variable with a standard deviation of 4.6 degrees and a range of 11.3 degrees "forward" to 6.7 degrees "backward." The study provides strong evidence that the palate elongates anteroposteriorly mainly by the backward remodeling of structures located posterior to the region in which the implants were placed. There is also evidence that supports the idea of modal resorptive remodeling at ANS and PNS, but here the data are somewhat more equivocal. It appears likely, but not certain, that there are real differences in the modal patterns of remodeling between treated and untreated subjects. Because of problems associated with overfragmentation of the sample, sex differences were not investigated. PMID:3467578

  3. Restricting Fermentative Potential by Proteome Remodeling

    PubMed Central

    Clair, Gérémy; Armengaud, Jean; Duport, Catherine

    2012-01-01

    Pathogenesis hinges on successful colonization of the gastrointestinal (GI) tract by pathogenic facultative anaerobes. The GI tract is a carbohydrate-limited environment with varying oxygen availability and oxidoreduction potential (ORP). How pathogenic bacteria are able to adapt and grow in these varying conditions remains a key fundamental question. Here, we designed a system biology-inspired approach to pinpoint the key regulators allowing Bacillus cereus to survive and grow efficiently under low ORP anoxic conditions mimicking those encountered in the intestinal lumen. We assessed the proteome components using high throughput nanoLC-MS/MS techniques, reconstituted the main metabolic circuits, constructed ΔohrA and ΔohrR mutants, and analyzed the impacts of ohrA and ohrR disruptions by a novel round of shotgun proteomics. Our study revealed that OhrR and OhrA are crucial to the successful adaptation of B. cereus to the GI tract environment. Specifically, we showed that B. cereus restricts its fermentative growth under low ORP anaerobiosis and sustains efficient aerobic respiratory metabolism, motility, and stress response via OhrRA-dependent proteome remodeling. Finally, our results introduced a new adaptive strategy where facultative anaerobes prefer to restrict their fermentative potential for a long term benefit. PMID:22232490

  4. Exercise hypertension: an adverse prognosis?

    PubMed

    Smith, Ryan G; Rubin, Stanley A; Ellestad, Myrvin H

    2009-01-01

    We sought to clarify the prognostic importance of an "exaggerated" or "hypertensive" systolic blood pressure response to exercise during an exercise test. Studies evaluating the prognosis for cardiovascular events and cardiovascular mortality in those with hypertension during exercise testing were systematically reviewed. Fourteen studies were identified. Six studies were of healthy volunteers or hypertensives. Eight studies were in subjects with known or suspected heart disease. Without established heart disease, exercise hypertension predicted cardiovascular events and cardiovascular death. However, two of the six studies included a multivariate analysis; both demonstrated no independent association. Studies in subjects with known or suspected heart disease demonstrated that exercise hypertension predicted fewer cardiac events and lesser mortality or, after multivariate adjustment, no associated risk. In a healthy population, a higher exercise blood pressure may indicate hypertension or prehypertension, instead of normal vascular function, and an associated long-term adverse prognosis. In a population with a high burden of heart disease, the highest risk subjects with the most extensive cardiac disease may not be capable of generating pressure or workload to allow the manifestation of exercise systolic hypertension. By comparison, therefore, those with exercise hypertension have a better prognosis. PMID:20409979

  5. OAE: The Ontology of Adverse Events

    PubMed Central

    2014-01-01

    Background A medical intervention is a medical procedure or application intended to relieve or prevent illness or injury. Examples of medical interventions include vaccination and drug administration. After a medical intervention, adverse events (AEs) may occur which lie outside the intended consequences of the intervention. The representation and analysis of AEs are critical to the improvement of public health. Description The Ontology of Adverse Events (OAE), previously named Adverse Event Ontology (AEO), is a community-driven ontology developed to standardize and integrate data relating to AEs arising subsequent to medical interventions, as well as to support computer-assisted reasoning. OAE has over 3,000 terms with unique identifiers, including terms imported from existing ontologies and more than 1,800 OAE-specific terms. In OAE, the term ‘adverse event’ denotes a pathological bodily process in a patient that occurs after a medical intervention. Causal adverse events are defined by OAE as those events that are causal consequences of a medical intervention. OAE represents various adverse events based on patient anatomic regions and clinical outcomes, including symptoms, signs, and abnormal processes. OAE has been used in the analysis of several different sorts of vaccine and drug adverse event data. For example, using the data extracted from the Vaccine Adverse Event Reporting System (VAERS), OAE was used to analyse vaccine adverse events associated with the administrations of different types of influenza vaccines. OAE has also been used to represent and classify the vaccine adverse events cited in package inserts of FDA-licensed human vaccines in the USA. Conclusion OAE is a biomedical ontology that logically defines and classifies various adverse events occurring after medical interventions. OAE has successfully been applied in several adverse event studies. The OAE ontological framework provides a platform for systematic representation and analysis of

  6. Remodeling of the bone material containing microcracks: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Ramtani, S.; Zidi, M.

    1999-12-01

    The question is, what happens when the bone loses its ability for load-driven adaptation, when damage is no longer repaired as it seems to be the case for bone loss associated with age, medication or disease? In this study, we tempt to show how damage can influence the remodeling process. A thermodynamic theoretical framework is therefore provided as a basis for a consistent formulation of bone remodeling involving a chemical reaction and mass transfer between two constituents in presence of microcracks.

  7. [MedDRA and its applications in statistical analysis of adverse events].

    PubMed

    Lu, Meng-jie; Liu, Yu-xiu

    2015-11-01

    Safety assessment in clinical trials is dependent on an in-depth analysis of the adverse events to a great extent. However, there are difficulties in summary classification, data management and statistical analysis of the adverse events because of the different expressions on the same adverse events caused by regional, linguistic, ethnic, cultural and other differences. In order to ensure the normative expressions, it's necessary to standardize the terms in recording the adverse events. MedDRA (medical dictionary for regulatory activities) has been widely recommended and applied in the world as a powerful support for the adverse events reporting in clinical trials. In this paper, the development history, applicable scope, hierarchy structure, encoding term selection and standardized query strategies of the MedDRA is introduced. Furthermore, the practical process of adverse events encoding with MedDRA is proposed. Finally, the framework of statistical analysis about adverse events is discussed. PMID:26911031

  8. Numerical evaluation of bone remodelling associated with trans-femoral osseointegration implant--A 68 month follow-up study.

    PubMed

    Xu, D H; Crocombe, A D; Xu, W

    2016-02-01

    Osseointegrated trans-femoral implant is a relatively new orthopaedic anchoring method for connecting a stump with a prosthesis. Through a follow-up study of a patient over six years, significant bone remodelling has been observed. Finite element (FE) simulations were carried out to investigate the relationship between the bone remodelling and the strain re-distribution around the trans-femoral osseointegrated implant system. An initial FE model representing the original status of the femur-implant assembly was created from CT scans of the subject prior to osseointegration. Follow-up X-ray images were acquired at various stages post-surgery, which allowed the changes in bone wall thickness to be measured. By updating the bone thickness in the initial model, a series of follow-up FE models were created. Representative load associated with the subject's body weight was applied to the models, and the strain re-distributions were calculated. The results showed that in order to minimise the adverse effect of bone remodelling, an osseointegration implant made by functionally gradient materials are preferred over homogeneous materials. PMID:26776932

  9. Human relaxin gene expression delivered by bioreducible dendrimer polymer for post-infarct cardiac remodeling in rats.

    PubMed

    Lee, Young Sook; Choi, Joung-Woo; Oh, Jung-Eun; Yun, Chae-Ok; Kim, Sung Wan

    2016-08-01

    In consensus, myocardial infarction (MI) is defined as irreversible cell death secondary to prolonged ischemia in heart. The aim of our study was to evaluate the therapeutic potential of anti-fibrotic human Relaxin-expressing plasmid DNA with hypoxia response element (HRE) 12 copies (HR1) delivered by a dendrimer type PAM-ABP polymer G0 (HR1/G0) after MI on functional, hemodynamic, geometric, and cardiac extracellular matrix (ECM) remodeling in rats. HR1/G0 demonstrated significantly improved LV systolic function, hemodynamic parameters, and geometry on 1 wk and 4 wks after MI in rats, compared with I/R group. The resolution of regional wall motional abnormalities and the increased blood flow of infarct-related coronary artery supported functional improvements of HR1/G0. Furthermore, HR1/G0 polyplex showed favorable post-infarct cardiac ECM remodeling reflected on the favorable cardiac ECM compositions. Overall, this is the first study, which presented an advanced platform for the gene therapy that reverses adverse cardiac remodeling after MI with a HR1 gene delivered by a bioreducible dendrimer polymer in the cardiac ECM. PMID:27174688

  10. Clinical Implications and Pathogenesis of Esophageal Remodeling in Eosinophilic Esophagitis

    PubMed Central

    Hirano, Ikuo; Aceves, Seema S.

    2014-01-01

    In eosinophilic esophagitis (EoE), remodeling changes are manifest histologically in both the epithelium as well as in the subepithelium where lamina propria (LP) fibrosis, expansion of the muscularis propria and increased vascularity occur. The major clinical symptoms and complications of EoE are largely consequences of esophageal remodeling. Important mediators of the process include IL-5, IL-13, TGFβ1, mast cells, fibroblasts and eosinophils. Methods to detect remodeling effects include upper endoscopy, histopathology, barium esophagram, endoscopic ultrasonography, esophageal manometry, and functional luminal imaging. These modalities provide evidence of organ dysfunction that include focal and diffuse esophageal strictures, expansion of the mucosa and subepithelium, esophageal motor abnormalities and reduced esophageal distensibility. Complications of food impaction and perforations of the esophageal wall have been associated with reduction in esophageal caliber and increased esophageal mural stiffness. The therapeutic benefits of topical corticosteroids and elimination diet therapy in resolving mucosal eosinophilic inflammation of the esophagus are evident. Available therapies, however, have demonstrated variable ability to reverse existing remodeling changes of the esophagus. Systemic therapies that include novel, targeted biologic agents have the potential of addressing subepithelial remodeling. Esophageal dilation remains a useful, adjunctive therapeutic maneuver in symptomatic adults with esophageal stricture. As novel treatments emerge, it is essential that therapeutic endpoints account for the fundamental contributions of esophageal remodeling to overall disease activity. PMID:24813517

  11. Fstl1 Promotes Asthmatic Airway Remodeling by Inducing Oncostatin M.

    PubMed

    Miller, Marina; Beppu, Andrew; Rosenthal, Peter; Pham, Alexa; Das, Sudipta; Karta, Maya; Song, Dae Jin; Vuong, Christine; Doherty, Taylor; Croft, Michael; Zuraw, Bruce; Zhang, Xu; Gao, Xiang; Aceves, Seema; Chouiali, Fazila; Hamid, Qutayba; Broide, David H

    2015-10-15

    Chronic asthma is associated with airway remodeling and decline in lung function. In this article, we show that follistatin-like 1 (Fstl1), a mediator not previously associated with asthma, is highly expressed by macrophages in the lungs of humans with severe asthma. Chronic allergen-challenged Lys-Cre(tg) /Fstl1(Δ/Δ) mice in whom Fstl1 is inactivated in macrophages/myeloid cells had significantly reduced airway remodeling and reduced levels of oncostatin M (OSM), a cytokine previously not known to be regulated by Fstl1. The importance of the Fstl1 induction of OSM to airway remodeling was demonstrated in murine studies in which administration of Fstl1 induced airway remodeling and increased OSM, whereas administration of an anti-OSM Ab blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation, and airway hyperresponsiveness, all cardinal features of asthma. Overall, these studies demonstrate that the Fstl1/OSM pathway may be a novel pathway to inhibit airway remodeling in severe human asthma. PMID:26355153

  12. Targeted Regional Injection of Biocomposite Microspheres Alters Post Myocardial Infarction Remodeling and Matrix Proteolytic Pathways

    PubMed Central

    Dixon, Jennifer A.; Gorman, Robert C.; Stroud, Robert E.; Mukherjee, Rupak; Meyer, Evan C.; Baker, Nathaniel L.; Morita, Masato; Hamamoto, Hirotsugu; Ryan, Liam P.; Gorman, Joseph H.; Spinale, Francis G.

    2011-01-01

    Background While localized delivery of biocomposite materials, such as calcium hydroxyapatite (CHAM), have been demonstrated to potentially attenuate adverse LV remodeling post-myocardial infarction (MI), the underlying biological mechanisms for this effect remain unclear. This study tested the hypothesis that targeted CHAM injections would alter proteolytic pathways (matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs)), and be associated with parameters of post-MI LV remodeling. Methods and Results MI was induced in adult sheep followed by 20 targeted injections of a total volume of 1.3 mL (n=6) or 2.6 mL of CHAM (n=5), or saline (n=13), and LV end-diastolic volume (EDV) and MMP/TIMP profiles in the MI region were measured at 8 weeks post-MI. LV EDV decreased with 2.6 mL CHAM vs MI Only (105.4±7.5 vs 80.6±4.2 respectively, p<0.05) but not with 1.3 mL CHAM (94.5±5.0, p=0.32). However, MI thickness increased by 2-fold in both CHAM groups compared to MI Only (p<0.05). MMP-13 increased 40-fold in the MI Only group (p<0.05) but fell by over 6-fold in both CHAM groups (p<0.05). MMP-7 increased approximately 1.5-fold in the MI Only group (p<0.05) but decreased to referent control values in both CHAM groups in the MI region (p<0.05). Collagen content was reduced by approximately 30% in the CHAM groups compared to MI Only (p<0.05). Conclusions Differential effects on LV remodeling and MMP/TIMP profiles occurred with CHAM. Thus, targeted injections of a biocomposite material can favorably affect the post-MI remodeling process and therefore holds promise as a treatment strategy in and of itself, or as a matrix with potentially synergistic effects with localized pharmacologic or cellular therapies. PMID:21911817

  13. Loss of Apelin Exacerbates Myocardial Infarction Adverse Remodeling and Ischemia‐reperfusion Injury: Therapeutic Potential of Synthetic Apelin Analogues

    PubMed Central

    Wang, Wang; McKinnie, Shaun M.K.; Patel, Vaibhav B.; Haddad, George; Wang, Zuocheng; Zhabyeyev, Pavel; Das, Subhash K.; Basu, Ratnadeep; McLean, Brent; Kandalam, Vijay; Penninger, Josef M.; Kassiri, Zamaneh; Vederas, John C.; Murray, Allan G.; Oudit, Gavin Y.

