Sample records for adversely affect bone

  1. Second hand tobacco smoke adversely affects the bone of immature rats

    PubMed Central

    Rosa, Rodrigo César; Pereira, Sângela Cunha; Cardoso, Fabrizio Antônio Gomide; Caetano, Abadio Gonçalves; de Santiago, Hildemberg Agostinho Rocha; Volpon, José Batista

    2017-01-01

    OBJECTIVES: To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. METHODS: Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness). RESULTS: Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01) and a decrease of 11.25% in tibia length (p<0.001). Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001), leading to a 42.8% reduction in maximum strength (p<0.001) and a 56.7% reduction in stiffness (p<0.001). CONCLUSION: Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure. PMID:29319726

  2. Second hand tobacco smoke adversely affects the bone of immature rats.

    PubMed

    Rosa, Rodrigo César; Pereira, Sângela Cunha; Cardoso, Fabrizio Antônio Gomide; Caetano, Abadio Gonçalves; Santiago, Hildemberg Agostinho Rocha de; Volpon, José Batista

    2017-12-01

    To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness). Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01) and a decrease of 11.25% in tibia length (p<0.001). Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001), leading to a 42.8% reduction in maximum strength (p<0.001) and a 56.7% reduction in stiffness (p<0.001). Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure.

  3. Stability of double-row rotator cuff repair is not adversely affected by scaffold interposition between tendon and bone.

    PubMed

    Beitzel, Knut; Chowaniec, David M; McCarthy, Mary Beth; Cote, Mark P; Russell, Ryan P; Obopilwe, Elifho; Imhoff, Andreas B; Arciero, Robert A; Mazzocca, Augustus D

    2012-05-01

    Rotator cuff reconstructions may be improved by adding growth factors, cells, or other biologic factors into the repair zone. This usually requires a biological carrier (scaffold) to be integrated into the construct and placed in the area of tendon-to-bone healing. This needs to be done without affecting the constructs mechanics. Hypothesis/ The hypothesis was that scaffold placement, as an interposition, has no adverse effects on biomechanical properties of double-row rotator cuff repair. The purpose of this study was to examine the effect of scaffold interposition on the initial strength of rotator cuff repairs. Controlled laboratory study. Twenty-five fresh-frozen shoulders (mean age: 65.5 ± 8.9 years) were randomly assigned to 5 groups. Groups were chosen to represent a broad spectrum of commonly used scaffold types: (1) double-row repair without augmentation, (2) double-row repair with interposition of a fibrin clot (Viscogel), (3) double-row repair with interposition of a collagen scaffold (Mucograft) between tendon and bone, (4) double-row repair with interposition of human dermis patch (ArthroFlex) between tendon and bone, and (5) double-row repair with human dermis patch (ArthroFlex) placed on top of the repair. Cyclic loading to measure displacement was performed to 3000 cycles at 1 Hz with an applied 10- to 100-N load. The ultimate load to failure was determined at a rate of 31 mm/min. There were no significant differences in mean displacement under cyclic loading, slope, or energy absorbed to failure between all groups (P = .128, P = .981, P = .105). Ultimate load to failure of repairs that used the collagen patch as an interposition (573.3 ± 75.6 N) and a dermis patch on top of the reconstruction (575.8 ± 22.6 N) was higher compared with the repair without a scaffold (348.9 ± 98.8 N; P = .018 and P = .025). No significant differences were found for repairs with the fibrin clot as an interposition (426.9 ± 103.6 N) and the decellularized dermis

  4. Does methamphetamine affect bone metabolism?

    PubMed

    Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu

    2014-05-07

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10mg/kg METH groups (n=6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5mg/kg METH showed an increased locomotor activity, whereas those receiving 10mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5mg/kg METH group, but not in the 10mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that METH might

  5. Mammary tumorigenesis causes bone loss and dietary selenium supplementation does not affect such bone loss in male MMTV-PyMT mice

    USDA-ARS?s Scientific Manuscript database

    Cancer progression is accompanied by wasting that eventually results in cachexia characterized by significant weight loss and multi-organ functional failures. Limited clinical trials indicate that bone is adversely affected by cancer-associated wasting. To determine the effects of breast cancer on...

  6. Does fetal smoke exposure affect childhood bone mass? The Generation R Study.

    PubMed

    Heppe, D H M; Medina-Gomez, C; Hofman, A; Rivadeneira, F; Jaddoe, V W V

    2015-04-01

    We assessed the intrauterine influence of maternal smoking on childhood bone mass by comparing parental prenatal and postnatal smoking habits. We observed higher bone mass in children exposed to maternal smoking, explained by higher body weight. Maternal smoking or related lifestyle factors may affect childhood weight gain rather than skeletal growth. Maternal smoking during pregnancy may adversely affect bone health in later life. By comparing the associations of maternal and paternal smoking and of prenatal and postnatal exposure with childhood bone measures, we aimed to explore whether the suggested association could be explained by fetal programming or reflects confounding by familial factors. In 5565 mothers, fathers and children participating in a population-based prospective cohort study, parental smoking habits during pregnancy and current household smoking habits were assessed by postal questionnaires. Total body bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) were measured by dual-energy X-ray absorptiometry (DXA) at the median age of 6.0 years (IQR 0.37). In confounder-adjusted models, maternal smoking during pregnancy was associated with a higher BMC of 11.6 g (95 % confidence interval (CI) 5.6, 17.5), a larger BA of 9.7 cm(2) (95 % CI 3.0, 16.4), a higher BMD of 6.7 g/cm(2) (95 % CI 2.4, 11.0) and a higher BMC of 5.4 g (95 % CI 1.3, 9.6) adjusted for BA of the child. Current weight turned out to mediate these associations. Among mothers who did not smoke, paternal smoking did not show evident associations with childhood bone measures. Also, household smoking practices during childhood were not associated with childhood bone measures. Our results do not support the hypothesis of fetal smoke exposure affecting childhood bone mass via intrauterine mechanisms. Maternal smoking or related lifestyle factors may affect childhood weight gain rather than skeletal growth.

  7. The Analysis of the Adverse Reaction of Traditional Chinese Medicine Tumor Bone Marrow Suppression

    NASA Astrophysics Data System (ADS)

    Wei, Zhenzhen; Fang, Xiaoyan; Miao, Mingsan

    2018-01-01

    With the rapid increase of cancer patients, chemotherapy is the main method for the clinical treatment of cancer, but also in the treatment of the adverse reactions--bone marrow suppression is often a serious infection caused by patients after chemotherapy and the important cause of mortality. Chinese medicine has obvious advantages in the prevention and treatment of bone marrow depression after chemotherapy. According to tumor bone marrow suppression after chemotherapy of etiology and pathogenesis of traditional Chinese medicine and China national knowledge internet nearly 10 years of traditional Chinese medicine in the prevention and control of the status of clinical and laboratory research of tumor bone marrow suppression, the author analyzed and summarized its characteristics, so as to provide the basis for treating bone marrow suppression of drug research and development, and promote small adverse reactions of the development and utilization of natural medicine and its preparations.

  8. Clinical factors affecting pathological fracture and healing of unicameral bone cysts

    PubMed Central

    2014-01-01

    Background Unicameral bone cyst (UBC) is the most common benign lytic bone lesion seen in children. The aim of this study is to investigate clinical factors affecting pathological fracture and healing of UBC. Methods We retrospectively reviewed 155 UBC patients who consulted Nagoya musculoskeletal oncology group hospitals in Japan. Sixty of the 155 patients had pathological fracture at presentation. Of 141 patients with follow-up periods exceeding 6 months, 77 were followed conservatively and 64 treated by surgery. Results The fracture risk was significantly higher in the humerus than other bones. In multivariate analysis, ballooning of bone, cyst in long bone, male sex, thin cortical thickness and multilocular cyst were significant adverse prognostic factors for pathological fractures at presentation. The healing rates were 30% and 83% with observation and surgery, respectively. Multivariate analysis revealed that fracture at presentation and history of biopsy were good prognostic factors for healing of UBC in patients under observation. Conclusion The present results suggest that mechanical disruption of UBC such as fracture and biopsy promotes healing, and thus watchful waiting is indicated in these patients, whereas patients with poor prognostic factors for fractures should be considered for surgery. PMID:24884661

  9. Clinical factors affecting pathological fracture and healing of unicameral bone cysts.

    PubMed

    Urakawa, Hiroshi; Tsukushi, Satoshi; Hosono, Kozo; Sugiura, Hideshi; Yamada, Kenji; Yamada, Yoshihisa; Kozawa, Eiji; Arai, Eisuke; Futamura, Naohisa; Ishiguro, Naoki; Nishida, Yoshihiro

    2014-05-17

    Unicameral bone cyst (UBC) is the most common benign lytic bone lesion seen in children. The aim of this study is to investigate clinical factors affecting pathological fracture and healing of UBC. We retrospectively reviewed 155 UBC patients who consulted Nagoya musculoskeletal oncology group hospitals in Japan. Sixty of the 155 patients had pathological fracture at presentation. Of 141 patients with follow-up periods exceeding 6 months, 77 were followed conservatively and 64 treated by surgery. The fracture risk was significantly higher in the humerus than other bones. In multivariate analysis, ballooning of bone, cyst in long bone, male sex, thin cortical thickness and multilocular cyst were significant adverse prognostic factors for pathological fractures at presentation. The healing rates were 30% and 83% with observation and surgery, respectively. Multivariate analysis revealed that fracture at presentation and history of biopsy were good prognostic factors for healing of UBC in patients under observation. The present results suggest that mechanical disruption of UBC such as fracture and biopsy promotes healing, and thus watchful waiting is indicated in these patients, whereas patients with poor prognostic factors for fractures should be considered for surgery.

  10. PTH prevents the adverse effects of focal radiation on bone architecture in young rats.

    PubMed

    Chandra, Abhishek; Lan, Shenghui; Zhu, Ji; Lin, Tiao; Zhang, Xianrong; Siclari, Valerie A; Altman, Allison R; Cengel, Keith A; Liu, X Sherry; Qin, Ling

    2013-08-01

    Radiation therapy is a common treatment regimen for cancer patients. However, its adverse effects on the neighboring bone could lead to fractures with a great impact on quality of life. The underlying mechanism is still elusive and there is no preventive or curative solution for this bone loss. Parathyroid hormone (PTH) is a current therapy for osteoporosis that has potent anabolic effects on bone. In this study, we found that focal radiation from frequent scans of the right tibiae in 1-month-old rats by micro-computed tomography severely decreased trabecular bone mass and deteriorated bone structure. Interestingly, PTH daily injections remarkably improved trabecular bone in the radiated tibiae with increases in trabecular number, thickness, connectivity, structure model index and stiffness, and a decrease in trabecular separation. Histomorphometric analysis revealed that radiation mainly decreased the number of osteoblasts and impaired their mineralization activity but had little effects on osteoclasts. PTH reversed these adverse effects and greatly increased bone formation to a similar level in both radiated and non-radiated bones. Furthermore, PTH protects bone marrow mesenchymal stem cells from radiation-induced damage, including a decrease in number and an increase in adipogenic differentiation. While radiation generated the same amount of free radicals in the bone marrow of vehicle-treated and PTH-treated animals, the percentage of apoptotic bone marrow cells was significantly attenuated in the PTH group. Taken together, our data demonstrate a radioprotective effect of PTH on bone structure and bone marrow and shed new light on a possible clinical application of anabolic treatment in radiotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. High-fat diets affect energy and bone metabolism in growing rats.

    PubMed

    Macri, Elisa V; Gonzales Chaves, Macarena M; Rodriguez, Patricia N; Mandalunis, Patricia; Zeni, Susana; Lifshitz, Fima; Friedman, Silvia M

    2012-06-01

    High-fat diets are usually associated with greater weight (W) gain and body fat (BF). However, it is still unclear whether the type and amount of fat consumed influence BF. Additionally, dietary fat intake may also have consequences on skeletal health. To evaluate in healthy growing rats the effects of high-fat diets and type of dietary fat intake (saturated or vegetable oils) on energy and bone metabolism. At weaning, male Wistar rats (n = 50) were fed either a control diet (C; fat = 7% w/w) or a high-fat diet (20% w/w) containing either: soybean oil, corn oil (CO), linseed oil (LO), or beef tallow (BT) for 8 weeks. Zoometric parameters, BF, food intake and digestibility, and total and bone alkaline phosphatase (b-AP) were assessed. Total skeleton bone mineral density (BMD) and content (BMC), BMC/W, spine BMD, and bone volume (static-histomorphometry) were measured. Animals fed BT diet achieved lower W versus C. Rats fed high-fat vegetable oil diets showed similar effects on the zoometric parameters but differed in BF. BT showed the lowest lipid digestibility and BMC. In contrast, high vegetable oil diets produced no significant differences in BMC, BMC/W, BMD, spine BMD, and bone volume. Marked differences were observed for LO and BT groups in b-AP and CO and BT groups in bone volume. BT diet rich in saturated fatty acids had decreased digestibility and adversely affected energy and bone metabolisms, in growing healthy male rats. There were no changes in zoometric and bone parameters among rats fed high vegetable oil diets.

  12. FACTORS ADVERSELY AFFECTING AMPHIBIAN POPULATIONS IN THE US

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from species accounts written in a standardized format by multiple authors in a forthcoming book. Specific adverse factors were identified for 53 (58%) of...

  13. Saxagliptin affects long-bone microarchitecture and decreases the osteogenic potential of bone marrow stromal cells.

    PubMed

    Sbaraglini, María Laura; Molinuevo, María Silvina; Sedlinsky, Claudia; Schurman, León; McCarthy, Antonio Desmond

    2014-03-15

    Diabetes mellitus is associated with a decrease in bone quality and an increase in fracture incidence. Additionally, treatment with anti-diabetic drugs can either adversely or positively affect bone metabolism. In this study we evaluated: the effect of a 3-week oral treatment with saxagliptin on femoral microarchitecture in young male non-type-2-diabetic Sprague Dawley rats; and the in vitro effect of saxagliptin and/or fetal bovine serum (FBS), insulin or insulin-like growth factor-1 (IGF1), on the proliferation, differentiation (Runx2 and PPAR-gamma expression, type-1 collagen production, osteocalcin expression, mineralization) and extracellular-regulated kinase (ERK) activation, in bone marrow stromal cells (MSC) obtained from control (untreated) rats and in MC3T3E1 osteoblast-like cells. In vivo, oral saxagliptin treatment induced a significant decrease in the femoral osteocytic and osteoblastic density of metaphyseal trabecular bone and in the average height of the proximal cartilage growth plate; and an increase in osteoclastic tartrate-resistant acid phosphatase (TRAP) activity of the primary spongiosa. In vitro, saxagliptin inhibited FBS-, insulin- and IGF1-induced ERK phosphorylation and cell proliferation, in both MSC and MC3T3E1 preosteoblasts. In the absence of growth factors, saxagliptin had no effect on ERK activation or cell proliferation. In both MSC and MC3T3E1 cells, saxagliptin in the presence of FBS inhibited Runx2 and osteocalcin expression, type-1 collagen production and mineralization, while increasing PPAR-gamma expression. In conclusion, orally administered saxagliptin induced alterations in long-bone microarchitecture that could be related to its in vitro down-regulation of the ERK signaling pathway for insulin and IGF1 in MSC, thus decreasing the osteogenic potential of these cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Long-term therapy in COPD: any evidence of adverse effect on bone?

    PubMed Central

    Langhammer, Arnulf; Forsmo, Siri; Syversen, Unni

    2009-01-01

    Patients with COPD have high risk for osteoporosis and fractures. Hip and vertebral fractures might impair mobility, and vertebral fractures further reduce lung function. This review discusses the evidence of bone loss due to medical treatment opposed to disease severity and risk factors for COPD, and therapeutic options for the prevention and treatment of osteoporosis in these patients. A review of the English-language literature was conducted using the MEDLINE database until June 2009. Currently used bronchodilators probably lack adverse effect on bone. Oral corticosteroids (OCS) increase bone resorption and decrease bone formation in a dose response relationship, but the fracture risk is increased more than reflected by bone densitometry. Inhaled corticosteroids (ICS) have been associated with both increased bone loss and fracture risk. This might be a result of confounding by disease severity, but high doses of ICS have similar effects as equipotent doses of OCS. The life-style factors should be modified, use of regular OCS avoided and use of ICS restricted to those with evidenced effect and probably kept at moderate doses. The health care should actively reveal risk factors, include bone densitometry in fracture risk evaluation, and give adequate prevention and treatment for osteoporosis. PMID:19888355

  15. Tooth dentin defects reflect genetic disorders affecting bone mineralization

    PubMed Central

    Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.

    2012-01-01

    Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718

  16. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC 79-387...

  17. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC 79-387...

  18. [New therapies for children affected by bone diseases].

    PubMed

    Ballhausen, Diana; Dépraz, Nuria Garcia; Kern, Ilse; Unger, Sheila; Bonafé, Luisa

    2012-02-22

    Considerable progress has been achieved in recent years in treating children affected by bone diseases. Advances in the understanding of the molecular pathophysiology of genetic bone diseases have led to the development of enzyme replacement therapies for various lysosomal storage diseases, following the breakthrough initiated in treating Gaucher disease. Clinical studies are underway with tailored molecules correcting bone fragility and alleviating chronic bone pain and other manifestations of hypophosphatasia, or promoting growth of long bones in achondroplasia patients. We further report our very encouraging experience with intravenous bisphosphonate treatment in children suffering from secondary osteopenia and the high prevalence of calcium and vitamin D deficits in these severely disabled children.

  19. Evidence for the adverse effect of starvation on bone quality: a review of the literature.

    PubMed

    Kueper, Janina; Beyth, Shaul; Liebergall, Meir; Kaplan, Leon; Schroeder, Josh E

    2015-01-01

    Malnutrition and starvation's possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200-800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in several case series and descriptive reports addressing the medical issues of these individuals. A severe effect of severely diminished food intake and frequently concomitant calcium- and Vitamin D deficiencies was subsequently proven in both animal models and the most common cause of starvation in developed countries is anorexia nervosa. This review attempts to summarize the literature available on the impact of the metabolic response to Starvation on overall bone health and bone quality.

  20. High vitamin D3 diet administered during active colitis negatively affects bone metabolism in an adoptive T cell transfer model.

    PubMed

    Larmonier, C B; McFadden, R-M T; Hill, F M; Schreiner, R; Ramalingam, R; Besselsen, D G; Ghishan, F K; Kiela, P R

    2013-07-01

    Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D₃ has been considered a viable adjunctive therapy in IBD. However, vitamin D₃ plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D₃ supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10-/- CD4⁺ T cell transfer model of chronic colitis. High-dose vitamin D₃ supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D₃ metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D₃ supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D₃ diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D₃ group. Our data suggest that vitamin D₃, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D₃ supplementation in patients with active IBD.

  1. Evidence for the Adverse Effect of Starvation on Bone Quality: A Review of the Literature

    PubMed Central

    Kueper, Janina; Beyth, Shaul; Liebergall, Meir; Kaplan, Leon; Schroeder, Josh E.

    2015-01-01

    Malnutrition and starvation's possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200–800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in several case series and descriptive reports addressing the medical issues of these individuals. A severe effect of severely diminished food intake and frequently concomitant calcium- and Vitamin D deficiencies was subsequently proven in both animal models and the most common cause of starvation in developed countries is anorexia nervosa. This review attempts to summarize the literature available on the impact of the metabolic response to Starvation on overall bone health and bone quality. PMID:25810719

  2. Voluntary exercise in pregnant rats improves post-lactation maternal bone parameters but does not affect offspring outcomes in early life.

    PubMed

    Rosa, B V; Blair, H T; Vickers, M H; Morel, P C; Cockrem, J F; Firth, E C

    2012-12-01

    The objectives of this study were to examine the effects of voluntary exercise during pregnancy on maternal post-lactation bone parameters and offspring growth. Pregnant Wistar rats were housed in conventional cages (control), or were housed in raised cages requiring them to rise to an erect, bipedal stance to obtain food/water, throughout pregnancy. Dual energy X-ray absorptiometry and peripheral quantitative computed tomography scans were performed pre-mating and post-weaning. Maternal stress was assessed by fecal corticosterone measurement. Offspring weights were assessed at postnatal days 1 and 25 (weaning). Changes in bone mineral over the pregnancy/lactation period were site-specific. Exercise did not affect loss of bone mineral from the lumbar spine, but did attenuate the loss of trabecular bone mineral from the tibial metaphysis and enhance the strength strain index and cross-sectional moment of inertia at the tibial diaphysis (P≤0.05) in dams in the exercised group. Fecal corticosterone did not differ between dam groups. There were no significant differences in offspring weight between the exercised and control group at either time point. Voluntary exercise in the pregnant rat can improve some post-lactation bone parameters and does not adversely affect early postnatal outcomes of the offspring.

  3. Immunology of Gut-Bone Signaling.

    PubMed

    Collins, Fraser L; Schepper, Jonathan D; Rios-Arce, Naiomy Deliz; Steury, Michael D; Kang, Ho Jun; Mallin, Heather; Schoenherr, Daniel; Camfield, Glen; Chishti, Saima; McCabe, Laura R; Parameswaran, Narayanan

    2017-01-01

    In recent years a link between the gastrointestinal tract and bone health has started to gain significant attention. Dysbiosis of the intestinal microbiota has been linked to the pathology of a number of diseases which are associated with bone loss. In addition modulation of the intestinal microbiota with probiotic bacteria has revealed to have both beneficial local and systemic effects. In the present chapter, we discuss the intestinal and bone immune systems, explore how intestinal disease affects the immune system, and examine how these pathologic changes could adversely impact bone health.

  4. Immunology of Gut Bone Signaling

    PubMed Central

    Collins, Fraser L.; Schepper, Jonathan; Rios-Arce, Naiomy Deliz; Steury, Michael; Kang, Ho Jun; Mallin, Heather; Schoenherr, Daniel; Camfield, Glen; Chishti, Saima; McCabe, Laura R; Parameswaran, Narayanan

    2017-01-01

    In recent years a link between the gastro-intestinal tract and bone health has started to gain significant attention. Dysbiosis of the intestinal microbiota has been linked to the pathology of a number of diseases which are associated with bone loss. In addition modulation of the intestinal microbiota with probiotic bacteria has revealed to have both beneficial local and systemic effects. In the present chapter we discuss the intestinal and bone immune systems, explore how intestinal disease affects the immune system and examine how these pathologic changes could adversely impact bone health. PMID:29101652

  5. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients.

    PubMed

    Scimeca, Manuel; Feola, Maurizio; Romano, Lorenzo; Rao, Cecilia; Gasbarra, Elena; Bonanno, Elena; Brandi, Maria Luisa; Tarantino, Umberto

    2017-04-01

    Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass. The aim of this study was to investigate whether heavy metals accumulation in bone tissues could be related to the altered bone metabolism and architecture of osteoporotic patients. To this end, we analyzed 25 bone head biopsies osteoporotic patients and 25 bone head biopsies of osteoarthritic patients. Moreover we enrolled 15 patients underwent hip arthroplasty for high-energy hip fracture or osteonecrosis of the femoral head as a control group. Bone head biopsies were studied by BioQuant-osteo software, scanning electron microscopy and Energy Dispersive X-ray microanalysis. We found a prevalence of lead, cadmium and chromium accumulation in osteoporotic patients. Noteworthy, high levels of sclerostin, detected by immunohistochemistry, correlate with the accumulation of heavy metal found in the bone of osteoporotic patients, suggesting a molecular link between heavy metal accumulation and bone metabolism impairment. In conclusion, the presence of heavy metals into bone shed new light on the comprehension of the pathogenesis of osteoporosis since these elements could play a non redundant role in the development of osteoporosis at cellular/molecular and epigenetic level. Nevertheless, in vivo and in vitro studies need to better elucidate the molecular mechanism in which heavy metals can participate to osteoporosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1333-1342, 2017. © 2016 Wiley Periodicals, Inc.

  6. High vitamin D3 diet administered during active colitis negatively affects bone metabolism in an adoptive T cell transfer model

    PubMed Central

    Larmonier, C. B.; McFadden, R.-M. T.; Hill, F. M.; Schreiner, R.; Ramalingam, R.; Besselsen, D. G.; Ghishan, F. K.

    2013-01-01

    Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D3 has been considered a viable adjunctive therapy in IBD. However, vitamin D3 plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D3 supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10−/− CD4+ T cell transfer model of chronic colitis. High-dose vitamin D3 supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D3 metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D3 supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D3 diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D3 group. Our data suggest that vitamin D3, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D3 supplementation in patients with active IBD. PMID:23639807

  7. Diagnosis of potential stressors adversely affecting benthic ...

    EPA Pesticide Factsheets

    Greenwich Bay is an urbanized embayment of Narragansett Bay potentially impacted by multiple stressors. The present study identified the important stressors affecting Greenwich Bay benthic fauna. First, existing data and information were used to confirm that the waterbody was impaired. Second, the presence of source, stressor, and effect were established. Then linkages between source, stressor, and effect were developed. This allows identification of probable stressors adversely affecting the waterbody. Three pollutant categories were assessed: chemicals, nutrients, and suspended sediments. This weight of evidence approach indicated that Greenwich Bay was primarily impacted by eutrophication-related stressors. The sediments of Greenwich Bay were carbon enriched and low dissolved oxygen concentrations were commonly seen, especially in the western portions of Greenwich Bay. The benthic community was depauperate, as would be expected under oxygen stress. Although our analysis indicated that contaminant loads in Greenwich Bay were at concentrations where adverse effects might be expected, no toxicity was observed, as a result of high levels of organic carbon in these sediments reducing contaminant bioavailability. Our analysis also indicated that suspended sediment impacts were likely nonexistent for much of the Bay. This analysis demonstrates that the diagnostic procedure was useful to organize and assess the potential stressors impacting the ecological well-being

  8. Subclinical hypervitaminosis A in rat: measurements of bone mineral density (BMD) do not reveal adverse skeletal changes.

    PubMed

    Lind, P M; Johansson, S; Rönn, M; Melhus, H

    2006-01-05

    We have previously shown that subclinical hypervitaminosis A in rats causes fragile bones. To begin to investigate possible mechanisms for Vitamin A action we extended our previous study. Forty-five mature female Sprague-Dawley rats were divided into three groups, each with 15 animals. They were fed a standard diet containing 12IU Vitamin A per g pellet (control, C), or a standard diet supplemented with 120 IU ("10xC") or 600 IU ("50xC") Vitamin A/g pellet for 12 weeks. At the end of the study, serum retinyl esters were elevated 4- and 20-fold. Although neither average food intake nor final body weights were significantly different between groups, a dose-dependent reduction in serum levels of Vitamin D and E, but not Vitamin K, was found. In the 50xC-group the length of the humerus was the same as in controls, but the diameter was reduced (-4.1%, p<0.05). Peripheral quantitative computed tomography (pQCT) at the diaphysis showed that bone mineral density (BMD) was unchanged and that periosteal circumference had decreased significantly (-3.7%, p<0.05). Ash weight of the humerus was not affected, but since bone volume decreased, volumetric BMD, as measured by the bone ash method, even increased (+2.5%, p<0.05). In conclusion, interference with other fat-soluble Vitamins is a possible indirect mechanism of Vitamin A action. Moreover, BMD measurements do not reveal early adverse skeletal changes induced by moderate excesses of Vitamin A in rats. Since the WHO criterium for osteoporosis is based on BMD, further studies are warranted to examine whether this is also true in humans.

  9. Adversity before Conception Will Affect Adult Progeny in Rats

    ERIC Educational Resources Information Center

    Shachar-Dadon, Alice; Schulkin, Jay; Leshem, Micah

    2009-01-01

    The authors investigated whether adversity in a female, before she conceives, will influence the affective and social behavior of her progeny. Virgin female rats were either undisturbed (controls) or exposed to varied, unpredictable, stressors for 7 days (preconceptual stress [PCS]) and then either mated immediately after the end of the stress…

  10. Evaluating bone quality in patients with chronic kidney disease

    PubMed Central

    Malluche, Hartmut H.; Porter, Daniel S.; Pienkowski, David

    2013-01-01

    Bone of normal quality and quantity can successfully endure physiologically imposed mechanical loads. Chronic kidney disease–mineral and bone disorder (CKD–MBD) adversely affects bone quality through alterations in bone turnover and mineralization, whereas bone quantity is affected through changes in bone volume. Changes in bone quality can be associated with altered bone material, structure, or microdamage, which can result in an elevated rate of fracture in patients with CKD–MBD. Fractures cannot always be explained by reduced bone quantity and, therefore, bone quality should be assessed with a variety of techniques from the macro-organ level to the nanoscale level. In this Review, we demonstrate the importance of evaluating bone from multiple perspectives and hierarchical levels to understand CKD–MBD-related abnormalities in bone quality. Understanding the relationships between variations in material, structure, microdamage, and mechanical properties of bone in patients with CKD–MBD should aid in the development of new modalities to prevent, or treat, these abnormalities. PMID:24100399

  11. Bone and bone turnover.

    PubMed

    Crofton, Patricia M

    2009-01-01

    Children with cancer are exposed to multiple influences that may adversely affect bone health. Some treatments have direct deleterious effects on bone whilst others may have indirect effects mediated through various endocrine abnormalities. Most clinical outcome studies have concentrated on survivors of acute lymphoblastic leukaemia (ALL). There is now good evidence that earlier treatment protocols that included cranial irradiation with doses of 24 Gy or greater may result in growth hormone deficiency and low bone mineral density (BMD) in the lumbar spine and femoral neck. Under current protocols, BMD decreases during intensive chemotherapy and fracture risk increases. Although total body BMD may eventually return to normal after completion of chemotherapy, lumbar spine trabecular BMD may remain low for many years. The implications for long-term fracture risk are unknown. Risk factors for low BMD include high dose methotrexate, higher cumulative doses of glucocorticoids, male gender and low physical activity. BMD outcome in non-ALL childhood cancers has been less well studied but there is evidence that survivors of childhood brain or bone tumours, and survivors of bone marrow transplants for childhood malignancy, all have a high risk of long-term osteopenia. Long-term follow-up is required, with appropriate treatment of any endocrine abnormalities identified. Copyright (c) 2009 S. Karger AG, Basel.

  12. Diabetes mellitus related bone metabolism and periodontal disease

    PubMed Central

    Wu, Ying-Ying; Xiao, E; Graves, Dana T

    2015-01-01

    Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts. PMID:25857702

  13. Vitamin D and adverse pregnancy outcomes: beyond bone health and growth.

    PubMed

    Brannon, Patsy M

    2012-05-01

    Concerns exist about adequacy of vitamin D in pregnant women relative to both maternal and fetal adverse health outcomes. Further contributing to these concerns is the prevalence of inadequate and deficient vitamin D status in pregnant women, which ranges from 5 to 84% globally. Although maternal vitamin D metabolism changes during pregnancy, the mechanisms underlying these changes and the role of vitamin D during development are not well understood. Observational evidence links low maternal vitamin D status with an increased risk of non-bone health outcome in the mother (pre-eclampsia, gestational diabetes, obstructed labour and infectious disease), the fetus (gestational duration) and the older offspring (developmental programming of type 1 diabetes, inflammatory and atopic disorders and schizophrenia); but the totality of the evidence is contradictory (except for maternal infectious disease and offspring inflammatory and atopic disorders), lacking causality and, thus, inconclusive. In addition, recent evidence links not only low but also high maternal vitamin D status with increased risk of small-for-gestational age and schizophrenia in the offspring. Rigorous and well-designed randomised clinical trials need to determine whether vitamin D has a causal role in non-bone health outcomes in pregnancy.

  14. Developing bones are differentially affected by compromised skeletal muscle formation

    PubMed Central

    Nowlan, Niamh C.; Bourdon, Céline; Dumas, Gérard; Tajbakhsh, Shahragim; Prendergast, Patrick J.; Murphy, Paula

    2010-01-01

    Mechanical forces are essential for normal adult bone function and repair, but the impact of prenatal muscle contractions on bone development remains to be explored in depth in mammalian model systems. In this study, we analyze skeletogenesis in two ‘muscleless’ mouse mutant models in which the formation of skeletal muscle development is disrupted; Myf5nlacZ/nlacZ:MyoD−/− and Pax3Sp/Sp (Splotch). Ossification centers were found to be differentially affected in the muscleless limbs, with significant decreases in bone formation in the scapula, humerus, ulna and femur, but not in the tibia. In the scapula and humerus, the morphologies of ossification centers were abnormal in muscleless limbs. Histology of the humerus revealed a decreased extent of the hypertrophic zone in mutant limbs but no change in the shape of this region. The elbow joint was also found to be clearly affected with a dramatic reduction in the joint line, while no abnormalities were evident in the knee. The humeral deltoid tuberosity was significantly reduced in size in the Myf5nlacZ/nlacZ:MyoD−/− mutants while a change in shape but not in size was found in the humeral tuberosities of the Pax3Sp/Sp mutants. We also examined skeletal development in a ‘reduced muscle’ model, the Myf5nlacZ/+:MyoD−/− mutant, in which skeletal muscle forms but with reduced muscle mass. The reduced muscle phenotype appeared to have an intermediate effect on skeletal development, with reduced bone formation in the scapula and humerus compared to controls, but not in other rudiments. In summary, we have demonstrated that skeletal development is differentially affected by the lack of skeletal muscle, with certain rudiments and joints being more severely affected than others. These findings indicate that the response of skeletal progenitor cells to biophysical stimuli may depend upon their location in the embryonic limb, implying a complex interaction between mechanical forces and location

  15. Hake fish bone as a calcium source for efficient bone mineralization.

    PubMed

    Flammini, Lisa; Martuzzi, Francesca; Vivo, Valentina; Ghirri, Alessia; Salomi, Enrico; Bignetti, Enrico; Barocelli, Elisabetta

    2016-01-01

    Calcium is recognized as an essential nutritional factor for bone health. An adequate intake is important to achieve or maintain optimal bone mass in particular during growth and old age. The aim of the present study was to evaluate the efficiency of hake fish bone (HBF) as a calcium source for bone mineralization: in vitro on osteosarcoma SaOS-2 cells, cultured in Ca-free osteogenic medium (OM) and in vivo on young growing rats fed a low-calcium diet. Lithotame (L), a Ca supplement derived from Lithothamnium calcareum, was used as control. In vitro experiments showed that HBF supplementation provided bone mineralization similar to standard OM, whereas L supplementation showed lower activity. In vivo low-Ca HBF-added and L-added diet similarly affected bone deposition. Physico-chemical parameters concerning bone mineralization, such as femur breaking force, tibia density and calcium/phosphorus mineral content, had beneficial effects from both Ca supplementations, in the absence of any evident adverse effect. We conclude HBF derived from by-product from the fish industry is a good calcium supplier with comparable efficacy to L.

  16. Long-term adverse outcomes in survivors of childhood bone sarcoma: the British Childhood Cancer Survivor Study

    PubMed Central

    Fidler, M M; Frobisher, C; Guha, J; Wong, K; Kelly, J; Winter, D L; Sugden, E; Duncan, R; Whelan, J; Reulen, R C; Hawkins, M M

    2015-01-01

    Background: With improved survival, more bone sarcoma survivors are approaching middle age making it crucial to investigate the late effects of their cancer and its treatment. We investigated the long-term risks of adverse outcomes among 5-year bone sarcoma survivors within the British Childhood Cancer Survivor Study. Methods: Cause-specific mortality and risk of subsequent primary neoplasms (SPNs) were investigated for 664 bone sarcoma survivors. Use of health services, health and marital status, alcohol and smoking habits, and educational qualifications were investigated for survivors who completed a questionnaire. Results: Survivors were seven times more likely to experience all-cause mortality than expected, and there were substantial differences in risk depending on tumour type. Beyond 25 years follow-up the risk of dying from all-causes was comparable to the general population. This is in contrast to dying before 25 years where the risk was 12.7-fold that expected. Survivors were also four times more likely to develop a SPN than expected, where the excess was restricted to 5–24 years post diagnosis. Increased health-care usage and poor health status were also found. Nonetheless, for some psychosocial outcomes survivors were better off than expected. Conclusions: Up to 25 years after 5-year survival, bone sarcoma survivors are at substantial risk of death and SPNs, but this is greatly reduced thereafter. As 95% of all excess deaths before 25 years follow-up were due to recurrences and SPNs, increased monitoring of survivors could prevent mortality. Furthermore, bone and breast SPNs should be a particular concern. Since there are variations in the magnitude of excess risk depending on the specific adverse outcome under investigation and whether the survivors were initially diagnosed with osteosarcoma or Ewing sarcoma, risks need to be assessed in relation to these factors. These findings should provide useful evidence for risk stratification and updating

  17. Obesity is a concern for bone health with aging

    PubMed Central

    Shapses, Sue A.; Pop, L. Claudia; Wang, Yang

    2017-01-01

    Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. PMID:28385284

  18. Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT.

    PubMed

    Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael

    2017-01-01

    Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases.

  19. Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT

    PubMed Central

    Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael

    2017-01-01

    Summary Introduction Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Methods Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Results Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. Discussion CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases. PMID:28740526

  20. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells

    PubMed Central

    Cao, Xu; Wu, Xiangwei; Frassica, Deborah; Yu, Bing; Pang, Lijuan; Xian, Lingling; Wan, Mei; Lei, Weiqi; Armour, Michael; Tryggestad, Erik; Wong, John; Wen, Chun Yi; Lu, William Weijia; Frassica, Frank J.

    2011-01-01

    Radiation therapy can result in bone injury with the development of fractures and often can lead to delayed and nonunion of bone. There is no prevention or treatment for irradiation-induced bone injury. We irradiated the distal half of the mouse left femur to study the mechanism of irradiation-induced bone injury and found that no mesenchymal stem cells (MSCs) were detected in irradiated distal femora or nonirradiated proximal femora. The MSCs in the circulation doubled at 1 week and increased fourfold after 4 wk of irradiation. The number of MSCs in the proximal femur quickly recovered, but no recovery was observed in the distal femur. The levels of free radicals were increased threefold at 1 wk and remained at this high level for 4 wk in distal femora, whereas the levels were increased at 1 wk and returned to the basal level at 4 wk in nonirradiated proximal femur. Free radicals diffuse ipsilaterally to the proximal femur through bone medullary canal. The blood vessels in the distal femora were destroyed in angiographic images, but not in the proximal femora. The osteoclasts and osteoblasts were decreased in the distal femora after irradiation, but no changes were observed in the proximal femora. The total bone volumes were not affected in proximal and distal femora. Our data indicate that irradiation produces free radicals that adversely affect the survival of MSCs in both distal and proximal femora. Irradiation injury to the vasculatures and the microenvironment affect the niches for stem cells during the recovery period. PMID:21220327

  1. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells.

    PubMed

    Cao, Xu; Wu, Xiangwei; Frassica, Deborah; Yu, Bing; Pang, Lijuan; Xian, Lingling; Wan, Mei; Lei, Weiqi; Armour, Michael; Tryggestad, Erik; Wong, John; Wen, Chun Yi; Lu, William Weijia; Frassica, Frank J

    2011-01-25

    Radiation therapy can result in bone injury with the development of fractures and often can lead to delayed and nonunion of bone. There is no prevention or treatment for irradiation-induced bone injury. We irradiated the distal half of the mouse left femur to study the mechanism of irradiation-induced bone injury and found that no mesenchymal stem cells (MSCs) were detected in irradiated distal femora or nonirradiated proximal femora. The MSCs in the circulation doubled at 1 week and increased fourfold after 4 wk of irradiation. The number of MSCs in the proximal femur quickly recovered, but no recovery was observed in the distal femur. The levels of free radicals were increased threefold at 1 wk and remained at this high level for 4 wk in distal femora, whereas the levels were increased at 1 wk and returned to the basal level at 4 wk in nonirradiated proximal femur. Free radicals diffuse ipsilaterally to the proximal femur through bone medullary canal. The blood vessels in the distal femora were destroyed in angiographic images, but not in the proximal femora. The osteoclasts and osteoblasts were decreased in the distal femora after irradiation, but no changes were observed in the proximal femora. The total bone volumes were not affected in proximal and distal femora. Our data indicate that irradiation produces free radicals that adversely affect the survival of MSCs in both distal and proximal femora. Irradiation injury to the vasculatures and the microenvironment affect the niches for stem cells during the recovery period.

  2. Is Bone Tissue Really Affected by Swimming? A Systematic Review

    PubMed Central

    Gómez-Bruton, Alejandro; Gónzalez-Agüero, Alejandro; Gómez-Cabello, Alba; Casajús, José A.; Vicente-Rodríguez, Germán

    2013-01-01

    Background Swimming, a sport practiced in hypogravity, has sometimes been associated with decreased bone mass. Aim This systematic review aims to summarize and update present knowledge about the effects of swimming on bone mass, structure and metabolism in order to ascertain the effects of this sport on bone tissue. Methods A literature search was conducted up to April 2013. A total of 64 studies focusing on swimmers bone mass, structure and metabolism met the inclusion criteria and were included in the review. Results It has been generally observed that swimmers present lower bone mineral density than athletes who practise high impact sports and similar values when compared to sedentary controls. However, swimmers have a higher bone turnover than controls resulting in a different structure which in turn results in higher resistance to fracture indexes. Nevertheless, swimming may become highly beneficial regarding bone mass in later stages of life. Conclusion Swimming does not seem to negatively affect bone mass, although it may not be one of the best sports to be practised in order to increase this parameter, due to the hypogravity and lack of impact characteristic of this sport. Most of the studies included in this review showed similar bone mineral density values in swimmers and sedentary controls. However, swimmers present a higher bone turnover than sedentary controls that may result in a stronger structure and consequently in a stronger bone. PMID:23950908

  3. Weight loss and bone mineral density.

    PubMed

    Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon

    2014-10-01

    Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.

  4. Obesity is a concern for bone health with aging.

    PubMed

    Shapses, Sue A; Pop, L Claudia; Wang, Yang

    2017-03-01

    Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Abutment Disconnection/Reconnection Affects Peri-implant Marginal Bone Levels: A Meta-Analysis.

    PubMed

    Koutouzis, Theofilos; Gholami, Fatemeh; Reynolds, John; Lundgren, Tord; Kotsakis, Georgios A

    Preclinical and clinical studies have shown that marginal bone loss can be secondary to repeated disconnection and reconnection of abutments that affect the peri-implant mucosal seal. The aim of this systematic review and meta-analysis was to evaluate the impact of abutment disconnections/reconnections on peri-implant marginal bone level changes. To address this question, two reviewers independently performed an electronic search of three major databases up to October 2015 complemented by manual searches. Eligible articles were selected on the basis of prespecified inclusion and exclusion criteria after a two-phase search strategy and assessed for risk of bias. A random-effects meta-analysis was performed for marginal bone loss. The authors initially identified 392 titles and abstracts. After evaluation, seven controlled clinical studies were included. Qualitative assessment of the articles revealed a trend toward protective marginal bone level preservation for implants with final abutment placement (FAP) at the time of implant placement compared with implants for which there were multiple abutment placements (MAP). The FAP group exhibited a marginal bone level change ranging from 0.08 to 0.34 mm, whereas the MAP group exhibited a marginal bone level change ranging from 0.09 to 0.55 mm. Meta-analysis of the seven studies reporting on 396 implants showed significantly greater bone loss in cases of multiple abutment disconnections/reconnections. The weighted mean difference in marginal bone loss was 0.19 mm (95% confidence interval, 0.06-0.32 mm), favoring bone preservation in the FAP group. Within the limitations of this meta-analysis, abutment disconnection and reconnection significantly affected peri-implant marginal bone levels. These findings pave the way for revisiting current restorative protocols at the restorative treatment planning stage to prevent incipient marginal bone loss.

  6. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    PubMed

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  7. VDR deficiency affects alveolar bone and cementum apposition in mice.

    PubMed

    Zhang, Xueming; Rahemtulla, Firoz; Zhang, Ping; Thomas, Huw F

    2011-07-01

    To compare the mineralisation density (MD), morphology and histology of alveolar bone and cementum amongst VDR +/+, VDR -/-, and VDR -/- groups supplemented with a diet TD 96348, containing 20% lactose, 2.0% calcium and 1.25% phosphorous. Four groups of mice (6 mice/group) were identified by genotyping: VDR +/+ mice (VDR wild type), VDR -/- mice (VDR deficient), VDR -/- offsprings derived from VDR -/- parents receiving a supplemental diet (early rescued), and VDR -/- mice fed with a supplemental diet beginning at age one month (late rescued). All mice were sacrificed at age 70.5 days. Micro-CT was used to compare MD and morphology of alveolar bone and cementum. H-E and Toluidine blue staining was used to examine the ultrastructure of the alveolar bone and cementum at matched locations. In VDR -/- group, alveolar bone and cementum failed to mineralise normally. Early rescue increased MD of alveolar bone in VDR -/- mice with excessive alveolar bone formation, but which not observed in late rescue group. MD and morphology of cementum-dentine complex in both early and late rescue groups were comparable with VDR +/+ group when feeding with high-calcium rescue diet. VDR affects alveolar bone mineralisation and formation systemically and locally. However, cementum apposition and mineralisation is mainly regulated by calcium concentrations in serum. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Optimizing Bone Health in Duchenne Muscular Dystrophy.

    PubMed

    Buckner, Jason L; Bowden, Sasigarn A; Mahan, John D

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA), as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA.

  9. The Factors Affecting Bone Density in Cirrhosis

    PubMed Central

    Hajiabbasi, Asghar; Shafaghi, Afshin; Fayazi, Haniyeh Sadat; Shenavar Masooleh, Irandokht; Hedayati Emami, Mohammad Hassan; Ghavidel Parsa, Pooneh; Amir Maafi, Alireza

    2015-01-01

    Background: Bone loss is common in cirrhosis. However, the prevalence of osteopenia and osteoporosis has been heterogeneous in different reports. Reduction in bone formation with or without increase in bone resorption appears to be responsible for bone loss in these patients. Objectives: We aimed to investigate bone loss in patients with cirrhosis at different anatomical sites and key factors that might affect it. Patients and Methods: In this cross-sectional study, 97 patients with cirrhosis who were referred to Razi Hospital, Rasht, Iran, from 2008 to 2010, were studied. Cirrhosis was diagnosed using biopsy and/or clinical and paraclinical findings. Bone mineral densitometry was done in L2 through L4 lumbar spine (LS) and femoral neck (FN), using dual-energy X-ray absorptiometry (DEXA) (QDR 1000, Hologic DEXA Inc, Waltham, Massachusetts, the United States). Statistical analysis was performed using SPSS 18. A P value < 0.05 was considered statistically significant. Results: A total of 97 patients with cirrhosis (55.7% male) and the mean age of 51 ± 13 years and median body mass index (BMI) of 22.7 kg/m2 were recruited over a two-year period. Etiologies of cirrhosis were hepatitis C (40.2%), hepatitis B (26.8%), cryptogenic (21.6%), and other causes (11.4%). Child A, B, and C, were seen in 16.5%, 47.4%, and 36.1% of patients, respectively. The DEXA results were abnormal in 78.4% of our participants (osteopenia, 45.4%; osteoporosis, 33%). BMI and calculated glomerular filtration rate (GFRc) had moderate positive and Child score had moderate negative significant correlation with T score in both anatomical sites. There was no significant association between abnormal DEXA and the causes of cirrhosis. The univariate analysis showed that the risk of abnormal results in DEXA was significantly higher in those with low BMI, current smoking, higher Child score, and low GFRc; however, in multivariate analysis, the abnormal results were more frequent in those with lower

  10. Childhood adversity predicts reduced physiological flexibility during the processing of negative affect among adolescents with major depression histories.

    PubMed

    Daches, Shimrit; Kovacs, Maria; George, Charles J; Yaroslavsky, Ilya; Kiss, Eniko; Vetró, Ágnes; Dochnal, Roberta; Benák, István; Baji, Ildikó; Halas, Kitti; Makai, Attila; Kapornai, Krisztina; Rottenberg, Jonathan

    2017-11-01

    Adversity during early development has been shown to have enduring negative physiological consequences. In turn, atypical physiological functioning has been associated with maladaptive processing of negative affect, including its regulation. The present study therefore explored whether exposure to adverse life events in childhood predicted maladaptive (less flexible) parasympathetic nervous system functioning during the processing of negative affect among adolescents with depression histories. An initially clinic-referred, pediatric sample (N=189) was assessed at two time points. At Time 1, when subjects were 10.17years old (SD=1.42), on average, and were depressed, parents reported on adverse life events the offspring experienced up to that point. At Time 2, when subjects were 17.18years old (SD=1.28), and were remitted from depression, parents again reported on adverse life events in their offspring's lives for the interim period. At time 2, subjects' parasympathetic nervous system functioning (quantified as respiratory sinus arrhythmia) also was assessed at rest, during sad mood induction, and during instructed mood repair. Extent of adverse life events experienced by T1 (but not events occurring between T1 and T2) predicted less flexible RSA functioning 7years later during the processing of negative affect. Adolescents with more extensive early life adversities exhibited less vagal withdrawal following negative mood induction and tended to show less physiological recovery following mood repair. Early adversities appear to be associated with less flexible physiological regulatory control during negative affect experience, when measured later in development. Stress-related autonomic dysfunction in vulnerable youths may contribute to the unfavorable clinical prognosis associated with juvenile-onset depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice.

    PubMed

    Wang, Yang; Dellatore, Peter; Douard, Veronique; Qin, Ling; Watford, Malcolm; Ferraris, Ronaldo P; Lin, Tiao; Shapses, Sue A

    2016-07-01

    Diet induced obesity has been shown to reduce bone mineral density (BMD) and Ca absorption. However, previous experiments have not examined the effect of high fat diet (HFD) in the absence of obesity or addressed the type of dietary fatty acids. The primary objective of this study was to determine the effects of different types of high fat feeding, without obesity, on fractional calcium absorption (FCA) and bone health. It was hypothesized that dietary fat would increase FCA and reduce BMD. Mature 8-month-old female C57BL/6J mice were fed one of three diets: a HFD (45% fat) enriched either with monounsaturated fatty acids (MUFAs) or with saturated fatty acids (SFAs), and a normal fat diet (NFD; 10% fat). Food consumption was controlled to achieve a similar body weight gain in all groups. After 8wk, total body bone mineral content and BMD as well as femur total and cortical volumetric BMD were lower in SFA compared with NFD groups (P<.05). In contrast, femoral trabecular bone was not affected by the SFAs, whereas MUFAs increased trabecular volume fraction and thickness. The rise over time in FCA was greater in mice fed HFD than NFD and final FCA was higher with HFD (P<.05). Intestinal calbindin-D9k gene and hepatic cytochrome P450 2r1 protein levels were higher with the MUFA than the NFD diet (P<.05). In conclusion, HFDs elevated FCA overtime; however, an adverse effect of HFD on bone was only observed in the SFA group, while MUFAs show neutral or beneficial effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts

    PubMed Central

    Verron, Elise; Masson, Martial; Khoshniat, Solmaz; Duplomb, Laurence; Wittrant, Yohann; Baud'huin, Marc; Badran, Zahi; Bujoli, Bruno; Janvier, Pascal; Scimeca, Jean-Claude; Bouler, Jean-Michel; Guicheux, Jérôme

    2010-01-01

    Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. PMID:20397300

  13. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism.

    PubMed

    Cao, Yixuan; Wang, Yongqiang; Sprangers, Sara; Picavet, Daisy I; Glogauer, Michael; McCulloch, Christopher A; Everts, Vincent

    2017-08-01

    Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP + osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm 2 ; p < 0.05), as were nuclear size and the surface area of cytoplasm. The nuclei of adseverin null osteoclasts exhibited more heterochromatin (31 ± 3%) than wild-type cells (8 ± 1%), suggesting that adseverin affects cell differentiation. The data indicate that in healthy, developing tissues, adseverin contributes to the regulation of osteoclast structure but not to bone metabolism in vivo.

  14. High Oxygen Concentrations Adversely Affect the Performance of Pulmonary Surfactant.

    PubMed

    Smallwood, Craig D; Boloori-Zadeh, Parnian; Silva, Maricris R; Gouldstone, Andrew

    2017-08-01

    Although effective in the neonatal population, exogenous pulmonary surfactant has not demonstrated a benefit in pediatric and adult subjects with hypoxic lung injury despite a sound physiologic rationale. Importantly, neonatal surfactant replacement therapy is administered in conjunction with low fractional F IO 2 while pediatric/adult therapy is administered with high F IO 2 . We suspected a connection between F IO 2 and surfactant performance. Therefore, we sought to assess a possible mechanism by which the activity of pulmonary surfactant is adversely affected by direct oxygen exposure in in vitro experiments. The mechanical performance of pulmonary surfactant was evaluated using 2 methods. First, Langmuir-Wilhelmy balance was utilized to study the reduction in surface area (δA) of surfactant to achieve a low bound value of surface tension after repeated compression and expansion cycles. Second, dynamic light scattering was utilized to measure the size of pulmonary surfactant particles in aqueous suspension. For both experiments, comparisons were made between surfactant exposed to 21% and 100% oxygen. The δA of surfactant was 21.1 ± 2.0% and 35.8 ± 2.0% during exposure to 21% and 100% oxygen, respectively ( P = .02). Furthermore, dynamic light-scattering experiments revealed a micelle diameter of 336.0 ± 12.5 μm and 280.2 ± 11.0 μm in 21% and 100% oxygen, respectively ( P < .001), corresponding to a ∼16% decrease in micelle diameter following exposure to 100% oxygen. The characteristics of pulmonary surfactant were adversely affected by short-term exposure to oxygen. Specifically, surface tension studies revealed that short-term exposure of surfactant film to high concentrations of oxygen expedited the frangibility of pulmonary surfactant, as shown with the δA. This suggests that reductions in pulmonary compliance and associated adverse effects could begin to take effect in a very short period of time. If these findings can be demonstrated in vivo, a

  15. Influence on bone metabolism of dietary trace elements, protein, fat, carbohydrates, and vitamins.

    PubMed

    Sarazin, M; Alexandre, C; Thomas, T

    2000-01-01

    Osteoporosis is a multifactorial disease driven primarily by the genetic factors that control bone metabolism. Among environmental factors, diet may play a key role, affording a target for low-cost intervention. Calcium and vitamin D are well known to affect bone metabolism. Other nutrients may influence bone mass changes; for instance, a number of trace elements and vitamins other than vitamin D are essential to many of the steps of bone metabolism. A wide variety of foods provide these nutrients, and in industrialized countries deficiencies are more often due to idiosyncratic eating habits than to cultural influences. Both culture and vogue influence the amount of carbohydrate, fat, and protein in the typical diet. In children, the current trend is to reduce protein and to increase carbohydrate and fat. Data from epidemiological and animal studies suggest that this may adversely affect bone mass and the fracture risk.

  16. High-fat diet enhances and monocyte chemoattractant protein-1 deficiency reduces bone loss in mice with pulmonary metastases of Lewis lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    Bone is adversely affected by metastasis and metastasis-associated complications. Obesity is a risk factor for both bone and cancer. Adipose tissue is an endocrine organ that produces pro-inflammatory adipokines, such as monocyte chemotactic protein-1 (MCP-1), that contribute to obesity and obesit...

  17. Biomarkers of adverse drug reactions.

    PubMed

    Carr, Daniel F; Pirmohamed, Munir

    2018-02-01

    Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug reactions affect many bodily organ systems and vary widely in severity. Milder adverse drug reactions often resolve quickly following withdrawal of the casual drug or sometimes after dose reduction. Some adverse drug reactions are severe and lead to significant organ/tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders would benefit from development of new, robust biomarkers for the prediction, diagnosis, and prognostication of adverse drug reactions. There has been significant recent progress in identifying predictive genomic biomarkers with the potential to be used in clinical settings to reduce the burden of adverse drug reactions. These have included biomarkers that can be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathioprine dose) and drug choice. The latter have in particular included human leukocyte antigen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both the current state of the art with regard to genomic adverse drug reaction biomarkers. We also review circulating biomarkers that have the potential to be used for both diagnosis and prognosis, and have the added advantage of providing mechanistic information. In the future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple biomarker panels, integrated through the application of different omics technologies, which will provide information on predisposition, early diagnosis, prognosis, and mechanisms. Impact statement • Genetic and circulating biomarkers present significant opportunities to personalize patient therapy to minimize the risk of adverse drug reactions. ADRs are a significant heath issue

  18. Development of Bone Targeting Drugs.

    PubMed

    Stapleton, Molly; Sawamoto, Kazuki; Alméciga-Díaz, Carlos J; Mackenzie, William G; Mason, Robert W; Orii, Tadao; Tomatsu, Shunji

    2017-06-23

    The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca 2+ . The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments.

  19. Development of Bone Targeting Drugs

    PubMed Central

    Stapleton, Molly; Sawamoto, Kazuki; Alméciga-Díaz, Carlos J.; Mackenzie, William G.; Mason, Robert W.; Orii, Tadao; Tomatsu, Shunji

    2017-01-01

    The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca2+. The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments. PMID:28644392

  20. Systemic sarcoidosis with bone marrow involvement responding to therapy with adalimumab: a case report.

    PubMed

    Patel, Supen R

    2009-07-29

    Sarcoidosis is an inflammatory disorder characterized by the presence of non-caseating granulomas in affected organs. The presence of CD4-positive T lymphocytes and macrophages in affected organs suggests an ongoing immune response. Systemic corticosteroids remain the mainstay of treatment, but therapy is often limited by adverse effects. This is the first report of the use of adalimumab (HUMIRA((R)), Abbott Laboratories, North Chicago, IL, USA), an anti-tumor necrosis factor monoclonal antibody, in a patient with systemic sarcoidosis with bone marrow involvement. A 42-year-old African-American man with a medical history significant for hypertension and diabetes mellitus presented with anemia and thrombocytopenia of two months duration. The patient underwent physical examination, bone marrow aspiration and biopsy, chest X-ray, acid-fast bacilli stain, computed tomography with contrast, and additional laboratory tests. He was diagnosed with systemic sarcoidosis with splenomegaly and bone marrow involvement. Drug therapy included prednisone, which had to be discontinued owing to adverse effects, and adalimumab. This is the first report describing the use of adalimumab in a patient with systemic sarcoidosis with bone marrow involvement. Tumor necrosis factor antagonism with adalimumab was efficacious and well-tolerated in this patient and may be considered as a treatment option for similar cases.

  1. Monocyte chemotactic protein-1 attenuates and high-fat diet exacerbates bone loss in mice with pulmonary metastasis of Lewis lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    Bone can be adversely affected by obesity and cancer-associated complications including wasting. The objective of this study was to determine whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects found in male C57BL/6 mice with Lewis lung...

  2. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

    PubMed

    Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua

    2012-06-19

    Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  3. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.

    PubMed

    Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2016-10-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.

  4. Role of Corticosteroids in Bone Loss During Space Flight

    NASA Technical Reports Server (NTRS)

    Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.

    1998-01-01

    The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.

  5. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    PubMed

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-11-01

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  6. Low to moderate alcohol consumption on serum vitamin D and other indicators of bone health in postmenopausal women in a controlled feeding study

    USDA-ARS?s Scientific Manuscript database

    Heavy alcohol drinking adversely affects vitamin D status and bone health. However, data from randomized, placebo-controlled trials (RCTs) on the effects of low to moderate alcohol consumption on vitamin D status and bone health in humans is unavailable. The objective of this cross-over RCT was to e...

  7. Adverse Biological Effect of TiO2 and Hydroxyapatite Nanoparticles Used in Bone Repair and Replacement

    PubMed Central

    Wang, Jiangxue; Wang, Liting; Fan, Yubo

    2016-01-01

    The adverse biological effect of nanoparticles is an unavoidable scientific problem because of their small size and high surface activity. In this review, we focus on nano-hydroxyapatite and TiO2 nanoparticles (NPs) to clarify the potential systemic toxicological effect and cytotoxic response of wear nanoparticles because they are attractive materials for bone implants and are widely investigated to promote the repair and reconstruction of bone. The wear nanoparticles would be prone to binding with proteins to form protein-particle complexes, to interacting with visible components in the blood including erythrocytes, leukocytes, and platelets, and to being phagocytosed by macrophages or fibroblasts to deposit in the local tissue, leading to the formation of fibrous local pseudocapsules. These particles would also be translocated to and disseminated into the main organs such as the lung, liver and spleen via blood circulation. The inflammatory response, oxidative stress, and signaling pathway are elaborated to analyze the potential toxicological mechanism. Inhibition of the oxidative stress response and signaling transduction may be a new therapeutic strategy for wear debris–mediated osteolysis. Developing biomimetic materials with better biocompatibility is our goal for orthopedic implants. PMID:27231896

  8. Effect of methotrexate on bone and wound healing.

    PubMed

    Pountos, Ippokratis; Giannoudis, Peter V

    2017-05-01

    Methotrexate (MTX) is one of the most commonly used disease modifying drugs administered for wide spectrum of conditions. Through the expansion of the indications of MTX use, an increasing number of patients nowadays attend orthopaedic departments receiving this pharmacological agent. The aim of this manuscript is to present our current understanding on the effect of MTX on bone and wound healing. Areas covered: The authors offer a comprehensive review of the existing literature on the experimental and clinical studies analysing the effect of MTX on bone and wound healing. The authors also analyse the available literature and describe the incidence of complications after elective orthopaedic surgery in patients receiving MTX. Expert opinion: The available experimental data and clinical evidence are rather inadequate to allow any safe scientific conclusions on the effect of MTX on bone healing. Regarding wound healing, in vitro and experimental animal studies suggest that MTX can adversely affect wound healing, whilst the clinical studies show that lose-dose MTX is safe and does not affect the incidence of postoperative wound complications.

  9. Factors affecting the pullout strength of cancellous bone screws.

    PubMed

    Chapman, J R; Harrington, R M; Lee, K M; Anderson, P A; Tencer, A F; Kowalski, D

    1996-08-01

    Screws placed into cancellous bone in orthopedic surgical applications, such as fixation of fractures of the femoral neck or the lumbar spine, can be subjected to high loads. Screw pullout is a possibility, especially if low density osteoporotic bone is encountered. The overall goal of this study was to determine how screw thread geometry, tapping, and cannulation affect the holding power of screws in cancellous bone and determine whether current designs achieve maximum purchase strength. Twelve types of commercially available cannulated and noncannulated cancellous bone screws were tested for pullout strength in rigid unicellular polyurethane foams of apparent densities and shear strengths within the range reported for human cancellous bone. The experimentally derived pullout strength was compared to a predicted shear failure force of the internal threads formed in the polyurethane foam. Screws embedded in porous materials pullout by shearing the internal threads in the porous material. Experimental pullout force was highly correlated to the predicted shear failure force (slope = 1.05, R2 = 0.947) demonstrating that it is controlled by the major diameter of the screw, the length of engagement of the thread, the shear strength of the material into which the screw is embedded, and a thread shape factor (TSF) which accounts for screw thread depth and pitch. The average TSF for cannulated screws was 17 percent lower than that of noncannulated cancellous screws, and the pullout force was correspondingly less. Increasing the TSF, a result of decreasing thread pitch or increasing thread depth, increases screw purchase strength in porous materials. Tapping was found to reduce pullout force by an average of 8 percent compared with nontapped holes (p = 0.0001). Tapping in porous materials decreases screw pullout strength because the removal of material by the tap enlarges hole volume by an average of 27 percent, in effect decreasing the depth and shear area of the internal

  10. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    PubMed Central

    2012-01-01

    Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption. PMID:22713117

  11. Do increased drilling speed and depth affect bone viability at implant site?

    PubMed

    Tabrizi, Reza; Nazhvanai, Ali Dehghani; Farahmand, Mohammad Mahdi; Pourali, Sara Yasour; Hosseinpour, Sepanta

    2017-01-01

    The aim of this study was to assess the effect of increasing the drilling speed and depth during implant site preparation on bone viability. In this prospective cohort study, participants were divided into four groups based on the speed and depth of drilling at the first molar site in the mandible. Participants underwent drilling at Group 1: 1000 rpm and 10 mm depth, Group 2: 1500 rpm and 10 mm, Group 3: 1000 rpm and 13 mm, and Group 4: 1500 rpm and 13 mm. Obtained specimens were assessed histologically to the qualitative measurement of bone viability, and the percentage of vital bone were evaluated by histomorphometric analysis. ANOVA was used to compare age and the mean percentage of vital bone and Tukey's test as post hoc was applied for pairwise comparison of groups. A total of 100 participants were studied in four groups (25 subjects in each group). Histological evaluation revealed a low level of bone viability maintenance in all groups. Histomorphometric analysis showed the mean percentage of vital bone was 9.5 ± 3.91% in Group 1, 8.86 ± 3.84% in Group 2, 8.32 ± 3.80% in Group 3, and 4.27 ± 3.22% in Group 4. A significant difference was noted in the mean percentage of bone viability among the four groups ( P = 0.001). It seems that increasing the drilling speed or depth during dental implant site preparation does not affect the mean percentage of cell viability, while the increase in both depth and speed may decrease the percentage of viable cells.

  12. Factors affecting bone mineral density in multiple sclerosis patients

    PubMed Central

    Ayatollahi, Azin; Mohajeri-Tehrani, Mohammad Reza

    2013-01-01

    Background Multiple sclerosis (MS) is a demyelinating disease which can cause many disabilities for the patient. Recent data suggests that MS patients have higher risk for osteoporosis. This study was performed to investigate if the osteoporosis prevalence is higher in MS patients and to determine the possible factors affecting bone mineral density (BMD). Methods 51 definite relapsing-remitting MS patients according to McDonald's criteria (45 females, 6 males aged between 20 and 50 years) participated in this study. The control group included 407 females aged from 20 to 49 years; they were healthy and had no history of the diseases affecting bone metabolism. Femoral and lumbar BMD were measured by Dual Energy X-ray Absorptiometry (DXA). The disability of MS patients was evaluated by Expanded Disability Status Scale (EDSS). The patient's quality of life was evaluated by the validated Persian version of multiple sclerosis impact scale (MSIS-29). Results Patients’ mean age was 36 ± 3.3 years and their mean disease duration was 8.7 ± 1.7 years. The mean EDSS score and the mean body mass index (BMI) of the patients were 3 ± 0.9 and 23.5 ± 2.3 kg/m2, respectively. 29% of the patients had never been treated by ß-interferon and 6% of them had not received glucocorticoids (GCs) pulses since their MS had been diagnosed. 26% of the patients had a history of fracture.18% of our patients were osteoporotic and 43% of them were osteopenic. Femoral BMD was significantly lower among MS patients than age matched controls (P < 0.001), but lumbar BMD showed no difference. There was no correlation between administration of GCs pulses, interferon and BMD; however, we found a significant correlation between EDSS score, quality of life (QoL), disease duration and BMD of both site. Conclusion As a result of this study, bone loss inevitably occurs in MS patients. The major factor of BMD loss is immobility. Osteoporosis should be managed as part of MS patients’ treatment protocols

  13. Quantitative trait locus on chromosome X affects bone loss after maturation in mice.

    PubMed

    Okudaira, Shuzo; Shimizu, Motoyuki; Otsuki, Bungo; Nakanishi, Rika; Ohta, Akira; Higuchi, Keiichi; Hosokawa, Masanori; Tsuboyama, Tadao; Nakamura, Takashi

    2010-09-01

    Genetic programming is known to affect the peak bone mass and bone loss after maturation. However, little is known about how polymorphic genes on chromosome X (Chr X) modulate bone loss after maturation. We previously reported a quantitative trait locus (QTL) on Chr X, designated Pbd3, which had a suggestive linkage to bone mass, in male SAMP2 and SAMP6 mice. In this study, we aimed to clarify the effects of Pbd3 on the skeletal phenotype. We generated a congenic strain, P2.P6-X, carrying a 45.6-cM SAMP6-derived Chr X interval on a SAMP2 genetic background. The effects of Pbd3 on the bone phenotype were determined by microcomputed tomography (microCT), whole-body dual-energy X-ray absorptiometry (DXA), serum bone turnover markers, and histomorphometric parameters. Both the bone area fraction (BA/TA) on microCT and whole-body DXA revealed reduced bone loss in P2.P6-X compared with that in SAMP2. The serum concentrations of bone turnover markers at 4 months of age were significantly lower in P2.P6-X than in SAMP2, but did not differ at 8 months of age. These results were observed in female mice, but not in male mice. In conclusion, a QTL within a segregated 45.6-cM interval on Chr X is sex-specifically related to the rate of bone loss after maturation.