    2013-01-01

    Background Coronary artery disease leading to myocardial ischemia is the most common cause of heart failure. Apelin (APLN), the endogenous peptide ligand of the APJ receptor, has emerged as a novel regulator of the cardiovascular system. Methods and Results Here we show a critical role of APLN in myocardial infarction (MI) and ischemia‐reperfusion (IR) injury in patients and animal models. Myocardial APLN levels were reduced in patients with ischemic heart failure. Loss of APLN increased MI‐related mortality, infarct size, and inflammation with drastic reductions in prosurvival pathways resulting in greater systolic dysfunction and heart failure. APLN deficiency decreased vascular sprouting, impaired sprouting of human endothelial progenitor cells, and compromised in vivo myocardial angiogenesis. Lack of APLN enhanced susceptibility to ischemic injury and compromised functional recovery following ex vivo and in vivo IR injury. We designed and synthesized two novel APLN analogues resistant to angiotensin converting enzyme 2 cleavage and identified one analogue, which mimicked the function of APLN, to be markedly protective against ex vivo and in vivo myocardial IR injury linked to greater activation of survival pathways and promotion of angiogenesis. Conclusions APLN is a critical regulator of the myocardial response to infarction and ischemia and pharmacologically targeting this pathway is feasible and represents a new class of potential therapeutic agents. PMID:23817469

  14. Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation.

    PubMed

    Verdone, L; Camilloni, G; Di Mauro, E; Caserta, M

    1996-05-01

    We have analyzed at both low and high resolution the distribution of nucleosomes over the Saccharomyces cerevisiae ADH2 promoter region in its chromosomal location, both under repressing (high-glucose) conditions and during derepression. Enzymatic treatments (micrococcal nuclease and restriction endonucleases) were used to probe the in vivo chromatin structure during ADH2 gene activation. Under glucose-repressed conditions, the ADH2 promoter was bound by a precise array of nucleosomes, the principal ones positioned at the RNA initiation sites (nucleosome +1), at the TATA box (nucleosome -1), and upstream of the ADR1-binding site (UAS1) (nucleosome -2). The UAS1 sequence and the adjacent UAS2 sequence constituted a nucleosome-free region. Nucleosomes -1 and +1 were destabilized soon after depletion of glucose and had become so before the appearance of ADH2 mRNA. When the transcription rate was high, nucleosomes -2 and +2 also underwent rearrangement. When spheroplasts were prepared from cells grown in minimal medium, detection of this chromatin remodeling required the addition of a small amount of glucose. Cells lacking the ADR1 protein did not display any of these chromatin modifications upon glucose depletion. Since the UAS1 sequence to which Adr1p binds is located immediately upstream of nucleosome -1, Adr1p is presumably required for destabilization of this nucleosome and for aiding the TATA-box accessibility to the transcription machinery. PMID:8628264

  15. SWI/SNF chromatin remodeling complexes and cancer.

    PubMed

    Biegel, Jaclyn A; Busse, Tracy M; Weissman, Bernard E

    2014-09-01

    The identification of mutations and deletions in the SMARCB1 locus in chromosome band 22q11.2 in pediatric rhabdoid tumors provided the first evidence for the involvement of the SWI/SNF chromatin remodeling complex in cancer. Over the last 15 years, alterations in more than 20 members of the complex have been reported in a variety of human tumors. These include germline mutations and copy number alterations in SMARCB1, SMARCA4, SMARCE1, and PBRM1 that predispose carriers to both benign and malignant neoplasms. Somatic mutations, structural abnormalities, or epigenetic modifications that lead to reduced or aberrant expression of complex members have now been reported in more than 20% of malignancies, including both solid tumors and hematologic disorders in both children and adults. In this review, we will highlight the role of SMARCB1 in cancer as a paradigm for other tumors with alterations in SWI/SNF complex members and demonstrate the broad spectrum of mutations observed in complex members in different tumor types. PMID:25169151

  16. Diabetic Cardiomyopathy and Metabolic Remodeling of the Heart

    PubMed Central

    Battiprolu, Pavan K.; Lopez-Crisosto, Camila; Wang, Zhao V.; Nemchenko, Andriy; Lavandero, Sergio; Hill, Joseph A.

    2012-01-01

    The incidence and prevalence of diabetes mellitus are each increasing rapidly in societies around the globe. The majority of patients with diabetes succumb ultimately to heart disease, much of which stems from atherosclerotic disease and hypertension. However, the diabetic milieu is itself intrinsically noxious to the heart, and cardiomyopathy can develop independent of elevated blood pressure or coronary artery disease. This process, termed diabetic cardiomyopathy, is characterized by significant changes in the physiology, structure, and mechanical function of the heart. Presently, therapy for patients with diabetes focuses largely on glucose control, and attention to the heart commences with the onset of symptoms. When the latter develops, standard therapy for heart failure is applied. However, recent studies highlight that specific elements of the pathogenesis of diabetic heart disease are unique, raising the prospect of diabetes-specific therapeutic intervention. Here, we review recently unveiled insights into the pathogenesis of diabetic cardiomyopathy and associated metabolic remodeling with an eye toward identifying novel targets with therapeutic potential. PMID:23123443

  17. The ADF/cofilin family: actin-remodeling proteins

    PubMed Central

    Maciver, Sutherland K; Hussey, Patrick J

    2002-01-01

    The ADF/cofilins are a family of actin-binding proteins expressed in all eukaryotic cells so far examined. Members of this family remodel the actin cytoskeleton, for example during cytokinesis, when the actin-rich contractile ring shrinks as it contracts through the interaction of ADF/cofilins with both monomeric and filamentous actin. The depolymerizing activity is twofold: ADF/cofilins sever actin filaments and also increase the rate at which monomers leave the filament's pointed end. The three-dimensional structure of ADF/cofilins is similar to a fold in members of the gelsolin family of actin-binding proteins in which this fold is typically repeated three or six times; although both families bind polyphosphoinositide lipids and actin in a pH-dependent manner, they share no obvious sequence similarity. Plants and animals have multiple ADF/cofilin genes, belonging in vertebrates to two types, ADF and cofilins. Other eukaryotes (such as yeast, Acanthamoeba and slime moulds) have a single ADF/cofilin gene. Phylogenetic analysis of the ADF/cofilins reveals that, with few exceptions, their relationships reflect conventional views of the relationships between the major groups of organisms. PMID:12049672

  18. SWI/SNF Chromatin Remodeling Complexes and Cancer

    PubMed Central

    Biegel, Jaclyn A; Busse, Tracy M.; Weissman, Bernard E.

    2015-01-01

    The identification of mutations and deletions in the SMARCB1 locus in chromosome band 22q11.2 in pediatric rhabdoid tumors provided the first evidence for the involvement of the SWI/SNF chromatin remodeling complex in cancer. Over the last 15 years, alterations in more than 20 members of the complex have been reported in a variety of human tumors. These include germline mutations and copy number alterations in SMARCB1, SMARCA4, SMARCE1, and PBRM1 that predispose carriers to both benign and malignant neoplasms. Somatic mutations, structural abnormalities, or epigenetic modifications that lead to reduced or aberrant expression of complex members have now been reported in more than twenty percent of malignancies, including both solid tumors and hematologic disorders in both children and adults. In this review, we will highlight the role of SMARCB1 in cancer as a paradigm for other tumors with alterations in SWI/SNF complex members and demonstrate the broad spectrum of mutations observed in complex members in different tumor types. PMID:25169151

  19. The stability of memories during brain remodeling: A perspective

    PubMed Central

    Blackiston, Douglas J; Shomrat, Tal; Levin, Michael

    2015-01-01

    One of the most important features of the nervous system is memory: the ability to represent and store experiences, in a manner that alters behavior and cognition at future times when the original stimulus is no longer present. However, the brain is not always an anatomically stable structure: many animal species regenerate all or part of the brain after severe injury, or remodel their CNS toward a new configuration as part of their life cycle. This raises a fascinating question: what are the dynamics of memories during brain regeneration? Can stable memories remain intact when cellular turnover and spatial rearrangement modify the biological hardware within which experiences are stored? What can we learn from model species that exhibit both, regeneration and memory, with respect to robustness and stability requirements for long-term memories encoded in living tissues? In this Perspective, we discuss relevant data in regenerating planaria, metamorphosing insects, and hibernating ground squirrels. While much remains to be done to understand this remarkable process, molecular-level insight will have important implications for cognitive science, regenerative medicine of the brain, and the development of non-traditional computational media in synthetic bioengineering. PMID:27066165

  20. Lower molar and incisor displacement associated with mandibular remodeling.

    PubMed

    Baumrind, S; Bravo, L A; Ben-Bassat, Y; Curry, S; Korn, E L

    1997-01-01

    The purpose of this study was to quantify the amount of alveolar modeling at the apices of the mandibular incisor and first molar specifically associated with appositional and resorptive changes on the lower border of the mandible during growth and treatment. Cephalometric data from superimpositions on anterior cranial base, mandibular implants of the Björk type, and anatomical "best fit" of mandibular border structures were integrated using a recently developed strategy, which is described. Data were available at annual intervals between 8.5 and 15.5 years for a previously described sample of approximately 30 children with implants. The average magnitudes of the changes at the root apices of the mandibular first molar and central incisor associated with modeling/remodeling of the mandibular border and symphysis were unexpectedly small. At the molar apex, mean values approximated zero in both anteroposterior and vertical directions. At the incisor apex, mean values approximated zero in the anteroposterior direction and averaged less than 0.15 mm/year in the vertical direction. Standard deviations were roughly equal for the molar and the incisor in both the anteroposterior and vertical directions. Dental displacement associated with surface modeling plays a smaller role in final tooth position in the mandible than in the maxilla. It may also be reasonably inferred that anatomical best-fit superimpositions made in the absence of implants give a more complete picture of hard tissue turnover in the mandible than they do in the maxilla. PMID:9107373

  1. Mechanical factors direct mouse aortic remodelling during early maturation.

    PubMed

    Le, Victoria P; Cheng, Jeffrey K; Kim, Jungsil; Staiculescu, Marius C; Ficker, Shawn W; Sheth, Saahil C; Bhayani, Siddharth A; Mecham, Robert P; Yanagisawa, Hiromi; Wagenseil, Jessica E

    2015-03-01

    Numerous diseases have been linked to genetic mutations that lead to reduced amounts or disorganization of arterial elastic fibres. Previous work has shown that mice with reduced amounts of elastin (Eln+/-) are able to live a normal lifespan through cardiovascular adaptations, including changes in haemodynamic stresses, arterial geometry and arterial wall mechanics. It is not known if the timeline and presence of these adaptations are consistent in other mouse models of elastic fibre disease, such as those caused by the absence of fibulin-5 expression (Fbln5-/-). Adult Fbln5-/- mice have disorganized elastic fibres, decreased arterial compliance and high blood pressure. We examined mechanical behaviour of the aorta in Fbln5-/- mice through early maturation when the elastic fibres are being assembled. We found that the physiologic circumferential stretch, stress and modulus of Fbln5-/- aorta are maintained near wild-type levels. Constitutive modelling suggests that elastin contributions to the total stress are decreased, whereas collagen contributions are increased. Understanding how collagen fibre structure and mechanics compensate for defective elastic fibres to meet the mechanical requirements of the maturing aorta may help to better understand arterial remodelling in human elastinopathies. PMID:25652465

  2. Epigenetic Regulation of Bone Remodeling and Its Impacts in Osteoporosis.

    PubMed

    Ghayor, Chafik; Weber, Franz E

    2016-01-01

    Epigenetics describes mechanisms which control gene expression and cellular processes without changing the DNA sequence. The main mechanisms in epigenetics are DNA methylation in CpG-rich promoters, histone modifications and non-coding RNAs (ncRNAs). DNA methylation modifies the function of the DNA and correlates with gene silencing. Histone modifications including acetylation/deacetylation and phosphorylation act in diverse biological processes such as transcriptional activation/inactivation and DNA repair. Non-coding RNAs play a large part in epigenetic regulation of gene expression in addition to their roles at the transcriptional and post-transcriptional level. Osteoporosis is the most common skeletal disorder, characterized by compromised bone strength and bone micro-architectural deterioration that predisposes the bones to an increased risk of fracture. It is most often caused by an increase in bone resorption that is not sufficiently compensated by a corresponding increase in bone formation. Nowadays it is well accepted that osteoporosis is a multifactorial disorder and there are genetic risk factors for osteoporosis and bone fractures. Here we review emerging evidence that epigenetics contributes to the machinery that can alter DNA structure, gene expression, and cellular differentiation during physiological and pathological bone remodeling. PMID:27598138

  3. Roles of Fas and Fas ligand during mammary gland remodeling

    PubMed Central

    Song, Joon; Sapi, Eva; Brown, Wendi; Nilsen, Jon; Tartaro, Karrie; Kacinski, Barry M.; Craft, Joseph; Naftolin, Frederick; Mor, Gil

    2000-01-01

    Mammary involution is associated with degeneration of the alveolar structure and programmed cell death of mammary epithelial cells. In this study, we evaluated the expression of Fas and Fas ligand (FasL) in the mammary gland tissue and their possible role in the induction of apoptosis of mammary cells. FasL-positive cells were observed in normal mammary epithelium from pregnant and lactating mice, but not in nonpregnant/virgin mouse mammary tissue. Fas expression was observed in epithelial and stromal cells in nonpregnant mice but was absent during pregnancy. At day 1 after weaning, high levels of both Fas and FasL proteins and caspase 3 were observed and coincided with the appearance of apoptotic cells in ducts and glands. During the same period, no apoptotic cells were found in the Fas-deficient (MRL/lpr) and FasL-deficient (C3H/gld) mice. Increase in Fas and FasL protein was demonstrated in human (MCF10A) and mouse (HC-11) mammary epithelial cells after incubation in hormone-deprived media, before apoptosis was detected. These results suggest that the Fas-FasL interaction plays an important role in the normal remodeling of mammary tissue. Furthermore, this autocrine induction of apoptosis may prevent accumulation of cells with mutations and subsequent neoplastic development. Failure of the Fas/FasL signal could contribute to tumor development. PMID:11086022

  4. Mushroom body neuronal remodelling is necessary for short-term but not for long-term courtship memory in Drosophila.

    PubMed

    Redt-Clouet, Christelle; Trannoy, Séverine; Boulanger, Ana; Tokmatcheva, Elena; Savvateeva-Popova, Elena; Parmentier, Marie-Laure; Preat, Thomas; Dura, Jean-Maurice

    2012-06-01

    The remodelling of neurons during their development is considered necessary for their normal function. One fundamental mechanism involved in this remodelling process in both vertebrates and invertebrates is axon pruning. A well-documented case of such neuronal remodelling is the developmental axon pruning of mushroom body γ neurons that occurs during metamorphosis in Drosophila. The γ neurons undergo pruning of larval-specific dendrites and axons at metamorphosis, followed by their regrowth as adult-specific dendrites and axons. We recently revealed a molecular cascade required for this pruning. The nuclear receptor ftz-f1 activates the expression of the steroid hormone receptor EcR-B1, a key component for γ remodelling, and represses expression of Hr39, an ftz-f1 homologous gene. If ectopically expressed in the γ neurons, HR39 inhibits normal pruning, probably by competing with endogenous FTZ-F1, which results in decreased EcR-B1 expression. The mushroom bodies are a bilaterally symmetric structure in the larval and adult brain and are involved in the processing of different types of olfactory memory. How memory is affected in pruning-deficient adult flies that possess larval-stage neuronal circuitry will help to explain the functional role of neuron remodelling. Flies overexpressing Hr39 are viable as adults and make it possible to assess the requirement for wild-type mushroom body pruning in memory. While blocking mushroom body neuron remodelling impaired memory after short-term courtship conditioning, long-term memory was normal. These results show that larval pruning is necessary for adult memory and that expression of courtship short-term memory and long-term memory may be parallel and independent. PMID:22571719

  5. Appropriate density of PCL nano-fiber sheath promoted muscular remodeling of PGS/PCL grafts in arterial circulation.

    PubMed

    Yang, Xin; Wei, Jianhua; Lei, Delin; Liu, Yanpu; Wu, Wei

    2016-05-01

    Cell-free approach represents a philosophical shift from the prevailing focus on cells in vascular tissue engineering. Porous elastomeric grafts made of poly(glycerol sebacate) (PGS) enforced with polycaprolactone (PCL) nano-fibers degrade rapidly and yield neoarteries nearly free of foreign materials in rat abdominal aorta. However, considering the larger variation of blood pressure and slower host remodeling in human body than in rat, it is important to investigate the in vivo performance of PGS-PCL graft with enhanced mechanical properties, so that optimized arterial grafts could be developed for clinical translation. We acquired increasingly compacted sheath by prolonging the electrospinning period of PCL appropriately, which significantly enforced whole grafts. The rational design of sheath density significantly decreased the risk of dilation, rupture as well as enabling the long-term muscular remodeling. Since 3-12 months after implantation, the PGS grafts with rationally strengthened sheath were remodeled into neoarteries resembled native arteries in the following aspects: high patency rate and even vessel wall thickness; a confluent endothelium and contractile smooth muscle layers; expression of elastin, collagen and glycosaminoglycan; tough and compliant mechanical properties. Although loose sheath may result in rupture of vessel wall, adequate porosity was proved to be essential for sheath structure and directly determined muscular remodeling through M2 macrophage involved constructive remodeling. Therefore, this study confirmed that adequate density of PCL sheath in PGS grafts could initiate stable and high-quality muscular remodeling, which contributes to long-term success in arterial circulation before clinical translation. PMID:26943048

  6. Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent.

    PubMed

    Ehlinger, D G; Bergstrom, H C; Burke, J C; Fernandez, G M; McDonald, C G; Smith, R F

    2016-01-01

    Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi-Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent. PMID:25257604

  7. Severe cutaneous adverse drug reactions.

    PubMed

    Chung, Wen-Hung; Wang, Chuang-Wei; Dao, Ro-Lan

    2016-07-01

    The clinical manifestations of drug eruptions can range from mild maculopapular exanthema to severe cutaneous adverse drug reactions (SCAR), including drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms, Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) which are rare but occasionally fatal. Some pathogens may induce skin reactions mimicking SCAR. There are several models to explain the interaction of human leukocyte antigen (HLA), drug and T-cell receptor (TCR): (i) the "hapten/prohapten" theory; (ii) the "p-i concept"; (iii) the "altered peptide repertoire"; and (iv) the "altered TCR repertoire". The checkpoints of molecular mechanisms of SCAR include specific drug antigens interacting with the specific HLA loci (e.g. HLA-B*15:02 for carbamazepine-induced SJS/TEN and HLA-B*58:01 for allopurinol-induced SCAR), involvement of specific TCR, induction of T-cell-mediated responses (e.g. granulysin, Fas ligand, perforin/granzyme B and T-helper 1/2-associated cytokines) and cell death mechanism (e.g. miR-18a-5p-induced apoptosis; annexin A1 and formyl peptide receptor 1-induced necroptosis in keratinocytes). In addition to immune mechanism, metabolism has been found to play a role in the pathogenesis of SCAR, such as recent findings of strong association of CYP2C9*3 with phenytoin-induced SCAR and impaired renal function with allopurinol SCAR. With a better understanding of the mechanisms, effective therapeutics and prevention for SCAR can be improved. PMID:27154258

  8. The Roles of SNF2/SWI2 Nucleosome Remodeling Enzymes in Blood Cell Differentiation and Leukemia

    PubMed Central

    Prasad, Punit; Lennartsson, Andreas; Ekwall, Karl

    2015-01-01

    Here, we review the role of sucrose nonfermenting (SNF2) family enzymes in blood cell development. The SNF2 family comprises helicase-like ATPases, originally discovered in yeast, that can remodel chromatin by changing chromatin structure and composition. The human genome encodes 30 different SNF2 enzymes. SNF2 family enzymes are often part of multisubunit chromatin remodeling complexes (CRCs), which consist of noncatalytic/auxiliary subunit along with the ATPase subunit. However, blood cells express a limited set of SNF2 ATPases that are necessary to maintain the pool of hematopoietic stem cells (HSCs) and drive normal blood cell development and differentiation. The composition of CRCs can be altered by the association of specific auxiliary subunits. Several auxiliary CRC subunits have specific functions in hematopoiesis. Aberrant expressions of SNF2 ATPases and/or auxiliary CRC subunit(s) are often observed in hematological malignancies. Using large-scale data from the International Cancer Genome Consortium (ICGC) we observed frequent mutations in genes encoding SNF2 helicase-like enzymes and auxiliary CRC subunits in leukemia. Hence, orderly function of SNF2 family enzymes is crucial for the execution of normal blood cell developmental program, and defects in chromatin remodeling caused by mutations or aberrant expression of these proteins may contribute to leukemogenesis. PMID:25789315

  9. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome.

    PubMed

    Gao, Ling; Cao, Jia-Tian; Liang, Yan; Zhao, Yi-Chao; Lin, Xian-Hua; Li, Xiao-Cui; Tan, Ya-Jing; Li, Jing-Yi; Zhou, Cheng-Liang; Xu, Hai-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-05-01

    Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling. PMID:26578366

  10. Axl, a receptor tyrosine kinase, mediates flow-induced vascular remodeling.

    PubMed

    Korshunov, Vyacheslav A; Mohan, Amy M; Georger, Mary A; Berk, Bradford C

    2006-06-01

    Intima-media thickening (IMT) in response to hemodynamic stress is a physiological process that requires coordinated signaling among endothelial, inflammatory, and vascular smooth muscle cells (VSMC). Axl, a receptor tyrosine kinase, whose ligand is Gas6, is highly induced in VSMC after carotid injury. Because Axl regulates cell migration, phagocytosis and apoptosis, we hypothesized that Axl would play a role in IMT. Vascular remodeling in mice deficient in Axl (Axl(-/-)) and wild-type littermates (Axl(+/+)) was induced by ligation of the left carotid artery (LCA) branches maintaining flow via the left occipital artery. Both genotypes had similar baseline hemodynamic parameters and carotid artery structure. Partial ligation altered blood flow equally in both genotypes: increased by 60% in the right carotid artery (RCA) and decreased by 80% in the LCA. There were no significant differences in RCA remodeling between genotypes. However, in the LCA Axl(-/-) developed significantly smaller intima+media compared with Axl(+/+) (31+/-4 versus 42+/-6x10(-6) microm3, respectively). Quantitative immunohistochemistry of Axl(-/-) LCA showed increased apoptosis compared with Axl(+/+) (5-fold). As expected, p-Akt was decreased in Axl(-/-), whereas there was no difference in Gas6 expression. Cell composition also changed significantly, with increases in CD45+ cells and decreases in VSMC, macrophages, and neutrophils in Axl(-/-) compared with Axl(+/+). These data demonstrate an important role for Axl in flow-dependent remodeling by regulating vascular apoptosis and vascular inflammation. PMID:16627783

  11. Skeletal remodelling suggests the turtle's shell is not an evolutionary straitjacket.

    PubMed

    Cordero, Gerardo Antonio; Quinteros, Kevin

    2015-04-01

    Recent efforts to decipher the enigma of the turtle's shell revealed that distantly related turtle species deploy diverse processes during shell development. Even so, extant species share in common a shoulder blade (scapula) that is encapsulated within the shell. Thus, evolutionary change in the correlated development of the shell and scapula probably underpins the evolution of highly derived shell morphologies. To address this expectation, we conducted one of the most phylogenetically comprehensive surveys of turtle development, focusing on scapula growth and differentiation in embryos, hatchlings and adults of 13 species. We report, to our knowledge, the first description of secondary differentiation owing to skeletal remodelling of the tetrapod scapula in turtles with the most structurally derived shell phenotypes. Remodelling and secondary differentiation late in embryogenesis of box turtles (Emys and Terrapene) yielded a novel skeletal segment (i.e. the suprascapula) of high functional value to their complex shell-closing system. Remarkably, our analyses suggest that, in soft-shelled turtles (Trionychidae) with extremely flattened shells, a similar transformation is linked to truncated scapula growth. Skeletal remodelling, as a form of developmental plasticity, might enable the seemingly constrained turtle body plan to diversify, suggesting the shell is not an evolutionary straitjacket. PMID:25878046

  12. Chromatin remodeling complexes in the assembly of long noncoding RNA-dependent nuclear bodies.

    PubMed

    Kawaguchi, Tetsuya; Hirose, Tetsuro

    2015-11-01

    Paraspeckles are subnuclear structures that assemble on nuclear paraspeckle assembly transcript 1 (NEAT1) long noncoding (lnc)RNA. Paraspeckle formation requires appropriate NEAT1 biogenesis and subsequent assembly with multiple prion-like domain (PLD) containing RNA-binding proteins. We found that SWI/SNF chromatin remodeling complexes function as paraspeckle components that interact with paraspeckle proteins (PSPs) and NEAT1. SWI/SNF complexes play an essential role in paraspeckle formation that does not require their ATP-dependent chromatin remodeling activity. Instead, SWI/SNF complexes facilitate organization of the PSP interaction network required for intact paraspeckle assembly. SWI/SNF complexes may collectively bind multiple PSPs to recruit them onto NEAT1. SWI/SNF complexes are also required for Sat III (Satellite III) lncRNA-dependent formation of nuclear stress bodies under heat shock conditions. Organization of the lncRNA-dependent omega speckle in Drosophila also depends on the chromatin remodeling complex. These findings raise the possibility that a common mechanism controls the formation of lncRNA-dependent nuclear body architecture. PMID:26709446

  13. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers

    PubMed Central

    West, Allan; Higgins, James D.; Copenhaver, Gregory P.; Yang, Jianhua; Armstrong, Susan J.; Mechtler, Karl; Roitinger, Elisabeth; Franklin, F. Chris H.

    2015-01-01

    Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM) has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC) formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs. PMID:26182244

  14. Elastosis during airway wall remodeling explains multiple co-existing instability patterns.

    PubMed

    Eskandari, Mona; Javili, Ali; Kuhl, Ellen

    2016-08-21

    Living structures can undergo morphological changes in response to growth and alterations in microstructural properties in response to remodeling. From a biological perspective, airway wall inflammation and airway elastosis are classical hallmarks of growth and remodeling during chronic lung disease. From a mechanical point of view, growth and remodeling trigger mechanical instabilities that result in inward folding and airway obstruction. While previous analytical and computational studies have focused on identifying the critical parameters at the onset of folding, few have considered the post-buckling behavior. All prior studies assume constant microstructural properties during the folding process; yet, clinical studies now reveal progressive airway elastosis, the degeneration of elastic fibers associated with a gradual stiffening of the inner layer. Here, we explore the influence of temporally evolving material properties on the post-bifurcation behavior of the airway wall. We show that a growing and stiffening inner layer triggers an additional subsequent bifurcation after the first instability occurs. Evolving material stiffnesses provoke failure modes with multiple co-existing wavelengths, associated with the superposition of larger folds evolving on top of the initial smaller folds. This phenomenon is exclusive to material stiffening and conceptually different from the phenomenon of period doubling observed in constant-stiffness growth. Our study suggests that the clinically observed multiple wavelengths in diseased airways are a result of gradual airway wall stiffening. While our evolving material properties are inspired by the clinical phenomenon of airway elastosis, the underlying concept is broadly applicable to other types of remodeling including aneurysm formation or brain folding. PMID:27211101

  15. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    SciTech Connect

    Ichikawa, Tomohiro; Sugiura, Hisatoshi; Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki; Ichinose, Masakazu

    2013-05-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P<0.001) and collagen I (P<0.001) expression in HFL-1. 25-HC also significantly enhanced the release and activation of matrix metallaoproteinase (MMP)-2 (P<0.001) and MMP-9 (P<0.001) without any significant effect on the production of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. 25-HC stimulated transforming growth factor (TGF)-β{sub 1} production (P<0.01) and a neutralizing anti-TGF-β antibody restored these 25-HC-augmented pro-fibrotic responses. 25-HC significantly promoted the translocation of nuclear factor (NF)-κB p65 into the nuclei (P<0.01), but not phospholylated-c-jun, a complex of activator protein-1. Pharmacological inhibition of NF-κB restored the 25-HC-augmented pro-fibrotic responses and TGF-β{sub 1} release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway.

  16. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish

    PubMed Central

    Saade, Carole J.; Alvarez-Delfin, Karen; Fadool, James M.