  14. Smoking Adversely Affects Survival in Acute Myeloid Leukemia Patients

    PubMed Central

    Varadarajan, Ramya; Licht, Andrea S; Hyland, Andrew J; Ford, Laurie A.; Sait, Sheila N.J.; Block, Annemarie W.; Barcos, Maurice; Baer, Maria R.; Wang, Eunice S.; Wetzler, Meir

    2011-01-01

    Summary Smoking adversely affects hematopoietic stem cell transplantation outcome. We asked whether smoking affected outcome of newly diagnosed acute myeloid leukemia (AML) patients treated with chemotherapy. Data were collected on 280 AML patients treated with high-dose cytarabine and idarubicin-containing regimens at Roswell Park Cancer Institute who had smoking status data at diagnosis. Patients’ gender, age, AML presentation (de novo vs. secondary), white blood cell (WBC) count at diagnosis, karyotype and smoking status (never vs. ever) were analyzed. Among the 161 males and 119 females with a median follow-up of 12.9 months, 101 (36.1%) had never smoked and 179 (63.9%) were ever smokers. The proportion of patients between never and ever smokers was similar with respect to age, AML presentation, WBC count at diagnosis or karyotype based on univariate analysis of these categorical variables. Never smokers had a significantly longer overall survival (60.32 months) compared to ever smokers (30.89; p=0.005). In multivariate analysis incorporating gender, age, AML presentation, WBC count, karyotype, and smoking status as covariates, age, karyotype and smoking status retained prognostic value for overall survival. In summary, cigarette smoking has a deleterious effect on overall survival in AML. PMID:21520043

  15. Sprint Interval Training Induces A Sexual Dimorphism but does not Improve Peak Bone Mass in Young and Healthy Mice

    PubMed Central

    Koenen, Kathrin; Knepper, Isabell; Klodt, Madlen; Osterberg, Anja; Stratos, Ioannis; Mittlmeier, Thomas; Histing, Tina; Menger, Michael D.; Vollmar, Brigitte; Bruhn, Sven; Müller-Hilke, Brigitte

    2017-01-01

    Elevated peak bone mass in early adulthood reduces the risk for osteoporotic fractures at old age. As sports participation has been correlated with elevated peak bone masses, we aimed to establish a training program that would efficiently stimulate bone accrual in healthy young mice. We combined voluntary treadmill running with sprint interval training modalities that were tailored to the individual performance limits and were of either high or intermediate intensity. Adolescent male and female STR/ort mice underwent 8 weeks of training before the hind legs were analyzed for cortical and trabecular bone parameters and biomechanical strength. Sprint interval training led to increased running speeds, confirming an efficient training. However, males and females responded differently. The males improved their running speeds in response to intermediate intensities only and accrued cortical bone at the expense of mechanical strength. High training intensities induced a significant loss of trabecular bone. The female bones showed neither adverse nor beneficial effects in response to either training intensities. Speculations about the failure to improve geometric alongside mechanical bone properties include the possibility that our training lacked sufficient axial loading, that high cardio-vascular strains adversely affect bone growth and that there are physiological limits to bone accrual. PMID:28303909

  16. Genetic selection to increase bone strength affects prevalence of keel bone damage and egg parameters in commercially housed laying hens.

    PubMed

    Stratmann, A; Fröhlich, E K F; Gebhardt-Henrich, S G; Harlander-Matauschek, A; Würbel, H; Toscano, M J

    2016-05-01

    The prevalence of keel bone damage as well as external egg parameters of 2 pure lines divergently selected for high (H) and low (L) bone strength were investigated in 2 aviary systems under commercial conditions. A standard LSL hybrid was used as a reference group. Birds were kept mixed per genetic line (77 hens of the H and L line and 201 or 206 hens of the LSL line, respectively, per pen) in 8 pens of 2 aviary systems differing in design. Keel bone status and body mass of 20 focal hens per line and pen were assessed at 17, 18, 23, 30, 36, 43, 52, and 63 wk of age. External egg parameters (i.e., egg mass, eggshell breaking strength, thickness, and mass) were measured using 10 eggs per line at both 38 and 57 wk of age. Body parameters (i.e. tarsus and third primary wing feather length to calculate index of wing loading) were recorded at 38 wk of age and mortality per genetic line throughout the laying cycle. Bone mineral density (BMD) of 15 keel bones per genetic line was measured after slaughter to confirm assignment of the experimental lines. We found a greater BMD in the H compared with the L and LSL lines. Fewer keel bone fractures and deviations, a poorer external egg quality, as well as a lower index of wing loading were found in the H compared with the L line. Mortality was lower and production parameters (e.g., laying performance) were higher in the LSL line compared with the 2 experimental lines. Aviary design affected prevalence of keel bone damage, body mass, and mortality. We conclude that selection of specific bone traits associated with bone strength as well as the related differences in body morphology (i.e., lower index of wing loading) have potential to reduce keel bone damage in commercial settings. Also, the housing environment (i.e., aviary design) may have additive effects. © 2016 Poultry Science Association Inc.

  17. The Impact of Type 2 Diabetes on Bone Fracture Healing

    PubMed Central

    Marin, Carlos; Luyten, Frank P.; Van der Schueren, Bart; Kerckhofs, Greet; Vandamme, Katleen

    2018-01-01

    Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease known by the presence of elevated blood glucose levels. Nowadays, it is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Many are the complications caused by this chronic disorder, including a negative impact on the cardiovascular system, kidneys, eyes, muscle, blood vessels, and nervous system. Recently, there has been increasing evidence suggesting that T2DM also adversely affects the skeletal system, causing detrimental bone effects such as bone quality deterioration, loss of bone strength, increased fracture risk, and impaired bone healing. Nevertheless, the precise mechanisms by which T2DM causes detrimental effects on bone tissue are still elusive and remain poorly studied. The aim of this review was to synthesize current knowledge on the different factors influencing the impairment of bone fracture healing under T2DM conditions. Here, we discuss new approaches used in recent studies to unveil the mechanisms and fill the existing gaps in the scientific understanding of the relationship between T2DM, bone tissue, and bone fracture healing. PMID:29416527

  18. Is there evidence that recent consolidation in the health insurance industry has adversely affected premiums?

    PubMed

    Kopit, William G

    2004-01-01

    James Robinson suggests that recent consolidation in the insurance market has been a cause of higher health insurance prices (premiums). Although the recent consolidation among health insurers and rising premiums are indisputable, it is unlikely that consolidation has had any adverse effect on premiums nationwide, and Robinson provides no data that suggest otherwise. Specifically, he does not present data showing an increase in concentration in any relevant market during the past few years, let alone any resulting increase in premiums. Health insurance consolidation in certain local markets could adversely affect premiums, but it seems clear that it is not a major national antitrust issue.

  19. Bone and fat connection in aging bone.

    PubMed

    Duque, Gustavo

    2008-07-01

    The fat and bone connection plays an important role in the pathophysiology of age-related bone loss. This review will focus on the age-induced mechanisms regulating the predominant differentiation of mesenchymal stem cells into adipocytes. Additionally, bone marrow fat will be considered as a diagnostic and therapeutic approach to osteoporosis. There are two types of bone and fat connection. The 'systemic connection', usually seen in obese patients, is hormonally regulated and associated with high bone mass and strength. The 'local connection' happens inside the bone marrow. Increasing amounts of bone marrow fat affect bone turnover through the inhibition of osteoblast function and survival and the promotion of osteoclast differentiation and activation. This interaction is regulated by paracrine secretion of fatty acids and adipokines. Additionally, bone marrow fat could be quantified using noninvasive methods and could be used as a therapeutic approach due to its capacity to transdifferentiate into bone without affecting other types of fat in the body. The bone and fat connection within the bone marrow constitutes a typical example of lipotoxicity. Additionally, bone marrow fat could be used as a new diagnostic and therapeutic approach for osteoporosis in older persons.

  20. Effects of obesity on bone metabolism.

    PubMed

    Cao, Jay J

    2011-06-15

    Obesity is traditionally viewed to be beneficial to bone health because of well-established positive effect of mechanical loading conferred by body weight on bone formation, despite being a risk factor for many other chronic health disorders. Although body mass has a positive effect on bone formation, whether the mass derived from an obesity condition or excessive fat accumulation is beneficial to bone remains controversial. The underline pathophysiological relationship between obesity and bone is complex and continues to be an active research area. Recent data from epidemiological and animal studies strongly support that fat accumulation is detrimental to bone mass. To our knowledge, obesity possibly affects bone metabolism through several mechanisms. Because both adipocytes and osteoblasts are derived from a common multipotential mesenchymal stem cell, obesity may increase adipocyte differentiation and fat accumulation while decrease osteoblast differentiation and bone formation. Obesity is associated with chronic inflammation. The increased circulating and tissue proinflammatory cytokines in obesity may promote osteoclast activity and bone resorption through modifying the receptor activator of NF-κB (RANK)/RANK ligand/osteoprotegerin pathway. Furthermore, the excessive secretion of leptin and/or decreased production of adiponectin by adipocytes in obesity may either directly affect bone formation or indirectly affect bone resorption through up-regulated proinflammatory cytokine production. Finally, high-fat intake may interfere with intestinal calcium absorption and therefore decrease calcium availability for bone formation. Unraveling the relationship between fat and bone metabolism at molecular level may help us to develop therapeutic agents to prevent or treat both obesity and osteoporosis. Obesity, defined as having a body mass index ≥ 30 kg/m2, is a condition in which excessive body fat accumulates to a degree that adversely affects health. The rates of

  1. Nutritional factors affecting poultry bone health.

    PubMed

    Fleming, Robert H

    2008-05-01

    Outlined are two main current research concerns relating to skeletal disorders in poultry: (a) osteoporosis in egg-laying hens; (b) leg problems caused by rapid bone growth in broiler chickens. Surveys indicate that 30% of caged laying hens suffer at least one lifetime fracture (a severe welfare issue). Modern hybrids produce one egg per d for 50 weeks. For this period 'normal' bone turnover ceases; only medullary bone (MB) is formed, a woven bone type of limited structural value. MB is resorbed for eggshell formation alongside structural bone, leading to increased fracture risk. Avian osteoporosis is reduced by activity and genetic selection but nutrition is also important. Fluoride and vitamin K are beneficial but the timing of nutritional intervention is important. Ca, inorganic P and vitamin D must be adequate and the form of Ca is critical. Limestone fed as particulates benefits skeletal and eggshell quality. In hens fed particulate limestone compared with flour-fed hens the tibiotarsus breaking strength and radiographic density are increased at 56 weeks of age (P<0.01 and P<0.001 respectively) and the number of tartrate-resistant acid phosphatase-positive stained active osteoclasts (mean number per microscopic field) is decreased (P<0.001). In broiler (meat) chickens selection for rapid growth from approximately 50 g to 3 kg in 42 d has inadvertently produced skeletal disorders such as tibial dyschondroplasia, rickets and associated valgus-varus deformities leading to lameness. The beneficial skeletal effects during growth of increased dietary n-3 PUFA:n-6 PUFA (utilising salmon oil) have been demonstrated. Experiments simulating daylight UVB levels have produced beneficial skeletal effects in Ca- and vitamin D-deficient chicks.

  2. Histone Deacetylases in Bone Development and Skeletal Disorders

    PubMed Central

    Bradley, Elizabeth W.; Carpio, Lomeli R.; van Wijnen, Andre J.; McGee-Lawrence, Meghan E.; Westendorf, Jennifer J.

    2015-01-01

    Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn2+ for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2+. Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of

  3. Whole bone mechanics and bone quality.

    PubMed

    Cole, Jacqueline H; van der Meulen, Marjolein C H

    2011-08-01

    The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.

  4. Surgical and Patient Factors Affecting Marginal Bone Levels Around Dental Implants: A Comprehensive Overview of Systematic Reviews.

    PubMed

    Ting, Miriam; Tenaglia, Matthew S; Jones, Gary H; Suzuki, Jon B

    2017-04-01

    The objective of this systematic review was to perform a comprehensive overview of systematic reviews and meta-analyses of surgical and patient factors affecting marginal bone loss around osseointegrated dental implants in humans. Electronic databases were searched for systematic reviews and meta-analyses published up to November 2015. Of the 41 articles selected, 11 evaluated implant factors, 10 evaluated patient factors, 19 evaluated surgical protocol-related factors, and one evaluated all three factors. The chosen studies were AMSTAR rated for quality. The following parameters have statistically significant effect on marginal bone loss: (1) marginal bone loss was significantly more in patients with periodontitis than in periodontally healthy patients; (2) significantly greater in generalized aggressive periodontitis patients compared with chronic periodontitis patients; (3) significantly less in alveolar socket preservation techniques; (4) significantly more in alveolar ridge augmentation sites; (5) significantly more in men than in women; (6) significantly more in smokers than in nonsmokers; and (7) smokers also have significantly more marginal bone loss in the maxilla than in the mandible. Knowledge of the surgical and patient factors that affect marginal bone loss can aid the clinician in making informed choices in selecting implant treatment options that will enhance the longevity and long-term success of their implant-supported cases.

  5. Oral treatment with retinoic acid decreases bone mass in rats.

    PubMed

    Hotchkiss, Charlotte E; Latendresse, John; Ferguson, Sherry A

    2006-12-01

    13-cis-retinoic acid (13-cis-RA, isotretinoin) is used to treat severe recalcitrant acne. Other retinoids have adverse effects on bone. Recent studies of human patients treated with 13-cis-RA have had varying results, perhaps because of variability among patients and the lack of control groups. The effects of retinoids have been studied in rodents, but little information is available regarding the effects of clinically relevant retinoid doses as evaluated by use of bone densitometric techniques. We treated rats for 15 or 20 wk with 13-cis-RA, all-trans-RA, or soybean oil (control) by gavage. We used dual-energy X-ray absorptiometry, histomorphometry, and histologic evaluation to evaluate effects on bone. Spontaneous long bone fractures occurred in some rats treated with 15 mg/kg all-trans-RA daily. Bone mineral density, bone mineral content, bone diameter, and cortical thickness of the femur were reduced in rats treated daily with 10 or 15 mg/kg all-trans-RA or 30 mg/kg 13-cis-RA. The lumbar spine was not affected. Although the effects of 13-cis-RA were not as dramatic as those of all-trans-RA, further study of the effects of 13-cis-RA on long bones is warranted.

  6. Experiment K-314: Fetal and neonatal rat bone and joint development following in Utero spaceflight

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.; Holton, E. M.; Arnaud, C. D.

    1981-01-01

    Infant rat limb specimens from Soviet and U.S. ground-based studies were examined by radiography, macrophotography, histologic sectioning and staining and scanning electron microscopy. A comparison was conducted between vivarium and flight-type diets suggesting that nutritional obesity may adversely affect pregnancy. Data were obtained on maturation of ossification centers, orientation of collagen fibers in bone, tendon and ligaments, joint surface texture and spatial relationships of bones of the hind limb. Computer reconstructions of the knee and hip show promise as a means of investigating the etiology of congenital hip dislocation.

  7. Muscle-Bone Interactions in Pediatric Bone Diseases.

    PubMed

    Veilleux, Louis-Nicolas; Rauch, Frank

    2017-10-01

    Here, we review the skeletal effects of pediatric muscle disorders as well as muscle impairment in pediatric bone disorders. When starting in utero, muscle disorders can lead to congenital multiple contractures. Pediatric-onset muscle weakness such as cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, or spina bifida typically are associated with small diameter of long-bone shafts, low density of metaphyseal bone, and increased fracture incidence in the lower extremities, in particular, the distal femur. Primary bone diseases can affect muscles through generic mechanisms, such as decreased physical activity or in disease-specific ways. For example, the collagen defect underlying the bone fragility of osteogenesis imperfecta may also affect muscle force generation or transmission. Transforming growth factor beta released from bone in Camurati Engelman disease may decrease muscle function. Considering muscle-bone interactions does not only contribute to the understanding of musculoskeletal disorders but also can identify new targets for therapeutic interventions.

  8. Potential Adverse Effects of Violent Video Gaming: Interpersonal- Affective Traits Are Rather Impaired Than Disinhibition in Young Adults.

    PubMed

    Kimmig, Ann-Christin S; Andringa, Gerda; Derntl, Birgit

    2018-01-01

    The increasing trend of mass shootings, which were associated with excessive use of violent video games, fueled the debate of possible effects violent video games may have on adolescents and young adults. The aim of this study was to investigate the possible link between violent video gaming effects and the disposition of adverse behavior traits such as interpersonal-affective deficits and disinhibition. Data of 167 young adults, collected by an online questionnaire battery, were analyzed for lifetime video game exposure differences (i.e., non-gamers, non-violent video gamers, stopped violent video game users, and ongoing violent video game users) as well as for recent exposure effects on adverse behavior traits (Levenson's Psychopathy Scale), while controlling for other potentially confounding lifestyle factors. While interpersonal-affective deficits were significantly higher in participants with ongoing violent video game exposure compared to non-gamers and non-violent video gamers, disinhibition was significantly higher in both - stopped and ongoing - violent video game exposure groups compared to non-gamers. Recent violent video game exposure was a stronger predictor for interpersonal-affective deficits, but was also significant for disinhibition. Considering that we observed small to medium effects in a sample of young adults with little to moderate use of violent video games highlights the importance of further investigating the potential adverse effects of violent video games on quality of social relationships.

  9. Potential Adverse Effects of Violent Video Gaming: Interpersonal- Affective Traits Are Rather Impaired Than Disinhibition in Young Adults

    PubMed Central

    Kimmig, Ann-Christin S.; Andringa, Gerda; Derntl, Birgit

    2018-01-01

    The increasing trend of mass shootings, which were associated with excessive use of violent video games, fueled the debate of possible effects violent video games may have on adolescents and young adults. The aim of this study was to investigate the possible link between violent video gaming effects and the disposition of adverse behavior traits such as interpersonal-affective deficits and disinhibition. Data of 167 young adults, collected by an online questionnaire battery, were analyzed for lifetime video game exposure differences (i.e., non-gamers, non-violent video gamers, stopped violent video game users, and ongoing violent video game users) as well as for recent exposure effects on adverse behavior traits (Levenson’s Psychopathy Scale), while controlling for other potentially confounding lifestyle factors. While interpersonal-affective deficits were significantly higher in participants with ongoing violent video game exposure compared to non-gamers and non-violent video gamers, disinhibition was significantly higher in both – stopped and ongoing – violent video game exposure groups compared to non-gamers. Recent violent video game exposure was a stronger predictor for interpersonal-affective deficits, but was also significant for disinhibition. Considering that we observed small to medium effects in a sample of young adults with little to moderate use of violent video games highlights the importance of further investigating the potential adverse effects of violent video games on quality of social relationships. PMID:29867689

  10. Minimizing AED adverse effects: improving quality of life in the interictal state in epilepsy care.

    PubMed

    St Louis, Erik K; Louis, Erik K

    2009-06-01

    The goals of epilepsy therapy are to achieve seizure freedom while minimizing adverse effects of treatment. However, producing seizure-freedom is often overemphasized, at the expense of inducing adverse effects of treatment. All antiepileptic drugs (AEDs) have the potential to cause dose-related, "neurotoxic" adverse effects (i.e., drowsiness, fatigue, dizziness, blurry vision, and incoordination). Such adverse effects are common, especially when initiating AED therapy and with polytherapy. Dose-related adverse effects may be obviated in most patients by dose reduction of monotherapy, reduction or elimination of polytherapy, or substituting for a better tolerated AED. Additionally, all older and several newer AEDs have idiosyncratic adverse effects which usually require withdrawal in an affected patient, including serious rash (i.e., Stevens-Johnson Syndrome, toxic epidermal necrolysis), hematologic dyscrasias, hepatotoxicity, teratogenesis in women of child bearing potential, bone density loss, neuropathy, and severe gingival hyperplasia. Unfortunately, occurrence of idiosyncratic AED adverse effects cannot be predicted or, in most cases, prevented in susceptible patients. This article reviews a practical approach for the definition and identification of adverse effects of epilepsy therapies, and reviews the literature demonstrating that adverse effects result in detrimental quality of life in epilepsy patients. Strategies for minimizing AED adverse effects by reduction or elimination of AED polytherapy, appropriately employing drug-sparing therapies, and optimally administering AEDs are outlined, including tenets of AED selection, titration, therapeutic AED laboratory monitoring, and avoidance of chronic idiosyncratic adverse effects.

  11. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones.

    PubMed

    Pieske, Oliver; Wittmann, Alexandra; Zaspel, Johannes; Löffler, Thomas; Rubenbauer, Bianka; Trentzsch, Heiko; Piltz, Stefan

    2009-12-15

    Non-unions are severe complications in orthopaedic trauma care and occur in 10% of all fractures. The golden standard for the treatment of ununited fractures includes open reduction and internal fixation (ORIF) as well as augmentation with autologous-bone-grafting. However, there is morbidity associated with the bone-graft donor site and some patients offer limited quantity or quality of autologous-bone graft material. Since allogene bone-grafts are introduced on the market, this comparative study aims to evaluate healing characteristics of ununited bones treated with ORIF combined with either iliac-crest-autologous-bone-grafting (ICABG) or demineralized-bone-matrix (DBM). From 2000 to 2006 out of sixty-two consecutive patients with non-unions presenting at our Level I Trauma Center, twenty patients had ununited diaphyseal fractures of long bones and were treated by ORIF combined either by ICABG- (n = 10) or DBM-augmentation (n = 10). At the time of index-operation, patients of the DBM-group had a higher level of comorbidity (ASA-value: p = 0.014). Mean duration of follow-up was 56.6 months (ICABG-group) and 41.2 months (DBM-group). All patients were clinically and radiographically assessed and adverse effects related to bone grafting were documented. The results showed that two non-unions augmented with ICABG failed osseous healing (20%) whereas all non-unions grafted by DBM showed successful consolidation during the first year after the index operation (p = 0.146). No early complications were documented in both groups but two patients of the ICABG-group suffered long-term problems at the donor site (20%) (p = 0.146). Pain intensity were comparable in both groups (p = 0.326). However, patients treated with DBM were more satisfied with the surgical procedure (p = 0.031). With the use of DBM, the costs for augmentation of the non-union-site are more expensive compared to ICABG (calculated difference: 160 euro/case). Nevertheless, this study demonstrated that the

  12. Interaction Between Bone and Muscle in Older Persons with Mobility Limitations

    PubMed Central

    Ferrucci, L.; Baroni, M.; Ranchelli, A.; Lauretani, F.; Maggio, M.; Mecocci, P.; Ruggiero, C.

    2015-01-01

    Aging is associated with a progressive loss of bone-muscle mass and strength. When the decline in mass and strength reaches critical thresholds associated with adverse health outcomes, they are operationally considered geriatric conditions and named, respectively, osteoporosis and sarcopenia. Osteoporosis and sarcopenia share many of the same risk factors and both directly or indirectly cause higher risk of mobility limitations, falls, fractures and disability in activities of daily living. This is not surprising since bones adapt their morphology and strength to the long-term loads exerted by muscle during anti-gravitational and physical activities. Non-mechanical systemic and local factors also modulate the mechanostat effect of muscle on bone by affecting the bidirectional osteocyte-muscle crosstalk, but the specific pathways that regulate these homeostatic mechanisms are not fully understood. More research is required to reach a consensus on cut points in bone and muscle parameters that identify individuals at high risk for adverse health outcomes, including falls, fractures and disability. A better understanding of the muscle-bone physiological interaction may help to develop preventive strategies that reduce the burden of musculoskeletal diseases, the consequent disability in older persons and to limit the financial burden associated with such conditions. In this review, we summarize age-related bone-muscle changes focusing on the biomechanical and homeostatic mechanisms that explain bone-muscle interaction and we speculate about possible pathological events that occur when these mechanisms become impaired. We also report some recent definitions of osteoporosis and sarcopenia that have emerged in the literature and their implications in clinical practice. Finally, we outline the current evidence for the efficacy of available anti-osteoporotic and proposed anti-sarcopenic interventions in older persons. PMID:24050165

  13. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    PubMed

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Interaction betwen Lead and Bone Protein to Affect Bone Calcium Level Using UV-Vis Spectroscopy

    NASA Astrophysics Data System (ADS)

    Noor, Z.; Azharuddin, A.; Aflanie, I.; Kania, N.; Suhartono, E.

    2018-05-01

    This present study aim to evaluate the interactions between lead (Pb) and with bone protein by UV-Vis approach. In addition, this prsent study also aim to investigate the effect of Pb on bone calcium (Ca) level. The present study was a true experimental study design to examine the impact of Pb exposure in bone of male rats (Rattus novergicus). The study involved 5 groups, P1 was the control group, while the other (P2-P5) were the case group with exposure of Pb in different concentration within 4 weeks. At the end of the exposure, the interaction between Pb and protein was determined using UV-Vis spectrophotometric method, and the Ca level was determined using permanganometric method. The results shows that that there is an interaction between Pb and bone protein. The result also shows that the value of the binding constant of Protein-Pb is 32.71. It means Pb have an high affinity to bind with bone protein, which promote a further reaction to induced the release of bone Ca from the bone protein. In conclusion, this present study found an obvious relationship between Pb and bone protein which promote a further reaction to increase the releasing of bone calcium.

  15. The association of human mesenchymal stem cells with BMP-7 improves bone regeneration of critical-size segmental bone defects in athymic rats.

    PubMed

    Burastero, Giorgio; Scarfì, Sonia; Ferraris, Chiara; Fresia, Chiara; Sessarego, Nadia; Fruscione, Floriana; Monetti, Francesco; Scarfò, Francesca; Schupbach, Peter; Podestà, Marina; Grappiolo, Guido; Zocchi, Elena

    2010-07-01

    Critical size segmental bone defects are still a major challenge in reconstructive orthopedic surgery. Transplantation of human mesenchymal stem cells (hMSC) has been proposed as an alternative to autogenous bone graft, as MSC can be expanded in vitro and induced to differentiate into bone-regenerating osteoblasts by several bone morphogenetic proteins (BMP). The aim of this study was to investigate whether the association of hMSC and BMP-7, with providing the necessary scaffold to fill the bone loss, improved bone regeneration in a rat model of critical size segmental bone defect, compared to treatment with either hMSC or BMP-7 and the matrix. In addition, we tested whether pre-treatment of hMSC with cyclic ADP-ribose (cADPR), an intracellular Ca2+ mobilizer previously shown to accelerate the in vitro expansion of hMSC (Scarfì S et al, Stem Cells, 2008), affected the osteoinductive capacity of the cells in vivo. X-ray analysis, performed 2, 10 and 16 weeks after transplantation, revealed a significantly higher score in the rats treated with hMSC and BMP-7 compared to controls, receiving either hMSC or BMP-7. Microtomography and histological analysis, performed 16weeks after transplantation, confirmed the improved bone regeneration in the animals treated with the association of hMSC and BMP-7 compared to controls. Pre-treatment with cADPR to stimulate hMSC proliferation in vitro did not affect the bone regenerating capacity of the cells in vivo. These results indicate that the association of in vitro expanded hMSC with BMP-7 provide a better osteoinductive graft compared to either hMSC or BMP-7 alone. Moreover, cADPR may be used to stimulate hMSC proliferation in vitro in order to reduce the time required to obtain a transplantable number of cells, with no adverse effect on the bone regenerating capacity of hMSC. 2010 Elsevier Inc. All rights reserved.

  16. Pyridoxine deficiency affects biomechanical properties of chick tibial bone

    NASA Technical Reports Server (NTRS)

    Masse, P. G.; Rimnac, C. M.; Yamauchi, M.; Coburn, S. P.; Rucker, R. B.; Howell, D. S.; Boskey, A. L.

    1996-01-01

    The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B6-deficient and vitamin B6-replete chick bones. In this model, when B6-deficient and control animals are compared, vitamin B6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 +/- 6 vs. 58 +/- 3); mineral to matrix ratio of the FTIR spectra (4.2 +/- 0.6 vs. 4.5 +/- 0.2), line-broadening analyses of the X-ray diffraction 002 peak (beta 002 = 0.50 +/- 0.1 vs. 0.49 +/- 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B6-deficient chick bones (20 +/- 2% of total hydroxyproline extracted vs. 10 +/- 3% p < or = 0.001). The B6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 +/- 0.07 vs. 0.84 +/- 0.13 p < or = 0.001); and a nonsignificant increase in HLNL, dehydro-hydroxylysinonorleucine, (0.51 +/- 0.03 vs. 0.43 +/- 0.03, p < or = 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B6-deficient animals was decreased from 203 +/- 35 MPa to 151 +/- 23 MPa, p < or = 0.01, and offset yield load was decreased from 165 +/- 9 MPa to 125 +/- 14 MPa, p < or = 0.05. Since earlier histomorphometric studies had demonstrated that the B6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.

  17. Perfluoroalkyl substances in human bone: concentrations in bones and effects on bone cell differentiation.

    PubMed

    Koskela, A; Koponen, J; Lehenkari, P; Viluksela, M; Korkalainen, M; Tuukkanen, J

    2017-07-28

    Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA's distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.

  18. Bone microarchitecture is more severely affected in patients on hemodialysis than in those receiving peritoneal dialysis.

    PubMed

    Pelletier, Solenne; Vilayphiou, Nicolas; Boutroy, Stéphanie; Bacchetta, Justine; Sornay-Rendu, Elisabeth; Szulc, Pawel; Arkouche, Walid; Guebre-Egziabher, Fitsum; Fouque, Denis; Chapurlat, Roland

    2012-09-01

    We used high-resolution quantitative computed tomography to study the microarchitecture of bone in patients with chronic kidney disease on dialysis. We compared bone characteristics in 56 maintenance hemodialysis (21 women, 14 post-menopausal) and 23 peritoneal dialysis patients (9 women, 6 post-menopausal) to 79 healthy men and women from two cohorts matched for age, body mass index, gender, and menopausal status. All underwent dual-energy X-ray absorptiometry of the spine and hip to measure areal bone mineral density, and high-resolution peripheral quantitative computed tomography of the radius and tibia to measure volumetric bone mineral density and microarchitecture. When compared to their matched healthy controls, patients receiving hemodialysis and peritoneal dialysis had a significantly lower areal bone mineral density in the hip. Hemodialysis patients had significantly lower total, cortical, and trabecular volumetric bone mineral density at both sites. Hemodialysis patients had significantly lower trabecular volumetric bone mineral density and microarchitecture at the tibia than the peritoneal dialysis patients. Overall, peritoneal dialysis patients were less affected, their cortical thickness at the distal tibia being the only significant difference versus controls. Thus, we found more severe trabecular damage at the weight-bearing tibia in hemodialysis compared to peritoneal dialysis patients, but this latter finding needs confirmation in larger cohorts.

  19. Osteoporosis: Peak Bone Mass in Women

    MedlinePlus

    ... Osteoporosis: Peak Bone Mass in Women Osteoporosis: Peak Bone Mass in Women Bones are the framework for ... that affect peak bone mass. Factors Affecting Peak Bone Mass A variety of genetic and environmental factors ...

  20. Reproductive factors affecting the bone mineral density in postmenopausal women.

    PubMed

    Ozdemir, Ferda; Demirbag, Derya; Rodoplu, Meliha

    2005-03-01

    Osteoporosis has been defined as a metabolic bone disease characterized by a loss of bone mineral density (BMD) greater than 2.5 standard deviations below young adult peak bone mass or the presence of fracture. By considering that some factors related to female reproductive system might influence the ultimate risk of osteoporosis, we aimed to investigate if a relationship exists between the present BMD of postmenopausal women with their past and present reproductive characteristics. The present study focused on how BMD could be affected by the following factors in postmenopausal women, such as age at menarche, age at first pregnancy, the number of pregnancies and total breast-feeding time. We reviewed detailed demographic history of 303 postmenopausal women. According to the results of the present study, a negative correlation was found between the number of parities and BMD. The BMD values decreased as the number of pregnancies increased. When the BMD values for lumbar vertebrae 2 and Ward's triangle were investigated, it was observed that a significant difference exists between the women with no child birth and those with more than five parities. There was a significant relationship between age at first pregnancy and BMD values at the lumbar vertebrae 2 and Ward's triangle. Women who had five or more abortions were found to have significantly lower spine BMD values compared to women who had no abortions or women who had one or two abortions. These findings indicate that the increased risk of osteoporosis is associated with the increased number of pregnancies and abortions and higher age at first pregnancy.

  1. Hepatitis C virus adversely affects quality of life.

    PubMed

    Cillo, Umberto; Amodio, Piero; Ronco, Claudio; Soni, Sachin S; Zanus, Giacomo; Minazzato, Lina; Salari, Annalisa; Neri, Daniele; Bombonato, Giancarlo; Schiff, Sami; Bianco, Tonino

    2011-01-01

    Chronic liver disease secondary to hepatitis C virus (HCV) infection is a common clinical problem. HCV is likely to adversely affect the quality of life (QoL) of the patient. This effect is said to be disproportionate to the severity of the disease. The aim of our study was to evaluate QoL in HCV-positive patients focusing both on health status and subjective satisfaction. Twenty-four patients with combined HCV and alcoholic liver disease (ETOH-HCV) were enrolled in the study. We adopted two generic tools: SF-36 (a health status questionnaire) and SAT-P (a satisfaction profile) for psychological assessment of the patients. SF-36 and SAT-P scores of ETOH-HCV patients were compared with scores of 23 patients with alcoholic liver disease (ETOH). The scores obtained from the study groups were also compared with the reference scores of the healthy Italian population. Both the groups were comparable with respect to age, histological and clinical severity of liver disease (as assessed by MELD and Child Pugh scores). Patients with ETOH-HCV scored less in the vitality and role emotional status domains of the SF-36 scores and the psychological function, social function and free time domains of the satisfaction profile. These results show a significant impact of HCV infection on health status and subjective satisfaction. Copyright © 2011 S. Karger AG, Basel.

  2. Factors affecting bone mineral mass loss after lower-limb fractures in a pediatric population.

    PubMed

    Ceroni, Dimitri; Martin, Xavier; Kherad, Omar; Salvo, Davide; Dubois-Ferrière, Victor

    2015-06-01

    The purpose of this study was to assess the effects of the durations of cast immobilization and non-weight-bearing periods, and decreases in vigorous physical activity (VPA) on bone mineral parameters in a pediatric population treated for a lower-limb fracture. Fifty children and teenagers who had undergone a cast-mediated immobilization for a leg or ankle fracture were prospectively recruited. The durations of cast immobilization and non-weight-bearing periods were recorded for each participant. Dual-energy x-ray absorptiometry scans were performed at the time of fracture treatment (baseline) and at cast removal. Physical activity during cast immobilization was assessed using accelerometers. A strong negative correlation was found between the total duration of cast immobilization and decreases in both calcaneal bone mineral density (BMD) (r=-0.497) and total lower-limb bone mineral content (BMC) (r=-0.405). A strong negative correlation was also noted between the durations of the non-weight-bearing periods and alterations in calcaneal BMD (r=-0.420). No apparent correlations were found between lower BMD and BMC and decreased VPA. Bone mineral loss was correlated to the total duration of cast immobilization for all measurement sites on the affected leg, whereas it was only correlated to the durations of non-weight-bearing periods for calcaneal BMD and total lower-limb BMC. However, no correlations were noted between bone mineral loss and decreased VPA.

  3. Soy proteins and isoflavones affect bone mineral density in older women: a randomized controlled trial.

    PubMed

    Kenny, Anne M; Mangano, Kelsey M; Abourizk, Robin H; Bruno, Richard S; Anamani, Denise E; Kleppinger, Alison; Walsh, Stephen J; Prestwood, Karen M; Kerstetter, Jane E

    2009-07-01

    Soy foods contain several components (isoflavones and amino acids) that potentially affect bone. Few long-term, large clinical trials of soy as a means of improving bone mineral density (BMD) in late postmenopausal women have been conducted. Our goal was to evaluate the long-term effect of dietary soy protein and/or soy isoflavone consumption on skeletal health in late postmenopausal women. We conducted a randomized, double-blind, placebo-controlled clinical trial in 131 healthy ambulatory women aged >60 y. Ninety-seven women completed the trial. After a 1-mo baseline period, subjects were randomly assigned into 1 of 4 intervention groups: soy protein (18 g) + isoflavone tablets (105 mg isoflavone aglycone equivalents), soy protein + placebo tablets, control protein + isoflavone tablets, and control protein + placebo tablets. Consumption of protein powder and isoflavone pills did not differ between groups, and compliance with the study powder and pills was 80-90%. No significant differences in BMD were observed between groups from baseline to 1 y after the intervention or in BMD change between equol and non-equol producers. However, there were significant negative correlations between total dietary protein (per kg) and markers of bone turnover (P < 0.05). Because soy protein and isoflavones (either alone or together) did not affect BMD, they should not be considered as effective interventions for preserving skeletal health in older women. The negative correlation between dietary protein and bone turnover suggests that increasing protein intakes may suppress skeletal turnover. This trial was registered at ClinicalTrials.gov as NCT00668447.

  4. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  5. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  6. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  7. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  8. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  9. Factors affecting bone mineral density in postmenopausal women.

    PubMed

    Heidari, Behzad; Hosseini, Reza; Javadian, Yahya; Bijani, Ali; Sateri, Mohammad Hassan; Nouroddini, Haj Ghorban

    2015-01-01

    This study aimed to determine the relationship between bone mineral density (BMD) and demographic, biochemical, and clinical features according to BMD measurement sites. The results indicated that BMD correlates negatively with menopause duration, parity, and history of fractures but positively correlates with obesity, physical activity, education, and serum ferritin. Osteoporosis (OP) is an important cause of morbidity and mortality in the elderly people. The impacts of various factors on bone mineral density (BMD) differ across diverse population. We hypothesized that the influences of factors which affect BMD vary according to BMD measurement sites. The aim of this study was to determine the relationship between BMD in the femoral neck (FN) and lumbar spine (LS) with some common clinical, demographic, and biochemical parameters in postmenopausal women. In this cross-sectional case-control study, all postmenopausal women of the Amirkola Health and Ageing Project (AHAP) who performed bone densitometry were included. BMD at FN and LS was measured by DXA method. Data regarding clinical, demographic, and biochemical characteristics were provided. OP was diagnosed by the International Society for Clinical Densitometry criteria. Pearson correlation and multivariate regression analyses with simultaneous adjustment were performed to determine relationship. Five hundred thirty-seven women with mean age of 67.9 ± 6.7 years and mean menopause duration (MD) of 15.8 ± 5.1 years were studied. MD correlated negatively with FN-BMD and LS-BMD g/cm(2) (r = -0.405, p = 0.001 and r = -0.217, p = 0.001). Body mass index (BMI) correlated positively with FN and LS-BMD g/cm(2) (r = 0.397, p = 0.001 and r = 0.311, p = 0.001). The association of MD with risk of FN-OP was stronger than LS-OP. Obesity and metabolic syndrome (MS) and higher serum ferritin reduced the risk of OP at both LS and FN similarly, whereas the impacts of parity, prior fracture, high level of education, and physical

  10. Subtle changes in bone mineralization density distribution in most severely affected patients with chronic obstructive pulmonary disease.

    PubMed

    Misof, B M; Roschger, P; Jorgetti, V; Klaushofer, K; Borba, V Z C; Boguszewski, C L; Cohen, A; Shane, E; Zhou, H; Dempster, D W; Moreira, C A

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is associated with low aBMD as measured by DXA and altered microstructure as assessed by bone histomorphometry and microcomputed tomography. Knowledge of bone matrix mineralization is lacking in COPD. Using quantitative backscatter electron imaging (qBEI), we assessed cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) in 19 postmenopausal women (62.1 ± 7.3 years of age) with COPD. Eight had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. The BMDD outcomes from the patients were compared with healthy reference data and were correlated with previous clinical and histomorphometric findings. In general, the BMDD outcomes for the patients were not significantly different from the reference data. Neither the subgroups of with or without fragility fractures or of who did or did not receive inhaled glucocorticoid treatment, showed differences in BMDD. However, subgroup comparison according to severity revealed 10% decreased cancellous mineralization heterogeneity (Cn.CaWidth) for the most severely affected compared with less affected patients (p=0.042) and compared with healthy premenopausal controls (p=0.021). BMDD parameters were highly correlated with histomorphometric cancellous bone volume (BV/TV) and formation indices: mean degree of mineralization (Cn.CaMean) versus BV/TV (r=0.58, p=0.009), and Cn.CaMean and Ct.CaMean versus bone formation rate (BFR/BS) (r=-0.71, p<0.001). In particular, those with lower BV/TV (<50th percentile) had significantly lower Cn.CaMean (p=0.037) and higher Cn.CaLow (p=0.020) compared with those with higher (>50th percentile) BV/TV. The normality in most of the BMDD parameters and bone formation rates as well as the significant correlations between them suggests unaffected mineralization processes in COPD. Our findings also indicate no significant negative effect of treatment with inhaled glucocorticoids on the bone

  11. Lack of deleterious effect of slow-release sodium fluoride treatment on cortical bone histology and quality in osteoporotic patients

    NASA Technical Reports Server (NTRS)

    Zerwekh, J. E.; Antich, P. P.; Sakhaee, K.; Prior, J.; Gonzales, J.; Gottschalk, F.; Pak, C. Y.

    1992-01-01

    We evaluated the effects of intermittent slow-release sodium fluoride (SRNaF) and continuous calcium citrate therapy on cortical bone histology, reflection ultrasound velocity (material strength) and back-scattered electron image analysis (BEI) in 26 osteoporotic patients before and following therapy. All measurements were made on transiliac crest bone biopsies obtained before and following 2 years of therapy in each patient. For all 26 patients there were no significant changes in cortical bone histomorphometric parameters. In 15 patients in whom bone material quality was assessed by reflection ultrasound, there was no change in velocity (4000 +/- 227 SD to 4013 +/- 240 m/s). BEI disclosed no mineralization defects or the presence of woven bone. Mean atomic number (density) of bone increased slightly, but significantly (9.261 +/- 0.311 to 9.457 +/- 0.223, P = 0.031). While these changes are less marked than those observed for cancellous bone, they indicate that this form of therapy does not adversely affect cortical bone remodelling.

  12. Feasibility trial of a scalable psychological intervention for women affected by urban adversity and gender-based violence in Nairobi.

    PubMed

    Dawson, Katie S; Schafer, Alison; Anjuri, Dorothy; Ndogoni, Lincoln; Musyoki, Caroline; Sijbrandij, Marit; van Ommeren, Mark; Bryant, Richard A

    2016-11-18

    Living in conditions of chronic adversity renders many women more vulnerable to experiencing gender-based violence (GBV). In addition to GBV's physical and social consequences, the psychological effects can be pervasive. Access to evidence-based psychological interventions that seek to support the mental health of women affected by such adversity is rare in low- and middle-income countries. The current study evaluates a brief evidence-informed psychological intervention developed by the World Health Organization for adults impacted by adversity (Problem Management Plus; PM+). A feasibility randomised control trial (RCT) was conducted to inform a fully powered trial. Community health workers delivered the intervention to 70 women residing in three peri-urban settings in Nairobi, Kenya. Women, among whom 80% were survivors of GBV (N = 56), were randomised to receive five sessions of either PM+ (n = 35) by community health workers or enhanced treatment as usual (ETAU; n = 35). PM+ was not associated with any adverse events. Although the study was not powered to identify effects and accordingly did not identify effects on the primary outcome measure of general psychological distress, women survivors of adversity, including GBV, who received PM+ displayed greater reductions in posttraumatic stress disorder symptoms following treatment than those receiving ETAU. This feasibility study suggests that PM+ delivered by lay health workers is an acceptable and safe intervention to reach women experiencing common mental disorders and be inclusive for those affected by GBV and can be studied in a RCT in this setting. The study sets the stage for a fully powered, definitive controlled trial to assess this potentially effective intervention. ACTRN12614001291673 , 10/12/2014, retrospectively registered during the recruitment phase.

  13. Clinical application of bone morphogenetic proteins for bone healing: a systematic review.

    PubMed

    Krishnakumar, Gopal Shankar; Roffi, Alice; Reale, Davide; Kon, Elizaveta; Filardo, Giuseppe

    2017-06-01

    This paper documents the existing evidence on bone morphogenetic proteins (BMPs) use for the treatment of bone fractures, non-union, and osteonecrosis, through a review of the clinical literature, underlying potential and limitations in terms of cost effectiveness and risk of complications. A systematic review was performed on the PubMed database using the following string: (bone morphogenetic proteins OR BMPs) and (bone repair OR bone regeneration) including papers from 2000 to 2016. The search focused on clinical trials dealing with BMPs application to favor bone regeneration in bone fractures, non-union, and osteonecrosis, in English language, with level of evidence I, II, III, and IV. Relevant data (type of study, number of patients, BMPs delivery material, dose, site, follow-up, outcome, and adverse events) were extracted and analyzed. Forty-four articles met the inclusion criteria: 10 randomized controlled trials (RCTs), 7 comparative studies, 18 case series, and 9 case reports. rhBMP-2 was documented mainly for the treatment of fractures, and rhBMP-7 mainly for non-unions and osteonecrosis. Mixed results were found among RCTs and comparative papers: 11 reported positive results for BMPs augmentation, 3 obtained no significant effects, and 2 showed negative results. The only study comparing the two BMPs showed a better outcome with rhBMP-2 for non-union treatment. Clinical evidence on BMPs use for the treatment of fractures, non-union, and osteonecrosis is still controversial, with the few available reports being mainly of low quality. While positive findings have been described in many studies, mixed results are still present in the literature in terms of efficacy and adverse events. The difficulties in drawing clear conclusions are also due to the studies heterogeneity, mainly in terms of different BMPs applied, with different concomitant treatments for each bone pathology. Therefore, further research with well-designed studies is needed in order to

  14. Bone-Immune Cell Crosstalk: Bone Diseases

    PubMed Central

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma. PMID:26000310

  15. Bone-immune cell crosstalk: bone diseases.

    PubMed

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta; Brunetti, Giacomina

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.

  16. Muscle changes can account for bone loss after botulinum toxin injection.

    PubMed

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-12-01

    Studies to date have assumed that botulinum toxin type A (BTX) affects bone indirectly, through its action on muscle. We hypothesized that BTX has no discernable effect on bone morphometry, independent of its effect on muscle. Therefore, we investigated whether BTX had an additional effect on bone when combined with tenotomy compared to tenotomy in isolation. Female BALB/c mice (n = 73) underwent one of the following procedures in the left leg: BTX injection and Achilles tenotomy (BTX-TEN), BTX injection and sham surgery (BTX-sham), Achilles tenotomy (TEN), or sham surgery (sham). BTX groups were injected with 20 μL of BTX (1 U/100 g) in the posterior lower hindlimb. At 4 weeks, muscle cross-sectional area (MCSA) and tibial bone morphometry were assessed using micro-CT. Each treatment, other than sham, resulted in significant muscle and bone loss (P < 0.05). BTX-TEN experienced the greatest muscle loss (23-45% lower than other groups) and bone loss (20-30% lower bone volume fraction than other groups). BTX-sham had significantly lower MCSA and bone volume fraction than TEN and sham. After adjusting for differences in MCSA, there were no significant between-group differences in bone properties. We found that BTX injection resulted in more adverse muscle and bone effects than tenotomy and that effects were amplified when the procedures were combined. However, between-group differences in bone could be accounted for by MCSA. We conclude that any independent effect of BTX on bone morphometry is likely small or negligible compared with the effect on muscle.

  17. Parameters affecting mechanical and thermal responses in bone drilling: A review.

    PubMed

    Lee, JuEun; Chavez, Craig L; Park, Joorok

    2018-04-11

    Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Bone development in black ducks as affected by dietary toxaphene

    USGS Publications Warehouse

    Mehrle, P.M.; Finley, M.T.; Ludke, J.L.; Mayer, F.L.; Kaiser, T.E.

    1979-01-01

    Black ducks, Anas rubripes, were exposed to dietary toxaphene concentrations of 0, 10, or 50 μg/g of food for 90 days prior to laying and through the reproductive season. Toxaphene did not affect reproduction or survival, but reduced growth and impaired backbone development in ducklings. Collagen, the organic matrix of bone, was decreased significantly in cervical vertebrae of ducklings fed 50 μg/g, and calcium conentrations increased in vertebrae of ducklings fed 10 or 50 μg/g. The effects of toxaphene were observed only in female ducklings. In contrast to effects on vertebrae, toxaphene exposure did not alter tibia development. Toxaphene residues in carcasses of these ducklings averaged slightly less than the dietary levels.

  19. Experimental variation of the level and the ratio of angiogenic and osteogenic signaling affects the spatiotemporal expression of bone-specific markers and organization of bone formation in ectopic sites.

    PubMed

    Moser, Norman; Goldstein, Jan; Kauffmann, Phillip; Epple, Matthias; Schliephake, Henning

    2018-04-01

    The aim of the present study was to test the hypothesis that the ratio of angiogenic and osteogenic signaling affects ectopic bone formation when delivered in different amounts. Porous composite PDLLA/CaCO 3 scaffolds were loaded with rhBMP2 and rhVEGF in different dosage combinations and implanted into the gluteal muscles of 120 adult male Wistar rats. Bone formation and expression of alkaline phosphatase and Runx2 were quantified by histomorphometry. Spatial distribution across the scaffolds was assessed by using a grid that discriminated between the periphery and center of the scaffolds. The evaluation showed that the combined delivery of bone morphogenetic protein BMP2 and VEGF in different dosage combinations did not enhance the overall quantity of ectopic bone formation compared to the delivery of BMP2 alone. The addition of VEGF generally upregulated Runx2 after 4 weeks, which may have retarded terminal osteogenic differentiation. However, slow combined delivery of 1.5-2.0 μg BMP2 combined with 50 ng VEGF165 over a period of 5 weeks supported a more even distribution of bone formation across the implanted scaffolds whereas higher amounts of VEGF did not elicit this effect. The findings suggest that structural organization rather than the quantity of ectopic bone formation is affected by the dosage and the ratio of BMP2 and VEGF levels at the observed intervals. The development of carriers for dual growth factor delivery has to take into account the necessity to carefully balance the ratio of growth release.

  20. PTH (1-34) affects bone turnover governed by osteocytes exposed to fluoride.

    PubMed

    Yu, Xiuhua; Yu, Haolan; Jiang, Ningning; Zhang, Xiuyun; Zhang, Mengmeng; Xu, Hui

    2018-05-15

    Exposure to fluoride from environmental sources remains an overlooked, but serious public health risk. In this study, we looked into the role osteocytes play on the mechanism underlying fluoride induced osteopathology. We analyzed bone formation and resorption related genes generated by osteocytes that were exposed to varied doses of fluoride with and without PTH in vitro. Correspondingly, osteogenesis and osteoclastogenesis related genes were also investigated in rats exposed to fluoride for 8 weeks, and the PTH(1-34)was applied at the last 3 weeks to observe its role in regulating bone turnover upon fluoride treatment. The data in vitro indicated that fluoride treatment inhibited Sost expression of mRNA and protein and stimulated RANKL mRNA protein expression as well as the RANKL/OPG ratio in the primary osteocytes. Single PTH treatment played the similar role on expression of these genes and proteins. The PTH combined administration enhanced the action of fluoride treatment on RNAKL/OPG and SOST/Sclerostin. The up-regulation of RANKL and decreasing of Sost induced by fluoride and/or PTH treatment was validated in vivo and suggests that osteocytes are a major source of RANKL and Sost, both of which play essential roles in fluoride affecting osteogenesis and osteoclastogenesis. Expression of Wnt/β-catenin was up-regulated in both in vitro osteocytes treated with high dose of fluoride and bone tissue of rats in the presence of fluoride and PTH. In vivo, fluoride and single PTH stimulated bone turnover respectively, furthermore, PTH combined with low dose of fluoride treatment reinforced the osteogenesis and osteoclastogenesis genes expression, however, co-treatment of PTH reversed the effect of high dose of fluoride on osteogenesis and osteoclastogenensis related factors. In conclusion, this study demonstrated that osteocytes play a key role in fluoride activated bone turnover, and PTH participates in the process of fluoride modulating SOST/Sclerostin and RANKL

  1. [Bone quantitative ultrasound].

    PubMed

    Matsukawa, Mami

    2016-01-01

    The conventional ultrasonic bone densitometry system can give us information of bone as ultrasonic wave velocity and attenuation. However, the data reflect both structural and material properties of bone. In order to focus only on the bone matrix properties without the effect of bone structure, studies of microscopic Brillouin scattering technique are introduced. The wave velocity in a trabecula was anisotropic and depended on the position and structure of the cancellous bone. The glycation also affected on the wave velocities in bone. As a new bone quality, the piezoelectricity of bone is also discussed.

  2. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.

    PubMed

    Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh

    2014-06-01

    Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.

  3. Adverse childhood experiences and health anxiety in adulthood.

    PubMed

    Reiser, Sarah J; McMillan, Katherine A; Wright, Kristi D; Asmundson, Gordon J G

    2014-03-01

    Childhood experiences are thought to predispose a person to the development of health anxiety later in life. However, there is a lack of research investigating the influence of specific adverse experiences (e.g., childhood abuse, household dysfunction) on this condition. The current study examined the cumulative influence of multiple types of childhood adversities on health anxiety in adulthood. Adults 18-59 years of age (N=264) completed a battery of measures to assess adverse childhood experiences, health anxiety, and associated constructs (i.e., negative affect and trait anxiety). Significant associations were observed between adverse childhood experiences, health anxiety, and associated constructs. Hierarchical multiple regression analysis indicted that adverse childhood experiences were predictive of health anxiety in adulthood; however, the unique contribution of these experience were no longer significant following the inclusion of the other variables of interest. Subsequently, mediation analyses indicated that both negative affect and trait anxiety independently mediated the relationship between adverse childhood experiences and health anxiety in adulthood. Increased exposure to adverse childhood experiences is associated with higher levels of health anxiety in adulthood; this relationship is mediated through negative affect and trait anxiety. Findings support the long-term negative impact of cumulative adverse childhood experiences and emphasize the importance of addressing negative affect and trait anxiety in efforts to prevent and treat health anxiety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Cabozantinib Affects Osteosarcoma Growth Through A Direct Effect On Tumor Cells and Modifications In Bone Microenvironment.

    PubMed

    Fioramonti, M; Fausti, V; Pantano, F; Iuliani, M; Ribelli, G; Lotti, F; Pignochino, Y; Grignani, G; Santini, D; Tonini, G; Vincenzi, B

    2018-03-08

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone. Due to its high heterogeneity and to survival signals from bone microenvironment, OS can resist to standard treatments, therefore novel therapies are needed. c-MET oncogene, a tyrosine-kinase receptor, plays a crucial role in OS initiation and progression. The present study aimed to evaluate the effect of c-MET inhibitor cabozantinib (CBZ) on OS both directly and through its action on bone microenvironment. We tested different doses of CBZ in in vitro models of OS alone or in co-culture with bone cells in order to reproduce OS-tumor microenvironment interactions. CBZ is able to decrease proliferation and migration of OS cells, inhibiting ERK and AKT signaling pathways. Furthermore, CBZ leads to the inhibition of the proliferation of OS cells expressing receptor activator of nuclear factor κB (RANK), due to its effect on bone microenvironment, where it causes an overproduction of osteoprotegerin and a decrease of production of RANK ligand by osteoblasts. Overall, our data demonstrate that CBZ might represent a new potential treatment against OS, affecting both OS cells and their microenvironment. In this scenario, RANK expression in OS cells could represent a predictive factor of better response to CBZ treatment.

  5. Evidence Report: Risk of Bone Fracture due to Spaceflight-Induced Changes to Bone

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Evans, Harlan J.; Smith, Scott A.; Spector, Elisabeth R.; Yardley, Greg; Myer, Jerry

    2017-01-01

    Given that spaceflight may induce adverse changes in bone ultimate strength with respect to mechanical loads during and post-mission, there is a possibility a fracture may occur for activities otherwise unlikely to induce fracture prior to initiating spaceflight.

  6. Structured vs. Unstructured: Factors Affecting Adverse Drug Reaction Documentation in an EMR Repository

    PubMed Central

    Skentzos, Stephen; Shubina, Maria; Plutzky, Jorge; Turchin, Alexander

    2011-01-01

    Adverse reactions to medications to which the patient was known to be intolerant are common. Electronic decision support can prevent them but only if history of adverse reactions to medications is recorded in structured format. We have conducted a retrospective study of 31,531 patients with adverse reactions to statins documented in the notes, as identified with natural language processing. The software identified statin adverse reactions with sensitivity of 86.5% and precision of 91.9%. Only 9020 of these patients had an adverse reaction to a statin recorded in structured format. In multivariable analysis the strongest predictor of structured documentation was utilization of EMR functionality that integrated the medication list with the structured medication adverse reaction repository (odds ratio 48.6, p < 0.0001). Integration of information flow between EMR modules can help improve documentation and potentially prevent adverse drug events. PMID:22195188

  7. Diagnosis of potential stressors adversely affecting benthic invertebrate communities in Greenwich Bay, Rhode Island, USA.

    PubMed

    Pelletier, Marguerite; Ho, Kay; Cantwell, Mark; Perron, Monique; Rocha, Kenneth; Burgess, Robert M; Johnson, Roxanne; Perez, Kenneth; Cardin, John; Charpentier, Michael A

    2017-02-01

    Greenwich Bay is an urbanized embayment of Narragansett Bay potentially impacted by multiple stressors. The present study identified the important stressors affecting Greenwich Bay benthic fauna. First, existing data and information were used to confirm that the waterbody was impaired. Second, the presence of source, stressor, and effect were established. Then linkages between source, stressor, and effect were developed. This allows identification of probable stressors adversely affecting the waterbody. Three pollutant categories were assessed: chemicals, nutrients, and suspended sediments. This weight of evidence approach indicated that Greenwich Bay was primarily impacted by eutrophication-related stressors. The sediments of Greenwich Bay were carbon enriched and low dissolved oxygen concentrations were commonly seen, especially in the western portions of Greenwich Bay. The benthic community was depauperate, as would be expected under oxygen stress. Although our analysis indicated that contaminant loads in Greenwich Bay were at concentrations where adverse effects might be expected, no toxicity was observed, as a result of high levels of organic carbon in these sediments reducing contaminant bioavailability. Our analysis also indicated that suspended sediment impacts were likely nonexistent for much of the Bay. This analysis demonstrates that the diagnostic procedure was useful to organize and assess the potential stressors impacting the ecological well-being of Greenwich Bay. This diagnostic procedure is useful for management of waterbodies impacted by multiple stressors. Environ Toxicol Chem 2017;36:449-462. © 2016 SETAC. © 2016 SETAC.

  8. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fränzle, Andrea, E-mail: a.fraenzle@dkfz.de; Giske, Kristina; Bretschi, Maren

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approachmore » is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way

  9. Can aircraft noise less than or equal 115 to dBA adversely affect reproductive outcome in USAF women?

    NASA Astrophysics Data System (ADS)

    Brubaker, P. A.

    1985-06-01

    It has been suggested, mainly through animal studies, that exposure to high noise levels may be associated with lower birth weight, reduced gestational length and other adverse reproductive outcomes. Few studies have been done on humans to show this association. The Air Force employs pregnant women in areas where there is a high potential for exposure to high noise levels. This study proposes a method to determine if there is an association between high frequency noise levels or = 115 dBA and adverse reproductive outcomes through a review of records and self-administered questionnaires in a case-comparison design. Prevelance rates will be calculated and a multiple logistic regression analysis computed for the independent variables that can affect reproduction.

  10. Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone.

    PubMed

    Kim, Beom-Jun; Kwak, Mi Kyung; Ahn, Seong Hee; Kim, Hyeonmok; Lee, Seung Hun; Song, Kee-Ho; Suh, Sunghwan; Kim, Jae Hyeon; Koh, Jung-Min

    2017-08-01

    Despite the apparent biological importance of sympathetic activity on bone metabolism in rodents, its role in humans remains questionable. To clarify the link between the sympathetic nervous system and the skeleton in humans. Among 620 consecutive subjects with newly diagnosed adrenal incidentaloma, 31 patients with histologically confirmed pheochromocytoma (a catecholamine-secreting neuroendocrine tumor) and 280 patients with nonfunctional adrenal incidentaloma were defined as cases and controls, respectively. After adjustment for confounders, subjects with pheochromocytoma had 7.2% lower bone mass at the lumbar spine and 33.5% higher serum C-terminal telopeptide of type 1 collagen (CTX) than those without pheochromocytoma (P = 0.016 and 0.001, respectively), whereas there were no statistical differences between groups in bone mineral density (BMD) at the femur neck and total hip and in serum bone-specific alkaline phosphatase (BSALP) level. The odds ratio (OR) for lower BMD at the lumbar spine in the presence of pheochromocytoma was 3.31 (95% confidence interval, 1.23 to 8.56). However, the ORs for lower BMD at the femur neck and total hip did not differ according to the presence of pheochromocytoma. Serum CTX level decreased by 35.2% after adrenalectomy in patients with pheochromocytoma, whereas serum BSALP level did not change significantly. This study provides clinical evidence showing that sympathetic overstimulation in pheochromocytoma can contribute to adverse effects on human bone through the increase of bone loss (especially in trabecular bone), as well as bone resorption. Copyright © 2017 Endocrine Society

  11. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    PubMed

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  12. Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats

    USDA-ARS?s Scientific Manuscript database

    High protein diets may attenuate bone loss during energy restriction (ER). The objective of the current study was to determine whether high protein diets suppress bone turnover and improve bone quality in rats during ER and whether dietary protein source affects this relationship. Eighty 12-week o...

  13. Inflammation, Fracture and Bone Repair

    PubMed Central

    Loi, Florence; Córdova, Luis A.; Pajarinen, Jukka; Lin, Tzu-hua; Yao, Zhenyu; Goodman, Stuart B.

    2016-01-01

    The reconstitution of lost bone is a subject that is germane to many orthopaedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk amongst inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair. PMID:26946132

  14. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    PubMed

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  15. Bone involvement in adult patients affected with Ehlers-Danlos syndrome.

    PubMed

    Eller-Vainicher, C; Bassotti, A; Imeraj, A; Cairoli, E; Ulivieri, F M; Cortini, F; Dubini, M; Marinelli, B; Spada, A; Chiodini, I

    2016-08-01

    The Ehlers-Danlos syndrome is characterized by abnormal connective tissue but bone involvement is debated. We found a reduced BMD and bone quality and increased prevalence of asymptomatic vertebral fractures in eugonadal patients with Ehlers-Danlos syndrome. These findings suggest the need of a bone health evaluation in these patients. The Ehlers-Danlos (EDS) syndrome is characterized by abnormalities of the connective tissue leading to ligamentous laxity and skin and tissue fragility. We evaluated the bone metabolism, bone mineral density (BMD) and bone quality (measured by trabecular bone score, TBS), and the prevalence of vertebral fractures (VFx) in a group of eugonadal adult EDS patients. Fifty consecutive Caucasian patients, aged 30-50 years (36 females, 14 males) with classical or hypermobility EDS and 50 age-, gender-, and body mass index (BMI)-matched control subjects were enrolled. In all subjects' calcium-phosphorous metabolism, bone turnover, BMD at the lumbar spine (LS) and femur (femoral neck, FN and total femur, FT) and TBS by dual-energy X-ray absorptiometry, and the VFx presence by spine radiograph were assessed. Patients showed reduced BMD (Z-scores LS -0.45 ± 1.00, FN -0.56 ± 1.01, FT -0.58 ± 0.92) and TBS (1.299 ± 0.111) and increased prevalence of morphometric VFx (32 %) than controls (Z-scores LS 0.09 ± 1.22, FN 0.01 ± 0.97, FT 0.08 ± 0.89; TBS 1.382 ± 0.176; VFx 8 %, p <0.05 for all comparisons), while vitamin D levels, calcium-phosphorous metabolism, and bone turnover were comparable. Fractured EDS patients showed lower TBS values than non-fractured ones (1.245 ± 0.138 vs 1.325 ± 0.086, p < 0.05), despite comparable BMD. In EDS patients, the VFx presence was significantly associated with TBS even after adjusting for sex, age, BMD, EDS type, and falls frequency. EDS patients have reduced BMD and bone quality (as measured by TBS) and increased prevalence of VFx.

  16. Advance Care Planning Does Not Adversely Affect Hope or Anxiety Among Patients With Advanced Cancer.

    PubMed

    Green, Michael J; Schubart, Jane R; Whitehead, Megan M; Farace, Elana; Lehman, Erik; Levi, Benjamin H

    2015-06-01

    Many physicians avoid advance care planning (ACP) discussions because they worry such conversations will lead to psychological distress. To investigate whether engaging in ACP using online planning tools adversely affects hope, hopelessness, or anxiety among patients with advanced cancer. Patients with advanced cancer and an estimated survival of two years or less (Intervention group) and a Control group were recruited at a tertiary care academic medical center (2007-2012) to engage in ACP using an online decision aid ("Making Your Wishes Known"). Pre/post and between-group comparisons were made, including hope (Herth Hope Index), hopelessness (Beck Hopelessness Scale), and anxiety (State Trait Anxiety Inventory). Secondary outcomes included ACP knowledge, self-determination, and satisfaction. A total of 200 individuals completed the study. After engaging in ACP, there was no decline in hope or increase in hopelessness in either the Control or Intervention group. Anxiety was likewise unchanged in the Control group but decreased slightly in the Intervention group. Knowledge of ACP (% correct answers) increased in both the groups, but more so in the Intervention group (13% increase vs. 4%; P<0.01). Self-determination increased slightly in both groups, and satisfaction with the ACP process was greater (P<0.01) in the Intervention than Control group. Engaging in ACP with online planning tools increases knowledge without diminishing hope, increasing hopelessness, or inducing anxiety in patients with advanced cancer. Physicians need not avoid ACP out of concern for adversely affecting patients' psychological well-being. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  17. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity.

    PubMed

    Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter; van Loon, Jack J W A; Muller, Marc

    2015-01-01

    Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.

  18. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity

    PubMed Central

    Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter

    2015-01-01

    Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity. PMID:26061167

  19. Effect of altered reproductive function and lowered testosterone levels on bone density in male endurance athletes.

    PubMed

    Bennell, K L; Brukner, P D; Malcolm, S A

    1996-09-01

    It is apparent that bone density in male athletes can be reduced without a concomitant decrease in testosterone, suggesting that bone density and testosterone concentrations in the normal range are not closely related in male athletes. Further research is necessary to monitor concurrent changes in bone density and testosterone over a period of time in exercising males. In any case, the effect of exercise on the male reproductive system does not appear as extreme as that which can occur in female athletes, and any impact on bone density is not nearly as evident. These results imply that factors apart from testosterone concentrations must be responsible for the observed osteopenia in some male athletes. Many factors have the potential to adversely affect bone density, independently of alterations in reproductive function. These include low calcium intake, energy deficit, weight loss, psychological stress, and low body fat, all of which may be associated with intense endurance training. Future research investigating skeletal health in male athletes should include a thorough assessment of reproductive function in addition to these other factors.

  20. Bone density and anisotropy affect periprosthetic cement and bone stresses after anatomical glenoid replacement: A micro finite element analysis.

    PubMed

    Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F

    2016-06-14

    Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Predictors of complication for alveolar cleft bone graft.

    PubMed

    Borba, Alexandre Meireles; Borges, Alvaro Henrique; da Silva, Carolina Silvano Vilarinho; Brozoski, Mariana Aparecida; Naclério-Homem, Maria da Graça; Miloro, Michael

    2014-02-01

    We have analysed the predictors of postoperative complications and the need for reoperation after grafting of the alveolar cleft from one specialised cleft centre. The data were obtained from hospital casenotes of patients operated on from December 2004 to April 2010, with a minimum one-year follow-up from the final operation. Independent variables included postoperative complications and the need for reoperation. Conditional variables were sex, age, type of cleft, sides affected, donor area, type of graft material, and the presence of an erupted tooth in contact with the cleft. A total of 71 patients had bone grafted on to the alveolar cleft. The following associations were found to be significant: postoperative complications and need for reoperation (p=0.003); age and complications (p=0.002); affected side and complications (p=0.006); age and reoperation (p=0.000); sex and reoperation (p=0.001); and type of cleft and reoperation (p=0.001). Proper attention should be given to all the variables and risk factors to overcome the many obstacles that might have an adverse influence on a successful outcome of alveolar bone grafting for patients with clefts. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    PubMed

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway. © 2014 Wiley Periodicals, Inc.

  3. Ionizing Radiation Affects Gene Expression in Mouse Skin and Bone

    NASA Technical Reports Server (NTRS)

    Terada, Masahiro; Tahimic, Candice; Sowa, Marianne B.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Alwood, Joshua; Globus, Ruth K.

    2017-01-01

    Future long-duration space exploration beyond low earth orbit will increase human exposure to space radiation and microgravity conditions as well as associated risks to skeletal health. In animal studies, radiation exposure (greater than 1 Gy) is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Definitive measurements and detection of bone loss typically require large and specialized equipment which can make their application to long duration space missions logistically challenging. Towards the goal of developing non-invasive and less complicated monitoring methods to predict astronauts' health during spaceflight, we examined whether radiation induced gene expression changes in skin may be predictive of the responses of skeletal tissue to radiation exposure. We examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR) after exposure to total body irradiation (IR). To investigate the effects of irradiation on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated), and IR (0.5 Gy 56Fe 600 MeV/n and 0.5 Gy 1H 150 MeV/n), euthanized at one and 11 days post-irradiation (IR). To determine the extent of bone loss, tibiae were harvested and cancellous microarchitecture in the proximal tibia quantified ex vivo using microcomputed tomography (microCT). Statistical analysis was performed using Student's t-test. At one day post-IR, expression of FGF18 in skin was significantly greater (3.8X) than sham-irradiated controls, but did not differ at 11 days post IR. Expression levels of other genes associated with antioxidant response (Nfe2l2, FoxO3 and Sod1) and the cell cycle (Trp53, Cdkn1a, Gadd45g) did not significantly differ between the control and IR groups

  4. Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone.

    PubMed

    Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi

    2015-04-01

    Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage

  5. Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    NASA Technical Reports Server (NTRS)

    Alwood, J. S.; Limoli, C. L.; Delp, M. D.; Castillo, A. B.; Globus, R. K.

    2012-01-01

    Weightlessness causes a cephalad fluid shift and reduction in mechanical stimulation, adversely affecting both cortical and trabecular bone tissue in astronauts. In rodent models of weightlessness, the onset of bone loss correlates with reduced skeletal perfusion, reduced and rarified vasculature and lessened vasodilation, which resembles blood-bone symbiotic events that can occur with fracture repair and aging. These are especially serious risks for long term, exploration class missions when astronauts will face the challenge of increased exposure to space radiation and abrupt transitions between different gravity environments upon arrival and return. Previously, we found using the mouse hindlimb unloading model and exposure to heavy ion radiation, both disuse and irradiation cause an acute bone loss that was associated with a reduced capacity to produce bone-forming osteoblasts from the bone marrow. Together, these findings led us to hypothesize that exposure to space radiation exacerbates weightlessness-induced bone loss and impairs recovery upon return, and that treatment with anti-oxidants may mitigate these effects. The specific aims of this recently awarded grant are to: AIM 1 Determine the functional and structural consequences of prolonged weightlessness and space radiation (simulated spaceflight) for bone and skeletal vasculature in the context of bone cell function and oxidative stress. AIM 2 Determine the extent to which an anti-oxidant protects against weightlessness and space radiation-induced bone loss and vascular dysfunction. AIM 3 Determine how space radiation influences later skeletal and vasculature recovery from prolonged weightlessness and the potential of anti-oxidants to preserve adaptive remodeling.

  6. Why Does Military Combat Experience Adversely Affect Marital Relations?

    ERIC Educational Resources Information Center

    Gimbel, Cynthia; Booth, Alan

    1994-01-01

    Describes investigation of ways in which combat decreases marital quality and stability. Results support three models: (1) factors propelling men into combat also make them poor marriage material; (2) combat causes problems that increase marital adversity; and (3) combat intensifies premilitary stress and antisocial behavior which then negatively…

  7. DYSAPOPTOSIS OF OSTEOBLASTS AND OSTEOCYTES INCREASES CANCELLOUS BONE FORMATION BUT EXAGGERATES BONE POROSITY WITH AGE

    PubMed Central

    Jilka, Robert L.; O’Brien, Charles A.; Roberson, Paula K.; Bonewald, Lynda F.; Weinstein, Robert S.; Manolagas, Stavros C.

    2013-01-01

    Skeletal aging is accompanied by decreased cancellous bone mass and increased formation of pores within cortical bone. The latter accounts for a large portion of the increase in non-vertebral fractures after age 65 in humans. We selectively deleted Bak and Bax, two genes essential for apoptosis, in two types of terminally differentiated bone cells: the short-lived osteoblasts that elaborate the bone matrix, and the long-lived osteocytes that are immured within the mineralized matrix and choreograph the regeneration of bone. Attenuation of apoptosis in osteoblasts increased their working lifespan and thereby cancellous bone mass in the femur. In long-lived osteocytes, however, it caused dysfunction with advancing age and greatly magnified intracortical femoral porosity associated with increased production of receptor activator of nuclear factor-κB ligand and vascular endothelial growth factor. Increasing bone mass by artificial prolongation of the inherent lifespan of short-lived osteoblasts, while exaggerating the adverse effects of aging on long-lived osteocytes, highlights the seminal role of cell age in bone homeostasis. In addition, our findings suggest that distress signals produced by old and/or dysfunctional osteocytes are the culprits of the increased intracortical porosity in old age. PMID:23761243

  8. 30 CFR 285.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environmental Effects § 285.816 What must I do if environmental or other conditions adversely affect a cable... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I do if environmental or other... EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Environmental and Safety Management, Inspections, and...

  9. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.

    PubMed

    Karim, Lamya; Vashishth, Deepak

    2012-01-01

    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage.

  10. Heterogeneous Glycation of Cancellous Bone and Its Association with Bone Quality and Fragility

    PubMed Central

    Karim, Lamya; Vashishth, Deepak

    2012-01-01

    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage. PMID:22514706

  11. A high-fat diet can affect bone healing in growing rats.

    PubMed

    Yamanaka, Jéssica Suzuki; Yanagihara, Gabriela Rezende; Carlos, Bruna Leonel; Ramos, Júnia; Brancaleon, Brígida Batista; Macedo, Ana Paula; Issa, João Paulo Mardegan; Shimano, Antônio Carlos

    2018-05-01

    A high-fat diet (HFD) can have a negative effect on bone quality in young and old people. Although bone healing in children is normally efficient, there is no evidence that children who have a diet rich in fat have compromised bone fracture regeneration compared with children with recommended dietary fat levels. The purpose of the present study was to evaluate the effects of an HFD on bone healing in growing female rats. Twenty-six postweaning female Wistar rats were divided into two groups (13 animals per group): a standard diet (SD) group and an HFD (with 60% of energy from fat) group. The rats received the assigned diets for 5 weeks, and in the third week they were submitted to an osteotomy procedure of the left tibia. Body mass and feed intake were recorded during the experiment. One day before euthanasia, an insulin tolerance test was performed. After euthanasia, the tibiae were removed and analyzed by densitometry, mechanical testing, histomorphometry, stereology and immunohistochemistry. An HFD caused an adaptive response to maintain energetic balance by decreasing feed intake and causing insulin insensitivity. There was no change in bone mineral density, collagen amount and immunostaining for bone formation, but maximal load and stiffness were decreased in the HFD group. In addition, bone volume had a tendency to be higher in the SD group than in the HFD group. Compared with rats receiving an SD, growing rats receiving an HFD for 5 weeks had similar bone mineral density but altered mechanical properties at the osteotomy defect site.

  12. Strontium administration in young chickens improves bone volume and architecture but does not enhance bone structural and material strength.

    PubMed

    Shahnazari, M; Lang, D H; Fosmire, G J; Sharkey, N A; Mitchell, A D; Leach, R M

    2007-03-01

    Genetic selection for rapid body growth in broiler chickens has resulted in adverse effects on the skeletal system exemplified by a higher rate of cortical fractures in leg bones. Strontium (Sr) has been reported to have beneficial effects on bone formation and strength. We supplemented the diet of 300-day-old chicks with increasing dosages of Sr (0%, 0.12%, or 0.24%) to study the capacity of the element to improve bone quality and mechanical integrity. Treatment with Sr increased cortical bone volume and reduced bone porosity as measured by micro-computed tomography. The higher level of Sr significantly reduced bone Ca content (34.7%) relative to controls (37.2%), suggesting that Sr replaced some of the Ca in bone. Material properties determined by the three-point bending test showed that bone in the Sr-treated groups withstood greater deformation prior to fracture. Load to failure and ultimate stress were similar across groups. Our results indicate that Sr treatment in rapidly growing chickens induced positive effects on bone volume but did not improve the breaking strength of long bones.

  13. Effect of aromatase inhibition on bone metabolism in elderly hypogonadal men.

    PubMed

    Leder, Benjamin Z; Finkelstein, Joel S

    2005-12-01

    -terminal propeptide of type 1 collagen), serum osteoprotegerin, and total body bone mineral density did not change. These data demonstrate that although short-term administration of anastrozole decreases serum estradiol levels in elderly men with mild hypogonadism, this intervention does not adversely affect bone metabolism over a 12-week period. This lack of an effect may be due to the concomitant increase in testosterone production, the relative modest effect on estradiol production, or a combination of both factors. These results suggest that anastrozole therapy is unlikely to have an adverse effect on bone metabolism when taken over extended periods and may prove to be a valuable method of normalizing testosterone production in older men.

  14. Safety in the operating room during orthopedic trauma surgery-incidence of adverse events related to technical equipment and logistics.

    PubMed

    van Delft, E A K; Schepers, T; Bonjer, H J; Kerkhoffs, G M M J; Goslings, J C; Schep, N W L

    2018-04-01

    Safety in the operating room is widely debated. Adverse events during surgery are potentially dangerous for the patient and staff. The incidence of adverse events during orthopedic trauma surgery is unknown. Therefore, we performed a study to quantify the incidence of these adverse events. Primary objective was to determine the incidence of adverse events related to technical equipment and logistics. The secondary objective was to evaluate the consequences of these adverse events. We completed a cross-sectional observational study to assess the incidence, consequences and preventability of adverse events related to technical equipment and logistics during orthopedic trauma surgery. During a 10 week period, all orthopedic trauma operations were evaluated by an observer. Six types of procedures were differentiated: osteosynthesis; arthroscopy; removal of hardware; joint replacement; bone grafting and other. Adverse events were divided in six categories: staff dependent factors; patient dependent factors; anaesthesia; imaging equipment; operation room equipment and instruments and implants. Adverse events were defined as any factor affecting the surgical procedure in a negative way. Hundred-fifty operative procedures were included. In 54% of the procedures, at least one adverse event occurred. In total, 147 adverse events occurred, with a range of 1-5 per procedure. Most adverse events occurred during joint replacement procedures. Thirty-seven percent of the incidents concerned defect, incorrect connected or absent instruments. In 36% of the procedures adverse events resulted in a prolonged operation time with a median prolongation of 10.0 min. In more than half of orthopedic trauma surgical procedures adverse events related to technical equipment and logistics occurred, most of them could easily be prevented. These adverse events could endanger the safety of the patient and staff and should therefore be reduced. 4.

  15. Are nitrogen-containing intravenous bisphosphonates implicated in osteonecrosis of appendicular bones and bones other than the jaws? A survey and literature review.

    PubMed

    Granite, Edwin L

    2012-04-01

    The purpose of this study was to determine the incidence of osteonecrosis of appendicular bones due to nitrogen-containing intravenous bisphosphonates and the incidence of adverse effects in bones other than the jaws. A detailed search of the professional medical and dental literature was conducted. In addition, a questionnaire was mailed to all known orthopedic surgery training programs in the United States. Programs were queried as to clinical findings and other various scenarios. There was a great paucity of literature that addressed the issue. Of the 154 questionnaires mailed, 29 (19%) were returned. Identification was optional; therefore, it was impossible to determine the geographic origin of the returned questionnaires. No orthopedic surgery training program indicated positive findings of osteonecrosis in the long bones due to nitrogen-containing intravenous bisphosphonates. There were rare reports in the literature of osteonecrosis in other areas of the bony skeleton. On the basis of literature searches and national orthopedic questionnaires, there is only a rare incidence of osteonecrosis of the appendicular bones and bones other than the jaws due to nitrogen-containing intravenous bisphosphonates. There were no reports of adverse long bone effects, based on the questionnaires. There were rare reports in the literature. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Composition and functionality of bone affected by dietary glycated compounds.

    PubMed

    Delgado-Andrade, Cristina; Roncero-Ramos, Irene; Carballo, José; Rufián-Henares, Joséángel; Seiquer, Isabel; Navarro, María Pilar

    2013-04-25

    Our aim was to investigate the effects of Maillard reaction products (MRPs) from bread crust (BC) on bone composition and its mechanical properties, determining whether any such effects are related to the molecular weight of different MRPs. For 88 days after weaning rats were fed a control diet or diets containing BC, or its soluble low molecular weight (LMW), soluble high molecular weight (HMW) or insoluble fractions. Animals' food consumption and body weights were monitored. After sacrifice, the femur, pelvic bone and tibia were removed for composition, physical and biomechanical properties analysis. It was found that body and femur weights, density, volume and organic matrix decreased, whereas pentosidine increased after consumption of experimental diets, especially in the HMW and insoluble groups (104.7 and 102.9 mmol mol(-1) collagen) vs. the control group (41.7 mmol mol(-1) collagen). Bone stiffness fell by 50% in the LMW, HMW and insoluble groups and failure load and energy to failure tended to decrease in the same animals after MRPs intake. Consumption of diets containing assayed MRPs during growth leads to lower bone size and introduces some changes in its mechanical behavior which appear to be related to an increase in the pentosidine level of bone.

  17. Bone Metabolism in Adolescent Athletes With Amenorrhea, Athletes With Eumenorrhea, and Control Subjects

    PubMed Central

    Christo, Karla; Prabhakaran, Rajani; Lamparello, Brooke; Cord, Jennalee; Miller, Karen K.; Goldstein, Mark A.; Gupta, Nupur; Herzog, David B.; Klibanski, Anne; Misra, Madhusmita

    2011-01-01

    OBJECTIVE We hypothesized that, despite increased activity, bone density would be low in athletes with amenorrhea, compared with athletes with eumenorrhea and control subjects, because of associated hypogonadism and would be associated with a decrease in bone formation and increases in bone-resorption markers. METHODS In a cross-sectional study, we examined bone-density measures (spine, hip, and whole body) and body composition by using dual-energy radiograph absorptiometry and assessed fasting levels of insulin-like growth factor I and bone-turnover markers (N-terminal propeptied of type 1 procollagen and N-telopeptide) in 21 athletes with amenorrhea, 18 athletes with eumenorrhea, and 18 control subjects. Subjects were 12 to 18 years of age and of comparable chronologic and bone age. RESULTS Athletes with amenorrhea had lower bone-density z scores at the spine and whole body, compared with athletes with eumenorrhea and control subjects, and lower hip z scores, compared with athletes with eumenorrhea. Lean mass did not differ between groups. However, athletes with amenorrhea had lower BMI z scores than did athletes with eumenorrhea and lower insulin-like growth factor I levels than did control subjects. Levels of both markers of bone turnover were lower in athletes with amenorrhea than in control subjects. BMI z scores, lean mass, insulin-like growth factor I levels, and diagnostic category were important independent predictors of bone mineral density z scores. CONCLUSIONS Although they showed no significant differences in lean mass, compared with athletes with eumenorrhea and control subjects, athletes with amenorrhea had lower bone density at the spine and whole body. Insulin-like growth factor I levels, body-composition parameters, and menstrual status were important predictors of bone density. Follow-up studies are necessary to determine whether amenorrhea in athletes adversely affects the rate of bone mass accrual and therefore peak bone mass. PMID:18519482

  18. Percutaneous osteoplasty with a bone marrow nail for fractures of long bones: experimental study.

    PubMed

    Nakata, Kouhei; Kawai, Nobuyuki; Sato, Morio; Cao, Guang; Sahara, Shinya; Tanihata, Hirohiko; Takasaka, Isao; Minamiguchi, Hiroyuki; Nakai, Tomoki

    2010-09-01

    To develop percutaneous osteoplasty with the use of a bone marrow nail for fixation of long-bone fractures, and to evaluate its feasibility and safety in vivo and in vitro. Six long bones in three healthy swine were used in the in vivo study. Acrylic cement was injected through an 11-gauge bone biopsy needle and a catheter into a covered metallic stent placed within the long bone, creating a bone marrow nail. In the in vitro study, we determined the bending, tug, and compression strengths of the acrylic cement nails 9 cm long and 8 mm in diameter (N = 10). The bending strength of the artificially fractured bones (N = 6) restored with the bone marrow nail and cement augmentation was then compared with that of normal long bones (N = 6). Percutaneous osteoplasty with a bone marrow nail was successfully achieved within 1 hour for all swine. After osteoplasty, all swine regained the ability to run until they were euthanized. Blood tests and pathologic findings showed no adverse effects. The mean bending, tug, and compression strengths of the nail were 91.4 N/mm(2) (range, 75.0-114.1 N/mm(2)), 20.9 N/mm(2) (range, 6.6-30.4 N/mm(2)), and 103.0 N/mm(2) (range, 96.3-110.0 N/mm(2)), respectively. The bending strength ratio of artificially fractured bones restored with bone marrow nail and cement augmentation to normal long bone was 0.32. Percutaneous osteoplasty with use of a bone marrow nail and cement augmentation appears to have potential in treating fractures of non-weight-bearing long bones. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.

  19. Effects of rosiglitazone on bone mineral density and remodelling parameters in Postmenopausal diabetic women: a 2-year follow-up study.

    PubMed

    Berberoglu, Zehra; Yazici, Ayse C; Demirag, Nilgun G

    2010-09-01

    To evaluate the effect of rosiglitazone on bone metabolism and bone density. An open-label, randomized, controlled trial of 24-month duration. Patients and measurements Obese, postmenopausal women with newly diagnosed diabetes were studied. Before and after the intervention, metabolic bone markers and bone density were assessed. Twenty-six patients received rosiglitazone (4 mg/day), and 23 remained on diet alone. Serum bone-specific alkaline phosphatase and osteocalcin levels decreased by 17% (P < 0.001 vs control group) and 26% (P < 0.01 vs control group), respectively, in the rosiglitazone group. There were no significant changes in the deoxypyridinoline levels between the two groups. Annual bone loss at the trochanter and at the lumbar spine associated with each year of rosiglitazone use was 2.56% (P = 0.01 vs control group) and 2.18% (P < 0.01 vs control group), respectively. Femoral neck and total hip bone density declined significantly in both groups (P < 0.01, and P = 0.01, respectively) but was not significantly different between the two groups. Rosiglitazone treatment adversely affects bone formation over a 2-year period. It increases bone loss at the lumbar spine and trochanter in postmenopausal, type 2 diabetic women. However, bone loss at the total hip did not differ with use of this agent.

  20. Sexually Dimorphic Responses to Early Adversity: Implications for Affective Problems and Autism Spectrum Disorder

    PubMed Central

    Davis, Elysia Poggi; Pfaff, Donald

    2014-01-01

    During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479

  1. Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone.

    PubMed

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D; Weinstein, Robert S; Manolagas, Stavros C; O'Brien, Charles A

    2015-06-01

    Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. Published by Elsevier Inc.

  2. Suppression of Autophagy in Osteocytes Does Not Modify the Adverse Effects of Glucocorticoids on Cortical Bone

    PubMed Central

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D.; Weinstein, Robert S.; Manolagas, Stavros C.; O’Brien, Charles A.

    2015-01-01

    Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. PMID:25700544

  3. The Lyme Disease Pathogen Borrelia burgdorferi Infects Murine Bone and Induces Trabecular Bone Loss.

    PubMed

    Tang, Tian Tian; Zhang, Lucia; Bansal, Anil; Grynpas, Marc; Moriarty, Tara J

    2017-02-01

    Lyme disease is caused by members of the Borrelia burgdorferi sensu lato species complex. Arthritis is a well-known late-stage pathology of Lyme disease, but the effects of B. burgdorferi infection on bone at sites other than articular surfaces are largely unknown. In this study, we investigated whether B. burgdorferi infection affects bone health in mice. In mice inoculated with B. burgdorferi or vehicle (mock infection), we measured the presence of B. burgdorferi DNA in bones, bone mineral density (BMD), bone formation rates, biomechanical properties, cellular composition, and two- and three-dimensional features of bone microarchitecture. B. burgdorferi DNA was detected in bone. In the long bones, increasing B. burgdorferi DNA copy number correlated with reductions in areal and trabecular volumetric BMDs. Trabecular regions of femora exhibited significant, copy number-correlated microarchitectural disruption, but BMD, microarchitectural, and biomechanical properties of cortical bone were not affected. Bone loss in tibiae was not due to increased osteoclast numbers or bone-resorbing surface area, but it was associated with reduced osteoblast numbers, implying that bone loss in long bones was due to impaired bone building. Osteoid-producing and mineralization activities of existing osteoblasts were unaffected by infection. Therefore, deterioration of trabecular bone was not dependent on inhibition of osteoblast function but was more likely caused by blockade of osteoblastogenesis, reduced osteoblast survival, and/or induction of osteoblast death. Together, these data represent the first evidence that B. burgdorferi infection induces bone loss in mice and suggest that this phenotype results from inhibition of bone building rather than increased bone resorption. Copyright © 2017 Tang et al.

  4. Relationships among diet, physical activity, and dual plane dual-energy X-ray absorptiometry bone outcomes in pre-pubertalgirls.

    PubMed

    Ren, Jie; Brann, Lynn S; Bruening, Kay S; Scerpella, Tamara A; Dowthwaite, Jodi N

    2017-12-01

    -anterior (PA) areal bone mineral density, PA bone mineral content, PA width, lateral (LAT) BMC, "3D" bone cross-sectional area (coronal plane), "3D" PALATIBS, and PALATFRI benefits (p < 0.05). Physical activity, fiber intake, and unsupplemented B 12 intake appear to influence vertebral body bone mass, density, geometry, and strength in well-nourished pre-pubertal girls; high fiber intakes may adversely affect childhood vertebral body growth.

  5. Improved bone status by the beta-blocker propranolol in an animal model of nutritional growth retardation.

    PubMed

    Lezón, Christian E; Olivera, María I; Bozzini, Clarisa; Mandalunis, Patricia; Alippi, Rosa M; Boyer, Patricia M

    2009-06-01

    The aim of the present research was to study if the beta-blocker propranolol, which is known to increase bone mass, could reverse the adverse skeletal effects of mild chronic food restriction in weanling rats. Male Wistar rats were divided into four groups: control, control+propranolol (CP), nutritional growth retardation (NGR) and nutritional growth retardation+propranolol (NGRP). Control and CP rats were fed freely with the standard diet. NGR and NGRP rats received, for 4 weeks, 80 % of the amount of food consumed by the control and CP rats, respectively. Results were expressed as mean values and sem. Food restriction induced detrimental effects on body and femur weight and length (P < 0.05) and bone structural and geometrical properties (P < 0.001), confirming results previously shown in our laboratory. However, the beta-blocker overcame the deleterious effect of nutritional stress on load-bearing capacity, yielding load, bone stiffness, cross-sectional cortical bone area and second moment of inertia of the cross-section in relation to the horizontal axis without affecting anthropometric, histomorphometric and bone morphometric parameters. The results suggest that propranolol administration to mildly chronically undernourished rats markedly attenuates the impaired bone status in this animal model of growth retardation.

  6. Effects of carbohydrase enzyme supplementation on performance, eggshell quality, and bone parameters of laying hens fed on maize- and wheat-based diets.

    PubMed

    Olgun, Osman; Altay, Y; Yildiz, Alp O

    2018-04-01

    1. This study was conducted to determine the effects of enzyme supplementation of maize/wheat-based diets on the performance, egg quality, and serum and bone parameters of laying hens. 2. During the 12-week experimental period, a total of 72 laying hens aged 52 weeks were randomly distributed among 6 experimental groups. Each experimental group contained 4 replicates, each with three birds. The experiment was a randomised design consisting of a 3 × 2 factorial arrangement, with three levels of wheat substitution and two levels of enzyme (xylanase: 1500.00 U/kg, β-glucanase: 100 000 U/kg, cellulase: 1 000 000 U/kg, α-amylase: 160 000 U/kg) inclusion in the diet. Wheat replaced 0, 50, or 100% of maize with or without 1.0 g/kg enzyme supplementation in iso-nitrogenous and iso-caloric experimental diets. 3. Body weight, egg production, egg weight, egg mass, eggshell thickness, and the feed conversion ratio were adversely affected by the wheat-based diet. The eggshell quality parameters decreased with enzyme supplementation to the diet. 4. Wheat-based diets adversely affected calcium and phosphorus concentrations in the tibia, but the addition of the enzymes to the wheat-based diet prevented the negative effects of wheat-based diets on tibia mineralisation in laying hens. The wheat-based diets tended to reduce plasma mineral contents, and the addition of enzymes tended to affect plasma minerals and biomechanical properties of the tibia positively in laying hens. 5. These results indicate that wheat-based diets in aged laying hens adversely affected the mineral metabolism compared with maize-based diets, and the negative effects of wheat on bone mineralisation can be prevented by enzyme supplementation to the diets in laying hens.

  7. Does rotational strain at screw tightening affect the attainment or maintenance of osseointegration?

    PubMed

    Moriya, Katsunori; Maruo, Yukinori; Minagi, Shogo

    2006-08-01

    This study investigated whether rotational strain affects osseointegration. A total of 135 male rats were divided into five groups: 2-w rotation, 4-w rotation, 8-w rotation, 12-w rotation and control. Two hundred and seventy implants were inserted in rat tibia. The control group received no strain, while the 2-w, 4-w, 8-w and 12-w rotation groups received rotational strain at 2, 4, 8 and 12 weeks after implant placement, respectively. Removal torque (N cm) was measured in vivo. Bone contact rate (%) was calculated histomorphologically. Immunostaining for osteonectin (ON), osteopontin (OPN) and osteocalcin (OCN) was performed. The removal torque and bone contact rate were analyzed using one-way analyses of variance and the Scheffé method. At 4 weeks, the torque was significantly higher in the 2-w rotation group (1.30+/-0.44 N cm) than in the control group (0.79+/-0.67 N cm). From 8 to 16 weeks, the strained groups showed no significant differences from the control group. From the bone contact rates, bone formation was larger in the 4-week rotation group (62.9+/-10.7%) than in the control group (42.1+/-17.9%) at 8 weeks. The 4-week rotation group showed higher bone contact rate (61.1+/-11.3%) compared with the other strained groups and maintained this higher value until 16 weeks, showing no significant difference from the control group (72+/-5.2%). At the implant-bone interface, OPN was widely distributed and OCN was detected at a low level; however, ON could not be observed in any group. The bone contact rate changed when rotational strain was exerted at different periods after implant placement. However, the removal torque and distribution of extracellular matrix proteins were not adversely affected by the rotational strain.

  8. Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet

    PubMed Central

    Price, Charles T; Langford, Joshua R; Liporace, Frank A

    2012-01-01

    Osteoporosis and low bone mineral density affect millions of Americans. The majority of adults in North America have insufficient intake of vitamin D and calcium along with inadequate exercise. Physicians are aware that vitamin D, calcium and exercise are essential for maintenance of bone health. Physicians are less likely to be aware that dietary insufficiencies of magnesium, silicon, Vitamin K, and boron are also widely prevalent, and each of these essential nutrients is an important contributor to bone health. In addition, specific nutritional factors may improve calcium metabolism and bone formation. It is the authors’ opinion that nutritional supplements should attempt to provide ample, but not excessive, amounts of factors that are frequently insufficient in the typical American diet. In contrast to dietary insufficiencies, several nutrients that support bone health are readily available in the average American diet. These include zinc, manganese, and copper which may have adverse effects at higher levels of intake. Some multivitamins and bone support products provide additional quantities of nutrients that may be unnecessary or potentially harmful. The purpose of this paper is to identify specific nutritional components of bone health, the effects on bone, the level of availability in the average American diet, and the implications of supplementation for each nutritional component. A summary of recommended dietary supplementation is included. PMID:22523525

  9. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis

    PubMed Central

    Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.

    2016-01-01

    A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825

  10. Experiment K-6-05. The maturaton of bone and dentin matrices in rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Simmons, D.; Grynpas, M.; Rosenberg, G.; Durnova, G.

    1990-01-01

    The chemistry, hydroxyapatite crystal size, and maturation of the bone and dentin is characterized in rats exposed to microgravity for 12.5d in a Soviet Biosatellite (Cosmos-1887). Calvarial and vertebral bone ash was subnormal, but contained a normal percent composition of Ca, P, and Mg. These tissues varied from the norm by having lower Ca/P and higher Ca/Mg ratios than any of their age-matched controls (Vivarium and Synchronous Groups). Gradient density analyses (calvaria) indicated a strong shift to the lower sp.gr. fractions which was commensurate with impaired rates of matrix-mineral maturation. X-ray diffraction data were confirmatory. Bone hydroxyapatite crystal growth in Flight rats was preferentially altered in a way to reduce the dimension of their C-axis. Flight rat dentin was normal with respect to age-matched control Ca, P, Mg, and Zn concentrations and their Ca/P and Ca/Mg ratios. These observations affirm the concept that microgravity adversely affects the maturation of newly formed matrix and mineral moieties in bone.

  11. Cancer-associated bone disease.

    PubMed

    Rizzoli, R; Body, J-J; Brandi, M-L; Cannata-Andia, J; Chappard, D; El Maghraoui, A; Glüer, C C; Kendler, D; Napoli, N; Papaioannou, A; Pierroz, D D; Rahme, M; Van Poznak, C H; de Villiers, T J; El Hajj Fuleihan, G

    2013-12-01

    Bone is commonly affected in cancer. Cancer-induced bone disease results from the primary disease, or from therapies against the primary condition, causing bone fragility. Bone-modifying agents, such as bisphosphonates and denosumab, are efficacious in preventing and delaying cancer-related bone disease. With evidence-based care pathways, guidelines assist physicians in clinical decision-making. Of the 57 million deaths in 2008 worldwide, almost two thirds were due to non-communicable diseases, led by cardiovascular diseases and cancers. Bone is a commonly affected organ in cancer, and although the incidence of metastatic bone disease is not well defined, it is estimated that around half of patients who die from cancer in the USA each year have bone involvement. Furthermore, cancer-induced bone disease can result from the primary disease itself, either due to circulating bone resorbing substances or metastatic bone disease, such as commonly occurs with breast, lung and prostate cancer, or from therapies administered to treat the primary condition thus causing bone loss and fractures. Treatment-induced osteoporosis may occur in the setting of glucocorticoid therapy or oestrogen deprivation therapy, chemotherapy-induced ovarian failure and androgen deprivation therapy. Tumour skeletal-related events include pathologic fractures, spinal cord compression, surgery and radiotherapy to bone and may or may not include hypercalcaemia of malignancy while skeletal complication refers to pain and other symptoms. Some evidence demonstrates the efficacy of various interventions including bone-modifying agents, such as bisphosphonates and denosumab, in preventing or delaying cancer-related bone disease. The latter includes treatment of patients with metastatic skeletal lesions in general, adjuvant treatment of breast and prostate cancer in particular, and the prevention of cancer-associated bone disease. This has led to the development of guidelines by several societies and

  12. Cancer-associated bone disease

    PubMed Central

    Body, J.-J.; Brandi, M.-L.; Cannata-Andia, J.; Chappard, D.; El Maghraoui, A.; Glüer, C.C.; Kendler, D.; Napoli, N.; Papaioannou, A.; Pierroz, D.D.; Rahme, M.; Van Poznak, C.H.; de Villiers, T.J.; El Hajj Fuleihan, G.

    2016-01-01

    Bone is commonly affected in cancer. Cancer-induced bone disease results from the primary disease, or from therapies against the primary condition, causing bone fragility. Bone-modifying agents, such as bisphosphonates and denosumab, are efficacious in preventing and delaying cancer-related bone disease. With evidence-based care pathways, guidelines assist physicians in clinical decision-making. Of the 57 million deaths in 2008 worldwide, almost two thirds were due to non-communicable diseases, led by cardiovascular diseases and cancers. Bone is a commonly affected organ in cancer, and although the incidence of metastatic bone disease is not well defined, it is estimated that around half of patients who die from cancer in the USA each year have bone involvement. Furthermore, cancer-induced bone disease can result from the primary disease itself, either due to circulating bone resorbing substances or metastatic bone disease, such as commonly occurs with breast, lung and prostate cancer, or from therapies administered to treat the primary condition thus causing bone loss and fractures. Treatment-induced osteoporosis may occur in the setting of glucocorticoid therapy or oestrogen deprivation therapy, chemotherapy-induced ovarian failure and androgen deprivation therapy. Tumour skeletal-related events include pathologic fractures, spinal cord compression, surgery and radiotherapy to bone and may or may not include hypercalcaemia of malignancy while skeletal complication refers to pain and other symptoms. Some evidence demonstrates the efficacy of various interventions including bone-modifying agents, such as bisphosphonates and denosumab, in preventing or delaying cancer-related bone disease. The latter includes treatment of patients with metastatic skeletal lesions in general, adjuvant treatment of breast and prostate cancer in particular, and the prevention of cancer-associated bone disease. This has led to the development of guidelines by several societies and

  13. Roles of leptin in bone metabolism and bone diseases.

    PubMed

    Chen, Xu Xu; Yang, Tianfu

    2015-09-01

    Adipose tissue has been more accepted as an active contributor to whole body homeostasis, rather than just a fat depot, since leptin, a 16 kDa protein, was discovered as the product of the obese gene in 1994. With more and more studies conducted on this hormone, it has been shown that there is a close relationship between adipose tissue and bone, which have important effects on each other. Bone is the source of many hormones, such as osteocalcin, that can affect energy metabolism and then the anabolism or catabolism of fat tissue. In contrast, the adipose tissue synthesizes and releases a series of adipokines, which are involved in bone metabolism through direct or indirect effects on bone formation and resorption. Interestingly, leptin, one of the most important cytokines derived from fat tissue, seems to account for the largest part of effects on bone, through direct or indirect involvement in bone remodeling and by playing a significant role in many bone diseases, such as osteoporosis, osteoarthritis, rheumatic arthritis, bone tumors and even fractures. In this review, we will discuss the progress in leptin research, particularly focusing on the roles of leptin in bone diseases.

  14. An unreported clindamycin adverse reaction: wrist monoarthritis.

    PubMed

    Alikhani, Ahmad; Salehifar, Ebrahim

    2012-01-01

    Clindamycin is a lincosamide antibiotic which is approved for the treatment of Anaerobic, Streptococcal and Staphylococcal infections. There has been an increased interest in the use of clindamycin since it achieves high intracellular levels in phagocytic cells, high levels in bone and appears to have an antitoxin effect against the toxin elaborating strains of streptococci and staphylococci. Clindamycin is considered as a bacteriostatic antibiotic, while it is bactericidal against some strains of Staphylococci, Streptococci and Anaerobes such as B. fragilis. Its major disadvantage is its propensity to cause antibiotic-associated diarrhea. In spite of expanded use of clindamycin in bone infections, the adverse reactions of this antibiotic are minor. Polyarthritis is a rare adverse effect of this antibiotic. In this case report, we studied a 75-year-old male patient with past history of drop attack and subdural hematoma who developed skull osteomyelitis after the surgery. After two weeks of intravenous antibiotic therapy, wound discharge was stopped and the patient was discharged from the hospital with the maintenance oral antibiotic therapy including clindamycin 300 mg q8 h, ciprofloxacin 500 mg q12 h and rifampin 600 mg fasting. Six days after the beginning of oral antibiotics, right wrist monoarthritis was developed. It was unresponsive to nonsteroidal anti-inflammatory drug and improved after decreased doses of clindamycin. As best as we know, monoarthritis was not reported with clindamycin previously.

  15. Does Cu supplementation affect the mechanical and structural properties and mineral content of red deer antler bone tissue?

    PubMed

    Gambín, P; Serrano, M P; Gallego, L; García, A; Cappelli, J; Ceacero, F; Landete-Castillejos, T

    2017-08-01

    The main factors affecting the mechanical (and other) properties of bone, including antler, are the proportions of ash (especially Ca and P) and collagen content. However, some trace minerals may also play more important roles than would be expected, given their low levels in bone and antler. One such trace mineral is Cu. Here, we studied the effects of Cu supplementation on the mechanical and structural characteristics, and mineral content of antlers from yearling and adult (4 years of age) red deer fed a balanced diet. Deer (n=35) of different ages (21 yearlings and 14 adults) were studied. A total of 18 stags (11 yearlings and 7 adults) were injected with Cu (0.83 mg Cu/kg BW) every 42 days, whereas the remaining 17 (10 yearlings and 7 adults) were injected with physiological saline solution (control group). The Cu content of serum was analysed at the beginning of the trial and 84 days after the first injection to assess whether the injected Cu was mobilized in blood. Also, the mechanical and structural properties of antlers and the mineral content in their cortical walls were examined at three (yearlings) or four (adults) points along the antler beam. The effect of Cu supplementation was different in yearlings and adults. In yearlings, supplementation increased the Cu content of serum by 28%, but did not affect antler properties. However, in adults, Cu supplementation increased the Cu content of serum by 38% and tended to increase the cortical thickness of antlers (P=0.06). Therefore, we conclude that, even in animals receiving balanced diets, supplementation with Cu could increase antler cortical thickness in adult deer, although not in yearlings. This may improve the trophy value of antlers, as well as having potential implications for bones in elderly humans, should Cu supplementation have similar effects on bones as those observed in antlers.

  16. Maturation of bone and dentin matrices in rats flown on the Soviet biosatellite Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Simmons, D. J.; Grynpas, M. D.; Rosenberg, G. D.

    1990-01-01

    We have studied the chemistry, hydroxyapatite crystal size, and maturational changes in bone and dentin from rats exposed to microgravity for 12 days in a Soviet biosatellite (Cosmos 1887). Bone ash was reduced in vertebrae (L5) but not in the non-weight-bearing calvaria or mandibles. All tissues had a relatively normal percentage composition of Ca, P, and Mg. Nevertheless, flight rat calvaria and vertebral tissues tended to exhibit lower Ca/P and higher Ca/Mg ratios that any of their weight-matched controls groups, and gradient density analysis (calvaria) indicated a strong shift to the fractions lower specific gravity that was commensurate with impaired rates of matrix-mineral maturation. X-ray diffraction data were confirmatory. Bone hydroxyapatite crystal growth in the mandibles of flight rats was preferentially altered in such a way as to reduce their size (C-axis dimension). But in the mandibular diastemal region devoid of muscle attachments, flight rat bone and dentin were normal with respect to the Ca, P, Mg, and Zn concentrations and Ca/P and Ca/Mg ratios of age-matched controls. These observations affirm the concept that while microgravity most adversely affects the maturation of newly formed matrix and mineral moieties in weight-bearing bone, such effects occur throughout the skeleton.

  17. Correlates of bone quality in older persons

    PubMed Central

    Lauretani, F.; Bandinelli, S.; Russo, C.R.; Maggio, M.; Di Iorio, A.; Cherubini, A.; Maggio, D.; Ceda, G.P.; Valenti, G.; Guralnik, J.M.; Ferrucci, L.

    2009-01-01

    Purpose of the study In a population-based sample of older persons, we studied the relationship between tibial bone density and geometry and factors potentially affecting osteoporosis. Methods Of the 1260 participants aged 65 years or older eligible for the InCHIANTI study, 1155 received an interview and 915 (79.2%) had complete data on tibial QCTscans and other variables used in the analysis presented here. The final study population included 807 persons (372 men and 435 women, age range 65–96 years) after exclusion of participants affected by bone diseases or treated with drugs that interfere with bone metabolism. Results In both sexes, calf cross-sectional muscle area (CSMA) was significantly and independently associated with total bone cross-sectional area (tCSA) and cortical bone cross-sectional area (cCSA) but not with trabecular or cortical volumetric bone mineral density (vBMD). Bioavailable testosterone (Bio-T) was independently associated with both trabecular and cortical vBMD in both sexes. In women, independently of confounders, 25(OH)-vitamin D was positively associated with tCSA and cortical vBMD, while PTH was negatively associated with cortical vBMD. IL-1 beta was negatively correlated with cortical vBMD in women, while TNF-alpha was associated with enhanced bone geometrical adaptation in men. Conclusions Physiological parameters that are generically considered risk factors for osteoporosis were associated with specific bone parameters assessed by tibial QCT. Factors known to be associated with increased bone reabsorption, such as 25(OH)-vitamin D, PTH and Bio-T, affected mainly volumetric BMD, while factors associated with bone mechanical stimulation, such as CSMA, affected primarily bone geometry. Our results also suggested that pro-inflammatory cytokines might be considered as markers of bone resorption. PMID:16709469

  18. Osthole Stimulates Osteoblast Differentiation and Bone Formation by Activation of β-Catenin–BMP Signaling

    PubMed Central

    Tang, De-Zhi; Hou, Wei; Zhou, Quan; Zhang, Minjie; Holz, Jonathan; Sheu, Tzong-Jen; Li, Tian-Fang; Cheng, Shao-Dan; Shi, Qi; Harris, Stephen E; Chen, Di; Wang, Yong-Jun

    2010-01-01

    Osteoporosis is defined as reduced bone mineral density with a high risk of fragile fracture. Current available treatment regimens include antiresorptive drugs such as estrogen receptor analogues and bisphosphates and anabolic agents such as parathyroid hormone (PTH). However, neither option is completely satisfactory because of adverse effects. It is thus highly desirable to identify novel anabolic agents to improve future osteoporosis treatment. Osthole, a coumarin-like derivative extracted from Chinese herbs, has been shown to stimulate osteoblast proliferation and differentiation, but its effect on bone formation in vivo and underlying mechanism remain unknown. In this study, we found that local injection of Osthole significantly increased new bone formation on the surface of mouse calvaria. Ovariectomy caused evident bone loss in rats, whereas Osthole largely prevented such loss, as shown by improved bone microarchitecture, histomorphometric parameters, and biomechanical properties. In vitro studies demonstrated that Osthole activated Wnt/β-catenin signaling, increased Bmp2 expression, and stimulated osteoblast differentiation. Targeted deletion of the β-catenin and Bmp2 genes abolished the stimulatory effect of Osthole on osteoblast differentiation. Since deletion of the Bmp2 gene did not affect Osthole-induced β-catenin expression and the deletion of the β-catenin gene inhibited Osthole-regulated Bmp2 expression in osteoblasts, we propose that Osthole acts through β-catenin–BMP signaling to promote osteoblast differentiation. Our findings demonstrate that Osthole could be a potential anabolic agent to stimulate bone formation and prevent estrogen deficiency–induced bone loss. © 2010 American Society for Bone and Mineral Research. PMID:20200936

  19. When size matters: differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential.

    PubMed

    Dozza, B; Lesci, I G; Duchi, S; Della Bella, E; Martini, L; Salamanna, F; Falconi, M; Cinotti, S; Fini, M; Lucarelli, E; Donati, D

    2017-04-01

    Demineralized bone matrix (DBM) is a natural, collagen-based, osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM cytocompatibility and osteoinductivity. Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1-2 mm), medium (M, 0.5-1 mm), and small (S, <0.5 mm). After demineralization, the chemical-physical analysis clearly showed a particle size-dependent alteration in collagen structure, with DBM-M being altered but not as much as DBM-S. DBM-M displayed a preferable trend in almost all biological characteristics tested, although all DBM particles revealed an optimal cytocompatibility. Subcutaneous implantation of DBM particles into immunocompromised mice resulted in bone induction only for DBM-M. When sheep MSC were seeded onto particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. In conclusion, the collagen alteration in DBM-M is likely the best condition to promote bone induction in vivo. Furthermore, the choice of 0.5-1 mm particles may enable to obtain more efficient and consistent results among different research groups in bone tissue-engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1019-1033, 2017. © 2017 Wiley Periodicals, Inc.

  20. Hypochlorhydria-induced calcium malabsorption does not affect fracture healing but increases post-traumatic bone loss in the intact skeleton.

    PubMed

    Haffner-Luntzer, Melanie; Heilmann, Aline; Heidler, Verena; Liedert, Astrid; Schinke, Thorsten; Amling, Michael; Yorgan, Timur Alexander; Vom Scheidt, Annika; Ignatius, Anita

    2016-11-01

    Efficient calcium absorption is essential for skeletal health. Patients with impaired gastric acidification display low bone mass and increased fracture risk because calcium absorption is dependent on gastric pH. We investigated fracture healing and post-traumatic bone turnover in mice deficient in Cckbr, encoding a gastrin receptor that affects acid secretion by parietal cells. Cckbr-/- mice display hypochlorhydria, calcium malabsorption, and osteopenia. Cckbr-/- and wildtype (WT) mice received a femur osteotomy and were fed either a standard or calcium-enriched diet. Healed and intact bones were assessed by biomechanical testing, histomorphometry, micro-computed tomography, and quantitative backscattering. Parathyroid hormone (PTH) serum levels were determined by enzyme-linked immunosorbent assay. Fracture healing was unaffected in Cckbr-/- mice. However, Cckbr-/- mice displayed increased calcium mobilization from the intact skeleton during bone healing, confirmed by significantly elevated PTH levels and osteoclast numbers compared to WT mice. Calcium supplementation significantly reduced secondary hyperparathyroidism and bone resorption in the intact skeleton in both genotypes, but more efficiently in WT mice. Furthermore, calcium administration improved bone healing in WT mice, indicated by significantly increased mechanical properties and bone mineral density of the fracture callus, whereas it had no significant effect in Cckbr-/- mice. Therefore, under conditions of hypochlorhydria-induced calcium malabsorption, calcium, which is essential for callus mineralization, appears to be increasingly mobilized from the intact skeleton in favor of fracture healing. Calcium supplementation during fracture healing prevented systemic calcium mobilization, thereby maintaining bone mass and improving fracture healing in healthy individuals whereas the effect was limited by gastric hypochlorhydria. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J

  1. Bone morphogenetic protein-2 and bone therapy: successes and pitfalls.

    PubMed

    Poon, Bonnie; Kha, Tram; Tran, Sally; Dass, Crispin R

    2016-02-01

    Bone morphogenetic proteins (BMPs), more specifically BMP-2, are being increasingly used in orthopaedic surgery due to advanced research into osteoinductive factors that may enhance and improve bone therapy. There are many areas in therapy that BMP-2 is being applied to, including dental treatment, open tibial fractures, cancer and spinal surgery. Within these areas of treatment, there are many reports of successes and pitfalls. This review explores the use of BMP-2 and its successes, pitfalls and future prospects in bone therapy. The PubMed database was consulted to compile this review. With successes in therapy, there were descriptions of a more rapid healing time with no signs of rejection or infection attributed to BMP-2 treatment. Pitfalls included BMP-2 'off-label' use, which lead to various adverse effects. Our search highlighted that optimising treatment with BMP-2 is a direction that many researchers are exploring, with areas of current research interest including concentration and dose of BMP-2, carrier type and delivery. © 2015 Royal Pharmaceutical Society.

  2. Graphite-reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1976-01-01

    Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

  3. Are marginal bone levels and implant stability/mobility affected by single-stage platform switched dental implants? A comparative clinical study.

    PubMed

    Dursun, Erhan; Tulunoglu, Ibrahim; Canpınar, Pınar; Uysal, Serdar; Akalın, Ferda Alev; Tözüm, Tolga F

    2012-10-01

    The aim of this study was to evaluate short-term bone level and stability/mobility measurement alterations at platform switched (PS) and standard platform (SP) implants placed in mandibular premolar/molar regions using a single-stage protocol. Sixteen PS and 16 SP implants restorated with fixed prosthesis were included. Standard implant dimensions were used for both implant systems. After 3 months of osseointegration, implants were connected to abutments and final restorations were performed. Marginal bone loss was measured by standardized periapical radiographs. Implant stability/mobility was determined by resonance frequency analysis (RFA) and mobility measuring (MM) device values. Peri-implant parameters were evaluated with clinical periodontal indices and all parameters were assessed at baseline, 1, 3, and 6 months after the surgery. After 6 months, all implants showed uneventful healing. Radiographic evaluation showed a mean bone loss of 0.72 mm for PS and 0.56 mm for SP implants, and there were no significant differences between implant types. At 6 months, mean implant stability quotient (ISQ) values were 73.38 and 77 for PS and SP implants, respectively. Mean MM values were -4.75 for PS and -6.38 for SP implants. Mean MM values were lower for SP implants compared to PS implants at all time points. No significant differences were detected between implant types according to clinical peri-implant parameters. The micro-gap at crestal level which immediately exposed to the oral cavity in non-submerged two part implants seems to have adverse influence on the marginal bone level. © 2011 John Wiley & Sons A/S.

  4. In peripubertal girls, artistic gymnastics improves areal bone mineral density and femoral bone geometry without affecting serum OPG/RANKL levels.

    PubMed

    Maïmoun, L; Coste, O; Mariano-Goulart, D; Galtier, F; Mura, T; Philibert, P; Briot, K; Paris, F; Sultan, C

    2011-12-01

    Peripubertal artistic gymnasts display elevated areal bone mineral density at various bone sites, despite delayed menarche and a high frequency of menstrual disorders, factors that may compromise bone health. The concomitant improvement in femoral bone geometry and strength suggested that this type of physical activity might have favourable clinical impact. The purpose of this study is to evaluate the effect of artistic gymnastics (GYM) on areal bone mineral density (aBMD), femoral bone geometry and bone markers and its relationship with the osteoprotegerin (OPG)/rank-ligand (RANKL) system in peripubertal girls. Forty-six girls (age 10-17.2 years) were recruited for this study: 23 elite athletes in the GYM group (training 12-30 h/week, age at start of training 5.3 years) and 23 age-matched (± 6 months; leisure physical activity ≤ 3 h/week) controls (CON). The aBMD at whole body, total proximal femur, lumbar spine, mid-radius and skull was determined using dual-X-ray absorptiometry. Hip structural analysis (HSA software) was applied at the femur to evaluate cross-sectional area (CSA, cm(2)), cross-sectional moment of inertia (CSMI, cm(4)), and the section modulus (Z, cm(3)) and buckling ratio at neck, intertrochanteric region and shaft. Markers of bone turnover and OPG/RANKL levels were also analysed. GYM had higher (5.5-16.4%) non-adjusted aBMD and adjusted aBMD for age, fat-free soft tissue and fat mass at all bone sites, skull excepted and the difference increased with age. In the three femoral regions adjusted for body weight and height, CSA (12.5-18%), CSMI (14-18%), Z (15.5-18.6%) and mean cortical thickness (13.6-21%) were higher in GYM than CON, while the buckling ratio (21-27.1%) was lower. Bone markers decreased with age in both groups and GYM presented higher values than CON only in the postmenarchal period. A similar increase in RANKL with age without OPG variation was observed for both groups. GYM is associated not only with an increase in aBMD but

  5. Inulin supplementation reduces the negative effect of a high-fat diet rich in SFA on bone health of growing pigs.

    PubMed

    Sobol, Monika; Raj, Stanisława; Skiba, Grzegorz

    2018-05-01

    Consumption of a high-fat diet, rich in SFA, causes deterioration of bone properties. Some studies suggest that feeding inulin to animals may increase mineral absorption and positively affect bone quality; however, these studies have been carried out only on rodents fed a standard diet. The primary objective of this study was to determine the effect of inulin on bone health of pigs (using it as an animal model for humans) fed a high-fat diet rich in SFA, having an unbalanced ratio of lysine:metabolisable energy. It was hypothesised that inulin reduces the negative effects of such a diet on bone health. At 50 d of age, twenty-one pigs were randomly allotted to three groups: the control (C) group fed a standard diet, and two experimental (T and TI) groups fed a high-fat diet rich in SFA. Moreover, TI pigs consumed an extra inulin supply (7 % of daily feed intake). After 10 weeks, whole-body bone mineral content (P=0·0054) and bone mineral density (P=0·0322) were higher in pigs of groups TI and C compared with those of group T. Femur bone mineral density was highest in pigs in group C, lower in group TI and lowest in group T (P=0·001). Femurs of pigs in groups TI and C had similar, but higher, maximum strength compared with femurs of pigs in group T (P=0·0082). In conclusion, consumption of a high-fat diet rich in SFA adversely affected bone health, but inulin supplementation in such a diet diminishes this negative effect.

  6. Influence of high-fat diet from differential dietary sources on bone mineral density, bone strength, and bone fatty acid composition in rats.

    PubMed

    Lau, Beatrice Y; Fajardo, Val Andrew; McMeekin, Lauren; Sacco, Sandra M; Ward, Wendy E; Roy, Brian D; Peters, Sandra J; Leblanc, Paul J

    2010-10-01

    Previous studies have suggested that high-fat diets adversely affect bone development. However, these studies included other dietary manipulations, including low calcium, folic acid, and fibre, and (or) high sucrose or cholesterol, and did not directly compare several common sources of dietary fat. Thus, the overall objective of this study was to investigate the effect of high-fat diets that differ in fat quality, representing diets high in saturated fatty acids (SFA), n-3 polyunsaturated fatty acids (PUFA), or n-6 PUFA, on femur bone mineral density (BMD), strength, and fatty acid composition. Forty-day-old male Sprague-Dawley rats were maintained for 65 days on high-fat diets (20% by weight), containing coconut oil (SFA; n = 10), flaxseed oil (n-3 PUFA; n = 10), or safflower oil (n-6 PUFA; n = 11). Chow-fed rats (n = 10), at 105 days of age, were included to represent animals on a control diet. Rats fed high-fat diets had higher body weights than the chow-fed rats (p < 0.001). Among all high-fat groups, there were no differences in femur BMD (p > 0.05) or biomechanical strength properties (p > 0.05). Femurs of groups fed either the high n-3 or high n-6 PUFA diets were stronger (as measured by peak load) than those of the chow-fed group, after adjustment for significant differences in body weight (p = 0.001). As expected, the femur fatty acid profile reflected the fatty acid composition of the diet consumed. These results suggest that high-fat diets, containing high levels of PUFA in the form of flaxseed or safflower oil, have a positive effect on bone strength when fed to male rats 6 to 15 weeks of age.

  7. Pediatric inflammatory bowel disease and bone health.

    PubMed

    Mascarenhas, Maria R; Thayu, Meena

    2010-08-01

    Childhood and adolescence are important periods for bone development. Any disease that affects bone health has the potential to affect the bones not only in the short term but also later in life. Bone health abnormalities in patients with inflammatory bowel disease are being increasingly recognized. Screening the at-risk patient is important so that appropriate treatments can be instituted. Treatment options are limited to vitamin D and calcium supplementation, control of underlying disease activity, and appropriate physical activity. The role of bisphosphonates in these patients needs to be better studied, and treatment with bisphosphonates may be considered for some patients in consultation with a bone health expert.

  8. Association of Long-term Proton Pump Inhibitor Therapy with Bone Fractures and effects on Absorption of Calcium, Vitamin B12, Iron, and Magnesium

    PubMed Central

    Ito, Tetsuhide; Jensen, Robert T.

    2010-01-01

    Proton pump inhibitors (PPI) are now one of the most widely used classes of drugs. PPIs have proven to have a very favorable safety profile and it is unusual for a patient to stop these drugs because of side effects. However, increasing numbers of patients are chronically taking PPIs for gastroesophageal reflux disease and a number of other common persistent conditions, therefore the long-term potential adverse effects are receiving increasing attention. One area that is receiving much attention and generally has been poorly studied, is the long-term effects of chronic acid suppression on the absorption of vitamins and nutrients. This area has received increased attention because of the reported potential adverse effect of chronic PPI treatment leading to an increased occurrence of bone fractures. This has led to an increased examination of the effects of PPIs on calcium absorption/metabolism as well as numerous cohort, case control and prospective studies of their ability to affect bone density and cause bone fractures. In this article these studies are systematically examined, as well as the studies of the effects of chronic PPI usage on VB12, iron and magnesium absorption. In general the studies in each of thee areas have led to differing conclusions, but when examined systematically, a number of the studies are showing consistent results that support the conclusion that long-term adverse effects on these processes can have important clinical implications. PMID:20882439

  9. Resiliency in the Face of Adversity: A Short Longitudinal Test of the Trait Hypothesis.

    PubMed

    Karaırmak, Özlem; Figley, Charles

    2017-01-01

    Resilience represents coping with adversity and is in line with a more positive paradigm for viewing responses to adversity. Most research has focused on resilience as coping-a state-based response to adversity. However, a competing hypothesis views resilience or resiliency as a trait that exists across time and types of adversity. We tested undergraduates enrolled in social work classes at a large southern university at two time periods during a single semester using measures of adversity, positive and negative affect, and trait-based resiliency. Consistent with the trait-based resiliency, and in contrast to state-based resilience, resiliency scores were not strongly correlated with adversity at both testing points but were with positive affect, and resiliency scores remained the same over time despite adversity variations. There was no gender or ethnic group difference in resilience scores. Black/African Americans reported significantly less negative affect and more positive affect than White/Caucasians.

  10. Biological Regulation of Bone Quality

    PubMed Central

    Alliston, Tamara

    2014-01-01

    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149

  11. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology.

    PubMed

    Saijo, Hideto; Igawa, Kazuyo; Kanno, Yuki; Mori, Yoshiyuki; Kondo, Kayoko; Shimizu, Koutaro; Suzuki, Shigeki; Chikazu, Daichi; Iino, Mitsuki; Anzai, Masahiro; Sasaki, Nobuo; Chung, Ung-il; Takato, Tsuyoshi

    2009-01-01

    Ideally, artificial bones should be dimensionally compatible with deformities, and be biodegradable and osteoconductive; however, there are no artificial bones developed to date that satisfy these requirements. We fabricated novel custom-made artificial bones from alpha-tricalcium phosphate powder using an inkjet printer and implanted them in ten patients with maxillofacial deformities. The artificial bones had dimensional compatibility in all the patients. The operation time was reduced due to minimal need for size adjustment and fixing manipulation. The postsurgical computed tomography analysis detected partial union between the artificial bones and host bone tissues. There were no serious adverse reactions. These findings provide support for further clinical studies of the inkjet-printed custom-made artificial bones.

  12. Clinical evaluation of an allogeneic bone matrix containing viable osteogenic cells in patients undergoing one- and two-level posterolateral lumbar arthrodesis with decompressive laminectomy.

    PubMed

    Musante, David B; Firtha, Michael E; Atkinson, Brent L; Hahn, Rebekah; Ryaby, James T; Linovitz, Raymond J

    2016-05-27

    Trinity Evolution® cellular bone allograft (TE) possesses the osteogenic, osteoinductive, and osteoconductive elements essential for bone healing. The purpose of this study is to evaluate the radiographic and clinical outcomes when TE is used as a graft extender in combination with locally derived bone in one- and two-level instrumented lumbar posterolateral arthrodeses. In this retrospective evaluation, a consecutive series of subject charts that had posterolateral arthrodesis with TE and a 12-month radiographic follow-up were evaluated. All subjects were diagnosed with degenerative disc disease, radiculopathy, stenosis, and decreased disc height. At 2 weeks and at 3 and 12 months, plain radiographs were performed and the subject's back and leg pain (VAS) was recorded. An evaluation of fusion status was performed at 12 months. The population consisted of 43 subjects and 47 arthrodeses. At 12 months, a fusion rate of 90.7 % of subjects and 89.4 % of surgical levels was observed. High-risk subjects (e.g., diabetes, tobacco use, etc.) had fusion rates comparable to normal patients. Compared with the preoperative leg or back pain level, the postoperative pain levels were significantly (p < 0.0001) improved at every time point. There were no adverse events attributable to TE. Fusion rates using TE were higher than or comparable to fusion rates with autologous iliac crest bone graft that have been reported in the recent literature for posterolateral fusion procedures, and TE fusion rates were not adversely affected by several high-risk patient factors. The positive results provide confidence that TE can safely replace autologous iliac crest bone graft when used as a bone graft extender in combination with locally derived bone in the setting of posterolateral lumbar arthrodesis in patients with or without risk factors for compromised bone healing. Because of the retrospective nature of this study, the trial was not registered.

  13. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo.

    PubMed

    Zara, Janette N; Siu, Ronald K; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M; Ting, Kang; Soo, Chia

    2011-05-01

    The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL.

  14. High Doses of Bone Morphogenetic Protein 2 Induce Structurally Abnormal Bone and Inflammation In Vivo

    PubMed Central

    Zara, Janette N.; Siu, Ronald K.; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M.; Ting, Kang

    2011-01-01

    The major Food and Drug Association–approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL. PMID:21247344

  15. Increasing the amount of corticotomy does not affect orthodontic tooth movement or root resorption, but accelerates alveolar bone resorption in rats.

    PubMed

    Kurohama, Takeshi; Hotokezaka, Hitoshi; Hashimoto, Megumi; Tajima, Takako; Arita, Kotaro; Kondo, Takanobu; Ino, Airi; Yoshida, Noriaki

    2017-06-01

    The purpose of this study was to evaluate the relationships among the volume of bone cut during corticotomy, amount of tooth movement, volume of root resorption, and volume of the resultant alveolar bone resorption after tooth movement. Ten-week-old female Wistar rats were distributed into the corticotomy groups and a control group that underwent sham corticotomy. Two experiments employing two different orthodontic forces (10 or 25g) and experimental periods (14 or 21 days) were performed. The volumes of the bone cut by corticotomy were 0.1, 1.0, and 1.7mm3 in the 25g groups, and 1.0 and 1.7mm3 in the 10g groups. Nickel-titanium closed-coil springs were set on the maxillary left first molars to induce mesial movement. After orthodontic tooth movement, the amount of tooth movement, volume of root resorption, and volume of alveolar bone resorption were measured. Despite differences in the volume of bone cut among the different corticotomy groups, there were not significant differences in the amount of tooth movement and volume of root resorption between the control group and any of the corticotomy groups. However, higher volume of bone cut during corticotomy was significantly related to the decreased alveolar bone volume-in particular, to the reduced height of the alveolar bone crest after tooth movement. The volume of the alveolar bone cut during corticotomy does not affect tooth movement or root resorption in 10-week-old female Wistar rats; however, it may increase alveolar bone loss after tooth movement. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  16. [Impact of thyroid diseases on bone].

    PubMed

    Tsourdi, E; Lademann, F; Siggelkow, H

    2018-05-09

    Thyroid hormones are key regulators of skeletal development in childhood and bone homeostasis in adulthood, and thyroid diseases have been associated with increased osteoporotic fractures. Hypothyroidism in children leads to an impaired skeletal maturation and mineralization, but an adequate and timely substitution with thyroid hormones stimulates bone growth. Conversely, hyperthyroidism at a young age accelerates skeletal development, but may also cause short stature because of a premature fusion of the growth plates. Hypothyroidism in adults causes an increase in the duration of the remodeling cycle and, thus, leads to low bone turnover and enhanced mineralization, but an association with a higher fracture risk is less well established. In adults, a surplus of thyroid hormones enhances bone turnover, mostly due to an increased bone resorption driven by osteoclasts. Thus, hyperthyroidism is a well-recognized cause of high-bone turnover secondary osteoporosis, resulting in an increased susceptibility to fragility fractures. Subclinical hyperthyroidism, especially resulting from endogenous disease, also has an adverse effect on bone mineral density and is associated with fractures. In most patients with overt or subclinical hyperthyroidism restoration of the euthyroid status reverses bone loss. In postmenopausal women who receive thyroid-stimulating hormone suppression therapy because of thyroid cancer, antiresorptive treatments may be indicated. Overall, extensive data support the importance of a euthyroid status for bone mineral accrual and growth in childhood as well as maintenance of bone health in adulthood.

  17. Dexamethasone Enhances Osteogenic Differentiation of Bone Marrow- and Muscle-Derived Stromal Cells and Augments Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2

    PubMed Central

    Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Masaoka, Tomokazu; Xuetao, Wei; Yoshii, Toshitaka; Horie, Masaki; Yasuda, Hiroaki; Uemura, Toshimasa; Okawa, Atsushi; Sotome, Shinichi

    2015-01-01

    We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2. Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2. PMID:25659106

  18. Bone density in the obese child - clinical considerations and diagnostic challenges

    PubMed Central

    Kelley, Jennifer; Crabtree, Nicola; Zemel, Babette S.