    2013-01-01

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second order neurons, bipolar cells and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6cw59 larval retina but not rod degeneration in the Xops:mCFPq13 line. In adults, rods and cones are present in approximately equal numbers, and in pde6cw59 mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once-blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2bp22bbtl or six7 morpholino-injected larvae protect from pde6cw59-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease. PMID:23365220

  17. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins

    PubMed Central

    Barallobre-Barreiro, Javier; Oklu, Rahmi; Lynch, Marc; Fava, Marika; Baig, Ferheen; Yin, Xiaoke; Barwari, Temo; Potier, David N.; Albadawi, Hassan; Jahangiri, Marjan; Porter, Karen E.; Watkins, Michael T.; Misra, Sanjay; Stoughton, Julianne; Mayr, Manuel

    2016-01-01

    Aims Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. Methods and results To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase β1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase β1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. Conclusion The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis. PMID:27068509

  18. Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins

    NASA Astrophysics Data System (ADS)

    Chun, Chan; Haohua, Wen; Lanyuan, Lu; Jun, Fan

    2016-01-01

    Membrane curvature is no longer thought of as a passive property of the membrane; rather, it is considered as an active, regulated state that serves various purposes in the cell such as between cells and organelle definition. While transport is usually mediated by tiny membrane bubbles known as vesicles or membrane tubules, such communication requires complex interplay between the lipid bilayers and cytosolic proteins such as members of the Bin/Amphiphysin/Rvs (BAR) superfamily of proteins. With rapid developments in novel experimental techniques, membrane remodeling has become a rapidly emerging new field in recent years. Molecular dynamics (MD) simulations are important tools for obtaining atomistic information regarding the structural and dynamic aspects of biological systems and for understanding the physics-related aspects. The availability of more sophisticated experimental data poses challenges to the theoretical community for developing novel theoretical and computational techniques that can be used to better interpret the experimental results to obtain further functional insights. In this review, we summarize the general mechanisms underlying membrane remodeling controlled or mediated by proteins. While studies combining experiments and molecular dynamics simulations recall existing mechanistic models, concurrently, they extend the role of different BAR domain proteins during membrane remodeling processes. We review these recent findings, focusing on how multiscale molecular dynamics simulations aid in understanding the physical basis of BAR domain proteins, as a representative of membrane-remodeling proteins. Project supported by the National Natural Science Foundation of China (Grant No. 21403182) and the Research Grants Council of Hong Kong, China (Grant No. CityU 21300014).

  19. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula's material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element's remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual

  20. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    SciTech Connect

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than

  1. PTH signaling mediates perilacunar remodeling during exercise.

    PubMed

    Gardinier, Joseph D; Al-Omaishi, Salam; Morris, Michael D; Kohn, David H

    2016-01-01

    Mechanical loading and release of endogenous parathyroid hormone (PTH) during exercise facilitate the adaptation of bone. However, it remains unclear how exercise and PTH influence the composition of bone and how exercise and PTH-mediated compositional changes influence the mechanical properties of bone. Thus, the primary purpose of this study was to establish compositional changes within osteocytes' perilacunar region of cortical bone following exercise, and evaluate the influence of endogenous PTH signaling on this perilacunar adaptation. Raman spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were used to evaluate tissue composition surrounding individual lacuna within the tibia of 19week old male mice exposed to treadmill running for 3weeks. As a result of exercise, tissue within the perilacunar region (within 0-5μm of the lacuna wall) had a lower mineral-to-matrix ratio (MMR) compared to sedentary controls. In addition, exercise also increased the carbonate-to-phosphate ratio (CPR) across both perilacunar and non-perilacunar regions (5-10μm and 10-15μm from the lacuna walls). Tibial post-yield work had a significant negative correlation with perilacunar MMR. Inhibition of PTH activity with PTH(7-34) demonstrated that perilacunar remodeling during exercise was dependent on the cellular response to endogenous PTH. The osteocytes' response to endogenous PTH during exercise was characterized by a significant reduction in SOST expression and significant increase in FGF-23 expression. The potential reduction in phosphate levels due to FGF-23 expression may explain the increase in carbonate substitution. Overall, this is the first study to demonstrate that adaptation in tissue composition is localized around individual osteocytes, may contribute to the changes in whole bone mechanics during exercise, and that PTH signaling during exercise contributes to these adaptations. PMID:26924474

  2. Remodeling of alveolar septa after murine pneumonectomy.

    PubMed

    Ysasi, Alexandra B; Wagner, Willi L; Bennett, Robert D; Ackermann, Maximilian; Valenzuela, Cristian D; Belle, Janeil; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-06-15

    In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) (P > 0.05), but a significant decrease in the length of a subset of septal ends ("E"). Septal retraction, observed in 20-30% of the alveolar ducts, was maximal on day 3 after pneumonectomy (P < 0.01) and returned to baseline levels within 3 wk. Consistent with septal retraction, the postpneumonectomy alveolar duct diameter ratio (Dout:Din) was significantly lower 3 days after pneumonectomy compared to all controls except for the detergent-treated lung (P < 0.001). To identify clumped capillaries predicted by septal retraction, vascular casting, analyzed by both scanning electron microscopy and synchrotron imaging, demonstrated matted capillaries that were most prominent 3 days after pneumonectomy. Numerical simulations suggested that septal retraction could reflect increased surface tension within the alveolar duct, resulting in a new equilibrium at a higher total energy and lower surface area. The spatial and temporal association of these microstructural changes with postpneumonectomy lung growth suggests that these changes represent an early phase of alveolar duct remodeling. PMID:26078396

  3. Mechanisms of Cardiovascular Remodeling in Hyperhomocysteinemia

    PubMed Central

    Steed, Mesia M.

    2011-01-01

    Abstract In hypertension, an increase in arterial wall thickness and loss of elasticity over time result in an increase in pulse wave velocity, a direct measure of arterial stiffness. This change is reflected in gradual fragmentation and loss of elastin fibers and accumulation of stiffer collagen fibers in the media that occurs independently of atherosclerosis. Similar results are seen with an elevated level of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), which increases vascular thickness, elastin fragmentation, and arterial blood pressure. Studies from our laboratory have demonstrated a decrease in elasticity and an increase in pulse wave velocity in HHcy cystathionine β synthase heterozygote knockout (CBS−/+) mice. Nitric oxide (NO) is a potential regulator of matrix metalloproteinase (MMP) activity in MMP-NO-TIMP (tissue inhibitor of metalloproteinase) inhibitory tertiary complex. We have demonstrated the contribustion of the NO synthase (NOS) isoforms, endothelial NOS and inducible NOS, in the activation of latent MMP. The differential production of NO contributes to oxidative stress and increased oxidative/nitrative activation of MMP resulting in vascular remodeling in response to HHcy. The contribution of the NOS isoforms, endothelial and inducible in the collagen/elastin switch, has been demonstrated. We have showed that an increase in inducible NOS activity is a key contributor to HHcy-mediated collagen/elastin switch and resulting decline in aortic compliance. In addition, increased levels of Hcy compete and suppress the γ-amino butyric acid-receptor, N-methyl-d-aspartame-receptor, and peroxisome proliferator-activated receptor. The HHcy causes oxidative stress by generating nitrotyrosine, activating the latent MMPs and decreasing the endothelial NO concentration. The HHcy causes elastinolysis and decrease elastic complicance of the vessel wall. The treatment with γ-amino butyric acid-receptor agonist (muscimol), N

  4. Photosystem II Supercomplex Remodeling Serves as an Entry Mechanism for State Transitions in Arabidopsis[C][W

    PubMed Central

    Dietzel, Lars; Bräutigam, Katharina; Steiner, Sebastian; Schüffler, Kristin; Lepetit, Bernard; Grimm, Bernhard; Schöttler, Mark Aurel; Pfannschmidt, Thomas

    2011-01-01

    Within dense plant populations, strong light quality gradients cause unbalanced excitation of the two photosystems resulting in reduced photosynthetic efficiency. Plants redirect such imbalances by structural rearrangements of the photosynthetic apparatus via state transitions and photosystem stoichiometry adjustments. However, less is known about the function of photosystem II (PSII) supercomplexes in this context. Here, we show in Arabidopsis thaliana that PSII supercomplex remodeling precedes and facilitates state transitions. Intriguingly, the remodeling occurs in the short term, paralleling state transitions, but is also present in a state transition–deficient mutant, indicating that PSII supercomplex generation is independently regulated and does not require light-harvesting complex phosphorylation and movement. Instead, PSII supercomplex remodeling involves reversible phosphorylation of PSII core subunits (preferentially of CP43) and requires the luminal PSII subunit Psb27 for general formation and structural stabilization. Arabidopsis knockout mutants lacking Psb27 display highly accelerated state transitions, indicating that release of PSII supercomplexes is required for phosphorylation and subsequent movement of the antenna. Downregulation of PSII supercomplex number by physiological light treatments also results in acceleration of state transitions confirming the genetic analyses. Thus, supercomplex remodeling is a prerequisite and an important kinetic determinant of state transitions. PMID:21880991

  5. Pathophysiology of LV Remodeling in Survivors of STEMI

    PubMed Central

    Carrick, David; Haig, Caroline; Rauhalammi, Sam; Ahmed, Nadeem; Mordi, Ify; McEntegart, Margaret; Petrie, Mark C.; Eteiba, Hany; Lindsay, Mitchell; Watkins, Stuart; Hood, Stuart; Davie, Andrew; Mahrous, Ahmed; Sattar, Naveed; Welsh, Paul; Tzemos, Niko; Radjenovic, Aleksandra; Ford, Ian; Oldroyd, Keith G.; Berry, Colin

    2015-01-01

    .049). Conclusions Reperfusion injury and inflammation early post-MI was associated with remote zone T1, which in turn was independently associated with LV remodeling and adverse cardiac events post-STEMI. (Detection and Significance of Heart Injury in ST Elevation Myocardial Infarction [BHF MR-MI]; NCT02072850) PMID:26093923

  6. [Application analysis of adverse drug reaction terminology WHOART and MedDRA].

    PubMed

    Liu, Jing; Xie, Yan-ming; Gai, Guo-zhong; Liao, Xing

    2015-12-01

    Drug safety has always been a global focus. Discovery and accurate information acquisition of adverse drug reaction have been the most crucial concern. Terminology of adverse drug reaction makes adverse reaction medical report meaningful, standardized and accurate. This paper discussed the domestic use of the terminology WHOART and MedDRA in terms of content, structure, and application situation. It also analysed the differences between the two terminologies and discusses the future trend of application in our country PMID:27245013

  7. Chronic Juvenile Stress Produces Corticolimbic Dendritic Architectural Remodeling and Modulates Emotional Behavior in Male and Female Rats

    PubMed Central

    Eiland, Lisa; Ramroop, Johnny; Hill, Matthew N.; Manley, Jasmine; McEwen, Bruce S.

    2011-01-01

    Nearly 12% of US children are exposed to intense adverse experiences. Research has demonstrated that these experiences can negatively impact adult health, often resulting in psychopathology. Less attention, however, is given to the impact of childhood adverse experiences on childhood health and wellbeing. Using a rodent model of chronic juvenile stress (restraint 6h daily from postnatal day 20–41), we report that chronic stress has significant immediate morbidities in both males and females during this developmental window. Specifically, we demonstrate that chronic juvenile stress produces depressive-like behavior and significant neuronal remodeling of brain regions likely involved in these behavioral alterations: the hippocampus, prefrontal cortex and amygdala. Chronically stressed males and females exhibit anhedonia, increased locomotion when exposed to novelty, and altered coping strategies when exposed to acute stress. Coincident with these behavioral changes, we report simplification of dendrites in the hippocampus and prefrontal cortex and concurrent hypertrophy of dendrites in the amygdala. Taken together, these results demonstrate that chronically stressed juveniles exhibit aberrant behavioral responses to acute challenges that occur in conjunction with stress-induced remodeling of brain regions intimately involved in regulating emotionality and stress reactivity. Further, the absence of sex differences in our reported stress responses, likely speaks to the decreased sensitivity of immature HPA regulating brain regions to sex hormones. PMID:21658845

  8. ATP-Dependent Chromatin Remodeling by Cockayne Syndrome Protein B and NAP1-Like Histone Chaperones Is Required for Efficient Transcription-Coupled DNA Repair

    PubMed Central

    Lake, Robert J.; Basheer, Asjad; Fan, Hua-Ying

    2013-01-01

    The Cockayne syndrome complementation group B (CSB) protein is essential for transcription-coupled DNA repair, and mutations in CSB are associated with Cockayne syndrome—a devastating disease with complex clinical features, including the appearance of premature aging, sun sensitivity, and numerous neurological and developmental defects. CSB belongs to the SWI2/SNF2 ATP–dependent chromatin remodeler family, but the extent to which CSB remodels chromatin and whether this activity is utilized in DNA repair is unknown. Here, we show that CSB repositions nucleosomes in an ATP–dependent manner in vitro and that this activity is greatly enhanced by the NAP1-like histone chaperones, which we identify as new CSB–binding partners. By mapping functional domains and analyzing CSB derivatives, we demonstrate that chromatin remodeling by the combined activities of CSB and the NAP1-like chaperones is required for efficient transcription-coupled DNA repair. Moreover, we show that chromatin remodeling and repair protein recruitment mediated by CSB are separable activities. The collaboration that we observed between CSB and the NAP1-like histone chaperones adds a new dimension to our understanding of the ways in which ATP–dependent chromatin remodelers and histone chaperones can regulate chromatin structure. Taken together, the results of this study offer new insights into the functions of chromatin remodeling by CSB in transcription-coupled DNA repair as well as the underlying mechanisms of Cockayne syndrome. PMID:23637612

  9. [Acute adverse effects of dialysis].

    PubMed

    Opatrný, K

    2003-02-01

    Adverse reactions to dialyzers are a not very frequent, but because of the serious, sometimes fatal course, a dreaded complication of haemodialysis treatment. Most important among these reactions are hypersensitive reactions (anaphylactoid, reaction type A to dialyzer), which develop as a rule within the 10th minute of the procedure, and the reaction caused by the action of perfluorohydrocarbon which develop hours after onset or even completion of haemodialysis. Explanation of the development of hypersensitive reactions (HSR) by complement activation and formation of anaphylatoxins C3a and C5a during contact of blood with the bioincompatible dialysis membrane has been abandoned. Evidence of the etiological role of ethylene oxide (ETO) in the development of HSR influenced the selection of materials for the production of dialyzers and sterilization during manufacture, it emphasized the importance of rinsing of the dialyzer in the dialysis centre and led to the wide application of alternative methods of sterilization by gamma radiation and steam. HSR may be also caused by overproduction of bradykinin and inhibition of its degradation or degradation of its metabolites. Excessive bradykinin production caused by dialysis membranes with a negative charge is potentiated e.g. by a lower pH and increased plasma dilution in the initial stage of haemodialysis. Inhibition of bradykinin degradation develops during treatment with angiotensin converting enzyme inhibitors (ACEI). In prevention of HSR associated with bradykinin in addition to elimination of a combination of a negatively charged dialysis membrane and ACEI treatment a part is played also by rinsing of the dialyzer before haemodialysis with a bicarbonate solution and the modification of the membrane surface (implemented by the manufacturer) which reduces its negative charge. The first reaction to the dialyzer in conjunction with perfluorohydrocarbon (PF-5070), used in production of some dialyzers for testing the

  10. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling.