    2017-01-01

    The prevalence of obesity in children has reached epidemic proportions. Concern about bone health in obese children, in part, derives from the potentially increased fracture risk associated with obesity. Additional risk factors that affect bone mineral accretion, may also contribute to obesity, such as low physical activity and nutritional factors. Consequences of obesity, such as inflammation, insulin resistance and non-alcoholic fatty liver disease, may also affect bone mineral acquisition, especially during the adolescent years when rapid increases in bone contribute to attaining peak bone mass. Further, numerous pediatric health conditions are associated with excess adiposity, altered body composition or endocrine disturbances that can affect bone accretion. Thus, there is a multitude of reasons for considering clinical assessment of bone health in an obese child. Multiple diagnostic challenges affect the measurement of bone density and its interpretation. These include greater precision error, difficulty in positioning, and the effects of increased lean and fat tissue on bone health outcomes. Future research is required to address these issues to improve bone health assessment in obese children. PMID:28105511

  19. Tumor Trp53 status and genotype affect the bone marrow microenvironment in acute myeloid leukemia

    PubMed Central

    Jacamo, Rodrigo; Davis, R. Eric; Ling, Xiaoyang; Sonnylal, Sonali; Wang, Zhiqiang; Ma, Wencai; Zhang, Min; Ruvolo, Peter; Ruvolo, Vivian; Wang, Rui-Yu; McQueen, Teresa; Lowe, Scott; Zuber, Johannes; Kornblau, Steven M.; Konopleva, Marina; Andreeff, Michael

    2017-01-01

    The genetic heterogeneity of acute myeloid leukemia (AML) and the variable responses of individual patients to therapy suggest that different AML genotypes may influence the bone marrow (BM) microenvironment in different ways. We performed gene expression profiling of bone marrow mesenchymal stromal cells (BM-MSC) isolated from normal C57BL/6 mice or mice inoculated with syngeneic murine leukemia cells carrying different human AML genotypes, developed in mice with Trp53 wild-type or nullgenetic backgrounds. We identified a set of genes whose expression in BM-MSC was modulated by all four AML genotypes tested. In addition, there were sets of differentially-expressed genes in AML-exposed BM-MSC that were unique to the particular AML genotype or Trp53 status. Our findings support the hypothesis that leukemia cells alter the transcriptome of surrounding BM stromal cells, in both common and genotype-specific ways. These changes are likely to be advantageous to AML cells, affecting disease progression and response to chemotherapy, and suggest opportunities for stroma-targeting therapy, including those based on AML genotype. PMID:29137349

  20. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurmio, Mirja, E-mail: Mirja.Nurmio@utu.fi; Department of Pediatrics, University of Turku; Joki, Henna, E-mail: Henna.Joki@utu.fi

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bonemore » physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.« less

  1. Bisphosphonates in chronic kidney disease; balancing potential benefits and adverse effects on bone and soft tissue.

    PubMed

    Toussaint, Nigel D; Elder, Grahame J; Kerr, Peter G

    2009-01-01

    Cardiovascular disease is highly prevalent in chronic kidney disease (CKD) and is often associated with increased vascular stiffness and calcification. Recent studies have suggested a complex interaction between vascular calcification and abnormalities of bone and mineral metabolism, with an inverse relationship between arterial calcification and bone mineral density (BMD). Although osteoporosis is recognized and treated in CKD 1 to 3, the interpretation of BMD levels in the osteoporotic range is controversial in CKD 4, 5, and 5D when renal osteodystrophy is generally present. In addition, there is a paucity of data for patients with CKD mineral and bone disorder (MBD), because studies using bisphosphonates in postmenopausal and glucocorticoid-induced osteoporosis have generally excluded patients with significant CKD. For these patients, treatment of low BMD using standard therapies for osteoporosis is not without potential for harm due to the possibility of worsening low bone turnover, osteomalacia, mixed uraemic osteodystrophy, and of exacerbated hyperparathyroidism; and bisphosphonates should only be used selectively and with caution. Some experimental and clinical studies have also suggested that bisphosphonates may reduce progression of extra-osseous calcification and inhibit the development of atherosclerosis. The authors review the potential benefits and risks associated with bisphosphonate use for bone protection in CKD, and assess their effect on vascular calcification and atherosclerosis.

  2. A Comparative Analysis of Recombinant Human Bone Morphogenetic Protein-2 with a Demineralized Bone Matrix versus Iliac Crest Bone Graft for Secondary Alveolar Bone Grafts in Patients with Cleft Lip and Palate: Review of 501 Cases.

    PubMed

    Hammoudeh, Jeffrey A; Fahradyan, Artur; Gould, Daniel J; Liang, Fan; Imahiyerobo, Thomas; Urbinelli, Leo; Nguyen, JoAnna T; Magee, William; Yen, Stephen; Urata, Mark M

    2017-08-01

    Alveolar cleft reconstruction using iliac crest bone graft is considered standard of care for children with complete cleft lip and palate at the time of mixed dentition. Harvesting bone may result in donor-site morbidity and additional operating time and length of hospitalization. Recombinant human bone morphogenetic protein (rhBMP)-2 with a demineralized bone matrix is an alternative bone source for alveolar cleft reconstruction. The authors investigated the outcomes of rhBMP-2/demineralized bone matrix versus iliac crest bone graft for alveolar cleft reconstruction by reviewing postoperative surgical complications and cleft closure. A retrospective chart review was conducted for 258 rhBMP-2/demineralized bone matrix procedures (mean follow-up, 2.9 years) and 243 iliac crest bone graft procedures (mean follow-up, 4.1 years) on 414 patients over a 12-year period. The authors compared complications, canine eruption, and alveolar cleft closure between the two groups. In the rhBMP-2/demineralized bone matrix group, one patient required prolonged intubation because of intraoperative airway swelling not thought to be caused by rhBMP-2, 36 reported facial swelling and one required outpatient steroids as treatment, and 12 had dehiscence; however, half of these complications resolved without intervention. Twenty-three of the 228 rhBMP-2/demineralized bone matrix patients and 28 of the 242 iliac crest bone graft patients required repeated surgery for alveolar cleft repair. Findings for canine tooth eruption into the cleft site through the graft were similar between the groups. The rhBMP-2/demineralized bone matrix appears to be an acceptable alternative for alveolar cleft repair. The authors found no increase in serious adverse events with the use of this material. Local complications, such as swelling and minor wound dehiscence, predominantly improved without intervention. Therapeutic, III.

  3. The effects on bone cells of metal ions released from orthopaedic implants. A review

    PubMed Central

    Sansone, Valerio; Pagani, Davide; Melato, Marco

    2013-01-01

    Summary The increasing use of orthopedic implants and, in particular, of hip and knee joint replacements for young and active patients, has stimulated interest and concern regarding the chronic, long-term effects of the materials used. This review focuses on the current knowledge of the adverse biologic reactions to metal particles released from orthopaedic implants in vivo and in vitro. More specifically, the purpose of this article is to provide an overview of the current literature about the adverse effects of metal particles on bone cells and peri-implant bone. PMID:23858309

  4. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure.

    PubMed

    Scholz-Ahrens, Katharina E; Ade, Peter; Marten, Berit; Weber, Petra; Timm, Wolfram; Açil, Yahya; Glüer, Claus-C; Schrezenmeir, Jürgen

    2007-03-01

    Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics

  5. Boric acid inhibits alveolar bone loss in rats by affecting RANKL and osteoprotegerin expression.

    PubMed

    Sağlam, M; Hatipoğlu, M; Köseoğlu, S; Esen, H H; Kelebek, S

    2014-08-01

    The goal of the present study was to evaluate the effects of systemic boric acid on the levels of expression of RANKL and osteoprotegerin (OPG) and on histopathologic and histometric changes in a rat periodontitis model. Twenty-four Wistar rats were divided into three groups of eight animals each: nonligated (NL); ligature only (LO); and ligature plus treatment with boric acid (BA) (3 mg/kg per day for 11 d). A 4/0 silk suture was placed in a subgingival position around the mandibular right first molars; after 11 d the rats were killed, and alveolar bone loss in the first molars was histometrically determined. Periodontal tissues were examined histopathologically to assess the differences among the study groups. RANKL and OPG were detected immunohistochemically. Alveolar bone loss was significantly higher in the LO group than in the BA and NL groups (p < 0.05). The number of inflammatory infiltrate and osteoclasts in the LO group was significantly higher than that in the NL and BA groups (p < 0.05). The numbers of osteoblasts in LO and BA groups were significantly higher compared with NL group (p < 0.05). There were significantly more RANKL-positive cells in the LO group than in the BA and NL groups (p < 0.05). There was a higher number of OPG-positive cells in the BA group than in the LO and NL groups (p < 0.05). The present study shows that systemic administration of boric acid may reduce alveolar bone loss by affecting the RANKL/OPG balance in periodontal disease in rats. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Risk factors for alcoholism in the Oklahoma Family Health Patterns project: impact of early life adversity and family history on affect regulation and personality.

    PubMed

    Sorocco, Kristen H; Carnes, Nathan C; Cohoon, Andrew J; Vincent, Andrea S; Lovallo, William R

    2015-05-01

    This study examined the impact of early lifetime adversity (ELA) on affect regulation and personality in persons with family history (FH+) and without (FH-) a family history of alcoholism. We examined the impact of early life adversity in healthy young adults, 18-30 years of age enrolled in a long-term study on risk for alcohol and other substance abuse. ELA was assessed by a composite score of low socioeconomic status and personal experience of physical or sexual abuse and/or separation from parents before age 16, resulting in a score of 0, 1-2, or >3 adverse events. Unstable affect regulation and personality variables were obtained via self-report measures. Higher ELA scores were seen in FH+ (χ(2)=109.2, p<0.0001) and in women (χ(2)=17.82, p=0.0019). Although higher ELA predicted less emotional stability and more behavioral undercontrol, further analysis including both FH and ELA showed that FH+ persons are prone to poor affect regulation, negative moods, and have risky drinking and drug abuse tendencies independent of ELA level. ELA predicts reduced stress reactivity and poorer cognitive control over impulsive behaviors as shown elsewhere. The present work shows that FH+ have poor mood regulation and antisocial characteristics. The greater prevalence of ELA in FH+ persons indicates that life experience and FH+ work in tandem to result in risky patterns of alcohol and drug experimentation to elevate risk for alcoholism. Further studies of genetic and environmental contributions to alcoholism are called for. Published by Elsevier Ireland Ltd.

  7. Increased bone morphogenetic protein 7 signalling in the kidneys of dogs affected with a congenital portosystemic shunt.

    PubMed

    van Dongen, Astrid M; Heuving, Susanne M; Tryfonidou, Marianna A; van Steenbeek, Frank G; Rothuizen, Jan; Penning, Louis C

    2015-05-01

    Dogs with a congenital portosystemic shunt (CPSS) often have enlarged and hyper-filtrating kidneys. Although expression of different growth factors has been well-described in the livers of dogs affected with a CPSS, their expression in the kidneys has yet to be determined. Bone morphogenetic protein 7 (BMP-7), hepatocyte growth factor (HGF) and transforming growth factor (TGF)-β have been implicated in renal development (BMP-7, HGF) or the onset of renal fibrosis (TGF-β). Moreover, BMP-7 and HGF have protective properties in renal fibrosis. In this study, the expression and activity of BMP-7 were investigated in renal biopsies obtained from 13 dogs affected with a CPSS and compared to similar samples from age-matched healthy control dogs. Both quantitative reverse-transcriptase PCR and Western blotting showed up-regulated BMP-7 signalling in kidneys of CPPS-affected dogs. These research findings may help to explain the renal pathology/dysfunction in dogs affected with a CPSS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Diabetes, Biochemical Markers of Bone Turnover, Diabetes Control, and Bone

    PubMed Central

    Starup-Linde, Jakob

    2012-01-01

    Diabetes mellitus is known to have late complications including micro vascular and macro vascular disease. This review focuses on another possible area of complication regarding diabetes; bone. Diabetes may affect bone via bone structure, bone density, and biochemical markers of bone turnover. The aim of the present review is to examine in vivo from humans on biochemical markers of bone turnover in diabetics compared to non-diabetics. Furthermore, the effect of glycemic control on bone markers and the similarities and differences of type 1- and type 2-diabetics regarding bone markers will be evaluated. A systematic literature search was conducted using PubMed, Embase, Cinahl, and SveMed+ with the search terms: “Diabetes mellitus,” “Diabetes mellitus type 1,” “Insulin dependent diabetes mellitus,” “Diabetes mellitus type 2,” “Non-insulin dependent diabetes mellitus,” “Bone,” “Bone and Bones,” “Bone diseases,” “Bone turnover,” “Hemoglobin A Glycosylated,” and “HbA1C.” After removing duplicates from this search 1,188 records were screened by title and abstract and 75 records were assessed by full text for inclusion in the review. In the end 43 records were chosen. Bone formation and resorption markers are investigated as well as bone regulating systems. T1D is found to have lower osteocalcin and CTX, while osteocalcin and tartrate-resistant acid are found to be lower in T2D, and sclerostin is increased and collagen turnover markers altered. Other bone turnover markers do not seem to be altered in T1D or T2D. A major problem is the lack of histomorphometric studies in humans linking changes in turnover markers to actual changes in bone turnover and further research is needed to strengthen this link. PMID:23482417

  9. Adverse reactions associated with acetylcysteine.

    PubMed

    Sandilands, E A; Bateman, D N

    2009-02-01

    Paracetamol (acetaminophen) is one of the most common agents deliberately ingested in self-poisoning episodes and a leading cause of acute liver failure in the western world. Acetylcysteine is widely acknowledged as the antidote of choice for paracetamol poisoning, but its use is not without risk. Adverse reactions, often leading to treatment delay, are frequently associated with both intravenous and oral acetylcysteine and are a common source of concern among treating physicians. A systematic literature review investigating the incidence, clinical features, and mechanisms of adverse effects associated with acetylcysteine. A variety of adverse reactions to acetylcysteine have been described ranging from nausea to death, most of the latter due to incorrect dosing. The pattern of reactions differs with oral and intravenous dosing, but reported frequency is at least as high with oral as intravenous. The reactions to the intravenous preparation result in similar clinical features to true anaphylaxis, including rash, pruritus, angioedema, bronchospasm, and rarely hypotension, but are caused by nonimmunological mechanisms. The precise nature of this reaction remains unclear. Histamine now seems to be an important mediator of the response, and there is evidence of variability in patient susceptibility, with females, and those with a history of asthma or atopy are particularly susceptible. Quantity of paracetamol ingestion, measured through serum paracetamol concentration, is also important as higher paracetamol concentrations protect patients against anaphylactoid effects. Most anaphylactoid reactions occur at the start of acetylcysteine treatment when concentrations are highest. Acetylcysteine also affects clotting factor activity, and this affects the interpretation of minor disturbances in the International Normalized Ratio in the context of paracetamol overdose. This review discusses the incidence, clinical features, underlying pathophysiological mechanisms, and

  10. Biomaterials and bone mechanotransduction

    NASA Technical Reports Server (NTRS)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  11. Bone health in Down syndrome.

    PubMed

    García-Hoyos, Marta; Riancho, José Antonio; Valero, Carmen

    2017-07-21

    Patients with Down syndrome have a number of risk factors that theoretically could predispose them to osteoporosis, such as early aging, development disorders, reduced physical activity, limited sun exposure, frequent comorbidities and use of drug therapies which could affect bone metabolism. In addition, the bone mass of these people may be affected by their anthropometric and body composition peculiarities. In general terms, studies in adults with Down syndrome reported that these people have lower areal bone mineral density (g/cm 2 ) than the general population. However, most of them have not taken the smaller bone size of people with Down syndrome into account. In fact, when body mineral density is adjusted by bone size and we obtain volumetric body mineral density (g/cm 3 ), the difference between both populations disappears. On the other hand, although people with Down syndrome have risk factor of hypovitaminosis D, the results of studies regarding 25(OH)D in this population are not clear. Likewise, the studies about biochemical bone markers or the prevalence of fractures are not conclusive. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  12. The adverse health effects of chronic cannabis use.

    PubMed

    Hall, Wayne; Degenhardt, Louisa

    2014-01-01

    This paper summarizes the most probable of the adverse health effects of regular cannabis use sustained over years, as indicated by epidemiological studies that have established an association between cannabis use and adverse outcomes; ruled out reverse causation; and controlled for plausible alternative explanations. We have also focused on adverse outcomes for which there is good evidence of biological plausibility. The focus is on those adverse health effects of greatest potential public health significance--those that are most likely to occur and to affect a substantial proportion of regular cannabis users. These most probable adverse effects of regular use include a dependence syndrome, impaired respiratory function, cardiovascular disease, adverse effects on adolescent psychosocial development and mental health, and residual cognitive impairment. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Does Simultaneous Liposuction Adversely Affect the Outcome of Thread Lifts? A Preliminary Result.

    PubMed

    Lee, Yong Woo; Park, Tae Hwan

    2018-04-11

    Along with advances in thread lift techniques and materials, ancillary procedures such as fat grafting, liposuction, or filler injections have been performed simultaneously. Some surgeons think that these ancillary procedures might affect the aesthetic outcomes of thread lifting possibly due to inadvertent injury to threads or loosening of soft tissue via passing the cannula in the surgical plane of the thread lifts. The purpose of the current study is to determine the effect of such ancillary procedures on the outcome of thread lifts in the human and cadaveric setting. We used human abdominal tissue after abdominoplasty and cadaveric faces. In the abdominal tissue, liposuction parallel to the parallel axis was performed in one area for 5 min. We counted 30 passes when liposuction was performed in one direction. This was repeated as we changed the direction of passages. The plane of thread lifts (dermal vs subcutaneous) and angle between liposuction and thread lifts (parallel vs perpendicular) were differentiated in this abdominal tissue study group. Then, we performed parallel or perpendicular thread lifts using a small slit incision. Using a tensiometer, the maximum holding strength was measured when pulling the thread out of the skin as much as possible. We also used faces of cadavers to prove whether the finding in human abdominal tissue is really valid with corresponding techniques. Our pilot study using abdominal tissue showed that liposuction after thread lifts adversely affects it regardless of the vector of thread lifts. In the cadaveric study, however, liposuction prior to thread lifting does not significantly affect the holding strength of thread lifts. Liposuction or fat grafting in the appropriate layer would not be a hurdle to safely performing simultaneous thread lifts if the target lift tissue is intra-SMAS or just above the SMAS layer. This journal requires that authors assign a level of evidence to each article. For a full description of these

  14. Bone Metabolism in Anorexia Nervosa

    PubMed Central

    Fazeli, Pouneh K.; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN), a psychiatric disorder predominantly affecting young women, is characterized by self-imposed chronic nutritional deprivation and distorted body image. AN is associated with a number of medical co-morbidities including low bone mass. The low bone mass in AN is due to an uncoupling of bone formation and bone resorption, which is the result of hormonal adaptations aimed at decreasing energy expenditure during periods of low energy intake. Importantly, the low bone mass in AN is associated with a significant risk of fractures and therefore treatments to prevent bone loss are critical. In this review, we discuss the hormonal determinants of low bone mass in AN and treatments that have been investigated in this population. PMID:24419863

  15. Gravity, calcium, and bone - Update, 1989

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Morey-Holton, Emily

    1990-01-01

    Recent results obtained on skeletal adaptation, calcium metabolism, and bone browth during short-term flights and ground simulated-microgravity experiments are presented. Results demonstrate that two principal components of calcium metabolism respond within days to changes in body position and to weightlessness: the calcium endocrine system and bone characteristics. Furthermore, results of recent studies imply that bone biomechanics are more severely affected by spaceflight exposures than is the bone mass.

  16. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. © 2014 American Society for Nutrition.

  17. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis.

    PubMed

    Janas, Aleksandra; Folwarczna, Joanna

    2017-02-01

    The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.

  18. Changes in Mouse Bone Turnover in Response to Microgravity

    NASA Technical Reports Server (NTRS)

    Cheng-Campbell, M.; Blaber, E.; Almeida, E.

    2016-01-01

    Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1a/p21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23% decrease in bone fraction (p=0.005) and 11.91% decrease in bone thickness (p=0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl/6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n=10) and vivarium controls (n=10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered

  19. A new Fe-Mn-Si alloplastic biomaterial as bone grafting material: In vivo study

    NASA Astrophysics Data System (ADS)

    Fântânariu, Mircea; Trincă, Lucia Carmen; Solcan, Carmen; Trofin, Alina; Strungaru, Ştefan; Şindilar, Eusebiu Viorel; Plăvan, Gabriel; Stanciu, Sergiu

    2015-10-01

    Designing substrates having suitable mechanical properties and targeted degradation behavior is the key's development of bio-materials for medical application. In orthopedics, graft material may be used to fill bony defects or to promote bone formation in osseous defects created by trauma or surgical intervention. Incorporation of Si may increase the bioactivity of implant locally, both by enhancing interactions at the graft-host interface and by having a potential endocrine like effect on osteoblasts. A Fe-Mn-Si alloy was obtained as alloplastic graft materials for bone implants that need long recovery time period. The surface morphology of the resulted specimens was investigated using scanning electrons microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffractions (X'Pert equipment) or X-ray dispersive energy analyze (Bruker EDS equipment). This study objective was to evaluate in vivo the mechanisms of degradation and the effects of its implantation over the main metabolic organs. Biochemical, histological, plain X radiography and computed tomography investigations showed good compatibility of the subcutaneous implants in the rat organism. The implantation of the Fe-Mn-Si alloy, in critical size bone (tibiae) defect rat model, did not induced adverse biological reactions and provided temporary mechanical support to the affected bone area. The biodegradation products were hydroxides layers which adhered to the substrate surface. Fe-Mn-Si alloy assured the mechanical integrity in rat tibiae defects during bone regeneration.

  20. Early life adversity and telomere length: a meta-analysis.

    PubMed

    Ridout, K K; Levandowski, M; Ridout, S J; Gantz, L; Goonan, K; Palermo, D; Price, L H; Tyrka, A R

    2018-04-01

    Early adversity, in the form of abuse, neglect, socioeconomic status and other adverse experiences, is associated with poor physical and mental health outcomes. To understand the biologic mechanisms underlying these associations, studies have evaluated the relationship between early adversity and telomere length, a marker of cellular senescence. Such results have varied in regard to the size and significance of this relationship. Using meta-analytic techniques, we aimed to clarify the relationship between early adversity and telomere length while exploring factors affecting the association, including adversity type, timing and study design. A comprehensive search in July 2016 of PubMed/MEDLINE, PsycINFO and Web of Science identified 2462 studies. Multiple reviewers appraised studies for inclusion or exclusion using a priori criteria; 3.9% met inclusion criteria. Data were extracted into a structured form; the Newcastle-Ottawa Scale assessed study quality, validity and bias. Forty-one studies (N=30 773) met inclusion criteria. Early adversity and telomere length were significantly associated (Cohen's d effect size=-0.35; 95% CI, -0.46 to -0.24; P<0.0001). Sensitivity analyses revealed no outlier effects. Adversity type and timing significantly impacted the association with telomere length (P<0.0001 and P=0.0025, respectively). Subgroup and meta-regression analyses revealed that medication use, medical or psychiatric conditions, case-control vs longitudinal study design, methodological factors, age and smoking significantly affected the relationship. Comprehensive evaluations of adversity demonstrated more extensive telomere length changes. These results suggest that early adversity may have long-lasting physiological consequences contributing to disease risk and biological aging.

  1. Gastrointestinal and hematologic adverse events after administration of vincristine, cyclophosphamide, and doxorubicin in dogs with lymphoma that underwent a combination multidrug chemotherapy protocol.

    PubMed

    Tomiyasu, Hirotaka; Takahashi, Masashi; Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2010-11-01

    The present study aimed to objectively evaluate the adverse events after the administration of chemotherapeutic agents used in the University of Wisconsin (UW)-Madison chemotherapy protocol (UW-25) for canine lymphoma, using the Veterinary Co-operative Oncology Group common terminology criteria for adverse events (VCOG-CTCAE). The medical records of 40 dogs with multicentric high-grade lymphoma that underwent UW-25 were reviewed. Gastrointestinal adverse events of grade 2 and above and blood/bone marrow adverse events of all grades were evaluated. Gastrointestinal adverse events occurring at least once during the entire period of UW-25 were observed in 50% (20/40), 17.9% (7/39), and 8.1% (3/37) of the dogs after the administration of vincristine (VCR), cyclophosphamide (CPA), and doxorubicin (DXR), respectively. Blood/bone marrow adverse events occurring at least once during UW-25 were observed in 57.5% (23/40), 41% (16/39), and 8.1% (3/37) of the dogs after the administration of VCR, CPA, and DXR, respectively. The rate of patients that experienced gastrointestinal adverse events was higher after the first administration of VCR than after the first administration of DXR. Findings obtained in this study will be helpful in predicting the adverse events that could occur when dogs with lymphoma are treated with UW-25.

  2. Remnant Woven Bone and Calcified Cartilage in Mouse Bone: Differences between Ages/Sex and Effects on Bone Strength

    PubMed Central

    Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah

    2016-01-01

    Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic

  3. Clinical review: kinase inhibitors: adverse effects related to the endocrine system.

    PubMed

    Lodish, Maya B

    2013-04-01

    The use of kinase inhibitors (KIs) in the treatment of cancer has become increasingly common, and practitioners must be familiar with endocrine-related side effects associated with these agents. This review provides an update to the clinician regarding the management of potential endocrinological effects of KIs. PubMed was employed to identify relevant manuscripts. A review of the literature was conducted, and data were summarized and incorporated. KIs, including small molecule KIs and monoclonal antibodies directed against kinases, have emerged over the past decade as an important class of anticancer agents. KIs specifically interfere with signaling pathways that are dysregulated in certain types of cancers and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. Currently, at least 20 KIs are approved as cancer therapeutics. However, KIs may affect a broad spectrum of targets and may have additional, unidentified mechanisms of action at the cellular level due to overlap between signaling pathways in the tumor cell and endocrine system. Recent reports in the literature have identified side effects associated with KIs, including alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, adrenal function, and glucose metabolism. Clinicians need to monitor the thyroid functions of patients on KIs. In addition, bone density and vitamin D status should be assessed. Special care should be taken to follow linear growth and development in children taking these agents. Clinicians should counsel patients appropriately on the potential adverse effects of KIs on fetal development.

  4. Markers of Bone Metabolism Are Affected by Renal Function and Growth Hormone Therapy in Children with Chronic Kidney Disease

    PubMed Central

    Doyon, Anke; Fischer, Dagmar-Christiane; Bayazit, Aysun Karabay; Canpolat, Nur; Duzova, Ali; Sözeri, Betül; Bacchetta, Justine; Balat, Ayse; Büscher, Anja; Candan, Cengiz; Cakar, Nilgun; Donmez, Osman; Dusek, Jiri; Heckel, Martina; Klaus, Günter; Mir, Sevgi; Özcelik, Gül; Sever, Lale; Shroff, Rukshana; Vidal, Enrico; Wühl, Elke; Gondan, Matthias; Melk, Anette; Querfeld, Uwe; Haffner, Dieter; Schaefer, Franz

    2015-01-01

    Objectives The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort. Methods Bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6–18 years with an estimated glomerular filtration rate (eGFR) of 10–60 ml/min/1.73m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group. Results Standardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score. Conclusion Markers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity. PMID:25659076

  5. The skin tissue is adversely affected by TNF-alpha blockers in patients with chronic inflammatory arthritis: a 5-year prospective analysis

    PubMed Central

    Machado, Natalia P.; dos Reis Neto, Edgard Torres; Soares, Maria Roberta M. P.; Freitas, Daniele S.; Porro, Adriana; Ciconelli, Rozana M.; Pinheiro, Marcelo M.

    2013-01-01

    OBJECTIVE: We evaluated the incidence of and the main risk factors associated with cutaneous adverse events in patients with chronic inflammatory arthritis following anti-TNF-α therapy. METHODS: A total of 257 patients with active arthritis who were taking TNF-α blockers, including 158 patients with rheumatoid arthritis, 87 with ankylosing spondylitis and 12 with psoriatic arthritis, were enrolled in a 5-year prospective analysis. Patients with overlapping or other rheumatic diseases were excluded. Anthropometric, socioeconomic, demographic and clinical data were evaluated, including the Disease Activity Score-28, Bath Ankylosing Spondylitis Disease Activity Index and Psoriasis Area Severity Index. Skin conditions were evaluated by two dermatology experts, and in doubtful cases, skin lesion biopsies were performed. Associations between adverse cutaneous events and clinical, demographic and epidemiological variables were determined using the chi-square test, and logistic regression analyses were performed to identify risk factors. The significance level was set at p<0.05. RESULTS: After 60 months of follow-up, 71 adverse events (73.85/1000 patient-years) were observed, of which allergic and immune-mediated phenomena were the most frequent events, followed by infectious conditions involving bacterial (47.1%), parasitic (23.5%), fungal (20.6%) and viral (8.8%) agents. CONCLUSION: The skin is significantly affected by adverse reactions resulting from the use of TNF-α blockers, and the main risk factors for cutaneous events were advanced age, female sex, a diagnosis of rheumatoid arthritis, disease activity and the use of infliximab. PMID:24141833

  6. Weight-of-evidence evaluation of an adverse outcome ...

    EPA Pesticide Factsheets

    Ongoing honey bee colony losses are of significant international concern because of the essential role these insects play in pollinating staple food crops. Chemical and non-chemical stressors both have been implicated as possible contributors to colony failure, however, the potential role of commonly-used neonicotinoid insecticides has emerged as particularly concerning. Neonicotinoids act on the nicotinic acetylcholine receptor (nAChR) to eliminate target pest insects, however, mounting evidence indicates that these chemicals may adversely affect beneficial pollinators, such as the honey bee, via impacts on learning and memory thereby affecting foraging success. However, the mechanisms linking activation of the nAChR to adverse effects on learning and memory are uncertain. Additionally, clear connections between observed impacts on individual bees and colony level effects are lacking. Therefore, the objective of this work was to develop adverse outcome pathways (AOPs) as a means to evaluate the biological plausibility and empirical evidence supporting (or refuting) the linkage between the nAChR and colony level impacts. Development of these AOPs has led to the identification of research gaps which, for example, may be of high priority in understanding how perturbation of pathways involved in neurotransmission can adversely affect honey bee health, causing colony instability and further failure. From this effort, an AOP network also was developed, laying the f

  7. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.

    PubMed

    Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif

    2018-05-01

    Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.

  8. Effects of simulated weightlessness on bone mineral metabolism

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Bikle, D. D.; Morey-Holton, E.

    1984-01-01

    It is pointed out that prolonged space flight, bedrest, and immobilization are three factors which can produce a negative calcium balance, osteopenia, and an inhibition of bone formation. It is not known whether the effects of gravity on bone mineral metabolism are mediated by systemic endocrine factors which affect all bones simultaneously, or by local factors which affect each bone individually. The present investigation has the objective to test the relative importance of local vs. systemic factors in regulating the bone mineral response to conditions simulating weightlessness. Experiments were conducted with male Sprague-Dawley rats. The test conditions made it possible to compare the data from weighted and unweighted bones in the same animal. The obtained findings indicate that a decrease in bone mass relative to control value occurs rapidly under conditions which simulate certain aspects of weightlessness. However, this decrease reaches a plateau after 10 days.

  9. Do Holocaust survivors show increased vulnerability or resilience to post-Holocaust cumulative adversity?

    PubMed

    Shrira, Amit; Palgi, Yuval; Ben-Ezra, Menachem; Shmotkin, Dov

    2010-06-01

    Prior trauma can hinder coping with additional adversity or inoculate against the effect of recurrent adversity. The present study further addressed this issue by examining whether a subsample of Holocaust survivors and comparison groups, drawn from the Israeli component of the Survey of Health, Ageing, and Retirement in Europe, were differentially affected by post-Holocaust cumulative adversity. Post-Holocaust cumulative adversity had a stronger effect on the lifetime depression of Holocaust survivors than on that of comparisons. However, comparisons were more negatively affected by post-Holocaust cumulative adversity when examining markers of physical and cognitive functioning. Our findings suggest that previous trauma can both sensitize and immunize, as Holocaust survivors show general resilience intertwined with specific vulnerability when confronted with additional cumulative adversity.

  10. Platelet-rich plasma for long bone healing

    PubMed Central

    Lenza, Mário; Ferraz, Silvia de Barros; Viola, Dan Carai Maia; dos Santos, Oscar Fernando Pavão; Cendoroglo, Miguel; Ferretti, Mario

    2013-01-01

    ABSTRACT Objective: To evaluate effectiveness of the use of platelet-rich plasma as coadjuvant for union of long bones. Methods: The search strategy included the Cochrane Library (via Central) and MEDLINE (via PubMed). There were no limits as to language or publication media. The latest search strategy was conducted in December 2011. It included randomized clinical trials that evaluated the use of platelet-rich plasma as coadjuvant medication to accelerate union of long bones (acute fractures, pseudoarthrosis and bone defects). The outcomes of interest for this review include bone regeneration, adverse events, costs, pain, and quality of life. The authors selected eligible studies, evaluated the methodological quality, and extracted the data. It was not possible to perform quantitative analysis of the grouped studies (meta-analyses). Results: Two randomized prospective clinical trials were included, with a total of 148 participants. One of them compared recombinant human morphogenic bone protein-7 versus platelet-rich plasma for the treatment of pseudoarthrosis; the other evaluated the effects of three coadjuvant treatments for union of valgising tibial osteotomies (platelet-rich plasma, platelet-rich plasma plus bone marrow stromal cells, and no coadjuvant treatment). Both had low statistical power and moderate to high risk of bias. Conclusion: There was no conclusive evidence that sustained the use of platelet-rich plasma as a coadjuvant to aid bone regeneration of fractures, pseudoarthrosis, or bone defects. PMID:23579757

  11. Soy Isoflavones and Osteoporotic Bone Loss: A Review with an Emphasis on Modulation of Bone Remodeling

    PubMed Central

    Zheng, Xi; Lee, Sun-Kyeong

    2016-01-01

    Abstract Osteoporosis is an age-related disorder that affects both women and men, although estrogen deficiency induced by menopause accelerates bone loss in older women. As the demographic shifts to a more aged population, a growing number of men and women will be afflicted with osteoporosis. Since the current drug therapies available have multiple side effects, including increased risk of developing certain types of cancer or complications, a search for potential nonpharmacologic alternative therapies for osteoporosis is of prime interest. Soy isoflavones (SI) have demonstrated potential bone-specific effects in a number of studies. This article provides a systematic review of studies on osteoporotic bone loss in relation to SI intake from diet or supplements to comprehensively explain how SI affect the modulation of bone remodeling. Evidence from epidemiologic studies supports that dietary SI attenuate menopause-induced osteoporotic bone loss by decreasing bone resorption and stimulating bone formation. Other studies have also illustrated that bone site-specific trophic and synergistic effects combined with exercise intervention might contribute to improve the bioavailability of SI or strengthen the bone-specific effects. To date, however, the effects of dietary SI on osteoporotic bone loss remain inconclusive, and study results vary from study to study. The current review will discuss the potential factors that result in the conflicting outcomes of these studies, including dosages, intervention materials, study duration, race, and genetic differences. Further well-designed studies are needed to fully understand the underlying mechanism and evaluate the effects of SI on osteoporosis in humans. PMID:26670451

  12. Hydroxychloroquine affects bone resorption both in vitro and in vivo.

    PubMed

    Both, Tim; Zillikens, M Carola; Schreuders-Koedam, Marijke; Vis, Marijn; Lam, Wai-Kwan; Weel, Angelique E A M; van Leeuwen, Johannes P T M; van Hagen, P Martin; van der Eerden, Bram C J; van Daele, Paul L A

    2018-02-01

    We recently showed that patients with primary Sjögren syndrome (pSS) have significantly higher bone mineral density (BMD) compared to healthy controls. The majority of those patients (69%) was using hydroxychloroquine (HCQ), which may have favorable effects on BMD. The aim of the study was to evaluate whether HCQ modulates osteoclast function. Osteoclasts were cultured from PBMC-sorted monocytes for 14 days and treated with different HCQ doses (controls 1 and 5 μg/ml). TRAP staining and resorption assays were performed to evaluate osteoclast differentiation and activity, respectively. Staining with an acidification marker (acridine orange) was performed to evaluate intracellular pH at multiple timepoints. Additionally, a fluorescent cholesterol uptake assay was performed to evaluate cholesterol trafficking. Serum bone resorption marker β-CTx was evaluated in rheumatoid arthritis patients. HCQ inhibits the formation of multinuclear osteoclasts and leads to decreased bone resorption. Continuous HCQ treatment significantly decreases intracellular pH and significantly enhanced cholesterol uptake in mature osteoclasts along with increased expression of the lowdensity lipoprotein receptor. Serum β-CTx was significantly decreased after 6 months of HCQ treatment. In agreement with our clinical data, we demonstrate that HCQ suppresses bone resorption in vitro and decreases the resorption marker β-CTx in vivo. We also showed that HCQ decreases the intracellular pH in mature osteoclasts and stimulates cholesterol uptake, suggesting that HCQ induces osteoclastic lysosomal membrane permeabilization (LMP) leading to decreased resorption without changes in apoptosis. We hypothesize that skeletal health of patients with increased risk of osteoporosis and fractures may benefit from HCQ by preventing BMD loss. © 2017 Wiley Periodicals, Inc.

  13. Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics

    PubMed Central

    Everett, E.T.

    2011-01-01

    Fluorides are present in the environment. Excessive systemic exposure to fluorides can lead to disturbances of bone homeostasis (skeletal fluorosis) and enamel development (dental/enamel fluorosis). The severity of dental fluorosis is also dependent upon fluoride dose and the timing and duration of fluoride exposure. Fluoride’s actions on bone cells predominate as anabolic effects both in vitro and in vivo. More recently, fluoride has been shown to induce osteoclastogenesis in mice. Fluorides appear to mediate their actions through the MAPK signaling pathway and can lead to changes in gene expression, cell stress, and cell death. Different strains of inbred mice demonstrate differential physiological responses to ingested fluoride. Genetic studies in mice are capable of identifying and characterizing fluoride-responsive genetic variations. Ultimately, this can lead to the identification of at-risk human populations who are susceptible to the unwanted or potentially adverse effects of fluoride action and to the elucidation of fundamental mechanisms by which fluoride affects biomineralization. PMID:20929720

  14. Evaluating Weight Status and Sex as Moderators of the Association of Serum Leptin with Bone Mineral Density in Children and Adolescents
.

    PubMed

    Armaiz-Flores, Sara A; Kelly, Nichole R; Galescu, Ovidiu A; Demidowich, Andrew P; Altschul, Anne M; Brady, Sheila M; Hubbard, Van S; Pickworth, Courtney K; Tanofsky-Kraff, Marian; Shomaker, Lauren B; Reynolds, James C; Yanovski, Jack A

    2017-01-01

    Animal studies suggest that leptin may adversely affect bone mineral density (BMD). Clinical studies have yielded conflicting results. We therefore investigated associations between leptin and bone parameters in children. 830 healthy children (age = 11.4 ± 3.1 years; 75% female; BMI standard deviation score [BMIz] = 1.5 ± 1.1) had fasting serum leptin measured with ELISA and body composition by dual-energy X-ray absorptiometry. The main effects for leptin and BMIz plus leptin's interactions with sex and BMIz were examined using hierarchical linear regressions for appendicular, pelvis, and lumbar spine BMD as well as bone mineral content (BMC), and bone area (BA). Accounting for demographic, pubertal development, and anthropometric variables, leptin was negatively and independently associated with lumbar spine BMC and BA, pelvis BA, and leg BA (p < 0.05 for all). Sex, but not BMIz, moderated the associations of leptin with bone parameters. In boys, leptin was negatively correlated with leg and arm BMD, BMC at all bone sites, and BA at the subtotal and lumbar spine (p < 0.01 for all). In girls, leptin was positively correlated with leg and arm BMD (p < 0.05 for both). Independent of body size, leptin is negatively associated with bone measures; however, these associations are moderated by sex: boys, but not girls, have a negative independent association between leptin and BMD.
. © 2017 S. Karger AG, Basel.

  15. Removal of bone in CT angiography by multiscale matched mask bone elimination.

    PubMed

    Gratama van Andel, H A F; Venema, H W; Streekstra, G J; van Straten, M; Majoie, C B L M; den Heeten, G J; Grimbergen, C A

    2007-10-01

    For clear visualization of vessels in CT angiography (CTA) images of the head and neck using maximum intensity projection (MIP) or volume rendering (VR) bone has to be removed. In the past we presented a fully automatic method to mask the bone [matched mask bone elimination (MMBE)] for this purpose. A drawback is that vessels adjacent to bone may be partly masked as well. We propose a modification, multiscale MMBE, which reduces this problem by using images at two scales: a higher resolution than usual for image processing and a lower resolution to which the processed images are transformed for use in the diagnostic process. A higher in-plane resolution is obtained by the use of a sharper reconstruction kernel. The out-of-plane resolution is improved by deconvolution or by scanning with narrower collimation. The quality of the mask that is used to remove bone is improved by using images at both scales. After masking, the desired resolution for the normal clinical use of the images is obtained by blurring with Gaussian kernels of appropriate widths. Both methods (multiscale and original) were compared in a phantom study and with clinical CTA data sets. With the multiscale approach the width of the strip of soft tissue adjacent to the bone that is masked can be reduced from 1.0 to 0.2 mm without reducing the quality of the bone removal. The clinical examples show that vessels adjacent to bone are less affected and therefore better visible. Images processed with multiscale MMBE have a slightly higher noise level or slightly reduced resolution compared with images processed by the original method and the reconstruction and processing time is also somewhat increased. Nevertheless, multiscale MMBE offers a way to remove bone automatically from CT angiography images without affecting the integrity of the blood vessels. The overall image quality of MIP or VR images is substantially improved relative to images processed with the original MMBE method.

  16. Adverse health effects of non-medical cannabis use.

    PubMed

    Hall, Wayne; Degenhardt, Louisa

    2009-10-17

    For over two decades, cannabis, commonly known as marijuana, has been the most widely used illicit drug by young people in high-income countries, and has recently become popular on a global scale. Epidemiological research during the past 10 years suggests that regular use of cannabis during adolescence and into adulthood can have adverse effects. Epidemiological, clinical, and laboratory studies have established an association between cannabis use and adverse outcomes. We focus on adverse health effects of greatest potential public health interest-that is, those that are most likely to occur and to affect a large number of cannabis users. The most probable adverse effects include a dependence syndrome, increased risk of motor vehicle crashes, impaired respiratory function, cardiovascular disease, and adverse effects of regular use on adolescent psychosocial development and mental health.

  17. Changes in bone microstructure and toughness during the healing process of long bones

    NASA Astrophysics Data System (ADS)

    Ishimoto, T.; Nakano, T.; Umakoshi, Y.; Tabata, Y.

    2009-05-01

    It is of great importance to understand how bone defects regain the microstructure and mechanical function of bone and how the microstructure affects the mechanical function during the bone healing process. In the present study on long bone defects, we investigated the relationship between the recovery process of fracture toughness and biological apatite (BAp)/collagen (Col) alignment as an index of the bone microstructure to clarify the bone toughening mechanisms. A 5-mm defect introduced in the rabbit ulna was allowed to heal naturally and a three-point bending test was conducted on the regenerated site to assess bone toughness. The bone toughness was quite low at the early stage of bone regeneration but increased during the postoperative period. The change in toughness agreed well with the characteristics of the fracture surface morphology, which reflected the history of the crack propagation. SEM and microbeam X-ray diffraction analyses indicated that the toughness was dominated by the degree and orientation of the preferred BAp/Col alignment, i.e. bundles aligned perpendicular to the crack propagation clearly contributed to the bone toughening owing to extra energy consumption for resistance to crack propagation. In conclusion, regenerated bone improves fracture toughness by reconstructing the preferred BAp/Col alignment along the bone longitudinal axis during the healing process of long bones.

  18. WHAT OLD MEANS TO BONE

    PubMed Central

    Manolagas, Stavros C.; Parfitt, A. Michael

    2010-01-01

    The adverse effects of aging of other organs (ovaries at menopause) on the skeleton are well known, but ironically little is known of skeletal aging itself. Evidence indicates that age-related changes, such as oxidative stress, are fundamental mechanisms of the decline of bone mass and strength. Unlike the short-lived osteoclasts and osteoblasts, osteocytes— former osteoblasts entombed in the mineralized matrix— live as long as 50 years, and their death is dependent on skeletal age. Osteocyte death is a major contributor to the decline of bone strength with age, and the likely mechanisms are oxidative stress, autophagy failure, and nuclear pore “leakiness.” Unraveling these mechanisms should improve understanding of the age-related increase in fractures and suggest novel targets for its prevention. PMID:20223679

  19. Bone-anchored titanium implants for auricular rehabilitation: case report and review of literature.

    PubMed

    Gumieiro, Emne Hammoud; Dib, Luciano Lauria; Jahn, Ricardo Schmitutz; Santos Junior, João Ferreira dos; Nannmark, Ulf; Granström, Gösta; Abrahão, Márcio

    2009-01-01

    Osseointegrated implants have acquired an important role in the prosthetic rehabilitation of patients with craniofacial defects. The main indications are lack of local tissue for autogenous reconstruction, previous reconstruction failure and selection of this technique by the patient. This paper presents a clinical case and discusses indications and advantages of the osseointegrated implant technique for retention of auricular prostheses. Case report, Universidade Federal de São Paulo (UNIFESP). A female patient received three auricular implants after surgical resection of a hemangioma in her left ear. The time taken for osseointegration of the temporal bone was three months. After fabrication of the implant-retained auricular prosthesis, the patient was monitored for 12 months. The clinical parameters evaluated showed good postoperative healing, healthy peri-implant tissue, good hygiene and no loss of implants. Good hygiene combined with thin and immobile peri-implant soft tissues resulted in minimal complications. Craniofacial implant integration appears to be site-dependent; increasing age affects osseointegration in the temporal bone. The frequency of adverse skin reactions in peri-implant tissues is generally low. The surgical technique for rehabilitation using implant-retained auricular prostheses seems to be simple. It is associated with low rates of adverse skin reactions and long-term complications. Prostheses anchored by osseointegrated implants seem to provide better retention than do prostheses supported on spectacle frames, less risk of discoloration through the use of adhesives and better esthetic results than do prostheses anchored in the surgical cavity.

  20. [Black bone disease of the skull and facial bones].

    PubMed

    Laure, B; Petraud, A; Sury, F; Bayol, J-C; Marquet-Van Der Mee, N; de Pinieux, G; Goga, D

    2009-11-01

    We report the case of a patient with a craniofacial black bone disease. This was discovered accidentally during a coronal approach. A 38-year-old patient was referred to our unit for facial palsy having appeared 10 years before. Rehabilitation of the facial palsy was performed with a lengthening temporal myoplasty and lengthening of the upper eyelid elevator. An unusual black color of the skull was observed at incision of the coronal approach. Subperiostal dissection of skull and malars confirmed the presence of a black bone disease. A postoperative history revealed minocycline intake (200mg per day) during 3 years. This craniofacial black bone disease was caused by minocycline intake. The originality of this case is to see directly the entire craniofacial skeleton black. This abnormal pigmentation may affect various organs or tissues. Bone pigmentation is irreversible unlike that of the mouth mucosa or of the skin. This abnormal pigmentation is usually discovered accidentally.

  1. Do Nonsteroidal Anti-Inflammatory Drugs Affect Bone Healing? A Critical Analysis

    PubMed Central

    Pountos, Ippokratis; Georgouli, Theodora; Calori, Giorgio M.; Giannoudis, Peter V.

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) play an essential part in our approach to control pain in the posttraumatic setting. Over the last decades, several studies suggested that NSAIDs interfere with bone healing while others contradict these findings. Although their analgesic potency is well proven, clinicians remain puzzled over the potential safety issues. We have systematically reviewed the available literature, analyzing and presenting the available in vitro animal and clinical studies on this field. Our comprehensive review reveals the great diversity of the presented data in all groups of studies. Animal and in vitro studies present so conflicting data that even studies with identical parameters have opposing results. Basic science research defining the exact mechanism with which NSAIDs could interfere with bone cells and also the conduction of well-randomized prospective clinical trials are warranted. In the absence of robust clinical or scientific evidence, clinicians should treat NSAIDs as a risk factor for bone healing impairment, and their administration should be avoided in high-risk patients. PMID:22272177

  2. Occurrence and pattern of long bone fractures in growing dogs with normal and osteopenic bones.

    PubMed

    Kumar, K; Mogha, I V; Aithal, H P; Kinjavdekar, P; Singh, G R; Pawde, A M; Kushwaha, R B

    2007-11-01

    A retrospective study was undertaken to record the occurrence and pattern of long bone fractures, and the efficacy of Intramedullary (IM) Steinmann pin fixing in growing dogs. All the records of growing dogs during a 10-year-period were screened to record the cause of trauma, the age and sex of the animal, the bone involved, the type and location of the fracture, the status of fixation, alignment, maintenance of fixation and fracture healing. The results were analysed and comparisons were made between growing dogs with normal and osteopenic bones. Among the 310 cases of fractures recorded, the bones were osteopenic in 91 cases (29%). Minor trauma was the principal cause of fracture in dogs with osteopenia (25%), and indigenous breeds were most commonly affected (38%). Fractures in dogs with osteopenic bones were most commonly recorded in the age group of 2-4 months (53%), whereas fractures in normal dogs were almost equally distributed between 2 and 8 months of age. Male dogs were affected significantly more often in both groups. In osteopenic bones, most fractures were recorded in the femur (56%), and they were distributed equally along the length of the bone. Whereas in normal bones, fractures were almost equally distributed in radius/ulna, femur and tibia, and were more often recorded at the middle and distal third of long bones. Oblique fractures were most common in both groups; however, comminuted fractures were more frequent in normal bones, whereas incomplete fractures were more common in osteopenic bones. Ninety-nine fracture cases treated with IM pinning (66 normal, 33 osteopenic) were evaluated for the status of fracture reduction and healing. In a majority of the cases (61%) with osteopenic bones, the diameter of the pin was relatively smaller than the diameter of the medullary cavity (<70-75%), whereas in 68% of the cases in normal bones the pin diameter was optimum. The status of fracture fixing was satisfactory to good in significantly more

  3. Clinical characteristics of patients with bone sarcoidosis.

    PubMed

    Zhou, Ying; Lower, Elyse E; Li, Huiping; Farhey, Yolanda; Baughman, Robert P

    2017-08-01

    To assess the clinical features, diagnosis, and treatment of bone sarcoidosis in the United States. Patients with bone sarcoidosis were identified and matched to sarcoidosis patients based on race, gender, and age. Detailed characteristics were obtained by medical record review. A total of 64 patients with bone sarcoidosis were enrolled in this study. The female:male ratio was 1.46:1 and the white:black ratio was 3:1. Thirty-eight (59.4%) of 64 patients had bone symptoms. Compared to matched cases, bone sarcoidosis patients have more multi-organ involvement and higher incidence with liver, spleen, and extrathoracic lymph node involvement than controls (P < 0.05). Spine was the most commonly affected bone in 44 (68.8%) of patients, followed by pelvis (35.9%), and hands (15.6%). MRI and PET/CT scan was the common imaging technology, which performed in 36 patients and 32 patients, respectively, and with 97.2% and 93.8% positive bone uptake. Laboratory test indicated anemia was more common in bone sarcoidosis group than controls (P = 0.044). Infliximab was more commonly used in bone sarcoidosis patients than controls (P = 0.009). Bone sarcoidosis was associated with multi-organs affection, and high frequency of liver, spleen, or extrathoracic lymph node involvement. Infliximab should be considered in those patients with aggressive and refractory bone sarcoidosis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Bone Engineering of Maxillary Sinus Bone Deficiencies Using Enriched CD90+ Stem Cell Therapy: A Randomized Clinical Trial.

    PubMed

    Kaigler, Darnell; Avila-Ortiz, Gustavo; Travan, Suncica; Taut, Andrei D; Padial-Molina, Miguel; Rudek, Ivan; Wang, Feng; Lanis, Alejandro; Giannobile, William V

    2015-07-01

    Bone engineering of localized craniofacial osseous defects or deficiencies by stem cell therapy offers strong prospects to improve treatment predictability for patient care. The aim of this phase 1/2 randomized, controlled clinical trial was to evaluate reconstruction of bone deficiencies of the maxillary sinus with transplantation of autologous cells enriched with CD90+ stem cells and CD14+ monocytes. Thirty human participants requiring bone augmentation of the maxillary sinus were enrolled. Patients presenting with 50% to 80% bone deficiencies of the maxillary sinus were randomized to receive either stem cells delivered onto a β-tricalcium phosphate scaffold or scaffold alone. Four months after treatment, clinical, radiographic, and histologic analyses were performed to evaluate de novo engineered bone. At the time of alveolar bone core harvest, oral implants were installed in the engineered bone and later functionally restored with dental tooth prostheses. Radiographic analyses showed no difference in the total bone volume gained between treatment groups; however, density of the engineered bone was higher in patients receiving stem cells. Bone core biopsies showed that stem cell therapy provided the greatest benefit in the most severe deficiencies, yielding better bone quality than control patients, as evidenced by higher bone volume fraction (BVF; 0.5 versus 0.4; p = 0.04). Assessment of the relation between degree of CD90+ stem cell enrichment and BVF showed that the higher the CD90 composition of transplanted cells, the greater the BVF of regenerated bone (r = 0.56; p = 0.05). Oral implants were placed and restored with functionally loaded dental restorations in all patients and no treatment-related adverse events were reported at the 1-year follow-up. These results provide evidence that cell-based therapy using enriched CD90+ stem cell populations is safe for maxillary sinus floor reconstruction and offers potential to accelerate and enhance

  5. Inflammation and linear bone growth: the inhibitory role of SOCS2 on GH/IGF-1 signaling.

    PubMed

    Farquharson, Colin; Ahmed, S Faisal

    2013-04-01

    Linear bone growth is widely recognized to be adversely affected in children with chronic kidney disease (CKD) and other chronic inflammatory disorders. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) pathway is anabolic to the skeleton and inflammatory cytokines compromise bone growth through a number of different mechanisms, which include interference with the systemic as well as the tissue-level GH/IGF-1 axis. Despite attempts to promote growth and control disease, there are an increasing number of reports of the persistence of poor growth in a substantial proportion of patients receiving rhGH and/or drugs that block cytokine action. Thus, there is an urgent need to consider better and alternative forms of therapy that are directed specifically at the mechanism of the insult which leads to abnormal bone health. Suppressor of cytokine signaling 2 (SOCS2) expression is increased in inflammatory conditions including CKD, and is a recognized inhibitor of GH signaling. Therefore, in this review, we will focus on the premise that SOCS2 signaling represents a critical pathway in growth plate chondrocytes through which pro-inflammatory cytokines alter both GH/IGF-1 signaling and cellular function.

  6. Bone healing in children.

    PubMed

    Lindaman, L M

    2001-01-01

    Just as pediatric fractures and bones are basically similar to adult fractures and bones, pediatric bone healing is basically similar to adult bone healing. They both go through the three same phases of inflammation, reparation, and remodeling. It is those differences between pediatric and adult bone, however, that affect the differences in the healing of pediatric bone. Because pediatric bone can fail in compression, less initial stability and less callus formation is required to achieve a clinically stable or healed fracture. The greater subperiosteal hematoma and the stronger periosteum all contribute to a more rapid formation of callous strong enough to render the fracture healed more rapidly than the adult. Genes and hormones that are necessary for the initial formation of the skeleton are the same as, or at least similar in most instances, to those necessary for the healing of fractures. This osteogenic environment of the pediatric bone means that these fracture healing processes are already ongoing in the child at the time of the fracture. In the adult, these factors must be reawakened, leading to the slower healing time in the adult. Once the fracture is healed, the still-growing pediatric bone can correct any "sins" of fracture alignment or angulation leaving the bone with no signs of having ever been broken. The final result is bone that is, in the child's words, "as good as new."

  7. Micro-CT evaluation of bone defects: applications to osteolytic bone metastases, bone cysts, and fracture.

    PubMed

    Buie, Helen R; Bosma, Nick A; Downey, Charlene M; Jirik, Frank R; Boyd, Steven K

    2013-11-01

    Bone defects can occur in various forms and present challenges to performing a standard micro-CT evaluation of bone quality because most measures are suited to homogeneous structures rather than ones with spatially focal abnormalities. Such defects are commonly associated with pain and fragility. Research involving bone defects requires quantitative approaches to be developed if micro-CT is to be employed. In this study, we demonstrate that measures of inter-microarchitectural bone spacing are sensitive to the presence of focal defects in the proximal tibia of two distinctly different mouse models: a burr-hole model for fracture healing research, and a model of osteolytic bone metastases. In these models, the cortical and trabecular bone compartments were both affected by the defect and were, therefore, evaluated as a single unit to avoid splitting the defects into multiple analysis regions. The burr-hole defect increased mean spacing (Sp) by 27.6%, spacing standard deviation (SpSD) by 113%, and maximum spacing (Spmax) by 72.8%. Regression modeling revealed SpSD (β=0.974, p<0.0001) to be a significant predictor of the defect volume (R(2)=0.949) and Spmax (β=0.712, p<0.0001) and SpSD (β=0.271, p=0.022) to be significant predictors of the defect diameter (R(2)=0.954). In the mice with osteolytic bone metastases, spacing parameters followed similar patterns of change as reflected by other imaging technologies, specifically bioluminescence data which is indicative of tumor burden. These data highlight the sensitivity of spacing measurements to bone architectural abnormalities from 3D micro-CT data and provide a tool for quantitative evaluation of defects within a bone. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Leptin regulates bone formation via the sympathetic nervous system

    NASA Technical Reports Server (NTRS)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  9. Gaucher disease: the role of the specialist on metabolic bone diseases.

    PubMed

    Masi, Laura; Brandi, Maria Luisa

    2015-01-01

    According to European legislation, a disease can be considered rare or "orphan" when it affects less than 1 subject of 2000 (1). Often these diseases affecting the pediatric age, are complex diseases and chronically debilitating and for this motive need the intervention of multidisciplinary skills specific. Among the rare disease as affecting the skeleton more than 400 are characterized by dysplastic changes of the skeleton (2). Alongside the disorders affecting the skeleton primitively, many systemic diseases can have a bone involvement. Among these, the Gaucher disease (GD), an heterogeneous lysosomal storage determined by hereditary enzyme deficiency of β-glucosidase. Patients with this disease have skeletal disorders of varying severity (Erlenmeyer flask deformity, lytic lesions and osteonecrosis, pathological fractures) that affects both the bone marrow, both mineralized bone with progressive damage of the tissue. The bone disease is the most debilitating of GD and can have a significant impact on the quality of life of patients. Thorough evaluations by monitoring biochemical markers of bone turnover and instrumental, with a quantitative and qualitative evaluation of the bone, are of fundamental importance to intervene early so they can prevent complications irreversible.

  10. Gaucher disease: the role of the specialist on metabolic bone diseases

    PubMed Central

    Masi, Laura; Brandi, Maria Luisa

    2015-01-01

    Summary According to European legislation, a disease can be considered rare or “orphan” when it affects less than 1 subject of 2000 (1). Often these diseases affecting the pediatric age, are complex diseases and chronically debilitating and for this motive need the intervention of multidisciplinary skills specific. Among the rare disease as affecting the skeleton more than 400 are characterized by dysplastic changes of the skeleton (2). Alongside the disorders affecting the skeleton primitively, many systemic diseases can have a bone involvement. Among these, the Gaucher disease (GD), an heterogeneous lysosomal storage determined by hereditary enzyme deficiency of β-glucosidase. Patients with this disease have skeletal disorders of varying severity (Erlenmeyer flask deformity, lytic lesions and osteonecrosis, pathological fractures) that affects both the bone marrow, both mineralized bone with progressive damage of the tissue. The bone disease is the most debilitating of GD and can have a significant impact on the quality of life of patients. Thorough evaluations by monitoring biochemical markers of bone turnover and instrumental, with a quantitative and qualitative evaluation of the bone, are of fundamental importance to intervene early so they can prevent complications irreversible. PMID:26604943

  11. Cell-based Assay System for Predicting Bone Regeneration in Patient Affected by Aseptic Nonunion and Treated with Platelet Rich Fibrin.

    PubMed

    Perut, Francesca; Dallari, Dante; Rani, Nicola; Baldini, Nicola; Granchi, Donatella

    Regenerative strategies based on the use of platelet concentrates as an autologous source of growth factors (GF) has been proposed to promote the healing of long bone nonunions. However, the relatively high failure rate stimulates interest in growing knowledge and developing solutions to obtain the best results from the regenerative approach. In this study we evaluated whether a cell-based assay system could be able to recognize patients who will benefit or not from the use of autologous platelet preparations. The autologous serum was used in culture medium to promote the osteogenic differentiation of normal bone-marrow stromal cells (BMSC). Blood samples were collected from 16 patients affected by aseptic long bone nonunion who were candidates to the treatment with autologous platelet-rich fibrin. The osteoinductive effect was detected by measuring the BMSC proliferation, the mineralization activity, and the expression of bone-related genes. Serum level of basic fibroblast growth factor (bFGF) was considered as a representative marker of the delivery of osteogenic GFs from platelets. Laboratory results were related to the characteristics of the disease before the treatment and to the outcome at 12 months. Serum samples from "good responders" showed significantly higher levels of bFGF and were able to induce a significantly higher proliferation of BMSC, while no significant differences were observed in terms of osteoblast differentiation. BMSC-based assay could be a useful tool to recognize patients who have a low probability to benefit from the use of autologous platelet concentrate to promote the healing of long bone nonunion.

  12. Committee Opinion No. 681: Disclosure and Discussion of Adverse Events.

    PubMed

    2016-12-01

    Adverse outcomes, preventable or otherwise, are a reality of medical care. Most importantly, adverse events affect patients, but they also affect health care practitioners. Disclosing information about adverse events has benefits for the patient and the physician and, ideally, strengthens the patient-physician relationship and promotes trust. Studies show that after an adverse outcome, patients expect and want timely and full disclosure of the event, an acknowledgment of responsibility, an understanding of what happened, expressions of sympathy, and a discussion of what is being done to prevent recurrence. Surveys have shown that patients are less likely to pursue litigation if they perceive that the event was honestly disclosed. Barriers to full disclosure are many and include fear of retribution for reporting an adverse event, lack of training, a culture of blame, and fear of lawsuits. To reduce these concerns, it is recommended that health care facilities establish a nonpunitive, blame-free culture that encourages staff to report adverse events and near misses (close calls) without fear of retaliation. Health care institutions should have written policies that address the management of adverse events. Having a responsive process to inform and aid the patient, loved ones, and practitioners is required. A commitment on the part of all health care practitioners and institutions to establish programs and develop the tools needed to help patients, families, health care practitioners, and staff members deal with adversity is essential.

  13. Angiogenesis after sintered bone implantation in rat parietal bone.

    PubMed

    Ohtsubo, S; Matsuda, M; Takekawa, M

    2003-01-01

    We studied the effect of bone substitutes on revascularization and the restart of blood supply after sintered bone implantation in comparison with synthetic hydroxyapatite implantation and fresh autogenous bone transplantation (control) in rat parietal bones. Methods for the study included the microvascular corrosion cast method and immunohistochemical techniques were also used. The revascularization of the control group was the same as that for usual wound healing in the observations of the microvascular corrosion casts. The sintered bone implantation group was quite similar to that of the control group. In the synthetic hydroxyapatite group, immature newly-formed blood vessels existed even on the 21st day after implantation and the physiological process of angiogenesis was interrupted. Immunohistochemically, vascular endothelial growth factor (VEGF), which activates angiogenesis, appeared at the early stages of both the control group and the sintered bone implantation group. VEGF reduced parallel with the appearance of the transforming growth factor factor-beta-1 (TGF-beta-1), which obstructs angiogenesis, and the angiogenesis passed gradually into the mature stage. In the hydroxyapatite implantation group, TGF-beta-1 appeared at the early stage of the implants. The appearance of VEGF lagged and it existed around the pores of hydroxyapatite even on the 21st day of the implantation. Proliferation and wandering of endothelial cells continued without any maturing of the vessels. These findings suggest that the structure and the components of the implant material affect angiogenesis after implantation as well as new bone formation.

  14. High-fat Diet Decreases Cancellous Bone Mass But Has No Effect on Cortical Bone Mass in the Tibia in Mice

    USDA-ARS?s Scientific Manuscript database

    Introduction: Body mass has a positive effect on bone mineral density and the strength. Whether mass derived from an obesity condition is beneficial to bone has not been established; neither have the mechanism by which obesity affects bone metabolism. The aim of this study was to examine the effects...

  15. Application of synchrotron radiation computed microtomography for quantification of bone microstructure in human and rat bones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parreiras Nogueira, Liebert; Barroso, Regina Cely; Pereira de Almeida, Andre

    2012-05-17

    This work aims to evaluate histomorphometric quantification by synchrotron radiation computed microto-mography in bones of human and rat specimens. Bones specimens are classified as normal and pathological (for human samples) and irradiated and non-irradiated samples (for rat ones). Human bones are specimens which were affected by some injury, or not. Rat bones are specimens which were irradiated, simulating radiotherapy procedures, or not. Images were obtained on SYRMEP beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. The system generated 14 {mu}m tomographic images. The quantification of bone structures were performed directly by the 3D rendered images using a home-made software.more » Resolution yielded was excellent what facilitate quantification of bone microstructures.« less

  16. Zoledronic acid in pediatric metabolic bone disorders.

    PubMed

    Bowden, Sasigarn A; Mahan, John D

    2017-10-01

    Zoledronic acid (ZA), a highly potent intravenous bisphosphonate (BP), has been increasingly used in children with primary and secondary osteoporosis due to its convenience of shorter infusion time and less frequent dosing compared to pamidronate. Many studies have also demonstrated beneficial effects of ZA in other conditions such as hypercalcemia of malignancy, fibrous dysplasia (FD), chemotherapy-related osteonecrosis (ON) and metastatic bone disease. This review summarizes pharmacologic properties, mechanism of action, dosing regimen, and therapeutic outcomes of ZA in a variety of metabolic bone disorders in children. Several potential novel uses of ZA are also discussed. Safety concerns and adverse effects are also highlighted.

  17. Zoledronic acid in pediatric metabolic bone disorders

    PubMed Central

    Mahan, John D.

    2017-01-01

    Zoledronic acid (ZA), a highly potent intravenous bisphosphonate (BP), has been increasingly used in children with primary and secondary osteoporosis due to its convenience of shorter infusion time and less frequent dosing compared to pamidronate. Many studies have also demonstrated beneficial effects of ZA in other conditions such as hypercalcemia of malignancy, fibrous dysplasia (FD), chemotherapy-related osteonecrosis (ON) and metastatic bone disease. This review summarizes pharmacologic properties, mechanism of action, dosing regimen, and therapeutic outcomes of ZA in a variety of metabolic bone disorders in children. Several potential novel uses of ZA are also discussed. Safety concerns and adverse effects are also highlighted. PMID:29184807

  18. Growth hormone favorably affects bone turnover and bone mineral density in patients with short bowel syndrome undergoing intestinal rehabilitation.

    PubMed

    Tangpricha, Vin; Luo, Menghua; Fernández-Estívariz, Concepción; Gu, Li H; Bazargan, Niloofar; Klapproth, Jan-Michael; Sitaraman, Shanthi V; Galloway, John R; Leader, Lorraine M; Ziegler, Thomas R

    2006-01-01

    Patients with short bowel syndrome (SBS) have a high prevalence of metabolic bone disease due to nutrient malabsorption and potential effects of parenteral nutrition (PN). Human growth hormone (hGH) has been shown in some studies to have anabolic effects on bone, but hGH effects on bone in patients with SBS are unknown. Adults with PN-dependent SBS underwent a 7-day period of baseline studies while receiving usual oral diet and PN and then began receiving modified diets designed to improve nutrient absorption and daily oral calcium/vitamin D supplements (1500 mg elemental calcium and 600 IU vitamin D, respectively). Subjects were randomized to receive in a double-blind manner either subcutaneous (sc) saline placebo as the control or hGH (0.1 mg/kg/d for 3 weeks, then 0.1 mg/kg 3 days a week for 8 subsequent weeks). Open-label hGH was given from week 13 to week 24 in subjects who required PN after completion of the 12-week double-blind phase. Markers of bone turnover (serum osteocalcin and urinary N-telopeptide [NTX]), vitamin D nutriture (serum calcium, 25-hydroxyvitamin D [25-OH D] and parathyroid hormone [PTH] concentrations), and intestinal calcium absorption were measured at baseline and at weeks 4 and 12. Dual x-ray absorptiometry (DXA) of the hip and spine was performed to determine bone mineral density (BMD) at baseline and weeks 12 and 24. The majority of subjects in each group exhibited evidence of vitamin D deficiency at baseline (25-OH D levels<30 ng/mL; 78% and 79% of control and hGH-treated subjects, respectively). Subjects treated with hGH demonstrated a significant increase from baseline in serum osteocalcin levels at 12 weeks (+62%; p<.05). The levels of NTX were increased over time in the hGH-treated group; however, this did not reach statistical significance. Both NTX and osteocalcin remained unchanged in control subjects. BMD of the spine and total hip was unchanged in subjects treated with placebo or hGH at 24 weeks. However, femoral neck BMD

  19. Wnt and the Wnt signaling pathway in bone development and disease

    PubMed Central

    Wang, Yiping; Li, Yi-Ping; Paulson, Christie; Shao, Jian-Zhong; Zhang, Xiaoling; Wu, Mengrui; Chen, Wei

    2014-01-01

    Wnt signaling affects both bone modeling, which occurs during development, and bone remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in understanding the mechanisms of Wnt signaling, which is divided into two major branches: the canonical pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/β-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+ pathway). This review also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists affect both the bone modeling and bone remodeling processes. We also review the role of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases, including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt signaling and its interactions with other signaling pathways in bone will provide potential therapeutic targets to treat these bone diseases. PMID:24389191

  20. Effects of bone drilling on local temperature and bone regeneration: an in vivo study.

    PubMed

    Karaca, Faruk; Aksakal, Bünyamin; Köm, Mustafa

    2014-01-01

    The aim of this study was to examine the influence of bone drilling on local bone temperature and bone regeneration and determine optimal drilling speed and pressure in an animal model. The study included 12 skeletally mature New Zealand white rabbits, weighing between 2.8 to 3.2 kg. Rabbits were divided into 2 groups and euthanized at the end of Day 21 (Group A) and Day 42 (Group B). The same drilling protocol was used in both groups. Three drill holes with different pressure (5, 10 and 20 N) were made in each rabbit tibias using 3 different rotational drill speeds (230, 370 and 570 rpm). During drilling, local temperature was recorded. Rabbit tibia underwent histopathological exam for bone regeneration. Bone temperature was affected by drilling time and depth. Lower drill speeds reduced the bone temperature and revealed better bone regeneration when compared to the drilled bones at higher drill speeds. Titanium boron nitride coating on the drill bits had no significant effects on bone temperature and structure. Bone regeneration was superior in Group B rabbits that had drilling at 230 rpm and 20 N. Our results suggested that lower drilling speed with higher pressure is necessary for better bone regeneration. The optimal drilling speed is 230 rpm and optimal drilling pressure 20 N.

  1. Childhood Adversity, Religion, and Change in Adult Mental Health.

    PubMed

    Jung, Jong Hyun

    2018-02-01

    Research indicates that childhood adversity is associated with poor mental health in adulthood. The purpose of this study is to examine whether the deleterious long-term effects of childhood adversity on adult mental health are reduced for individuals who are involved in religious practices. Using longitudinal data from a representative sample of American adults ( N = 1,635), I find that religious salience and spirituality buffer the noxious effects of childhood abuse on change in positive affect over time. By contrast, these stress-buffering properties of religion fail to emerge when negative affect serves as the outcome measure. These results underscore the importance of religion as a countervailing mechanism that blunts the negative impact of childhood abuse on adult mental health over time. I discuss the theoretical implications of these findings for views about religion, childhood adversity, and mental health.

  2. Does adversity early in life affect general population suicide rates? A cross-national study.

    PubMed

    Shah, Ajit; Bhandarkar, Ritesh

    2011-01-01

    Adversity early in life has been suggested as a protective factor for elderly suicides. However, studies examining this relationship in general population suicide rates are scarce. The relationship between general population suicide rates and four proxy measures of adversity earlier in life was examined using data from the World Health Organization and the United Nations data banks. General population suicide rates were negatively correlated with the percentage of children under the age of 5 years who were underweight, the percentage of children under the age of 5 years who were under height, the percentage of infants with low birth weight babies, and the percentage of the general population that was undernourished. The only independent predictor general population suicide rates in both sexes, on multiple regression analysis, was the Gini coefficient (a measure of income inequality). Income inequality may lead to low birth weight, undernourishment, underweight and under height because income inequality results in poor access to healthcare and nutrition. These adversities may increase child mortality rates and reduce life expectancy. Those surviving into adulthood in countries with greater adversity early in life may be at reduced risk of suicide because of selective survival of those at reduced risk of suicide due to constitutional or genetic factors and development of greater tolerance to hardship in adulthood. ‎

  3. Does graded reaming affect the composition of reaming products in intramedullary nailing of long bones?

    PubMed

    Kouzelis, Antonis Th; Kourea, Helen; Megas, Panagiotis; Panagiotopoulos, Elias; Marangos, Markos; Lambiris, Elias

    2004-08-01

    Reaming products taken during intramedullary nailing were examined to identify possible differences in their composition depending on the reaming percentage. Reaming products were taken from 39 fresh closed tibial and femoral diaphyseal fractures in patients with an average age of 29 years. According to histology, reaming products mainly consisted of bone trabeculae, viable or nonviable, and bone marrow stroma. A statistically significant reverse correlation exists between viable bone mass percentage and reaming progress. Reaming 1 mm less than the minimum canal diameter provides a higher viable bone mass percentage, which might be an important factor in the bone healing process.

  4. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia

    PubMed Central

    Tamma, Roberto; Sun, Li; Cuscito, Concetta; Lu, Ping; Corcelli, Michelangelo; Li, Jianhua; Colaianni, Graziana; Moonga, Surinder S.; Di Benedetto, Adriana; Grano, Maria; Colucci, Silvia; Yuen, Tony; New, Maria I.; Zallone, Alberta; Zaidi, Mone

    2013-01-01

    Although hyponatremia is known to be associated with osteoporosis and a high fracture risk, the mechanism through which bone loss ensues has remained unclear. As hyponatremic patients have elevated circulating arginine-vasopressin (AVP) levels, we examined whether AVP can affect the skeleton directly as yet another component of the pituitary-bone axis. Here, we report that the two Avp receptors, Avpr1α and Avpr2, coupled to Erk activation, are expressed in osteoblasts and osteoclasts. AVP injected into wild-type mice enhanced and reduced, respectively, the formation of bone-resorbing osteoclasts and bone-forming osteoblasts. Conversely, the exposure of osteoblast precursors to Avpr1α or Avpr2 antagonists, namely SR49059 or ADAM, increased osteoblastogenesis, as did the genetic deletion of Avpr1α. In contrast, osteoclast formation and bone resorption were both reduced in Avpr1α−/− cultures. This process increased bone formation and reduced resorption resulted in a profound enhancement of bone mass in Avpr1α−/− mice and in wild-type mice injected with SR49059. Collectively, the data not only establish a primary role for Avp signaling in bone mass regulation, but also call for further studies on the skeletal actions of Avpr inhibitors used commonly in hyponatremic patients. PMID:24167258

  5. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.

    PubMed

    Govey, Peter M; Zhang, Yue; Donahue, Henry J

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.

  6. Alveolar bone changes after asymmetric rapid maxillary expansion.

    PubMed

    Akin, Mehmet; Baka, Zeliha Muge; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-09-01

    To quantitatively evaluate the effects of asymmetric rapid maxillary expansion (ARME) on cortical bone thickness and buccal alveolar bone height (BABH), and to determine the formation of dehiscence and fenestration in the alveolar bone surrounding the posterior teeth, using cone-beam computed tomography (CBCT). The CBCT records of 23 patients with true unilateral posterior skeletal crossbite (10 boys, 14.06 ± 1.08 years old, and 13 girls, 13.64 ± 1.32 years old) who had undergone ARME were selected from our clinic archives. The bonded acrylic ARME appliance, including an occlusal stopper, was used on all patients. CBCT records had been taken before ARME (T1) and after the 3-month retention period (T2). Axial slices of the CBCT images at 3 vertical levels were used to evaluate the buccal and palatal aspects of the canines, first and second premolars, and first molars. Paired samples and independent sample t-tests were used for statistical comparison. The results suggest that buccal cortical bone thickness of the affected side was significantly more affected by the expansion than was the unaffected side (P < .05). ARME significantly reduced the BABH of the canines (P < .01) and the first and second premolars (P < .05) on the affected side. ARME also increased the incidence of dehiscence and fenestration on the affected side. ARME may quantitatively decrease buccal cortical bone thickness and height on the affected side.

  7. Aromatase Inhibitors and Bone Loss

    PubMed Central

    PEREZ, EDITH A.; M., Serene; Durling, Frances C.; WEILBAECHER, KATHERINE

    2009-01-01

    The aromatase inhibitors (AIs) anastrozole (Arimidex), letrozole (Femara), and exemestane (Aromasin) are significantly more effective than the selective estrogen-receptor modulator (SERM) tamoxifen in preventing recurrence in estrogen receptor–positive early breast cancer. Aromatase inhibitors are likely to replace SERMs as first-line adjuvant therapy for many patients. However, AIs are associated with significantly more osteoporotic fractures and greater bone mineral loss. As antiresorptive agents, oral and intravenous bisphosphonates such as alendronate (Fosamax), risedronate (Actonel), ibandronate (Boniva), pamidronate (Aredia), and zoledronic acid (Zometa) have efficacy in preventing postmenopausal osteoporosis, cancer treatment–related bone loss, or skeletal complications of metastatic disease. Clinical practice guidelines recommend baseline and annual follow-up bone density monitoring for all patients initiating AI therapy. Bisphosphonate therapy should be prescribed for patients with osteoporosis (T score < −2.5) and considered on an individual basis for those with osteopenia (T score < −1). Modifiable lifestyle behaviors including adequate calcium and vitamin D intake, weight-bearing exercise, and smoking cessation should be addressed. Adverse events associated with bisphosphonates include gastrointestinal toxicity, renal toxicity, and osteonecrosis of the jaw. These safety concerns should be balanced with the potential of bisphosphonates to minimize or prevent the debilitating effects of AI-associated bone loss in patients with early, hormone receptor–positive breast cancer. PMID:16986348

  8. Insulin resistance and bone: a biological partnership.

    PubMed

    Conte, Caterina; Epstein, Solomon; Napoli, Nicola

    2018-04-01

    Despite a clear association between type 2 diabetes (T2D) and fracture risk, the pathogenesis of bone fragility in T2D has not been clearly elucidated. Insulin resistance is the primary defect in T2D. Insulin signalling regulates both bone formation and bone resorption, but whether insulin resistance can affect bone has not been established. On the other hand, evidence exists that bone might play a role in the regulation of glucose metabolism. This article reviews the available experimental and clinical evidence on the interplay between bone and insulin resistance. Interestingly, a bilateral relationship between bone and insulin resistance seems to exist that unites them in a biological partnership.

  9. Systematic Review and Meta-Analysis of Recombinant Human Bone Morphogenetic Protein-2 in Localized Alveolar Ridge and Maxillary Sinus Augmentation.

    PubMed

    Kelly, Mick P; Vaughn, Olushola L Akinshemoyin; Anderson, Paul A

    2016-05-01

    Recombinant human bone morphogenetic protein-2 (rhBMP-2) is approved by the Food and Drug Administration as a viable alternative to bone graft in spinal fusion and maxillary sinus lift. The research questions for meta-analysis were: Is rhBMP-2 an effective bone graft substitute in localized alveolar ridge augmentation and maxillary sinus floor augmentation? What are the potential adverse events? A search of MEDLINE from January 1980 to January 2014 using PubMed, the Cochrane Database of Systematic Reviews and Controlled Trials, CINAHL, and EMBASE was performed. Searches were performed from Medical Subject Headings. The quality of each study included was graded by Review Manager software. The primary outcome variable was bone formation measured as change in bone height on computed tomogram. A systematic review of adverse events also was performed. A random-effects model was chosen. Continuous variables were calculated using the standardized mean difference and 95% confidence intervals (CIs) comparing improvement from baseline of the experimental group with that of the control group. Change in bone height was calculated using logarithmic odds ratio. Test of significance used the Z statistic with a P value of .05. Ten studies met the criteria for systematic review; 8 studies were included in the meta-analysis. Five studies assessed localized alveolar ridge augmentation and resulted in an overall standardized mean difference of 0.56 (CI, 0.20-0.92) in favor of BMP; this result was statistically important. Three studies assessed maxillary sinus floor augmentation and resulted in an overall standardized mean difference of -0.50 (CI, -0.93 to -0.09), which was meaningfully different in favor of the control group. Adverse events were inconsistently reported, ranging from no complications to widespread adverse events. For localized alveolar ridge augmentation, this meta-analysis showed that rhBMP-2 substantially increases bone height. However, rhBMP-2 does not perform as

  10. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    PubMed Central

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  11. Maternal hypervitaminosis D reduces fetal bone mass and mineral acquisition and leads to neonatal lethality.

    PubMed

    Lieben, L; Stockmans, I; Moermans, K; Carmeliet, G

    2013-11-01

    Pregnancy challenges maternal calcium handling because sufficient calcium has to be transferred to the fetus to ensure fetal bone mass acquisition. 1,25(OH)2 vitamin D [1,25(OH)2D] is an important regulator of calcium homeostasis during adulthood, yet its role seems redundant for the maternal adaptations to pregnancy as well as during fetal development. However, not only deficiency but also excess of 1,25(OH)2D can be harmful and we therefore questioned whether high maternal 1,25(OH)2D levels may injure fetal development or neonatal outcome, as maternal-fetal transport of 1,25(OH)2D has been largely disputed. To this end, vitamin D receptor (VDR) null (Vdr(-/-)) females, displaying high 1,25(OH)2D levels, were mated with Vdr(+/-) males to obtain pregnancies with fetuses that are responsive (Vdr(+/-)) or resistant (Vdr(-/-)) to 1,25(OH)2D. Surprisingly, most of the Vdr(+/-) neonates died shortly after birth, whereas none of the Vdr(-/-). Mechanistically, we noticed that in Vdr(+/-) embryos, serum calcium levels were normal, but that skeletal calcium storage was reduced as evidenced by decreased mineralized bone mass as well as bone mineral content. More precisely, bone formation was decreased and the level of bone mineralization inhibitors was increased. This decreased fetal skeletal calcium storage may severely compromise calcium balance and survival at birth. In conclusion, these data indicate that high maternal 1,25(OH)2D levels are transferred across the placental barrier and adversely affect the total amount of calcium stored in fetal bones which is accompanied by neonatal death. © 2013 Elsevier Inc. All rights reserved.

  12. Effect of oral monthly ibandronate on bone microarchitecture in women with osteopenia-a randomized placebo-controlled trial.

    PubMed

    Chapurlat, R D; Laroche, M; Thomas, T; Rouanet, S; Delmas, P D; de Vernejoul, M-C

    2013-01-01

    We have examined the effect of oral monthly ibandronate on distal radius and tibia microarchitecture with high-resolution peripheral quantitative tomography compared with placebo, in women with osteopenia, and found that ibandronate did not significantly affect trabecular bone but improved cortical density and thickness at the tibia. We have examined the effect of ibandronate on bone microarchitecture with peripheral high-resolution quantitative computed tomography (HR-pQCT) in a randomized placebo-controlled trial among 148 women with osteopenia. Patients received either oral 150 mg monthly ibandronate or placebo over 24 months. Bone microarchitecture was assessed at baseline, 6, 12, and 24 months, using HR-pQCT at the distal radius and tibia; areal bone mineral density (aBMD) was measured with DXA at the spine, hip, and radius. At 12 months, there was no significant difference in trabecular bone volume at the radius (the primary end point) between women on ibandronate (10.8 ± 2.5%) and placebo (10.5 ± 2.9%), p = 0.25. There was no significant difference in other radius trabecular and cortical microarchitecture parameters at 12 and 24 months. In contrast, at the tibia, cortical vBMD in the ibandronate group was significantly greater than in the placebo group at 6, 12, and 24 months, with better cortical thickness at 6, 12, and 24 months. With ibandronate, aBMD was significantly increased at the hip and spine at 12 and 24 months but at the radius was significantly superior to placebo only at 24 months. Most of the adverse events related to ibandronate were expected with bisphosphonate use, and none of them were serious. We conclude that 12 months of treatment with ibandronate in women with osteopenia did not affect trabecular bone microarchitecture, but improved cortical vBMD at the tibia at 12 and 24 months, and preserved cortical thickness at the tibia.

  13. The effect of refrigeration of bone marrow and peripheral blood on cytogenetic analysis.

    PubMed

    Martin, P K; Rowley, J D

    1986-07-01

    Bone marrow samples from patients with various hematologic disorders were stored at 4 degrees C for up to 5 d before the establishment of a 24-h culture. We tested various factors, including storage time, colony stimulating factor, and methotrexate in an effort to improve metaphase and chromosome quality. Cytogenetic findings for various hematologic diseases were compared in a total of 201 cultures. Cold storage for up to 3 d did not seem to adversely affect the number of mitoses or the quality of chromosome banding when cells were cultured in a system that used both colony stimulating factor and methotrexate. In samples studied in parallel, clonal abnormalities were noted as frequently in cells stored in the cold as in those processed directly.

  14. Systematic review of pediatric health outcomes associated with childhood adversity.

    PubMed

    Oh, Debora Lee; Jerman, Petra; Silvério Marques, Sara; Koita, Kadiatou; Purewal Boparai, Sukhdip Kaur; Burke Harris, Nadine; Bucci, Monica

    2018-02-23

    Early detection of and intervention in childhood adversity has powerful potential to improve the health and well-being of children. A systematic review was conducted to better understand the pediatric health outcomes associated with childhood adversity. PubMed, PsycArticles, and CINAHL were searched for relevant articles. Longitudinal studies examining various adverse childhood experiences and biological health outcomes occurring prior to age 20 were selected. Mental and behavioral health outcomes were excluded, as were physical health outcomes that were a direct result of adversity (i.e. abusive head trauma). Data were extracted and risk of bias was assessed by 2 independent reviewers. After identifying 15940 records, 35 studies were included in this review. Selected studies indicated that exposure to childhood adversity was associated with delays in cognitive development, asthma, infection, somatic complaints, and sleep disruption. Studies on household dysfunction reported an effect on weight during early childhood, and studies on maltreatment reported an effect on weight during adolescence. Maternal mental health issues were associated with elevated cortisol levels, and maltreatment was associated with blunted cortisol levels in childhood. Furthermore, exposure to childhood adversity was associated with alterations of immune and inflammatory response and stress-related accelerated telomere erosion. Childhood adversity affects brain development and multiple body systems, and the physiologic manifestations can be detectable in childhood. A history of childhood adversity should be considered in the differential diagnosis of developmental delay, asthma, recurrent infections requiring hospitalization, somatic complaints, and sleep disruption. The variability in children's response to adversity suggests complex underlying mechanisms and poses a challenge in the development of uniform diagnostic guidelines. More large longitudinal studies are needed to better

  15. SILICON AND BONE HEALTH

    PubMed Central

    JUGDAOHSINGH, R.

    2009-01-01

    Low bone mass (osteoporosis) is a silent epidemic of the 21st century, which presently in the UK results in over 200,000 fractures annually at a cost of over one billion pounds. Figures are set to increase worldwide. Understanding the factors which affect bone metabolism is thus of primary importance in order to establish preventative measures or treatments for this condition. Nutrition is an important determinant of bone health, but the effects of the individual nutrients and minerals, other than calcium, is little understood. Accumulating evidence over the last 30 years strongly suggest that dietary silicon is beneficial to bone and connective tissue health and we recently reported strong positive associations between dietary Si intake and bone mineral density in US and UK cohorts. The exact biological role(s) of silicon in bone health is still not clear, although a number of possible mechanisms have been suggested, including the synthesis of collagen and/or its stabilization, and matrix mineralization. This review gives an overview of this naturally occurring dietary element, its metabolism and the evidence of its potential role in bone health. PMID:17435952

  16. Effect of rigor temperature, ageing and display time on the meat quality and lipid oxidative stability of hot boned beef Semimembranosus muscle.

    PubMed

    Mungure, Tanyaradzwa E; Bekhit, Alaa El-Din A; Birch, E John; Stewart, Ian

    2016-04-01

    The effects of rigor temperature (5, 15, 20 and 25°C), ageing (3, 7, 14, and 21 days) and display time on meat quality and lipid oxidative stability of hot boned beef M. Semimembranosus (SM) muscle were investigated. Ultimate pH (pH(u)) was rapidly attained at higher rigor temperatures. Electrical conductivity increased with rigor temperature (p<0.001). Tenderness, purge and cooking losses were not affected by rigor temperature; however purge loss and tenderness increased with ageing (p<0.01). Lightness (L*) and redness (a*) of the SM increased as rigor temperature increased (p<0.01). Lipid oxidation was assessed using (1)H NMR where changes in aliphatic to olefinic (R(ao)) and diallylmethylene (R(ad)) proton ratios can be rapidly monitored. R(ad), R(ao), PUFA and TBARS were not affected by rigor temperature, however ageing and display increased lipid oxidation (p<0.05). This study shows that rigor temperature manipulation of hot boned beef SM muscle does not have adverse effects on lipid oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Horizontal Guided Bone Regeneration in the Esthetic Area with rhPDGF-BB and Anorganic Bovine Bone Graft: A Case Report.

    PubMed

    Chiantella, Giovanni Carlo

    2016-01-01

    The present article describes the treatment given to a patient who underwent horizontal ridge augmentation surgery in the maxillary anterior area due to the premature loss of the maxillary central incisors. The complete dehiscence of the buccal plate was detected after elevation of mucoperiosteal flaps. The lesion was overfilled with deproteinized bovine xenograft particles combined with recombinant human platelet-derived growth factor BB (rhPDGF-BB) and covered with a porcine collagen barrier hydrated with the same growth factor. The soft tissues healed with no adverse complications. After 12 months, reentry surgery was carried out to place endosseous implants. Complete bone regeneration with the presence of bone-like tissue was observed. Cross-sectional computed tomography scan images confirmed integration of the bone graft and reconstruction of the lost hard tissue volume. The implants were inserted in an optimal three-dimensional position, thus facilitating esthetic restoration. Two years after insertion of final crowns, cone beam computed tomography scans displayed the stability of regenerated hard tissues around the implants. Controlled clinical studies are necessary to determine the benefit of hydrating bovine bone particles and collagen barriers with rhPDGF-BB for predictable bone regeneration of horizontal lesions.

  18. Incidence of bone metastases and survival after a diagnosis of bone metastases in breast cancer patients.

    PubMed

    Harries, M; Taylor, A; Holmberg, L; Agbaje, O; Garmo, H; Kabilan, S; Purushotham, A

    2014-08-01

    Bone is the most common metastatic site associated with breast cancer. Using a database of women with breast cancer treated at Guy's Hospital, London 1976-2006 and followed until end 2010, we determined incidence of and survival after bone metastases. We calculated cumulative incidence of bone metastases considering death without prior bone metastases as a competing risk. Risk of bone metastases was modelled through Cox-regression. Survival after bone metastases diagnosis was calculated using Kaplan-Meier methodology. Of the 7064 women, 589 (22%) developed bone metastases during 8.4 years (mean). Incidence of bone metastases was significantly higher in younger women, tumour size >5 cm, higher tumour grade, lobular carcinoma and ≥ four positive nodes, but was not affected by hormone receptor status. Median survival after bone metastases diagnosis was 2.3 years in women with bone-only metastases compared with <1 year in women with visceral and bone metastases. There was a trend for decreased survival for patients who developed visceral metastases early, and proportionately fewer patients in this group. Incidence of bone metastases has decreased but bone metastases remain a highly relevant clinical problem due to the large number of patients being diagnosed with breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Delay of Treatment Initiation Does Not Adversely Affect Survival Outcome in Breast Cancer.

    PubMed

    Yoo, Tae-Kyung; Han, Wonshik; Moon, Hyeong-Gon; Kim, Jisun; Lee, Jun Woo; Kim, Min Kyoon; Lee, Eunshin; Kim, Jongjin; Noh, Dong-Young

    2016-07-01

    Previous studies examining the relationship between time to treatment and survival outcome in breast cancer have shown inconsistent results. The aim of this study was to analyze the overall impact of delay of treatment initiation on patient survival and to determine whether certain subgroups require more prompt initiation of treatment. This study is a retrospective analysis of stage I-III patients who were treated in a single tertiary institution between 2005 and 2008. Kaplan-Meier survival analysis and Cox proportional hazards regression model were used to evaluate the impact of interval between diagnosis and treatment initiation in breast cancer and various subgroups. A total of 1,702 patients were included. Factors associated with longer delay of treatment initiation were diagnosis at another hospital, medical comorbidities, and procedures performed before admission for surgery. An interval between diagnosis and treatment initiation as a continuous variable or with a cutoff value of 15, 30, 45, and 60 days had no impact on disease-free survival (DFS). Subgroup analyses for hormone-responsiveness, triple-negative breast cancer, young age, clinical stage, and type of initial treatment showed no significant association between longer delay of treatment initiation and DFS. Our results show that an interval between diagnosis and treatment initiation of 60 days or shorter does not appear to adversely affect DFS in breast cancer.

  20. [Costs of serious adverse events in a community teaching hospital, in Mexico].

    PubMed

    Gutiérrez-Mendoza, Luis Meave; Torres-Montes, Abraham; Soria-Orozco, Manuel; Padrón-Salas, Aldanely; Ramírez-Hernández, María Elizabeth

    2015-01-01

    Serious adverse events during hospital care are a worldwide reality and threaten the safety of the hospitalised patient. To identify serious adverse events related to healthcare and direct hospital costs in a Teaching Hospital in México. A study was conducted in a 250-bed Teaching Hospital in San Luis Potosi, Mexico. Data were obtained from the Quality and Patient Safety Department based on 2012 incidents report. Every event was reviewed and analysed by an expert team using the "fish bone" tool. The costs were calculated since the event took place until discharge or death of the patient. A total of 34 serious adverse events were identified. The average cost was $117,440.89 Mexican pesos (approx. €7,000). The great majority (82.35%) were largely preventable and related to the process of care. Undergraduate medical staff were involved in 58.82%, and 14.7% of patients had suffered adverse events in other hospitals. Serious adverse events in a Teaching Hospital setting need to be analysed to learn and deploy interventions to prevent and improve patient safety. The direct costs of these events are similar to those reported in developed countries. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  1. Msx-1 is suppressed in bisphosphonate-exposed jaw bone analysis of bone turnover-related cell signalling after bisphosphonate treatment.

    PubMed

    Wehrhan, F; Hyckel, P; Amann, K; Ries, J; Stockmann, P; Schlegel, Ka; Neukam, Fw; Nkenke, E

    2011-05-01

    Bone-destructive disease treatments include bisphosphonates and antibodies against receptor activator for nuclear factor κB ligand (aRANKL). Osteonecrosis of the jaw (ONJ) is a side-effect. Aetiopathology models failed to explain their restriction to the jaw. The osteoproliferative transcription factor Msx-1 is expressed constitutively only in mature jaw bone. Msx-1 expression might be impaired in bisphosphonate-related ONJ. This study compared the expression of Msx-1, Bone Morphogenetic Protein (BMP)-2 and RANKL, in ONJ-affected and healthy jaw bone. An automated immunohistochemistry-based alkaline phosphatase-anti-alkaline phosphatase method was used on ONJ-affected and healthy jaw bone samples (n = 20 each): cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed to quantitatively compare Msx-1, BMP-2, RANKL and GAPDH mRNA levels. Labelling indices were significantly lower for Msx-1 (P < 0.03) and RANKL (P < 0.003) and significantly higher (P < 0.02) for BMP-2 in ONJ compared with healthy bone. Expression was sevenfold lower (P < 0.03) for Msx-1, 22-fold lower (P < 0.001) for RANKL and eightfold higher (P < 0.02) for BMP-2 in ONJ bone. Msx-1, RANKL suppression and BMP-2 induction were consistent with the bisphosphonate-associated osteopetrosis and impaired bone remodelling in BP- and aRANKL-induced ONJ. Msx-1 suppression suggested a possible explanation of the exclusivity of ONJ in jaw bone. Functional analyses of Msx-1- RANKL interaction during bone remodelling should be performed in the future. © 2011 John Wiley & Sons A/S.

  2. Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures.

    PubMed

    Maria, Sifat; Witt-Enderby, Paula A

    2014-03-01

    An important role for melatonin in bone formation and restructuring has emerged, and studies demonstrate the multiple mechanisms for these beneficial actions. Statistical analysis shows that even with existing osteoporotic therapies, bone-related disease, and mortality are on the rise, creating a huge financial burden for societies worldwide. These findings suggest that novel alternatives need to be developed to either prevent or reverse bone loss to combat osteoporosis-related fractures. The focus of this review describes melatonin's role in bone physiology and discusses how disruption of melatonin rhythms by light exposure at night, shift work, and disease can adversely impact on bone. The signal transduction mechanisms underlying osteoblast and osteoclast differentiation and coupling with one another are discussed with a focus on how melatonin, through the regulation of RANKL and osteoprotegerin synthesis and release from osteoblasts, can induce osteoblastogenesis while inhibiting osteoclastogenesis. Also, melatonin's free-radical scavenging and antioxidant properties of this indoleamine are discussed as yet an additional mechanism by which melatonin can maintain one's bone health, especially oral health. The clinical use for melatonin in bone-grafting procedures, in reversing bone loss due to osteopenia and osteoporosis, and in managing periodontal disease is discussed. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Primary Ewing's Sarcoma of the Temporal Bone: A Rare Case Report and Literature Review.

    PubMed

    Gupta, Divya; Gulati, Achal; Purnima

    2017-09-01

    Ewing's sarcoma is a malignant, round cell tumor arising from the bones and primarily affecting children and adolescent, accounting for 3 % of all childhood malignancies. Although the long bones and the trunk are typically affected, rare cases of it involving isolated bones throughout the body have been reported. Involvement of the skull bones is rare, constituting 1-6 % of the total Ewing's sarcoma cases but those affecting the cranial bones are rarer still, constituting only 1 %. We describe an 8 months old infant having Ewing sarcoma, of the petrous and mastoid parts of temporal bone along with the occipital bone, whose clinical presentation mimicked mastoiditis with facial nerve palsy. We discuss the clinical and therapeutic course of an extensive primary Ewing sarcoma of the temporal bone, which was treated without performing surgery and review this entity's literature in detail.

  4. Bone-Targeting Radiopharmaceuticals for the Treatment of Bone-Metastatic Castration-Resistant Prostate Cancer: Exploring the Implications of New Data

    PubMed Central

    Saylor, Philip J.; Everly, Jason J.; Sartor, Oliver

    2014-01-01

    Background. Clinical features of patients with castration-resistant prostate cancer (CRPC) are characterized by a high incidence of bone metastases, which are associated with impairment of quality of life, pain, skeletal-related events (SREs), and a negative impact on prognosis. Advances in the understanding of cancer cell-bone stroma interactions and molecular mechanisms have recently permitted the development of new agents. Purpose. We review the merits, applications, and limitations of emerging data sets on bone-metastatic CRPC with a focus on radium-223, an α-emitting radiopharmaceutical, and its use in therapy for this disease. Methods. References for this review were identified through searches of PubMed and Medline databases, and only papers published in English were considered. Related links in the databases were reviewed, along with relevant published guidelines, recently published abstracts from major medical meetings, and transcripts from a recent round table of clinical investigators. Results. Prior to radium-223, available bone-targeted therapies demonstrated the ability to delay SREs and palliate bone pain in patients with metastatic CRPC but without evidence of improvement in overall survival (OS). In a randomized controlled phase III trial, radium-223 demonstrated the ability to improve OS and delay SREs in docetaxel-pretreated or docetaxel-unfit men with symptomatic bone-metastatic CRPC and was not associated with significantly more grade 3 or 4 adverse events than placebo. Conclusion. Radium-223 has a targeted effect on bone metastases in CRPC and has an important role in docetaxel-pretreated or docetaxel-unfit men with symptomatic bone-metastatic CRPC. PMID:25232039

  5. Histological evaluation of an impacted bone graft substitute composed of a combination of mineralized and demineralized allograft in a sheep vertebral bone defect.

    PubMed

    Fujishiro, Takaaki; Bauer, Thomas W; Kobayashi, Naomi; Kobayashi, Hideo; Sunwoo, Moon Hae; Seim, Howard B; Turner, A Simon

    2007-09-01

    Demineralized bone matrix (DBMs) preparations are a potential alternative or supplement to autogenous bone graft, but many DBMs have not been adequately tested in clinically relevant animal models. The aim of current study was to compare the efficacy of a new bone graft substitute composed of a combination of mineralized and demineralized allograft, along with hyaluronic acid (AFT Bone Void Filler) with several other bone graft materials in a sheep vertebral bone void model. A drilled defect in the sheep vertebral body was filled with either the new DBM preparation, calcium sulfate (OsteoSet), autologous bone graft, or left empty. The sheep were euthanized after 6 or 12 weeks, and the defects were examined by histology and quantitative histomorphometry. The morphometry data were analyzed by one-way analysis of variance with the post hoc Tukey-Kramer test or the Student's t-test. All of the bone defects in the AFT DBM preparation group showed good new bone formation with variable amounts of residual DBM and mineralized bone graft. The DBM preparation group at 12 weeks contained significantly more new bone than the defects treated with calcium sulfate or left empty (respectively, p < 0.05, p < 0.01). There was no significant difference between the DBM and autograft groups. No adverse inflammatory reactions were associated with any of the three graft materials. The AFT preparation of a mixture of mineralized and demineralized allograft appears to be an effective autograft substitute as tested in this sheep vertebral bone void model.

  6. A paradigm shift for bone quality in dentistry: A literature review.

    PubMed

    Kuroshima, Shinichiro; Kaku, Masaru; Ishimoto, Takuya; Sasaki, Muneteru; Nakano, Takayoshi; Sawase, Takashi

    2017-10-01

    The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Committee Opinion No. 681 Summary: Disclosure and Discussion of Adverse Events.

    PubMed

    2016-12-01

    Adverse outcomes, preventable or otherwise, are a reality of medical care. Most importantly, adverse events affect patients, but they also affect health care practitioners. Disclosing information about adverse events has benefits for the patient and the physician and, ideally, strengthens the patient-physician relationship and promotes trust. Studies show that after an adverse outcome, patients expect and want timely and full disclosure of the event, an acknowledgment of responsibility, an understanding of what happened, expressions of sympathy, and a discussion of what is being done to prevent recurrence. Surveys have shown that patients are less likely to pursue litigation if they perceive that the event was honestly disclosed. Barriers to full disclosure are many and include fear of retribution for reporting an adverse event, lack of training, a culture of blame, and fear of lawsuits. To reduce these concerns, it is recommended that health care facilities establish a nonpunitive, blame-free culture that encourages staff to report adverse events and near misses (close calls) without fear of retaliation. Health care institutions should have written policies that address the management of adverse events. Having a responsive process to inform and aid the patient, loved ones, and practitioners is required. A commitment on the part of all health care practitioners and institutions to establish programs and develop the tools needed to help patients, families, health care practitioners, and staff members deal with adversity is essential.

  8. The Neurobiology of Intervention and Prevention in Early Adversity.

    PubMed

    Fisher, Philip A; Beauchamp, Kate G; Roos, Leslie E; Noll, Laura K; Flannery, Jessica; Delker, Brianna C

    2016-01-01

    Early adverse experiences are well understood to affect development and well-being, placing individuals at risk for negative physical and mental health outcomes. A growing literature documents the effects of adversity on developing neurobiological systems. Fewer studies have examined stress neurobiology to understand how to mitigate the effects of early adversity. This review summarizes the research on three neurobiological systems relevant to interventions for populations experiencing high levels of early adversity: the hypothalamic-adrenal-pituitary axis, the prefrontal cortex regions involved in executive functioning, and the system involved in threat detection and response, particularly the amygdala. Also discussed is the emerging field of epigenetics and related interventions to mitigate early adversity. Further emphasized is the need for intervention research to integrate knowledge about the neurobiological effects of prenatal stressors (e.g., drug use, alcohol exposure) and early adversity. The review concludes with a discussion of the implications of this research topic for clinical psychology practice and public policy.

  9. The effects of cortical bone thickness and trabecular bone strength on noninvasive measures of the implant primary stability using synthetic bone models.

    PubMed

    Hsu, Jui-Ting; Fuh, Lih-Jyh; Tu, Ming-Gene; Li, Yu-Fen; Chen, Kuan-Ting; Huang, Heng-Li

    2013-04-01

    This study investigated how the primary stability of a dental implant as measured by the insertion torque value (ITV), Periotest value (PTV), and implant stability quotient (ISQ) is affected by varying thicknesses of cortical bone and strengths of trabecular bone using synthetic bone models. Four synthetic cortical shells (with thicknesses of 0, 1, 2, and 3 mm) were attached to four cellular rigid polyurethane foams (with elastic moduli of 137, 47.5, 23, and 12.4 MPa) and one open-cell rigid polyurethane foam which mimic the osteoporotic bone (with an elastic modulus 6.5 MPa), to represent the jawbones with various cortical bone thicknesses and strengths of trabecular bone. A total of 60 bone specimens accompanied with implants was examined by a torque meter, Osstell resonance frequency analyzer, and Periotest electronic device. All data were statistically analyzed by two-way analysis of variance. In addition, second-order nonlinear regression was utilized to assess the correlations of the primary implant stability with the four cortex thicknesses and five strengths of trabecular bone. ITV, ISQ, and PTV differed significantly (p < .05) and were strongly correlated with the thickness of cortical bone (R(2) > 0.9) and the elastic modulus of trabecular bone (R(2) = 0.74-0.99). The initial stability at the time of implant placement is influenced by both the cortical bone thickness and the strength of trabecular bone; however, these factors are mostly nonlinearly correlated with ITV, PTV, and ISQ. Using ITV and PTV seems more suitable for identifying the primary implant stability in osteoporotic bone with a thin cortex. © 2011 Wiley Periodicals, Inc.

  10. HIV Infection and Bone Abnormalities.

    PubMed

    Ahmad, Aamir N; Ahmad, Shahid N; Ahmad, Nafees

    2017-01-01

    More than 36 million people are living with human immunodeficiency virus (HIV) infection worldwide and 50% of them have access to antiretroviral therapy (ART). While recent advances in HIV therapy have reduced the viral load, restored CD4 T cell counts and decreased opportunistic infections, several bone-related abnormalities such as low bone mineral density (BMD), osteoporosis, osteopenia, osteomalacia and fractures have emerged in HIV-infected individuals. Of all classes of antiretroviral agents, HIV protease inhibitors used in ART combination showed a higher frequency of osteopenia, osteoporosis and low BMD in HIV-infected patients. Although the mechanisms of HIV and/or ART associated bone abnormalities are not known, it is believed that the damage is caused by a complex interaction of T lymphocytes with osteoclasts and osteoblasts, likely influenced by both HIV and ART. In addition, infection of osteoclasts and bone marrow stromal cells by HIV, including HIV Gp120 induced apoptosis of osteoblasts and release of proinflammatory cytokines have been implicated in impairment of bone development and maturation. Several of the newer antiretroviral agents currently used in ART combination, including the widely used tenofovir in different formulations show relative adverse effects on BMD. In this context, switching the HIV-regimen from tenofovir disoproxil fumarate (TDF) to tenofovir alafenamide (TAF) showed improvement in BMD of HIV-infected patients. In addition, inclusion of integrase inhibitor in ART combination is associated with improved BMD in patients. Furthermore, supplementation of vitamin D and calcium with the initiation of ART may mitigate bone loss. Therefore, levels of vitamin D and calcium should be part of the evaluation of HIV-infected patients.

  11. Skeletal development of mice lacking bone sialoprotein (BSP)--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    PubMed

    Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc

    2014-01-01

    Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing

  12. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate) Bone Cement on Mechanical Properties and Bioactivity

    PubMed Central

    Li, Tao; Weng, Xisheng; Bian, Yanyan; Zhou, Lei; Cui, Fuzhai; Qiu, Zhiye

    2015-01-01

    Objective This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA) bone cement after addition of the nano-hydroxyapatite(HA) coated bone collagen (mineralized collagen, MC). Materials & Methods The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis. Results 15.0%(wt) impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA. Conclusions MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values. PMID:26039750

  13. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate) Bone Cement on Mechanical Properties and Bioactivity.

    PubMed

    Li, Tao; Weng, Xisheng; Bian, Yanyan; Zhou, Lei; Cui, Fuzhai; Qiu, Zhiye

    2015-01-01

    This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA) bone cement after addition of the nano-hydroxyapatite(HA) coated bone collagen (mineralized collagen, MC). The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis. 15.0%(wt) impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA. MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.

  14. Cellulitis in Obesity: Adverse Outcomes Affected by Increases in Body Mass Index.

    PubMed

    Theofiles, Meghan; Maxson, Julie; Herges, Lori; Marcelin, Alberto; Angstman, Kurt B

    2015-10-01

    Cellulitis in obese patients is associated with increased rates of treatment failure compared to those with normal body mass index (BMI); however, patients have not been extensively studied in the outpatient environment or stratified based on range of obesity and associated risk factors. This study looked at antibiotic dosing and treatment failure in the obese population from the primary care perspective and accounts for BMI range, weight, comorbid diabetes, and tobacco use. This study was a retrospective chart review of 637 adult primary care patients designed to evaluate rates of treatment failure of outpatient cellulitis among patients of varying BMI. Treatment failure was defined as (a) hospital admission for intravenous antibiotics, (b) prolonged antibiotic course, or (c) requiring a different antibiotic after initial course. Adverse outcomes were not statistically significant between normal BMI and those with BMI ≥40 kg/m(2). A subset of patients with a BMI ≥50 kg/m(2) was noted to have approximately twice the rate of adverse outcomes as the normal BMI group. While controlling for age, gender, race, diagnosis of diabetes mellitus, and tobacco use, a BMI of ≥50 kg/m(2) and a weight ≥120 kg was associated with adverse outcomes with an odds ratio of 2.440 (95% CI, 1.260-4.724; P = .008) and 2.246 (95% CI, 1.154-4.369; P = .017), respectively. Patients with cellulitis weighing >120kg or with a BMI ≥50 kg/m(2) were at greatest risk for treatment failure in the outpatient setting, even when controlling for comorbid diabetes and tobacco use. As morbid obesity continues to become more prevalent, it becomes imperative that primary care physicians have better antibiotic dosing guidelines to account for the physiologic effects of obesity to minimize the risk of increased morbidity, health care costs, and antibiotic resistance. © The Author(s) 2015.

  15. Effect of risedronate on bone in renal transplant recipients.

    PubMed

    Coco, Maria; Pullman, James; Cohen, Hillel W; Lee, Sally; Shapiro, Craig; Solorzano, Clemencia; Greenstein, Stuart; Glicklich, Daniel

    2012-08-01

    Bisphosphonates may prevent or treat the bone loss promoted by the immunosuppressive regimens used in renal transplantation. Risedronate is a commonly used third-generation amino-bisphosphonate, but little is known about its effects on the bone health of renal transplant recipients. We randomly assigned 42 new living-donor kidney recipients to either 35 mg of risedronate weekly or placebo for 12 months. We obtained bone biopsies at the time of renal transplant and after 12 months of protocol treatment. Treatment with risedronate did not affect bone mineral density (BMD) in the overall cohort. In subgroup analyses, it tended to preserve BMD in female participants but did not significantly affect the BMD of male participants. Risedronate did associate with increased osteoid volume and trabecular thickness in male participants, however. There was no evidence for the development of adynamic bone disease. In summary, further study is needed before the use of prophylactic bisphosphonates to attenuate bone loss can be recommended in renal transplant recipients.

  16. Fat, Sugar, and Bone Health: A Complex Relationship

    PubMed Central

    Tian, Li; Yu, Xijie

    2017-01-01

    With people aging, osteoporosis is expected to increase notably. Nutritional status is a relatively easily-modified risk factor, associated with many chronic diseases, and is involved in obesity, diabetes, and coronary heart disease (CHD), along with osteoporosis. Nutrients, such as fats, sugars, and proteins, play a primary function in bone metabolism and maintaining bone health. In Western nations, diets are generally high in saturated fats, however, currently, the nutritional patterns dominating in China continue to be high in carbohydrates from starch, cereals, and sugars. Moreover, high fat or high sugar (fructose, glucose, or sucrose) impart a significant impact on bone structural integrity. Due to diet being modifiable, demonstrating the effects of nutrition on bone health can provide an approach for osteoporosis prevention. Most researchers have reported that a high-fat diet consumption is associated with bone mineral density (BMD) and, as bone strength diminishes, adverse microstructure changes occur in the cancellous bone compartment, which is involved with lipid metabolism modulation disorder and the alteration of the bone marrow environment, along with an increased inflammatory environment. Some studies, however, demonstrated that a high-fat diet contributes to achieving peak bone mass, along with microstructure, at a younger age. Contrary to these results, others have shown that a high-fructose diet consumption leads to stronger bones with a superior microarchitecture than those with the intake of a high-glucose diet and, at the same time, research indicated that a high-fat diet usually deteriorates cancellous bone parameters, and that the incorporation of fructose into a high-fat diet did not aggravate bone mass loss. High-fat/high-sucrose diets have shown both beneficial and detrimental influences on bone metabolism. Combined, these studies showed that nutrition exerts different effects on bone health. Thus, a better understanding of the regulation

  17. Fat, Sugar, and Bone Health: A Complex Relationship.

    PubMed

    Tian, Li; Yu, Xijie

    2017-05-17

    With people aging, osteoporosis is expected to increase notably. Nutritional status is a relatively easily-modified risk factor, associated with many chronic diseases, and is involved in obesity, diabetes, and coronary heart disease (CHD), along with osteoporosis. Nutrients, such as fats, sugars, and proteins, play a primary function in bone metabolism and maintaining bone health. In Western nations, diets are generally high in saturated fats, however, currently, the nutritional patterns dominating in China continue to be high in carbohydrates from starch, cereals, and sugars. Moreover, high fat or high sugar (fructose, glucose, or sucrose) impart a significant impact on bone structural integrity. Due to diet being modifiable, demonstrating the effects of nutrition on bone health can provide an approach for osteoporosis prevention. Most researchers have reported that a high-fat diet consumption is associated with bone mineral density (BMD) and, as bone strength diminishes, adverse microstructure changes occur in the cancellous bone compartment, which is involved with lipid metabolism modulation disorder and the alteration of the bone marrow environment, along with an increased inflammatory environment. Some studies, however, demonstrated that a high-fat diet contributes to achieving peak bone mass, along with microstructure, at a younger age. Contrary to these results, others have shown that a high-fructose diet consumption leads to stronger bones with a superior microarchitecture than those with the intake of a high-glucose diet and, at the same time, research indicated that a high-fat diet usually deteriorates cancellous bone parameters, and that the incorporation of fructose into a high-fat diet did not aggravate bone mass loss. High-fat/high-sucrose diets have shown both beneficial and detrimental influences on bone metabolism. Combined, these studies showed that nutrition exerts different effects on bone health. Thus, a better understanding of the regulation

  18. Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II

    PubMed Central

    Kollmann, Katrin; Pestka, Jan Malte; Kühn, Sonja Christin; Schöne, Elisabeth; Schweizer, Michaela; Karkmann, Kathrin; Otomo, Takanobu; Catala-Lehnen, Philip; Failla, Antonio Virgilio; Marshall, Robert Percy; Krause, Matthias; Santer, Rene; Amling, Michael; Braulke, Thomas; Schinke, Thorsten

    2013-01-01

    Mucolipidosis type II (MLII) is a severe multi-systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock-in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro-osteoclastogenic cytokine interleukin-6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature. PMID:24127423

  19. Bone metabolism and adipokines: are there perspectives for bone diseases drug discovery?

    PubMed

    Scotece, Morena; Conde, Javier; Abella, Vanessa; López, Verónica; Pino, Jesús; Lago, Francisca; Gómez-Reino, Juan J; Gualillo, Oreste

    2014-08-01

    Over the past 20 years, the idea that white adipose tissue (WAT) is simply an energy depot organ has been radically changed. Indeed, present understanding suggests WAT to be an endocrine organ capable of producing and secreting a wide variety of proteins termed adipokines. These adipokines appear to be relevant factors involved in a number of different functions, including metabolism, immune response, inflammation and bone metabolism. In this review, the authors focus on the effects of several adipose tissue-derived factors in bone pathophysiology. They also consider how the modification of the adipokine network could potentially lead to promising treatment options for bone diseases. There are currently substantial developments being made in the understanding of the interplay between bone metabolism and the metabolic system. These insights could potentially lead to the development of new treatment strategies and interventions with the aim of successful outcomes in many people affected by bone disorders. Specifically, future research should look into the intimate mechanisms regulating peripheral and central activity of adipokines as it has potential for novel drug discovery.

  20. Bone sialoprotein, but not osteopontin, deficiency impairs the mineralization of regenerating bone during cortical defect healing.

    PubMed

    Monfoulet, Laurent; Malaval, Luc; Aubin, Jane E; Rittling, Susan R; Gadeau, Alain P; Fricain, Jean-Christophe; Chassande, Olivier

    2010-02-01

    Bone healing is a complex multi-step process, which depends on the position and size of the lesion, and on the mechanical stability of the wounded area. To address more specifically the mechanisms involved in cortical bone healing, we created drill-hole defects in the cortex of mouse femur, a lesion that triggers intramembranous repair, and compared the roles of bone sialoprotein (BSP) and osteopontin (OPN), two proteins of the extracellular matrix, in the repair process. Bone regeneration was analyzed by ex vivo microcomputerized X-ray tomography and histomorphometry of bones of BSP-deficient, OPN-deficient and wild-type mice. In all mouse strains, the cortical gap was bridged with woven bone within 2 weeks and no mineralized tissue was observed in the marrow. Within 3 weeks, lamellar cortical bone filled the gap. The amount and degree of mineralization of the woven bone was not affected by OPN deficiency, but cortical bone healing was delayed in BSP-deficient mice due to delayed mineralization. Gene expression studies showed a higher amount of BSP transcripts in the repair bone of OPN-deficient mice, suggesting a possible compensation of OPN function by BSP in OPN-null mice. Our data suggest that BSP, but not OPN, plays a role in primary bone formation and mineralization of newly formed bone during the process of cortical bone healing. (c) 2009 Elsevier Inc. All rights reserved.

  1. Change in Mouse Bone Turnover in Response to Microgravity on RR-1

    NASA Technical Reports Server (NTRS)

    Cheng-Campbell, Margareth A.; Blaber, Elizabeth A.; Almeida, Eduardo A. C.

    2016-01-01

    Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1ap21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23 decrease in bone fraction (p0.005) and 11.91 decrease in bone thickness (p0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n10) and vivarium controls (n10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37

  2. Maintaining Restored Bone with Bisphoshonate in the Ovariectomized Rat Skeleton: Dynamic Histomorphometry of Changes in Bone Mass

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.

    1993-01-01

    This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an anti-resorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE2/kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE2 treatment and began treatment with 1 or 5 micro-g/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the proximal tibial metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE2 treatment was stopped, the PGE2-induced cancellous bone disappeared. In contrast, 5 micro-g of Risedronate inhibited the bone loss and maintained it at the PGE2 treatment level. The key dynamic histomorphometry value for the restore (R) and maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 micro-g Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5 micro-g Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE2 after discontinuing PGE2 by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.

  3. Maintaining Restored Bone with Bisphosphonate in the Ovariectomized Rat Skeleton: Dynamic Histomorphometry of Changes in Bone Mass

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.

    1993-01-01

    This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an antiresorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE(sub 2)kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE(sub 2) treatment and began treatment with 1 or 5 micrograms/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the Proximal Tibial Metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE(sub 2) treatment was stopped, the PGE(sub 2)-induced cancellous bone disappeared. In contrast, 5 miligrams of Risedronate inhibited the bone loss and maintained it at the PGE(sub 2) treatment level. The key dynamic histomorphometry value for the Restore (R) and Maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 miligram Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5miligrams Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE(sub 2) after discontinuing PGE(sub 2) by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.

  4. Limb bone morphology, bone strength, and cursoriality in lagomorphs

    PubMed Central

    Young, Jesse W; Danczak, Robert; Russo, Gabrielle A; Fellmann, Connie D

    2014-01-01

    The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which ‘cursorial specialization’ affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and μCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high ‘displacement advantage’, permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with

  5. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Cancer.gov

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  6. Pathogenesis of chronic rhinosinusitis in patients affected by β-thalassemia major and sickle cell anaemia post allogenic bone marrow transplant.

    PubMed

    Martino, F; Di Mauro, R; Paciaroni, K; Gaziev, J; Alfieri, C; Greco, L; Floris, R; Di Girolamo, S; Di Girolamo, M

    2018-03-01

    Sickle cell anemia (SCA) and β -thalassemia major are well-recognized beta-globin gene disorders of red blood cells associated to mortality and morbidity included bone morbidities due to ineffective erythropoiesis and bone marrow expansion, which affect every part of the skeleton. While there are an abundance of described disease manifestations of the head and neck, the manner of paranasal sinuses involvement and its relations to β-thalassemia and SCA process was not studied yet. Therefore, the aim of this study was to investigate a possible increased risk of rhinosinusitis and the real pathogenetic mechanism of it, comparing these two hematological diseases using msCT, gold standard for paranasal sinuses evaluation. A retrospective analysis of 90 patients affected by β-thalassemia major or SCA (respectively 59 and 31) underwent allogeneic bone marrow transplantation (BMT), and 44 control subjects was performed. Both patient categories and control group have been subjected to hematological and radiological evaluation using 64-multidetector-row CT scanner without contrast injection. Statistical analysis reveals that patients of the two study groups exhibit a significantly increased risk of sinusitis in comparison with the normal controls (RR: 3.55 for β-thalassemic pediatric subjects; RR: 3.35 for SCA pediatric subjects). A significant difference (p < 0,5) was found between the β -thalassemic patients on the one side, and SCA and control group on the other side, with regard to the evaluation of the typical anatomic alteration of maxillary sinus: β-thalassemic children had significant increase in the bone thickness of anterior and lateral sinus walls and significant reduction in volume and density compared to SCA patients and control group, with normal conditions of these parameters. In these hematological patients, there is an increased incidence of sinonasal infections due their therapy-induced immunosuppression post transplantation. In

  7. Ankle arthrodesis with bone graft after distal tibia resection for bone tumors.

    PubMed

    Campanacci, Domenico Andrea; Scoccianti, Guido; Beltrami, Giovanni; Mugnaini, Marco; Capanna, Rodolfo

    2008-10-01

    Treatment of distal tibial tumors is challenging due to the scarce soft tissue coverage of this area. Ankle arthrodesis has proven to be an effective treatment in primary and post-traumatic joint arthritis, but few papers have addressed the feasibility and techniques of ankle arthrodesis in tumor surgery after long bone resections. Resection of the distal tibia and reconstruction by ankle fusion using non-vascularized structural bone grafts was performed in 8 patients affected by malignant (5 patients) or aggressive benign (3 patients) tumors. Resection length of the tibia ranged from 5 to 21 cm. Bone defects were reconstructed with cortical structural autografts (from contralateral tibia) or allografts or both, plus autologous bone chips. Fixation was accomplished by antegrade nailing (6 cases) or plating (2~cases). All the arthrodesis successfully healed. At followup ranging from 23 to 113 months (average 53.5), all patients were alive. One local recurrence was observed with concomitant deep infection (a below-knee amputation was performed). Mean functional MSTS score of the seven available patients was 80.4% (range, 53 to 93). Resection of the distal tibia and arthrodesis of the ankle with non-vascularized structural bone grafts, combined with autologous bone chips, can be an effective procedure in bone tumor surgery with durable and satisfactory functional results. In shorter resections, autologous cortical structural grafts can be used; in longer resections, allograft structural bone grafts are needed.

  8. The specificity of childhood adversities and negative life events across the life span to anxiety and depressive disorders.

    PubMed

    Spinhoven, Philip; Elzinga, Bernet M; Hovens, Jacqueline G F M; Roelofs, Karin; Zitman, Frans G; van Oppen, Patricia; Penninx, Brenda W J H

    2010-10-01

    Although several studies have shown that life adversities play an important role in the etiology and maintenance of both depressive and anxiety disorders, little is known about the relative specificity of several types of life adversities to different forms of depressive and anxiety disorder and the concurrent role of neuroticism. Few studies have investigated whether clustering of life adversities or comorbidity of psychiatric disorders critically influence these relationships. Using data from the Netherlands Study of Depression and Anxiety (NESDA), we analyzed the association of childhood adversities and negative life experiences across the lifespan with lifetime DSM-IV-based diagnoses of depression or anxiety among 2288 participants with at least one affective disorder. Controlling for comorbidity and clustering of adversities the association of childhood adversity with affective disorders was greater than that of negative life events across the life span with affective disorders. Among childhood adversities, emotional neglect was specifically associated with depressive disorder, dysthymia, and social phobia. Persons with a history of emotional neglect and sexual abuse were more likely to develop more than one lifetime affective disorder. Neuroticism and current affective disorder did not affect the adversity-disorder relationships found. Using a retrospective study design, causal interpretations of the relationships found are not warranted. Emotional neglect seems to be differentially related to depression, dysthymia and social phobia. This knowledge may help to reduce underestimation of the impact of emotional abuse and lead to better recognition and treatment to prevent long-term disorders. Copyright 2010 Elsevier B.V. All rights reserved.

  9. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    PubMed

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  10. Influence of Exercise and Training on Critical Stages of Bone Growth and Development.

    PubMed

    Klentrou, Panagiota

    2016-05-01

    Although osteoporosis is considered a geriatric disease, factors affecting bone strength are most influential during child growth and development. This article reviews what is known and still unclear in terms of bone growth, development and adaptation relative to physical activity before and during puberty. Bone is responsive to certain exercise protocols early in puberty and less so in postpubertal years, where bone strength, rather than bone mass, being the outcome of interest. Mechanical loading and high impact exercise promote bone strength. Intense training before and during puberty, however, may negatively affect bone development. Future research should focus on increasing our mechanistic understanding of the manner by which diverse physical stressors alter the integrity of bone. Longitudinal studies that examine the extent to which muscle and bone are comodulated by growth in children are also recommended.

  11. CT-derived indices of canine osteosarcoma-affected antebrachial strength.

    PubMed

    Garcia, Tanya C; Steffey, Michele A; Zwingenberger, Allison L; Daniel, Leticia; Stover, Susan M

    2017-05-01

    To improve the prediction of fractures in dogs with bone tumors of the distal radius by identifying computed tomography (CT) indices that correlate with antebrachial bone strength and fracture location. Prospective experimental study. Dogs with antebrachial osteosarcoma (n = 10), and normal cadaver bones (n=9). Antebrachia were imaged with quantitative CT prior to biomechanical testing to failure. CT indices of structural properties were compared to yield force and maximum force using Pearson correlation tests. Straight beam failure (Fs), axial rigidity, curved beam failure (Fc), and craniocaudal bending moment of inertia (MOICrCd) CT indices most highly correlated (0.77 > R > 0.57) with yield and maximum forces when iOSA-affected and control bones were included in the analysis. Considering only OSA-affected bones, Fs, Fc, and axial rigidity correlated highly (0.85 > R > 0.80) with maximum force. In affected bones, the location of minimum axial rigidity and maximum MOICrCd correlated highly (R > 0.85) with the actual fracture location. CT-derived axial rigidity, Fs, and MOICrCd have strong linear relationships with yield and maximum force. These indices should be further evaluated prospectively in OSA-affected dogs that do, and do not, experience pathologic fracture. © 2017 The American College of Veterinary Surgeons.

  12. Protocol for a randomized controlled trial to compare bone-loading exercises with risedronate for preventing bone loss in osteopenic postmenopausal women.

    PubMed

    Bilek, Laura D; Waltman, Nancy L; Lappe, Joan M; Kupzyk, Kevin A; Mack, Lynn R; Cullen, Diane M; Berg, Kris; Langel, Meghan; Meisinger, Melissa; Portelli-Trinidad, Ashlee; Lang, Molly

    2016-08-30

    In the United States, over 34 million American post-menopausal women have low bone mass (osteopenia) which increases their risk of osteoporosis and fractures. Calcium, vitamin D and exercise are recommended for prevention of osteoporosis, and bisphosphonates (BPs) are prescribed in women with osteoporosis. BPs may also be prescribed for women with low bone mass, but are more controversial due to the potential for adverse effects with long-term use. A bone loading exercise program (high-impact weight bearing and resistance training) promotes bone strength by preserving bone mineral density (BMD), improving bone structure, and by promoting bone formation at sites of mechanical stress. The sample for this study will be 309 women with low bone mass who are within 5 years post-menopause. Subjects are stratified by exercise history (≥2 high intensity exercise sessions per week; < 2 sessions per week) and randomized to a control or one of two treatment groups: 1) calcium + vitamin D (CaD) alone (Control); 2) a BP plus CaD (Risedronate); or 3) a bone loading exercise program plus CaD (Exercise). After 12 months of treatment, changes in bone structure, BMD, and bone turnover will be compared in the 3 groups. Primary outcomes for the study are bone structure measures (Bone Strength Index [BSI] at the tibia and Hip Structural Analysis [HSA] scores). Secondary outcomes are BMD at the hip and spine and serum biomarkers of bone formation (alkaline phosphase, AlkphaseB) and resorption (Serum N-terminal telopeptide, NTx). Our central hypothesis is that improvements in bone strength will be greater in subjects randomized to the Exercise group compared to subjects in either Control or Risedronate groups. Our research aims to decrease the risk of osteoporotic fractures by improving bone strength in women with low bone mass (pre-osteoporotic) during their first 5 years' post-menopause, a time of rapid and significant bone loss. Results of this study could be used in

  13. Association between basal metabolic function and bone metabolism in postmenopausal women with type 2 diabetes.

    PubMed

    Ogata, Makiko; Ide, Risa; Takizawa, Miho; Tanaka, Mizuho; Tetsuo, Tamaki; Sato, Asako; Iwasaki, Naoko; Uchigata, Yasuko

    2015-01-01

    Diabetes is a risk factor for osteoporosis, and glycemic control is critical during osteoporosis treatment in patients with type 2 diabetes (T2D). However, diabetic therapies have potentially adverse effects on bone metabolism. Additionally, biomarkers for bone metabolism are directly affected by drug therapies for osteoporosis. This study examined resting energy expenditure (REE) and respiratory quotient (RQ) as indices of bone metabolism in postmenopausal Japanese women with T2D. Forty-six postmenopausal Japanese women with T2D were examined. Procollagen type 1 N-terminal propeptide (P1NP, a fasting serum bone formation marker) and carboxy-terminal collagen cross-links-1 (CTX-1, a resorption marker) were evaluated, along with intact parathyroid hormone, 25-hydroxyvitamin D (25[OH]D), urine microalbumin, motor nerve conduction velocity, sensory nerve conduction velocity, R-R interval, body composition, REE, RQ, and bone mineral density at the nondominant distal radius. The mean T-score was low with high variance (-1.7 ± 1.6), and 18 patients (39%) met the criteria for osteoporosis. REE was positively correlated with body mass index (β = 0.517; r(2) = 0.250), serum calcium (β = 0.624; r(2) = 0.200), glycated hemoglobin A1C for the previous 6 mo (β = 0.395; r(2) = 0.137), and the serum P1NP/CTX-1 ratio (β = 0.380; r(2) = 0.144). RQ was positively correlated with serum 25(OH)D (β = 0.387; r(2) = 0.131). The basal metabolic rate and diabetic pathophysiology are interrelated with bone turnover. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of PTH (1-84) on bone quality in a validated model of osteoporosis due to androgenic deprivation.

    PubMed

    Martín-Fernández, Marta; Martínez, Elena; Díaz-Curiel, Manuel; Guede, David; Caeiro, José Ramón; De la Piedra, Concepción

    2014-03-01

    The purpose of this study was to evaluate the effect of parathyroid hormone (PTH) (1-84) in a model of male osteoporosis induced by orchidectomy in rats. Six-month-old Wistar rats were used as follows: SHAM (simulated orchidectomy), orchidectomized (ORX), ORX + PTH1 (ORX and treated with 10 µg/Kg/d of PTH 1-84) and ORX + PTH2 (ORX and treated with 50 µg/Kg/d of PTH 1-84) over 3 months, with treatment beginning three months after orchidectomy. Orchidectomy resulted in a decreased of femoral and lumbar bone mineral density (BMD), a worsening of trabecular and cortical microarchitecture and a decrease in biomechanical properties. Both doses of PTH (1-84) partially (low dose) or totally (high dose) restored the ORX-induced changes. Serum C-telopeptide of type I collagen/5b isoenzyme of tartrate-resistant acid phosphatase (CTX/TRAP) resorption index increased after orchidectomy. Osteocalcin (bone Gla protein; BGP) levels were not affected by orchidectomy. PTH (1-84) treatment did not produce any changes in the levels of CTX/TRAP with respect to the ORX group. BGP levels increased with PTH treatment. PTH (1-84) is able to restore the adverse effects of orchidectomy on bone as measured by BMD, microstructural and biomechanical properties and bone remodeling markers.

  15. Effects of flaxseed lignan and oil on bone health of breast-tumor-bearing mice treated with or without tamoxifen.

    PubMed

    Chen, Jianmin; Saggar, Jasdeep K; Ward, Wendy E; Thompson, Lilian U

    2011-01-01

    Previous studies showed that flaxseed lignan (secoisolariciresinol diglucoside, SDG) and oil (FO) inhibit established breast tumor growth in athymic mice with or without tamoxifen (TAM) treatment. TAM was found to increase bone mineral content (BMC) and density (BMD) in breast cancer patients. It is not known whether SDG or FO alone or combined with TAM affects bone health. Hence, the effects of SDG and FO, alone or in combination, on BMC, BMD, and biomechanical bone strength in ovariectomized athymic mice with established human breast tumors (MCF-7) treated with or without TAM were studied. In a factorial design, mice were divided into four non-TAM and four TAM groups. Each group consisted of mice fed a basal diet (BD), SDG (1 g/kg), FO (38.5 g/kg) or SDG + FO (combination) diets. The TAM group had TAM implants that provide a 5-mg TAM dose released over 60 d. TAM exerted an overall significant effect in increasing BMC, BMD, and biomechanical strength in femurs and lumbar vertebra. Without TAM treatment, SDG produced significant lower femur BMD (6%) while FO produced lower vertebrae BMC (8%) and BMD (6%). With TAM treatment, SDG and FO did not exert an effect on BMC and BMD at the femur or vertebra. SDG and FO produced no marked effect on biomechanical bone strength with or without TAM treatment. In conclusion, FS components did not significantly attenuate the positive effects on bone induced by TAM in this model system, indicating no apparent adverse effects on bone health.

  16. Bone cysts after osteochondral allograft repair of cartilage defects in goats suggest abnormal interaction between subchondral bone and overlying synovial joint tissues.