    PubMed

    Hu, Ming Chang; Shi, Mingjun; Cho, Han Jun; Adams-Huet, Beverley; Paek, Jean; Hill, Kathy; Shelton, John; Amaral, Ansel P; Faul, Christian; Taniguchi, Masatomo; Wolf, Myles; Brand, Markus; Takahashi, Masaya; Kuro-O, Makoto; Hill, Joseph A; Moe, Orson W

    2015-06-01

    Cardiac dysfunction in CKD is characterized by aberrant cardiac remodeling with hypertrophy and fibrosis. CKD is a state of severe systemic Klotho deficiency, and restoration of Klotho attenuates vascular calcification associated with CKD. We examined the role of Klotho in cardiac remodeling in models of Klotho deficiency-genetic Klotho hypomorphism, high dietary phosphate intake, aging, and CKD. Klotho-deficient mice exhibited cardiac dysfunction and hypertrophy before 12 weeks of age followed by fibrosis. In wild-type mice, the induction of CKD led to severe cardiovascular changes not observed in control mice. Notably, non-CKD mice fed a high-phosphate diet had lower Klotho levels and greatly accelerated cardiac remodeling associated with normal aging compared with those on a normal diet. Chronic elevation of circulating Klotho because of global overexpression alleviated the cardiac remodeling induced by either high-phosphate diet or CKD. Regardless of the cause of Klotho deficiency, the extent of cardiac hypertrophy and fibrosis correlated tightly with plasma phosphate concentration and inversely with plasma Klotho concentration, even when adjusted for all other covariables. High-fibroblast growth factor-23 concentration positively correlated with cardiac remodeling in a Klotho-deficient state but not a Klotho-replete state. In vitro, Klotho inhibited TGF-β1-, angiotensin II-, or high phosphate-induced fibrosis and abolished TGF-β1- or angiotensin II-induced hypertrophy of cardiomyocytes. In conclusion, Klotho deficiency is a novel intermediate mediator of pathologic cardiac remodeling, and fibroblast growth factor-23 may contribute to cardiac remodeling in concert with Klotho deficiency in CKD, phosphotoxicity, and aging. PMID:25326585

  11. Adverse reactions to new anticonvulsant drugs.

    PubMed

    Wong, I C; Lhatoo, S D

    2000-07-01

    A lack of systematic pharmacoepidemiological studies investigating adverse drug reactions (ADRs) to anticonvulsants makes it difficult to assess accurately the incidence of anticonvulsant-related ADRs. Most of the available information in this regard stems from clinical trial experience, case reports and postmarketing surveillance, sources that are not, by any means, structured to provide precise data on adverse event epidemiology. For various ethical, statistical and logistical reasons, the organisation of structured clinical trials that are likely to provide substantial data on ADRs is extremely difficult. This review concentrates on current literature concerning serious and life-threatening ADRs. As with the older anticonvulsants, the majority of ADRs to newer anticonvulsants are CNS-related, although there are several that are apparently unique to some of these new drugs. Gabapentin has been reported to cause aggravation of seizures, movement disorders and psychiatric disturbances. Felbamate should only be prescribed under close medical supervision because of aplastic anaemia and hepatotoxicity. Lamotrigine causes hypersensitivity reactions that range from simple morbilliform rashes to multi-organ failure. Psychiatric ADRs and deterioration of seizure control have also been reported with lamotrigine treatment. Oxcarbazepine has a safety profile similar to that of carbamazepine. Hyponatraemia associated with oxcarbazepine is also a problem; however, it is less likely to cause rash than carbamazepine. Nonconvulsive status epilepticus has been reported frequently with tiagabine, although there are insufficient data at present to identify risk factors for this ADR. Topiramate frequently causes cognitive ADRs and, in addition, also appears to cause word-finding difficulties, renal calculi and bodyweight loss. Vigabatrin has been reported to cause seizure aggravation, especially in myoclonic seizures. There have been rare reports of other neurological ADRs to

  12. Strategic approaches to adverse outcome pathway development

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are conceptual frameworks for organizing biological and toxicological knowledge in a manner that supports extrapolation of data pertaining to the initiation or early progression of toxicity to an apical adverse outcome that occurs at a level of org...

  13. Adverse Drug Reactions in Dental Practice

    PubMed Central

    Becker, Daniel E.

    2014-01-01

    Adverse reactions may occur with any of the medications prescribed or administered in dental practice. Most of these reactions are somewhat predictable based on the pharmacodynamic properties of the drug. Others, such as allergic and pseudoallergic reactions, are less common and unrelated to normal drug action. This article will review the most common adverse reactions that are unrelated to drug allergy. PMID:24697823

  14. Localized micro- and nano-scale remodelling in the diabetic aorta

    PubMed Central

    Akhtar, R.; Cruickshank, J.K.; Zhao, X.; Walton, L.A.; Gardiner, N.J.; Barrett, S.D.; Graham, H.K.; Derby, B.; Sherratt, M.J.

    2014-01-01

    Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage. PMID:25014552

  15. Nurses must report adverse drug reactions.

    PubMed

    Griffith, Richard

    There is renewed determination throughout the European Union (EU) to reduce the economic cost and high death rate associated with adverse drug reactions through better pharmacovigilance. Timely reporting and sharing of information concerning adverse drug reactions is vital to the success of this initiative. In the UK, the reporting of serious adverse drug reactions is facilitated by the Yellow Card Scheme, yet despite being well placed to monitor the effect of medicines on patients, nurses do not make full use of the scheme. This article sets out the impact of adverse drug reactions in the EU and argues that it is essential that nurses must be at the vanguard of adverse reaction reporting if the EU's pharmacovigilance initiative is to be a success. PMID:23905231

  16. Adulthood personality correlates of childhood adversity

    PubMed Central

    Carver, Charles S.; Johnson, Sheri L.; McCullough, Michael E.; Forster, Daniel E.; Joormann, Jutta

    2014-01-01

    Objective: Childhood adversity has been linked to internalizing and externalizing disorders and personality disorders in adulthood. This study extends that research by examining several personality measures as correlates of childhood adversity. Method: In a college sample self-reports were collected of childhood adversity, several scales relating to personality, and current depression symptoms as a control variable. The personality-related scales were reduced to four latent variables, which we termed anger/aggression, extrinsic focus, agreeableness, and engagement. Results: Controlling for concurrent depressive symptoms and gender, higher levels of reported childhood adversity related to lower agreeableness and to higher anger/aggression and extrinsic focus. Conclusions: Findings suggest that early adversity is linked to personality variables relevant to the building of social connection. PMID:25484874

  17. Understanding adverse events: human factors.

    PubMed Central

    Reason, J

    1995-01-01

    (1) Human rather than technical failures now represent the greatest threat to complex and potentially hazardous systems. This includes healthcare systems. (2) Managing the human risks will never be 100% effective. Human fallibility can be moderated, but it cannot be eliminated. (3) Different error types have different underlying mechanisms, occur in different parts of the organisation, and require different methods of risk management. The basic distinctions are between: Slips, lapses, trips, and fumbles (execution failures) and mistakes (planning or problem solving failures). Mistakes are divided into rule based mistakes and knowledge based mistakes. Errors (information-handling problems) and violations (motivational problems) Active versus latent failures. Active failures are committed by those in direct contact with the patient, latent failures arise in organisational and managerial spheres and their adverse effects may take a long time to become evident. (4) Safety significant errors occur at all levels of the system, not just at the sharp end. Decisions made in the upper echelons of the organisation create the conditions in the workplace that subsequently promote individual errors and violations. Latent failures are present long before an accident and are hence prime candidates for principled risk management. (5) Measures that involve sanctions and exhortations (that is, moralistic measures directed to those at the sharp end) have only very limited effectiveness, especially so in the case of highly trained professionals. (6) Human factors problems are a product of a chain of causes in which the individual psychological factors (that is, momentary inattention, forgetting, etc) are the last and least manageable links. Attentional "capture" (preoccupation or distraction) is a necessary condition for the commission of slips and lapses. Yet, its occurrence is almost impossible to predict or control effectively. The same is true of the factors associated with

  18. Myocardial Remodeling: Cellular and Extracellular Events and Targets

    PubMed Central

    Dixon, Jennifer A.; Spinale, Francis G.

    2011-01-01

    The focus of this review is on translational studies utilizing large-animal models and clinical studies that provide fundamental insight into cellular and extracellular pathways contributing to post–myocardial infarction (MI) left ventricle (LV) remodeling. Specifically, both large-animal and clinical studies have examined the potential role of endogenous and exogenous stem cells to alter the course of LV remodeling. Interestingly, there have been alterations in LV remodeling with stem cell treatment despite a lack of long-term cell engraftment. The translation of the full potential of stem cell treatments to clinical studies has yet to be realized. The modulation of proteolytic pathways that contribute to the post-MI remodeling process has also been examined. On the basis of recent large-animal studies, there appears to be a relationship between stem cell treatment post-MI and the modification of proteolytic pathways, generating the hypothesis that stem cells leave an echo effect that moderates LV remodeling. PMID:21314431

  19. Unremodeled and remodeled cardiolipin are functionally indistinguishable in yeast.

    PubMed

    Baile, Matthew G; Sathappa, Murugappan; Lu, Ya-Wen; Pryce, Erin; Whited, Kevin; McCaffery, J Michael; Han, Xianlin; Alder, Nathan N; Claypool, Steven M

    2014-01-17

    After biosynthesis, an evolutionarily conserved acyl chain remodeling process generates a final highly homogeneous and yet tissue-specific molecular form of the mitochondrial lipid cardiolipin. Hence, cardiolipin molecules in different organisms, and even different tissues within the same organism, contain a distinct collection of attached acyl chains. This observation is the basis for the widely accepted paradigm that the acyl chain composition of cardiolipin is matched to the unique mitochondrial demands of a tissue. For this hypothesis to be correct, cardiolipin molecules with different acyl chain compositions should have distinct functional capacities, and cardiolipin that has been remodeled should promote cardiolipin-dependent mitochondrial processes better than its unremodeled form. However, functional disparities between different molecular forms of cardiolipin have never been established. Here, we interrogate this simple but crucial prediction utilizing the best available model to do so, Saccharomyces cerevisiae. Specifically, we compare the ability of unremodeled and remodeled cardiolipin, which differ markedly in their acyl chain composition, to support mitochondrial activities known to require cardiolipin. Surprisingly, defined changes in the acyl chain composition of cardiolipin do not alter either mitochondrial morphology or oxidative phosphorylation. Importantly, preventing cardiolipin remodeling initiation in yeast lacking TAZ1, an ortholog of the causative gene in Barth syndrome, ameliorates mitochondrial dysfunction. Thus, our data do not support the prevailing hypothesis that unremodeled cardiolipin is functionally distinct from remodeled cardiolipin, at least for the functions examined, suggesting alternative physiological roles for this conserved pathway. PMID:24285538

  20. Managing adverse effects of glaucoma medications

    PubMed Central

    Inoue, Kenji

    2014-01-01

    Glaucoma is a chronic, progressive disease in which retinal ganglion cells disappear and subsequent, gradual reductions in the visual field ensues. Glaucoma eye drops have hypotensive effects and like all other medications are associated with adverse effects. Adverse reactions may either result from the main agent or from preservatives used in the drug vehicle. The preservative benzalkonium chloride, is one such compound that causes frequent adverse reactions such as superficial punctate keratitis, corneal erosion, conjunctival allergy, and conjunctival injection. Adverse reactions related to main hypotensive agents have been divided into those affecting the eye and those affecting the entire body. In particular, β-blockers frequently cause systematic adverse reactions, including bradycardia, decrease in blood pressure, irregular pulse and asthma attacks. Prostaglandin analogs have distinctive local adverse reactions, including eyelash bristling/lengthening, eyelid pigmentation, iris pigmentation, and upper eyelid deepening. No systemic adverse reactions have been linked to prostaglandin analog eye drop usage. These adverse reactions may be minimized when they are detected early and prevented by reducing the number of different eye drops used (via fixed combination eye drops), reducing the number of times eye drops are administered, using benzalkonium chloride-free eye drops, using lower concentration eye drops, and providing proper drop instillation training. Additionally, a one-time topical medication can be given to patients to allow observation of any adverse reactions, thereafter the preparation of a topical medication with the fewest known adverse reactions can be prescribed. This does require precise patient monitoring and inquiries about patient symptoms following medication use. PMID:24872675

  1. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context

    PubMed Central

    Ajijola, Olujimi A.; Yagishita, Daigo; Patel, Krishan J.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; So, Eileen; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms2, P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. PMID:23893167

  2. Placental Features of Late-Onset Adverse Pregnancy Outcome

    PubMed Central

    Higgins, Lucy E.; Wareing, Mark; Greenwood, Susan L.; Jones, Rebecca L.; Sibley, Colin P.; Johnstone, Edward D.; Heazell, Alexander E. P.

    2015-01-01

    Objective Currently, no investigations reliably identify placental dysfunction in late pregnancy. To facilitate the development of such investigations we aimed to identify placental features that differ between normal and adverse outcome in late pregnancy in a group of pregnancies with reduced fetal movement. Methods Following third trimester presentation with reduced fetal movement (N = 100), placental structure ex vivo was measured. Placental function was then assessed in terms of (i) chorionic plate artery agonist responses and length-tension characteristics using wire myography and (ii) production and release of placentally derived hormones (by quantitative polymerase chain reaction and enzyme linked immunosorbant assay of villous tissue and explant conditioned culture medium). Results Placentas from pregnancies ending in adverse outcome (N = 23) were ~25% smaller in weight, volume, length, width and disc area (all p<0.0001) compared with those from normal outcome pregnancies. Villous and trophoblast areas were unchanged, but villous vascularity was reduced (median (interquartile range): adverse outcome 10 (10–12) vessels/mm2 vs. normal outcome 13 (12–15), p = 0.002). Adverse outcome pregnancy placental arteries were relatively insensitive to nitric oxide donated by sodium nitroprusside compared to normal outcome pregnancy placental arteries (50% Effective Concentration 30 (19–50) nM vs. 12 (6–24), p = 0.02). Adverse outcome pregnancy placental tissue contained less human chorionic gonadotrophin (20 (11–50) vs. 55 (24–102) mIU/mg, p = 0.007) and human placental lactogen (11 (6–14) vs. 27 (9–50) mg/mg, p = 0.006) and released more soluble fms-like tyrosine kinase-1 (21 (13–29) vs. 5 (2–15) ng/mg, p = 0.01) compared with normal outcome pregnancy placental tissue. Conclusion These data provide a description of the placental phenotype of adverse outcome in late pregnancy. Antenatal tests that accurately reflect elements of this phenotype may

  3. 1991 Gulf War Exposures and Adverse Birth Outcomes

    PubMed Central

    Arnetz, Bengt; Drutchas, Alexis; Sokol, Robert; Kruger, Michael; Jamil, Hikmet

    2014-01-01

    We studied 1991 Gulf War (GW)-related environmental exposures and adverse birth outcomes in Iraqis. A random cross-sectional sample of 307 Iraqi families that immigrated to the United States responded to a structured interview covering socioeconomics, lifestyle, environmental exposures, and birth outcome. Data per each family was collected either from the man or the woman in the respective family. The respondents were divided into those that resided in Iraq during and following the GW (post-GW, n=185) and those that had left before (pre-GW, n=122). The primary outcome was lifetime prevalence of adverse birth outcomes, ie, congenital anomalies, stillbirth, low birth weight, and preterm delivery and its relationship to GW exposures. Mean number of adverse birth outcomes increased from 3.43 (SD=2.11) in the pre-GW to 4.63 (SD=2.63) in the post-GW group (P<.001). Mean chemical (Ch) and nonchemical (NCh) environmental exposure scores increased from pre-GW scores of 0.38 units (SD=1.76) and 0.43 (SD=1.86), respectively, to post-GW scores of 5.65 units (SD=6.23) and 7.26 (SD =5.67), P <.001 between groups for both exposures. There was a significant dose-response relationship between Ch environmental exposure (P=.001), but not NCh exposure, and number of adverse birth outcomes. Exposure to burning oil pits and mustard gas increased the risks for specific adverse birth outcomes by 2 to 4 times. Results indicate that Gulf War Ch, but not NCh exposures are related to adverse birth outcomes. Pregnancies in women with a history of war exposures might benefit from more intensive observation. PMID:23584910

  4. Children of Misfortune: Early Adversity and Cumulative Inequality in Perceived Life Trajectories1

    PubMed Central

    Schafer, Markus H.; Ferraro, Kenneth F.; Mustillo, Sarah A.