    PubMed

    Pallante-Kichura, Andrea L; Cory, Esther; Bugbee, William D; Sah, Robert L

    2013-11-01

    The efficacy of osteochondral allografts (OCAs) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12months in vivo. The objectives of this study were to further analyze OCAs and contralateral non-operated (Non-Op) CONTROLS from the medial femoral condyle to (1) determine the effect of OCA storage on local subchondral bone (ScB) and trabecular bone (TB) structure, (2) characterize the location and structure of bone cysts and channels, and (3) assess the relationship between cartilage and bone properties. (1) Overall bone structure after OCAs was altered compared to Non-Op, with OCA samples displaying bone cysts, ScB channels, and ScB roughening. ScB BV/TV in FROZEN OCAs was lower than Non-Op and other OCAs. TB BV/TV in FRESH, 4°C/14d, and 4°C/28d OCAs did not vary compared to Non-Op, but BS/TV was lower. (2) OCAs contained "basal" cysts, localized to deeper regions, some "subchondral" cysts, localized near the bone-cartilage interface, and some ScB channels. TB surrounding basal cysts exhibited higher BV/TV than Non-Op. (3) Basal cysts occurred (a) in isolation, (b) with subchondral cysts and ScB channels, (c) with ScB channels, or (d) with subchondral cysts, ScB channels, and ScB erosion. Deterioration of cartilage gross morphology was strongly associated with abnormal μCT bone structure. Evidence of cartilage-bone communication following OCA repair may favor fluid intrusion as a mechanism for subchondral cyst formation, while bone resorption at the graft-host interface without affecting overall bone and cartilage structure may favor bony contusion mechanism for basal cyst formation. These

  17. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.-J.; Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan; Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei, Taiwan

    2005-11-15

    Purpose: Caffeic acid phenethyl ester (CAPE), a component of propolis, was reported capable of depleting glutathione (GSH). We subsequently examined the radiosensitizing effect of CAPE and its toxicity. Methods and Materials: The effects of CAPE on GSH level, GSH metabolism enzyme activities, NF-{kappa}B activity, and radiosensitivity in mouse CT26 colorectal adenocarcinoma cells were determined. BALB/c mouse with CT26 cells implantation was used as a syngeneic in vivo model for evaluation of treatment and toxicity end points. Results: CAPE entered CT26 cells rapidly and depleted intracellular GSH in CT26 cells, but not in bone marrow cells. Pretreatment with nontoxic doses ofmore » CAPE significantly enhanced cell killing by ionizing radiation (IR) with sensitizer enhancement ratios up to 2.2. Pretreatment of CT26 cells with N-acetyl-L-cysteine reversed the GSH depletion activity and partially blocked the radiosensitizing effect of CAPE. CAPE treatment in CT26 cells increased glutathione peroxidase, decreased glutathione reductase, and did not affect glutathione S-transferase or {gamma}-glutamyl transpeptidase activity. Radiation activated NF-{kappa}B was reversed by CAPE pretreatment. In vivo study revealed that pretreatment with CAPE before IR resulted in greater inhibition of tumor growth and prolongation of survival in comparison with IR alone. Pretreatment with CAPE neither affected body weights nor produced hepatic, renal, or hematopoietic toxicity. Conclusions: CAPE sensitizes CT26 colorectal adenocarcinoma to IR, which may be via depleting GSH and inhibiting NF-{kappa}B activity, without toxicity to bone marrow, liver, and kidney.« less

  18. Prolonged Hypocalcemia Following a Single Dose of Denosumab for Diffuse Bone Metastasis of Gastric Cancer after Total Gastrectomy.

    PubMed

    Iizumi, Sakura; Shimoi, Tatsunori; Nishikawa, Tadaaki; Kitano, Atsuko; Sasada, Shinsuke; Shimomura, Akihiko; Noguchi, Emi; Yunokawa, Mayu; Yonemori, Kan; Shimizu, Chikako; Fujiwara, Yasuhiro; Tamura, Kenji

    2017-11-01

    Hypocalcemia is a significant adverse effect of denosumab. We herein report a case of prolonged hypocalcemia in a patient with multiple risk factors for hypocalcemia, including gastrectomy, increased bone turnover, and a poor performance status. Hypocalcemia developed after denosumab treatment for diffuse bone metastasis of gastric cancer, despite oral supplementation with vitamin D and calcium. To avoid serious prolonged hypocalcemia, a thorough assessment of the bone calcium metabolism is required before initiating denosumab treatment.

  19. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    NASA Technical Reports Server (NTRS)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  20. Taxonomy of rare genetic metabolic bone disorders.

    PubMed

    Masi, L; Agnusdei, D; Bilezikian, J; Chappard, D; Chapurlat, R; Cianferotti, L; Devolgelaer, J-P; El Maghraoui, A; Ferrari, S; Javaid, M K; Kaufman, J-M; Liberman, U A; Lyritis, G; Miller, P; Napoli, N; Roldan, E; Papapoulos, S; Watts, N B; Brandi, M L

    2015-10-01

    This article reports a taxonomic classification of rare skeletal diseases based on metabolic phenotypes. It was prepared by The Skeletal Rare Diseases Working Group of the International Osteoporosis Foundation (IOF) and includes 116 OMIM phenotypes with 86 affected genes. Rare skeletal metabolic diseases comprise a group of diseases commonly associated with severe clinical consequences. In recent years, the description of the clinical phenotypes and radiographic features of several genetic bone disorders was paralleled by the discovery of key molecular pathways involved in the regulation of bone and mineral metabolism. Including this information in the description and classification of rare skeletal diseases may improve the recognition and management of affected patients. IOF recognized this need and formed a Skeletal Rare Diseases Working Group (SRD-WG) of basic and clinical scientists who developed a taxonomy of rare skeletal diseases based on their metabolic pathogenesis. This taxonomy of rare genetic metabolic bone disorders (RGMBDs) comprises 116 OMIM phenotypes, with 86 affected genes related to bone and mineral homeostasis. The diseases were divided into four major groups, namely, disorders due to altered osteoclast, osteoblast, or osteocyte activity; disorders due to altered bone matrix proteins; disorders due to altered bone microenvironmental regulators; and disorders due to deranged calciotropic hormonal activity. This article provides the first comprehensive taxonomy of rare metabolic skeletal diseases based on deranged metabolic activity. This classification will help in the development of common and shared diagnostic and therapeutic pathways for these patients and also in the creation of international registries of rare skeletal diseases, the first step for the development of genetic tests based on next generation sequencing and for performing large intervention trials to assess efficacy of orphan drugs.

  1. The impact of childhood adversity on suicidality and clinical course in treatment-resistant depression.

    PubMed

    Tunnard, Catherine; Rane, Lena J; Wooderson, Sarah C; Markopoulou, Kalypso; Poon, Lucia; Fekadu, Abebaw; Juruena, Mario; Cleare, Anthony J

    2014-01-01

    Childhood adversity is a risk factor for the development of depression and can also affect clinical course. We investigated this specifically in treatment-resistant depression (TRD). One hundred and thirty-seven patients with TRD previously admitted to an inpatient affective disorders unit were included. Clinical, demographic and childhood adversity (physical, sexual, emotional abuse; bullying victimization, traumatic events) data were obtained during admission. Associations between childhood adversity, depressive symptoms and clinical course were investigated. Most patients had experienced childhood adversity (62%), with traumatic events (35%) and bullying victimization (29%) most commonly reported. Childhood adversity was associated with poorer clinical course, including earlier age of onset, episode persistence and recurrence. Logistic regression analyses revealed childhood adversity predicted lifetime suicide attempts (OR 2.79; 95% CI 1.14, 6.84) and childhood physical abuse predicted lifetime psychosis (OR 3.42; 95% CI 1.00, 11.70). The cross-sectional design and retrospective measurement of childhood adversity are limitations of the study. Childhood adversity was common amongst these TRD patients and was associated with poor clinical course, psychosis and suicide attempts. Routine assessment of early adversity may help identify at risk individuals and inform clinical intervention. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effect of mirtazapine on rat bone tissue after orchidectomy.

    PubMed

    Fekete, Sona; Simko, Julius; Mzik, Martin; Karesova, Iva; Zivna, Helena; Pavlíková, Ladislava; Palicka, Vladimir

    2015-01-01

    Our study aimed to investigate the effect of mirtazapine on bone metabolism in the orchidectomized rat model. Rats were divided into three groups. A sham-operated control group (SHAM group) and a control group after orchidectomy (ORX group) received the standard laboratory diet (SLD). An experimental group after orchidectomy (ORX MIRTA group) received SLD enriched with mirtazapine for 12 weeks. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Bone marker concentrations of osteoprotegerin (OPG), amino-terminal propeptide of procollagen type I, bone alkaline phosphatase (BALP), sclerostin and bone morphogenetic protein 2 were examined in bone homogenate. The femurs were used for biomechanical testing. Compared with the control ORX group, we found a lower BMD in the ORX MIRTA group. The differences were statistically significant, although not in the lumbar vertebrae. BMD was lower in the MIRTA group, suggesting a preferential effect on cortical bone. However, although the thickness of the diaphyseal cortical bone was not different, the fragility in the femoral neck area was statistically significantly different between the groups in biomechanical testing. Regarding the bone metabolism markers, there was a significant decrease in OPG and BALP levels, suggesting a reduction in osteoid synthesis. The results suggest that prolonged use of mirtazapine may have a negative effect on the synthesis of bone and on its mechanical strength, especially in the femoral neck. Further studies are warranted to establish whether mirtazapine may have a clinically significant adverse effect on bone exclusively in the model of gonadectomized rats, or whether the effect occurs also in the model of gonadally intact animals and in respective human models. © 2015 S. Karger AG, Basel

  3. Does Employment-Related Resilience Affect the Relationship between Childhood Adversity, Community Violence, and Depression?

    PubMed

    Welles, Seth L; Patel, Falguni; Chilton, Mariana

    2017-04-01

    Depression is a barrier to employment among low-income caregivers receiving Temporary Assistance for Needy Families (TANF), and adverse childhood experiences (ACEs) and exposure to community violence (ECV) are often associated with depression. Using baseline data of 103 TANF caregivers of young children of the Building Wealth and Health Network Randomized Controlled Trial Pilot, this study investigated associations of two forms of employment-related resilience-self-efficacy and employment hope-with exposure to adversity/violence and depression, measured by the Center for Epidemiologic Studies Depression (CES-D) short form. Using contingency table analysis and regression analysis, we identified associations between ACEs and depression [OR = 1.70 (1.25-2.32), p = 0.0008] and having high levels of ECV with a 6.9-fold increased risk for depression when compared with those without ECV [OR = 6.86 (1.43-33.01), p = 0.02]. While self-efficacy and employment hope were significantly associated with depression, neither resilience factor impacted the association of ACE level and depression, whereas self-efficacy and employment hope modestly reduced the associations between ECV and depression, 13 and 16%, respectively. Results suggest that self-efficacy and employment hope may not have an impact on the strong associations between adversity, violence, and depression.

  4. [Fetal bone and joint disorders].

    PubMed

    Jakobovits, Akos

    2008-12-21

    The article discusses the physiology and pathology of fetal bone and joint development and functions. The bones provide static support for the body. The skull and the bones of spinal column encase the central and part of the peripheral nervous system. The ribs and the sternum shield the heart and the lungs, while the bones of the pelvis protect the intraabdominal organs. Pathological changes of these bony structures may impair the functions of the respective systems or internal organs. Movements of the bones are brought about by muscles. The deriving motions are facilitated by joints. Bony anomalies of the extremities limit their effective functions. Apart from skeletal and joint abnormalities, akinesia may also be caused by neurological, muscular and skin diseases that secondarily affect the functions of bones and joints. Such pathological changes may lead to various degrees of physical disability and even to death. Some of the mentioned anomalies are recognizable in utero by ultrasound. The diagnosis may serve as medical indication for abortion in those instances when the identified abnormality is incompatible with independent life.

  5. Osteomesopyknosis: report of a new case with bone histology.

    PubMed

    Hardouin, P; Flautre, B; Sutter, B; Leclet, H; Grardel, B; Fauquert, P

    1994-01-01

    A new case of osteomesopyknosis, a rare autosomal dominant axial osteosclerosis is reported, with 4 affected members of the same family. Biochemical investigations, bone mineral content (BMC) measurement, 99mTc HMDP bone scan and microscopy of iliac crest bone and femoral head have been performed on 1 subject. A marked increase of BMC was found, without abnormality of biochemical data. Microscopy of bone showed an increase of trabecular thickness, and a low rate of bone turnover. No abnormality of mineralization was found on microradiographs.

  6. Bone morphogenetic protein 7 and autologous bone graft in revision surgery for non-union after lumbar interbody fusion.

    PubMed

    Werle, Stephan; AbuNahleh, Kais; Boehm, Heinrich

    2016-08-01

    Potential adverse and unknown long-term effects as well as additional costs limit the use of BMPs (Bone morphogenetic proteins) in primary fusion procedures. However, the proven osteoinductive properties render BMPs attractive for the attempt to reach fusion of symptomatic non-unions. The aim of this study is to evaluate the fusion rate and potential disadvantages of eptotermin alfa (rhBMP-7) used with autologous bone graft in revision procedures for lumbar pseudoarthrosis. At our institution, rhBMP-7 has been used to improve fusion rates in revision surgery for symptomatic pseudoarthrosis during the past 10 years. Eighty-four fusion procedures using rhBMP-7 between 08/2003 and 07/2011 were revisions due to symptomatic lumbar pseudoarthrosis. The surgical approach was posterior in three and combined anterior-posterior in 71 patients. Of those, 74 patients had either reached fusion or had follow-up of at least 39.5 months (range 21-80 months) in the case of pseudoarthrosis. These 74 patients have been included in a retrospective follow-up study. In 60 patients (81.1 %) the rhBMP-7 procedure was successful. In 14 patients, pseudoarthrosis persisted or fusion was questionable. Of those patients 12 accounted for persisting L5-S1 non-union. Persisting non-unions were found in 26.7 % of the study after four or more segment instrumentations compared to the 16.9 % after mono-, bi-, or three-segment instrumentation, and in four of 14 patients with spondylodesis of three or more levels above a pseudoarthrotic lumbosacral junction. Adverse effects related to the use of eptotermin alfa were rare in this group with symptomatic ectopic bone formation in one patient. Using rhBMP-7 with autologous bone graft in revisions for lumbar pseudoarthrosis via an anterior approach is safe and can lead to fusion even under unfavorable biomechanical conditions. However, successful outcome depends on the individual constellation. Treatment of non-unions of the lumbosacral junction

  7. Hoof position during limb loading affects dorsoproximal bone strains on the equine proximal phalanx.

    PubMed

    Singer, Ellen; Garcia, Tanya; Stover, Susan

    2015-07-16

    Sagittal fractures of the proximal phalanx (P1) in the racehorse appear to be associated with turf racing surfaces, which are known to restrict forward slide of the foot at impact. We hypothesized that restriction of forward foot slip would result in higher P1 bone strains during metacarpophalangeal joint (MCPJ) hyperextension. Unilateral limbs from six equine cadavers were instrumented with strain gauges and bone reference markers to measure dorsoproximal P1 bone strains and MCPJ extension, collateromotion and axial rotation during in vitro limb loading to 10,500 N. By limiting movement of the distal actuator platform, three different foot conditions (forward, free, and restricted) were applied in a randomised block design. Bone reference markers, recorded by video, were analyzed to determine motion of P1 relative to MC3. Rosette strain data were reduced to principal and shear magnitudes and directions. A mixed model ANOVA determined the effect of foot position on P1 bone strains and MCPJ angles. At 10,000 N load, the restricted condition resulted in higher P1 axial compressive (p=0.015), maximum shear (p=0.043) and engineering shear (p=0.046) strains compared to the forward condition. The restricted condition had higher compressive (p=0.025) and lower tensile (p=0.043) principal strains compared to the free condition. For the same magnitude of principal or shear strains, axial rotation and collateromotion angles were greatest for the restricted condition. Therefore, the increase in P1 principal compressive and shear bone strains associated with restricted foot slip indicate that alterations in foot:ground interaction may play a role in fracture occurrence in horses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Genetic variation in the MITF promoter affects skin colour and transcriptional activity in black-boned chickens.

    PubMed

    Wang, G; Liao, J; Tang, M; Yu, S

    2018-02-01

    1. Microphthalmia-associated transcription factor (MITF) plays a pivotal role in melanocyte development by regulating the transcription of major pigmentation enzymes (e.g. TYR, TYRP1 and DCT). A single-nucleotide polymorphism (SNP), c.-638T>C, was identified in the MITF promoter, and genotyping of a population (n = 426) revealed that SNP c.-638T>C was associated with skin colour in black-boned chickens. 2. Individuals with genotypes CC and TC exhibited greater MTIF expression than those with genotype TT. Luciferase assays also revealed that genotype CC and TC promoters had higher activity levels than genotype TT. Expression of melanogenesis-related gene (TYR) was higher in the skin of chickens with the CC and CT genotype compared to TT chickens (P < 0.05). 3. Transcription factor-binding site analyses showed that the c.-638C allele contains a putative binding site for transcription factor sterol regulatory element-binding transcription factor 2, aryl hydrocarbon receptor nuclear translocator, transcription factor binding to IGHM enhancer 3 and upstream transcription factor 2. In contrast, the c.-638T allele contains binding sites for Sp3 transcription factor and Krüppel-like factor 1. 4. It was concluded that MITF promoter polymorphisms affected chicken skin colour. SNP c.-638T>C could be used for the marker-assisted selection of skin colour in black-boned chicken breeding.

  9. Bone Cysts After Osteochondral Allograft Repair of Cartilage Defects in Goats Suggest Abnormal Interaction Between Subchondral Bone and Overlying Synovial Joint Tissues

    PubMed Central

    Pallante-Kichura, Andrea L.; Cory, Esther; Bugbee, William D.; Sah, Robert L.

    2013-01-01

    The efficacy of osteochondral allografts (OCA) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12 months in vivo. The objectives of this study were to further analyze OCA and contralateral non-operated (Non-Op) CONTROLS from the medial femoral condyle to (1) determine the effect of OCA storage on local subchondral (ScB) and trabecular (TB) bone structure, (2) characterize the location and structure of bone cysts and channels, and (3) assess the relationship between cartilage and bone properties. (1) Overall bone structure after OCA was altered compared to Non-Op, with OCA samples displaying bone cysts, ScB channels, and ScB roughening. ScB BV/TV in FROZEN OCA was lower than Non-Op and other OCA. TB BV/TV in FRESH, 4°C/14d, and 4°C/28d OCA did not vary compared to Non-Op, but BS/TV was lower. (2) OCA contained “basal” cysts, localized to deeper regions, some “subchondral” cysts, localized near the bone-cartilage interface, and some ScB channels. TB surrounding basal cysts exhibited higher BV/TV than Non-Op. (3) Basal cysts occurred (a) in isolation, (b) with subchondral cysts and ScB channels, (c) with ScB channels, or (d) with subchondral cysts, ScB channels, and ScB erosion. Deterioration of cartilage gross morphology was strongly associated with abnormal μCT bone structure. Evidence of cartilage-bone communication following OCA repair may favor fluid intrusion as a mechanism for subchondral cyst formation, while bone resorption at the graft-host interface without affecting overall bone and cartilage structure may favor bony contusion mechanism for basal cyst formation. These

  10. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2

    PubMed Central

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation. PMID:25813520

  11. Influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation with calcium oxalate and struvite in healthy cats.

    PubMed

    Bartges, Joseph W; Kirk, Claudia A; Cox, Sherry K; Moyers, Tamberlyn D

    2013-10-01

    To evaluate the influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation (URSS) with calcium oxalate and struvite in healthy cats. 6 castrated male and 6 spayed female cats. 3 groups of 4 cats each were fed diets for 12 months that differed only in acidifying or alkalinizing properties (alkalinizing, neutral, and acidifying). Body composition was estimated by use of dual energy x-ray absorptiometry, and 48-hour urine samples were collected for URSS determination. Urine pH differed significantly among diet groups, with the lowest urine pH values in the acidifying diet group and the highest values in the alkalinizing diet group. Differences were not observed in other variables except urinary ammonia excretion, which was significantly higher in the neutral diet group. Calcium oxalate URSS was highest in the acidifying diet group and lowest in the alkalinizing diet group; struvite URSS was not different among groups. Diet was not significantly associated with bone mineral content or density. Urinary undersaturation with calcium oxalate was achieved by inducing alkaluria. Feeding an alkalinizing diet was not associated with URSS with struvite. Bone mineral density and calcium content were not adversely affected by diet; therefore, release of calcium from bone caused by feeding an acidifying diet may not occur in healthy cats.

  12. Does size difference in allogeneic cancellous bone granules loaded with differentiated autologous cultured osteoblasts affect osteogenic potential?

    PubMed

    Lee, Sang-Uk; Chung, Yang-Guk; Kim, Seok-Jung; Oh, Il-Hoan; Kim, Yong-Sik; Ju, Sung-Hun

    2014-02-01

    We study the efficacy of bone regeneration by using two differently sized allogeneic cancellous bone granules loaded with autologous cultured osteoblasts in a rabbit model. Critical-sized bone defects of the radial shaft were made in 40 New Zealand White rabbits. Small allogeneic bone granules (150-300 μm in diameter) loaded with cultured differentiated autologous osteoblasts were implanted into one forearm (SBG group) and large bone granules (500-710 μm) loaded with osteoblasts were implanted into the forearm of the other side (LBG group). Radiographic evaluations were performed at 3, 6, 9 and 12 weeks and histology and micro-CT image analysis were carried out at 6 and 12 weeks post-implantation. On radiographic evaluation, the LBG group showed a higher bone quantity index at 3 and 6 weeks post-implantation (P < 0.05) but statistical significance was lost at 9 and 12 weeks. The progression of biological processes of the SBG group was faster than that of the LBG group. On micro-CT image analysis, the LBG group revealed a higher total bone volume and surface area than the SBG group at 6 weeks (P < 0.05) but the difference decreased at 12 weeks and was without statistical significance. Histological evaluation also revealed faster progression of new bone formation and maturation in the SBG group. Thus, the two differently sized allogeneic bone granules loaded with co-cultured autologous osteoblasts show no differences in the amount of bone regeneration, although the SBG group exhibits faster progression of bone regeneration and remodeling. This method might therefore provide benefits, such as a short healing time and easy application in an injectable form, in a clinical setting.

  13. Severe Affective and Behavioural Dysregulation Is Associated with Significant Psychosocial Adversity and Impairment

    ERIC Educational Resources Information Center

    Jucksch, Viola; Salbach-Andrae, Harriet; Lenz, Klaus; Goth, Kirstin; Dopfner, Manfred; Poustka, Fritz; Freitag, Christine M.; Lehmkuhl, Gerd; Lehmkuhl, Ulrike; Holtmann, Martin

    2011-01-01

    Background: Recently, a highly heritable behavioral phenotype of simultaneous deviance on the Anxious/Depressed, Attention Problems, and Aggressive Behavior syndrome scales has been identified on the Child Behavior Checklist (CBCL-Dysregulation Profile, CBCL-DP). This study aims to investigate psychosocial adversity and impairment of the CBCL-DP.…

  14. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    PubMed

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  15. Bone metabolism in anorexia nervosa and hypothalamic amenorrhea.

    PubMed

    Chou, Sharon H; Mantzoros, Christos

    2018-03-01

    Anorexia nervosa (AN) and hypothalamic amenorrhea (HA) are states of chronic energy deprivation associated with severely compromised bone health. Poor bone accrual during adolescence followed by increased bone loss results in lifelong low bone density, degraded bone architecture, and higher risk of fractures, despite recovery from AN/HA. Amenorrhea is only one of several compensatory responses to the negative energy balance. Other hypothalamic-pituitary hormones are affected and contribute to bone deficits, including activation of hypothalamic-pituitary-adrenal axis and growth hormone resistance. Adipokines, particularly leptin, provide information on fat/energy stores, and gut hormones play a role in the regulation of appetite and food intake. Alterations in all these hormones influence bone metabolism. Restricted in scope, current pharmacologic approaches to improve bone health have had overall limited success. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Regulation of Bone Metabolism by Serotonin.

    PubMed

    Lavoie, Brigitte; Lian, Jane B; Mawe, Gary M

    2017-01-01

    The processes of bone growth and turnover are tightly regulated by the actions of various signaling molecules, including hormones, growth factors, and cytokines. Imbalances in these processes can lead to skeletal disorders such as osteoporosis or high bone mass disease. It is becoming increasingly clear that serotonin can act through a number of mechanisms, and at different locations in the body, to influence the balance between bone formation and resorption. Its actions on bone metabolism can vary, based on its site of synthesis (central or peripheral) as well as the cells and subtypes of receptors that are activated. Within the central nervous system, serotonergic neurons act via the hypothalamus to suppress sympathetic input to the bone. Since sympathetic input inhibits bone formation, brain serotonin has a net positive effect on bone growth. Gut-derived serotonin is thought to inhibit bone growth by attenuating osteoblast proliferation via activation of receptors on pre-osteoblasts. There is also evidence that serotonin can be synthesized within the bone and act to modulate bone metabolism. Osteoblasts, osteoclasts, and osteocytes all have the machinery to synthesize serotonin, and they also express the serotonin-reuptake transporter (SERT). Understanding the roles of serotonin in the tightly balanced system of bone modeling and remodeling is a clinically relevant goal. This knowledge can clarify bone-related side effects of drugs that affect serotonin signaling, including serotonin-specific reuptake inhibitors (SSRIs) and receptor agonists and antagonists, and it can potentially lead to therapeutic approaches for alleviating bone pathologies.

  17. Prolonged Hypocalcemia Following a Single Dose of Denosumab for Diffuse Bone Metastasis of Gastric Cancer after Total Gastrectomy

    PubMed Central

    Iizumi, Sakura; Shimoi, Tatsunori; Nishikawa, Tadaaki; Kitano, Atsuko; Sasada, Shinsuke; Shimomura, Akihiko; Noguchi, Emi; Yunokawa, Mayu; Yonemori, Kan; Shimizu, Chikako; Fujiwara, Yasuhiro; Tamura, Kenji

    2017-01-01

    Hypocalcemia is a significant adverse effect of denosumab. We herein report a case of prolonged hypocalcemia in a patient with multiple risk factors for hypocalcemia, including gastrectomy, increased bone turnover, and a poor performance status. Hypocalcemia developed after denosumab treatment for diffuse bone metastasis of gastric cancer, despite oral supplementation with vitamin D and calcium. To avoid serious prolonged hypocalcemia, a thorough assessment of the bone calcium metabolism is required before initiating denosumab treatment. PMID:28943574

  18. Good, Bad, or Ugly: the Biological Roles of Bone Marrow Fat.

    PubMed

    Singh, Lakshman; Tyagi, Sonia; Myers, Damian; Duque, Gustavo

    2018-04-01

    Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.

  19. The effects of visceral obesity and androgens on bone: trenbolone protects against loss of femoral bone mineral density and structural strength in viscerally obese and testosterone-deficient male rats.

    PubMed

    Donner, D G; Elliott, G E; Beck, B R; Forwood, M R; Du Toit, E F

    2016-03-01

    In males, visceral obesity and androgen deficiency often present together and result in harmful effects on bone. Our findings show that both factors are independently associated with adverse effects on femoral bone structure and strength, and trenbolone protects rats from diet-induced visceral obesity and consequently normalises femoral bone structural strength. In light of the rapidly increasing incidence of obesity and osteoporosis globally, and recent conjecture regarding the effects of visceral adiposity and testosterone deficiency on bone health, we investigated the effects of increased visceral adipose tissue (VAT) mass on femoral bone mineral density (BMD), structure and strength in normal weight rats with testosterone deficiency. Male Wistar rats (n = 50) were fed either standard rat chow (CTRL, n = 10) or a high-fat/high-sugar diet (HF/HS, n = 40). Following 8 weeks of feeding, rats underwent sham surgery (CTRL, n = 10; HF/HS, n = 10) or orchiectomy (HF/HS + ORX, n = 30). Following a 4-week recovery period, mini-osmotic pumps containing either vehicle (CTRL, n = 10; HF/HS, n = 10; HF/HS + ORX, n = 10), 2.0 mg kg day(-1), testosterone (HF/HS + ORX + TEST, n = 10) or 2.0 mg kg day(-1) trenbolone (HF/HS + ORX + TREN, n = 10) were implanted for 8 weeks of treatment. Dual-energy X-ray absorptiometry and three-point bending tests were used to assess bone mass, structure and strength of femora. Diet-induced visceral obesity resulted in decreased bone mineral area (BMA) and content (BMC) and impaired femoral stiffness and strength. Orchiectomy further impaired BMA, BMC and BMD and reduced energy to failure in viscerally obese animals. Both TEST and TREN treatment restored BMA, BMC, BMD and energy to failure. Only TREN reduced visceral adiposity and improved femoral stiffness and strength. Findings support a role for both visceral adiposity and testosterone deficiency as independent risk factors

  20. Recording Adverse Events Following Joint Arthroplasty: Financial Implications and Validation of an Adverse Event Assessment Form.

    PubMed

    Lee, Matthew J; Mohamed, Khalid M S; Kelly, John C; Galbraith, John G; Street, John; Lenehan, Brian J

    2017-09-01

    In Ireland, funding of joint arthroplasty procedures has moved to a pay-by-results national tariff system. Typically, adverse clinical events are recorded via retrospective chart-abstraction methods by administrative staff. Missed or undocumented events not only affect the quality of patient care but also may unrealistically skew budgetary decisions that impact fiscal viability of the service. Accurate recording confers clinical benefits and financial transparency. The aim of this study was to compare a prospectively implemented adverse events form with the current national retrospective chart-abstraction method in terms of pay-by-results financial implications. An adverse events form adapted from a similar validated model was used to prospectively record complications in 51 patients undergoing total hip or knee arthroplasties. Results were compared with the same cohort using an existing data abstraction method. Both data sets were coded in accordance with current standards for case funding. Overall, 114 events were recorded during the study through prospective charting of adverse events, compared with 15 events documented by customary method (a significant discrepancy). Wound drainage (15.8%) was the most common complication, followed by anemia (7.9%), lower respiratory tract infections (7.9%), and cardiac events (7%). A total of €61,956 ($67,778) in missed funding was calculated as a result. This pilot study demonstrates the ability to improve capture of adverse events through use of a well-designed assessment form. Proper perioperative data handling is a critical aspect of financial subsidies, enabling optimal allocation of funds. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Physical activity programs for promoting bone mineralization and growth in preterm infants.

    PubMed

    Schulzke, Sven M; Kaempfen, Siree; Trachsel, Daniel; Patole, Sanjay K

    2014-04-22

    Lack of physical stimulation may contribute to metabolic bone disease of preterm infants, resulting in poor bone mineralization and growth. Physical activity programs combined with adequate nutrition might help to promote bone mineralization and growth. The primary objective was to assess whether physical activity programs in preterm infants improve bone mineralization and growth and reduce the risk of fracture.The secondary objectives included other potential benefits in terms of length of hospital stay, skeletal deformities and neurodevelopmental outcomes, and adverse events.Subgroup analysis:• Given that the smallest infants are most vulnerable for developing osteopenia (Bishop 1999), a subgroup analysis was planned for infants with birth weight < 1000 g.• Calcium and phosphorus intake may affect an infant's ability to increase bone mineral content (Kuschel 2004). Therefore, an additional subgroup analysis was planned for infants receiving different amounts of calcium and phosphorus, along with full enteral feeds as follows. ∘ Below 100 mg/60 mg calcium/phosphorus or equal to/above 100 mg/60 mg calcium/phosphorus per 100 mL milk. ∘ Supplementation of calcium without phosphorus. ∘ Supplementation of phosphorus without calcium. The standard search strategy of the Cochrane Neonatal Review Group (CNRG) was used. The search included the Cochrane Central Register of Controlled Trials (CENTRAL) (2012, Issue 9), MEDLINE, EMBASE, CINAHL (1966 to March 2013), and cross-references, as well as handsearching of abstracts of the Society for Pediatric Research and the International Journal of Sports Medicine. Randomized and quasi-randomized controlled trials comparing physical activity programs (extension and flexion, range-of-motion exercises) versus no organized physical activity programs in preterm infants. Data collection, study selection, and data analysis were performed according to the methods of the CNRG. Eleven trials enrolling 324 preterm infants

  2. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees

    PubMed Central

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-01-01

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture. PMID:24145453

  3. Genetics of Paget's disease of bone

    PubMed Central

    Albagha, Omar ME

    2015-01-01

    Paget's disease of bone (PDB) is a common metabolic bone disease characterised by focal areas of increased bone turnover, which primarily affects people over the age of 55 years. Genetic factors have a fundamental role in the pathogenesis of PDB and are probably the main predisposing factor for the disease. The genetic contribution to PDB susceptibility ranges from rare pathogenic mutations in the single gene SQSTM1 to more common, small effect variants in at least seven genetic loci that predispose to the disease. These loci have additive effects on disease susceptibility and interact with SQSTM1 mutations to affect disease severity, making them a potentially useful tool in predicting disease risk and complication and in managing treatments. Many of these loci harbour genes that have important function in osteoclast differentiation such as CSF1, DCSTAMP and TNFRSF11A. Other susceptibility loci have highlighted new molecular pathways that have not been previously implicated in regulation of bone metabolism such as OPTN, which was recently found to negatively regulate osteoclast differentiation. PDB-susceptibility variants exert their effect either by affecting the protein coding sequence such as variants found in SQSTM1 and RIN3 or by influencing gene expression such as those found in OPTN and DCSTAMP. Epidemiological studies indicate that environmental triggers also have a key role in PDB and interact with genetic factors to influence manifestation and severity of the disease; however, further studies are needed to identify these triggers. PMID:26587225

  4. Family Adversity and Resilience Measures in Pediatric Acute Care Settings.

    PubMed

    O'Malley, Donna M; Randell, Kimberly A; Dowd, M Denise

    2016-01-01

    Adverse childhood experiences (ACEs) impact health across the life course. The purpose of this study was to identify caregiver ACEs, current adversity, and resilience in families seeking care in pediatric acute care settings. Study aims included identifying demographic characteristics, current adversities, and resilience measures associated with caregiver ACEs ≥4. A cross-sectional survey study design was used and a convenience sample (n = 470) recruited at emergency and urgent care settings of a large Midwest pediatric hospital system. Measures were self-reported. The original 10-item ACEs questionnaire measured caregiver past adversity. Current adversity was measured using the 10-item IHELP. The six-item Brief Resiliency Scale measured resilience, and WHO-5 Well-Being Index was used to measure depressive affect. Compared to participants with ACEs score of 0-3 participants with ACEs ≥4 were more likely to have multiple current adversities, increased risk of depression, and lower resilience. Caregivers using pediatric acute care settings carry a high burden of ACEs and current adversities. Caregiver ACEs are associated with current child experiences of adversity. Caregivers socioeconomic status and education level may not be an accurate indicator of a family's risks or needs. Pediatric acute care settings offer opportunities to access, intervene, and prevent childhood adversity. © 2016 Wiley Periodicals, Inc.

  5. Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men?

    PubMed Central

    Leung, J.; Zhang, Y. F.; Bauer, D.; Ensrud, K. E.; Barrett-Connor, E.; Leung, P. C.

    2013-01-01

    Summary In a prospective cohort study of 5,995 older American men (MrOS), users of angiotensin-converting enzyme (ACE) inhibitors had a small but significant increase in bone loss at the hip over 4 years after adjustment for confounders. Use of angiotensin II AT1 receptor blockers (ARB) was not significantly associated with bone loss. Introduction Experimental evidence suggests that angiotensin II promotes bone loss by its effects on osteoblasts. It is therefore plausible that ACE inhibitor and ARB may reduce rates of bone loss. The objective of this study is to examine the independent effects of ACE inhibitor and ARB on bone loss in older men. Methods Out of 5,995 American men (87.2%) aged ≥65 years, 5,229 were followed up for an average of 4.6 years in a prospective six-center cohort study—The Osteoporotic Fractures in Men Study (MrOS). Bone mineral densities (BMD) at total hip, femoral neck, and trochanter were measured by Hologic densitometer (QDR 4500) at baseline and year 4. Results Out of 3,494 eligible subjects with complete data, 1,166 and 433 subjects reported use of ACE inhibitors and ARBs, respectively. When compared with nonusers, continuous use of ACE inhibitors was associated with a small (0.004 g/cm2) but significant increase in the average rate of BMD loss at total hip and trochanter over 4 years after adjustment for confounders. Use of ARB was not significantly associated with bone loss. Conclusion Use of ACE inhibitors but not ARB may marginally increase bone loss in older men. PMID:22080379

  6. Surface microtopography modulates sealing zone development in osteoclasts cultured on bone

    PubMed Central

    Addadi, Lia; Geiger, Benjamin

    2017-01-01

    Bone homeostasis is continuously regulated by the coordinated action of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between these two cell populations leads to pathological bone diseases such as osteoporosis and osteopetrosis. Osteoclast functionality relies on the formation of sealing zone (SZ) rings that define the resorption lacuna. It is commonly assumed that the structure and dynamic properties of the SZ depend on the physical and chemical properties of the substrate. Considering the unique complex structure of native bone, elucidation of the relevant parameters affecting SZ formation and stability is challenging. In this study, we examined in detail the dynamic response of the SZ to the microtopography of devitalized bone surfaces, taken from the same area in cattle femur. We show that there is a significant enrichment in large and stable SZs (diameter larger than 14 µm; lifespan of hours) in cells cultured on rough bone surfaces, compared with small and fast turning over SZ rings (diameter below 7 µm; lifespan approx. 7 min) formed on smooth bone surfaces. Based on these results, we propose that the surface roughness of the physiologically relevant substrate of osteoclasts, namely bone, affects primarily the local stability of growing SZs. PMID:28202594

  7. An analysis of factors affecting the mercury content in the human femoral bone.

    PubMed

    Zioła-Frankowska, A; Dąbrowski, M; Kubaszewski, Ł; Rogala, P; Kowalski, A; Frankowski, M

    2017-01-01

    The study was carried out to determine the content of mercury in bone tissue of the proximal femur (head and neck bone) of 95 patients undergoing total hip replacement due to osteoarthritis, using CF-AFS analytical technique. Furthermore, the investigations were aimed at assessing the impact of selected factors, such as age, gender, tobacco smoking, alcohol consumption, exposure to chemical substance at work, type of degenerative changes, clinical evaluation and radiological parameters, type of medications, on the concentration of mercury in the head and neck of the femur, resected in situ. Mercury was obtained in all samples of the head and neck of the femur (n = 190) in patients aged 25-91 years. The mean content of mercury for the whole group of patients was as follows: 37.1 ± 35.0 ng/g for the femoral neck and 24.2 ± 19.5 ng/g for the femoral head. The highest Hg contents were found in femoral neck samples, both in women and men, and they amounted to 169.6 and 176.5 ng/g, respectively. The research showed that the mercury content of bones can be associated with body mass index, differences in body anatomy, and gender. The uses of statistical analysis gave the possibility to define the influence of factors on mercury content in human femoral bones.

  8. Weight of evidence evaluation of a network of adverse ...

    EPA Pesticide Factsheets

    Ongoing honey bee colony losses are of significant international concern because of the essential role these insects play in pollinating many high nutrient crops, such as fruits, vegetables, and nuts. Both chemical and non-chemical stressors have been implicated as possible contributors to colony failure, however, the potential role(s) of commonly-used neonicotinoid insecticides has emerged as particularly concerning. Neonicotinoids act on the nicotinic acetylcholine receptors (nAChRs) in the central nervous system to eliminate target pest insects. However, mounting evidence indicates that these neonicotinoids also may adversely affect beneficial pollinators, such as the honey bee, via impairments on learning and memory, and ultimately foraging success. The specific mechanisms linking activation of the nAChR to adverse effects on learning and memory are uncertain. Additionally, clear connections between observed impacts on individual bees and colony level effects are lacking. The objective of this review was to develop adverse outcome pathways (AOPs) as a means to evaluate the biological plausibility and empirical evidence supporting (or refuting) the linkage between activation of the physiological target site, the nAChR, and colony level consequences. Development of AOPs has led to the identification of research gaps which, for example, may be of high priority in understanding how perturbation of pathways involved in neurotransmission can adversely affect norm

  9. Patients' Perceptions of Physician-Patient Discussions and Adverse Events with Cancer Therapy.

    PubMed

    Hershman, Dawn; Calhoun, Elizabeth; Zapert, Kinga; Wade, Shawn; Malin, Jennifer; Barron, Rich

    2008-09-01

    OBJECTIVES: Patients with cancer who are treated with chemotherapy report adverse events during their treatment, which can affect their quality of life and increase the likelihood that their treatment will not be completed. In this study, patients' perceptions of the physician-patient relationship and communication about cancer-related issues, particularly adverse events were examined. METHODS: We surveyed 508 patients with cancer concerning the occurrence of adverse events and their relationship and communication with their physicians regarding cancer, treatment, and adverse events. RESULTS: Most individuals surveyed (>90%) discussed diagnosis, treatment plan, goals, and schedule, and potential adverse events with their physicians before initiating chemotherapy; approximately 75% of these individuals understood these topics completely or very well. Physician-patient discussions of adverse events were common, with tiredness, nausea and vomiting, and loss of appetite discussed prior to chemotherapy in over 80% of communications. These events were also the most often experienced (ranging in 95% to 64% of the respondents) along with low white blood cell counts (WBCs), which were experienced in 67% of respondents. Approximately 75% of the individuals reported that their overall quality of life was affected by adverse events. CONCLUSIONS: These findings suggest that discussions alone do not provide patients with sufficient understanding of the events, nor do they appear to adequately equip patients to cope with them. Therefore, efforts to improve cancer care should focus on developing tools to improve patients' understanding of the toxicities of chemotherapy, as well as providing resources to reduce the effects of adverse events.

  10. The gut microbiota regulates bone mass in mice

    PubMed Central

    Sjögren, Klara; Engdahl, Cecilia; Henning, Petra; Lerner, Ulf H; Tremaroli, Valentina; Lagerquist, Marie K; Bäckhed, Fredrik; Ohlsson, Claes

    2012-01-01

    The gut microbiota modulates host metabolism and development of immune status. Here we show that the gut microbiota is also a major regulator of bone mass in mice. Germ-free (GF) mice exhibit increased bone mass associated with reduced number of osteoclasts per bone surface compared with conventionally raised (CONV-R) mice. Colonization of GF mice with a normal gut microbiota normalizes bone mass. Furthermore, GF mice have decreased frequency of CD4+ T cells and CD11b+/GR 1 osteoclast precursor cells in bone marrow, which could be normalized by colonization. GF mice exhibited reduced expression of inflammatory cytokines in bone and bone marrow compared with CONV-R mice. In summary, the gut microbiota regulates bone mass in mice, and we provide evidence for a mechanism involving altered immune status in bone and thereby affected osteoclast-mediated bone resorption. Further studies are required to evaluate the gut microbiota as a novel therapeutic target for osteoporosis. © 2012 American Society for Bone and Mineral Research. PMID:22407806

  11. Bone mineral as an electrical energy reservoir.

    PubMed

    Nakamura, Miho; Hiratai, Rumi; Yamashita, Kimihiro

    2012-05-01

    Mechanical stress in bone induces an electrical potential generated by piezoelectricity arising from displacement of collagen fibrils. Where and for how long the potential is stored in bone; however, are still poorly understood. We investigated the electrical properties of collagen fibrils and apatite minerals and found that bone, when polarized electrically by applying an external voltage, depolarizes by two mechanisms. Plots of thermally stimulated depolarization current show two significant peaks: one at 100°C, attributed to collagen fibrils because decalcified bone exhibits depolarization peak at 100°C, and the other at 500°C, attributed to apatite minerals because calcined bone exhibits depolarization peak at 500°C and has activation energy similar to that for synthesized apatite. The crystallographic c-axis orientation of calcined bone depends on the direction in which the bone is cut, either transverse or longitudinal, and strongly affects the polarization efficacy. Copyright © 2012 Wiley Periodicals, Inc.

  12. Effects of Exercise on Bone Mineral Content in Postmenopausal Women.

    ERIC Educational Resources Information Center

    Rikli, Roberta E.; McManis, Beth G.

    1990-01-01

    Study tested the effect of exercise programs on bone mineral content (BMC) and BMC/bone width in 31 postmenopausal women. Subjects were placed in groups with aerobic exercise, aerobics plus upper-body weight training, or no exercise. Results indicate that regular exercise programs positively affect bone mineral maintenance in postmenopausal women.…

  13. Dilatational band formation in bone

    PubMed Central

    Poundarik, Atharva A.; Diab, Tamim; Sroga, Grazyna E.; Ural, Ani; Boskey, Adele L.; Gundberg, Caren M.; Vashishth, Deepak

    2012-01-01

    Toughening in hierarchically structured materials like bone arises from the arrangement of constituent material elements and their interactions. Unlike microcracking, which entails micrometer-level separation, there is no known evidence of fracture at the level of bone’s nanostructure. Here, we show that the initiation of fracture occurs in bone at the nanometer scale by dilatational bands. Through fatigue and indentation tests and laser confocal, scanning electron, and atomic force microscopies on human and bovine bone specimens, we established that dilatational bands of the order of 100 nm form as ellipsoidal voids in between fused mineral aggregates and two adjacent proteins, osteocalcin (OC) and osteopontin (OPN). Laser microdissection and ELISA of bone microdamage support our claim that OC and OPN colocalize with dilatational bands. Fracture tests on bones from OC and/or OPN knockout mice (OC−/−, OPN−/−, OC-OPN−/−;−/−) confirm that these two proteins regulate dilatational band formation and bone matrix toughness. On the basis of these observations, we propose molecular deformation and fracture mechanics models, illustrating the role of OC and OPN in dilatational band formation, and predict that the nanometer scale of tissue organization, associated with dilatational bands, affects fracture at higher scales and determines fracture toughness of bone. PMID:23129653

  14. Sex differences in parameters of bone strength in new recruits: beyond bone density.

    PubMed

    Evans, Rachel K; Negus, Charles; Antczak, Amanda J; Yanovich, Ran; Israeli, Eran; Moran, Daniel S

    2008-11-01

    Stress fracture (SF) injuries in new recruits have long been attributed to low bone mineral density (BMD). Low areal BMD assessed using two-dimensional dual-energy x-ray absorptiometry imaging, however, reflects structural density and is affected by smaller measures of bone geometry. Recent studies support a relationship between bone size and SF and indicate that slender bones are more susceptible to damage under identical loading conditions. Peripheral quantitative computed tomography (pQCT) is a three-dimensional imaging tool that provides measures of tissue density and geometry parameters of the tibia, a common site of SF. To evaluate sex differences in parameters of volumetric BMD (vBMD), geometry, and strength of the tibia in new recruits using a novel pQCT image analysis procedure. pQCT images were obtained from 128 healthy men and women (20 male, 108 female, aged 18-21 yr) entering a 4-month gender-integrated combat training program in the Israeli Defense Forces. Tibial scans taken at sites 4% (trabecular bone), 38%, and 66% (cortical bone) from the distal end plate were analyzed using MATLAB to assess whole-bone and regional parameters. Measures included vBMD, geometry (diameter, area, cortical thickness, and canal radius), and strength (moments of inertia and bone strength and slenderness indices). With the exception of normalized canal radius, which did not differ between sexes, all measures of bone geometry (P < 0.0001) and strength (P < 0.0001 to P = 0.07) were greater in men. Women exhibited 2.7% to 3.0% greater cortical vBMD than men, whereas trabecular vBMD was 8.4% lower in women (P < 0.001). These differences remained significant after adjusting for body size. Sex differences in bone geometry and mineralization of the tibia may contribute to a decreased ability to withstand the demands imposed by novel, repetitive exercise in untrained individuals entering recruit training.

  15. Adverse events associated with pediatric exposures to dextromethorphan.

    PubMed

    Paul, Ian M; Reynolds, Kate M; Kauffman, Ralph E; Banner, William; Bond, G Randall; Palmer, Robert B; Burnham, Randy I; Green, Jody L

    2017-01-01

    Dextromethorphan is the most common over-the-counter (OTC) antitussive medication. We sought to characterize adverse events associated with dextromethorphan in children <12 years old from a surveillance program of OTC cough/cold medication exposures. This is a retrospective case series of oral exposures to dextromethorphan with ≥1 adverse event from multiple U.S. sources (National Poison Data System, FDA Adverse Event Reporting System, manufacturer safety reports, news/media, medical literature) reported between 2008 and 2014. An expert panel determined the relationship between exposure and adverse events, estimated dose ingested, intent of exposure, and identified contributing factors to exposure. 1716 cases contained ≥1 adverse event deemed at least potentially related to dextromethorphan; 1417 were single product exposures. 773/1417 (55%) involved only one single-ingredient dextromethorphan product (dextromethorphan-only). Among dextromethorphan-only cases, 3% followed ingestion of a therapeutic dose; 78% followed an overdose. 69% involved unsupervised self-administration and 60% occurred in children <4 years old. No deaths or pathologic dysrhythmias occurred. Central nervous system [e.g., ataxia (N = 420)] and autonomic symptoms [e.g., tachycardia (N = 224)] were the most common adverse events. Flushing and/or urticarial rash occurred in 18.1% of patients. Dystonia occurred in 5.4%. No fatalities were identified in this multifaceted surveillance program following a dextromethorphan-only ingestion. Adverse events were predominantly associated with overdose, most commonly affecting the central nervous and autonomic systems.

  16. rhIGF-1 Treatment Increases Bone Mineral Density and Trabecular Bone Structure in Children with PAPP-A2 Deficiency.

    PubMed

    Hawkins-Carranza, Federico G; Muñoz-Calvo, María T; Martos-Moreno, Gabriel Á; Allo-Miguel, Gonzalo; Del Río, Luis; Pozo, Jesús; Chowen, Julie A; Pérez-Jurado, Luis A; Argente, Jesús

    2018-01-01

    Our objective was to determine changes in bone mineral density (BMD), trabecular bone score (TBS), and body composition after 2 years of therapy with recombinant human insulin-like growth factor-1 (rhIGF-1) in 2 prepubertal children with a complete lack of circulating PAPP-A2 due to a homozygous mutation in PAPP-A2 (p.D643fs25*) resulting in a premature stop codon. Body composition, BMD, and bone structure were determined by dual-energy X-ray absorptiometry at baseline and after 1 and 2 years of rhIGF-1 treatment. Height increased from 132 to 145.5 cm (patient 1) and from 111.5 to 124.5 cm (patient 2). Bone mineral content increased from 933.40 to 1,057.97 and 1,152.77 g in patient 1, and from 696.12 to 773.26 and 911.51 g in patient 2, after 1 and 2 years, respectively. Whole-body BMD also increased after 2 years of rhIGF-1 from baseline 0.788 to 0.869 g/cm2 in patient 1 and from 0.763 to 0.829 g/cm2 in patient 2. After 2 years of treatment, both children had an improvement in TBS. During therapy, a slight increase in body fat mass was seen, with a concomitant increase in lean mass. No adverse effects were reported. Two years of rhIGF-1 improved growth, with a tendency to improve bone mass and bone microstructure and to modulate body composition. © 2018 S. Karger AG, Basel.

  17. Gut microbiome and bone.

    PubMed

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  18. Bone Disease in Axial Spondyloarthritis.

    PubMed

    Van Mechelen, Margot; Gulino, Giulia Rossana; de Vlam, Kurt; Lories, Rik

    2018-05-01

    Axial spondyloarthritis is a chronic inflammatory skeletal disorder with an important burden of disease, affecting the spine and sacroiliac joints and typically presenting in young adults. Ankylosing spondylitis, diagnosed by the presence of structural changes to the skeleton, is the prototype of this disease group. Bone disease in axial spondyloarthritis is a complex phenomenon with the coexistence of bone loss and new bone formation, both contributing to the morbidity of the disease, in addition to pain caused by inflammation. The skeletal structural changes respectively lead to increased fracture risk and to permanent disability caused by ankylosis of the sacroiliac joints and the spine. The mechanism of this new bone formation leading to ankylosis is insufficiently known. The process appears to originate from entheses, specialized structures that provide a transition zone in which tendon and ligaments insert into the underlying bone. Growth factor signaling pathways such as bone morphogenetic proteins, Wnts, and Hedgehogs have been identified as molecular drivers of new bone formation, but the relationship between inflammation and activation of these pathways remains debated. Long-standing control of inflammation appears necessary to avoid ankylosis. Recent evidence and concepts suggest an important role for biomechanical factors in both the onset and progression of the disease. With regard to new bone formation, these processes can be understood as ectopic repair responses secondary to inflammation-induced bone loss and instability. In this review, we discuss the clinical implications of the skeletal changes as well as the underlying molecular mechanisms, the relation between inflammation and new bone formation, and the potential role of biomechanical stress.

  19. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    PubMed

    Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  20. Optimal management of cancer treatment-induced bone loss: considerations for elderly patients.

    PubMed

    Tipples, Karen; Robinson, Anne

    2011-11-01

    Hormone manipulation, commonly used in breast and prostate cancer, can result in significant bone loss. In multiple myeloma (MM), corticosteroids play an important role in therapy but increase the risk of fracture over that expected for any given bone mineral density. These adverse effects on the skeletal system are particularly relevant in the elderly population, in whom osteoporosis can significantly affect not only quality of life but also survival. The associated health and social care costs are becoming increasingly important. Screening with dual energy x-ray absorptiometry (DXA) scans and lifestyle advice on smoking, alcohol and dietary intake are essential parts of the management of patients with cancer treatment-induced bone loss. The value of exercise also cannot be underestimated. A careful drug review should be carried out to eliminate agents that may potentially exacerbate bone toxicity. Therapies to address bone toxicities include bisphosphonates, which have been shown to play an increasingly important role in preventing declines in bone health. The issues of compliance when oral agents are used should not be underestimated. Renal toxicity and osteonecrosis of the jaw are relevant toxicities, especially in the elderly. Cardiac toxicity has not been proven, but there is evidence to suggest that the suppression of bone turnover seen with some, although not all, bisphosphonates is not reversed following cessation of treatment. The implications of this finding need to be borne in mind when treating elderly patients. The possibility of atypical fractures in patients taking bisphosphonates also needs to be given consideration, although this remains a rare complication. Recently, the receptor activator of nuclear factor-κB ligand (RANKL) ligand antibody denosumab has been shown to be of value in fracture prevention, and its subcutaneous route of administration offers a potential advantage. Oncologists should also remember that tamoxifen, which has little

  1. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    PubMed

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  2. A structural approach in the study of bones: fossil and burnt bones at nanosize scale

    NASA Astrophysics Data System (ADS)

    Piga, Giampaolo; Baró, Maria Dolors; Escobal, Irati Golvano; Gonçalves, David; Makhoul, Calil; Amarante, Ana; Malgosa, Assumpció; Enzo, Stefano; Garroni, Sebastiano

    2016-12-01

    We review the different factors affecting significantly mineral structure and composition of bones. Particularly, it is assessed that micro-nanostructural and chemical properties of skeleton bones change drastically during burning; the micro- and nanostructural changes attending those phases manifest themselves, amongst others, in observable alterations to the bones colour, morphology, microstructure, mechanical strength and crystallinity. Intense changes involving the structure and chemical composition of bones also occur during the fossilization process. Bioapatite material is contaminated by an heavy fluorination process which, on a long-time scale reduces sensibly the volume of the original unit cell, mainly the a-axis of the hexagonal P63/m space group. Moreover, the bioapatite suffers to a varying degree of extent by phase contamination from the nearby environment, to the point that rarely a fluorapatite single phase may be found in fossil bones here examined. TEM images supply precise and localized information, on apatite crystal shape and dimension, and on different processes that occur during thermal processes or fossilization of ancient bone, complementary to that given by X-ray diffraction and Attenuated Total Reflection Infrared spectroscopy. We are presenting a synthesis of XRD, ATR-IR and TEM results on the nanostructure of various modern, burned and palaeontological bones.

  3. Bone volume-to-total volume ratio measured in trabecular bone by single-sided NMR devices.

    PubMed

    Brizi, Leonardo; Barbieri, Marco; Baruffaldi, Fabio; Bortolotti, Villiam; Fersini, Chiara; Liu, Huabing; Nogueira d'Eurydice, Marcel; Obruchkov, Sergei; Zong, Fangrong; Galvosas, Petrik; Fantazzini, Paola

    2018-01-01

    Reduced bone strength is associated with a loss of bone mass, usually evaluated by dual-energy X-ray absorptiometry, although it is known that the bone microstructure also affects the bone strength. Here, a method is proposed to measure (in laboratory) the bone volume-to-total volume ratio by single-sided NMR scanners, which is related to the microstructure of the trabecular bone. Three single-sided scanners were used on animal bone samples. These low-field, mobile, low-cost devices are able to detect the NMR signal, regardless of the sample sizes, without the use of ionizing radiations, with the further advantage of signal localization offered by their intrinsic magnetic field gradients. The performance of the different single-sided scanners have been discussed. The results have been compared with bone volume-to-total volume ratio by micro CT and MRI, obtaining consistent values. Our results demonstrate the feasibility of the method for laboratory analyses, which are useful for measurements like porosity on bone specimens. This can be considered as the first step to develop an NMR method based on the use of a mobile single-sided device, for the diagnosis of osteoporosis, through the acquisition of the signal from the appendicular skeleton, allowing for low-cost, wide screening campaigns. Magn Reson Med 79:501-510, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo.

    PubMed

    Suliman, Salwa; Xing, Zhe; Wu, Xujun; Xue, Ying; Pedersen, Torbjorn O; Sun, Yang; Døskeland, Anne P; Nickel, Joachim; Waag, Thilo; Lygre, Henning; Finne-Wistrand, Anna; Steinmüller-Nethl, Doris; Krueger, Anke; Mustafa, Kamal

    2015-01-10

    A low dose of 1μg rhBMP-2 was immobilised by four different functionalising techniques on recently developed poly(l-lactide)-co-(ε-caprolactone) [(poly(LLA-co-CL)] scaffolds. It was either (i) physisorbed on unmodified scaffolds [PHY], (ii) physisorbed onto scaffolds modified with nanodiamond particles [nDP-PHY], (iii) covalently linked onto nDPs that were used to modify the scaffolds [nDP-COV] or (iv) encapsulated in microspheres distributed on the scaffolds [MICS]. Release kinetics of BMP-2 from the different scaffolds was quantified using targeted mass spectrometry for up to 70days. PHY scaffolds had an initial burst of release while MICS showed a gradual and sustained increase in release. In contrast, NDP-PHY and nDP-COV scaffolds showed no significant release, although nDP-PHY scaffolds maintained bioactivity of BMP-2. Human mesenchymal stem cells cultured in vitro showed upregulated BMP-2 and osteocalcin gene expression at both week 1 and week 3 in the MICS and nDP-PHY scaffold groups. These groups also demonstrated the highest BMP-2 extracellular protein levels as assessed by ELISA, and mineralization confirmed by Alizarin red. Cells grown on the PHY scaffolds in vitro expressed collagen type 1 alpha 2 early but the scaffold could not sustain rhBMP-2 release to express mineralization. After 4weeks post-implantation using a rat mandible critical-sized defect model, micro-CT and Masson trichrome results showed accelerated bone regeneration in the PHY, nDP-PHY and MICS groups. The results demonstrate that PHY scaffolds may not be desirable for clinical use, since similar osteogenic potential was not seen under both in vitro and in vivo conditions, in contrast to nDP-PHY and MICS groups, where continuous low doses of BMP-2 induced satisfactory bone regeneration in both conditions. The nDP-PHY scaffolds used here in critical-sized bone defects for the first time appear to have promise compared to growth factors adsorbed onto a polymer alone and the short

  5. How tough is Brittle Bone? Investigating Osteogenesis Imperfecta in Mouse Bone††

    PubMed Central

    Carriero, A.; Zimmermann, E. A.; Paluszny, A.; Tang, S. Y.; Bale, H.; Busse, B.; Alliston, T.; Kazakia, G.

    2015-01-01

    The multiscale hierarchical structure of bone is naturally optimized to resist fractures. In osteogenesis imperfecta, or brittle bone disease, genetic mutations affect the quality and/or quantity of collagen, dramatically increasing bone fracture risk. Here we reveal how the collagen defect results in bone fragility in a mouse model of osteogenesis imperfecta (oim), which has homotrimeric α1(I) collagen. At the molecular level we attribute the loss in toughness to a decrease in the stabilizing enzymatic crosslinks and an increase in non-enzymatic crosslinks, which may break prematurely inhibiting plasticity. At the tissue level, high vascular canal density reduces the stable crack growth, and extensive woven bone limits the crack-deflection toughening during crack growth. This demonstrates how modifications at the bone molecular level have ramifications at larger length scales affecting the overall mechanical integrity of the bone; thus, treatment strategies have to address multiscale properties in order to regain bone toughness. In this regard, findings from the heterozygous oim bone, where defective as well as normal collagen are present, suggest that increasing the quantity of healthy collagen in these bones helps to recover toughness at the multiple length scales. PMID:24420672

  6. Early Adverse Caregiving Experiences and Preschoolers' Current Attachment Affect Brain Responses during Facial Familiarity Processing: An ERP Study.

    PubMed

    Kungl, Melanie T; Bovenschen, Ina; Spangler, Gottfried

    2017-01-01

    When being placed into more benign environments like foster care, children from adverse rearing backgrounds are capable of forming attachment relationships to new caregivers within the first year of placement, while certain problematic social behaviors appear to be more persistent. Assuming that early averse experiences shape neural circuits underlying social behavior, neurophysiological studies on individual differences in early social-information processing have great informative value. More precisely, ERP studies have repeatedly shown face processing to be sensitive to experience especially regarding the caregiving background. However, studies on effects of early adverse caregiving experiences are restricted to children with a history of institutionalization. Also, no study has investigated effects of attachment security as a marker of the quality of the caregiver-child relationship. Thus, the current study asks how adverse caregiving experiences and attachment security to (new) caregivers affect early- and mid-latency ERPs sensitive to facial familiarity processing. Therefore, pre-school aged foster children during their second year within the foster home were compared to an age matched control group. Attachment was assessed using the AQS and neurophysiological data was collected during a passive viewing task presenting (foster) mother and stranger faces. Foster children were comparable to the control group with regard to attachment security. On a neurophysiological level, however, the foster group showed dampened N170 amplitudes for both face types. In both foster and control children, dampened N170 amplitudes were also found for stranger as compared to (foster) mother faces, and, for insecurely attached children as compared to securely attached children. This neural pattern may be viewed as a result of poorer social interactions earlier in life. Still, there was no effect on P1 amplitudes. Indicating heightened attentional processing, Nc amplitude responses

  7. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  8. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  9. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  10. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  11. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  12. Bone: from a reservoir of minerals to a regulator of energy metabolism

    PubMed Central

    Confavreux, Cyrille B

    2011-01-01

    Besides locomotion, organ protection, and calcium–phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secretion, insulin sensitivity, and pancreas β-cell proliferation) in the regulation of energy metabolism is described. Then, the connections between insulin signaling on osteoblasts and the release of uncarboxylated osteocalcin during osteoclast bone resorption through osteoprotegerin are reported. Finally, the understanding of this new bone endocrinology will provide some insights into bone, kidney, and energy metabolism in patients with chronic kidney disease. PMID:21346725

  13. Protective effect of egg yolk peptide on bone metabolism.

    PubMed

    Kim, Hye Kyung; Lee, Sena; Leem, Kang-Hyun

    2011-03-01

    Osteoporosis is a major health problem worldwide, and most current therapy used in osteoporosis treatment acts by either increasing bone formation or decreasing bone resorption. However, the adverse effects of these therapies may preclude their long-term use. We examined the effects of egg yolk water-soluble peptide (YPEP) on bone metabolism as an alternative to current therapeutic agents in ovariectomized (OVX) rats. In the first step, the in vitro effects of YPEP on bone loss were determined. The proliferation, collagen content, and alkaline phosphatase activity of preosteoblastic MC3T3-E1 cells and osteoclastogenesis from bone marrow-derived precursor cells were measured. The in vivo experiment confirmed the positive effect of YPEP on bone tissue. Three-month-old female Sprague-Dawley rats were either sham operated or ovariectomized and fed commercial chow diet or 0.1% YPEP-supplemented diet for 3 month. YPEP increased preosteoblastic MC3T3-E1 cell proliferation and alkaline phosphatase activity in a dose-dependent manner. Collagen content was also increased by YPEP treatment. Furthermore, YPEP potently suppressed osteoclastogenesis from bone marrow-derived precursor cells. YPEP (100 μg/mL) abolished the formation of osteoclasts positive for tartrate-resistant acid phosphatase. OVX rats supplemented with YPEP showed an osteoprotective effect, as the bone mineral density and cortical thickness in the tibia were increased compared with the OVX controls. Moreover, histological data indicate that YPEP prevented the cancellous bone loss induced by ovariectomy. None of these protective effects were observed in casein-treated rats. The present study suggests that YPEP is a promising alternative to current therapeutic agents for the management of osteoporosis.

  14. A primer of bone metastases management in breast cancer patients.

    PubMed

    Petrut, B; Trinkaus, M; Simmons, C; Clemons, M

    2008-01-01

    Bone is the most common site for distant spread of breast cancer. Following a diagnosis of metastatic bone disease, patients can suffer from significant morbidity because of pain and skeletal related events (SRES). Bisphosphonates are potent inhibitors of osteoclastic function and the mainstay of bone-directed therapy for bone metastases. The aims of bisphosphonates are to prevent and delay SRES, to reduce bone pain, and to improve quality of life. Bisphosphonate therapy appears to have revolutionized treatment of bone metastases, but bisphosphonate use has several limitations. Those limitations include the high cost of the agents and the need for return trips to the clinic for intravenous treatment. Moreover, many uncertainties surround bisphosphonate use-for example, the timing of bisphosphonate initiation, the choice of bisphosphonate to use, the optimal duration of treatment, and the appropriate means to identify patients who will and will not benefit. In addition, potentially serious adverse effects have been associated with bisphosphonate use-for example, renal toxicity, gastrointestinal side effects, and osteonecrosis of the jaw. The present review is intended as a primer for oncology specialists who treat patients with bone metastases secondary to breast cancer. It focuses on bisphosphonate treatment guidelines, the evidence for those guidelines, and a discussion of new therapeutic agents. It also discusses the use of biochemical markers of bone metabolism, which show promise for predicting the risk of a patient's developing a SRE and of benefiting from bisphosphonate treatment.

  15. A primer of bone metastases management in breast cancer patients

    PubMed Central

    Petrut, B.; Trinkaus, M.; Simmons, C.; Clemons, M.

    2008-01-01

    Bone is the most common site for distant spread of breast cancer. Following a diagnosis of metastatic bone disease, patients can suffer from significant morbidity because of pain and skeletal related events (sres). Bisphosphonates are potent inhibitors of osteoclastic function and the mainstay of bone-directed therapy for bone metastases. The aims of bisphosphonates are to prevent and delay sres, to reduce bone pain, and to improve quality of life. Bisphosphonate therapy appears to have revolutionized treatment of bone metastases, but bisphosphonate use has several limitations. Those limitations include the high cost of the agents and the need for return trips to the clinic for intravenous treatment. Moreover, many uncertainties surround bisphosphonate use—for example, the timing of bisphosphonate initiation, the choice of bisphosphonate to use, the optimal duration of treatment, and the appropriate means to identify patients who will and will not benefit. In addition, potentially serious adverse effects have been associated with bisphosphonate use—for example, renal toxicity, gastrointestinal side effects, and osteonecrosis of the jaw. The present review is intended as a primer for oncology specialists who treat patients with bone metastases secondary to breast cancer. It focuses on bisphosphonate treatment guidelines, the evidence for those guidelines, and a discussion of new therapeutic agents. It also discusses the use of biochemical markers of bone metabolism, which show promise for predicting the risk of a patient’s developing a sre and of benefiting from bisphosphonate treatment. PMID:18231649

  16. Tibiofemoral osteoarthritis affects quality of life and function in elderly Koreans, with women more adversely affected than men.

    PubMed

    Kim, Inje; Kim, Hyun Ah; Seo, Young-Il; Song, Yeong Wook; Hunter, David J; Jeong, Jin Young; Kim, Dong Hyun

    2010-06-22

    worse WOMAC and SF-12 scores compared to men, regardless of the presence of radiographic knee OA after adjustment of age, BMI and OA severity. OA subjects had significantly worse performance score for usual walk and chair stands compared to non-OA subjects, but the ORs were no more significant after adjustment of sex. Knee OA negatively affects the QoL and physical function in both genders, but women are more adversely affected than men.

  17. Effect of nanosilicon dioxide on growth performance, egg quality, liver histopathology and concentration of calcium, phosphorus and silicon in egg, liver and bone in laying quails

    NASA Astrophysics Data System (ADS)

    Faryadi, Samira; Sheikhahmadi, Ardashir

    2017-11-01

    This experiment was conducted to evaluate the effects of different levels of nanosilicon dioxide (nSiO2) on performance, egg quality, liver histopathology and concentration of calcium (Ca), phosphorus and silicon (Si) in egg, liver and bone in laying quails. The experiment was administered using 60 laying quails at 16-26 weeks of age with five treatments [0 (control), 500, 1000, 2000 and 4000 mg nSiO2 per kg of diet] and four replicates in a completely randomized design. During the experiment, the amount of feed intake was recorded weekly and performance parameters were measured. During the last 3 days of the experiment, all of the eggs in each replicate were collected and egg quality parameters were measured. At the end of 26 weeks of age, the birds were sacrificed and blood samples were collected. Liver samples from each treatment were fixed in 10% buffered formalin for histopathological assessment. The right thigh bone and a portion of liver were inserted in plastic bags and stored at - 20. The results showed that nSiO2 supplementation significantly affected egg weight and egg mass ( P < 0.05). Also, dietary nSiO2 supplementation decreased the yolk weight and increased the shell weight ( P < 0.05). Moreover, nSiO2 increased bone ash content, Ca and Si concentration in the bone ( P < 0.05). The liver enzymes in plasma and the liver tissue histopathology were not significantly affected ( P > 0.05) by dietary treatments. In conclusion, the results indicated that dietary supplementation of nSiO2 could improve bone density and performance without any adverse effect on the health of laying quails.

  18. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2014-10-01

    and peripheral neuropathy has been identified as an in- dependent predictor of low bone mass in the affected limb of diabetic subjects26. Despite...humans. In: Dyck PJ, Thomas PK, Lambert EH, Bunge P, eds. Peripheral Neuropathy . Philadelphia: WB Saunders; 1984:1103-38. 11. Akopian A, Demulder A...Rix M, Andreassen H, Eskildsen P. Impact of peripheral neuropathy on bone density in patients with type 1 dia- betes. Diabetes Care 1999;22:827-31

  19. Drinking water fluoridation and bone.

    PubMed

    Allolio, B; Lehmann, R

    1999-01-01

    Drinking water fluoridation has an established role in the prevention of dental caries, but may also positively or negatively affect bone. In bone fluoride is incorporated into hydroxylapatite to form the less soluble fluoroapatite. In higher concentrations fluoride stimulates osteoblast activity leading to an increase in cancellous bone mass. As optimal drinking water fluoridation (1 mg/l) is widely used, it is of great interest, whether long-term exposition to artificial water fluoridation has any impact on bone strength, bone mass, and -- most importantly -- fracture rate. Animal studies suggest a biphasic pattern of the effect of drinking water fluoridation on bone strength with a peak strength at a bone fluoride content of 1200 ppm followed by a decline at higher concentrations eventually leading to impaired bone quality. These changes are not paralleled by changes in bone mass suggesting that fluoride concentrations remain below the threshold level required for activation of osteoblast activity. Accordingly, in most epidemiological studies in humans bone mass was not altered by optimal drinking water fluoridation. In contrast, studies on the effect on hip fracture rate gave conflicting results ranging from an increased fracture incidence to no effect, and to a decreased fracture rate. As only ecological studies have been performed, they may be biased by unknown confounding factors -- the so-called ecological fallacy. However, the combined results of these studies indicate that any increase or decrease in fracture rate is likely to be small. It has been calculated that appropriately designed cohort studies to solve the problem require a sample size of >400,000 subjects. Such studies will not be performed in the foreseeable future. Future investigations in humans should, therefore, concentrate on the effect of long-term drinking water fluoridation on bone fluoride content and bone strength.

  20. Prebiotics and Bone.

    PubMed

    Whisner, Corrie M; Weaver, Connie M

    2017-01-01

    Recent advancements in food science have resulted in the extraction and synthesis of novel dietary fibers or prebiotics. Subsequently, great interest has emerged in developing strategies to improve metabolic conditions like osteoporosis by modulating the intestinal microbiome with fiber. Prebiotics have been shown to increase calcium absorption in the lower gut of both animals and humans as well as improve measures of bone mineral density and strength in rodent models. Fewer data are available in humans, but data from growing children and postmenopausal women suggest that prebiotics have both short- and long-term effects that beneficially affect bone turnover and mineral accretion in the skeleton. Currently, the exact mechanism by which these products elicit their effects on bone is poorly understood, but emerging data suggest that the gut microbiota may be involved in one or more direct and indirect pathways. The most well-accepted mechanism is through microbial fermentation of prebiotics which results in the production of short-chain fatty acids and a concomitant decrease in pH which increases the bioavailability of calcium in the colon. While other mechanisms may be eliciting a prebiotic effect on bone, the current data suggest that novel dietary fibers may be an affordable and effective method of maximizing mineral accretion in growing children and preventing bone loss in later years when osteoporosis is a greater risk. This chapter will discuss the dynamic role of prebiotics in bone health by discussing the current state of the art, addressing gaps in knowledge and their role in public health.

  1. Obesity and type 2 diabetes, not a diet high in fat, sucrose, and cholesterol, negatively impacts bone outcomes in the hyperphagic Otsuka Long Evans Tokushima Fatty rat.

    PubMed

    Ortinau, Laura C; Linden, Melissa A; Dirkes, Rebecca; Rector, R Scott; Hinton, Pamela S

    2017-12-01

    Obesity and type 2 diabetes (T2D) increase fracture risk; however, the association between obesity/T2D may be confounded by consumption of a diet high in fat, sucrose, and cholesterol (HFSC). The study objective was to determine the main and interactive effects of obesity/T2D and a HFSC diet on bone outcomes using hyperphagic Otuska Long Evans Tokushima Fatty (OLETF) rats and normophagic Long Evans Tokushima Otsuka (LETO) controls. At 8weeks of age, male OLETF and LETO rats were randomized to either a control (CON, 10 en% from fat as soybean oil) or HFSC (45 en% from fat as soybean oil/lard, 17 en% sucrose, and 1wt%) diet, resulting in four treatment groups. At 32weeks, total body bone mineral content (BMC) and density (BMD) and body composition were measured by dual-energy X-ray absorptiometry, followed by euthanasia and collection of blood and tibiae. Bone turnover markers and sclerostin were measured using ELISA. Trabecular microarchitecture of the proximal tibia and geometry of the tibia mid-diaphysis were measured using microcomputed tomography; whole-bone and tissue-level biomechanical properties were evaluated using torsional loading of the tibia. Two-factor ANOVA was used to determine main and interactive effects of diet (CON vs. HFSC) and obesity/T2D (OLETF vs. LETO) on bone outcomes. Hyperphagic OLEFT rats had greater final body mass, body fat, and fasting glucose than normophagic LETO, with no effect of diet. Total body BMC and serum markers of bone formation were decreased, and bone resorption and sclerostin were increased in obese/T2D OLETF rats. Trabecular bone volume and microarchitecture were adversely affected by obesity/T2D, but not diet. Whole-bone and tissue-level biomechanical properties of the tibia were not affected by obesity/T2D; the HFSC diet improved biomechanical properties only in LETO rats. Obesity/T2D, regardless of diet, negatively impacted the balance between bone formation and resorption and trabecular bone volume and

  2. Bone mineral density, serum albumin and serum magnesium.

    PubMed

    Saito, Noboru; Tabata, Naoto; Saito, Saburou; Andou, Yoshihisa; Onaga, Yukiko; Iwamitsu, Akihiro; Sakamoto, Morihide; Hori, Tuyoshi; Sayama, Harumi; Kawakita, Toshiko

    2004-12-01

    This study explores clinical and laboratory abnormalities that contribute to the prevalence of bone fractures in frail and control elderly patients, to ascertain factors that relate to bone strength and fragility. Patients were selected as free from renal failure and not taking supplements or medications that affect their magnesium status, and categorized according to their underlying diseases, sex and age, and evaluated by tests of bone strength. Findings, differentiating elderly patients on the basis of their magnesium, calcium, serum albumin, body mass, bone mineral density and their fracture occurrence were tabulated. Evidence is presented of low magnesium and albumin serum levels, especially in women with low bone density, as well as of low calcium and trace minerals.

  3. Interleukin-3 Does Not Affect the Differentiation of Mast Cells Derived from Human Bone Marrow Progenitors

    PubMed Central

    Shimizu, Yuji; Matsumoto, Kenji; Okayama, Yoshimichi; Kentaro, Sakai; Maeno, Toshitaka; Suga, Tatsuo; Miura, Toru; Takai, Shinji; Kurabayashi, Masahiko; Saito, Hirohisa

    2008-01-01

    Although IL-3 is commonly used for culture of human progenitor-derived mast cells together with Stem cell factor (SCF) and IL-6, the effect of IL-3 on human mast cell differentiation has not been well elucidated. Human bone marrow CD34+ progenitors were cultured for up to 12 weeks in the presence of rhSCF and rhIL-6 either with rhIL-3 (IL-3 (+)) or without rhIL-3 (IL-3 (−)) for the initial 1-week of culture. Total cell number increased at 2 weeks in IL-3 (+), as compared to IL-3 (−), but changes in the appearance of mast cells were delayed. When IL-3 was present for the initial 1-week culture, granules looked more mature with IL-3 than without IL-3. However, tryptase and chymase contents, and surface antigen expression (CD18, CD51, CD54, and CD117) were not altered by IL-3. Surface expression and mRNA level of FcεRIα and histamine release by crosslinking of FcεRIα did not differ from one preparation to the next. GeneChip analysis revealed that no significant differences were observed between IL-3 (+) and IL-3 (−) cells either when inactivated or activated by aggregation of FcεRIα. These findings indicate that initial incubation of human bone marrow CD34+ progenitors with IL-3 does not affect the differentiation of mast cells. PMID:18214796

  4. Intrinsic material properties of cortical bone.

    PubMed

    Lopez Franco, Gloria E; Blank, Robert D; Akhter, Mohammed P

    2011-01-01

    The G171V mutation (high bone mass, HBM) is autosomal dominant and is responsible for high bone mass in humans. Transgenic HBM mice in which the human LRP5 G171V gene is inserted also show a similar phenotype with greater bone mass and biomechanical performance than wild-type mice, as determined by whole bone testing. Whole bone mechanics, however, depend jointly on bone mass, architecture, and intrinsic bone tissue mechanical properties. To determine whether the HBM mutation affects tissue-level biomechanical performance, we performed nano-indentation testing of unembedded cortical bone from HBM mice and their nontransgenic (NTG) littermates. Femora from 17-week-old mice (female, 8 mice/genotype) were subjected to nano-indentation using a Triboscope (Hysitron, Minneapolis, MN, USA). For each femoral specimen, approximately 10 indentations were made on the midshaft anterior surface with a target force of either 3 or 9 mN at a constant loading rate of 400 mN/s. The load-displacement data from each test were used to calculate indentation modulus and hardness for bone tissue. The intrinsic material property that reflected the bone modulus was greater (48%) in the HBM as compared to the NTG mice. Our results of intrinsic properties are consistent with the published structural and material properties of the midshaft femur in HBM and NTG mice. The greater intrinsic modulus in HBM reflects greater bone mineral content as compared to NTG (wild-type, WT) mice. This study suggests that the greater intrinsic property of cortical bone is derived from the greater bone mineral content and BMD, resulting in greater bone strength in HBM as compared to NTG (WT) mice.

  5. Bone age in children with obstetrical brachial plexus palsy: effect of peripheral nerve injury on skeletal maturation.

    PubMed

    Oktay, Fügen; Cömert, Didem; Gökkaya, Nilüfer Kutay Ordu; Ozbudak, Sibel Demir; Uysal, Hilmi

    2014-02-01

    The purpose of this retrospective study was to analyze the effect of peripheral nerve injury on the skeletal maturation process. The bone ages of the affected and unaffected hand-wrists of 42 children with obstetrical brachial palsy were determined according to the Greulich and Pyle atlas. In 23 patients, the bone ages of the both sides were identical (bone-age-symmetrical group), in 19 patients the bone age of the affected side was delayed (bone-age-delayed group). The mean bone age of the affected side was delayed 0.48 ± 0.25 years that of the unaffected side (P = .000), and the delay of bone age was inversely correlated with chronological age (R (2) = .45, P < .02) in the bone-age-delayed group. Skeletal retardation can be recognized after appearance of ossification centers by plain radiography, dating from the third month of life, in early infancy. Thus, bone age determination method might be helpful for predicting potential future limb shortness.

  6. Massive bone allograft: a salvage procedure for complex bone loss due to high-velocity missiles--a long-term follow-up.

    PubMed

    Salai, M; Volks, S; Blankstein, A; Chechik, A; Amit, Y; Horosowski, H

    1990-07-01

    The treatment of high-velocity missile injury to the limbs is often associated with segmental bone loss, as well as damage to neurovascular and soft tissue. In such "limb threatening" cases, massive bone allograft can fill the bone defect and offer stability to the soft tissue reconstruction. The return of function in the affected limb is relatively rapid when using this method as a primary procedure. The indications for use of this technique and illustrative case reports are presented and discussed.

  7. Early Life in a Barren Environment Adversely Affects Spatial Cognition in Laying Hens (Gallus gallus domesticus)

    PubMed Central

    Tahamtani, Fernanda M.; Nordgreen, Janicke; Nordquist, Rebecca E.; Janczak, Andrew M.

    2015-01-01

    Spatial cognition in vertebrates is adversely affected by a lack of environmental complexity during early life. However, to our knowledge, no previous studies have tested the effect of early exposure to varying degrees of environmental complexity on specific components of spatial cognition in chickens. There are two main rearing systems for laying hens in the EU: aviaries and cages. These two systems differ from one another in environmental complexity. The aim of the present study was to test the hypothesis that rearing in a barren cage environment relative to a complex aviary environment causes long-lasting deficits in the ability to perform spatial tasks. For this purpose, 24 white Dekalb laying hens, half of which had been reared in an aviary system and the other half in a conventional cage system, were tested in a holeboard task. Birds from both treatment groups learnt the task; however, the cage-reared hens required more time to locate rewards and had poorer levels of working memory. The latter finding supports the hypothesis that rearing in a barren environment causes long-term impairment of short-term memory in chickens. PMID:26664932

  8. Bone turnover and periprosthetic bone loss after cementless total hip arthroplasty can be restored by zoledronic acid: a prospective, randomized, open-label, controlled trial.

    PubMed

    Huang, Tsan-Wen; Wang, Chao-Jan; Shih, Hsin-Nung; Chang, Yuhan; Huang, Kuo-Chin; Peng, Kuo-Ti; Lee, Mel S

    2017-05-22

    Although the loss of bone mineral density (BMD) after total hip arthroplasty (THA) is a known problem, it remains unresolved. This study prospectively examined the effect of zoledronic acid (ZA) on bone turnover and BMD after cementless THA. Between January 2010 and August 2011, 60 patients who underwent cementless THA were randomly assigned to receive either ZA infusion or placebo (0.9% normal saline only) postoperatively. ZA was administered at 2 day and 1 year postoperatively. Periprosthetic BMD in seven Gruen zones was assessed preoperatively and at given time points for 2 years. Serum markers of bone turnover, functional scales, and adverse events were recorded. Each group contained 27 patients for the final analysis. The loss of BMD across all Gruen zones (significantly in zones 1 and 7) up to 2 years postoperatively was noted in the placebo group. BMD was significantly higher in the ZA group than in the placebo group in Gruen zones 1, 2, 6, and 7 at 1 year and in Gruen zones 1, 6, and 7 at 2 years (p < 0.05). Compared with baseline measures of BMD, the ZA group had increased BMD in zones 1, 2, 4, 5, 6, and 7 at 1 year and in zones 1, 4, 6, and 7 at 2 years (p < 0.05). Serum bone-specific alkaline phosphatase and N-telopeptide of procollagen I levels were significantly increased at 6 weeks in the placebo group and decreased after 3 months in the ZA group. A transient decrease in osteocalcin level was found at 6 months in the ZA group. Functional scales and adverse events were not different between the two groups. The loss of periprosthetic BMD, especially in the proximal femur (zones 1 and 7), after cementless THA could be effectively reverted using ZA. In addition, bone turnover markers were suppressed until 2 years postoperatively following ZA administration. Chang Gung Memorial Hospital Protocol Record 98-1150A3, Prevention of Periprosthetic Bone Loss After Total Hip Replacement by Annual Bisphosphonate Therapy, has been reviewed and

  9. Bone Densitometry (Bone Density Scan)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...

  10. Primary Ewing's Sarcoma of the temporal bone in an infant.

    PubMed

    Goudarzipour, Kourosh; Shamsian, Shahin; Alavi, Samin; Nourbakhsh, Kazem; Aghakhani, Roxana; Eydian, Zahra; Arzanian, Mohammad Taghi

    2015-04-01

    Introduction : Ewing's sarcoma is the second most common primary malignant tumor of bone found in children after Osteosarcoma. It accounts for 4-9% of primary malignant bone tumors and it affects bones of the skull or face in only 1-4% of cases. Hence it rarely affects the head and neck. Subject and Method : In this case report, we describe a case of primary Ewing's sarcoma occurring in the temporal bone. The tumor was surgically excised, and the patient underwent chemotherapy for ten months. Results : Neither recurrence nor distant metastasis was noted in these 10 months after surgery but about 18 months after surgery our patient was expired. Conclusion : Although the prognosis of Ewing's sarcoma is generally poor because of early metastasis to the lungs and to other bones, a review of the article suggested that Ewing's sarcoma occurring in the skull can often be successfully managed by intensive therapy with radical excision and chemotherapy. This result was supported by the case reported here.

  11. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins, and guided bone regeneration in a rodent model: a description of the bone repair by light microscopy

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antonio Luiz B.; Aciole, Gilberth T. S.; Soares, Luiz G. P.; Correia, Neandder A.; N. dos Santos, Jean

    2011-03-01

    We carried out a histological analysis on surgical bone defects grafted or not with MTA, treated or not with LED, BMPs and GBR. We have used several models to assess the effects of laser on bone. Benefits of the isolated or combined use them on bone healing has been suggested. There is no previous report on their association with LED light. 90 rats were divided into 10 groups. On Groups II and I the defect were filled with the clot. On Group II, were further irradiated. On groups III-VI, defect was filled with MTA + Collagen gel (III); animals of group IV were further irradiated. On groups V and VI, the defects filled with the MTA were covered with a membrane. Animals of Group VI were further irradiated. On Groups VII and VIII a pool of BMPs was added to the MTA and was further irradiated. On groups IX and X, the MTA + BMP graft was covered with a membrane. On group X, the defect was further irradiated. LED (λ850 +/- 10nm, 150mW, A= 0.5cm2, 54s, 0.3W/cm2, 16 J/cm2) was applied at 48 h intervals during 15 days. Specimens were taken, processed, cut and stained with H&E and Sirius red and underwent histological analysis. The results showed that MTA seemed not being affected by LED light. However, its use positively affected healing around the graft. It is concluded that MTA is not affected by the LED light due to it characteristics, but beneficial results with LED usage was found.

  12. Three-dimensional plotted alginate fibers embedded with diclofenac and bone cells coated with chitosan for bone regeneration during inflammation.

    PubMed

    Lin, Hsin-Yi; Chang, Tsang-Wen; Peng, Tie-Kun

    2018-06-01

    Alginate hydrogel fibers embedded with bone cells and diclofenac were coated with a layer of chitosan hydrogel and made into a porous scaffold by three-dimensional (3D) printing for drug release and bone regeneration. It was hypothesized that the chitosan coating could improve the scaffold's drug retention and release properties and biocompatibility. Macrophage cells were stimulated and cocultured with the scaffold. Tests were conducted to show how the chitosan coating affected the scaffold's drug release efficacy and how the release efficacy affected the cellular activities of stimulated macrophages and bone cells. The bone cells encapsulated in the coated scaffold demonstrated good viability after the acidic/basic coating process. The coating improved the retention and release efficacy of diclofenac and hence significantly inhibited interleukin-6 and tumor necrosis factor-α secretion from macrophages (p < 0.05). The bone cells in the coated sample mineralized more extensively than the control (p < 0.01). They also more actively expressed genes that produce proteins for extracellular matrix remodeling, MMP13, and interacting with the mineral matrix, OPN (both p < 0.01). It is believed that on days 7 and 10, when diclofenac was depleted and the concentrations of inflammatory compounds surged, the coating effectively blocked the harmful compounds and protected the bone cells within the fibers. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1511-1521, 2018. © 2018 Wiley Periodicals, Inc.

  13. GPR Imaging of Prehistoric Animal Bone-beds

    NASA Astrophysics Data System (ADS)

    Schneider, Blair Benson

    This research investigates the detection capabilities of Ground-penetrating radar for imaging prehistoric animal bone-beds. The first step of this investigation was to determine the dielectric properties of modern animal bone as a proxy for applying non-invasive ground-penetrating radar (GPR) for detecting prehistoric animal remains. Over 90 thin section samples were cut from four different modern faunal skeleton remains: bison, cow, deer, and elk. One sample of prehistoric mammoth core was also analyzed. Sample dielectric properties (relative permittivity, loss factor, and loss-tangent values) were measured with an impedance analyzer over frequencies ranging from 10 MHz to 1 GHz. The results reveal statistically significant dielectric-property differences among different animal fauna, as well as variation as a function of frequency. The measured sample permittivity values were then compared to modeled sample permittivity values using common dielectric-mixing models. The dielectric mixing models were used to report out new reported values of dry bone mineral of 3-5 in the frequency range of 10 MHz to 1 GHz. The second half of this research collected controlled GPR experiments over a sandbox containing buried bison bone elements to evaluate GPR detection capabilities of buried animal bone. The results of the controlled GPR sandbox tests were then compared to numerical models in order to predict the ability of GPR to detect buried animal bone given a variety of different depositional factors, the size and orientation of the bone target and the degree of bone weathering. The radar profiles show that GPR is an effective method for imaging the horizontal and vertical extent of buried animal bone. However, increased bone weathering and increased bone dip were both found to affect GPR reflection signal strength. Finally, the controlled sandbox experiments were also utilized to investigate the impact of survey design for imaging buried animal bone. In particular, the

  14. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.

    PubMed

    Ye, Xinhai; Yin, Xiaofan; Yang, Dawei; Tan, Jian; Liu, Guangpeng

    2012-07-01

    Tissue engineering approaches using the combination of porous ceramics and bone marrow mesenchymal stem cells (BMSCs) represent a promising bone substitute for repairing large bone defects. Nevertheless, optimal conditions for constructing tissue-engineered bone have yet to be determined. It remains unclear if transplantation of predifferentiated BMSCs is superior to undifferentiated BMSCs or freshly isolated bone marrow mononucleated cells (BMNCs) in terms of new bone formation in vivo. The aim of this study was to investigate the effect of in vitro osteogenic differentiation (β-glycerophosphate, dexamethasone, and l-ascorbic acid) of human BMSCs on the capability to form tissue-engineered bone in unloaded conditions after subcutaneous implantation in nude mice. After isolation from human bone marrow aspirates, BMNCs were divided into three parts: one part was seeded onto porous beta-tricalcium phosphate ceramics immediately and transplanted in a heterotopic nude mice model; two parts were expanded in vitro to passage 2 before cell seeding and in vivo transplantation, either under osteogenic conditions or not. Animals were sacrificed for micro-CT and histological evaluation at 4, 8, 12, 16, and 20 weeks postimplantation. The results showed that BMSCs differentiated into osteo-progenitor cells after induction, as evidenced by the altered cell morphology and elevated alkaline phosphatase activity and calcium deposition, but their clonogenicity, proliferating rate, and seeding efficacy were not significantly affected by osteogenic differentiation, compared with undifferentiated cells. Extensive new bone formed in the pores of all the scaffolds seeded with predifferentiated BMSCs at 4 weeks after implantation, and maintained for 20 weeks. On the contrary, scaffolds containing undifferentiated BMSCs revealed limited bone formation only in 1 out of 6 cases at 8 weeks, and maintained for 4 weeks. For scaffolds with BMNCs, woven bone was observed sporadically only in one

  15. Use of corticosteroids for pain control in cancer patients with bone metastases: a comprehensive literature review.

    PubMed

    Lim, Fiona M Y; Bobrowski, Adam; Agarwal, Arnav; Silva, Mauricio F

    2017-06-01

    Despite a limited understanding of the exact mechanism, corticosteroids are commonly employed for pain control in patients with bone metastases. The aim of this review was to evaluate the efficacy of corticosteroid-mediated pain control in patients with bone metastases associated with solid cancers. A literature search was conducted using OVID MEDLINE and Embase databases (from 1946 up to July 19, 2016). Studies involving patients with bone metastases receiving corticosteroids as the primary means of pain control were included. Screening and data extraction were conducted by paired reviewers, with consensus established by discussion, or a third adjudicator. A total of 12 studies were included. Rates of pain relief achieved with corticosteroid use varied from 30 to 70%, but generally reflected moderate pain control. Corticosteroid use significantly reduced the incidence of pain flare alongside radiotherapy, reportedly by almost half of baseline pain severity. Adverse events were not documented consistently across studies, though grade two to three hyperglycemia was noted in approximately 2% of patients by some studies. Recent evidence suggests that short-term corticosteroid use may provide moderate pain and pain flare control with radiotherapy for patients with bone metastases. The risk of developing adverse effects should be carefully considered prior to therapy initiation on a case-by-case basis.

  16. Life adversity is associated with smoking relapse after a quit attempt.

    PubMed

    Lemieux, Andrine; Olson, Leif; Nakajima, Motohiro; Schulberg, Lauren; al'Absi, Mustafa

    2016-09-01

    Multiple cross-sectional studies have linked adverse childhood events and adult adversities to current smoking, lifetime smoking, and former smoking. To date, however, there have been no direct observational studies assessing the influence of adversities on smoking relapse. We prospectively followed 123 participants, 86 of whom were habitual smokers, from pre-quit ad libitum smoking to four weeks post-quit. Thirty-seven non-smokers were also tested in parallel as a comparison group. Subjects provided biological samples for confirmation of abstinence status and self-report history of adversities such as abuse, neglect, family dysfunction, incarceration, and child-parent separation. They also completed mood and smoking withdrawal symptom measures. The results indicated that within non-smokers and smokers who relapsed within the first month of a quit attempt, but not abstainers, females had significantly higher adversity scores than males. Cigarette craving, which was independent from depressive affect, increased for low adversity participants, but not those with no adversity nor high adversity. These results demonstrate that sex and relapse status interact to predict adversity and that craving for nicotine may be an important additional mediator of relapse. These results add further support to the previous cross-sectional evidence of an adversity and smoking relationship. Further studies to clarify how adversity complicates smoking cessation and impacts smoking behaviors are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Radiographic and Histologic Evaluation of a Bone Void that Formed After Recombinant Human Bone Morphogenetic Protein-2-Mediated Sinus Graft Augmentation: A Case Report.

    PubMed

    Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho

    2016-01-01

    In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period.

  18. Interventions for treating simple bone cysts in the long bones of children.

    PubMed

    Zhao, Jia-Guo; Wang, Jia; Huang, Wan-Jie; Zhang, Peng; Ding, Ning; Shang, Jian

    2017-02-04

    marrow injections. There was low quality evidence of a lack of difference between the two interventions at two years in functional outcome, based on the Activity Scale for Kids function score (0 to 100; higher scores equate to better outcome: MD -0.90; 95% CI -4.26 to 2.46) or in pain assessed using the Oucher pain score. There was very low quality evidence of a lack of differences between the two interventions for adverse events: subsequent pathological fracture (9/39 versus 11/38; RR 0.80, 95% CI 0.37 to 1.70) or superficial infection (two cases in the bone marrow group). Recurrence of bone cyst, unacceptable malunion, return to normal activities, and participant satisfaction were not reported. The available evidence is insufficient to determine the relative effects of bone marrow versus steroid injections, although the bone marrow injections are more invasive. Noteably, the rate of radiographically assessed healing of the bone cyst at two years was well under 50% for both interventions. Overall, there is a lack of evidence to determine the best method for treating simple bone cysts in the long bones of children. Further RCTs of sufficient size and quality are needed to guide clinical practice.

  19. Denosumab is effective in the treatment of bone marrow oedema syndrome.

    PubMed

    Rolvien, Tim; Schmidt, Tobias; Butscheidt, Sebastian; Amling, Michael; Barvencik, Florian

    2017-04-01

    Bone marrow oedema (BMO) syndrome describes a painful condition with increase of interstitial fluid within bone and is often lately diagnosed due to unspecific symptoms. The underlying causes are diverse while it is widely assumed that in cases of BMO local bone resorption is increased. Denosumab, a human monoclonal antibody that binds to the receptor activator of nuclear factor kappa-B ligand (RANKL) inhibits osteoclastic bone resorption and is commonly administered in the treatment of osteoporosis. Besides one previous case report, its clinical effectiveness in the treatment of bone marrow oedema has not been elucidated. We treated 14 patients with primary (idiopathic) bone marrow oedema of the lower extremity with single dose denosumab application. Mean time between onset of pain and therapy was 155days. MRI scans were performed for initial diagnosis, and 6-12 weeks after denosumab injection. Vitamin D and calcium homeostasis were strived to be balanced before initiation of therapy. Furthermore bone status was analysed using Dual-energy X-ray absorptiometry (DXA) and extended bone turnover serum markers. After 6-12 weeks, BMO dissolved partly or completely in 93%, while a complete recovery was observed in 50% of the individuals. Visual analogue scale (VAS) evaluation revealed a significant decrease in pain level. Furthermore, bone turnover decreased significantly after treatment. No adverse reactions were reported. In conclusion, our retrospective analysis shows that denosumab is highly effective in the treatment of bone marrow oedema and therefore represents an alternative treatment option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Secure fixation of femoral bone plug with a suspensory button in anatomical anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft

    PubMed Central

    TAKETOMI, SHUJI; INUI, HIROSHI; NAKAMURA, KENSUKE; YAMAGAMI, RYOTA; TAHARA, KEITARO; SANADA, TAKAKI; MASUDA, HIRONARI; TANAKA, SAKAE; NAKAGAWA, TAKUMI

    2015-01-01

    Purpose the efficacy and safety of using a suspensory button for femoral fixation in anatomical anterior cruciate ligament (ACL) reconstruction with bone-patellar tendon-bone (BPTB) graft have not been established. The purpose of the current study was to evaluate bone plug integration onto the femoral socket and migration of the bone plug and the EndoButton (EB) (Smith & Nephew, Andover, MA, USA) after rectangular tunnel ACL reconstruction with BPTB autograft. Methods thirty-four patients who underwent anatomical rectangular ACL reconstruction with BPTB graft using EB for femoral fixation and in whom three-dimensional (3D) computed tomography (CT) was performed one week and one year after surgery were included in this study. Bone plug integration onto the femoral socket, bone plug migration, soft tissue interposition, EB migration and EB rotation were evaluated on 3D CT. The clinical outcome was also assessed and correlated with the imaging outcomes. Results the bone plug was integrated onto the femoral socket in all cases. The incidence of bone plug migration, soft tissue interposition, EB migration and EB rotation was 15, 15, 9 and 56%, respectively. No significant association was observed between the imaging outcomes. The postoperative mean Lysholm score was 97.1 ± 5.0 points. The postoperative side-to-side difference, evaluated using a KT-2000 arthrometer, averaged 0.5 ± 1.3 mm. There were no complications associated with EB use. Imaging outcomes did not affect the postoperative KT side-to-side difference. Conclusions the EB is considered a reliable device for femoral fixation in anatomical rectangular tunnel ACL reconstruction with BPTB autograft. Level of evidence Level IV, therapeutic case series. PMID:26889465

  1. Black bone disease in a healing fracture.

    PubMed

    Thiam, Desmond; Teo, Tse Yean; Malhotra, Rishi; Tan, Kong Bing; Chee, Yu Han

    2016-01-28

    Black bone disease refers to the hyperpigmentation of bone secondary to prolonged usage of minocycline. We present a report of a 34-year-old man who underwent femoral shaft fracture fixation complicated by deep infection requiring debridement. The implants were removed 10 months later after long-term treatment with minocycline and fracture union. A refracture of the femoral shaft occurred 2 days after implant removal and repeat fixation was required. Intraoperatively, abundant heavily pigmented and dark brown bone callus was noted over the old fracture site. There was no evidence of other bony pathology and the appearance was consistent with minocycline-associated pigmentation. As far as we are aware, this is the first case of black bone disease affecting callus within the interval period of bone healing. We also discuss the relevant literature on black bone disease to bring light on this rare entity that is an unwelcomed surprise to operating orthopaedic surgeons. 2016 BMJ Publishing Group Ltd.

  2. Adverse Effects of Plasma Transfusion

    PubMed Central

    Pandey, Suchitra; Vyas, Girish N.

    2012-01-01

    Plasma utilization has increased over the last two decades, and there is a growing concern that many plasma transfusions are inappropriate. Plasma transfusion is not without risk, and certain complications are more likely with plasma than other blood components. Clinical and laboratory investigations of the patients suffering reactions following infusion of fresh frozen plasma (FFP) define the etiology and pathogenesis of the panoply of adverse effects. We review here the pathogenesis, diagnosis, and management of the risks associated with plasma transfusion. Risks commonly associated with FFP include: (1) transfusion related acute lung injury; (2) transfusion associated circulatory overload, and (3) allergic/anaphylactic reactions. Other less common risks include (1) transmission of infections, (2) febrile non-hemolytic transfusion reactions, (3) RBC allo-immunization, and (4) hemolytic transfusion reactions. The affect of pathogen inactivation/reduction methods on these risks are also discussed. Fortunately, a majority of the adverse effects are not lethal and are adequately treated in clinical practice. PMID:22578374

  3. Recurrence of a Unicameral Bone Cyst in the Femoral Diaphysis.

    PubMed

    Kim, Hyun Se; Lim, Kyung Sup; Seo, Sung Wook; Jang, Seung Pil; Shim, Jong Sup

    2016-12-01

    Diaphyseal unicameral bone cysts of the long bone are generally known to originate near the growth plate and migrate from the metaphysis to the diaphysis during skeletal growth. In the case of unicameral bone cysts of diaphyseal origin, recurrence at the same location is extremely rare. We report a case of recurrence of a unicameral bone cyst in the diaphysis of the femur that developed 8 years after treatment with curettage and bone grafting. We performed bone grafting and lengthening of the affected femur with an application of the Ilizarov apparatus over an intramedullary nail to treat the cystic lesion and limb length discrepancy simultaneously.

  4. Recurrence of a Unicameral Bone Cyst in the Femoral Diaphysis

    PubMed Central

    Kim, Hyun Se; Lim, Kyung Sup; Seo, Sung Wook; Jang, Seung Pil

    2016-01-01

    Diaphyseal unicameral bone cysts of the long bone are generally known to originate near the growth plate and migrate from the metaphysis to the diaphysis during skeletal growth. In the case of unicameral bone cysts of diaphyseal origin, recurrence at the same location is extremely rare. We report a case of recurrence of a unicameral bone cyst in the diaphysis of the femur that developed 8 years after treatment with curettage and bone grafting. We performed bone grafting and lengthening of the affected femur with an application of the Ilizarov apparatus over an intramedullary nail to treat the cystic lesion and limb length discrepancy simultaneously. PMID:27904734

  5. Advances in Bone-targeted Drug Delivery Systems for Neoadjuvant Chemotherapy for Osteosarcoma.

    PubMed

    Li, Cheng-Jun; Liu, Xiao-Zhou; Zhang, Lei; Chen, Long-Bang; Shi, Xin; Wu, Su-Jia; Zhao, Jian-Ning

    2016-05-01

    Targeted therapy for osteosarcoma includes organ, cell and molecular biological targeting; of these, organ targeting is the most mature. Bone-targeted drug delivery systems are used to concentrate chemotherapeutic drugs in bone tissues, thus potentially resolving the problem of reaching the desired foci and minimizing the toxicity and adverse effects of neoadjuvant chemotherapy. Some progress has been made in bone-targeted drug delivery systems for treatment of osteosarcoma; however, most are still at an experimental stage and there is a long transitional period to clinical application. Therefore, determining how to combine new, polymolecular and multi-pathway targets is an important research aspect of designing new bone-targeted drug delivery systems in future studies. The purpose of this article was to review the status of research on targeted therapy for osteosarcoma and to summarize the progress made thus far in developing bone-targeted drug delivery systems for neoadjuvant chemotherapy for osteosarcoma with the aim of providing new ideas for highly effective therapeutic protocols with low toxicity for patients with osteosarcoma. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  6. Quantitative MRI and spectroscopy of bone marrow

    PubMed Central

    Ruschke, Stefan; Dieckmeyer, Michael; Diefenbach, Maximilian; Franz, Daniela; Gersing, Alexandra S.; Krug, Roland; Baum, Thomas

    2017-01-01

    Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353. PMID:28570033

  7. What Is Breast in the Bone?

    PubMed

    Shemanko, Carrie S; Cong, Yingying; Forsyth, Amanda

    2016-10-22

    The normal developmental program that prolactin generates in the mammary gland is usurped in the cancerous process and can be used out of its normal cellular context at a site of secondary metastasis. Prolactin is a pleiotropic peptide hormone and cytokine that is secreted from the pituitary gland, as well as from normal and cancerous breast cells. Experimental and epidemiologic data suggest that prolactin is associated with mammary gland development, and also the increased risk of breast tumors and metastatic disease in postmenopausal women. Breast cancer spreads to the bone in approximately 70% of cases with advanced breast cancer. Despite treatment, new bone metastases will still occur in 30%-50% of patients. Only 20% of patients with bone metastases survive five years after the diagnosis of bone metastasis. The breast cancer cells in the bone microenvironment release soluble factors that engage osteoclasts and/or osteoblasts and result in bone breakdown. The breakdown of the bone matrix, in turn, enhances the proliferation of the cancer cells, creating a vicious cycle. Recently, it was shown that prolactin accelerated the breast cancer cell-mediated osteoclast differentiation and bone breakdown by the regulation of breast cancer-secreted proteins. Interestingly, prolactin has the potential to affect multiple proteins that are involved in both breast development and likely bone metastasis, as well. Prolactin has normal bone homeostatic roles and, combined with the natural "recycling" of proteins in different tissues that can be used for breast development and function, or in bone function, increases the impact of prolactin signaling in breast cancer bone metastases. Thus, this review will focus on the role of prolactin in breast development, bone homeostasis and in breast cancer to bone metastases, covering the molecular aspects of the vicious cycle.

  8. Bone as an effect compartment : models for uptake and release of drugs.

    PubMed

    Stepensky, David; Kleinberg, Lilach; Hoffman, Amnon

    2003-01-01

    "Bone-seeking agents" are drugs characterised by high affinity for bone, and are disposed in bone for prolonged periods of time while maintaining remarkably low systemic concentrations. As a consequence, the bone becomes a reservoir for bone-seeking agents, and a site of both desirable and adverse effects, depending on the pharmacological activities of the specific agent. For some agents, significant systemic effects may also be produced following their prolonged release from bone, a process that is governed mostly by the rate of bone remodelling. This review covers the pharmacokinetic and pharmacodynamic features of bone-seeking agents with different pharmacological properties, including drugs (bisphosphonates, drug-bisphosphonate conjugates, radiopharmaceuticals and fluoride), bone markers (tetracycline, bone imaging agents) and toxins (lead, chromium, aluminium). In addition, drugs that do not possess bone-seeking properties but are used for therapy of bone diseases (such as antibacterials for treatment of osteomyelitis) are discussed, along with targeting of these drugs to the bone by conjugation to bone-seeking agents, local delivery systems, and other approaches. The pharmacokinetic and pharmacodynamic behaviour of bone-seeking agents is extremely complex due to heterogeneity in bone morphology and physiology. This complexity, accompanied by difficulties in human bone research caused by ethical and other limitations, gave rise to modelling approaches to study bone drug disposition. This review describes the pharmacokinetic models that have been proposed to describe the pharmacokinetic behaviour of bone-seeking agents and predict bone concentrations of these agents for different doses and patient populations. Models of different types (compartmental and physiologically based) and of different complexity have been applied, but their relevance to drug effects in the bone tissue is limited since they describe the behaviour of the "average" drug molecule

  9. Colour stability of bovine Longissimus and Psoas major muscle as affected by electrical stimulation and hot boning.

    PubMed

    van Laack, R L; Smulders, F J

    1990-01-01

    From eight electrically stimulated and eight non-stimulated cows the righthand-side longissimus and psoas major muscles were hot boned within 1 1 2 h post mortem, vacuum packaged and chilled and storred at 1±1°C. Immediately after slaughter, the lefthand carcass-sides were blast-chilled for 1 1 2 h and subsequently chilled at 1±1°C until the following day. After cold boning, the longissimus and psoas major muscle were packaged, chilled and stored as the hot boned muscles. After 12 days of storage, steaks, cut from the primals, were displayed at 1±1°C under continuous illumination (300-400 lx). Colour measurements after 0, 2 and 4 days of display revealed a significant (p<0·10) effect of time of boning on non-stimulated psoas major muscle (lower values for a (∗), b (∗) values, chroma and %R630-%R580). Significant effects of electrical stimulation were not observed. Changes in hue tended to be more pronounced when the meat had been stimulated. Changes in chroma were largest (p<0·10) is non-stimulated, hot boned psoas muscle. Analysis of variances showed that in the longissimus muscle significant effects (p<0·10) of time boning and electrical stimulation were present. The effect of time of boning was often influenced by the use of electrical stimulation. Changes in hue and chroma indicated that hot boned samples had a higher colour stability than cold boned controls, especially when the carcasses had not been stimulated electrically. The observed differences in colour stability were rather small in all treatment groups and are not expected to present any practical merchandising problem. Copyright © 1990. Published by Elsevier Ltd.

  10. Drilling of bone: A comprehensive review

    PubMed Central

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  11. Physical activity effects on bone metabolism.

    PubMed

    Smith, E L; Gilligan, C

    1991-01-01

    The incidence of osteoporotic fractures rises exponentially with age and is increasing faster than the demographic increase in the aging population. Physical activity has great potential to reduce the risk for osteoporotic fractures. Three independent but interactive factors contribute to the risk of fractures: bone strength, the risk of falling, and the effectiveness of neuromuscular response that protects the skeleton from injury. Exercise can reduce fracture risk not only by preventing bone loss, but by decreasing the risk of falling and the force of impact by improving strength, flexibility, balance, and reaction time. Extreme inactivity causes rapid bone loss of up to 40%, while athletic activity results in bone hypertrophy of up to 40%. Exercise intervention programs have reduced bone loss or increased bone mass in both men and women of various ages and initial bone status. These benefits have been shown for arm bone mineral content, total body calcium, spine, calcium bone index, tibia, and calcaneus. In both middle-aged and elderly women, physical activity intervention reduced bone loss or increased bone mass. The mechanisms for maintenance of skeletal integrity rely on a cellular response to hormonal and mechanical load stimuli. Studies in animal models show that training affects cellular activity. In osteoporotics, cellular erosion is increased and mineral apposition rate (MAR) decreased compared with normal age-matched controls. In contrast to this, sows trained on a treadmill 20 min per day for 20 weeks had greater active periosteal surface, periosteal MAR, and osteonal MAR than untrained sows.

  12. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect.

    PubMed

    Kumar, Sanjay; Ponnazhagan, Selvarangan

    2012-04-01

    Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Oral Rehabilitation of a Patient With Ectodermal Dysplasia Treated With Fresh-Frozen Bone Allografts and Computer-Guided Implant Placement: A Clinical Case Report.

    PubMed

    Maiorana, Carlo; Poli, Pier Paolo; Poggio, Carlo; Barbieri, Paola; Beretta, Mario

    2017-05-01

    Ectodermal dysplasia (ED) is an inherited disorder characterized by abnormality of ectodermally derived structures. A recurrent oral finding is oligodontia, which in turn leads to a severely hypotrophic alveolar process with typical knife-edge morphology and adverse ridge contours. This unfavorable anatomy can seriously hamper proper implant placement. Fresh-frozen bone (FFB) allografts recently have been proposed to augment the residual bone volume for implant placement purposes; however, scientific evidence concerning the use of FFB to treat ED patients is absent. Similarly, data reporting computer-aided template-guided implant placement in medically compromised patients are limited. Thus the purpose of this report is to illustrate the oral rehabilitation of a female patient affected by ED and treated with appositional FFB block grafts and consecutive computer-guided flapless implant placement in a 2-stage procedure. Fixed implant-supported dental prostheses were finally delivered to the patient, which improved her self-esteem and quality of life. During the follow-up recall 1 year after the prosthetic loading, the clinical examination showed healthy peri-implant soft tissues with no signs of bleeding on probing or pathologic probing depths. The panoramic radiograph confirmed the clinical stability of the result. Peri-implant marginal bone levels were radiographically stable with neither pathologic bone loss at the mesial and distal aspects of each implant nor peri-implant radiolucency. Within the limitations of this report, the use of FFB allografts in association with computer-aided flapless implant surgery might be considered a useful technique in patients affected by ED. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Bone age in cerebral palsy

    PubMed Central

    Miranda, Eduardo Régis de Alencar Bona; Palmieri, Maurício D'arc; de Assumpção, Rodrigo Montezuma César; Yamada, Helder Henzo; Rancan, Daniela Regina; Fucs, Patrícia Maria de Moraes Barros

    2013-01-01

    Objective To compare the chronological age and bone age among cerebral palsy patients in the outpatient clinic and its correlation with the type of neurological involvement, gender and functional status. Methods 401 patients with spastic cerebral palsy, and ages ranging from three months to 20 years old, submitted to radiological examination for bone age and analyzed by two independent observers according Greulich & Pyle. Results In the topographic distribution, there was a significant delay (p<0.005) in tetraparetic (17.7 months), hemiparetic (10.1 months), and diparetic patients (7.9 months). In the hemiparetic group, the mean bone age in the affected side was 96.88 months and the uncompromised side was 101.13 months (p<0.005). Regarding functional status, the ambulatory group showed a delay of 18.73 months in bone age (p<0.005). Comparing bone age between genders, it was observed a greater delay in males (13.59 months) than in females (9.63 months), but not statistically significant (p = 0.54). Conclusion There is a delay in bone age compared to chronological age influenced by the topography of spasticity, functional level and gender in patients with cerebral palsy. Level of Evidence IV, Case Series. PMID:24453693

  15. Adverse mood symptoms with oral contraceptives.

    PubMed

    Poromaa, Inger Sundström; Segebladh, Birgitta

    2012-04-01

    In spite of combined oral contraceptives (COCs) having been available for more than 50 years, surprisingly little is known about the prevalence of truly COC-related adverse mood symptoms and about the underlying biological mechanisms of proposed changes in mood and affect. Precise estimates of COC-related adverse mood symptoms are not available due to the lack of placebo-controlled trials. In prospective trials the frequency of women who report deteriorated mood or deteriorated emotional well-being varies between 4 and 10%, but it can be assumed that the causal relation in these prevalence rates is overestimated. Adverse mood symptoms and somatic symptoms are most pronounced during the pill-free interval of the treatment cycles, but whether extended COC regimens would be more favorable in this respect is not known. COCs with anti-androgenic progestagens, such as drospirenone and desogestrel, appear more favorable in terms of mood symptoms than progestagens with a more androgenic profile. Available data suggest that lower doses of ethinylestradiol could be beneficial. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  16. An approximate model for cancellous bone screw fixation.

    PubMed

    Brown, C J; Sinclair, R A; Day, A; Hess, B; Procter, P

    2013-04-01

    This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement.

  17. Correlating the nanoscale mechanical and chemical properties of knockout mice bones

    NASA Astrophysics Data System (ADS)

    Kavukcuoglu, Nadire Beril

    Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2

  18. Reciprocal Interactions between Multiple Myeloma Cells and Osteoprogenitor Cells Affect Bone Formation and Tumor Growth

    DTIC Science & Technology

    2014-10-01

    representation of the mechanism of affinity of Ald-PP NPs with bone mineral ( gray , bone mineral; red, Ald; green, PEG; yellow, PLGA). (C) Representative...8217-TCTGCCAGTCCCCCTAGAC-3’ MicroRNAs RNU6B 5’CGCAAGGATGACACGCAAATT-3’ ------------------ URP ------------------ 5’- GTG CAG GGT CCG AGG-3’ hsa-mir-199a

  19. Altered thermogenesis and impaired bone remodeling in Misty mice.

    PubMed

    Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2013-09-01

    Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a, and less sympathetic innervation compared to wild-type (+/ +)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hours), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2, and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wild-type. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wild-type and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular bone volume/total volume (BV/TV) loss in the distal femur of Misty mice without affecting wild-type. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold

  20. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    PubMed

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Cortical bone drilling: An experimental and numerical study.

    PubMed

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  2. Radioisotope bone scanning in a case of sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinti, D.C.; Hawkins, H.B.; Slavin, J.D. Jr.

    1985-03-01

    The application of radioisotope scanning to osseous involvement from systemic sarcoidosis has been infrequently described in the scientific literature. Most commonly, the small bones of the hands and feet are affected if sarcoidosis involves the skeleton. Nonetheless, there are also occasional manifestations of sarcoid in the skull, long bones, and vertebral bodies. This paper describes a case of sarcoid involving the lung parenchyma with multiple lesions in the skull and ribs demonstrated by bone scanning with Tc-99m MDP. Following treatment with steroids, the bone scan showed complete resolution of the rib lesions and almost complete resolution of the lesions inmore » the calvarium.« less

  3. Exposing physicians to reduced residency work hours did not adversely affect patient outcomes after residency.

    PubMed

    Jena, Anupam B; Schoemaker, Lena; Bhattacharya, Jay

    2014-10-01

    In 2003, work hours for physicians-in-training (residents) were capped by regulation at eighty hours per week, leading to the hotly debated but unexplored issue of whether physicians today are less well trained as a result of these work-hour reforms. Using a unique database of nearly all hospitalizations in Florida during 2000-09 that were linked to detailed information on the medical training history of the physician of record for each hospitalization, we studied whether hospital mortality and patients' length-of-stay varied according to the number of years a physician was exposed to the 2003 duty-hour regulations during his or her residency. We examined this database of practicing Florida physicians, using a difference-in-differences analysis that compared trends in outcomes of junior physicians (those with one-year post-residency experience) pre- and post-2003 to a control group of senior physicians (those with ten or more years of post-residency experience) who were not exposed to these reforms during their residency. We found that the duty-hour reforms did not adversely affect hospital mortality and length-of-stay of patients cared for by new attending physicians who were partly or fully exposed to reduced duty hours during their own residency. However, assessment of the impact of the duty-hour reforms on other clinical outcomes is needed. Project HOPE—The People-to-People Health Foundation, Inc.

  4. Bone Density and Dental External Apical Root Resorption

    PubMed Central

    Iglesias-Linares, Alejandro; Morford, Lorri Ann

    2016-01-01

    When orthodontic patients desire shorter treatment times with aesthetic results and long-term stability, it is important for the orthodontist to understand the potential limitations and problems that may arise during standard and/or technology-assisted accelerated treatment. Bone density plays an important role in facilitating orthodontic tooth movement (OTM), such that reductions in bone density can significantly increase movement velocity. Lifestyle, genetic background, environmental factors and disease status all can influence a patients’ overall health and bone density. In some individuals, these factors may create specific conditions that influence systemic-wide bone metabolism. Both genetic variation and the onset of a bone-related disease can influence systemic bone density and local bone density, such as is observed in the mandible and maxilla. These types of localized density changes can affect the rate of OTM and may also influence the risk of unwanted outcomes, i.e., the occurrence of dental external apical root resorption (EARR). PMID:27766484

  5. 25-Hydroxycholecalciferol as an antagonist of adverse corticosteroid effects on phosphate and calcium metabolism in man.

    PubMed

    Nuti, R; Vattimo, A; Turchetti, V; Righi, G

    1984-10-01

    The present study was performed in 30 patients who needed steroid therapy: courses of triamcinolone or DTM 8-15 given orally lasted 30 days. In 15 of these patients glucoactive corticosteroids were administered in combination with 5 micrograms/day of 25OH-vitamin D3 (25OHD3). 47Calcium oral test and 99mTc-MDP kinetics, as an index of bone turnover, were performed at the beginning of the therapy and after 30 days. At the end of treatment a significant improvement of intestinal radiocalcium transport together with a decrease in bone turnover in the group of patients treated with 25OHD3 was observed. As it concerns plasma calcium level, inorganic phosphate, the urinary excretion of calcium, phosphate and hydroxyproline no significant difference between the two groups examined were noticed. These results indicate that the adverse effects of glucoactive corticosteroids on intestinal calcium transport and bone turnover may be counteracted by the combined administration of physiological doses of 25OHD3.

  6. The Cultivation of Bt Corn Producing Cry1Ac Toxins Does Not Adversely Affect Non-Target Arthropods

    PubMed Central

    Guo, Yanyan; Feng, Yanjie; Ge, Yang; Tetreau, Guillaume; Chen, Xiaowen; Dong, Xuehui; Shi, Wangpeng

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The “sampling dates” had a significant effect on these indices, but no clear tendencies related to “Bt corn” or “sampling dates X corn variety” interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs. PMID:25437213

  7. Negative effect of serotonin-norepinephrine reuptake inhibitor therapy on rat bone tissue after orchidectomy.

    PubMed

    Fekete, Sona; Simko, Julius; Mzik, Martin; Karesova, Iva; Zivna, Helena; Zivny, Pavel; Pavliková, Ladislava; Palicka, Vladimir

    2015-08-15

    Our goal was to determine if venlafaxine has a negative effect on bone metabolism. Rats were divided into three groups. The sham-operated control group (SHAM), the control group after orchidectomy (ORX), and the experimental group after orchidectomy received venlafaxine (VEN ORX) in standard laboratory diet (SLD) for 12 weeks. Bone mineral content (BMC) was measured by dual energy X-ray absorptiometry (DXA). Bone marker concentrations of carboxy-terminal cross-linking telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), amino-terminal propeptide of procollagen type I (P1NP), bone alkaline phosphatase (BALP), sclerostin and bone morphogenetic protein 2 (BMP-2) were examined in bone homogenate. The femurs were used for biomechanical testing. Compared to the ORX group we found lower BMD in the diaphysis area of the femur in the VEN ORX group, suggesting a preferential effect on cortical bone. Of the bone metabolism markers, there was significant decrease (ORX control group versus VEN ORX experimental group) in BALP levels and increase in sclerostin and CTX-I levels, suggesting a decrease in osteoid synthesis and increased bone resorption. The results suggest that the prolonged use of venlafaxine may have a negative effect on bone metabolism. Further studies are warranted to establish whether venlafaxine may have a clinically significant adverse effect on bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Long bone histology of the subterranean rodent Bathyergus suillus (Bathyergidae): ontogenetic pattern of cortical bone thickening.

    PubMed

    Montoya-Sanhueza, Germán; Chinsamy, Anusuya

    2017-02-01

    Patterns of bone development in mammals are best known from terrestrial and cursorial groups, but there is a considerable gap in our understanding of how specializations for life underground affect bone growth and development. Likewise, studies of bone microstructure in wild populations are still scarce, and they often include few individuals and tend to be focused on adults. For these reasons, the processes generating bone microstructural variation at intra- and interspecific levels are not fully understood. This study comprehensively examines the bone microstructure of an extant population of Cape dune molerats, Bathyergus suillus (Bathyergidae), the largest subterranean mammal endemic to the Western Cape of South Africa. The aim of this study is to investigate the postnatal bone growth of B. suillus using undecalcified histological sections (n = 197) of the femur, humerus, tibia-fibula, ulna and radius, including males and females belonging to different ontogenetic and reproductive stages (n = 42). Qualitative histological features demonstrate a wide histodiversity with thickening of the cortex mainly resulting from endosteal and periosteal bone depositions, whilst there is scarce endosteal resorption and remodeling throughout ontogeny. This imbalanced bone modeling allows the tissues deposited during ontogeny to remain relatively intact, thus preserving an excellent record of growth. The distribution of the different bone tissues observed in the cortex depends on ontogenetic status, anatomical features (e.g. muscle attachment structures) and location on the bone (e.g. anterior or lateral). The type of bone microstructure and modeling is discussed in relation to digging behavior, reproduction and physiology of this species. This study is the first histological assessment describing the process of cortical thickening in long bones of a fossorial mammal. © 2016 Anatomical Society.

  9. Computed tomography analysis of guinea pig bone: architecture, bone thickness and dimensions throughout development.

    PubMed

    Witkowska, Agata; Alibhai, Aziza; Hughes, Chloe; Price, Jennifer; Klisch, Karl; Sturrock, Craig J; Rutland, Catrin S

    2014-01-01

    reached full weight. This study is the first to show the high abundance (100% in this study) of the supratrochlear foramen within the guinea pig humerus and the complete absence of a supracondylar foramen, which is different to many other species and may also affect potential fracture points and frequencies. Understanding bone morphology and growth is essential in not only understanding the requirements of the healthy guinea pig, but also necessary in order to investigate disease states.

  10. Bone marrow adipocytes: a neglected target tissue for growth hormone.

    PubMed

    Gevers, Evelien F; Loveridge, Nigel; Robinson, Iain C A F

    2002-10-01

    Bone marrow (BM) contains numerous adipocytes. These share a common precursor with osteoblasts and chondrocytes, but their function is unknown. It is unclear what regulates the differentiation of these three different cell types, though their subsequent metabolic activity is under hormonal regulation. GH and estrogen stimulate bone growth and mineralization, by direct effects on chondrocytes and osteoblasts. GH also stimulates lipolysis in subcutaneous and visceral adipocytes. However, adipocytes in BM have largely been ignored as potential targets for GH or estrogen action. We have addressed this by measuring BM adipocyte number, perimeter and area as well as bone area and osteoblast activity in GH-deficient dwarf (dw/dw), normal, or ovariectomized (Ovx) rats, with or without GH, IGF-1, PTH, or estrogen treatment or high fat feeding. Marrow adipocyte numbers were increased 5-fold (P < 0.001) in dw/dw rats, and cell size was also increased by 20%. These values returned toward normal in dw/dw rats given GH but not when given IGF-1. Cancellous bone area and osteoblast number were significantly (P < 0.005) lower in dw/dw rats, though alkaline phosphatase (ALP) activity in individual osteoblasts was unchanged. GH treatment increased % osteoblast covered bone surface without affecting individual cell ALP activity. Ovariectomy in normal or dw/dw rats had no affect on marrow adipocyte number nor size, although estrogen treatment in ovariectomized (Ovx) normal rats did increase adipocyte number. Ovx decreased tibial cancellous bone area in normal rats (64%; P < 0.05) and decreased osteoblast ALP-activity (P < 0.01) but did not affect the percentage of osteoblast-covered bone surface. Estrogen replacement reversed these changes. While treatment with PTH by continuous sc infusion decreased cancellous bone (P < 0.05) and high fat feeding increased the size of BM adipocytes (P < 0.01), they did not affect BM adipocyte number. These results suggest that GH has a specific action

  11. Quality of life in children with adverse drug reactions: a narrative and systematic review.

    PubMed

    Del Pozzo-Magaña, Blanca R; Rieder, Michael J; Lazo-Langner, Alejandro

    2015-10-01

    Adverse drug reactions are a common problem affecting adults and children. The economic impact of the adverse drug reactions has been widely evaluated; however, studies of the impact on the quality of life of children with adverse drug reactions are scarce. The aim was to evaluate studies assessing the health-related quality of life of children with adverse drug reactions. We conducted a systematic review that included the following electronic databases: MEDLINE, EMBASE and the Cochrane Library (including the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects, the Cochrane Controlled Trials Register and the Health Technology Assessment Databases). Nine studies were included. Four of the studies were conducted in children with epilepsy; the rest of them involved children with chronic viral hepatitis, Crohn's disease, paediatric cancer and multiple adverse drug reactions compared with healthy children. Based on their findings, authors of all studies concluded that adverse drug reactions had a negative impact on the quality of life of children. No meta-analysis was conducted given the heterogeneous nature of the studies. To date, there is no specific instrument that measures quality of life of children with adverse drug reactions, and the information available is poor and variable. In general, adverse drug reactions have a negative impact on the quality of life of affected children. For those interested in this area, more work needs to be done to improve tools that help to evaluate efficiently the health-related quality of life of children with adverse drug reactions and chronic diseases. © 2014 The British Pharmacological Society.

  12. Quality of life in children with adverse drug reactions: a narrative and systematic review

    PubMed Central

    Del Pozzo-Magaña, Blanca R; Rieder, Michael J; Lazo-Langner, Alejandro

    2015-01-01

    Aims Adverse drug reactions are a common problem affecting adults and children. The economic impact of the adverse drug reactions has been widely evaluated; however, studies of the impact on the quality of life of children with adverse drug reactions are scarce. The aim was to evaluate studies assessing the health-related quality of life of children with adverse drug reactions. Methods We conducted a systematic review that included the following electronic databases: MEDLINE, EMBASE and the Cochrane Library (including the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects, the Cochrane Controlled Trials Register and the Health Technology Assessment Databases). Results Nine studies were included. Four of the studies were conducted in children with epilepsy; the rest of them involved children with chronic viral hepatitis, Crohn’s disease, paediatric cancer and multiple adverse drug reactions compared with healthy children. Based on their findings, authors of all studies concluded that adverse drug reactions had a negative impact on the quality of life of children. No meta-analysis was conducted given the heterogeneous nature of the studies. Conclusions To date, there is no specific instrument that measures quality of life of children with adverse drug reactions, and the information available is poor and variable. In general, adverse drug reactions have a negative impact on the quality of life of affected children. For those interested in this area, more work needs to be done to improve tools that help to evaluate efficiently the health-related quality of life of children with adverse drug reactions and chronic diseases. PMID:24833305

  13. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    PubMed

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  14. Bone Morphogenetic Protein Usage in Anterior Lumbar Interbody Fusion: What Else Can Go Wrong?

    PubMed

    Elias, Elias; Nasser, Zeina; Winegan, Lona; Verla, Terence; Omeis, Ibrahim

    2018-03-01

    Bone morphogenetic protein (BMP) graft showed promising outcome during early phases of its use. However, unreported adverse events and off-label use shattered its safe profile and raised concerns regarding its indication. In 2008 the U.S. Food and Drug Administration prohibited its use in anterior cervical spine procedures due to the possibility of edema, hematoma, and need to intubate. At the molecular level, BMPs act as multifactorial growth factors playing a role in cartilage, heart, and bone formation. However, its unfavorable effect on bone overgrowth or heterotopic ossification post spine surgeries has been described. Reported cases in the literature were limited to epidural bone formation. We present a rare and interesting case of a 59-year-old female, in whom BMP caused intradural bone growth several years after an anterior lumbar interbody fusion surgery. Caution must be exercised while using BMPs because of inadvertent complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Developmental abnormalities of the occipital bone in human chondrodystrophies (achondroplasia and thanatophoric dwarfism).

    PubMed

    Marin-Padilla, M; Marin-Padilla, T M

    1977-01-01

    Specific developmental malformations have been demonstrated in the occipital bone of two chondrodysplastic disorders (achondroplasia and thanatophoric dwarfism). Analysis of these malformations indicates that the occipital bone is primary affected in these disorders. In both cases, the endochondral-derived components of the occipital bone (the basioccipital, the two lateral parts, and the planum nuchale of the squama occipitalis) have failed to grow properly and are smaller and shorter than normal. On the other hand, the planum occipitalis of the squama, which derives from intramembranous ossification, is unaffected. In addition, the nature of these abnormalities indicates that the occipital synchondroses, together with the epiphyseal plates of other bones, are primarily affected in these two chondrodysplasias. The components of the occipital bone formed between the affected synchondroses failed to grow normally. The resulting malformation of the occipital bone is undoubtedly the cause of the shortening of the posterior cerebral fossa and of the considerable narrowing of the foramen magnum often described in these chondrodysplasias. It is postulated that growth disturbances between the affected occipital bone and the unaffected central nervous system results in the inadequacy of the posterior cerebral fossa and the foramen magnum to accommodate the growing brain. Consequently, compression of the brain at the posterior cerebral fossa or the foramen magnum levels could occur and thus lead to neurologic complications such as hydrocephalus and compression of the brain stem. It is suggested that the surgical removal of the fused posterior border of the lateral parts of the occipital bone (partial nuchalectomy) for the purpose of enlarging the narrow foramen magnum may be indicated in those chondrodysplastic children who develop these types of neurologic complications.

  16. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa).

    PubMed

    Álvarez-Lloret, Pedro; Rodríguez-Navarro, Alejandro B; Romanek, Christopher S; Ferrandis, Pablo; Martínez-Haro, Mónica; Mateo, Rafael

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. © 2013 Elsevier B.V. All rights reserved.

  17. Management of bone disease in women after breast cancer.

    PubMed

    Milat, F; Vincent, A J

    2015-01-01

    Breast cancer and osteoporosis are common conditions affecting women, particularly following menopause. With increasing breast cancer incidence, effects of therapies and decreasing mortality, issues relating to the preservation of bone health with breast cancer therapy have become a priority. Contributing factors to bone loss and fractures in women with breast cancer include tumor effects, estrogen deprivation secondary to breast cancer therapies (chemotherapy, ovarian ablation or aromatase inhibitors), natural menopause and secondary causes of bone loss, typically from concurrently prescribed medications. Management of osteoporosis and other survivorship care is complex, and a multi-disciplinary approach is recommended with assessment of risk factors for bone loss, optimization of bone health through lifestyle approaches and pharmacological interventions based on evidence-based algorithms. This review examines the pathophysiology of bone loss and gives guidelines for the management of bone disease in women with breast cancer.

  18. Aging and bone loss: new insights for the clinician

    PubMed Central

    Demontiero, Oddom; Vidal, Christopher

    2012-01-01

    It is well known that the underlying mechanisms of osteoporosis in older adults are different than those associated with estrogen deprivation. Age-related bone loss involves a gradual and progressive decline, which is also seen in men. Markedly increased bone resorption leads to the initial fall in bone mineral density. With increasing age, there is also a significant reduction in bone formation. This is mostly due to a shift from osteoblastogenesis to predominant adipogenesis in the bone marrow, which also has a lipotoxic effect that affects matrix formation and mineralization. We review new evidence on the pathophysiology of age-related bone loss with emphasis upon the mechanism of action of current osteoporosis treatments. New potential treatments are also considered, including therapeutic approaches to osteoporosis in the elderly that focus on the pathophysiology and potential reversal of adipogenic shift in bone. PMID:22870496

  19. Chronic alcohol abuse in men alters bone mechanical properties by affecting both tissue mechanical properties and microarchitectural parameters.