    2011-01-01

    Adversity early in life may alter pathways of aging, but what interpretive processes can soften the blow of early insults? Drawing from cumulative inequality theory, the authors analyze trajectories of life evaluations and then consider whether early adversity offsets favorable expectations for the future. Results reveal that early adversity contributes to more negative views of the past but rising expectations for the future. Early adversity also has enduring effects on life evaluations, offsetting the influence of buoyant expectations. The findings draw attention to the limits of human agency under the constraints of early adversity—a process described as biographical structuration. PMID:21648247

  5. Receptor Activator of Nuclear Factor κB Ligand and Osteoprotegerin Regulation of Bone Remodeling in Health and Disease

    PubMed Central

    Kearns, Ann E.; Khosla, Sundeep; Kostenuik, Paul J.

    2008-01-01

    Osteoclasts and osteoblasts dictate skeletal mass, structure, and strength via their respective roles in resorbing and forming bone. Bone remodeling is a spatially coordinated lifelong process whereby old bone is removed by osteoclasts and replaced by bone-forming osteoblasts. The refilling of resorption cavities is incomplete in many pathological states, which leads to a net loss of bone mass with each remodeling cycle. Postmenopausal osteoporosis and other conditions are associated with an increased rate of bone remodeling, which leads to accelerated bone loss and increased risk of fracture. Bone resorption is dependent on a cytokine known as RANKL (receptor activator of nuclear factor κB ligand), a TNF family member that is essential for osteoclast formation, activity, and survival in normal and pathological states of bone remodeling. The catabolic effects of RANKL are prevented by osteoprotegerin (OPG), a TNF receptor family member that binds RANKL and thereby prevents activation of its single cognate receptor called RANK. Osteoclast activity is likely to depend, at least in part, on the relative balance of RANKL and OPG. Studies in numerous animal models of bone disease show that RANKL inhibition leads to marked suppression of bone resorption and increases in cortical and cancellous bone volume, density, and strength. RANKL inhibitors also prevent focal bone loss that occurs in animal models of rheumatoid arthritis and bone metastasis. Clinical trials are exploring the effects of denosumab, a fully human anti-RANKL antibody, on bone loss in patients with osteoporosis, bone metastasis, myeloma, and rheumatoid arthritis. PMID:18057140

  6. Age‐related remodeling of small arteries is accompanied by increased sphingomyelinase activity and accumulation of long‐chain ceramides

    PubMed Central

    Ohanian, Jacqueline; Liao, Aiyin; Forman, Simon P.; Ohanian, Vasken

    2014-01-01

    Abstract The structure and function of large arteries alters with age leading to increased risk of cardiovascular disease. Age‐related large artery remodeling and arteriosclerosis is associated with increased collagen deposition, inflammation, and endothelial dysfunction. Bioactive sphingolipids are known to regulate these processes, and are also involved in aging and cellular senescence. However, less is known about age‐associated alterations in small artery morphology and function or whether changes in arterial sphingolipids occur in aging. We show that mesenteric small arteries from old sheep have increased lumen diameter and media thickness without a change in media to lumen ratio, indicative of outward hypertrophic remodeling. This remodeling occurred without overt changes in blood pressure or pulse pressure indicating it was a consequence of aging per se. There was no age‐associated change in mechanical properties of the arteries despite an increase in total collagen content and deposition of collagen in a thickened intima layer in arteries from old animals. Analysis of the sphingolipid profile showed an increase in long‐chain ceramide (C14–C20), but no change in the levels of sphingosine or sphingosine‐1‐phosphate in arteries from old compared to young animals. This was accompanied by a parallel increase in acid and neutral sphingomyelinase activity in old arteries compared to young. This study demonstrates remodeling of small arteries during aging that is accompanied by accumulation of long‐chain ceramides. This suggests that sphingolipids may be important mediators of vascular aging. PMID:24872355

  7. Comparison of Macitentan and Bosentan on Right Ventricular Remodeling in a Rat Model of Non-vasoreactive Pulmonary Hypertension

    PubMed Central

    Landskroner, Kyle; Bauer, Yasmina; Vercauteren, Magali; Rey, Markus; Renault, Berengère; Studer, Rolf; Vezzali, Enrico; Freti, Diego; Hadana, Hakim; Schläpfer, Manuela; Cattaneo, Christophe; Bortolamiol, Céline; Weber, Edgar; Whitby, Brian R.; Delahaye, Stéphane; Wanner, Daniel; Steiner, Pauline; Nayler, Oliver; Hess, Patrick; Clozel, Martine

    2015-01-01

    Aims: We compared the efficacy of macitentan, a novel dual endothelin A/endothelin B receptor antagonist, with that of another dual endothelin receptor antagonist, bosentan, in a rat model of non-vasoreactive pulmonary hypertension (PH) with particular emphasis on right ventricular (RV) remodeling. Methods and Results: Unlike monocrotaline or hypoxic/sugen rats, bleomycin-treated rats presented a non-vasoreactive PH characterized by the absence of pulmonary dilatation to adenosine. We therefore chose the bleomycin rat model to compare the effects of the maximally effective doses of macitentan and bosentan on pulmonary vascular and RV remodeling. Macitentan (100 mg·kg−1·d−1), but not bosentan (300 mg·kg−1·d−1), significantly prevented pulmonary vascular remodeling, RV hypertrophy, and cardiomyocyte diameter increase. Cardiac protection by macitentan was associated with a significant attenuation of genes related to cell hypertrophy and extracellular matrix remodeling. Microautoradiography and high performance liquid chromatography analysis showed greater distribution of macitentan than bosentan in the RV and pulmonary tissue. Conclusions: Macitentan was more efficacious than bosentan in preventing the development of pulmonary and RV hypertrophies in a model of non-vasoreactive PH. Greater ability to distribute into the tissue could contribute to the greater structural improvement by macitentan compared with bosentan. PMID:26230396

  8. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives.

    PubMed

    Samitas, Konstantinos; Delimpoura, Vasiliki; Zervas, Eleftherios; Gaga, Mina

    2015-12-01

    Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes. PMID:26621973

  9. Computational Study of Growth and Remodeling in the Aortic Arch

    PubMed Central

    Alford, Patrick W.; Taber, Larry A.

    2009-01-01

    Opening angles (OAs) are associated with growth and remodeling in arteries. One curiosity has been the relatively large OAs found in the aortic arch of some animals. Here, we use computational models to explore the reasons behind this phenomenon. The artery is assumed to contain a smooth muscle/collagen phase and an elastin phase. In the models, growth and remodeling of smooth muscle/collagen depends on wall stress and fluid shear stress. Remodeling of elastin, which normally turns over very slowly, is neglected. The results indicate that OAs generally increase with longitudinal curvature (torus model), earlier elastin production during development, and decreased wall stiffness. Correlating these results with available experimental data suggests that all of these effects may contribute to the large OAs in the aortic arch. The models also suggest that the slow turnover rate of elastin limits longitudinal growth. These results should promote increased understanding of the causes of residual stress in arteries. PMID:18792831

  10. ATP-dependent chromatin remodeling in T cells

    PubMed Central

    Wurster, Andrea L.; Pazin, Michael J.

    2012-01-01

    One of the best studied systems for mammalian chromatin remodeling is transcriptional regulation during T cell development. The variety of these studies have led to important findings in T cell gene regulation and cell fate determination. Importantly, these findings have also advanced our knowledge of the function of remodeling enzymes in mammalian gene regulation. In this review, first we briefly present biochemical/cell-free analysis of 3 types of ATP dependent remodeling enzymes (SWI/SNF, Mi2, and ISWI), to construct an intellectual framework to understand how these enzymes might be working. Second, we compare and contrast the function of these enzymes, during early (thymic) and late (peripheral) T cell development. Finally, we examine some of the gaps in our present understanding. PMID:21999456

  11. [Determinants of bone quality and strength independent of bone remodeling].

    PubMed

    Saito, Mitsuru; Marumo, Keishi

    2016-01-01

    Bone mineral density(BMD)and bone microstructure are regulated mainly by bone remodeling. In contrast, bone collagen enzymatic immature and mature cross-links and advanced glycation end products such as pentosidine and carboxyl methyl lysine are affected by various factors. Aging bone tissue is repaired in the process of bone remodeling. However, deterioration of bone material properties markedly advances due to increases in oxidative stress, glycation stress, reactive oxygen species, carbonyl stress associated with aging and reduced sex hormone levels, and glucocorticoid use. To improve bone material properties in osteoporosis, we should use different drug (Saito M, Calcif Tissue Int, REVIEW, 97;242-261, 2015). In this review, we summarized determinants of bone quality and strength independent of bone remodeling. PMID:26728528

  12. Iron chelation inhibits the development of pulmonary vascular remodeling.

    PubMed

    Wong, Chi-Ming; Preston, Ioana R; Hill, Nicholas S; Suzuki, Yuichiro J

    2012-11-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Because iron is an important regulator of ROS biology, this study examined the effects of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited the growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension. PMID:22974762

  13. Subject-specific bone remodelling of the scapula.

    PubMed

    Quental, Carlos; Folgado, João; Fernandes, Paulo R; Monteiro, Jacinto

    2014-08-01

    Finite element analyses, with increasing levels of detail and complexity, are becoming effective tools to evaluate the performance of joint replacement prostheses and to predict the behaviour of bone. As a first step towards the study of the complications of shoulder arthroplasty, the aim of this work was the development and validation of a 3D finite element model of an intact scapula for the prediction of the bone remodelling process based on a previously published model that attempts to follow Wolff's law. The boundary conditions applied include full muscle and joint loads taken from a multibody system of the upper limb based on the same subject whose scapula was here analysed. To validate the bone remodelling simulations, qualitative and quantitative comparisons between the predicted and the specimen's bone density distribution were performed. The results showed that the bone remodelling model was able to successfully reproduce the actual bone density distribution of the analysed scapula. PMID:23210487

  14. Anisotropic stress orients remodelling of mammalian limb bud ectoderm.

    PubMed

    Lau, Kimberly; Tao, Hirotaka; Liu, Haijiao; Wen, Jun; Sturgeon, Kendra; Sorfazlian, Natalie; Lazic, Savo; Burrows, Jeffrey T A; Wong, Michael D; Li, Danyi; Deimling, Steven; Ciruna, Brian; Scott, Ian; Simmons, Craig; Henkelman, R Mark; Williams, Trevor; Hadjantonakis, Anna-Katerina; Fernandez-Gonzalez, Rodrigo; Sun, Yu; Hopyan, Sevan

    2015-05-01

    The physical forces that drive morphogenesis are not well characterized in vivo, especially among vertebrates. In the early limb bud, dorsal and ventral ectoderm converge to form the apical ectodermal ridge (AER), although the underlying mechanisms are unclear. By live imaging mouse embryos, we show that prospective AER progenitors intercalate at the dorsoventral boundary and that ectoderm remodels by concomitant cell division and neighbour exchange. Mesodermal expansion and ectodermal tension together generate a dorsoventrally biased stress pattern that orients ectodermal remodelling. Polarized distribution of cortical actin reflects this stress pattern in a β-catenin- and Fgfr2-dependent manner. Intercalation of AER progenitors generates a tensile gradient that reorients resolution of multicellular rosettes on adjacent surfaces, a process facilitated by β-catenin-dependent attachment of cortex to membrane. Therefore, feedback between tissue stress pattern and cell intercalations remodels mammalian ectoderm. PMID:25893915

  15. Anisotropic stress orients remodelling of mammalian limb bud ectoderm

    PubMed Central

    Lau, Kimberly; Tao, Hirotaka; Liu, Haijiao; Wen, Jun; Sturgeon, Kendra; Sorfazlian, Natalie; Lazic, Savo; Burrows, Jeffrey T. A.; Wong, Michael D.; Li, Danyi; Deimling, Steven; Ciruna, Brian; Scott, Ian; Simmons, Craig; Henkelman, R. Mark; Williams, Trevor; Hadjantonakis, Anna-Katerina; Fernandez-Gonzalez, Rodrigo; Sun, Yu; Hopyan, Sevan

    2016-01-01

    The physical forces that drive morphogenesis are not well characterized in vivo, especially among vertebrates. In the early limb bud, dorsal and ventral ectoderm converge to form the apical ectodermal ridge (AER), although the underlying mechanisms are unclear. By live imaging mouse embryos, we show that prospective AER progenitors intercalate at the dorsoventral boundary and that ectoderm remodels by concomitant cell division and neighbour exchange. Mesodermal expansion and ectodermal tension together generate a dorsoventrally biased stress pattern that orients ectodermal remodelling. Polarized distribution of cortical actin reflects this stress pattern in a β-catenin- and Fgfr2-dependent manner. Intercalation of AER progenitors generates a tensile gradient that reorients resolution of multicellular rosettes on adjacent surfaces, a process facilitated by β-catenin-dependent attachment of cortex to membrane. Therefore, feedback between tissue stress pattern and cell intercalations remodels mammalian ectoderm. PMID:25893915

  16. Physiological bases of bone regeneration II. The remodeling process.

    PubMed

    Fernández-Tresguerres-Hernández-Gil, Isabel; Alobera-Gracia, Miguel Angel; del-Canto-Pingarrón, Mariano; Blanco-Jerez, Luis

    2006-03-01

    Bone remodeling is the restructuring process of existing bone, which is in constant resorption and formation. Under normal conditions, this balanced process allows the renewal of 5-10% of bone volume per year. At the microscopic level, bone remodeling is produced in basic multicellular units, where osteoclasts resorb a certain quantity of bone and osteoblasts form the osteoid matrix and mineralize it to fill the previously created cavity. These units contain osteoclasts, macrophages, preosteoblasts and osteoblasts, and are controlled by a series of factors, both general and local, allowing normal bone function and maintaining the bone mass. When this process becomes unbalanced then bone pathology appears, either in excess (osteopetrosis) or deficit (osteoporosis). The purpose of this study is to undertake a revision of current knowledge on the physiological and biological mechanisms of the bone remodeling process; highlighting the role played by the regulating factors, in particular that of the growth factors. PMID:16505794

  17. Passive ventricular remodeling in cardiac disease: focus on heterogeneity

    PubMed Central

    Kessler, Elise L.; Boulaksil, Mohamed; van Rijen, Harold V. M.; Vos, Marc A.; van Veen, Toon A. B.

    2014-01-01

    Passive ventricular remodeling is defined by the process of molecular ventricular adaptation to different forms of cardiac pathophysiology. It includes changes in tissue architecture, such as hypertrophy, fiber disarray, alterations in cell size and fibrosis. Besides that, it also includes molecular remodeling of gap junctions, especially those composed by Connexin43 proteins (Cx43) in the ventricles that affect cell-to-cell propagation of the electrical impulse, and changes in the sodium channels that modify excitability. All those alterations appear mainly in a heterogeneous manner, creating irregular and inhomogeneous electrical and mechanical coupling throughout the heart. This can predispose to reentry arrhythmias and adds to a further deterioration into heart failure. In this review, passive ventricular remodeling is described in Hypertrophic Cardiomyopathy (HCM), Dilated Cardiomyopathy (DCM), Ischemic Cardiomyopathy (ICM), and Arrhythmogenic Cardiomyopathy (ACM), with a main focus on the heterogeneity of those alterations mentioned above. PMID:25566084

  18. Myocardial repair/remodelling following infarction: roles of local factors

    PubMed Central

    Sun, Yao

    2009-01-01

    Heart failure is a global health problem, appearing most commonly in patients with previous myocardial infarction (MI). Cardiac remodelling, particularly fibrosis, seen in both the infarcted and non-infarcted myocardium is recognized to be a major determinant of the development of impaired ventricular function, leading to a poor prognosis. Elucidating cellular and molecular mechanisms responsible for the accumulation of extracellular matrix is essential for designing cardioprotective and reparative strategies that could regress fibrosis after infarction. Multiple factors contribute to left ventricular remodelling at different stages post-MI. This review will discuss the role of oxidative stress and locally produced angiotensin II in the pathogenesis of myocardial repair/remodelling after MI. PMID:19050008

  19. Uptake and remodeling of exogenous phosphatidylethanolamine in E. coli.

    PubMed

    Kol, Matthijs A; Kuster, Diederik W D; Boumann, Henry A; de Cock, Hans; Heck, Albert J R; de Kruijff, Ben; de Kroon, Anton I P M

    2004-03-22

    The fate of exogenous short-chain analogues of phosphatidylethanolamine and phosphatidylserine was studied in a deep-rough derivative of E. coli mutant strain AD93 that cannot synthesize phosphatidylethanolamine de novo. Using mass spectrometry, it was shown that dicaproyl(di 6:0)-phosphatidylethanolamine is extensively remodeled, eventually adopting the phosphatidylethanolamine species profile of the parental wild-type strain of AD93. Dicaproyl-phosphatidylserine was decarboxylated to form phosphatidylethanolamine, and yielded a species profile, which strongly resembled that of the introduced phosphatidylethanolamine. This demonstrates transport of phosphatidylserine to the cytosolic leaflet of the inner membrane. The changes of the species profile of phosphatidylethanolamine indicate that the short-chain phospholipids are most likely remodeled via two consecutive acyl chain substitutions, and at least part of this remodeling involves transport to the inner membrane. PMID:15164768

  20. Assessment of bone vascularization and its role in bone remodeling

    PubMed Central

    Lafage-Proust, Marie-Hélène; Roche, Bernard; Langer, Max; Cleret, Damien; Vanden Bossche, Arnaud; Olivier, Thomas; Vico, Laurence

    2015-01-01

    Bone is a composite organ that fulfils several interconnected functions, which may conflict with each other in pathological conditions. Bone vascularization is at the interface between these functions. The roles of bone vascularization are better documented in bone development, growth and modeling than in bone remodeling. However, every bone remodeling unit is associated with a capillary in both cortical and trabecular envelopes. Here we summarize the most recent data on vessel involvement in bone remodeling, and we present the characteristics of bone vascularization. Finally, we describe the various techniques used for bone vessel imaging and quantitative assessment, including histology, immunohistochemistry, microtomography and intravital microscopy. Studying the role of vascularization in adult bone should provide benefits for the understanding and treatment of metabolic bone diseases. PMID:25861447

  1. Collateral Adverse Outcomes After Lumbar Spine Surgery.

    PubMed

    Daniels, Alan H; Gundle, Kenneth; Hart, Robert A

    2016-01-01

    Collateral adverse outcomes are the expected or unavoidable results of a procedure that is performed in a standard manner and typically experienced by the patient. Collateral adverse outcomes do not result from errors, nor are they rare. Collateral adverse outcomes occur as the direct result of a surgical procedure and must be accepted as a trade-off to attain the intended benefits of the surgical procedure. As such, collateral adverse outcomes do not fit into the traditional definition of a complication or adverse event. Examples of collateral adverse outcomes after lumbar spine arthrodesis include lumbar stiffness, postoperative psychological stress, postoperative pain, peri-incisional numbness, paraspinal muscle denervation, and adjacent-level degeneration. Ideally, a comparison of interventions for the treatment of a clinical condition should include information on both the negative consequences (expected and unexpected) and potential benefits of the treatment options. The objective evaluation and reporting of collateral adverse outcomes will provide surgeons with a more complete picture of invasive interventions and, thus, the improved ability to assess alternative treatment options. PMID:27049197

  2. Adverse event recording post hip fracture surgery.

    PubMed

    Doody, K; Mohamed, K M S; Butler, A; Street, J; Lenehan, B

    2013-01-01

    Accurate recording of adverse events post hip fracture surgery is vital for planning and allocating resources. The purpose of this study was to compare adverse events recorded prospectively at point of care with adverse recorded by the Hospital In-Patient Enquiry (HIPE) System. The study examined a two month period from August to September 2011 at University Hospital Limerick. Out of a sample size of 39, there were 7 males (17.9%) and 32 females (82.1%) with an age range of between 53 and 98 years. The mean age was 80.5 years. 55 adverse events were recorded, in contrast to the HIPE record of 13 (23.6%) adverse events. The most common complications included constipation 10 (18.2%), anaemia 8 (14.5%), urinary retention 8 (14.50%), pneumonia 5 (9.1%) and delirium 5 (9.1%). Of the female cohort, 24 (68.8%) suffered an adverse event, while only 4 (57%) males suffered an adverse event. PMID:24579408

  3. Prevention of increases in blood pressure and left ventricular mass and remodeling of resistance arteries in young New Zealand genetically hypertensive rats: the effects of chronic treatment with valsartan, enalapril and felodipine.

    PubMed

    Ledingham, J M; Phelan, E L; Cross, M A; Laverty, R

    2000-01-01

    The relative efficacy of three antihypertensive drugs in the prevention of further elevation of blood pressure (BP) and cardiovascular structural remodeling in 4-week-old genetically hypertensive (GH) rats was studied by means of two complementary methods, stereology and myography. Four to 10-week-old GH rats were treated with valsartan (10 mg/kg/day), enalapril (10 mg/kg/day) or felodipine (30 mg/kg/day). Untreated GH and normotensive control rats of Wistar origin served as controls. Tail-cuff systolic SBP was measured weekly and left ventricular (LV) mass determined at the end of the experiment. Mesenteric resistance arteries (MRA) were either fixed by perfusion, embedded in Technovit and sections stained for stereological analysis, or mounted on a wire myograph for structural and functional measurements. BP and LV mass were significantly reduced by all drugs; decreases in BP and LV mass were smaller after felodipine treatment. Valsartan and enalapril caused a decrease in BP to normotensive control values. Felodipine kept BP at the 4-week level and prevented further rise with age. Valsartan caused hypotrophic outward remodeling of MRA, enalapril eutrophic outward remodeling and felodipine hypotrophic remodeling. Myograph measurements showed remodeling of the same order. While all drugs lowered the media/lumen ratio in GH to normal, the outward remodeling after valsartan and enalapril indicates that valsartan and enalapril might be more effective in reversing the inward remodeling of resistance arteries found in essential hypertension. PMID:10754398

  4. Parallel mechanisms suppress cochlear bone remodeling to protect hearing.

    PubMed

    Jáuregui, Emmanuel J; Akil, Omar; Acevedo, Claire; Hall-Glenn, Faith; Tsai, Betty S; Bale, Hrishikesh A; Liebenberg, Ellen; Humphrey, Mary Beth; Ritchie, Robert O; Lustig, Lawrence R; Alliston, Tamara

    2016-08-01

    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by

  5. Molecular mechanisms and functional implications of polarized actin remodeling at the T cell immunological synapse

    PubMed Central

    Le Floc’h, Audrey; Huse, Morgan

    2014-01-01

    Transient, specialized cell-cell interactions play a central role in leukocyte function by enabling specific intercellular communication in the context of a highly dynamic systems level response. The dramatic structural changes required for the formation of these contacts are driven by rapid and precise cytoskeletal remodeling events. In recent years, the immunological synapse that forms between a T lymphocyte and its antigen-presenting target cell has emerged as an important model system for understanding immune cell interactions. In this review, we discuss how regulators of the cortical actin cytoskeleton control synaptic architecture and in this way specify T cell function. PMID:25355055

  6. [PHF10 isoforms are phosphorylated in the PBAF mammalian chromatin remodeling complex].

    PubMed

    Brechalov, A V; Valieva, M E; Georgieva, S G; Soshnikova, N V

    2016-01-01

    Chromatin remodeling complex PBAF(SWI/SNF) alters the structure of chromatin and controls gene expression. PHF10 is a specific subunit of PBAF complex and is expressed as four isoforms in mammalian cells. We demonstrated that all isoforms are expressed in various human cell types of different histological origins. All four isoforms are extensively phosphorylated and their phosphorylation level is depended on the cell type. Phosphorylation of PHF10 isoforms occurs while they are incorporated as a subunit of the PBAF complex, and therefore phosphorylation of PHF10 isoforms may play an essential role in regulation of PBAF complex's function and mechanism of action. PMID:27239853

  7. Learning from adverse incidents involving medical devices.

    PubMed

    Amoore, John; Ingram, Paula

    While an adverse event involving a medical device is often ascribed to either user error or device failure, the causes are typically multifactorial. A number of incidents involving medical devices are explored using this approach to investigate the various causes of the incident and the protective barriers that minimised or prevented adverse consequences. User factors, including mistakes, omissions and lack of training, conspired with background factors--device controls and device design, storage conditions, hidden device damage and physical layout of equipment when in use--to cause the adverse events. Protective barriers that prevented or minimised the consequences included staff vigilance, operating procedures and alarms. PMID:12715578

  8. Mitochondrial Remodeling in Mice with Cardiomyocyte-Specific Lipid Overload

    PubMed Central

    Elezaby, Aly; Sverdlov, Aaron L.; Tu, Vivian H.; Soni, Kanupriya; Luptak, Ivan; Qin, Fuzhong; Liesa, Marc; Shirihai, Orian S.; Rimer, Jamie; Schaffer, Jean E.; Colucci, Wilson S.; Miller, Edward J.

    2014-01-01

    mitochondria, and cardiac hypertrophy and diastolic dysfunction were not attenuated by overexpression of catalase in mitochondria in FATP1 mice. Conclusions Excessive delivery of FAs to the cardiac myocyte in the absence of systemic disorders leads to activation of lipid-driven signaling and remodeling of mitochondrial structure and function. PMID:25497302

  9. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-01-01

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical

  10. Efficient computational simulation of actin stress fiber remodeling.

    PubMed

    Ristori, T; Obbink-Huizer, C; Oomens, C W J; Baaijens, F P T; Loerakker, S

    2016-09-01

    Understanding collagen and stress fiber remodeling is essential for the development of engineered tissues with good functionality. These processes are complex, highly interrelated, and occur over different time scales. As a result, excessive computational costs are required to computationally predict the final organization of these fibers in response to dynamic mechanical conditions. In this study, an analytical approximation of a stress fiber remodeling evolution law was derived. A comparison of the developed technique with the direct numerical integration of the evolution law showed relatively small differences in results, and the proposed method is one to two orders of magnitude faster. PMID:26823159

  11. Silent Synapse-Based Circuitry Remodeling in Drug Addiction

    PubMed Central

    2016-01-01

    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon generation and evolution of drug-generated silent synapses; and (3) what behavioral consequences are produced by silent synapse-based circuitry remodeling? This short review analyzes related experimental results, and extends them to some speculations. PMID:26721952

  12. Mechanisms of ATP-Dependent Chromatin Remodeling Motors.

    PubMed

    Zhou, Coral Y; Johnson, Stephanie L; Gamarra, Nathan I; Narlikar, Geeta J

    2016-07-01

    Chromatin remodeling motors play essential roles in all DNA-based processes. These motors catalyze diverse outcomes ranging from sliding the smallest units of chromatin, known as nucleosomes, to completely disassembling chromatin. The broad range of actions carried out by these motors on the complex template presented by chromatin raises many stimulating mechanistic questions. Other well-studied nucleic acid motors provide examples of the depth of mechanistic understanding that is achievable from detailed biophysical studies. We use these studies as a guiding framework to discuss the current state of knowledge of chromatin remodeling mechanisms and highlight exciting open questions that would continue to benefit from biophysical analyses. PMID:27391925

  13. Mechanisms contributing to myocardial potassium channel diversity, regulation and remodeling.

    PubMed

    Yang, Kai-Chien; Nerbonne, Jeanne M

    2016-04-01

    In the mammalian heart, multiple types of K(+) channels contribute to the control of cardiac electrical and mechanical functioning through the regulation of resting membrane potentials, action potential waveforms and refractoriness. There are similarly vast arrays of K(+) channel pore-forming and accessory subunits that contribute to the generation of functional myocardial K(+) channel diversity. Maladaptive remodeling of K(+) channels associated with cardiac and systemic diseases results in impaired repolarization and increased propensity for arrhythmias. Here, we review the diverse transcriptional, post-transcriptional, post-translational, and epigenetic mechanisms contributing to regulating the expression, distribution, and remodeling of cardiac K(+) channels under physiological and pathological conditions. PMID:26391345