    PubMed

    Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T

    2017-06-01

    Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  1. Dietary 2-oxoglutarate prevents bone loss caused by neonatal treatment with maximal dexamethasone dose

    PubMed Central

    Tomaszewska, Ewa; Muszyński, Siemowit; Blicharski, Tomasz; Pierzynowski, Stefan G

    2017-01-01

    Synthetic glucocorticoids (GCs) are widely used in the variety of dosages for treatment of premature infants with chronic lung disease, respiratory distress syndrome, allergies, asthma, and other inflammatory and autoimmune conditions. Yet, adverse effects such as glucocorticoid-induced osteoporosis and growth retardation are recognized. Conversely, 2-oxoglutarate (2-Ox), a precursor of glutamine, glutamate, and collagen amino acids, exerts protective effects on bone development. Our aim was to elucidate the effect of dietary administered 2-Ox on bone loss caused by neonatal treatment with clinically relevant maximal therapeutic dexamethasone (Dex) dose. Long bones of neonatal female piglets receiving Dex, Dex+2-Ox, or untreated were examined through measurements of mechanical properties, density, mineralization, geometry, histomorphometry, and histology. Selected hormones, bone turnover, and growth markers were also analyzed. Neonatal administration of clinically relevant maximal dose of Dex alone led to over 30% decrease in bone mass and the ultimate strength (P < 0.001 for all). The length (13 and 7% for femur and humerus, respectively) and other geometrical parameters (13–45%) decreased compared to the control (P < 0.001 for all). Dex impaired bone growth and caused hormonal imbalance. Dietary 2-Ox prevented Dex influence and vast majority of assessed bone parameters were restored almost to the control level. Piglets receiving 2-Ox had heavier, denser, and stronger bones; higher levels of growth hormone and osteocalcin concentration; and preserved microarchitecture of trabecular bone compared to the Dex group. 2-Ox administered postnatally had a potential to maintain bone structure of animals simultaneously treated with maximal therapeutic doses of Dex, which, in our opinion, may open up a new opportunity in developing combined treatment for children treated with GCs. Impact statement The present study has showed, for the first time, that dietary 2

  2. Relationship between oxidative stress and bone mass in obesity and effects of berry supplementation on bone remodeling in obese male mice: an exploratory study.

    PubMed

    Lee, Sang Gil; Kim, Bohkyung; Soung, Do Yu; Vance, Terrence; Lee, Jong Suk; Lee, Ji-Young; Koo, Sung I; Kim, Dae-Ok; Drissi, Hicham; Chun, Ock K

    2015-04-01

    Berry consumption can prevent bone loss. However, the effects of different berries with distinct anthocyanin composition have not been thoroughly examined. The present study compared the effects of blueberry, blackberry, and black currant on bone health using a mouse model of diet-induced obesity. To investigate the effect of different berry supplements against a high-fat (HF) diet in vivo, 40 HF diet-induced obese (DIO) C57BL mice were assigned into four groups and fed a HF diet (35% w/w) with or without berry supplementation for 12 weeks (n=10). We measured adipose tissue mass (epididymal and retroperitoneal), plasma antioxidant, bone-related biomarkers, femur bone mineral density (BMD), and bone mineral content (proximal and distal). Adipose masses were negatively correlated with proximal BMD, but positively associated with plasma superoxide dismutase (SOD) concentrations (P<.001). Berry supplementation did not change the plasma ferric reducing antioxidant power, SOD, and insulin-like growth factor-1. However, the black currant group exhibited greater plasma alkaline phosphatase compared with the control group (P<.05). BMD in the distal epiphysis was significantly different between the blueberry and blackberry group (P<.05). However, berry supplementation did not affect bone mass compared with control. The present study demonstrates a negative relationship between fat mass and bone mass. In addition, our findings suggest that the anthocyanin composition of berries will affect bone turnover, warranting further research to investigate the underlying mechanisms.

  3. Adverse reactions to orthodontic materials.

    PubMed

    Sifakakis, I; Eliades, T

    2017-03-01

    Adverse effects can arise from the clinical use of orthodontic materials, due to the release of constituent substances (ions from alloys and monomers, degradation by-products, and additives from polymers). Moreover, intraoral aging affects the biologic properties of materials. The aim of this review is to present the currently identified major adverse effects of the metallic and polymeric components found in orthodontic appliances and materials. Corrosion in metallic orthodontic attachments releases metal ions, mainly iron, chromium, and nickel. The latter has received the greatest attention because of its reported potential for an allergic response. The formation of an oxide layer may inhibit the outward movement of ions, thereby acting as an obstacle for release. Titanium alloys have superior corrosion resistance than stainless steel. The efficiency of polymerisation is considered an essential property for all polymers. A poor polymer network is susceptible to the release of biologically reactive substances, such as bisphenol-A (BPA), which is capable of inducing hormone-related effects. The close proximity of a light-curing tip to the adhesive, pumice prophylaxis after bonding, indirect irradiation and mouth rinsing during the first hour after bonding may decrease BPA release. The adverse effects of some orthodontic materials should be considered during material selection and throughout orthodontic treatment, in order to minimise possible undesirable implications. © 2017 Australian Dental Association.

  4. Established role of bisphosphonate therapy for prevention of skeletal complications from myeloma bone disease.

    PubMed

    Terpos, Evangelos; Dimopoulos, Meletios A; Berenson, James

    2011-02-01

    Patients with advanced multiple myeloma (MM) often have increased osteolytic activity of osteoclasts and impaired osteogenesis by osteoblasts, resulting in osteolytic bone lesions that increase the risk of skeletal-related events (SREs) including pathologic fracture, the need for radiotherapy or surgery to bone, and spinal cord compression. Such SREs are potentially life-limiting, and can reduce patients' functional independence and quality of life. Bisphosphonates (e.g., oral clodronate and intravenous pamidronate and zoledronic acid) can inhibit osteoclast-mediated osteolysis, thereby reducing the risk of SREs, ameliorating bone pain, and potentially prolonging survival in patients with MM. Extensive clinical experience demonstrates that bisphosphonates are generally well tolerated, and common adverse events are typically mild and manageable. Studies are ongoing to optimize the timing and duration of bisphosphonate therapy in patients with bone lesions from MM. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Electromechanical Properties of Bone Tissue.

    NASA Astrophysics Data System (ADS)

    Regimbal, Raymond L.

    Discrepancies between calculated and empirical properties of bone are thought to be due to a general lack of consideration for the extent and manner(s) with which bone components interact at the molecular level. For a bone component in physiological fluid or whenever two phases are in contact, there is a region between the bulk phases called the electrical double layer which is marked by a separation of electric charges. For the purpose of studying electrical double layer interactions, the method of particle microelectrophoresis was used to characterize bone and its major constituents on the basis of the net charge they bear when suspended in ionic media of physiological relevance. With the data presented as pH versus zeta (zeta ) potential, the figures reveal an isoelectric point (IEP) for bone mineral near pH 8.6, whereas intact and EDTA demineralized bone tissue both exhibit IEPs near pH 5.1. While these data demonstrate the potential for a significant degree of coulombic interaction between the bone mineral and organic constituent double layers, it was also observed that use of inorganic phosphate buffers, as a specific marker for bone mineral, resulted in (1) an immediate reversal, from positive to negative, of the bone mineral zeta potential (2) rendered the zeta potential of intact bone more negative in a manner linearly dependent on both time and temperature and (3) had no affect on demineralized bone (P < 0.01). In agreement with that shown in model protein-hydroxyapatite systems, it is suggested here that inorganic phosphate ions in solution compete with organic acid groups (e.g. carboxyl and phosphate of collagen, sialoprotein, ...) for positively charged sites on the bone mineral surface and effectively uncouple the bone mineral and organic phase double layers. Mechanically, this uncoupling is manifested as a loss of tissue rigidity when monitoring the midspan deflection of bone beams subject to constant load for a 3 day period. While it is thus

  6. Close Friends' Psychopathology as a Pathway From Early Adversity to Young Adulthood Depressive Symptoms.

    PubMed

    Raposa, Elizabeth B; Hammen, Constance L; Brennan, Patricia A

    2015-01-01

    Past research has highlighted the negative impact of early adverse experiences on childhood social functioning, including friendship selection, and later mental health. The current study explored the long-term effects of early adversity on young adults' close friends' psychological symptoms and the impact of these close friendships on later depressive symptoms. A prospective longitudinal design was used to examine 816 youth from a large community-based sample, who were followed from birth through age 25. Participants' mothers provided contemporaneous information about adversity exposure up to age 5, and participants completed questionnaires about their own depressive symptoms at age 20 and in their early 20s. Youth also nominated a best friend to complete questionnaires about his or her own psychopathology at age 20. Individuals who experienced more early adversity by age 5 had best friends with higher rates of psychopathology at age 20. Moreover, best friends' psychopathology predicted target youth depressive symptoms 2 to 5 years later. Results indicate that early adversity continues to affect social functioning throughout young adulthood and that best friendships marked by elevated psychopathology in turn negatively affect mental health. Findings have implications for clinical interventions designed to prevent the development of depressive symptoms in youth who have been exposed to early adversity.

  7. Close Friends’ Psychopathology as a Pathway from Early Adversity to Young Adulthood Depressive Symptoms

    PubMed Central

    Raposa, Elizabeth; Hammen, Constance; Brennan, Patricia

    2014-01-01

    Objective Past research has highlighted the negative impact of early adverse experiences on childhood social functioning, including friendship selection, and later mental health. The current study explored the long-term effects of early adversity on young adults’ close friends’ psychological symptoms, and the impact of these close friendships on later depressive symptoms. Method A prospective longitudinal design was used to examine 816 youth from a large community-based sample, who were followed from birth through age 25. Participants’ mothers provided contemporaneous information about adversity exposure prior to age 5, and participants completed questionnaires about their own depressive symptoms at age 20 and in their early 20’s. Youth also nominated a best friend to complete questionnaires about their own psychopathology at age 20. Results Individuals who experienced more early adversity by age 5 had best friends with higher rates of psychopathology at age 20. Moreover, best friends’ psychopathology predicted target youth depressive symptoms two to five years later. Conclusions Results indicate that early adversity continues to affect social functioning throughout young adulthood, and that best friendships marked by elevated psychopathology in turn negatively affect mental health. Findings have implications for clinical interventions designed to prevent the development of depressive symptoms in youth who have been exposed to early adversity. PMID:24871609

  8. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament.

    PubMed

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A; Münsterkötter, Anna L; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter; Lonsdorf, Tina B

    2016-04-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. © The Author (2015). Published by Oxford University Press.

  9. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament

    PubMed Central

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A.; Münsterkötter, Anna L.; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter

    2016-01-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. PMID:26568620

  10. Bone marrow necrosis secondary to imatinib usage, mimicking spinal metastasis on magnetic resonance imaging and FDG-PET/CT.

    PubMed

    Aras, Yavuz; Akcakaya, Mehmet Osman; Unal, Seher N; Bilgic, Bilge; Unal, Omer Faruk

    2012-01-01

    Imatinib mesylate has become the treatment of choice for gastrointestinal stromal tumors (GISTs) and has made a revolutionary impact on survival rates. Bone marrow necrosis is a very rare adverse event in malignant GIST. Bone metastases are also rarely encountered in the setting of this disease. The authors report on a patient with malignant GIST who developed a bone lesion, mimicking spinal metastasis on both MR imaging and FDG-PET/CT. Corpectomy and anterior fusion was performed, but the pathology report was consistent with bone marrow necrosis. Radiological and clinical similarities made the distinction between metastasis and bone marrow necrosis challenging for the treating physicians. Instead of radical surgical excision, more conservative methods such as percutaneous or endoscopic bone biopsies may be more useful for pathological confirmation, even though investigations such as MR imaging and FDG-PET/CT indicate metastatic disease.

  11. Nutritional Aspects of Bone Health and Fracture Healing

    PubMed Central

    Karpouzos, Athanasios; Diamantis, Evangelos; Farmaki, Paraskevi

    2017-01-01

    Introduction Fractures are quite common, especially among the elderly. However, they can increase in prevalence in younger ages too if the bone health is not good. This may happen as a result of bad nutrition. Methods A customized, retrospective review of available literature was performed using the following keywords: bone health, nutrition, and fractures. Results Insufficient intake of certain vitamins, particularly A and D, and other nutrients, such as calcium, may affect bone health or even the time and degree of bone healing in case of fracture. The importance of different nutrients, both dietary and found in food supplements, is discussed concerning bone health and fracture healing. Conclusion A healthy diet with adequate amounts of both macro- and micronutrients is essential, for both decreasing fracture risk and enhancing the healing process after fracture. PMID:29464131

  12. Constitutional bone impairment in Noonan syndrome.

    PubMed

    Baldassarre, Giuseppina; Mussa, Alessandro; Carli, Diana; Molinatto, Cristina; Ferrero, Giovanni Battista

    2017-03-01

    Noonan syndrome (NS) is an autosomal dominant trait characterized by genotypic and phenotypic variability. It belongs to the Ras/MAPK pathway disorders collectively named Rasopathies or neurocardiofaciocutaneous syndromes. Phenotype is characterized by short stature, congenital heart defects, facial dysmorphisms, skeletal and ectodermal anomalies, cryptorchidism, mild to moderate developmental delay/learning disability, and tumor predisposition. Short stature and skeletal dysmorphisms are almost constant and several studies hypothesized a role for the RAS pathway in regulating bone metabolism. In this study, we investigated the bone quality assessed by phalangeal quantitative ultrasound (QUS) and the metabolic bone profiling in a group of patients with NS, to determine whether low bone mineralization is primary or secondary to NS characteristics. Thirty-five patients were enrolled, including 20 males (55.6%) and 15 females (44.5%) aged 1.0-17.8 years (mean 6.4 ± 4.5, median 4.9 years). Each patients was submitted to clinical examination, estimation of the bone age, laboratory assays, and QUS assessment. Twenty-five percent of the cohort shows reduced QUS values for their age based on bone transmission time. Bone measurement were adjusted for multiple factors frequently observed in NS patients, such as growth retardation, delayed bone age, retarded puberty, and reduced body mass index, potentially affecting bone quality or its appraisal. In spite of the correction attempts, QUS measurement indicates that bone impairment persists in nearly 15% of the cohort studied. Our results indicate that bone impairment in NS is likely primary and not secondary to any of the phenotypic traits of NS, nor consistent with metabolic disturbances. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. The Influence of Keel Bone Damage on Welfare of Laying Hens

    PubMed Central

    Riber, Anja B.; Casey-Trott, Teresa M.; Herskin, Mette S.

    2018-01-01

    This article reviews current knowledge about welfare implications of keel bone damage in laying hens. As an initial part, we shortly describe the different conditions and present major risk factors as well as findings on the prevalence of the conditions. Keel bone damage is found in all types of commercial production, however with varying prevalence across systems, countries, and age of the hens. In general, the understanding of animal welfare is influenced by value-based ideas about what is important or desirable for animals to have a good life. This review covers different types of welfare indicators, including measures of affective states, basic health, and functioning as well as natural living of the birds, thereby including the typical public welfare concerns. Laying hens with keel bone fractures show marked behavioral differences in highly motivated behavior, such as perching, nest use, and locomotion, indicating reduced mobility and potentially negative affective states. It remains unclear whether keel bone fractures affect hen mortality, but there seem to be relations between the fractures and other clinical indicators of reduced welfare. Evidence of several types showing pain involvement in fractured keel bones has been published, strongly suggesting that fractures are a source of pain, at least for weeks after the occurrence. In addition, negative effects of fractures have been found in egg production. Irrespective of the underlying welfare concern, available scientific evidence showed that keel bone fractures reduce the welfare of layers in modern production systems. Due to the limited research into the welfare implications of keel bone deviation, evidence of the consequences of this condition is not as comprehensive and clear. However, indications have been found that keel bone deviations have a negative impact on the welfare of laying hens. In order to reduce the occurrence of the conditions as well as to examine how the affected birds should be

  14. Sarcoidosis: nail dystrophy without underlying bone changes.

    PubMed

    Wakelin, S H; James, M P

    1995-06-01

    Sarcoidosis is a chronic granulomatous disease of unknown origin that affects multiple organs and may present with a variety of skin lesions. Involvement of the nails is rare and almost invariably associated with underlying bone disease. We describe a patient with sarcoid nail dystrophy in whom this diagnosis was confirmed by a proximal nail fold biopsy. Radiologic investigation did not show evidence of an associated bone dystrophy in this case.

  15. Biomechanical analysis on fracture risk associated with bone deformity

    NASA Astrophysics Data System (ADS)

    Kamal, Nur Amalina Nadiah Mustafa; Som, Mohd Hanafi Mat; Basaruddin, Khairul Salleh; Daud, Ruslizam

    2017-09-01

    Osteogenesis Imperfecta (OI) is a disease related to bone deformity and is also known as `brittle bone' disease. Currently, medical personnel predict the bone fracture solely based on their experience. In this study, the prediction for risk of fracture was carried out by using finite element analysis on the simulated OI bone of femur. The main objective of this research was to analyze the fracture risk of OI-affected bone with respect to various loadings. A total of 12 models of OI bone were developed by applying four load cases and the angle of deformation for each of the models was calculated. The models were differentiated into four groups, namely standard, light, mild and severe. The results show that only a small amount of load is required to increase the fracture risk of the bone when the model is tested with hopping conditions. The analysis also shows that the torsional load gives a small effect to the increase of the fracture risk of the bone.

  16. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats.

    PubMed

    Glorie, Lorenzo; Behets, Geert J; Baerts, Lesley; De Meester, Ingrid; D'Haese, Patrick C; Verhulst, Anja

    2014-09-01

    Dipeptidyl peptidase IV (DPP IV) modulates protein activity by removing dipeptides. DPP IV inhibitors are currently used to improve glucose tolerance in type 2 diabetes patients. DPP IV substrates not only increase insulin secretion but also affect bone metabolism. In this study, the effect of DPP IV inhibitor sitagliptin on bone was evaluated in normal and streptozotocin-induced diabetic rats. This study included 64 male Wistar rats divided into four groups (n = 16): two diabetic and two control groups. One diabetic and one control group received sitagliptin through drinking water. Tibiae were scanned every 3 wk using an in vivo μCT scanner. After 6 and 12 wk, rats were euthanized for histomorphometric analysis of bone parameters. The mechanical resistance of femora to fracture was assessed using a three-point bending test, and serum levels of bone metabolic markers were measured. Efficient DPP IV inhibition was achieved in sitagliptin-treated groups. Trabecular bone loss, the decrease in trabecular number, and the increase in trabecular spacing was attenuated through sitagliptin treatment in diabetic rats, as shown by in vivo μCT. Bone histomorphometry was in line with these results. μCT analysis furthermore showed that sitagliptin prevented cortical bone growth stagnation in diabetic rats, resulting in stronger femora during three-point bending. Finally, the serum levels of the resorption marker CTX-I were significantly lower in sitagliptin-treated diabetic animals compared with untreated diabetic animals. In conclusion, sitagliptin treatment attenuates bone loss and increases bone strength in diabetic rats probably through the reduction of bone resorption and independent of glycemic management. Copyright © 2014 the American Physiological Society.

  17. Altitude, pasture type, and sheep breed affect bone metabolism and serum 25-hydroxyvitamin D in grazing lambs.

    PubMed

    Willems, Helen; Leiber, Florian; Kohler, Martina; Kreuzer, Michael; Liesegang, Annette

    2013-05-15

    This study aimed to investigate the bone development of two mountain sheep breeds during natural summer grazing either in the lowlands or on different characteristic alpine pastures. Pasture types differed in topographic slope, plant species composition, general nutritional feeding value, Ca and P content, and Ca:P ratio of herbage. Twenty-seven Engadine sheep (ES) lambs and 27 Valaisian Black Nose sheep (VS) lambs were divided into four groups of 6 to 7 animals per breed and allocated to three contrasting alpine pasture types and one lowland pasture type. The lambs were slaughtered after 9 wk of experimental grazing. The steep alpine pastures in combination with a high (4.8) to very high (13.6) Ca:P ratio in the forage decreased total bone mineral content as measured in the middle of the left metatarsus of the lambs from both breeds, and cortical bone mineral content and cortical bone mineral density of ES lambs. Breed × pasture type interactions occurred in the development of total and cortical bone mineral content, and in cortical thickness, indicating that bone metabolism of different genotypes obviously profited differently from the varying conditions. An altitude effect occurred for 25-hydroxyvitamin D with notably higher serum concentrations on the three alpine sites, and a breed effect led to higher concentrations for ES than VS. Despite a high variance, there were pasture-type effects on serum markers of bone formation and resorption.

  18. Rare bone diseases and their dental, oral, and craniofacial manifestations.

    PubMed

    Foster, B L; Ramnitz, M S; Gafni, R I; Burke, A B; Boyce, A M; Lee, J S; Wright, J T; Akintoye, S O; Somerman, M J; Collins, M T

    2014-07-01

    Hereditary diseases affecting the skeleton are heterogeneous in etiology and severity. Though many of these conditions are individually rare, the total number of people affected is great. These disorders often include dental-oral-craniofacial (DOC) manifestations, but the combination of the rarity and lack of in-depth reporting often limit our understanding and ability to diagnose and treat affected individuals. In this review, we focus on dental, oral, and craniofacial manifestations of rare bone diseases. Discussed are defects in 4 key physiologic processes in bone/tooth formation that serve as models for the understanding of other diseases in the skeleton and DOC complex: progenitor cell differentiation (fibrous dysplasia), extracellular matrix production (osteogenesis imperfecta), mineralization (familial tumoral calcinosis/hyperostosis hyperphosphatemia syndrome, hypophosphatemic rickets, and hypophosphatasia), and bone resorption (Gorham-Stout disease). For each condition, we highlight causative mutations (when known), etiopathology in the skeleton and DOC complex, and treatments. By understanding how these 4 foci are subverted to cause disease, we aim to improve the identification of genetic, molecular, and/or biologic causes, diagnoses, and treatment of these and other rare bone conditions that may share underlying mechanisms of disease. © International & American Associations for Dental Research.

  19. Rare Bone Diseases and Their Dental, Oral, and Craniofacial Manifestations

    PubMed Central

    Foster, B.L.; Ramnitz, M.S.; Gafni, R.I.; Burke, A.B.; Boyce, A.M.; Lee, J.S.; Wright, J.T.; Akintoye, S.O.; Somerman, M.J.; Collins, M.T.

    2014-01-01

    Hereditary diseases affecting the skeleton are heterogeneous in etiology and severity. Though many of these conditions are individually rare, the total number of people affected is great. These disorders often include dental-oral-craniofacial (DOC) manifestations, but the combination of the rarity and lack of in-depth reporting often limit our understanding and ability to diagnose and treat affected individuals. In this review, we focus on dental, oral, and craniofacial manifestations of rare bone diseases. Discussed are defects in 4 key physiologic processes in bone/tooth formation that serve as models for the understanding of other diseases in the skeleton and DOC complex: progenitor cell differentiation (fibrous dysplasia), extracellular matrix production (osteogenesis imperfecta), mineralization (familial tumoral calcinosis/hyperostosis hyperphosphatemia syndrome, hypophosphatemic rickets, and hypophosphatasia), and bone resorption (Gorham-Stout disease). For each condition, we highlight causative mutations (when known), etiopathology in the skeleton and DOC complex, and treatments. By understanding how these 4 foci are subverted to cause disease, we aim to improve the identification of genetic, molecular, and/or biologic causes, diagnoses, and treatment of these and other rare bone conditions that may share underlying mechanisms of disease. PMID:24700690

  20. Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India.

    PubMed

    Khandare, Arjun L; Gourineni, Shankar Rao; Validandi, Vakdevi

    2017-10-23

    A case-control study was undertaken among the school children aged 8-15 years to know the presence and severity of dental fluorosis, nutrition and kidney status, and thyroid function along with bone metabolic indicators in Doda district situated at high altitude where drinking water was contaminated and heat stress. This study included 824 participants with an age of 8-15 years. The results of the study reviled that dental fluorosis was significantly higher in affected than control area children. Urinary fluoride was significantly higher (p < 0.05) in affected children as compared to the control area school children. Nutritional status of affected children was lower than control area children. The chronic kidney damage (CKD) was higher in affected than control school children. Thyroid function was affected more in affected than control area schools. Serum creatinine, total alkaline phosphatase, parathyroid hormone, 1, 25(OH) 2 vitamin D, and osteocalcin were significantly higher in affected school children (p < 0.05) as compared to control school children, whereas there was no significant difference in triiodothyronine (T3), thyroxine (T4), and 25-OH vitamin D among the two groups. There was a significant decrease in thyroid-stimulating hormone (TSH) in the affected area school children compared to control. In conclusion, fluorotic area school children were more affected with dental fluorosis, kidney damage, along and some bone indicators as compared to control school children.

  1. Effect of celastrol on bone structure and mechanics in arthritic rats.

    PubMed

    Cascão, Rita; Vidal, Bruno; Jalmari Finnilä, Mikko Arttu; Lopes, Inês Pascoal; Teixeira, Rui Lourenço; Saarakkala, Simo; Moita, Luis Ferreira; Fonseca, João Eurico

    2017-01-01

    Rheumatoid arthritis (RA) is characterised by chronic inflammation leading to articular bone and cartilage damage. Despite recent progress in RA management, adverse effects, lack of efficacy and economic barriers to treatment access still limit therapeutic success. Therefore, safer and less expensive treatments that control inflammation and bone resorption are needed. We have previously shown that celastrol is a candidate for RA treatment. We have observed that it inhibits both interleukin (IL)-1β and tumor necrosis factor (TNF) in vitro, and that it has anti-inflammatory properties and ability to decrease synovial CD68+ macrophages in vivo. Herein our goal was to evaluate the effect of celastrol in local and systemic bone loss. Celastrol was administrated intraperitoneally at a dose of 1 µg/g/day to female Wistar adjuvant-induced arthritic rats. Rats were sacrificed after 22 days of disease progression, and blood, femurs, tibiae and paw samples were collected for bone remodelling markers quantification, 3-point bending test, micro-CT analysis, nanoindentation and Fourier transform infrared spectroscopy measurements, and immunohistochemical evaluation. We have observed that celastrol preserved articular structures and decreased the number of osteoclasts and osteoblasts present in arthritic joints. Moreover, celastrol reduced tartrate-resistant acid phosphatase 5b, procollagen type 1 amino-terminal propeptide and C terminal crosslinked telopeptide of type II collagen serum levels. Importantly, celastrol prevented bone loss and bone microarchitecture degradation. Celastrol also preserved bone nanoproperties and mineral content. Additionally, animals treated with celastrol had less fragile bones, as depicted by an increase in maximum load and yield displacement. These results suggest that celastrol reduces both bone resorption and cartilage degradation, and preserves bone structural properties.

  2. Cell-scaffold interactions in the bone tissue engineering triad.

    PubMed

    Murphy, Ciara M; O'Brien, Fergal J; Little, David G; Schindeler, Aaron

    2013-09-20

    Bone tissue engineering has emerged as one of the leading fields in tissue engineering and regenerative medicine. The success of bone tissue engineering relies on understanding the interplay between progenitor cells, regulatory signals, and the biomaterials/scaffolds used to deliver them--otherwise known as the tissue engineering triad. This review will discuss the roles of these fundamental components with a specific focus on the interaction between cell behaviour and scaffold structural properties. In terms of scaffold architecture, recent work has shown that pore size can affect both cell attachment and cellular invasion. Moreover, different materials can exert different biomechanical forces, which can profoundly affect cellular differentiation and migration in a cell type specific manner. Understanding these interactions will be critical for enhancing the progress of bone tissue engineering towards clinical applications.

  3. Strontium ranelate: a novel mode of action leading to renewed bone quality.

    PubMed

    Ammann, Patrick

    2005-01-01

    Various bone resorption inhibitors and bone stimulators have been shown to decrease the risk of osteoporotic fractures. However, there is still a need for agents promoting bone formation by inducing positive uncoupling between bone formation and bone resorption. In vitro studies have suggested that strontium ranelate enhances osteoblast cell replication and activity. Simultaneously, strontium ranelate dose-dependently inhibits osteoclast activity. In vivo studies indicate that strontium ranelate stimulates bone formation and inhibits bone resorption and prevents bone loss and/or promotes bone gain. This positive uncoupling between bone formation and bone resorption results in bone gain and improvement in bone geometry and microarchitecture, without affecting the intrinsic bone tissue quality. Thus, all the determinants of bone strength are positively influenced. In conclusion, strontium ranelate, a new treatment of postmenopausal osteoporosis, acts through an innovative mode of action, both stimulating bone formation and inhibiting bone resorption, resulting in the rebalancing of bone turnover in favor of bone formation. Strontium ranelate increases bone mass while preserving the bone mineralization process, resulting in improvement in bone strength and bone quality.

  4. Effects of Monoclonal Antibodies against Nerve Growth Factor on Healthy Bone and Joint Tissues in Mice, Rats, and Monkeys: Histopathologic, Biomarker, and Microcomputed Tomographic Assessments.

    PubMed

    Gropp, Kathryn E; Carlson, Cathy S; Evans, Mark G; Bagi, Cedo M; Reagan, William J; Hurst, Susan I; Shelton, David L; Zorbas, Mark A

    2018-01-01

    Tanezumab, an anti-nerve growth factor (NGF) antibody, is in development for management of chronic pain. During clinical trials of anti-NGF antibodies, some patients reported unexpected adverse events requiring total joint replacements, resulting in a partial clinical hold on all NGF inhibitors. Three nonclinical toxicology studies were conducted to evaluate the effects of tanezumab or the murine precursor muMab911 on selected bone and joint endpoints and biomarkers in cynomolgus monkeys, Sprague-Dawley rats, and C57BL/6 mice. Joint and bone endpoints included histology, immunohistochemistry, microcomputed tomography (mCT) imaging, and serum biomarkers of bone physiology. Responses of bone endpoints to tanezumab were evaluated in monkeys at 4 to 30 mg/kg/week for 26 weeks and in rats at 0.2 to 10 mg/kg twice weekly for 28 days. The effects of muMab911 at 10 mg/kg/week for 12 weeks on selected bone endpoints were determined in mice. Tanezumab and muMab911 had no adverse effects on any bone or joint parameter. There were no test article-related effects on bone or joint histology, immunohistochemistry, or structure. Reversible, higher osteocalcin concentrations occurred only in the rat study. No deleterious effects were observed in joints or bones in monkeys, rats, or mice administered high doses of tanezumab or muMab911.

  5. Bone marrow lesions in hip osteoarthritis are characterized by increased bone turnover and enhanced angiogenesis.

    PubMed

    Shabestari, M; Vik, J; Reseland, J E; Eriksen, E F

    2016-10-01

    Bone marrow lesions (BML), previously denoted bone marrow edema, are detected as water signals by magnetic resonance imaging (MRI). Previous histologic studies were unable to demonstrate any edematous changes at the tissue level. Therefore, our aim was to investigate the underlying biological mechanisms of the water signal in MRI scans of bone affected by BML. Tetracycline labeling in addition to water sensitive MRI scans of 30 patients planned for total hip replacement surgery was undertaken. Twenty-one femoral heads revealed BML on MRI, while nine were negative and used as controls (CON). Guided by the MRI images cylindrical biopsies were extracted from areas with BML in the femoral heads. Tissue sections from the biopsies were subjected to histomorphometric image analyses of the cancellous bone envelope. Patients with BML exhibited an average 40- and 18-fold increase of bone formation rate and mineralizing surface, respectively. Additionally, samples with BML demonstrated 2-fold reduction of marrow fat and 28-fold increase of woven bone. Immunohistochemical analysis showed a 4-fold increase of angiogenesis markers CD31 and von Willebrand Factor (vWF) in the BML-group compared to CON. This study indicates that BML are characterized by increased bone turnover, vascularity and angiogenesis in keeping with it being a reparatory process. Thus, the water signal, which is the hallmark of BML on MRI, is most probably reflecting increased tissue vascularity accompanying increased remodeling activity. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Vaccine Adverse Events

    MedlinePlus

    ... use in the primary immunization series in infants Report Adverse Event Report a Vaccine Adverse Event Contact FDA (800) 835- ... back to top Popular Content Home Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases ...

  7. Antibiotic-loaded bone void filler accelerates healing in a femoral condylar rat model.

    PubMed

    Shiels, S M; Cobb, R R; Bedigrew, K M; Ritter, G; Kirk, J F; Kimbler, A; Finger Baker, I; Wenke, J C

    2016-08-01

    Demineralised bone matrix (DBM) is rarely used for the local delivery of prophylactic antibiotics. Our aim, in this study, was to show that a graft with a bioactive glass and DBM combination, which is currently available for clinical use, can be loaded with tobramycin and release levels of antibiotic greater than the minimum inhibitory concentration for Staphylococcus aureus without interfering with the bone healing properties of the graft, thus protecting the graft and surrounding tissues from infection. Antibiotic was loaded into a graft and subsequently evaluated for drug elution kinetics and the inhibition of bacterial growth. A rat femoral condylar plug model was used to determine the effect of the graft, loaded with antibiotic, on bone healing. We found that tobramycin loaded into a graft composed of bioglass and DBM eluted antibiotic above the minimum inhibitory concentration for three days in vitro. It was also found that the antibiotic loaded into the graft produced no adverse effects on the bone healing properties of the DBM at a lower level of antibiotic. This antibiotic-loaded bone void filler may represent a promising option for the delivery of local antibiotics in orthopaedic surgery. Cite this article: Bone Joint J 2016;98-B:1126-31. ©2016 The British Editorial Society of Bone & Joint Surgery.

  8. Increasing dietary phosphorus intake from food additives: potential for negative impact on bone health.

    PubMed

    Takeda, Eiji; Yamamoto, Hironori; Yamanaka-Okumura, Hisami; Taketani, Yutaka

    2014-01-01

    It is important to consider whether habitual high phosphorus intake adversely affects bone health, because phosphorus intake has been increasing, whereas calcium intake has been decreasing in dietary patterns. A higher total habitual dietary phosphorus intake has been associated with higher serum parathyroid hormone (PTH) and lower serum calcium concentrations in healthy individuals. Higher serum PTH concentrations have been shown in those who consume foods with phosphorus additives. These findings suggest that long-term dietary phosphorus loads and long-term hyperphosphatemia may have important negative effects on bone health. In contrast, PTH concentrations did not increase as a result of high dietary phosphorus intake when phosphorus was provided with adequate amounts of calcium. Intake of foods with a ratio of calcium to phosphorus close to that found in dairy products led to positive effects on bone health. Several randomized controlled trials have shown positive relations between dairy intake and bone mineral density. In our loading test with a low-calcium, high-phosphorus lunch provided to healthy young men, serum PTH concentrations showed peaks at 1 and 6 h, and serum fibroblast growth factor 23 (FGF23) concentrations increased significantly at 8 h after the meal. In contrast, the high-calcium, high-phosphorus meal suppressed the second PTH and FGF23 elevations until 8 h after the meal. This implies that adequate dietary calcium intake is needed to overcome the interfering effects of high phosphorus intake on PTH and FGF23 secretion. FGF23 acts on the parathyroid gland to decrease PTH mRNA and PTH secretion in rats with normal kidney function. However, increased serum FGF23 is an early alteration of mineral metabolism in chronic kidney disease, causing secondary hyperthyroidism, and implying resistance of the parathyroid gland to the action of FGF23 in chronic kidney disease. These findings suggest that long-term high-phosphorus diets may impair bone health

  9. Changes in bone structure of Corriedale sheep with inherited rickets: a peripheral quantitative computed tomography assessment.

    PubMed

    Dittmer, Keren E; Firth, Elwyn C; Thompson, Keith G; Marshall, Jonathan C; Blair, Hugh T

    2011-03-01

    An inherited skeletal disease with gross and microscopic features of rickets has been diagnosed in Corriedale sheep in New Zealand. The aim of this study was to quantify the changes present in tibia from sheep with inherited rickets using peripheral quantitative computed tomography. In affected sheep, scans in the proximal tibia, where metaphysis becomes diaphysis, showed significantly greater trabecular bone mineral content (BMC) and bone mineral density (BMD). The sheep with inherited rickets had significantly greater BMC and bone area in the mid-diaphysis of the proximal tibia compared to control sheep. However, BMD in the mid-diaphysis was significantly less in affected sheep than in controls, due to the greater cortical area and lower voxel density values in affected sheep. From this it was concluded that the increased strain on under-mineralised bone in sheep with inherited rickets led to increased bone mass in an attempt to improve bone strength. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Circulating Endothelial Cells and Endothelial Function predict Major Adverse Cardiac Events and Early Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Magdy, Abdel Hamid; Bakhoum, Sameh; Sharaf, Yasser; Sabry, Dina; El-Gengehe, Ahmed T; Abdel-Latif, Ahmed

    2016-01-01

    Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) are mobilized from the bone marrow and increase in the early phase after ST-elevation myocardial infarction (STEMI). The aim of this study was to assess the prognostic significance of CECs and indices of endothelial dysfunction in patients with STEMI. In 78 patients with acute STEMI, characterization of CD34+/VEGFR2+ CECs, and indices of endothelial damage/dysfunction such as brachial artery flow mediated dilatation (FMD) were determined. Blood samples for CECs assessment and quantification were obtained within 24 hours of admission and FMD was assessed during the index hospitalization. At 30 days follow up, the primary composite end point of major cardiac adverse events (MACE) consisting of all-cause mortality, recurrent non-fatal MI, or heart failure and the secondary endpoint of early adverse left ventricular (LV) remodeling were analyzed. The 17 patients (22%) who developed MACE had significantly higher CEC level (P = 0.004), vWF level (P =0.028), and significantly lower FMD (P = 0.006) compared to the remaining patients. Logistic regression analysis showed that CECs level and LV ejection fraction were independent predictors of MACE. The areas under the receiver operating characteristic curves (ROC) for CEC level, FMD, and the logistic model with both markers were 0.73, 0.75, and 0.82 respectively for prediction of the MACE. The 16 patients who developed the secondary endpoint had significantly higher CEC level compared to remaining patients (p =0.038). In conclusion, increased circulating endothelial cells and endothelial dysfunction predicted the occurrence of major adverse cardiac events and adverse cardiac remodeling in patients with STEMI. PMID:26864952

  11. Exercise frequency and bone mineral density development in exercising postmenopausal osteopenic women. Is there a critical dose of exercise for affecting bone? Results of the Erlangen Fitness and Osteoporosis Prevention Study.

    PubMed

    Kemmler, Wolfgang; von Stengel, Simon; Kohl, Matthias

    2016-08-01

    Due to older people's low sports participation rates, exercise frequency may be the most critical component for designing exercise protocols that address bone. The aims of the present article were to determine the independent effect of exercise frequency (ExFreq) and its corresponding changes on bone mineral density (BMD) and to identify the minimum effective dose that just relevantly affects bone. Based on the 16-year follow-up of the intense, consistently supervised Erlangen Fitness and Osteoporosis Prevention-Study, ExFreq was retrospectively determined in the exercise-group of 55 initially early-postmenopausal females with osteopenia. Linear mixed-effect regression analysis was conducted to determine the independent effect of ExFreq on BMD changes at lumbar spine and total hip. Minimum effective dose of ExFreq based on BMD changes less than the 90% quantile of the sedentary control-group (n=43). Cut-offs were determined after 4, 8, 12 and 16years using bootstrap with 5000 replications. After 16years, average ExFreq ranged between 1.02 and 2.96sessions/week (2.28±0.40sessions/week). ExFreq has an independent effect on LS-BMD (p<.001) and hip-BMD (p=.005) changes. Bootstrap analysis detected a minimum effective dose at about 2sessions/week/16years (cut-off LS-BMD: 2.11, 95% CI: 2.06-2.12; total hip-BMD: 2.22, 95% CI: 2.00-2.78sessions/week/16years). In summary, the minimum effective dose of exercise frequency that relevantly addresses BMD is quite high, at least compared with the low sport participation rate of older adults. This result might not be generalizable across all exercise types, protocols and cohorts, but it does indicate at least that even when applying high impact/high intensity programs, exercise frequency and its maintenance play a key role in bone adaptation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis

    PubMed Central

    Goldstein, Robert H; Reagan, Michaela R; Anderson, Kristen; Kaplan, David L; Rosenblatt, Michael

    2010-01-01

    American women have a nearly 25% lifetime risk of developing breast cancer, with 20–40% of these patients developing life-threatening metastases. Over 70% of patients presenting with metastases have skeletal involvement, which signals progression to an incurable stage. Tumor-stroma cell interactions are only superficially understood, specifically regarding the ability of stromal cells to affect metastasis. In vivo models show that exogenously supplied hBMSCs (human bone-marrow derived stem cells) migrate to breast cancer tumors, but no reports have shown endogenous hBMSC migration from the bone to primary tumors. Here we present a model of in vivo hBMSC migration from a physiologic human bone environment to human breast tumors. Further, hBMSCs alter tumor growth and bone metastasis frequency. hBMSCs may home to certain breast tumors based on tumor-derived TGF-β1. Moreover, at the primary tumor IL-17B/IL-17BR signaling may mediate interactions between hBMSCs and breast cancer cells (BCCs). PMID:21159629

  13. Treatment of a unicameral bone cyst in a dog using a customized titanium device.

    PubMed

    Nojiri, Ayami; Akiyoshi, Hideo; Ohashi, Fumihito; Ijiri, Atsuki; Sawase, Osamu; Matsushita, Tomiharu; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Nakamura, Takashi; Yamaguchi, Tsutomu

    2015-01-01

    A 4-year-old Shih-Tzu, referred for an enlarged left carpus, was diagnosed with a unicameral bone cyst. A customized titanium device was inserted into cystic lesion and fixed by titanium screws. Sufficient strength of the affected bone with the device inserted to maintain limb function was established after resection of contents of cystic lesion. There was no deterioration of the lesion of bone cyst, and acceptable function of the affected limb with no clinical signs of lameness was maintained during 36 months follow-up. The results of this study demonstrated that bone cyst curettage and use of a customized titanium device could provide an effective alternative treatment of huge lesion of unicameral bone cysts with the intent of preventing pathologic fractures.

  14. Treatment of a unicameral bone cyst in a dog using a customized titanium device

    PubMed Central

    NOJIRI, Ayami; AKIYOSHI, Hideo; OHASHI, Fumihito; IJIRI, Atsuki; SAWASE, Osamu; MATSUSHITA, Tomiharu; TAKEMOTO, Mitsuru; FUJIBAYASHI, Shunsuke; NAKAMURA, Takashi; YAMAGUCHI, Tsutomu

    2014-01-01

    ABSTRACT A 4-year-old Shih-Tzu, referred for an enlarged left carpus, was diagnosed with a unicameral bone cyst. A customized titanium device was inserted into cystic lesion and fixed by titanium screws. Sufficient strength of the affected bone with the device inserted to maintain limb function was established after resection of contents of cystic lesion. There was no deterioration of the lesion of bone cyst, and acceptable function of the affected limb with no clinical signs of lameness was maintained during 36 months follow-up. The results of this study demonstrated that bone cyst curettage and use of a customized titanium device could provide an effective alternative treatment of huge lesion of unicameral bone cysts with the intent of preventing pathologic fractures. PMID:25319515

  15. Interventions to prevent adverse fetal programming due to maternal obesity during pregnancy.

    PubMed

    Nathanielsz, Peter W; Ford, Stephen P; Long, Nathan M; Vega, Claudia C; Reyes-Castro, Luis A; Zambrano, Elena

    2013-10-01

    Maternal obesity is a global epidemic affecting both developed and developing countries. Human and animal studies indicate that maternal obesity adversely programs the development of offspring, predisposing them to chronic diseases later in life. Several mechanisms act together to produce these adverse health effects. There is a consequent need for effective interventions that can be used in the management of human pregnancy to prevent these outcomes. The present review analyzes the dietary and exercise intervention studies performed to date in both altricial and precocial animals, rats and sheep, with the aim of preventing adverse offspring outcomes. The results of these interventions present exciting opportunities to prevent, at least in part, adverse metabolic and other outcomes in obese mothers and their offspring. © 2013 International Life Sciences Institute.

  16. Altered thermogenesis and impaired bone remodeling in Misty mice

    PubMed Central

    Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2013-01-01

    Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a and less sympathetic innervation compared to wildtype (+/+)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hr), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2 and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wildtype. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wildtype and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular BV/TV loss in the distal femur of Misty mice without affecting wildtype. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling

  17. Computed tomography analysis of guinea pig bone: architecture, bone thickness and dimensions throughout development

    PubMed Central

    Witkowska, Agata; Alibhai, Aziza; Hughes, Chloe; Price, Jennifer; Klisch, Karl; Sturrock, Craig J.

    2014-01-01

    guinea pigs have reached full weight. This study is the first to show the high abundance (100% in this study) of the supratrochlear foramen within the guinea pig humerus and the complete absence of a supracondylar foramen, which is different to many other species and may also affect potential fracture points and frequencies. Understanding bone morphology and growth is essential in not only understanding the requirements of the healthy guinea pig, but also necessary in order to investigate disease states. PMID:25289194

  18. Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Alwood, J.; Tahimic, C.; Schreurs, A.-S.; Shirazi-Fard, Y.; Terada, M.; Zaragoza, J.; Truong, T.; Bruns, K.; Castillo, A.; hide

    2018-01-01

    We examined experimentally the effects of radiation and/or simulated weightlessness by hindlimb unloading on bone and blood vessel function either after a short period or at a later time after transient exposures in adult male, C57Bl6J mice. In sum, recent findings from our studies show that in the short term, ionizing radiation and simulate weightlessness cause greater deficits in blood vessels when combined compared to either challenge alone. In the long term, heavy ion radiation, but not unloading, can lead to persistent, adverse consequences for bone and vessel function, possibly due to oxidative stress-related pathways.

  19. Gain-of-function mutation in FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis

    PubMed Central

    Su, Nan; Sun, Qidi; Li, Can; Lu, Xiumin; Qi, Huabing; Chen, Siyu; Yang, Jing; Du, Xiaolan; Zhao, Ling; He, Qifen; Jin, Min; Shen, Yue; Chen, Di; Chen, Lin

    2010-01-01

    Achondroplasia (ACH) is a short-limbed dwarfism resulting from gain-of-function mutations in fibroblast growth factor receptor 3 (FGFR3). Previous studies have shown that ACH patients have impaired chondrogenesis, but the effects of FGFR3 on bone formation and bone remodeling at adult stages of ACH have not been fully investigated. Using micro-computed tomography and histomorphometric analyses, we found that 2-month-old Fgfr3G369C/+ mice (mouse model mimicking human ACH) showed decreased bone mass due to reduced trabecular bone volume and bone mineral density, defect in bone mineralization and increased osteoclast numbers and activity. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, Fgfr3G369C/+ cultures showed decreased cell proliferation, increased osteogenic differentiation including up-regulation of alkaline phosphatase activity and expressions of osteoblast marker genes, and reduced bone matrix mineralization. Furthermore, our studies also suggest that decreased cell proliferation and enhanced osteogenic differentiation observed in Fgfr3G369C/+ BMSCs are caused by up-regulation of p38 phosphorylation and that enhanced Erk1/2 activity is responsible for the impaired bone matrix mineralization. In addition, in vitro osteoclast formation and bone resorption assays demonstrated that osteoclast numbers and bone resorption area were increased in cultured bone marrow cells derived from Fgfr3G369C/+ mice. These findings demonstrate that gain-of-function mutation in FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities. Our studies provide new insight into the mechanism underlying the development of ACH. PMID:20053668

  20. Enhanced bone screw fixation with biodegradable bone cement in osteoporotic bone model.

    PubMed

    Juvonen, Tiina; Koistinen, Arto; Kröger, Heikki; Lappalainen, Reijo

    2012-09-27

    The purpose of this study was to study the potential of novel biodegradable PCL bone cement to improve bone screw fixation strength in osteoporotic bone. The biomechanical properties of bone cement (ε-polycaprolactone, PCL) and fixation strength were studied using biomechanical tests and bone screws fixed in an osteoporotic bone model. Removal torques and pullout strengths were assessed for cortical, self-tapping, and cancellous screws inserted in the osteoporotic bone model (polyurethane foam blocks with polycarbonate plate) with and without PCL bone cement. Open cell and cellular rigid foam blocks with a density of 0.12 g/cm3 were used in this model. Removal torques were significantly (more than six-fold) improved with bone cement for cancellous screws. Furthermore, the bone cement improved pullout strengths three to 12 times over depending on the screw and model material. Biodegradable bone cement turned out to be a very potential material to stabilize screw fixation in osteoporotic bone. The results warrant further research before safe clinical use, especially to clarify clinically relevant factors using real osteoporotic bone under human body conditions and dynamic fatigue testing for long-term performance.

  1. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes in...

  2. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes in...

  3. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes in...

  4. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes in...

  5. Assessment of bone health in children with disabilities.

    PubMed

    Kecskemethy, Heidi H; Harcke, H Theodore

    2014-01-01

    Evaluating the bone health of children with disabilities is challenging and requires consideration of many factors in clinical decision-making. Feeding problems and growth deficits, immobility/inability to bear weight, effect of medications, and the nature of his or her disease can all directly affect a child's overall picture of bone health. Familiarity with the tools available to assess bone health is important for practitioners. The most commonly used method to assess bone density, dual energy x-ray absorptiometry, can be performed effectively when one appreciates the techniques that make scanning patients with disabilities possible. There are specific techniques that are especially useful for measuring bone density in children with disabilities; standard body sites are not always obtainable. Consideration of clinical condition and treatment must be considered when interpreting dual energy x-ray absorptiometry scans. Serial measurements have been shown to be effective in monitoring change in bone content and in providing information on which to base decisions regarding medical treatment.

  6. Multi-frequency Axial Transmission Bone Ultrasonometer

    PubMed Central

    Tatarinov, Alexey; Egorov, Vladimir; Sarvazyan, Noune; Sarvazyan, Armen

    2014-01-01

    The last decade has seen a surge in the development of axial transmission QUS (Quantitative UltraSound) technologies for the assessment of long bones using various modes of acoustic waves. The condition of cortical bones and the development of osteoporosis are determined by numerous mechanical, micro-structural, and geometrical or macro-structural bone properties like hardness, porosity and cortical thickness. Such complex manifestations of osteoporosis require the evaluation of multiple parameters with different sensitivities to the various properties of bone that are affected by the disease. This objective may be achieved by using a multi-frequency ultrasonic examination The ratio of the acoustic wavelength to the cortical thickness can be changed by varying the frequency of the ultrasonic pulse propagating through the long bone that results in the change in composition of the induced wave comprised of a set of numerous modes of guided, longitudinal, and surface acoustic waves. The multi-frequency axial transmission QUS method developed at Artann Laboratories (Trenton, NJ) is implemented in the Bone Ultrasonic Scanner (BUSS). In the current version of the BUSS, a train of ultrasonic pulses with 60, 100, 400, 800, and 1200 kHz frequencies is used. The developed technology was tested on a variety of bone phantoms simulating normal, osteopenic, and osteoporotic bones. The results of this study confirm the feasibility of the multi-frequency approach for the assessment of the processes leading to osteoporosis. PMID:24206675

  7. Cola beverage consumption delays alveolar bone healing: a histometric study in rats.

    PubMed

    Teófilo, Juliana Mazzonetto; Leonel, Daniel Vilela; Lamano, Teresa

    2010-01-01

    Epidemiological studies have suggested that cola beverage consumption may affect bone metabolism and increase bone fracture risk. Experimental evidence linking cola beverage consumption to deleterious effects on bone is lacking. Herein, we investigated whether cola beverage consumption from weaning to early puberty delays the rate of reparative bone formation inside the socket of an extracted tooth in rats. Twenty male Wistar rats received cola beverage (cola group) or tap water (control group) ad libitum from the age of 23 days until tooth extraction at 42 days and euthanasia 2 and 3 weeks later. The neoformed bone volume inside the alveolar socket was estimated in semi-serial longitudinal sections using a quantitative differential point-counting method. Histological examination suggested a decrease in the osteogenic process within the tooth sockets of rats from both cola groups, which had thinner and sparser new bone trabeculae. Histometric data confirmed that alveolar bone healing was significantly delayed in cola-fed rats at three weeks after tooth extraction (ANOVA, p = 0.0006, followed by Tukey's test, p < 0.01). Although the results of studies in rats cannot be extrapolated directly to human clinical dentistry, the present study provides evidence that cola beverage consumption negatively affect maxillary bone formation.

  8. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.

    PubMed

    Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose

    2014-12-01

    Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Mutations in WNT1 Cause Different Forms of Bone Fragility

    PubMed Central

    Keupp, Katharina; Beleggia, Filippo; Kayserili, Hülya; Barnes, Aileen M.; Steiner, Magdalena; Semler, Oliver; Fischer, Björn; Yigit, Gökhan; Janda, Claudia Y.; Becker, Jutta; Breer, Stefan; Altunoglu, Umut; Grünhagen, Johannes; Krawitz, Peter; Hecht, Jochen; Schinke, Thorsten; Makareeva, Elena; Lausch, Ekkehart; Cankaya, Tufan; Caparrós-Martín, José A.; Lapunzina, Pablo; Temtamy, Samia; Aglan, Mona; Zabel, Bernhard; Eysel, Peer; Koerber, Friederike; Leikin, Sergey; Garcia, K. Christopher; Netzer, Christian; Schönau, Eckhard; Ruiz-Perez, Victor L.; Mundlos, Stefan; Amling, Michael; Kornak, Uwe; Marini, Joan; Wollnik, Bernd

    2013-01-01

    We report that hypofunctional alleles of WNT1 cause autosomal-recessive osteogenesis imperfecta, a congenital disorder characterized by reduced bone mass and recurrent fractures. In consanguineous families, we identified five homozygous mutations in WNT1: one frameshift mutation, two missense mutations, one splice-site mutation, and one nonsense mutation. In addition, in a family affected by dominantly inherited early-onset osteoporosis, a heterozygous WNT1 missense mutation was identified in affected individuals. Initial functional analysis revealed that altered WNT1 proteins fail to activate canonical LRP5-mediated WNT-regulated β-catenin signaling. Furthermore, osteoblasts cultured in vitro showed enhanced Wnt1 expression with advancing differentiation, indicating a role of WNT1 in osteoblast function and bone development. Our finding that homozygous and heterozygous variants in WNT1 predispose to low-bone-mass phenotypes might advance the development of more effective therapeutic strategies for congenital forms of bone fragility, as well as for common forms of age-related osteoporosis. PMID:23499309

  10. Influence of demineralized bone matrix's embryonic origin on bone formation: an experimental study in rats.

    PubMed

    Stavropoulos, Andreas; Kostopoulos, Lambros; Mardas, Nicolaos; Karring, Thorkild

    2003-01-01

    There are results suggesting that differences regarding bone-inducing potential, in terms of amount and/or rate of bone formation, exist between demineralized bone matrices (DBMs) of different embryonic origins. The aim of the present study was to examine whether the embryonic origin of DBM affects bone formation when used as an adjunct to guided tissue regeneration (GTR). Endomembranous (EM) and endochondral (ECH) DBMs were produced from calvarial and long bones of rats, respectively. Prior to the study the osteoinductive properties of the DBMs were confirmed in six rats following intramuscular implantation. Following surgical exposure of the mandibular ramus, a rigid hemispheric Teflon capsule loosely packed with a standardized quantity of DBM was placed with its open part facing the lateral surface of the ramus in both sides of the jaw in 30 rats. In one side of the jaw, chosen at random, the capsule was filled with EM-DBM, whereas in the other side ECH-DBM was used. Groups of 10 animals were sacrificed after healing periods of 1, 2, and 4 months, and undecalcified sections of the capsules were produced and subjected to histologic analysis and computer-assisted planimetric measurements. During the experiment increasing amounts of newly formed bone were observed inside the capsules in both sides of the animals' jaws. Limited bone formation was observed in the 1- and 2-month specimens, but after 4 months of healing, the newly formed bone in the ECH-DBM grafted sides occupied 59.1% (range 45.6-74.7%) of the area created by the capsule versus 46.9% (range 23.0-64.0%) in the EM-DBM grafted sides (p =.01). It is concluded that the embryonic origin of DBM influences bone formation by GTR and that ECH-DBM is superior to EM-DBM.

  11. The association between adverse childhood experiences and adult traumatic brain injury/concussion: a scoping review.

    PubMed

    Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Lay, Christine; Munce, Sarah E P

    2018-01-12

    Adverse childhood experiences are significant risk factors for physical and mental illnesses in adulthood. Traumatic brain injury/concussion is a challenging condition where pre-injury factors may affect recovery. The association between childhood adversity and traumatic brain injury/concussion has not been previously reviewed. The research question addressed is: What is known from the existing literature about the association between adverse childhood experiences and traumatic brain injury/concussion in adults? All original studies of any type published in English since 2007 on adverse childhood experiences and traumatic brain injury/concussion outcomes were included. The literature search was conducted in multiple electronic databases. Arksey and O'Malley and Levac et al.'s scoping review frameworks were used. Two reviewers independently completed screening and data abstraction. The review yielded six observational studies. Included studies were limited to incarcerated or homeless samples, and individuals at high-risk of or with mental illnesses. Across studies, methods for childhood adversity and traumatic brain injury/concussion assessment were heterogeneous. A positive association between adverse childhood experiences and traumatic brain injury occurrence was identified. The review highlights the importance of screening and treatment of adverse childhood experiences. Future research should extend to the general population and implications on injury recovery. Implications for rehabilitation Exposure to adverse childhood experiences is associated with increased risk of traumatic brain injury. Specific types of adverse childhood experiences associated with risk of traumatic brain injury include childhood physical abuse, psychological abuse, household member incarceration, and household member drug abuse. Clinicians and researchers should inquire about adverse childhood experiences in all people with traumatic brain injury as pre-injury health conditions can

  12. Genetic manipulation of the ghrelin signaling system in male mice reveals bone compartment specificity of acylated and unacylated ghrelin in the regulation of bone remodeling

    USDA-ARS?s Scientific Manuscript database

    Ghrelin receptor-deficient (Ghsr-/-) mice that lack acylated ghrelin (AG) signaling retain a metabolic response to unacylated ghrelin (UAG). Recently, we showed that Ghsr-deficiency affects bone metabolism. The aim of this study was to further establish the impact of AG and UAG on bone metabolism. W...

  13. Clinical roundtable monograph. New alternatives in CLL therapy: managing adverse events.

    PubMed

    Chanan-Khan, Asher; Kipps, Thomas; Stilgenbauer, Stephan

    2010-08-01

    Chronic lymphocytic leukemia (CLL) is a B-cell leukemia mainly affecting older adults. Historically, CLL has been regarded as an incurable disease, and treatment has been confined to cytotoxic chemotherapy regimens. However, prognosis for patients treated with these agents remained poor, prompting the development of new, targeted agents. The introduction of rituximab, a CD20-targeted monoclonal antibody, revolutionized the treatment for this disease. Rituximab in combination with fludarabine improved response rates and length of progression-free survival. The success of rituximab in this setting has prompted the development of many more investigational agents for CLL, including other antibody agents. However, as with any medication, the potential benefit achieved with CLL therapies is mitigated by the safety risk for the patient. These agents have been associated with adverse events such as immunosuppression, reactivation of cytomegalovirus, and infusion-related reactions that can occur with antibody administration. Adverse events can greatly affect the patient’s quality of life and ability to tolerate therapy. Management of adverse events is a critical component of the overall treatment strategy for CLL, particularly in elderly patients. In this clinical roundtable monograph, 3 expert physicians discuss the latest clinical studies evaluating the treatment of CLL, focusing on the adverse events associated with each agent and the potential interventions that can be used to manage their occurrence.

  14. A New Insight to Bone Turnover: Role of ω-3 Polyunsaturated Fatty Acids

    PubMed Central

    López-Frías, Magdalena; López-Aliaga, Inmaculada; Ochoa, Julio J.

    2013-01-01

    Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA), especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κ β (RANK), a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health. PMID:24302863

  15. Micro-osmotic pumps for continuous release of the tyrosine kinase inhibitor bosutinib in juvenile rats and its impact on bone growth.

    PubMed

    Tauer, Josephine Tabea; Hofbauer, Lorenz C; Jung, Rolang; Erben, Reinhold G; Suttorp, Meinolf

    2013-11-04

    Bosutinib is a third-generation dual tyrosine kinase inhibitor (TKI) inhibiting Abl and Src kinases. It was developed to act on up-regulated tyrosine kinases (TKs) like BCR-ABL in Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) when resistance to first- and second-generation TKIs developed. However, first- and second-generation TKIs show off-target effects on bone metabolism, whereas studies on skeletal adverse effects of bosutinib are still lacking. Therefore, it was the aim of this study to continuously expose juvenile rats to bosutinib and to analyze its influence on the growing bone. Starting after weaning, 4-week-old Wistar rats were chronically exposed over a 28-day period to varying concentrations of bosutinib, which were continuously administered subcutaneously via implanted Alzet® micro-osmotic pumps. After necropsy, the length of the femora and tibiae were analyzed. Continuous administration of bosutinib by micro-osmotic pumps led to serum drug levels in the lower therapeutic range, was well tolerated, and exhibited only minor adverse effects on the growing skeleton. Micro-osmotic pumps represent a convenient system for continuous TKI release in young growing rats. Compared to first- and second-generation TKIs, bosutinib seems to exert fewer adverse effects on the growing bone.

  16. Changes in total body bone mineral density following a common bone health plan with two versions of a unique bone health supplement: a comparative effectiveness research study.

    PubMed

    Michalek, Joel E; Preuss, Harry G; Croft, Harry A; Keith, Patti L; Keith, Samuel C; Dapilmoto, Monika; Perricone, Nicholas V; Leckie, Robert B; Kaats, Gilbert R

    2011-04-14

    The US Surgeon General's Report on Bone Health suggests America's bone-health is in jeopardy and issued a "call to action" to develop bone-health plans that: (1) improve nutrition, (2) increase health literacy and, (3) increase physical activity. This study is a response to this call to action. After signing an informed consent, 158 adults agreed to follow an open-label bone-health plan for six months after taking a DXA test of bone density, a 43-chemistry blood test panel and a quality of life inventory (AlgaeCal 1). Two weeks after the last subject completed, a second group of 58 was enrolled and followed the identical plan, but with a different bone-health supplement (AlgaeCal 2). There were no significant differences between the two groups in baseline bone mineral density (BMD) or in variables related to BMD (age, sex, weight, percent body fat, fat mass, or fat-free mass). In both groups, no significant differences in BMD or related variables were found between volunteers and non-volunteers or between those who completed per protocol and those who were lost to attrition.Both groups experienced a significant positive mean annualized percent change (MAPC) in BMD compared to expectation [AlgaeCal 1: 1.15%, p = 0.001; AlgaeCal 2: 2.79%, p = 0.001]. Both groups experienced a positive MAPC compared to baseline, but only AlgaeCal 2 experienced a significant change [AlgaeCal 1: 0.48%, p = 0.14; AlgaeCal 2: 2.18%, p < 0.001]. The MAPC in AlgaeCal 2 was significantly greater than that in AlgaeCal 1 (p = 0.005). The MAPC contrast between compliant and partially compliant subjects was significant for both plans (p = 0.001 and p = 0.003 respectively). No clinically significant changes in a 43-panel blood chemistry test were found nor were there any changes in self-reported quality of life in either group. Following The Plan for six months with either version of the bone health supplement was associated with significant increases in BMD as compared to expected and, in Algae

  17. Effects of developmental exposure to perfluorooctanoic acid (PFOA) on long bone morphology and bone cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, A., E-mail: antti.koskela@oulu.fi

    Perfluorooctanoic acid (PFOA) is a ubiquitous and persistent environmental chemical, which has been used extensively due to its stability and surface tension-lowering properties. Toxicological effects include induction of neonatal mortality and reproductive toxicity. In this study, pregnant C57BL/6 mice were exposed orally to 0.3 mg PFOA/kg/day throughout pregnancy, and female offspring were studied at the age of 13 or 17 months. Morphometrical and biomechanical properties of femurs and tibias were analyzed with micro-computed tomography and 3-point bending, and bone PFOA concentrations were determined by mass spectrometry. The effects of PFOA on bone cell differentiation were studied in osteoclasts from C57BL/6more » mice and in the MC3T3 pre-osteoblast cell line. PFOA exposed mice showed increased femoral periosteal area as well as decreased mineral density of tibias. Biomechanical properties of these bones were not affected. Bone PFOA concentrations were clearly elevated even at the age of 17 months. In osteoblasts, low concentrations of PFOA increased osteocalcin (OCN) expression and calcium secretion, but at PFOA concentrations of 100 μM and above osteocalcin (OCN) expression and calcium secretion were decreased. The number of osteoclasts was increased at all PFOA concentrations tested and resorption activity dose-dependently increased from 0.1–1.0 μM, but decreased at higher concentrations. The results show that PFOA accumulates in bone and is present in bones until the old age. PFOA has the potential to influence bone turnover over a long period of time. Therefore bone is a target tissue for PFOA, and altered bone geometry and mineral density seem to persist throughout the life of the animal. - Highlights: • Bone is a target tissue for PFOA both in vivo and in vitro. • Maternal exposure during pregnancy results in PFOA accumulation in bone of the offspring. • PFOA is present in bones until the old age. • PFOA causes mild alterations in bone

  18. B-Vitamins and Bone Health–A Review of the Current Evidence

    PubMed Central

    Dai, Zhaoli; Koh, Woon-Puay

    2015-01-01

    Because of ongoing global ageing, there is a rapid worldwide increase in incidence of osteoporotic fractures and the resultant morbidity and mortality associated with these fractures are expected to create a substantial economic burden. Dietary modification is one effective approach for prevention of osteoporosis in the general population. Recently, B vitamins have been investigated for their possible roles in bone health in human studies. In this review, we provide different lines of evidence and potential mechanisms of individual B vitamin in influencing bone structure, bone quality, bone mass and fracture risk from published peer-reviewed articles. These data support a possible protective role of B vitamins, particularly, B2, B6, folate and B12, in bone health. However, results from the clinical trials have not been promising in supporting the efficacy of B vitamin supplementation in fracture reduction. Future research should continue to investigate the underlying mechanistic pathways and consider interventional studies using dietary regimens with vitamin B enriched foods to avoid potential adverse effects of high-dose vitamin B supplementation. In addition, observational and interventional studies conducted in Asia are limited and thus require more attention due to a steep rise of osteoporosis and hip fracture incidence projected in this part of the world. PMID:25961321

  19. Effects of alkylphenols on bone metabolism in vivo and in vitro.

    PubMed

    Hagiwara, Hiromi; Sugizaki, Toshinori; Tsukamoto, Yu; Senoh, Emi; Goto, Tadashi; Ishihara, Yoko

    2008-09-01

    Alkylphenols are endocrine disruptors that show estrogen-like effects in various wildlife species. However, little information is available about the action of these chemicals on bone metabolism. We investigated the effects of alkylphenols, such as nonylphenol (NP) and octylphenol (OP), on the formation of bone using several culture systems for osteoclasts and osteoblasts, as well as in vivo experiments. NP and OP dose-dependently inhibited the formation of tartrate-resistant acid phosphatase-positive multinucleated cells (osteoclasts) in cocultures of mouse spleen cells or mouse bone marrow cells with ST2 cells. However, beta-estradiol at 10(-9)M to 10(-6)M did not affect this process. In contrast, neither compound affected the proliferation and differentiation of rat calvarial osteoblast-like cells (ROB cells). When NP or OP (0.1mg/kg body weight) was administered subcutaneously to pregnant mice at 10 days, 12 days and 14 days post-coitus, fetuses at 17.5 days post-coitus showed stimulation of sternebrae bone calcification. Our findings suggest that alkylphenols have critical effects on the formation of bone by non-estrogenic effects.

  20. Leptin in joint and bone diseases: new insights.

    PubMed

    Scotece, M; Conde, J; Lopez, V; Lago, F; Pino, J; Gomez-Reino, J J; Gualillo, O

    2013-01-01

    Leptin is an adipokine with pleiotropic actions that regulates food intake, energy metabolism, inflammation and immunity, and also participates in the complex mechanism that regulates skeleton biology, both at bone and cartilage level. Leptin is increased in obesity and contributes to the "low-grade inflammatory state" of obese subjects causing a cluster of metabolic aberrations that affects joints and bone. In this review, we report the most recent research advances about the role of leptin in bone and cartilage function and its implication in inflammatory and degenerative joint diseases, such as osteoarthritis, rheumatoid arthritis and osteoporosis.