  14. Silent Synapse-Based Circuitry Remodeling in Drug Addiction.

    PubMed

    Dong, Yan

    2016-05-01

    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon generation and evolution of drug-generated silent synapses; and (3) what behavioral consequences are produced by silent synapse-based circuitry remodeling? This short review analyzes related experimental results, and extends them to some speculations. PMID:26721952

  15. The adverse outcome pathway concept: a pragmatic tool in toxicology.

    PubMed

    Vinken, Mathieu

    2013-10-01

    Adverse outcome pathways (AOPs) are novel tools in toxicology and human risk assessment with broad potential. AOPs are designed to provide a clear-cut mechanistic representation of critical toxicological effects that span over different layers of biological organization. AOPs share a common structure consisting of a molecular initiating event, a series of intermediate steps and key events, and an adverse outcome. Development of AOPs ideally complies with OECD guidelines. This also holds true for AOP evaluation, which includes consideration of the Bradford Hill criteria for weight-of-evidence assessment and meeting a set of key questions defined by the OECD. Elaborate AOP frameworks have yet been proposed for chemical-induced skin sensitization, cholestasis, liver fibrosis and liver steatosis. These newly postulated AOPs can serve a number of ubiquitous purposes, including the establishment of (quantitative) structure-activity relationships, the development of novel in vitro toxicity screening tests and the elaboration of prioritization strategies. PMID:23978457

  16. Chromatin remodeling by curcumin alters endogenous aryl hydrocarbon receptor signaling.

    PubMed

    Mohammadi-Bardbori, Afshin; Akbarizadeh, Amin Reza; Delju, Fatemeh; Rannug, Agneta

    2016-05-25

    The aim of this study was to gain more information about the mechanisms that regulate expression of the aryl hydrocarbon receptor (AHR) target gene CYP1A1. Human hepatoma cells (HepG2 and Huh7) and human immortalized keratinocytes (HaCaT) were treated with different concentrations of the dietary polyphenolic compound curcumin (CUR) alone or in combination with the natural AHR agonist 6-formylindolo[3,2-b]carbazole (FICZ). In an earlier study, we described that CUR can activate the AHR indirectly by inhibiting metabolic clearance of FICZ. Here, we measured cell viability, activation of AHR signaling, oxidative stress and histone modifying activities in response to CUR at concentrations ranging from 0.1 to 50 μM. We observed apparent non-linear responses on cell viability and activation of AHR signaling. The CYP1A1 expression and the CYP1A1 enzyme activity in the presence of CUR reflected the histone acetylation efficiency observed in nuclear extracts. At the lowest concentration, CUR significantly decreased histone deacetylase activity and increased the FICZ-induced CYP1A1 activity. In contrast, at the highest concentration, CUR increased the formation of reactive oxygen species, significantly inhibited histone acetylation, and temporally decreased FICZ-induced CYP1A1 activity. The results suggest that CUR can both increase and decrease the accessibility of DNA and thereby influence transcriptional responses to the ligand-activated AHR. This suggestion was supported by the fact that chromatin remodeling treatments with trichostatin A, p300, or 5-aza-dC increased CYP1A1 transcription. We conclude that the AHR-dependent transcriptional efficiency is modified by factors that influence the cellular redox status and the chromatin structure. PMID:27041069

  17. Quantitative Imaging of Enzymatic Vitreolysis-Induced Fiber Remodeling

    PubMed Central

    Filas, Benjamen A.; Shah, Nihar S.; Zhang, Qianru; Shui, Ying-Bo; Lake, Spencer P.; Beebe, David C.

    2014-01-01

    Purpose. Collagen fiber remodeling in the vitreous body has been implicated in cases of vitreomacular traction, macular hole, and retinal detachment, and also may occur during pharmacologic vitreolysis. The purpose of this study was to evaluate quantitative polarized light imaging (QPLI) as a tool for studying fiber organization in the vitreous and near the vitreoretinal interface in control and enzymatically perturbed conditions. Methods. Fiber alignment was measured in anterior-posterior sections of bovine and porcine vitreous. Additional tests were performed on bovine lenses and nasal-temporal vitreous sections. Effects of proteoglycan degradation on collagen fiber alignment using trypsin and plasmin were assessed at the microstructural level using electron microscopy and at the global level using QPLI. Results. Control vitreous showed fiber organization patterns consistent with the literature across multiple-length scales, including the global anterior-posterior coursing of vitreous fibers, as well as local fibers parallel to the equatorial vitreoretinal interface and transverse to the posterior interface. Proteoglycan digestion with trypsin or plasmin significantly increased fiber alignment throughout the vitreous (P < 0.01). The largest changes (3×) occurred in the posterior vitreous where fibers are aligned transverse to the posterior vitreoretinal interface (P < 0.01). Conclusions. Proteoglycan loss due to enzymatic vitreolysis differentially increases fiber alignment at locations where tractions are most common. We hypothesize that a similar mechanism leads to retinal complications during age-related vitreous degeneration. Structural changes to the entire vitreous body (as opposed to the vitreoretinal interface alone) should be evaluated during preclinical testing of pharmacological vitreolysis candidates. PMID:25468895

  18. p38 MAPK Signaling in Postnatal Tendon Growth and Remodeling

    PubMed Central

    Schwartz, Andrew J.; Sarver, Dylan C.; Sugg, Kristoffer B.; Dzierzawski, Justin T.; Gumucio, Jonathan P.; Mendias, Christopher L.

    2015-01-01

    Tendon is a dynamic tissue whose structure and function is influenced by mechanical loading, but little is known about the fundamental mechanisms that regulate tendon growth and remodeling in vivo. Data from cultured tendon fibroblasts indicated that the p38 MAPK pathway plays an important role in tendon fibroblast proliferation and collagen synthesis in vitro. To gain greater insight into the mechanisms of tendon growth, and explore the role of p38 MAPK signaling in this process, we tested the hypotheses that inducing plantaris tendon growth through the ablation of the synergist Achilles tendon would result in rapid expansion of a neotendon matrix surrounding the original tendon, and that treatment with the p38 MAPK inhibitor SB203580 would prevent this growth. Rats were treated with vehicle or SB203580, and subjected to synergist ablation by bilateral tenectomy of the Achilles tendon. Changes in histological and biochemical properties of plantaris tendons were analyzed 3, 7, or 28 days after overload, and comparisons were made to non-overloaded animals. By 28 days after overload, tendon mass had increased by 30% compared to non-overloaded samples, and cross-sectional area (CSA) increased by around 50%, with most of the change occurring in the neotendon. The expansion in CSA initially occurred through the synthesis of a hyaluronic acid rich matrix that was progressively replaced with mature collagen. Pericytes were present in areas of active tendon growth, but never in the original tendon ECM. Inhibition of p38 MAPK resulted in a profound decrease in IL6 expression, and had a modest effect on the expression of other ECM and cell proliferation genes, but had a negligible impact on overall tendon growth. The combined results from this study provided novel insights into tendon mechanobiology, and suggest that p38 MAPK signaling does not appear to be necessary for tendon growth in vivo. PMID:25768932

  19. The Role of the T lymphocytes and Remodeling in Asthma.

    PubMed

    Amin, Kawa

    2016-08-01

    In allergic asthma (AA), inflammatory changes in the airway epithelium may contribute to the characteristic pathophysiology and symptoms. The presence of T lymphocytes, eosinophils, mast cells and macrophages, the presence of cytokines, and also structural changes in the airway mucous membrane are characteristic for asthma. Bronchial biopsy specimens were obtained from 33 AA, 25 nonallergic asthma (NAA), and 20 healthy controls (HC). This study used immunohistochemical techniques for identified monoclonal antibodies (CD3, CD4, CD8, CD25, ECP, MBP, tenascin, and laminin) in the bronchi. The highest number of eosinophils and T lymphocyte cells in bronchial biopsies was found in AA, and NAA. The number of T lymphocytes in AA was significantly higher than in NAA and HC. The degree of epithelial damage was higher in the AA group compared to the other groups. The tenascin- and laminin-positive layers in AA were thicker than other groups. In AA, a significant negative correlation was found between epithelial integrity and the count for eosinophils or T lymphocytes. T lymphocytes and eosinophils in AA were found in the area of epithelial and lamina propria damage. This article suggests that T lymphocytes may not only contribute to the chronic airway inflammatory response, airway remodeling, and symptomatology but may also have a central role at the initiation of the allergic immune response. Th-targeted therapy would be of considerable interest in controlling AA. Having more knowledge on the roles of T lymphocytes in the pathogenesis of allergic inflammation highlights the contributions of these cells in regulating and may lead to a new therapeutic target-AA. PMID:27221139

  20. Mitochondria Oxidative Stress, Connexin43 Remodeling, and Sudden Arrhythmic Death

    PubMed Central

    Sovari, Ali A.; Rutledge, Cody A.; Jeong, Euy-Myoung; Dolmatova, Elena; Arasu, Divya; Liu, Hong; Vahdani, Nooshin; Gu, Lianzhi; Zandieh, Shadi; Xiao, Lei; Bonini, Marcelo G.; Duffy, Heather S.; Dudley, Samuel C.

    2013-01-01

    Background Previously, we showed a mouse model (ACE8/8) of cardiac renin-angiotensin system (RAS) activation has a high rate of spontaneous ventricular tachycardia (VT) and sudden cardiac death (SCD) secondary to a reduction in connexin43 (Cx43) level. Angiotensin-II activation increases reactive oxygen species (ROS) production, and ACE8/8 mice show increased cardiac ROS. We sought to determine the source of ROS and if ROS played a role in the arrhythmogenesis. Methods and Results Wild-type and ACE8/8 mice with and without two weeks of treatment with L-NIO (nitric oxide synthase inhibitor), sepiapterin (precursor of tetrahydrobiopterin), MitoTEMPO (mitochondria-targeted antioxidant), TEMPOL (a general antioxidant), apocynin (NADPH oxidase inhibitor), allopurinol (xanthine oxidase inhibitor), and ACE8/8 crossed with P67 dominant negative mice to inhibit the NADPH oxidase were studied. Western blotting, detection of mitochondrial ROS by MitoSOX Red, electron microscopy, immunohistochemistry, fluorescent dye diffusion technique for functional assessment of Cx43, telemetry monitoring, and in-vivo electrophysiology studies were performed. Treatment with MitoTEMPO reduced SCD in ACE8/8 mice (from 74% to 18%, P<0.005), decreased spontaneous ventricular premature beats, decreased VT inducibility (from 90% to 17%, P<0.05), diminished elevated mitochondrial ROS to the control level, prevented structural damage to mitochondria, resulted in 2.6 fold increase in Cx43 level at the gap junctions, and corrected gap junction conduction. None of the other antioxidant therapies prevented VT and SCD in ACE8/8 mice. Conclusions Mitochondrial oxidative stress plays a central role in angiotensin II-induced gap junction remodeling and arrhythmia. Mitochondria-targeted antioxidants may be effective antiarrhythmic drugs in cases of RAS activation. PMID:23559673

  1. Chromatin remodeling in somatic cells injected into mature pig oocytes.

    PubMed

    Bui, Hong-Thuy; Van Thuan, Nguyen; Wakayama, Teruhiko; Miyano, Takashi

    2006-06-01

    We examined the involvement of histone H3 modifications in the chromosome condensation and decondensation of somatic cell nuclei injected into mature pig oocytes. Nuclei of pig granulosa cells were transferred into in vitro matured intact pig oocytes, and histone H3 phosphorylation, acetylation, and methylation were examined by immunostaining with specific antibodies in relation to changes in chromosome morphology. In the condensed chromosomes of pig oocytes at metaphase II, histone H3 was phosphorylated at serine 10 (H3-S10) and serine 28 (H3-S28), and methylated at lysine 9 (H3-K9), but was not acetylated at lysine 9, 14 and 18 (H3-K9, H3-K14 and H3-K18). During the first 2 h after nuclear transfer, a series of events were observed in the somatic nuclei: nuclear membrane disassembly; chromosome condensation to form a metaphase-like configuration; an increase in histone H3 phosphorylation levels (H3-S10 and H3-S28). Next, pig oocytes injected with nuclei of somatic cells were electroactivated and the chromosome morphology of oocytes and somatic cells was examined along with histone modifications. Generally, chromosomes of the somatic cells showed a similar progression of cell cycle stage to that of oocytes, through anaphase II- and telophase II-like stages then formed pronucleus-like structures, although the morphology of the spindles differed from that of oocyte spindles. The chromosomes of somatic cells also showed changes in histone H3 dephosphorylation and reacetylation, similar to oocytes. In contrast, histone H3 methylation (H3-K9) of somatic cell nuclei did not show any significant change after injection and electroactivation of the oocytes. These results suggest that nuclear remodeling including histone H3 phosphorylation and acetylation of injected somatic nuclei took place in the oocytes under regulation by the oocyte cytoplasm. PMID:16735543

  2. Dynamic Remodeling of Microbial Biofilms by Functionally Distinct Exopolysaccharides

    PubMed Central

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R. C.; Yang, Liang; Rice, Scott A.; Doyle, Patrick

    2014-01-01

    ABSTRACT Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. PMID:25096883

  3. Adverse Outcome Pathways: From Definition to Application

    EPA Science Inventory

    A challenge for both human health and ecological toxicologists is the transparent application of mechanistic (e.g., molecular, biochemical, histological) data to risk assessments. The adverse outcome pathway (AOP) is a conceptual framework designed to meet this need. Specifical...

  4. Adverse cutaneous drug eruptions: current understanding.

    PubMed

    Hoetzenecker, W; Nägeli, M; Mehra, E T; Jensen, A N; Saulite, I; Schmid-Grendelmeier, P; Guenova, E; Cozzio, A; French, L E

    2016-01-01

    Adverse cutaneous drug reactions are recognized as being major health problems worldwide causing considerable costs for health care systems. Most adverse cutaneous drug reactions follow a benign course; however, up to 2% of all adverse cutaneous drug eruptions are severe and life-threatening. These include acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). Physicians should be aware of specific red flags to rapidly identify these severe cutaneous drug eruptions and initiate appropriate treatment. Besides significant progress in clinical classification and treatment, recent studies have greatly enhanced our understanding in the pathophysiology of adverse cutaneous drug reactions. Genetic susceptibilities to certain drugs have been identified in SJS/TEN patients, viral reactivation in DRESS has been elucidated, and the discovery of tissue resident memory T cells helps to better understand the recurrent site-specific inflammation in patients with fixed drug eruption. PMID:26553194